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Abstract

Strongly correlated rare-earth-based electron systems show various interesting behavior
such as unconventional superconductivity, multipolar ordering, formation of heavy fermionic
states, nontrivial (Kondo) semiconducting behavior, and quantum criticality at low tempera-
tures. Ground-state 4 f -orbital symmetry determined by crystalline electric field (CEF) split-
ting is very basic information on realistic strongly correlated electron systems. In contrast
to the case of transition-metal oxides in which electron correlations work among d-orbital
electrons, the 4 f ground-state symmetry is not straightforwardly revealed since it is unclear
which sites act as effective ligands for f sites. Therefore, the determination of the 4 f orbital
symmetry in a realistic system itself is the important problem.
Recently we have reported the determination of 4 f CEF ground-state symmetry by linear
dichroism (LD) in hard x-ray photoemission spectroscopy. The 4 f -orbital symmetry is re-
flected in the LD in core-level photoemission spectra owing to the selection rules in the
photoemission process. In this thesis, we show the polarization-dependent hard x-ray pho-
toemission studies of cubic YbB12, CeB6, CeAl2, and tetragonal SmCu2Si2. We have also
perfomed the ion-model calculations including the full multiplet theory and the local CEF
splitting for rare-earth core-level photoemission spectra, using the XTLS 9.0 program. The
observed LD as well as the polarization-dependent spectra in two different photoelectron
directions for YbB12 are quantitatively reproduced by the theoretical simulations for the Γ8

4 f -ground-state symmetry. The LD for CeB6 and that for CeAl2 have different features
where the former indicates the Γ8 ground-state symmetry and the latter is well explained by
the simulations for the Γ7 ground state. In addition, the contributions from 4 f 2 final state for
LDs in the Ce core-level photoemission spectra are almost negligible for the discussions of
the ground-state symmetry for Ce compounds in the cubic systems. The experimental LDs
of SmCu2Si2 at two significantly different photoelectron directions far from the c axis are
well reproduced by the simulations for the Γ1

7 symmetry.
Since LD in valence-band 4 f photoemission spectra have also been expected by the ion-
model spectral calculations, we have tried to observe 4 f ground-state symmetry by the LD
in valence-band 4 f photoemission spectra of Yb and Sm compounds. The observed LDs in
the 4 f valence-band PES spectra of Yb compounds are smaller than that predicted from the
calculations even in the tetragonal symmetry for Yb compounds. LD in 4 f valence-band
PES spectra of a Sm compound in tetragonal symmetry is found to be negligible, which
suggests that the polarization-dependent core d-level excitations are much more useful and
reliable for revealing the local 4 f -orbital symmetry than the 4 f excitations.
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Chapter 1

Introduction

Ground- and excited-state orbital symmetry in strongly correlated electron systems play
crucial rules in their functional properties. For example, the highly two-dimensional charac-
teristics of the conducting carriers in high-temperature superconducting cuprates are due to
their Cu 3dx2−y2 orbital symmetry in the CuO2 planes. Strongly correlated rare-earth-based
electron systems show various interesting behavior such as unconventional superconduc-
tivity [1, 2], multipolar ordering, formation of heavy fermionic states [3, 4, 5], nontrivial
(Kondo) semiconducting behavior [6, 7, 8], and quantum criticality [9] at low temperatures.
Ground-state 4 f -orbital symmetry determined by a crystalline-electric-field (CEF) splitting
is very basic information on realistic strongly correlated electron systems. In contrast to the
case of transition-metal oxides in which electron correlations work among d-orbital elec-
trons, the 4 f ground-state symmetry is not straightforwardly revealed since it is unclear
which sites act as effective ligands for f sites. Therefore, the determination of the 4 f orbital
symmetry in the realistic systems itself is the important problem.
A standard experimental technique for determining 4 f levels with their symmetry is to an-
alyze inelastic neutron scattering spectra and anisotropy in the magnetic susceptibility of
single crystals. However, magnetic 4 f -4 f excitations are often hampered by the phonon
excitations with a comparable energy scale for the former method, and for the latter, it is
difficult to uniquely determine the symmetry due to the many free parameters for a unique
description of the CEF potential. Recently reported determination of 4 f ground-state sym-
metry for tetragonal Ce compounds by linear dichroism in Ce 3d − 4 f x-ray absorption
spectroscopy [10, 11, 12, 13] is a powerful method for tetragonal compounds. However,
it cannot be applicable for cubic crystal because there is no anisotropic axis. In addition,
the rotational symmetry in 4 f orbital around z(c) axis cannot be distinguished in tetragonal
systems.
Recently, we have reported that the determination of 4 f CEF ground-state symmetry can
be feasible by linear dichroism in hard x-ray photoemission spectroscopy [14, 15, 16, 17].
Since the selection rules work in photoemission, the 4 f -orbital symmetry is reflected in lin-
ear dichroism in core-level photoemission spectra. The controllable measurement parameter
called the photoelectron detection direction enable to determine the 4 f charge distribution
even for cubic crystals and the rotational 4 f orbital symmetry around z(c) axis in tetragonal
systems.
In this thesis we show polarization-dependent hard x-ray photoemission studies of cubic
YbB12, CeB6, CeAl2, and tetragonal SmCu2Si2. We have also performed the ion-model cal-
culations including the full multiplet theory [18] and the local CEF splitting for rare-earth
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core-level photoemission spectra using the XTLS 9.0 program [19]. The observed linear
dichroism in Yb3+ 3d core-level photoemission spectra of cubic YbB12 are quantitatively
reproduced by the ion-model calculations assuming the Γ8 CEF-split ground state [15].
The experimental linear dichroism in Ce and Sm3+ 3d core-level photoemission spectra
of CeB6,CeAl2, SmCu2Si2 also can be analyzed by the ion-model calculations, and we have
successfully determined the CEF-split 4 f ground-state symmetry of these rare-earth com-
pounds.
In addition, since linear dichroism in valence-band 4 f photoemission spectra have also been
expected by the ion-model spectral calculations, we have tried to observe 4 f ground-state
symmmetry by linear dichroism in valence-band 4 f photoemission spectra of Yb and Sm
compounds [20].

This thesis is organized in nine chapters as follows:
Chapter 1 is this introduction.
In Chapter 2, the strongly correlated 4 f electronic states in rare-earth compounds are re-
viewed. The electronic features of the rare-earth compounds and the calculations of CEF
Hamiltonians are also explained.
In this Chapter 3, theory of photoemission spectroscopy is explained in detail.
Chapter 4 is our experimental system and technique such as instrumental information for
machines at BL19LXU in SPring-8 where we performed this study and the polarization-
switching technique are introduced.
In Chapters 5, 6, and 7, the linear dichroism in rare-earth core-level photoemission studies
of YbB12, the cubic Ce compounds, and SmCu2Si2 are shown. We discuss the 4 f -orbital
symmetry from our experimental results and simulations for each compounds.
Our obtained linear dichroism in valence-band 4 f photoemission is referred in Chapter 8.
The experimental linear dichroisms in 4f photoemission spectra measured at BL27SU in
SPring-8 are shown.
Finally, we summarize the studies in Chapter 9.
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Chapter 2

Strongly correlated 4 f electronic
structures in the rare-earth compounds

2.1 Characteristic behavior of rare-earth compounds

Figure 2.1: The radial distributions for the
wave functions in Ce atoms [21]

Rare-earth ions have 4 f n5d6s2(n = 0-14)
electron configurations, in which the 4 f elec-
trons are spatially localized in rare-earth
compounds. The 4 f -orbital radial distribu-
tions are nearer to the nuclear than those
of the 5p core-level orbitals. Therefore, an
ionic picture is a good starting point for de-
scribing their electronic structure as well as
the origins of various phenomena in crys-
talline solids, where the strong Coulomb re-
pulsion U works between 4 f electrons in
rare-earth sites. The rare-earth 4 f n energy
levels are split by spin-orbit coupling ∆so,
and further split by a crystalline electric field
(CEF) ∆CEF in solids, by which the outer 4 f
charge distributions are deviated from spher-
ical symmetry. In most rare-earth ions, ∆CEF

≪ ∆so ≪ U as mentioned later.
In general, since several eV of Coulomb and
exchange interactions and spin-orbit interac-
tions of 10−1-100eV work in rare-earth com-
pounds, the ground-state of 4 f electrons are

expressed by total angular momentum J following the Hund’s rules. In the case of rare-earth
atoms, since the perturbation potential by neighboring atoms is orders of magnitude smaller
than the split width between different J multiplets (except for Eu3+), the lowest J multiplets
are considered as the ground state in general. In this thesis CEF potentials have been treated
mainly. The 2J+1-fold degenerated lowest multiplet following the Hund’s rules is split by
CEF.
Though the interactions worked to 4 f orbital for rare-earth ions are almost nothing due to
the narrower radial distribution of the 4 f orbital as above, the localized 4 f orbital electrons
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interact with the neighboring conducting electrons each other. So that the indirect inter-
actions through conducting electrons work between localized moment in rare-earth com-
pounds. The hybridization between conducting electrons and 4 f electrons are called c f
hybridization and expressed as Jc f . The relations between the behavior in rare-earth com-
pounds and the intensity of c f hybridization Jc f at low temperature is shown in Fig 2.2 called
Doniach phase diagram. Rare-earth compounds which have 4 f electrons show the various
interesting phenomena such as unconventional and/or high-temperature superconductivity,
spin and charge ordering, formation of heavy fermionic states, nontrivial (Kondo) semicon-
ducting behavior, and quantum criticality. Ground-state 4f-orbital symmetry determined by
CEF splitting is very basic information to reveal the origin of phenomena in these strongly
correlated rare-earth.

Figure 2.2: Doniach phase diagram[21]

2.2 Multiplet structures in multielectron system
The Hamiltonian when there are Z electrons in an ion/atom is expressed as:

He =

Z∑
i

(− ℏ
2

2m
∇2

i −
Ze2

ri
) +

Z∑
i< j

e2

ri j︸ ︷︷ ︸
Coulomb interaction between electrons

(ri j = |ri − r j|). (2.1)

In general, where the Slater determinant Φ′ , Φ, ⟨Φ′|e2/ri j|Φ⟩ , 0. The multielectron
configurations expressed by the Slater determinant cannot be the eigenstate for Hamiltonian
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He, due to the Coulomb interaction between electrons
∑

e2/ri j. Since the Coulomb and
exchange interactions between electrons originate from the orbital dependence, the multiplet
structures appear in photoemission spectra for the core-level site in which the incomplete
shell with strong localization exist.
We consider the simplest (1s)2(2s)2(2p)2 electron configuration for the multiplet structures
as an example from here. Since L and S are good quantum numbers, eigenstates can be
specified by L ,S . The configurations of electrons and multiplets for (2p)2 are shown in
Fig. 2.3.
The notation of multiplet is denoted by 2S+1LJ. Considering the multiplet 1D(L=2, S=0),

Figure 2.3: Configurations of electrons and multiplets for (2p)2
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1D has the degeneracy factor (2L+1)(2S+1)=5, and Φ1,Φ5 are corresponding in Fig. 2.3.
To find the remaining three components of 1D, we use one-electron raising and lowering
operator l± ≡ lx ± ily. By the operator, the following relations come into existence.

l+l− = (lx + ily)(lx − ily) = l̂2 − l2
z + lz (2.2)

l+l−|lm⟩ = l(l + 1) − m(m − 1)|lm⟩ (2.3)

Also the relations are establiched.

