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FHEEN OB IE, BB PR & NIREMEE RO SOOI L VB s D 5, %

PEE T RRIT AR ERIZER ML & 53 U728 23S & > TEEERICE 2P K S h 5 it

THY ., HEPHEN, LTHFO—#R L 2T 5 12—, WIREMETERIZR2 L

FIZE RS HCE M S o0 b Ly BeRE RIS /0l « R L | sCE MRS B~ & B S LD

LS DD BEHERIBTRTH Y | HEECIE ., MROREE ., MEERKL & 230K

DEREKZH > TS 3, WECEMWETER TIE, £ 9RDMERZERMIEEEE L, ##ik

WA~ EMET 5 2%, £ U CHLiRE AR, BREICE AR, & OIS AERERE MR~

Lot AL, BEREE CHLT 7Y R 2B IOI0 M a T —7 0 Ea W L

B HECEMRE AT 2 5, £k, EEEOAIKIL L o, WEMlao 7 RN h—y 2%

6T, WOE RIS R U MBS MR AT S 3, R LTC & (2 & F A % ARG LR R

RSB IR~ & 3 b LB TR Z D € OfR, B MRk 2 B MRk S B L NaeE e

RIESET 5 12,

WNEE M B TERR OB, $Ex 720 A DA v 7 FREWE R X OGN FI12

B ICHIE STV D, WIREPEETERUCED 5% 4 F A > & LT, BT (Bone

morphogenetic protein : BMP) | ###fE 2 Hifa i 5E K 1 (Fibroblast growth factors : FGF) 45,

A>T 4 T v~y ik 7 (Indian Hedgehog : |hh) 67, ifil & PN Rz Ml 5N 7 (Vascular



endothelial growth factor : VEGF) 8°, Wingless-type MMTYV integration site family (Wnt)

o gIHRARRVE B A (Parathyroid hormone-related protein : PTHrP) 1213 7¢

PHBENTND, TOHTEH, BMP2 [ZWHEMEE GBI FH I B k2 > T

ZENREINTWD, BMP 3b &b &, BRERELY U XOMMBRICHEAT S Z & TF

P FESNTZZ LICI VR EINIZZ T ETHD ¥V, ZORAK, U OFHK

5 BMP1, BMP2, BMP3 23 i &, DO —IREEE Z MM L=/ 5. BMPL A A X o~

77— THY . BMP2, BMP3 % F T > 2 7 4 — I o JB%l[K 7B (Transforming growth

factorf : TGF-B) A—/3—7 7 I U—T®/T 5D Z LHAURI N 15, BUFIZESD £ TR 15l

® BMP 23MF/E L, BMPL IS8 TGF-BA— S—T7 7 S U —IZJB LTV Z L AME &N T

W5 187 b MEBEH RO RSEMIEERAIALIC BMP2 2RSS & @ lid~ & 21k

NBEINDZ RO TWAS 18 Fi-~ 7 AF MRk C2C12 I BMP2 Z{EH ¥ 5%

&L EMIIA~O L E S, B~ LT 2 ZERPHLMNIR->TND 1, F

72in vivo IZ8\2 T, BMP 77> & =% kT % Noggin & SIS S 72 b7 2 A Y =

v 7=V ATIE AR ESND ZERMBN TN D 20, & 52, BEFR 72 BMP2

aF 4> aFv /w777~ (conditional Knock Out : cKO) —~ ™7 1%, #E I O B EL

DEER, —WEETODOTEROEIEL E ORI 2 B L EELRE RPRIER 2 S 72§

2 ZD X HIZBMP2 1%, NHE BT OWI S BN T CTEERER 2572 LT

%, BMP2 OIS 7" W GER & 1. Smad #28% & . FE Smad BRI KBS N5 2, N



B MEE TR AR 1T 5 Smad £ TiX, BMP2 78, 2 B L O8N 1 #lod BMP Z KT HS

BT DL 2 RZEEN 1 M HFEROMBRBEE BB FIZ/FET 5 Glycine/serine-rich

domain (GS) "y 7 A% U VL L, 1 MUZFIEKDOEY A LA =0 % —ERER LS

na, EmHE L EN 1 8% %K%, Smadl, Smads5 & 5V % Smad8 % U U Eeflk L., AR

Smad T&H % Smad4 & ¥ U N7 EEAEEREM L, £O%, MIEEN~BAT L, Fr8is

FOWEZHIE 25 2, £, WIKEMEEIRRICBED 2 v 7T/ VsiEWE & LT, ando

Smad R FURAER FiEME(L 7 1 7 1 % —F (Mitogen-activated Protein Kinase : MAPK)

RHRAT 7 F VA J v h—/L 3 FF—F (phosphatidylinositol 3-kinase : PI3K) 72 23 %

FHND, MAPK (%, R, M5, o2, &8, 748 h—o R L Mlao & £ I F 2268

5T 52 AL A= X —EBTHY, ZNFETO L ZAffasts 7 F il

—¥ (Extracellular Signal-regulated Kinase : ERK) , ¢-Jun N &K % 7—% (c-Jun N-terminal

kinase : INK). p38 @ 3 fEMHEMNEE STV 5, MkiES M &K 241K 3 (Fibroblast

growth factors receptor 3 : FGFR3) % MAPK 7' UG 2/t L CHCE M o 8t ts

LBz LT D 2426, PIBK DIERTHD AKtL &/ v 77U F LIz~ U AT,

ZREPLOENEE S D LHRE SN TWD 27, NIEMEETERICERS G S8R

BIK & LTiE, SexdeterminingregionY (SRY) -box9 (Sox9). Sox5 5 L O Sox6 |IA

I BE R A S R F~0 43Iz 28, Runt-related transcription factor 2 (Runx2) I

ORIz 629, Sp7 transcription factor (Sp7/Osterix) % Runx2 @ FiiiZ3u T



HE FE ORI & st L TR 2> T g 30,

ZDOEDIBRBEE RN RSN TWDLH T, WINDDOARAT v FITEENET D & ik

REERBEZHFRT L ENMONT WD, FGFR3 Eix 1 0ZE BT L V) #E HiE O BE5E A

L&D 2 22X 0 RAET HHCE I EE (Achondroplasia: ACH) B X%+ F 7+ U

v 7B RBIERAE (Thanatophoric dysplasia : TD) <081, 2 #la 5 — 7 UG DERIZ LY

WCH IE O WA EE S D 2 LI KD BAET 5 Stickler FE AT 320 Kniest EHE 3370 &

Fex R R B ORIREG & A D= X LRSS TS, ZHHDEBICK LT

3. AR ERMTCRE R AHAR 20 5 L THE a9 e & OSBBIRERIE M THh T

Do FTH, ma L AT a—)UIMEIREIE CTH D A X F % TD A H KD iPS Hifu R

FRBLOACH v 7 ZET/MTEMED 2 WVNER G 5 &0 el fila O¥EERE R L OVE O R

WELDZENREN B, ZHORESOHEANEFIENMEREN TN D, LI -> T, WK

BPEE TR RGBT BE S DR B OIFR 2B 52T 5 2 Lid, HEHEY:, HEERBS L O%E

FORRBIZHFGT L LS ND,

ARBFFEIC BT, BMP2 (2 L0 Hilffl S 4v, B TE ORI B 53 2 il a1 &

FET D72, ~ v AEEHII A VT Microarray fiffT 2170, BEEEANT & AL ERENIT

»HH7TaT A % F—=F Yankl (Yetanother novel kinase 1) Z[F/E L7-, X 512, Yankl

DIEBUGIE A 77 = X LD & & H1Z, Yankl Bin KRB~ 7 22 ER L TZ ORI

BT,



Jitk

1. < v ABEFHIR D B L Br%

fe4 135 HERD SIc: ICR~ 7 &2 (LLFICR ™ Z) (HA SLC. #lf) OliHELZ ) Lk

R /EFLR &K (Phosphate buffered salts : PBS)  (Wako, KB, HA) tCoHHEEL.