[lz, l−] = −l− (2.4)

lzl−|lm⟩ = (−l− + l−lz|lm⟩
= (m − 1)(l−|lm⟩) ∝ |l,m − 1⟩ (2.5)

From Eqs. 2.3, 2.5, the following relation can be obtained.

l−|lm⟩ =
√

l(l + 1) − m(m − 1)|l,m − 1⟩ (2.6)

Where L− ≡ l1− + l2−,

L−Φ(L = 2,ML = 2) = L−Φ1 = 2Φ(L = 2,ML = 1) (2.7)

= (l1− + l2−)|1
1
2
⟩|1 − 1

2
⟩

=
√

2|11
2
⟩|0 − 1

2
⟩ − |1 − 1

2
⟩|01

2
⟩

=
√

2(Φ3 − Φ4). (2.8)

Therefore, the following solution can be obtained.

Φ(L = 2,ML = 1) = (1/
√

2)(Φ3 − Φ4) (2.9)

Approaching similarly, from the following formula as:

L−Φ(L = 2,ML = 1) =
√

6Φ(L = 2,ML = 0) (2.10)
= (1/

√
2)(l1− + l2−(Φ3 − Φ4)

=
1
√

2
(l1− + l2−)(|1

1
2
⟩|0 − 1

2
⟩ − |1 − 1

2
⟩|01

2
⟩)

= |11
2
⟩| − 1 − 1

2
⟩ − |1 − 1

2
⟩| − 1

1
2
⟩ + |01

2
⟩|0 − 1

2
⟩

= Φ7 − Φ8 + 2Φ9, (2.11)

the following solution can be also obtained.

Φ(L = 2,ML = 0) = (1/
√

6)(Φ7 − Φ8 + 2Φ9) (2.12)
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In addition, the results also shown below.

L−Φ(L = 2,ML = 0) =
√

6Φ(L = 2,ML = −1) (2.13)
= (1/

√
6)(l1− + l2−)(Φ7 − Φ8 + 2Φ9)

=
1
√

6
(l1− + l2−)(|1

1
2
⟩| − 1 − 1

2
⟩ − |1 − 1

2
⟩| − 1

1
2
⟩

+ 2|01
2
⟩|0 − 1

2
⟩)

=
1
√

3
(3|01

2
⟩| − 1 − 1

2
⟩ − 3|0 − 1

2
⟩| − 1

1
2
⟩)

=
√

3(Φ12 − Φ13) (2.14)

Φ(L = 2,ML = −1) = (1/
√

2)(Φ12 − Φ13). (2.15)

Therefore, the electron configuration for multiplet 1D(L = 2, S = 0) is corresponding to
Φ1,Φ15,1/

√
2(Φ3−Φ4),1/

√
2(Φ12−Φ13),1/

√
6(Φ7−Φ8+2Φ9). Considering 1S (L = 0, S = 0)

multiplet, the electron configuration for multiplet 1S is corresponding to 1/
√

3(−Φ7 + Φ8 +

Φ9).

Φ7 :
1
√

2
R2p(r1)R2p(r2)[Y1

1 (θ1, ϕ1)α(ζ1)Y−1
1 (θ2, ϕ2)β(ζ2) − Y1

1 (θ2, ϕ2)α(ζ2)Y−1
1 (θ1, ϕ1)β(ζ1)]

(2.16)

Φ8 :
1
√

2
R2p(r1)R2p(r2)[Y1

1 (θ1, ϕ1)β(ζ1)Y−1
1 (θ2, ϕ2)α(ζ2) − Y1

1 (θ2, ϕ2)β(ζ2)Y−1
1 (θ1, ϕ1)α(ζ1)]

(2.17)

Φ9 :
1
√

2
R2p(r1)R2p(r2)Y0

1 (θ1, ϕ1)Y0
1 (θ2, ϕ2)[α(ζ1β2 − α2β1] (2.18)

Ym
k (θ, ϕ) denote spherical surface harmonics. Where the energy level for 2p with 2p1 con-

figuration is defined as 2h(2p), Q(i, j) and J(i, j) are written as:

Q(i, j) =
∫ ∫

|R2p(r1)|2|R2p(r2)|2(e2/r12)|Y i
1(θ1, ϕ1)|2|Y j

1(θ2, ϕ2)|2dr1dr2 (2.19)

J(i, j) =
∫ ∫

|R2p(r1)|2|R2p(r2)|2(e2/r12)Y j∗
1 (θ1, ϕ1)Y i∗

1 (θ2, ϕ2)Y i
1(θ1, ϕ1)Y j

1(θ2, ϕ2)dr1dr2

, (2.20)

the Hamiltonian is given by:

H789 = =

 2h(2p) + Q(1, 1) −J(1, 1) −J(1, 0)
−J(1, 1) 2h(2p) + Q(1, 1) J(1, 0)
−J(1, 0) J(1, 0) 2h(2p) + Q(0, 0)

 . (2.21)

By diagonalizing this matrix, we can obtain the eigenenergies E(3P),E(1D),E(1S ).
Here we expand the terms of e2/ri j. From the relation as follows:

ϕnilimi(r j) = Rnili(r j)Ylimi(θ j, ϕ j), (2.22)
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the expansion of the terms of e2/ri j is given by:

⟨ϕn2l2m2ϕn1l1m1 |e2/r12|ϕn3l3m3ϕn4l4m4⟩

≡
∫ ∫ ∫

dr1

∫ ∫ ∫
dr2ϕ

∗
n1l1m1

(r1)ϕ∗n2l2m2
(r2)

e2

|r1 − r2|
ϕn3l3m3((r)1)ϕn4l4m4(r2)

. (2.23)

The term of 1
|r1−r2 | can be written as:

1
|r1 − r2|

= {r2
1 + r2

2 − 2r1r2 cos θ}−1/2

=
1
r>
{1 − 2

r<
r>

cos(θ) + (
r<
r>

)2}−1/2

=

∞∑
k=0

rk
<

rk+1
>

Pk(cos θ) (2.24)

where r> ≡ max(r1, r2),r< ≡ min(r1, r2), and Pk(cos θ)is a Legendre polynomial expressed
as follows:

Pk(cos θ) =
4π

2k + 1

k∑
m=−k

Ym
k (θ1, ϕ1)Ym∗

k (θ2, ϕ2)

=
4π

2k + 1

k∑
m=−k

(−1)mYm
k (θ1, ϕ1)Y−m

k (θ2, ϕ2)

=

k∑
m=−k

(−1)mCm
k (θ1, ϕ1)C−m

k (θ2, ϕ2). (2.25)

Ck
m are areal harmonics and can be represented by

Cm
k (θ, ϕ) ≡

√
4π

2k + 1
Ym

k (θ, ϕ) (2.26)

as with the Eq. 2.43. Therefore,

1
|r1 − r2|

=

∞∑
k=0

rk
<

rk+1
>

{
k∑

q=−k

(−1)qCq
k (θ1, ϕ1)C−q

k (θ2, ϕ2)}. (2.27)
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. Substituting this to Eq. 2.23, the following formula can be obtained.

⟨ϕn2l2m2ϕn1l1m1 |e2/r12|ϕn3l3m3ϕn4l4m4⟩

= e2
∫ ∞

0
r2

1dr1

∫ π

0
sinθ1 dθ1

∫ 2π

0
dϕ1

∫ ∞

0
r2

2dr2

∫ π

0
sin θ2dθ2

∫ 2π

0
dϕ2 ×

R∗n1l1(r1)Ym1∗
l1

(θ1, ϕ1)R∗n2l2(r2)Ym2∗
l2

(θ2, ϕ2) ×
∞∑

k=0

rk
<

rk+1
>

{
k∑

q=−k

(−1)qC(k)
q (θ1, ϕ1)C(k)

−q(θ2, ϕ2) ×

Rn3l3(r1)Ym3
l3

(θ1, ϕ1)Rn4l4(r2)Ym4
l4

(θ2, ϕ2)

=

∞∑
k=0

[e2
∫ ∞

0

∫ ∞

0
Rn1l1(r1)Rn2l2(r2)

rk
<

rk+1
>

Rn3l3(r1Rn4l4(r2)r2
1r2

2dr1dr2 ×

k∑
q=−k

(−1)q{
∫ π

0

∫ 2π

0
Ym1∗

l1
(θ1, ϕ1)C(k)

q (θ1, ϕ1)Ym3
l3

(θ1, ϕ1) sin θ1dθ1dϕ1 ×∫ π

0

∫ 2π

0
Ym2∗

l2
(θ2, ϕ2)C(k)

−q(θ2, ϕ2)Ym4
l4

(θ2, ϕ2) sin θ2dθ2dϕ2}] (2.28)

When we define the following terms as:∫ π

0

∫ 2π

0
Ym1∗

l1
(θ1, ϕ1)C(k)

q (θ1, ϕ1)Ym3
l3

(θ1, ϕ1) sin θ1dθ1dϕ1 ≡ ck(l1m1, l3m3)δq,m1−m3 (2.29)∫ π

0

∫ 2π

0
Ym2∗

l2
(θ2, ϕ1)C(k)

q (θ2, ϕ2)Ym4
l4

(θ2, ϕ2) sin θ2dθ2dϕ2 ≡ ck(l2m2, l4m4)δ−q,m2−m4 , (2.30)

the relation written as:

ck(lm, l′m′) =
∫ π

0

∫ 2π

0
Ym∗

l (θ, ϕ)C(k)
m−m′(θ, ϕ)Y

m′
l′ (θ, ϕ) sin θdθdϕ

=

√
4π

2k + 1

∫ π

0

∫ 2π

0
Ym∗

l (θ, ϕ)Ym−m′
k (θ, ϕ)Ym′

l′ (θ, ϕ) sin θdθdϕ (2.31)

can be obtained. When it has a finite value, |l− l′| ≤ k ≤ l+ l′. The following term in Eq. 2.28
is written as:

k∑
q=−k

(−1)q{
∫ π

0

∫ 2π

0
Ym1∗

l1
(θ1, ϕ1)C(k)

q (θ1, ϕ1)Ym3
l3

(θ1, ϕ1) sin θ1dθ1dϕ1 ×∫ π

0

∫ 2π

0
Ym2∗

l2
(θ2, ϕ2)C(k)