0.05% ~V 7T &4 0.53mM =F L > U7 2 I0EEEE (Ethylenediaminetetraacetic acid :

EDTA) (7747 A7 A, HA) & HWT 37°C ORI T 10 o iR%E L TH1k

L7z, {Hfbfk. 40 um &/L A kL —7F— (BDFalcon, CA, USA) CHIfLKZJEE L, JEiE

i OMIlaZ 2309 T 5 syl D LT, BRI 4 B L7z, Mg LAY 16 X 104 #llfc/cm?

2725 X9 10% 7 VRfFIiE (Fetal bovine serum : FBS) (Gibco Laboratory, NY, USA)

BLOR=V U -A ML hvA Vr-L-Z % 3 U (x100)  (Wako) %5 ok 287

A — T o (oMEM) B2ttt (Sigma-Aldrich, St. Louis, MO, USA) THi# L7-,

2. = U AR O B L &

A% 3 Al ICR v~ 7 A (HA SLC) DEHZEA TR L, (s ZREL. 4 mM

EDTA &4 PBS # HV T 37°C IRl TH9 10 2% LTIk L7-, 19 b ALEE 3 1L O PBS

WK DA 3D IR L7214, 0.2%= 77— (Fujifilm, B, BA) &4 PBS &K

Ze AT 37°C 11l CRESZ AR 2385 L C 3 [T - 7=, 1 [ H ORI 10 43 ATV .



FiFET7T AL —Z—TWE| Lz, 2 EHB L3 EHORFEELEIT 20 51TV, BiE%

40 um /LA b L—F—"CiEi, 2309 T5 MmO Lz, Ml ZIRE L, M2 3

X 104 flfa/cm2 1272 % X 9 12 10% FBS %5 1raMEM B2 CTEE# L7,

3. MifaRs®

b MRV RMIER 293, ~ v AFIFMIER C2C12, ~ 7 ARIMUMIERAM LR

C3H10T1/2 |FEMFfE N7 (BrE, HAR) LVBALZ, Vo T UAINANRNy Fr—T

JHAR LentiX-293T 1% TAKARA (68, HA) K OEEA L7-, BN, &3/, c2C12

FfE,. 8 XY C3H10TL/2 ffiix 10% FBS % & deaMEM E5HiiZ T, 293 #ifiEiX 10% FBS

e ANy alEA—7 /v (DMEM) (K7 /v=a—2X) K5t (Sigma-Aldrich) (2T,

LentiX-293T #flifili% 10% FBS % &1 DMEM (5727 /L2 —R) il (Sigma-Aldrich) (2T,

37°C. 5% _F{LRFXIE T CTHE LT,

4. YarvFr b BMP2 OERH

BMP2 & 1-D4 K% pcDNA3.1 (Invitrogen, CA, USA) ZH\WCH 7 rm—=r7L

7= F B~ 7 &2 —% X-tremeGene 9 DNA Transfection Reagent (Roche, Basel, Switzerland)

%P\ TC. 10% FBS 44 DMEM (&7 /v 22— ) B T3 L7- Renti-X fifalc w5 o

ATz v arSEl, 6RRIRICH Az B L, 3 ARIC EFEZEL, Varef sk



BMP2 & L CERICHW -,

Vo e b BMP2 O RIZ. U AR FFEMRO TV )RR 7 7 2 —BIEM etk

R K VR L7, 54 135 HERD ICR ~ 7 ADEIFEMlasx ) 2 e F BMP2 7#

£ F&H D WILIEEE FOoMEM B¢ 5 A5 L, PBS (2 T4, 4%k~ Y IR

(WAKO) 2T 10 4 [i[E EALEE A 470 . 330 ng/ml Nitro blue tetrazolium (NBT) (Sigma) .

165 ng/ml Bromochoroindory phosphate (BCIP) (Sigma). 100 mM NacCl 35 X T8 5 mM MgCl,

ZEte 100mM kU AEEAREENR (pH9.5) T37°CIZ TGS, TIAH Y KRAT 74—

PYta 247 o7,

5. 42RNADKHRL

K2R 2 PBS T % . NucleoSpin RNA Plus (Takara) # VW TARNAZKEHRLIL 7=,

< 7 AR, IBAE125HENOICR~ ™ A L0 o Dl BN, T, . 8. B O

Bk 2 BB L, Be IR IR ZE I Clohs 9. MR P F#Micro Smash (TOMY. IR

¢

7

. BAR) Z HVT4000 rpm T30 T FALERES . JK B CLARImEI L, FFEE4000 rpm T30

ORI 24T > 72, 1557z L h 5 NucleoSpin RNA Plus% VW CT2RNAZ FERL L 72,

6. 7T/ UANADIER

R e # X7 Venus, BMP2, Runx2. Osterix, Msx2, 72 & X2 Smad6é 7



7/ UAILAIL, Takigawa © %% Adenovirus Dual Expression Kit (TAKARA) % fu T {ERL

LEEbD B2 L, ThENDT T ) UA VAT Z—(F, 293 il THE%, v = X

g7y T 4o TICTRAAZHER LIRIC, BRI L,

7. Microarrayf@#dr

JEE13 5 HIDICR~ 7 A B M Z I L. BMP27 7/ WA L AEINEE & FEERIN

RFEZ 01T CA8IEfET A28 L 7=, NucleoSpin RNAPIus Kitz iV CTERNAZ KSR L. GeneChip

3'IVT Plus Reagent Kit (Thermo Fisher Scientific, Wilmington, USA) % H\»CTcDNA%Z &

B% L7z, GeneChip Mouse Genome 430 2.0 Array (Thermo Fisher Scientific) F T16/FfH/~

AT VHEA XL, Peift. Gene Chip Scanner 30007 G (Thermo Fisher Scientific) A

¥ v LTz, =Dk, Affymetrix Expressiom (Thermo Fisher Scientific) (Z & > CE&{b L7,

8. UZREVTuvT 4T

Hfn % PBS TULE %, MlalAMER {50mM kU 2R (pH7.4). 150 mM iEibF v U &

L. 1 mM EDTA., 1%/ =5 v k P40, 0.25%F 4 %> a—/LfEF b U 7 A} ([T L.

FMRVAMENE 7 4°C, 200009 T 5 fEL L, EiEE A NVH T N X ) —)VER KT VLR

fg)r RNV oA (SDS) %> 7L 3y 77— {197.5 mM Tris-HCI (pH 6.8) . 6.0% (v/v) SDS,

15.0% (viv) 2-A V7 h>X J—)L 956% (w/v) sucrose, 0.040% (wiv) 727 =



J =)V T )—} CEEfR (95°C, 543H) L. o7 e Li-, 7% 10% SDS-R U

T INT IRV EROCZERIKENECLD DBEL, = bl —A X7 L |liR

G, —kpikE LT, =7 Apip-Actin ifk (MBL, #4d 2, HA), ~ 7 A4l Flag #ifk

(Sigma-Aldrich) . = v 2§t Runx2 HL{& (MBL) & %\ Z -7 41 Myc ik (abcam, Cambridge.