−q(θ2, ϕ2)Ym4
l4

(θ2, ϕ2) sin θ2dθ2dϕ2}

= (−1)m1−m3ck(l1m1, l3m3)ck(l2m2, l4m4)δm1+m2+m3+m4 . (2.32)
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Therefore,

⟨ϕn2l2m2ϕn1l1m1 |e2/r12|ϕn3l3m3ϕn4l4m4⟩

= e2
∫ ∞

0
r2

1dr1

∫ π

0
sinθ1 dθ1

∫ 2π

0
dϕ1

∫ ∞

0
r2

2dr2

∫ π

0
sin θ2dθ2

∫ 2π

0
dϕ2 ×

∞∑
k=0

(−1)m1−m3ck(l1m1, l3m3)ck(l2m2, l4m4)Vk(n1l1, n2l2; n3l3, n4l4) × δm1+m2,m3+m4(2.33)

Vk(n1l1, n2l2; n3l3, n4l4)

= e2
∫ ∞

0

∫ ∞

0
R∗n1l1(r1)R∗n2l2(r2)

rk
<

rk+1
>

Rn3l3(r1)Rn4l4(r2)r2
1r2

2dr1dr2. (2.34)

Where n1l1 = n3l3,n2l2 = n3l3,

Vk(n1l1, n2l2; n3l3, n4l4)

=

∫ ∞

0

∫ ∞

0
|Rn1l1(r1)|2|Rn2l2(r2)|2 e2

r>
(
r<
r>

)kr2
1r2

2dr1dr2

≡ Fk(n1l1, n2l2). (2.35)

Where n1l1 = n4l4,n2l2 = n3l3,

Vk(n1l1, n2l2; n3l3, n4l4)

=

∫ ∞

0

∫ ∞

0
Rn1l1(r1)Rn2l2(r2)

e2

r>
(
r<
r>

)kRn2l2(r1)Rn1l1(r2)r2
1r2

2dr1dr2

≡ Gk(n1l1, n2l2). (2.36)

In addition, where n1l1 = n2l2 = nl, Gk(nl, nl) = Fk(nl, nl). Fk(n1l1, n2l2) and Gk(n1l1, n2l2)
are called Slater integrals. By Slater integral Fk(2p, 2p) ≡ Fk,H789 is expressed as:

H789 = =

 2h(2p) + F0 + 1
25 F2 − 6

25 F2 − 3
25 F2

− 6
25 F2 2h(2p) + F0 + 1

25 F2 3
25 F2

− 3
25 F2 3

25 2h(2p) + F0 + 4
25 F2


= (2h(2p) + F0 +

1
25

F2)

 1 0 0
0 1 0
0 0 1

 + F2

25

 0 −6 −3
−6 0 3
−3 3 3

 . (2.37)

The corresponding eigenstates are given by:

1S


−1/
√

3
1/
√

3
1/
√

3

 , 1D


1/
√

6
−1/
√

6
2/
√

6

 , 3P


1/
√

2
1/
√

2
0

 . (2.38)

Therefore, the multiplet energy splitting for 2p orbital becomes as shown in Fig. 2.4.
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Figure 2.4: Energy diagram of multiplet energy splitting for 2p orbital

2.3 The interactions between crystalline electric field and
rare-earth compounds

The charge distributions for a free single atom/ion have a spherical shape. On the other
hand, when the atoms are ionized in solid, since the ions inside of compounds receive the
electric field from the neighboring charged ions, the charge distributions become not spher-
ical shape and the phenomena originated from these anisotropic charge distributions can be
observed in compounds. The crystalline electric field (CEF) effect is the phenomena which
the neighboring atoms (ligands) occur a certain amount of electric potential that determine
the symmetry of charge distribution at the center atom. Therefore, the Hamiltonian about
the center atoms consists of Hamiltonian for free ions and that by the CEF potential VCEF .
So that,

H = Hfree ion +HCEF. (2.39)

Since the VCEF is the electric potential, this problem can be treated as a part of Stark effect.
The scale of the CEF potential depend on the kind of element at the center position and can
be compared with other interactions. The Hamiltonian is circumstantially written as:

H = − ℏ
2

2m

∑
i

▽2
i −

∑
i

Ze2

ri︸                       ︷︷                       ︸
=H0

+
1
2

∑
i, j

e2

ri j
+

∑
ζi(r) li · si +HCEF , (2.40)

where ζi(r) li · si stands for relative spin-orbit interaction and e2

ri j
denotes Coulomb inter-

actions between 4 f electrons, and the two terms at first (defined as H0) are unperturbed
terms. The comparison between the CEF potential and other interactions is shown below.
In 4 f electron system, the scales of these three interactions have different order. The energy
scale of Coulomb interaction is the largest about several eV, and that of CEF splitting is the
smallest about ∼10−2 eV. Considering the narrower radial distribution of 4 f orbital, it can be
intuitively understood that the Coulomb interaction is the strongest. The difference between
rare-earth compounds and transition metal oxide derive from the different scale of spin-orbit
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VCEF < ζi(r) li · si <
e2

ri j
rare-earth compound

ζi(r) li · si < VCEF <
e2

ri j
transition metal oxide

VCEF >
e2

ri j
organic compound

interaction due to the atomic number.
To treat these problem by quantum mechanics, the suitable quantum number must be cho-
sen, that the operators can reflect the symmetry of the system accurately and convert into
Hamiltonian. For understanding of these interaction, we consider in the order corresponding
to Coulomb interactions inside of atoms, spin-orbit interaction, CEF potential.
The operators for Coulomb interactions can convert into orbital angular momentum L and
spin angular momentum S. Therefore the Coulomb interactions occur the multiplet struc-
ture expressed by quantum number L,S. Since the scale of spin-orbit interaction in rare-
earth ion is enough smaller (about 10−1 − 1 eV) than that of Coulomb potential e2

ri j
, the

spin-orbit interaction also can be expressed by LS combination. Spin-orbit interaction can
convert into total angular momentum J = L + S. Considering only Coulomb interac-
tion and spin-orbit interaction, the quantum number L,S,J bocome good quantum number
and the ground state for rare-earth ion in spherical symmetry is expressed by Fund’s rules.
However, when the CEF potential is introduced, the total angular momentum J becomes
not good quantum number exactly due to the anisotropic charge distribution. On the other
hand, for most of case, the CEF splitting in rare-earth compounds can be approximated as
enough smaller than spin-orbit interaction. So that the off-diagonal terms of CEF operators
for ground-state J can be ignored. As a consequence, the total angular momentum J in 4 f
electrons system can be treated as good quantum number.

2.4 Expression for crystalline electric field in rare-earth
compounds

2.4.1 General solution
As mentioned earlier, the influence by the neighboring ligands can be treated as the CEF
potentials, and that occurs anisotropic 4 f charge distributions. On the other hand, in case of
considering only unperturbed HamiltonianH0, the 4 f charge distribution is spherical shape.
H0 is written as:

H0 = −
ℏ2

2m
∇2 − Ze2

r
. (2.41)

The CEF potential VCEF can be separated into radial components and angular components,
as follows:

VCEF(r, θ, ϕ) =
∞∑

k=0

k∑
m=−k

Cm
k (θ, ϕ) · Akm · rk. (2.42)
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The normalized spherical surface harmonics for angular components Cm
k (θ, ϕ) is given by:

Cm
k (θ, ϕ) =

√
4π

2k + 1
Ym

k (θ, ϕ). (2.43)

The above expansion is called multipole expansion. For the applicable multipole expansion,
since VCEF needs to be converted depending on the symmetry of the system, it is necessary
to know the symmetry of the neighboring ligands for the center atom.
In multipole expansion, though Eq. 2.42 is expansed for any k and m, the term is the zero-
order term (k = 0), that the contributions from macro phenomena such as lattice energy and
heat is large. However, this term has little influence on electric character and transition of
electrons.
The CEF parameters Akm is generally written by notation of Stevens[22] or Lea Leask
Wolf[23]. In this thesis, we use Stevens’s notation.

2.4.2 Stevens’ operators for rare-earth compounds
When the CEF splitting energy is small, eigenvalues for all J subspaces can be calculated by
Stevens’ CEF operator. Since the hybridization between different J multiplet terms can be
ignored for most of rare-earth compounds, the assumption by Stevens come into existence.
On the other hand, in the case where the scale of the spin orbit interaction is as large as that of
the CEF splitting as in Eu3+ or the case where a hybridization of the J multiplet is observed
due to the larger CEF splitting than the splitting between J = 5/2 and J = 7/2 as CeRh3B2,
this method cannot be appropriate exceptionally. So that this method confines all the CEF
calculations to the minimum J multiplet term, therefore the dimension of the diagonal matrix
required for the calculation can be drastically reduced [22]. It is especially beneficial in the
4 f electron system, since very large amounts of CEF calculation are required. For example,
considering the f 3 configuration, since three orbitals of the 14 orbitals are occupied by
electrons, there are

(
14
3

)
= 14·13·12

2·3 = 364 wave functions and the matrix for CEF calculation is
also very large. As increasing of this number of electrons, thousands of matrix calculations
must be required. Recently it is not difficult to calculate thousands of determinants, but still
approximate Stevens is convenient to easily understand the information of the CEF. This
Stevens ’ method is called Stevens’ calculation method [22].
In Stevens’ calculation method, the CEF potential is expressed by the Stevens’ operator.

VCEF =
∑
k,m

BkmOkm (2.44)

In this method, it is the most important that the operators in Eq. 2.42 and Eq. 2.44 are cor-
responding on one-on-one. In general, the components of full-angular momentum Jx,Jy,Jz

are the simplest operators to define the multiplet terms with L, S, J. So that we should find
the operators which can be represented by a combination of Jx, Jy and Jz and which are
commutative for all symmetric operations, such as the potential of the CEF Hamiltonian.
Firstly, as shown in Fig. 2.5, we consider the case where six ions (charge q) are placed in
(±a, 0,0), (0, ±b, 0), (0,0, ±c). Considering until the sixth order term, the CEF potential
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VCEF created by these ions at the position r is given by [24]:

VCEF(r) = q
(

1
{(x − a)2 + y2 + z2}1/2 +

1
{(x + a)2 + y2 + z2}1/2 +

1
{x2 + (y − b)2 + z2}1/2

+
1

{x2 + (y + b)2 + z2}1/2 +
1

{x2 + y2 + (z − c)2}1/2 +
1

{x2 + y2 + (z + c)2}1/2

)
≃ q

[
2
a
+

2
b
+

2
c
+ (

2
a3 −

1
b3 −

1
c3 )x2 + (

2
b3 −

1
c3 −

1
a3 )y2 + (

2
c3 −

1
a3 −

1
b3 )z2

+
1
4

{
(

8
a5 +

3
b5 +

3
c5 )x4 + (

8
b5 +

3
c5 +

3
a5 )y4 + (

8
c5 +

3
a5 +

3
b5 )z4

}
−3

2
(

4
a5 +

4
b5 −

1
c5 )x2y2 − 3

2
(

4
b5 +

4
c5 −

1
a5 )y2z2 − 3

2
(

4
c5 +

4
a5 −

1
b5 )z2x2

+
1
8

{
(
16
a7 −

5
b7 −

5
c7 )x6 + (

16
b7 −

5
c7 −

5
a7 )y6 + (

16
c7 −

5
a7 −

5
b7 )z6

}
+

15
8

{
(

6
a7 −

8
b7 −

1
c7 )x2y4 + (

6
a7 −

8
c7 −

1
b7 )x2z4 + (

6
b7 −

8
a7 −

1
c7 )y2x4

+(
6
b7 −

8
c7 −

1
a7 )y2z4 + (

6
c7 −

8
a7 −

1
b7 )z2x4 + (

6
c7 −

8
b7 −

1
a7 )z2y4

}
+

45
2

(
1
a7 +

1
b7 +

1
c7 )x2y2z2)