UK) EROSSHE, “RPURE LTHlEED S IBRRLEEE 2 15 L7cii~ 7 219G fiLfk,

(Jackson Immuno Research, PA, USA). &2 WIPHL¥ X IgG ik (MBL) & i S

7o A AZ—LD (Wako) & FWTHEY VL Z 8 LI-%. X7 1 /L2 (Kodak,

NY. USA) 28 L7,

9. Real-time quantitative Polymerase Chain Reaction (RT-gPCR) (Z4& % mRNA OE

B

8L 724 RNA % 65°C, 5 ZpHIZMESH7-% . ReverTra Ace gPCR RT Master Mix with

gDNARemover (TOYOBO, K. BA) %MW THHEEMIGEETTV ), cDNA Z Ak L7,

MRNA FELOE &I, 55472 cDNA Z#% & LT, Tagman & %\ % SYBR Green PCR

protocol (ZfEV>, StepOnePlus (Applied Biosystems, Branchburg., NJ. USA) % TAT

72, fEH L72 Tagman 3 X' SYBR GREEN O 7' 0 —7 B IO T4 ~—k, £1I1TR

R



10. Yankl / v Z 7 v b (KO) ~v AD{ER

Yankl &z DF 2 =%V U ORha RUE FIZ, &ika Ro2ETeE0 1 A8 DNA

(ssODN) WA ZI D L 9 I1Zi%FF L (K 1), CRISPR/Cas9 7/ A% HV T Yankl

Bin TR~ T AZ/ERL L7, Technique for Animal Knockout system by Electroporation

(TAKE ) S5|Z#ELC ., Cas9 # v /X7 /E ., crRNA. tracrRNA, ssODN Z 1L 7 bR L —

g 2T C57BL6/) ~ 7 ZADRIEHAZREINCE A L, 20 FElEsS%., 2 MlaicEL -

~ U AMEGITR~ U ZAOINEBAE L, Yankl BEE - RKE~T e TR (FO R#ift) % {Fi

L 72, Yankl & /KIE1E. PCR f#htE L V% d PCR EM D > — 7 = A fi##t {Macrogen

Japan (A, HA) TOZFEMNT) TR Lz, AL PCR 77 4 ~—I%K 2 [Z7R

L7, FO v A& C57BL6/) % &l &1 T, PCR fEHTIZ T germ line transmission % fif7

L. Yankl BEfaf~7 e ZfR R~ X (F1%#) 28 L7z, Yankl &z ~7 2 R~V

2 [ElHDOAZRUZ X ¥ Yankl KO 7 2 &2 /EfL L7,

11, AT TN— - TIUHFY v by FERAIZX 3 EREADOER

~ U AFAEF L LI~ Y AEfFE 95% T % ) — )LiRTICRIEEE L, T T 7L

—IRHE (80% 4 /) — L. 5%MHERE. 0.015% 7 /L7 7 —) IZTC 24 FEREI2IE L. kg

FHA 2 Yt LT, 100% % ) — U TR L. 1%KER(E D U 7 AFRHRIC CHGAR 2 R L

721, 1%KE\L I U o AZ&2ETe 0.002%7 U U Ly K S IR EZ W THIK AL 2 Yy

10



BLT 1%KL Y U L aGte 7 ) £ ) RIS TRDICERE SN TV Dy Bk,

SRS T I TSRS OB ERE 21T 7,

12. ~~ bFIV v F T g

64 15,5 Bt~ 7 A X D %A L7-1%, 4°C T 4% X7 RV LT IVT B RIZ 18R

EEER ., BB TT 7 o L JES 5um QU Z21Epk Lz, EBUK ST 7 1

IR EBNT T 4 AR K TURE L, S R U AT A5 R E LT, 20 4

IR LIt =40 T Lo eE LTk LT,

13. von Kossa #uf%

WK T 7 4 AR ST 7 4 LR A A KT 2 [BI0EE L. S%REERER K

K2z, 3043, FOGICHRST L TRIES T, A A KT 2 Bk L. 5%F A hilk 7

U o AAKEIRZ N2 IR 2 oREE LS 25 1E Lz, stheitidr v e m—k

WA A=,

14. #EREEGL R

FEMIK T 7 4 Y% 60°C T 1 Hff_—F 7 L, KR TI15 olkiE L=, 77

o4 A% WA A /KT 3 8], PBS T 1 [RIBEE L72%&IC, 5%k 7 br =4 —E/PBS &

11



#KIZ T, 37°C. 30 7rftl. PUFIIEZ1T 72, £ D%, PBS T 3 [HIEH L. 1% BSA &4
0.05%7 “ftF F U U A PBSIZT 1K, BIR TV v yF o 7 a2l{Tolz, ZDOH%R—RGUE
ELTHivrv R 28 a7 —4 U HifK (Chondrex, Redmond, WA, US), Hi 7 ¥ 10 Al =
=7 HUR (LSL, ) & D WIEHLY ¥ MMP13 $ifk (abcam, Cambridge, UK) (Z
T 4°C TBR ST, D% PBS T 3 [HIYE L, —kPifkE LT Alexa Fluor 555
(Invitrogen, Carlsbad, CA, USA) t A Lizi~7 2 1gG Hifkd LT ¥ 1I9G #i
K% =535 C 30 3 b ¥ 72, PBS T 3 [EIBEHH%. VECTA SHIELD Mounting Medium with
DAPI (VECTOR LABORATORIES, CA, USA) IZTAT A RH T AZE AL, @B

T TERERE 21T 12,

15. MuEtiLE

SRR P ELAEERZE (SD) TH L., PAED 5% RO b DO EHEAEDY & LT,
2 BEHIEUC T~ > s A b =—D U BEZ Ve, 3HERLL EOLEICIT 1 ZROSE
Kruskal-Wallis #7&. 2 Z[K D34 Aligned Rank Transform 1% (2 Two way ANOVA & 7E 21T
U, P ED 5% D b DIk LT Turkey fE % W T EEIIRE 21T - 72, HatFm