]
. (2.45)

Also the electrostatic interaction energy of electrons at the position r is given by:

Figure 2.5: Point charge model in considering the CEF effect[24]

HCEF = −|e|VCEF(r). (2.46)

In a tetragonal symmetry a=b,c, whereas a=b=c in a cubic symmetry. The constant term in
the CEF Hamiltonian in tetragonal symmetry is removed, and taking into account until the
second order term,

HCEF = A(3z2 − r2)

(A = |e|q(
1
a3 −

1
c3 )). (2.47)
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The average of the polynomial about the coordinates in a certain of subspace with constant
total angular momentum by charge distributions is equivalent to the polynomial of the angu-
lar momentum operators in Wigner · Eckert’s theorem of quantum mechanics. For example,
the following conversion from spatial coordinates to angular momentum is established.

HCEF = A(3z2 − r2) → HCEF = B20(3l2
z − l(l + 1)) = B20O20 (2.48)

Therefore O20 = 3l2
z − l(l + 1) can be obtained. Considering the CEF Hamiltonian in cubic

symmetry, from Eq. 2.45, it becomes

HCEF = C
{

(x4 + y4 + z4) − 3
5

r4
}
+ D

{
(x6 + y6 + z6

+
15
4

(x2y4 + x2z4 + y2x4 + y2z4 + z2x4 + z2y4) − 15
14

r6
}

(C =
35|e|q
4a5 , D = −21|e|q

2a7 ) (2.49)

and the second order term disappears. In particular, paying attention to the fourth order
term, it becomes

C
{

(x4 + y4 + z4) − 3
5

r4
}
=

C
20

(35z4 − 30r2z2 + 3r4)︸                     ︷︷                     ︸
O40

+5 (x4 − 6x2y2 + y4)︸               ︷︷               ︸
O44

 (2.50)

→ B40(O40 + 5O44), (2.51)

and O40 and O44 can be obtained. Similarly, when we calculate up to the sixth order term,
we can obtain the relations as:

O60 = 231z6 − 315z4r2 + 105z2r4 − 5r6, (2.52)
O64 = (11z2 − r2)(x4 − 6x2y2 + y4). (2.53)

Also it can be noticed that the relations of B20 = 0, B44 = 5B40, B64 = −21B60 are satisfied in
cubic symmetry (Oh). When the total angular momentum J takes a good quantum number
like a rare earth compound, the orbital angular momentum l can be replaced to the total
angular momentum J, and O20,O40,O44,O60,O64 can be expressed as follows.

O20 = 3J2
z − J(J + 1), (2.54)

O40 = 35J4
z − [30J(J + 1) − 25] J2

z − 6J(J + 1) + 3J2(J + 1)2, (2.55)

O44 =
1
2

(
J4
+ + J4

−
)
, (2.56)

O60 = 231J6
z − 105 [3J(J + 1) − 7] J4

z ,

+
[
105J2(J + 1)2 − 525J(J + 1) + 294

]
J2

z ,

−5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1), (2.57)

O64 =
1
4

[(
11J2

z − J(J + 1) − 38
) (

J4
+ + J4

−
)

+
(
J4
+ + J4

−
) (

11J2
z − J(J + 1) − 38

)]
. (2.58)
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Since the ladder operators are defined by

J±|J, Jz⟩ =
√

(J ∓ Jz)(J ± Jz + 1)|J, Jz ± 1⟩, (2.59)

J+ and J− have components at a position shifted by one from the diagonal term. Since O44

and O64 are obtained by quadruplicate J+ and J−, they have components at positions shifted
by 4 from the diagonal terms. Therefore, when we calculate the CEF potential given by
Eq. 2.44 with the basis of Jz, its matrix has components at diagonal terms and 4-positions-
shifted terms from the diagonal and Jz in its eigenfunctions definitely changed by ±4.
The operators which equivalent quantity with the CEF represented by the full-angle momen-
tum are summarized by Stevens, and they are called Stevens’s equivalent operator. However,
it should be noted that the combinations of Jx, Jy and Jz are represented by spherical har-
monic functions only when considering the LSJ multiplet terms. So that Stevens’ s equiv-
alent method can be applied only when L, S and J have good quantum numbers, and hy-
bridization between different LSJ multiplet terms can be neglected.
This Stevens’ s equivalent calculation method is used in a wide range of fields. In addition,
since the forms expressed by the spherical harmonic function are more general notations, it
is necessary to understand the excited state in the x-ray absorption and photoemission pro-
cess. Therefore, it is important to know the conversion between Stevens operators Bkm and
the parameters for complete theory of CEF αAkm.

2.4.3 Expansion of CEF Hamiltonian
As mentioned preceding section, the CEF Hamiltonian can be expanded with spherical sur-
face harmonics. Since the CEF Hamiltonian can be variable separated into a radial compo-
nent and an angular component, it can be transformed to

HCEF
i, j = ⟨Rli

ni
(r)Ymi

li
(θ, ϕ)|

∞∑
k=0

k∑
m=−k

AkmrkCm
k (θ, ϕ)|Rl j

n j(r)Ym j

l j
(θ, ϕ)⟩

=

∞∑
k=0

k∑
m=−k

Akm⟨Ymi
li

(θ, ϕ)|Cm
k (θ, ϕ)|Ym j

l j
(θ, ϕ)⟩⟨Rli

ni
(r)|rk|Rl j

n j(r)⟩ (2.60)

from Eq. 2.42. The value of integral for angle component can be obtained analytically.
The crystal field parameter Akm can be also obtained by the method described later. On the
other hand, the radial component can be calculated by atomic Hatree - Fock calculation.
However, the radial component for the ions in compounds sometimes is not equivalent to
the calculation in the atomic model. Therefore, we treat Akm of the CEF together with the
radial component as follows:

Ãkm = Akm⟨Rli
ni

(r)|rk|Rli
ni

(r)⟩. (2.61)

Ãkm can be obtained by local density approximate (LDA) calculation that approximates the
potential as only a function of the density of the focusing coordinates. In actual, Ãkm are
often treated as a fitting parameters in experiments. To calculate Ãkm, it is necessary to
consider the following conditional expressions.
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• Hamiltonian is the Hermitian operator.

HCF
i, j = (HCF

i, j )∗ → Akm = (−1)mA∗k−m (2.62)

• Orbital angular momentum L satisfies the conditional expression of triangle relation
by 3 j-symbol. [25]。

|li − l j| ≤ k ≤ li + l j (2.63)

• Since the values of integral for the odd function in the whole space become equivalent
to 0, for finite value of ⟨Ymili(θ, ϕ)|Cm

k (θ, ϕ)|Ym jl j(θ, ϕ)⟩, it is necessary to satisfy the
following relation.

k + li + l j = even (2.64)

• Considering the symmetry of the crystal, we can reduce the calculation amount of
Akm. With p times symmetry around the z axis, since the CEF potential are expanded
with spherical surface harmonics,

VCF(θ, ϕ) = VCF(θ, ϕ +
π

p
). (2.65)

and the relation as VCEF ∝ Cm
k ∝ eimϕ is satisfied. In addition,

eimϕ = eim(ϕ+ πp ). (2.66)

In quantum mechanics, m is written as m = −l,−l + 1, . . . , l. In this case the variable
m can be decreased to

|m| = n · p, n ∈ Z(integer) (2.67)

by using the integer n.

2.4.4 Relation between CEF potential and Stevens operator
From Eq. 2.42, with the charge of the ligand qkm, the CEF Hamiltonian is given by:

HCEF =

∞∑
k=0

k∑
m=−k

{
qkm

∫
rk+2Rnl1(r) Rnl2(r) dr

}

·

√

4π
2k + 1

∫
Y∗l1m1

(θ, φ) Ykm(θ, φ) Yl2m2(θ, φ) sin θdθdφ


=

l1+l2∑
k=|l1−l2 |

Ak,mck(l1m1, l2m2). (2.68)

Since Eq. 2.68 is correspoding to the Hamiltonian with Stevens operator VCF =
∑

k,m BkmOkm,
the following relation can be obtained.

HCEF =
∑
km

Akmck(l1m1, l2m2) =
∑
km

Akm⟨J||θk||J⟩Okm(J) =
∑
km

BkmOkm(J)

(2.69)
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θk stands for k order tensor matrix. From this, we can obtain the relations between Akm and
Bkm by the reduction matrix elements ⟨J||θk||J⟩. To calculate them particularly, we start to
rewrite spherical surface harmonics for ck(l1m1, l2m2).∫

Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ) sin θ dθ dφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3

0 0 0

) (
l1 l2 l3

m1 m2 m3

)
(2.70)

3 j-symbol is written by Clebsch-Gordan coefficient as:(
l1 l2 l3

m1 m2 m3

)
=

(−1)l1−l2−m3

√
2l3 + 1

⟨l1m1l2m2|l3 − m3⟩. (2.71)

So that the spherical surface harmonics can be written as:∫
Yl1m1(θ, φ)Yl2m2(θ, φ)Yl3m3(θ, φ) sin θ dθ dφ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π
(−1)l1−l2
√

2l3 + 1
⟨l1, 0l2, 0|l3, 0⟩

(−1)l1−l2−m3

√
2l3 + 1

⟨l1m1l2m2|l3 − m3⟩.

(2.72)

Therefore,

ck(l1m1, l2m2) =

√
4π

2k + 1

∫
Y∗l1m1

(r) Ykm(θ, φ) Yl2m2(r) dr (2.73)

=

√
4π

2k + 1

√
(2l1 + 1)(2k + 1)(2l2 + 1)

4π

· (−1)l1−k

√
2l2 + 1

⟨l1, 0k, 0|l2, 0⟩
(−1)l1−k−m2

√
2l2 + 1

⟨l1m1km|l2 − m2⟩. (2.74)

Especially when l1 = l2 = l,

ck(lm1, lm2) = ⟨l, 0k, 0|l, 0⟩⟨lm1km|l − m2⟩ (2.75)

Generally, the reduction matrix elements J||θk||J⟩ are expressed as αJ with k = 2, βJ with
k = 4, and γJ with k = 6. With k = 2, the concrete relation is given by [26]:

αJ =
2(2l + 1 − 4S )

(2l − 1)(2l + 3)(2L − 1)
×

 (L+1)(2L+3)
J+1 2J + 3 i f J = L − S (lightRE)

L(2L−1)
J(2J−1) i f J = L + S (heavyRE).