ALER T GraphPad Prism 8 (GraphPad Software Inc, San Diego. CA) % H\TiT- 7=,

12



S

1. BMP2 HFEMFHHEF Yankl BEFORER L ORE OB

PERE B TR O HIEN BE 59~ 2 TR 7 2 [FE S 2 72012, M~ @ BRE

ZHTHIEAE 13.5 HED ICR v~ 7 AD B Min s BMP2 77 / U A JVALFE F CH#E L,

BMP2 (2 & v 38l E5H-4 2 s+ % Microarray it CHREEAICHE Lz, ZOREE. #

H7m7 A4 &% —EYankl ORI BMP2IZ L VFFEIND Z LRI (F2),

%72, RT-gPCR f##fric L » TH, BMP2 HB4IC L W Yankl mRNA OFHNFEIND Z &

iR L7z (M3),

2. WNEEHEFREICEE T 2HIIRICERIT 5 Yankl ORBFHERE DR

BB D K512, PNECE PR TERR IR L R HE R MR DS B A S oo e L sk a2y

b« BREAVL . BN B~ L B S D AEMBIRTH 5, ZOWNT ORI

BT Yankl VR L TV A ME R T 572010, ~ 7 ARSLIEE R ML C3H10T1/2,

4

T A HEAINOAR C2C12, B4 13.5 Ao~ v A BRI, Bk A2 e 5~ v A EEE

H SR B IR 4 FEOMIN 2 VT, BMP2 $ill4 & 5 WX FERE Rz 5 Yankl D%

&l

WA LT, TN ZNOMICKI L TT T ) A NVARYT X —% HT BMP2 %%

B &4, Yankl mRNA D% 81 % RT-gPCR ¥EIC THENT L7-A5 55, BMP2 1%, Bl inz

13



T~ U ATEERB G FHICBW TS, Yankl OFRBRA2 ERICHEMI 87, —J.C2C12

A FS X OV C3HL0TL/2 ffaIZ 33Tk, BMP2 $illi4 & 5 W MIFERITE T O WF oSt TIC

BWTH, Yankl ORBUTIZFE A EBRETE o 72 (K4), L7223> T Yankl 1X. #E

R X OVE IO EIZB W THEREZ R L T\ D ERIB S iu7-, — )7, C2C12 Hifa

X° C3H10T1/2 DAL AIIZ BN Tid. BMP2 f£4E F CT% Yankl OFENF D Hivzed

olcfe®, Yankl OFEBFHEIIE, Bl L OVE MR RO R K F2AFEL, 20

EERLETHD EEZ BN,

3. EHBRERRIZBIT S Yankl OREEICEET 25

S DB DR RIEFEIZ ST 5 Yankl OFEBRH 2 PRRT 572012, WEIRENTE

RENIRD R4 11.5 B 6. @EHEOAIRIENETT 254 15.5 B E TP ICR

~ U ADHEHHE L V4 RNA Z[EIL L, RT-gPCR 12T Yankl OB AT L=, =D

AEE R4 115 25 155 A E TOM. Yankl OFEEUCIAME /R ZENIRO o7 (K

5), L7z > T, Yankl [3AEMMRRICIS W T, E IR OTERGETR) & #CE #Lk O -4 AL

e, T2 BWNEE MR TR OO 5 BNV TOIRIE—EIZRILL TV D Z & AVR

iz,

4. BMP2IZ X % Yankl OFEIREH|EHEMEZE4 et

14



BMP2 /%, Smad ¥ 7 /Vikik & FEe v 7 RERK E L TW5H, £ 2T Smad 7

TIVREERERS & . Yankl OFEILHIEEERS & OBIFR T3 572012, a4 13.5 Hilln DB

AR LT, BMP2 & & 61T Smad6 A aFIFEHL S, RT-gPCR f#HTIC T Yankl DO¥H

PR LT, TOFEE. Smadé O\mFEIRIIZ LY Smad ¥ 7T IVGERE A PLET S &

BMP2 #5E 1D Yankl OFEL EA-23fil =z (K6), L7z23-> T BMP2 %, Smad &7

FIARERE 2 LT Yankl 235845 2 LRS-,

F 7. BMP2 O T i CHfiET S 855K+ Runx2. Osterix, 35X Msx2 & Yankl D3&E

A L OB AR A 72012, B4 13.5 HE O ZEAINIZ. Runx2, Osterix, &%

WE Msx2 75 ) A VA &BE &8, RT-QPCR IEIC THT 21T o 72, TOMEE, Zhb

DGR F 2 mEFHEH L TH, Yankl ORI~OHRITABO ko7 (K 7).

5. Yankl B=FHREXE (KO) v ZADIER

ERIZE T 5 Yankl OFRERENT 21T 5 72, CRISPR/Cas9 7/ Ak % FHv T Yankl

KO v 7 A& /ERL L 7=, TAKE JEIZ3S0 T Yankl EETOH 2 =% YV o Oth= FUE

Tz, #&ilba RoZ241r ssODN A L2 & 2 A, FO Z#HD~ 7 AN 16 VL& bz,

PCR B L O'DNA > — 27 = U ZfEFTIC L 0 . #5 O~ 7 A L #15 O~ 7 A 2 PLin

Yankl B AR~ T7 2 THHEEZHNT- (X 8), Germ line transmission Z 4 57~

¥. FO Z#HEDO#15 Olf~ 7 A & C57BL6/) Diff~ 7 2 ZAF &4, Yankl &z ~7T 2K

15



B~ 72D F1 2 21EH L7z, PCRETIZCE D . F1 ZH~? Germ line transmission %

R CE 7o/, FLRZHD Yankl #EisF~7 rn R~ T XA LE2ZE L, Yankl1 KO v 7

A EAERLLU 72, Yankl KO ~ v AOFI L, FIEOE AR~ 2 L g U CTHENT L 7=,

Yankl 57 ~T e KB~ 2B L0 Yankl KO 7 2%, AR . EFEICKRERSE L.

AFEAE B A L Tz,

6. Yankl KO =7 2 DB DAEMT

FRIERE~D Yankl OS5 2 BEHT 47912, B4 145 Bih, B4 16.5 Hiih, B L

% 0 Hihd Yankl KO v~ 7 AB L OEEOEAEREZ T UHFY Ly R« T AT 7L

— THELE L BRREARZ R, BlZ2 L2, Yankl KO = 7 AL, W T ORI BN TS,

EHOFHOELLORE & WEECFE, d, e, SIS OE RO KR b

B O A IKAL OFEFE B U T2 REITFR D e o7 (X9, 10, 11), =HIZ

ZERC NECE B RGETE T 5D Yankl OS5 #KErT 57Dz, B4 165 HiBO

Yankl KO < 7 2 DBk 2 i FEALRR AR EZ L 72, Yankl KO ~ 7 A O#E flfin o4y

b, BE BLO—RBETLOAKAE, FREQE AR~ 7 X LEWITEED -7z (K

12), £7=. YanklLKO v 7 RiZBiFp 2 MaZ -4, 10 aF—4~ 8L TN MMP13 @

FEH G, FEOHAR <~y 2 LRRETH -7 (X13),

16



7. Yankl #RETHHERTFOBRE

Yankl KO < 7 2BV TERIZERE L OUBCE 2B 1T 2 AR bR X OWCeE #iE o sk

AR R BEINBE SN o 2Bl & LT, o428 Yankl OSFEAZRE L T\ 5

AREMENHEER SN D, TOMEME LT, Yankl E Wk En Y —2 AL, ML 77 I U —2X

YN—TH5 Yank2 35z bz, Yank2 (%, $48kDa DtV AL F=rFF—ETH

D, & MIBWT 4pl6 O aFFEICALE L TW5D, 4ple DREENIFIN TIHIEST S & Wik

XT3 Ellis-van Creveld (EVC) JEBEREIL., 245, WL B OERE., BLOINE#HO

BRIV E 2R L T 0 HRERSERIBOERETH D %8, ZnbOMAEHE 2 T,

4 12.5 A~ 7 AHEHKIZ 51T D Yank2 DFEBLEZ RT-QPCRIEIC TR L7 & 2 A, K3F

BLOWIZ, Yank2 OEWIRELAZROT- (X 14), L7221 - T, Yank2 I3 GOm AR 3

H L. Yankl OEREZ B L TV D RS-, £ 2 T~ v AREEMINIZ T 5 Yank2

DFEHN, Yankl & [FEERIC BMP2 12 XY filli#l 2521 T\ 5 25702 % RT-gPCR {AIZ THR

L7z, ZOfE%, BMP2 (X Yank2 ORBUZEEE 5.2 oo 7= (¥ 15), F£7- Yankl B &

RYank2 AU 7 7 2 U — X X —Tdh 5 Yankd DI 2~ 7 AR FEME L O~ 7 25

FEHIIIC T RT-gPCR % HWTHER L7225, BMP2 OAFEDA I 03h v 53 O3B

MHBHR LT Ch o7z, E2r4A 125 Hilit~ 7 AOEEEMMIC T 5 Yank3 OB E

BHRALLT TH -T2,
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BER

BMP2 1%, & F 8 F s VI IMRiEDS OB 20 L, WEE B I8V T

SRR Z R LTV D 2 ERHBHMNNT S o0 d 573 1830, 39,40 Pyl M T Al iz

IZB1T 5 BMP2 OFIEEERE D RFUIARTIZIH ST - TRV, BMP2 235E ME72 s M

BB Z E DO X 9 L THIFE L TWD D0, £z BMP2 3 7 UG ER IR 0O H i H3#k

HHDWITBEERBORIEIC ED X DR L0 EMEIT 5 2 Lid. FIREIC S ERRT)

WCHHBELRRETH D, £ 2 TARBIZETIE, BMP2 & 7L 0 Tt THERE L. NIREMEE T

Ak A 2 BTN OFE & T OREREREREIOMIAZ His L, £ ORAR, BMP2 IZ X

VIR LEFT DT L LT Yankl Z[FEE L, Yankl 23, BEFHfnds K OVE SHlasr 50

IZHBWTC Smad KA LT, BEMEI SNLZ 2L L=, £7-. YanklKO v 7

A 2R U TEARTZ RIS K OMKE MR D53 b - sl 31T % Yankl D& EI O 254772,

LU 5 Yankl KO w7 R ZE W THfERRBIHZE TE o To, TDORKE L

T. Yankl SR 7 7 2 U —I2/@T % Yank2 23BN TV B ATREMESHEZR X vz,

Microarray AT D5 R, BEIEMIZICE T D BMP2 IZ L 5 Yankl OFHL EHORE X, N

R M B T ROE AR I A ZH 72 Osterix 3920 Msx2 40 & iz L CTh KX D o 77 (3% 2), Yankl 1%,

TV AL A= FF—FBRAAL U ZHELTNWAIENSL, B VAL A= FFh—F L

L CHRET D L FHISILD, B NP AERTITIZE Y, K9 518 flED T T A &) —
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ERFEESNTEY, B AL A=rFF—8id b b Efx OREZAEY % i L 7ok

B FHINTICE Y 7 OO 7 N—T 12585 4L, Yankl 13 DD AGC 7 v—7 128

T 5,AGC 7 —T1I3 DR FW72 7 7 I U —_ cAMPIKIEE 7 1 7 A v &%) —1 (CAMP-

dependent protein kinase : PKA), cGMP {&K{FME7 w7 1 FF—E€ (cGMP-dependent

protein kinase : PKG) X UO7'm7 1 % F—E C (proteinkinase C : PKC) (2672 AT

34, Yank 77 2 U —Z G 0aE 14 07 7 I =I5 2, L LR D

Yankl ORERERIRENZ DWW TIE, 1Z & A EWER RSN TRV, 1R/ 115 Hilsh 5 15.5

Hiif D~ 7 22BN T, BEFFBIRNCZAL LR 28, NIRRT ETT 25 4, 2

OHAM.BMP2 [T FHEE IR B L CTH v R4 11.5 A i TIIXAMRIENETEEE (apical ectodermal

ridge : AER) 3 X OMEEFO®ZMIC, M4 12.5 il Cl3faRAkR L OO FE B TE

BIIC, BRZE 13.5 Hilin I3RS L OHE B K T E sk Ol IS, lhd: 14.5 Al

TIXFREFEIBIEI O T E BRI, ZNEIRF L TREIEL TS 4, Z ORI OB

AR IZB T Yankl DIEIET—EICHRBLL T2 225 (X5). Yankl 13 BMP2 & B5E L

THUE IR O 23 b4 X UM E LRk O TZRIZ B G- L T B AfREME S HER X 7=, & Z T Yankl

DAERNIZIIT HEEREFAT 21T 5 72912 Yankl KO ~ 7 2 Z/ERL USRAT L7278, BRI RK

RHCH ML D /LA R RBIIRD e d o7, ZOJFK E LT Yankl O#RE

AT DD ST DFAEDNRE X N7~ Yank 7 7 2 U —IZ1%. Yankl DIz Yank2 (Stk32b)

L Yank3 (Stk32c) N{EEL TH Y. Yank2 13K 70%, Yank3 13K 66% & . Yankl (25t L
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TEWHRER Y —2 AL TWVEN, ZNOOKEEELIZE A EH LN S ILTWVAR, AP

FER XD R4 125 HEBO~ T AOIFIZEBW T, Yank2 OEWRBLZZRE D= (X 14),

— 7 JEEEMIIC T D Yank3 D3EELIT.BMP2 OFEDOHEICH S TR T 2o 77,

PLEDOFRERNS . Yank2 23 Yankl OfEEEZ B L. BEFEO K E 72 & QN NIE B TERL O

AR 5 L TV D TEEME D HER X7z, BLERS 5 Z L, HEFMAIcIsIT 5 Yank2 D%

B~ BMP2 ONEITZLHO o= vt ([ 15). Yank2 13 BMP2 FEE 7RI

REL TWD &R STz,

YANK2 Einfi%., & FTiX 4ple OB FFEICLE L THY | 4ple DRKIZL Y Zi5,

B R®H D WITHEDOFRERFELHER RN &2 THER &9 2 H QA RASIERIERE TH D

EVC JEMEREZ S & i ST 5 3638 EVC JEfEREIL. EVC1L B L ONEVC2 &Ein D4

BIZE->TRIETAEHESINTEY 368 EVCL BLOEVC2 &fnFI23E#ET % Yank2 &

BF-DERYZOFIEICE G 5 ATREMED /R ST 5 363745, £ 7= EVC JEMREFIL, 8K

BEEAZE 2T 5 LbME SN TND 36, 26 OBIRFERINITET, WEEMEETERIC

BT 5 Yank2 DR 5% /2 L T\ 5, EVC JEMEREI. BHEEEERED B L v | FEREE,

FEEE, WEEEZ KT LR3H Y COUEOTLOIZITHFEEZIRRNALETHY

B BAEIZB W THBHE EIBR D IRBRIEIS & R DRED—2>TH D, ZOBAENDL, WK

FHEEIZEIT 5 Yank2 OEEIOMEIIASHOEBRLRHFETHY . ZD72HIZE Yankl

L Yank2 DX TV ) 7T = ZAOERLE ZOTAMLE L E X HA,
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Yankl OFELA, BMP2/Smad #4452 L ZR- L7228 (X 6), Smad 41D Fit T