(2.76)

The list of Stevens’ factors αJ, βJ, γJ for the trivalent rare earth ions [26] is shown in
Table 2.1.
Considering the concrete term of the CEF potencial with k = 2, m = 0, the following relation
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is obtained.

A20

√
4π
5

Y20(Ω) = A20

√
4π
5

√
5

2
√

2
(3 cos2 θ − 1) × 1

√
2π

= A20
1
2
αJ(3 cos2 θ − 1) = A20

1
2
αJO20 = B20O20 (2.77)

Therefore,

B20 =
αJ

2
A20.

Also, by using the relation Akm = (−)mAk,−m, the following relations can be obtained.

B22 =

√
6

2
αJA22

B40 =
1
8
βJA40

B42 =

√
10
4
βJA42

B43 = −
√

35
2
βJA43

B44 =

√
70
8
βJA44

B60 =
1
16
γJA60

B63 = −
√

3 · 5 · 7
8

γJA63

B64 =
3
√

14
16
γJA64

B66 =

√
231
16
γJA66

(2.78)
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Table 2.1: List of Steven’s factors αJ, βJ, γJ for the trivalent rare earth ions [26]

Ion αJ βJ γJ

Ce3+ (4f)1 2F5/2
−2
5·7

2
5·7·9 0

Pr3+ (4f)2 3H4
−13·22

11·52·32
−22

112·5·32
17·24

13·112·7·5·34

Nd3+ (4f)3 4I9/2
−7

112·32
−23·17

13·113·33
−19·17·5

132·113·7·33

Pm3+ (4f)4 5I4
2·7

112·5·3
8·7·17

13·113·5·33
19·17·23

132·112·7·33

Sm3+ (4f)5 6H5/2
13

7·5·32
2·13

11·7·5·33 0
Eu3+ (4f)6 7F0 0 0 0
Gd3+ (4f)7 8S 7/2 0 0 0
Tb3+ (4f)8 7F6

−1
11·32

2
112·5·33

−1
13·112·7·34

Dy3+ (4f)9 6H15/2
−2

7·5·32
−8

13·11·7·5·33
22

132·112·7·5·33

Ho3+ (4f)10 5I8
−1

52·32·2
−1

13·11·7·5·3·2
−5

132·112·7·33

Er3+ (4f)11 4I15/2
22

7·52·32
2

13·11·7·5·32
23

132·112·7·33

Tm3+ (4f)12 3H6
1

11·32
23

112·5·34
−5

13·112·7·34

Yb3+ (4f)13 2F7/2
2

7·32
−2

11·7·5·3
22

13·11·7·33
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2.5 Crystalline electric field in cubic symmetry
The CEF Hamiltonian can be written by Jx, Jy, Jz owing to Stevens operators. The matrix
operators in this section are defined by Jz as basis, and the eigenfunctions are expressed by
the linear combination of Jz states. Since the orbital quantum number of both Ce3+ with 4 f 1

configuration and Yb3+ with 4 f 13 is 3, 0 ≤ k ≤ 6 is only considered. In addition, the CEF
effect except for the even number of k disappears. Therefore, the CEF potential should be
considered about k = 0, 2, 4, 6. In cubic symmetry (Oh), the CEF have fourfold symmetry
and m is equivalent to the integral multiple of 4 (m = 4, 8, 12). Following the relation as
m = −k,−k + 1, . . . , k, only the case of |m| = 0, 4 should be considered. Using the relations
in cubic symmetry given by B44 = 5B40, B64 = −21B60, the CEF Hamiltonian is written as:

HCEF = B40(O40 + 5O44) + B60(O60 − 21O64). (2.79)

In this section, the CEF Hamiltonians with J = 5/2 and J = 7/2 ground-state multiplet are
picked up.

2.5.1 In the case of J = 5/2 ground-state multiplet
Since the sixth term of the CEF Hamiltonian with J = 5/2 can be ignored by Eq. 2.63, the
Eq. 2.79 is described as

HCEF = B40(O40 + 5O44). (2.80)

With the basis of |Jz⟩, J+ and J− are written as:

J+ =



|Jz = +
5
2⟩ | +

3
2⟩ | +

1
2⟩ | −

1
2⟩ | −

3
2⟩ | −

5
2⟩

⟨Jz = +
5
2 | 0

√
5 0 0 0 0

⟨+ 3
2 | 0 0 2

√
2 0 0 0

⟨+ 1
2 | 0 0 0 3 0 0

⟨− 1
2 | 0 0 0 0 2

√
2 0

⟨− 3
2 | 0 0 0 0 0

√
5

⟨− 5
2 | 0 0 0 0 0 0


(2.81)

J− =



0 0 0 0 0 0√
5 0 0 0 0 0

0 2
√

2 0 0 0 0
0 0 3 0 0 0
0 0 0 2

√
2 0 0

0 0 0 0
√

5 0


. (2.82)
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Also O40 and O44 are written as:

O40 =



60 0 0 0 0 0
0 −180 0 0 0 0
0 0 120 0 0 0
0 0 0 120 0 0
0 0 0 0 −180 0
0 0 0 0 0 60


(2.83)

O44 =



0 0 0 0 12
√

5 0
0 0 0 0 0 12

√
5

0 0 0 0 0 0
0 0 0 0 0 0

12
√

5 0 0 0 0 0
0 12

√
5 0 0 0 0


. (2.84)

Therefore, the CEF Hamiltonian with J = 5/2 is given by:

HCEF =



60B40 0 0 0 60
√

5B40 0
0 −180B40 0 0 0 60

√
5B40

0 0 120B40 0 0 0
0 0 0 120B40 0 0

60
√

5B40 0 0 0 −180B40 0
0 60

√
5B40 0 0 0 60B40


(2.85)

The eigen equation |HCEF − λI| = 0 is written as:

|HCEF − λI| = −(120B40 − λ)4(240B40 + λ)2 = 0. (2.86)

From this eigen equation, the eigenvalues λ are obtained as:

λ = −240B40, 120B40. (2.87)

So that the six-fold degenerated state in J = 5/2 split into a doublet with energy eigenvalue
of E1 = −240B40 and a quartet with energy eigenvalue of E2 = 120B40.
To require the eigen function with energy eigenvalue of E1 = −240B40, when we define the
eigen vector as:

⟨Jz = +
5
2 |

⟨+ 3
2 |

⟨+ 1
2 |

⟨− 1
2 |

⟨− 3
2 |

⟨− 5
2 |



a1

b1

c1

d1

e1

f1


. (2.88)
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When the eigenvalue of E1 = −240B40 is assigned to λ, the equation is written as:

300B40 0 0 0 60
√

5B40 0
0 60B40 0 0 0 60

√
5B40

0 0 360B40 0 0 0
0 0 0 360B40 0 0

60
√

5B40 0 0 0 60B40 0
0 60

√
5B40 0 0 0 300B40





a1

b1

c1

d1

e1

f1


= 0. (2.89)

From this equation, the following relations come into existence.

−
√

5a1 = e1

b1 = −
√

5 f1

c1 = 0
d1 = 0

(2.90)

So that the following normalized eigen function can be obtained.

|Γ7⟩ =
√

1
6
| ± 5

2
⟩ −

√
5
6
| ∓ 3

2
⟩ (2.91)

Similarly, in case of considering eigenvalue of E2 = 120B40, the equation is written as:

−60B40 0 0 0 60
√

5B40 0
0 −300B40 0 0 0 60

√
5B40

0 0 0 0 0 0
0 0 0 0 0 0

60
√

5B40 0 0 0 −300B40 0
0 60

√
5B40 0 0 0 −60B40





a2

b2

c2

d2

e2

f2


= 0. (2.92)

The following relations as:

a2 =
√

5e2√
5b2 = f2

(2.93)

and

c2 = Const(, 0)
d2 = Const(, 0)

(2.94)

come into existence.
So that the following normalized eigen function given by:

|Γ8⟩ =
 | ±

1
2⟩√

5
6 | ±

5
2⟩ +

√
1
6 | ∓

3
2⟩

(2.95)
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can be obtained.
By using the energy eigenvalues E1 and E2, from the table 2.1, B40 and B44 are described as:

B40 =
E2 − E1

360
(2.96)

B44 =
E2 − E1

72
. (2.97)

Especially, in case of considering Ce3+, the following relations are obtained.

A40 =
7(E1 − E2)

2
(2.98)

A44 =

√
70(E1 − E2)

4
(2.99)

2.5.2 In the case of J = 7/2 ground-state multiplet
Considered the case of considering J = 7/2 ground-state multiplet, Eq. 2.79 is described as:

HCEF = B40(O40 + 5O44) + B60(O60 − 21O64).

With the basis of |Jz⟩, J+ and J− with J = 7/2 are written as:

J+ =



|Jz = +
7
2⟩ | +

5
2⟩ | +

3
2⟩ | +

1
2⟩ | −

1
2⟩ | −

3
2⟩ | −

5
2⟩ | −

7
2⟩

⟨Jz = +
7
2 | 0

√
7 0 0 0 0 0 0

⟨+ 5
2 | 0 0 2

√
3 0 0 0 0 0

⟨+ 3
2 | 0 0 0

√
15 0 0 0 0

⟨+ 1
2 | 0 0 0 0 4 0 0 0

⟨− 1
2 | 0 0 0 0 0

√
15 0 0

⟨− 3
2 | 0 0 0 0 0 0 2

√
3 0

⟨− 5
2 | 0 0 0 0 0 0 0

√
7

⟨− 7
2 | 0 0 0 0 0 0 0 0


(2.100)

J− =



0 0 0 0 0 0 0 0√
7 0 0 0 0 0 0 0

0 2
√

3 0 0 0 0 0 0
0 0

√
15 0 0 0 0 0

0 0 0 4 0 0 0 0
0 0 0 0

√
15 0 0 0

0 0 0 0 0 2
√

3 0 0
0 0 0 0 0 0

√
7 0


. (2.101)
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From above formulas, O40,O44,O60,O64 are given by:

O40 =



420 0 0 0 0 0 0 0
0 −780 0 0 0 0 0 0
0 0 −180 0 0 0 0 0
0 0 0 540 0 0 0 0
0 0 0 0 540 0 0 0
0 0 0 0 0 −180 0 0
0 0 0 0 0 0 −780 0
0 0 0 0 0 0 0 420


(2.102)

O44 =



0 0 0 0 12
√

35 0 0 0
0 0 0 0 0 60

√
3 0 0

0 0 0 0 0 0 60
√

3 0
0 0 0 0 0 0 0 12

√
35

12
√

35 0 0 0 0 0 0 0
0 60

√
3 0 0 0 0 0 0

0 0 60
√

3 0 0 0 0 0
0 0 0 12

√
35 0 0 0 0


(2.103)

O60 =



1260 0 0 0 0 0 0 0
0 −6300 0 0 0 0 0 0
0 0 11340 0 0 0 0 0
0 0 0 −6300 0 0 0 0
0 0 0 0 −6300 0 0 0
0 0 0 0 0 11340 0 0
0 0 0 0 0 0 −6300 0
0 0 0 0 0 0 0 1260


(2.104)

O64 =



0 0 0 0 180
√

35 0 0 0
0 0 0 0 0 −420

√
3 0 0

0 0 0 0 0 0 −420
√

3 0
0 0 0 0 0 0 0 180

√
35

180
√

35 0 0 0 0 0 0 0
0 −420

√
3 0 0 0 0 0 0

0 0 −420
√

3 0 0 0 0 0
0 0 0 180

√
35 0 0 0 0


.