HEEE T DHR BT IZ DWW TIE, PR 21D Z LT 2o 7z, BMP2/Smad 7

ND TS D WNF A= P —& LTHREL . NIEMEBIERRICB ST 2 8ERF L LT

Runx2. Osterix 3 X Msx2 2351 50T 5 293046 Runx2 (%, Ihh O3 A/ L CHE

D RERAGIZ BRI EN 2 B 7~ LT 5 29, Osterix 1%, Runx2 8L Smad > 71z &

STRERIEEINTRY ., MUEEEDOSEEZH Y MMP13 ORBAZFHEST L ENHLN

(272> T35 30, Msx2 1%, |hh EHWaH L CHE MO AR AL 2R T 2 Z E NG ST

WD 46 Lax L7272y B Runx2, Osterix & 5 U ME Msx2 DWW O HL E Yankl O FH

R EZ T RE o7~ (K 7)., L7=23-> T, Yankl OFBFEEIZIE, Runx2. Osterix. &

HUNE Msx2 DZNENEM TII R+ THD0, HDHW0IE BMP2 & ORISR ST

PRWRH DR B R 235 L TV A ATREME DN RE S D, BMP2 DOIFLED A HEIZH) 537,

C2C12 fifi & 5\ E C3H10TL/2 fificd T Yankl DIEBLAFRD HieinolcZ &b, T

O OMMRE & M2 i35 Z LIk > T, ZOREEZ R TE HalgetEnmun & A

AEND, FoE MBI BMP2 2 EH S8 728128 Yankl ORBGFEN R SN2 & n

5. Yankl (ZB ML L ORI HBEE L TV D feetE s < b, Lo, Yankl

KO ~ 7 2 CEMEALDBE LR LN~ T, ZOAIZBWTE Yank2 12X A1%

EREH O ERHEE TE 5,

YU T v IIRHREDST ) AU A FEEET (Genome Wide Association Study : GWAS)
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IZ K DHFFEDRER. YANKL s D —HHEZA (Single Nucleotide Polymorphism : SNP)
WV T v ZIROFIEICEET D LM SN TWD 4749, U7 v 7¥HIE, 7T ICk
AR SN D/ NBRIREGE & ARERINA R 2R L T2 3 CRERETH D 0, BEDK 9
#H23e b EMmEA R DQ2 (Human Leukocyte Antigen DQ2 : HLADQ2) & %\ MZ DQ8 d
~T O B EF 75, HLA DQ2 5 \\E DQ8 RNEKTHD ESHNTNAHR, &1
T 7 RBIEASOFERITH 30% L WE SN TR Y, ORKF DL RRS TN D 50
52, ARMFFRICIH W TIERLL 72 Yankl KO ~ 7 &%, VT o 2 E&Te/NET7 A~ & Fik L+
LR Z G2 TEE L TBY . ARHAERICE T Yankl KO ~ T A& ik &A 7 72
filH L TBIZE L TWD D, RIEFLCHEOMIR, SR AROZLFICEL T, BAM~ Y
A L HHER LT R EDENWEZRBD TWRW2 | %O ABE L Bbil b,
WA TR RE D RE 1L, BH OEEOLRL O THEE OME B L OREFIC S HE
ERIFL,FEME S BEBLIOW TR EOBREREEINDLIZENHDH, LTEAR-T,
PR PR TR O I BERS O BRI, SHEETE AR T 2 1 O Bin TR H D WXL
(2R 2 BWr-CTRIR T OIREIC b EBRT 5, A1, B« F PR O S R 0B R 1R 7%
EOHFE~OFEZHIIE LT, Yank 7 7 2 U —OAEWFRIEEZ A LM L, BTEAGH

FEDHIEHEAE T D B A TR TV E 72N EBEZ TV D,
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Rz 2 DIZHT0 | AMIFROWS 2 52 TWIZT2 & | A EEitE 215 0 £ L7 KBRS

REFBEHFAOFIERE DR o e il e e A e PR ERAT 0 e & ONC R A Sy

LFEB MR S NS E R I EBRICIRE R DR E R LET, £ LT,

KWFFENZ 72 0 RAREHBRE 2 5 E 215 0 £ Lo RIRRFER B A0 7ER s+

TR AR A B BRI O L VI L BT £, S 6T

ITOWTER L, ZRZRMEEE), M) 2T E £ L7 RIRF KRBT 78R 1oy 150

T RE L AP, WS HEBER 7 b NS B AR B L £ 97, kRIS

Z ORFFEICH L TE R L8 LB S 28O To RICR R Bt A e R D+

SR ARRIE LR e b NS AE LR B I AL SHEE O S B2 = O

FAETTITESBILH L ETET,
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# 1. RT-gPCR IZFV =z Tagman 72— & SYBR Green 7’7 A ~—

Tagman FO—7

B-Actin
Sense primer 5'
Anti-sense primer 5'

-TTAATTTCTGAATGGCCCAGGTCT- 3'
-ATTGGTCTCAAGTCAGTGTACAGG- 3
-CCTGGCTGCCTCAACACCTCAACCC- 3

Probe 5'
Yank1l
Sense primer 5'

Anti-sense primer 5

-TGGACTCCAAAATCATTTCTTCCAG- 3'
-TTCCGACCAAAGGCAGGCTCAATTGTGA- 3'
-GGCAGAAGAGGCTCATTCCAGG-3

Probe 5'
Runx?2
Sense primer 5'

Anti-sense primer 5

- CTCCTTCCAGGATGGTCCCA - 3
-CTTCCGTCAGCGTCAACACC- 3'
-CACCACCTCGAATGGCAGCACGCT- 3!

Probe 5'
Osterix
Sense primer 5'

Anti-sense primer 5'

-AGCGACCACTTGAGCAAACAT- 3
-GCGGCTGATTGGCTTCTTCT- 3'
-CCCGACGCTGCGACCCTCCC- 3

Probe 5
Msx?2
Sense primer 5'

Anti-sense primer 5
Probe 5'

- CCATATACGGCGCATCCTACC - 3
-CAACCGGCGTGGCATAGAG- 3
-AGACCTGTGCTCCCCATCCCGCC- 3

SYBR Green 754 <—

Yank1
Sense primer 5'
Anti-sense primer 5'

-CCCAAGGAGACCCGGATCA- 3
-CTCAGCAGTTCGTAAGCCGT- 3

Yank?2
Sense primer 5'
Anti-sense primer 5'

-ATCGCCACGGTCCTGAAAG- 3
-CCAGTCCACGGGGTATGAGTA- 3

Yank3
Sense primer 5

Anti-sense primer 5'

-TATGTCGTCCATATCGTCAGGC- 3
-TGCTCGATTTCCTGTAGGATCTC- 3'
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£2. v ABFEFEMRICRBITIBET v rA )T
ffA: 13.5 Al ICR ~ 7 A L0 EF I 2 R L, 24 WERIRFR 2 BMP2 77/ o A
JL AN L OFEAIN (Control) @ |, 12 B2 T7 5 ) 7 A )V A G A RGN ASH LT,
Z® 36 K124 RNA Z[EIL, cDNA &k L, Microarray fiftic & v 38 LA-9- 538
{51 2 MERRENCIREE LTz,

HEF BinF4 R
(log2)
Yank1 Yet another novel kinase 1 4.2
Sp7 Sp7 transcription factor 7 (Osterix) 4.0
Ifi202b Interferon activated gene 202B 3.6
Alpl Alkaline phosphatase, liver/bone/kidney 3.6
Ifid4 Interferon-induced protein 44 3.5
Dkk1 Dickkopf WNT signaling pathway inhibitor 1 3.0
Msx2 Msh homeobox 2 2.8
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Yank1 Exl Ex2 Ex3 Ex11 Ex12
*/

--------
-----------------
-----------------
----------
_________

JACRISPR / Cas9 system
WT allele : 5' ...CCATGGGAGCCAACA | CTTCAAGC..... 3'

ssODN
TATAATTGATTAGGCTAGC

Mutant allele :
5' ...COATGGGAGICCAACA|TATAATTGATTAGGCTAGC|CTTCAAGC..... 3'

[ ]: Bsma kY [ 1: PAM &4l I - 21—

X 1. Yankl KO <= 7 RADERE

Yankl BIE1DH 2 =% YV NAFHET DM R OETIZH 5 PAM BlFI0 3 M T
Jit % CRISPR/Cas9 v A7 A% AW CHIWr L .ssODN Z i A TX 5 X 9 [Z%FF L7, sSODN
X, WITNOFARY 7 L —AlIZB W TH &kl RUBRFHREND LD, 3o0f&ika K
T AT L ICHAGA AT, Ex: = Y 2 sSODN : — A8 DNA, WT : BpAER
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A

Yank1F1 5 -TGGGGGTCTACATTGAACGA -3’
Yank1R1 5' - GGCCCATTTCTTACCGTCTT - 3'
Yank1F2 5 - TATAATTGATTAGGCTAGC - 3’
Yank1R2 5'-CACTCTTTGGAGCAGGGAAG - 3’

B

Yank1 Exon2

Mutant allele —‘E_

19bp LRT LR

L ................. 146+19—165bp .................. |

C WT Het KO
146bp
EH) € 460p + 165bp
165bp

B - 319bp  319bp

B 2. Yankl KO = 7 2 DBE TR ORERIZHAVZ PCR 77 A4 ~—DkE

(A) %7 T A ~— D FEA,

(B) I A ~—FLB LU RLIZYankl D2 =% YV L OMMHIHRE LTz, 774 ~—F2 1%
A L7 sSODN & [rl UHEHERLAIC, 7T 4 ~—R2 1377 A ~—F2 O 300 ¥ AL Tk
VR E LTz,

C) 7I7A4A~—F1BLXURL, HHNNELTTA~v—FR2BLUPR2ZHWNTPCRZ1TH Z &

2L, IR T A XD PCR EMNSELND, WT : BRI~ T 2 Het : 5T~
TurREM~T A KO : Bl AEREH T R,

37



Yank1 mRNA

1

MRNA level (Fold increase)
T

Control BMP2

X 3. = 7 REFEMBTIIT D Yankl mRNA ORBIZxHT 5 BMP2 DR

oA 135 HEnD ICR ~ 7 A L0 M 28R L, 24 KefilEs8%, Var ek
BMP2 f71Ed % WMIFETFAE T (Control) 12T & 51T 48 RRIEF #4124 RNA Z[E)IL L7z,
4 RNA % IV T cDNA %A% L. Yankl mRNA O % 81% RT-qPCR 12 Ti#HT L 72, Yankl
MRNA ZH &, Bactin mRNA RBHETHIE L, FERINEEIZIIT 25 Yankl mRNA O3
BOMH TR L (CFE X OEREREZRT, n=6),
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Yank1 mRNA

-

(3]

o
]

1 Venus
100- _ B BMP2

N
o
|

MRNA level (Fold increase)

ND _  ND T
| |

Rl B3FMBE Cc2C12 C3H10T1/2

o
l

B 4. BRIEMRR, BEEMIkE, C2C12 Hifais L OV C3H10T1/2 Mz H51F % Yankl mRNA @
Bz 5 BMP2 O%h#

~ U ARSI, ~ U A FMA, ~ U A FEMa C2C12, B LU U ARMEIFEE
SABERE C3H10T1/2 % 24 FEEIES 3%, Venus (v hr—L) HDHWEBMP2 75 /) ¥
ANAZFRINL, 12 R LT 7 ) A NV AIESHEHIC AR UT-, S 612 36 HEfEEE%
#1244 RNA AL L7=, 42 RNA ZH\ T cDNA %4k L. Yankl mRNA D% 8% RT-
qPCR IEIZTREHT L 7=, Yankl mRNA #8l&E(X, [ U4 o 7L 0 p-actin mRNA 8Bl & CTHf
EL, B Venus 77 U A WV ABINEEIC I 1T 5 Yankl mRNA OFEBLEOEE TR
L7z (CEYE JOMEHERZE 2 7~7, n=3), ND : R,
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Yank1 mRNA

il

E11.5 E12.5 E13.5 E14.5 E15.5

g
(=)
]

-
)]
L

o
o
L

MRNA level (Fold increase)
—
(=]
1

o
o
L

X 5. <= ARBREHICEIT S Yankl mRNA DFEH

B4 11.5 Hio 5 15.5 Hiis (E11.5 75 E15.5) @ ICR ~ 7 A L 0 B 2EHAK 2 - L .
HASTRER 124 RNA 2[RI L7=, 42 RNA % VT cDNA 24k L. Yankl mRNA O ¥
% RT-QPCR {EIZ CTHEMNT L 7=, Yankl mRNA #3iE (X, p-actin mMRNA BB ETHIEL, I
A2 11.5 HIOBEERRIZI 1T 5 Yankl mRNA ORBEOEE TR Lz (P72 ERICE
WCRBRDER 2R T2 L 2R LIZH) 2T, n=1 OV 7 i Y 7Y A N THTL
T2 RO KO HER 222 7~ 9),
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A Venus + - - -

BMP2 - + - +
Flag-Smad6 - - + +
Blot: a-Flag W —

Blot: a-p-actin - -- -

B Yank1 mRNA

M)

§ 200~

o T Kruskal-Wallis test

£ 150- p<0.05

©

o

L 100+

D

>

2 504

<

4

X 0 ——

& BMP2
Venus BMP2 Smadé6 +

Smad6

X 6. BEMIICIIT D BMP2 #E: Yankl mRNA FEIZH§ % Smad6 BFEIFHDOLE
fRZE 135 HERD ICR ~ 7 ADMEEMIRZ I L, 24 FEfEGR%, MTRLZL DI
Venus (2> hr—/1), BMP2, Flag-Smad6 77 / 7 A LV A ZUAN L, 12 BRI % 17
F ) UANAIEEHREHI S LT, & 51T 36 BfjEE#R%ZICZ v\ EB LU RNA &

EI QYN

(A Boni-& 7' EEH Flag hifks L O%ip-actinfiikic Cv o ax o7 avs 4 7
EITHENT L, Flag-Smad6 33 L UB-actin OFEHL 2 fifgsd L 7=,

(B) & 5i7=42 RNA 2> cDNA %A% L. Yankl mRNA O¥ 5% RT-qPCR 752 CTHiEMT L
72, Yankl mRNA 0¥l E | p-actinMRNA HHETHIEL, =2 b —/L#ED Yankl
MRNA BHEOEE TR LT (P X OEERZ%Z7~7, n=3), Kruskal-Wallis f# &
DOFER, 4 FERICHEEZZ D7 (P<0.05),
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A Venus + - - -

Runx2 - + - -
Myc-Osterix - - + -
Myc-Msx2 - - - +
o (N
Blot: o-Runx2 - :
- i
Blot: a-Myc |
B
Yank1 mRNA

N
(=)
]

-
($))
|

o
o
]

1

Venus Runx2 Osterix Msx2

S
(=)

mRNA level (Fold increase)
>
]

B 7. BMP2 ¥ 7 )WVIZBRE T 5B R F D Yankl mRNA FEBLZx T 5 20%R
fe4 135 H#O ICR ~ 7 AOEIFEMIEZRILL, 24 FEfEE#E%Z, MTRLEL I I