(2.105)

From Eq. 2.79, the CEF Hamiltonian with J = 7/2 is written as Eq. 2.110 in next page.
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The eigen function is given by:

|HCEF − λI| = −(120B40 − 20160B60 + λ)4

(840B40 − 25200B60 − λ)2(1080B40 + 15120B60 + λ)2 = 0. (2.106)

From this eigen equation, the eigenvalues λ are obtained as:

λ = 840(B40 − 30B60) (= E1), (2.107)
−1080(B40 + 14B60) (= E2), (2.108)
120(B40 + 168B60) (= E3) (2.109)

So that the eightfold degenerated state in J = 7/2 split into two doublet with each energy
eigenvalue of E1 and E2, and a quartet with energy eigenvalue of E3.
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To require the eigenfunction with energy eigenvalue of E1 = 840(B40−30B60), the eigen
vector is defined as:

⟨Jz = +
7
2 |

⟨+ 5
2 |

⟨+ 3
2 |

⟨+ 1
2 |

⟨− 1
2 |

⟨− 3
2 |

⟨− 5
2 |

⟨− 7
2 |



a1

b1

c1

d1

e1

f1

g1

h1


.

As a result, the following relations come into existence.

a1 =

√
5
7

e1

d1 =

√
7
5

h1

b1 = c1 = f1 = g1 = 0

(2.111)

So that the following normalized eigenfunction can be obtained.

|Γ6⟩ =
√

5
12
| ± 7

2
⟩ +

√
7

12
| ∓ 1

2
⟩ (2.112)

Similarly, the eigen vectors with energy eigenvalue of E2 = −1080(B40 + 14B60) and E3 =

120(B40 + 168B60) are respectively defined as:

a2

b2

c2

d2

e2

f2

g2

h2


,



a3

b3

c3

d3

e3

f3

g3

h3


.

So that the following relations and normalized eigenfunction are obtained.

b2 = −
√

3g2

c2 = −
√

1
3

f2

a2 = d2 = e2 = h2 = 0

(2.113)

|Γ7⟩ = −
√

3
2
| ± 5

2
⟩ + 1

2
| ∓ 3

2
⟩ (2.114)
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Also the following relations come into existence.

a3 = −
√

7
5

e3

d3 = −
√

5
7

h3

(2.115)

and

b3 =

√
1
3

g3

c3 =
√

3 f3

(2.116)

Finally, the quartet normalized eigen function following as

|Γ8⟩ =

 −
√

7
12 | ±

7
2⟩ +

√
5

12 | ∓
1
2⟩

1
2 | ±

5
2⟩ +

√
3

2 | ∓
3
2⟩

(2.117)

can be obtained.

By using the energy eigenvalues E1, E2 and E3, B40,B44,B60,B64 are described as:

B40 =
2695

2
(7E1 − 9E2 + 2E3) (2.118)

B44 =
13475

2
(7E1 − 9E2 + 2E3) (2.119)

B60 =
351351

10
(5E1 + 3E2 − 8E3) (2.120)

B64 =
737837

10
(5E1 + 3E2 − 8E3). (2.121)

Especially, in case of considering Yb3+, the following relations are obtained.

A40 =
7

24
(7E1 − 9E2 + 2E3) (2.122)

A44 =
7
√

5

24
√

14
(7E1 − 9E2 + 2E3) (2.123)

A60 =
13
40

(5E1 + 3E2 − 8E3) (2.124)

A64 = −
13
√

7

40
√

2
(5E1 + 3E2 − 8E3) (2.125)

2.6 Crystalline electric field in tetragonal symmetry
In this section, the CEF Hamiltonians in tetragonal symmetry with J = 5/2 and J = 7/2
ground-state multiplets are briefly shown.
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2.6.1 In the case of J = 5/2 ground-state multiplet
Since the sixth term of the CEF Hamiltonian with J = 5/2 can be ignored as is the case with
cubic symmetry, the CEF Hamiltonian is described as:

HCEF = B20O20 + B40O40 + B44O44. (2.126)

So that the CEF Hamiltonian matrix is given by:

HCEF =



10B20 + 60B40 0 0 0 12
√

5B44 0

0 −2B20 − 180B40 0 0 0 12
√

5B44

0 0 −8B20 + 120B40 0 0 0

0 0 0 −8B20 + 120B40 0 0

12
√

5B44 0 0 0 −2B20 − 180B40 0

0 12
√

5B44 0 0 0 10B20 + 60B40


.

(2.127)

From the eigen equation for this Hamiltonian, the following normalized eigenfunctions can
be obtained.

|Γ6⟩ = | ±
1
2
⟩ (2.128)

|Γ1
7⟩ = a| ± 5

2
⟩ −
√

1 − a2| ∓ 3
2
⟩ (2.129)

|Γ2
7⟩ =

√
1 − a2| ± 5

2
⟩ + a| ∓ 3

2
⟩ (2.130)

(0 ≤ a ≤ 1) (2.131)

By using the energy eigenvalues E1 corresponding to Γ1
7, E2 corresponding to Γ6, E3 corre-

sponding to Γ2
7,B20, B40 and B44 are described as:

B20 =
1

84
(−E1 + 6a2E1 − 4E2 + 5E3 − 6a2E3) (2.132)

B40 =
1

840
(−3E1 + 4a2E1 + 2E2 + E3 − 4a2E3) (2.133)

B44 =
a
√

1 − a2

12
√

5
(E3 − E1). (2.134)
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Especially, in case of considering Sm3+, the following relations are obtained.

A20 =
15
26

(−E1 + 6a2E1 − 4E2 + 5E3 − 6a2E3) (2.135)

A40 =
99
26

(−3E1 + 4a2E1 + 2E2 + E3 − 4a2E3) (2.136)

A44 =
99
√

7

13
√

2
a
√

1 − a2(E3 − E1) (2.137)

2.6.2 In the case of J = 7/2 ground-state multiplet
The CEF Hamiltonian with J = 7/2 is written as:

HCEF = B20O20 + B40O40 + B44O44 + B60O60 + B64O64. (2.138)

From the eigen equation for the CEF Hamiltonian with J = 7/2, the following normalized
eigenfunctions can be obtained.

|Γ1
6⟩ = a| ± 1

2
⟩ +
√

1 − a2| ∓ 7
2
⟩ (2.139)

|Γ2
6⟩ =

√
1 − a2| ± 1

2
⟩ − a| ∓ 7

2
⟩ (2.140)

|Γ1
7⟩ = b| ± 5

2
⟩ +
√

1 − b2| ∓ 3
2
⟩ (2.141)

|Γ2
7⟩ =

√
1 − b2| ± 5

2
⟩ − b| ∓ 3

2
⟩ (2.142)

(0 ≤ a ≤ 1, 0 ≤ b ≤ 1) (2.143)

In case of considering Yb3+, by using the energy eigenvalues E1 corresponding to Γ1
7, E2

corresponding to Γ2
7, E3 corresponding to Γ1

6, and E4 corresponding to Γ2
6, A20, A40, A44, A60,

and A64 are described as:

A20 =
1
4

(
3E1 − 4b2E1 − E2 + 4b2E2 − 7E3 + 12a2E3 + 5E4 − 12a2E4

)
(2.144)

A40 =
1
4

(
−3E1 − 10b2E1 − 13E2 + 10b2E2 + 7E3 + 2a2E3 + 9E4 − 2a2E4

)
(2.145)

A44 =
1
4

√
7
3

(
3
√

10b
√

1 − b2(E1 − E2) +
√

42a
√

1 − a2(E3 − E4)
)

(2.146)

A60 =
13
20

(
−9E1 + 14b2E1 + 5E2 − 14b2E2 − E3 + 6a2E3 + 5E4 − 6a2E4

)
(2.147)

A64 =
13
20

(√
42b
√

1 − b2(E1 − E2) + 3
√

10a
√

1 − a2(−E3 + E4)
)
. (2.148)

2.7 Recently developed method for determination of CEF
parameters

The CEF parameters have been determined by several methods [27] such as inelastic neutron
scattering, magnetic susceptibility. Although these method have been performed for many
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years, the information which can obtained by these experiments are often insufficient to
determine detailed crystal field parameters.Therefore, the new CEF determination methods
have been developed in recent years.

2.7.1 Determination of 4 f orbital symmetry by linear dichroism in x-
ray absorption spectra

Recently, the determination of 4 f ground-state symmetry for tetragonal Ce compounds by
linear dichroism (LD) in Ce 3d − 4 f x-ray absorption spectroscopy (XAS) has been re-
ported [10, 11, 12, 13].
In this method, since the dipole selection rules given by:

E ⊥ c→ ∆m = ±1 (2.149)
E ∥ c→ ∆m = ±0 (2.150)

work in transition process, LD in multiplet structures in Ce 3d − 4 f XAS spectra reflected
4 f orbital symmetry can be obtained as shown in Fig. 2.6. The CEF-split ground states
have determined by the ion-model calculations which reproduce the experimental LDs. For
tetragonal symmetry, this method is so powerful, but it cannot be applicable for cubic crystal
because there is no anisotropic axis. In addition, it is difficult to apply this technique to
probe Yb3+ states since there is only a single-peak structure (3d94 f 14 final state) at the
M5 absorption edge as shown in Fig. 2.7, in contrast to that of Ce3+ with clear multiplet
structures. Furthermore, 4 f charge spatial distribution can be obtained, but the rotational
symmetry around z axis cannot be distinguished by LD in XAS.
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Figure 2.6: Determination of 4 f ground-state symmetry for tetragonal CeRu2Si2 by linear
dichroism in Ce 3d − 4 f XAS [13]

Figure 2.7: Simulated Yb 3d − 4 f XAS spectra for Yb3+
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2.7.2 Determination of 4 f orbital symmetry by linear dichroism in
hard x-ray core-level photoemission spectra

Recently we have reported the determination of 4 f CEF ground-state symmetry by linear
dichroism in hard x-ray photoemission spectroscopy (LD-HAXPES) [14, 15, 16, 17]. Since
the selection rules also work in photoemission while the excited electron energy is much
higher than that in absorption, the 4 f orbital symmetry also reflects in LD-HAXPES. In
addition, there is another controllable measurement parameter in photoemission called as
the photoelectron detection direction relative to the single-crystalline axis in addition to the
polarization direction of the excitation light. Therefore, the 4 f charge distribution for cubic
crystals and more detailed information of 4 f orbital symmetry including the rotation sym-
metry around z axis can be obtained.
In this technique, we perform the ionic calculation with CEF theory for core-level photoe-
mission spectra by using Xtls ver. 9.0 [19], and we compare the LD in experiment with
simulations. Generally, the ground-state symmetry can be obtained by the experimental
spectra measured at enough lower temperature than first excited-state energy level. (The
information of CEF energy splitting is often referred from inelastic neutron scattering.) The
angle-resolved polarization-dependent Yb3+ 3d5/2 HAXPES spectra of YbCu2Si2 and simu-
lated ones are shown in Fig. 2.8. There are clear LDs in multiplet structures of Yb3+ 3d5/2

PES spectra. The experimental LDs are reproduced by simulated ones assuming the Γ2
7

ground state.