Venus (22> hr—/ L), Runx2, Myc-Osterix, Myc-Msx2 77/ 7 A LV Az L, 12 K

MRS RRICT 7 ) UA NV AIEEABEHIC R LTz, S 512 36 R E%IC Y v RV EHB &

U RNA Z [ L7z,

A HFohizZ o7 ExH Runx2 HUik, Ht Myc ik, 3 X OWiB-actin HLiKIC T =2 %
7 a T 4 TIRISTHEEAST L, Runx2, Myc-Osterix, Myc-Msx2 5 X UB-actin D%
B2 fifgsd L7z,

(B) 5 5HM7=4 RNA 225 cDNA 24 7% L, Yankl mRNA D% % RT-qPCR 52 THEHT L
7. Kruskal-Wallis #i € DOfE R, 4 BFERICABEZ LR O > 72, Yankl mRNA O3 EH
B3 p-actin mMRNA FEHETHIEL, = Fa—A o Yankl mRNA EEEOREHRT
m LT CEHB X OEERZZ R, n=3),
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A

1 2 3 4 5 6 7 8 9 10 11
et

12 13 14 15 16
0 an o0 0 w5 e e S o

B CcATEGGAGCCACAC T TCAAGCAAAGCCCCAGTGTTT GAT
FO Wild type
FO Mouse #5

FO Mouse #15

F2 Yank1 KO

[ 1: B3 FY [ ]: PAM E2%1 [ ]: ssODN

X 8. Yankl KO * U AD %4 ) A PCR EITB X T ) Ay — 0 = 0 R T

(A) FO RO~ T A% 16 ILF, TNENDOEFOFEL Y7 7 ADNA ZEINLL, T4

~—F1EBXLURL (K2) ZHWTPCR Z1T\, 2%7T 10— A7 VI CERUKE 21T
STz BORITPEF ORI 5 2~ T,

(A) THE LN PCR EMEHAWTCY — 7 = AN 24T 72, FO ZHEDO#5 B LW

(B)

#15 O~ T AZRBWT, BAERMT LV EERERMT LLVOKRIEOBEEN AN, Fi-.
F1R#ED Yankl BAnF-~7 r KIE~ 7 A [+ O LR TR b Lz F2 RO RIS TR
K (KO) =7 AZBWTHRERIZ S — 7 o AifNT 24T > 7-, sSSODN : — A8 DNA,
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WT KO 2 mm
WT g
i
- ’ « i KO e
z ) |
* A i

fF XS h 2 2 i

| ’ b WT
\\\l ’

4 Znn

2 mm 2 mm KO

X 9. Ba4 14.5 HERD Yankl KO = 7 A DEBRIEAE
Ba/E 145 BB OFRE OB AR E L OV Yankl KO w7 A% =% ) — )L ClaiE@EE% . g
MERIIT T T N—T, BHRIEIT U Ly R ST CY LT-, WT : BRI~

7 A, KO : Yankl Bf& 7 HEXRE~T A
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WT KO
|
wT Y
2o =
¢
KO
2mm (':
TR
@
WT :
-
2mm
€
' Ko| 8
2mm 2 mm 2mm -

X 10. f44 16.5 HEE D Yankl KO = 7 2 D BHIEARE:

b/t 16.5 HiORE OB AR LU Yankl KO = 7 A& % /) — /L CigiglE%, g
MRRILT VT 7 —T, BHRIET VY Ly RSIIRTYHE Lo, WT : Bp4R <
7 A, KO : Yankl Bz FHREXE~ T A
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a3

T8 e
2mm
KO ﬁ\p‘
T
\ 2mm
W NEN
KO v\:m

4 11. 4% 0 BHE#® Yankl KO = 7 2R D BRIEAL

1% 0 HiIBORIEOE AR LT Yankl KO v 7 2 &2 & J — )L CIRHERBIER. HUE#H
TN T T =T, BHBEIET VY Ly R STRIRCTHRE LT, WT: B4R~
A, KO : Yankl Bz fFHREXE~D X
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HE# &

von Kossaitfe

X 12. fi4 16.5 H#D Yankl KO = 7 2 DFEE OFEAARE S AUARMT

fh/E 16.5 A OB AR L ONFEIE D Yankl KO ~ 7 A O S ITAz B i o 5 BEAR AR U &
B L, ~~ hd v U oty rdets (O350 Bl 3 X O von Kossa %ett (2311 F1il)
AT ol A—/b3—:200um, WT : B4R~ 2 KO : Yankl & FHREXRE~ Y
A,
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A ey

a-Col2

A
-

o-MMP13

o -

X 13. 54 16.5 H#ED Yankl KO = 7 R DS

BaZE 16.5 Bl OB AR R X ONEE D Yankl KO ~ 7 A DB UTAL B s O 5k BRAR R U &
Rk L., L2 =aZ —7 otk (a-Col2), #1110 B = 7 — 7 U Fifk (a-Coll0). Hit MMP13
Ul (a-MMP13) Z W Coeta 4T o7, Yefa L7-8 &, d0ORBMes T CHEERR

W liz, 27— L/3—:200 um, WT : B4R~ 7 2 KO : Yankl #&{s - HREXRE~D A,
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Yank1 mRNA

mRNA level (Fold increase)
N
]

1_
0 m— 1
Dl B OFR W OB KF
Yank2 mRNA
20~
(]
5
£ 154
S
(o]
£ 10-
)
3 -
2
X o E— — —
£ DB R M 5 B3

X 14. =0 A4k D 2 VIIBERITIT B Yankl 38 L T Yank2 mRNA 383,

R/ 12,5 Al ICR ~ 7 A7 B EREL L 72 ik & BRORE R t2 . 2 RNA Z[EI L7z, 4
RNA % I\ T cDNA Z &k L. Yankl 35 20 Yank2 mRNA ® %3l % RT-gPCR 742 Tl
R LT, HAERPNMEED Yankl 5 T Yank2 O {s 73 B &1 factin mRNA 5 & T
MEL., OETo Yankl 3 X1 Yank2 mRNA ORBEDEH TR LT,
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Yank1 mRNA Yank2 mRNA

120- "
100

w
|

(o]
o
1
N
1

-
1

mRNA level (Fold increase)
)
o o
1 1

mRNA level (Fold increase)

N
o
1

e

Venus BMP2

o
o

Venus BMP2

X 15. BZZEMIRIZE T D Yank2 mRNA OFBLIZX4 5 BMP2 D%hE

R/ 13.5 HERD ICR ~ 7 A X 0~ v AEF MR 2 B HL L, 24 FEfEIEF %1%, Venus (=
Fa—) HDHWEBMP2 77 /) U A VAR, 12 FERREEEZICT 7/ U A )V AIES
AEHIZ AL LTz, & 51T 36 FEFIEF 2 14£ 124 RNA Z AL L 7=, 42 RNA 7> 5 cDNA % &%
L. Yankl 3 X0 Yank2 mRNA O % 81% RT-gPCR I THENT L 72, Yankl 35 X O Yank2
MRNA FEL&X, [F CH 7 /Lo pactinmRNA FEELE THIE L., Venus 77 / 7 A /LAY
IEEIZ31T 5 Yankl 38 X0 Yank2 mRNA OFEBREOEE TR L CEYE X O (R
%Y, n=6, **: P<0.01vsVenus 77 J U A JVAFIEE; ~ > R A v h=—D U RIE).,
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