Figure 2.8: Determination of 4 f ground-state symmetry for tetragonal YbCu2Si2 by linear
dichroism in Yb 3d HAXPES [14]
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Chapter 3

The theory of photoemission
spectroscopy

3.1 Photoemission spectroscopy
Photoemission spectroscopy is a powerful method to directly observe the electronic states.
Its application field extends not only in condensed material physics, solid physics but also in
a wide range of fields such as chemistry, surface science and material science. Recently, this
method had become a powerful tool to get detailed information in electronic occupied state
with the development of synchrotron radiation and the performance of vacuum technique
and the electronic energy analyzer.
Since one-electron approximation without considering electron-electron interaction is too
simple to interpret photoelectron spectra, the analysis of experimental results is compli-
cated. On the other hand, the analysis clearly considering interactions between electrons
makes possible to obtain quantitative information for interactions between electrons. Pho-
toemission spectroscopy can be a powerful means to investigate the electronic correlation
within a substance for this reason. In this chapter, the theoretical framework of photoemis-
sion spectroscopy used in our experiments and polarization dependence of photoelectron
spectrum, photoelectron spectra in strongly-correlated materials, and the ionic calculations
of photoemission spectra considering crystalline electric field are explained [30, 31, 32, 33].

3.1.1 Principle of photoelectron spectroscopy
Photoemission spectroscopy (PES, particularly in using x-ray, X-ray Photoemission Spec-
troscopy: XPS) is the experimental method to investigate the electronic states in compounds
by observing the electrons (photoelectrons) emitted due to the external photoelectric effect
occurred by incidence of monochromated x-ray to the materials. Since the energy conserva-
tion law holds in the excitation process of photoelectron emitting, the relation between the
energy h nu of incident light and the binding energy E B of photoelectrons is expressed as:

EB = hν − ϕ − EK . (3.1)

hν:Incident photon energy
EK:Kinetic Energy of photoelectrons emitted from the sample
EB:Binding energy of emitted electrons under the sample compound
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ϕ:Work function for the sample

The incident photon energy is fixed in experiments and the work function takes a constant
value (several eV). From the above relation, it is necessary to set the incident photon energy
as hν ≥ ϕ+EB. In practical photoelectron experiment, since the work function ϕ is not equiv-
alent to that of measuring sample but that of the photoelectron spectrometer which located
in infinite distance and electrically connected to the sample, it is unnecessary to determine
the work function for each individual samples. The value obtained from a reference sample
(usually a vapor-deposited Au film) can be used as the work function for all measurement
samples. The kinetic energy of photoelectron at the Fermi level EK_EF is obtained by fitting
of the measuring photoemission spectrum of Fermi edge by using Au as a reference sample,
which electrically connected to the sample in actual measurements. The conceptual diagram
of photoelectron emission process is shown in Fig. 3.1.
In Fig. 3.1(b), the vertical axis represents energy scale in compounds and the horizontal

axis represents electrons density of states. Also the vertical axis represents kinetic energy of
photoelectrons, and the horizontal axis represents photoemission intensity in Fig 3.1(c). The
photoelectron spectrum is obtained by analysis of photoemission intensity on each kinetic
energy EKin. Since the electron binding energy E B is based on the Fermi energy EF , the
value of EB at the Fermi level is equivalent to 0.
So that the following relation consists and the electrons binding energy in compounds which
is equivalent to the energy distribution of electrons can be obtained.

EB = EK_EF − EK (3.2)

3.1.2 Photoemission process
The Hamiltonian for interactions between electrons is expressed as:

Hint =
1

2m
(p j′ + eA)2 − 1

2m
p2

j′

=
e

2m
(p ·A +A · p) +

e2

2m
A2, (3.3)

where p j′ is momentum operator for the j’-th electron to be excited. A is the quantized
vector potential of the incident photons given by:

A ∝ e(exp(iq · r j′aν + exp(−iq · r j′a†ν) (3.4)

in SI units. e, q, r j′ stand for the unit vector of light polarization, the phonon wave vector,
and the position vector of the j’-th electron excited, respectively. a†ν and aν represent the
creation and annihilation operators of the incident photon. By the exchange relation, p ·A is
equivalent to A ·p− iℏ∇ ·A. When Coulomb gauge ∇ ·A = 0 is introduced, by the relation
following as A · p + p ·A = 2A · p, fomula 3.3 is rewritten as:

Hint =
e
m
A · p + e2

2m
A2. (3.5)
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Figure 3.1: Conceptual diagram of photoelectron emission process
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The first term in Eq.3.6 represents the emission and absorption of one photon, and the second
term A2 represents the two-photon process. In case of not considering multiphoton process,
Hint is written as:

Hint = A · e
m

p (3.6)

When the initial (final) state of N electrons with the photon field |i⟩ (⟨ f |) is represented by
the direct product of the N-electron initial (final, including the excited photoelectron) state
with the total electron energy of Ei(N) (E f (N)) and initial (final) photon state |nhν⟩ (|nhν−1⟩)
with the photon number of nhν (nhν-1) as

|i⟩ = |Ei(N)⟩|nν⟩, | f ⟩ = |E f (N)⟩|nν − 1⟩. (3.7)

Then transition (photoexcitation) probability w f j′ is obtained by the time-dependent pertu-
bation theory in quantum mechanics as:

w f j′ =
2t
ℏ2π|⟨ f |Hint|i⟩|2δ(E f (N) − Ei(N) − hν) (3.8)

∝ nνt
hν
|⟨E f (N)|eiq·r j′e · p j′ |Ei(N)⟩|2δ(E f (N) − Ei(N) − hν) (3.9)

which is called Fermi’s golden rule. This formula tells that the photoelectron intensity is
proportional to the total photon flux nhνt. The probability of photoexcitation of electron
inside the solid P(EK , hν) is given by

P(EK,hν) =
∑
f , j′

w f j′

∝
∑
f j′
|E f (N)|eiq·r j′e · p j′ |Ei⟩|2δ(E f (N) − Ei(N) − hν). (3.10)

Since the photoexcited electron energy is much larger than each one-electron energy in the
remaining (N-1)-electron system, it is reasonable to assume that the photoexcited electron
does not interact with the N-1 electrons. This assumption is equivalent to the situation that
the time scale of the photoexcitation is much shorter than that of the electron interactions
and thus the photoelectron is instantaneously created by the electron-photon interaction.
This is called as ”sudden approximation”, which is applicable at least to the high-energy
photoelectron limit.
Under the sudden approximation, the total N-electron energies E f (N) in the photoexcited
(final) states are expressed as:

E f (N) = ϵ f + E f (N − 1), (3.11)

where ϵ f stands for the one-electron. Since Coulomb interactions between excited electron
and the remaining N-1 electrons are switched off in the approximation, ϵ f can be obtained
from the equation

(− ℏ
2

2m
∇2 + Ve f f (r))ϕ f (r) = ϵ fϕ f (r), (3.12)
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where ϕ f (r) is one-electron wavefunction of the excited electron and Ve f f (r) stands for
the effective potential for the excited electron in solid. Considering the situation that the
photoelectron energy is conserved until the emission into vacuum,

ϵ f = EK + ϕ (3.13)

is satisfied, where ϕ stands for the work function of the solid. Then, E f (N) is rewritten as:

E f (N) = EK + ϕ + E f (N − 1). (3.14)

The N-electron (photoexcited) final states |E f (N)⟩ are represented by the direct product of
the states in the subspaces of the photoelectron and the remaining N − 1 electrons as

|E f (N)⟩ = |EK⟩|E f (N − 1)⟩. (3.15)

By the same way, the N-electron initial states |Ei(N)⟩ are represented by:

|Ei(N)⟩ = |0PE⟩|Ei(N)⟩, (3.16)

where |0PE⟩ denotes the vacuum state in the photoelectron subspace. By using the second
quantization formalism, P(EK , hν) is rewritten as:

P(EK , hν) ∝
∑

f , j

|⟨E f (N − 1)|⟨EK |M f ja
†
Ka j|0PE⟩|Ei(N)⟩|2δ(E f (N) − Ei(N) − hν)

=
∑

f , j

|M f , j⟨E f (N − 1)|a j|Ei(N)⟩|2δ(E f (N − 1) − Ei(N) + EK + ϕ − hν),(3.17)

M f j =

∫ ∫ ∫
ϕ∗f (r)eiq·r(e · p)ϕ j(r)dV, (3.18)

where a†K and a j stand for the photoelectron creation operator and annihilation operator of
the electron in the j-th occupied state, respectively, and ϕ j(r) is the one-electron wavefunc-
tion for the j-th occupied state. M f j is called as matrix element representing the one-electron
photoexcitation process. The kinetic energy of photoelectrons is given by its conservation
law as:

EK = hν − [E f (N − 1) − Ei(N)] − ϕ. (3.19)

This means that the energy distribution of electrons obtained by photoemission spectroscopy
in the multi electron system shows the energy difference between the final- and the initial-
states.

3.1.3 Electric dipole transition
Focusing on electrons in crystals, in photoemission process, the electrons in ground state
(state m) optically transit to the excited state (state n) by receiving the energy from incident
light. Electric dipole transition can be thought as an imaginary electric dipole appearing
with transition from state m to state n. There are selection rules for electric dipole transi-
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tion, which can be explained by considering the quantum transition matrix. As understood
from Fermi’s golden law 3.9, the photoemission intensity is proportional to the square of the
transition matrix. This transition matrix can be written as ⟨Ψ f |er|Ψi⟩ for an electric dipole
transition and the parity of the dipole operator er is odd.（Changing the signs for space re-
versal operation x→ - x, y→ - y, z→ - z.）Therefore, when the parity of the initial state and
the final state are same, the transition matrix becomes 0 and forbidden. The selection rules
for transitions between intra-atomic electron orbitals are defined by the azimuthal quantum
number l and the magnetic quantum number m, which specifies the wave function spread
directionof the wave as follows: For the light with the parallel electric field vector to z axis,

∆l = ± 1, ∆m = 0 (3.20)

For the light with the perpendicular electric field vector to z axis,

∆l = ± 1, ∆m = ± 1 (3.21)

Only transitions between states following these rules are allowed.
In the case of the s→ p transition, the p state (l = 1) has three independent states corre-
sponding to m = +1, 0,−1, and it is represented by a linear combination of Y0

1 , Y
1
1 ,Y

−1
1 .

Ypx =
1
√

2
(Y1

1 + Y−1
1 ) (3.22)

Ypy =
1
√

2
(Y1

1 − Y−1
1 ) (3.23)

Ypz = Y0
1 (3.24)

For the light with the parallel electric field vector to z axis, only the transition to the Pz

state is a permissive transition, and conversely for the light with the perpendicular electric
field vector to z axis, the transition to the Pz state bocomes forbidden. Even the prohibited
transition, the prohibition only means that no electric dipole transition occurs, so the tran-
sition probability is not completely equivalent to 0. Although the transition probability is
small, the transition due to the interaction between the magnetic field component of the light
and the magnetic moment of the particle system (magnetic-dipole transition), the transition
due to the interaction between the electric field component and the electric-dipole moment
of the particle system (electric-quadrupole transition) causes transitions between forbidden
orbitals.

3.1.4 Photoionization cross section
The photoionization cross is one of the parameters for determining the photoemission inten-
sity [32]. Assuming that the intensity of incident light as I0, the number of atoms A per unit
area as N, and the photoelectron generating shell of atom A as nl, the photoelectron M (per
unit time and unit area) is expressed as follows:

M = I0Nσnl. (3.25)

σnl is called as the photoionization cross section. In the case that ionization of solids by x-
ray can be expressed by electric dipole approximation, differential ionization cross section
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Figure 3.2: Absolute part of angular dependent components of wave functions for s orbital
and p orbital[34]

dσnl
dΩ is given by:

dσnl

dΩ
=

C
gi

(
1
hν

)
∑
i, f

|e⟨Ψ f (N)|
M∑

l=1

∇i|Ψl(N)⟩|2, (3.26)

where C is a constant value, e is a unit vector parallel to electric field vector, i, f indicate
initial and final states of the system, gi is the degeneracy in initial state. The matrix elements
of the transition probabilities for i→ f have three notations:

⟨Ψ f (N)|
M∑

l=1

∇i|Ψl(N)⟩ = 1
ℏ
⟨Ψ f (N)|

M∑
l=1

pi|Ψl(N)⟩

=
mhν
ℏ2 ⟨Ψ f (N)|

M∑
l=1

ri|Ψl(N)⟩

=
1
ℏν
⟨Ψ f (N)|

M∑
l=1

∇iV |Ψl(N)⟩. (3.27)

. The first formula shows the display by the velocity, the second and third formulas are the
display by the distance and the acceleration respectively. These formulas gives the same
result if we use accurate wave function. The photoionization cross section σnl with unpolar-
ized light is given by:

σnl =
4πα0a2

0

3
(hν)[lR2

l−1(ϵkin) + (l + 1)R2
l+1(ϵkin)]. (3.28)
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α0 stands for the microstructure constant, a0 denotes the Bohr radius and R under condition
of ϵkin = hν − Enl is a dipole matrix element can be written as:

Rl±1 =

∫ ∞

0
Rnl(r)rRl±1(r)r2dr, (3.29)

where Rnl and Rl±1 indicate respectively the radial parts of the electrons wave function before
and after photoionization.

3.1.5 Angular dependence of photoelectrons
Angular dependence of photoelectron emitting probability in the photoemission process is
expressed as

f =
σi

4π
[1 + βP2(cos θ)] (3.30)

P2(cos θ) =
3 cos2 θ − 1

2
(3.31)

by using electric dipole approximation [35]. Pn is the term of the n-th order of Legendre
polynomial, θ is the angle between the observed photoelectron direction and the incident
polarized light direction, and σi is the photoionization cross section. Considering the pa-
rameter γ, which represent the term corresponding to the interference between the electric
dipole and the quadrupole, and δ which is the term corresponding to the magnetic dipole,

f =
σi

4π
[1 + βP2(cos θ) + (δ + γ cos2 θ) sin θ cos ϕ] [36]. (3.32)

The relationship between θ and ϕ is shown in Fig. 3.3.
The MB Scientific A1-HE analyzer used in HAXPES at BL19LXU in SPring-8 is set with
the angle of 60 ◦ between the optical axis of synchrotron radiatio. In case of using horizontal
polarized excitation light in HAXPES, θ = 30◦ and ϕ = 180◦, and in the case of using
vertical polarized excitation light, they are θ = 90◦ and ϕ = 120◦.
In case of using horizontally polarized light（θ = 30◦,ϕ = 180◦,

fHori =
σi

4π
[1 − 5

8
β − 1

2
(δ +

3
4
γ)]. (3.33)

In case of using vertically polarized light（θ = 90◦,ϕ = 120◦,

fVert =
σi

4π
(1 − β

2
− δ

2
). (3.34)

In s orbital exciting, since β ∼ 2 and γ ∼ 0 come into existence [37], so it becomes

fVert ∼ 0. (3.35)

As seen above, with vertically polarized excitation light, the s orbital is remarkably sup-
pressed as compared with the p, d orbitals as shown in Fig. 3.4.
Furthermore, the Eq. 3.32 can be transformed to
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Figure 3.3: Relationship between photoemission detection direction and polarized excitation
light

Figure 3.4: Angular dependence of photoelectrons for orbital [37]
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f =
σi

4π
[1 + (β + ∆βlp)P2(cos θ) + (δ + γ cos2 θ) sin θ cos ϕ

+ηP2(cos θ) cos 2ϕ + µ cos 2ϕ + ξ(1 + cos 2ϕ)P4(cos θ)

=
σi

4π
[1 +

β + ∆βlp

2
(3 cos2 θ − 1) + (δ + γ cos2 θ) sin θ cos ϕ

+
η

2
(3 cos2 θ − 1) cos 2ϕ + µ cos 2ϕ

+
ξ

8
(1 + cos 2ϕ)(35 cos4 θ − 30 cos2 θ + 3)] (3.36)

by considering the second order term of the electric dipole approximation ∆βlp and the angle
dependent parameter η, µ, ξ of the second order term [37].
Therefore, in case of horizontal polarization(θ = 30◦,ϕ = 180◦),

fHori =
σi

4π
[1 +

5
8

(β + ∆βlp) − 1
2

(δ +
3
4
γ) +

5
8
η + µ +

3
64
ξ]. (3.37)

In case of vertical polarization (θ = 90◦,ϕ = 120◦),

fVert =
σi

4π
[1 − 1

2
β − 1

2
δ +

1
4
η − 1

2
µ +

3
16
ξ]. (3.38)

3.1.6 Polarization dependence in core-level photoemission spectra
In the core-level photoemission process, one inner-core electron is excited by the incident
photon with an energy hν from the strongly correlated sites, and this photoelectron with a
kinetic energy E∗K is detected in its final state. The intensity of core-level photoemission
spectra of strongly correlated electron systems has so far been expressed using an angle and
polarization integrated form [39, 40, 41] as a function of ω ≡ E∗K − hν

ρnclc(ω) =
∑

f ,mc,sc

|⟨E f |aλc |Ei⟩|2δ(ω + E f − Ei), (3.39)

where Ei stands for the initial-state energy and E f denotes the eigenenergy of the final state
f with a core hole in a solid.
To deal with LD in the angle-resolved core-level photoemission spectra of a single crystal,
we need to start from the form in which the transition matrix elements Mγc are explicitly
taken into account, as follows:

ρnclc(ω, e, θk, φk) =
∑
f ,sc

|
∑
mc

Mγc⟨E f |aλc |Ei⟩|2δ(ω + E f − Ei), (3.40)

where e is the unit vector indicating the electric field direction of the incident light, and
θk and φk denote the polar and azimuthal angles of the observed photoelectrons, respec-
tively. Here, another joint index γc ≡ (nc, lc,mc) [thus λc = (γc, sc)] is introduced. Mγc is
represented as

Mγc =

∫ ∫ ∫
ϕ∗k(r)eiq·re · p)ϕγc(r)dV , (3.41)
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where ϕγc(r) and ϕk(r) denote the one-electron wave function of the core level with γc and
that of the excited photoelectron with a momentum k (E∗K = ℏ

2k2/2m), respectively; q is the
photon momentum and p = −ℏ∇. For simplicity, let us discuss the core-level photoemission
process for a single ion in the CEF within the electric dipole transitions, i.e., expiq · r ≃
1. By using the partial wave expansion[42, 43, 44, 45], the photoelectron wave function
excited from the inner core state λc with the atomic-like one-electron wave function

ϕγc(r) = Rnclc(r)Ymc
lc

(θ, φ) (3.42)

can be expressed as

ϕk(r) = 4π
∑
l′m′

il′e−iδl′Ym′∗
l′ (θk, φk)Rkl′(r)Ym′

l′ (θ, φ), (3.43)

where δl′ stands for the phase shift and Rkl′(r) denotes the radial function of the continuum
state. By inserting Eqs. 3.42 and 3.43 into Eq. 3.41, the transition matrix elements are
rewritten within the electric dipole approximation as

Mγc = 4π
∑

l′=lc±1,m′
(−i)l′eiδl′Ym′

l′ (θk, φk)P(nclc → kl′)

×
∫ ∫

Ym′∗
l′ (θ, φ)(e · r̂)Ymc

lc
(θ, φ)dΩ, (3.44)

P(nclc → kl′) ∝
∫

Rkl′(r)Rnclc(r)r3dr, (3.45)

where dΩ = sin θdθdϕ and r̂ is the unit radial vector. We further assume that the lc →
lc + 1 transitions are predominant over the lc → lc − 1 transitions [19, 43] and therefore the
interference effects between the outgoing lc+1 and lc−1 photoelectron waves are negligible.
Indeed, with this assumption, the experimental polarization-dependent angleresolved core-
level photoemission spectra have been well reproduced by spectral simulations [14, 15, 17,
16]. By substituting Eq. 3.44 into Eq. 3.40 and omitting the lc → lc−1 transitions, we finally
obtain

ρnclc(ω, e, θk, φk) ∝
∑
f ,sc

|
∑
m′,mc

Ym′
lc+1(θk, φk)Am′

lcmc
(e)⟨E f |aλc |Ei⟩|2δ(ω + E f − Ei), (3.46)

where

Am′
lcmc

(e) =
∫ ∫

Ym′∗
lc+1(θ, φ)(e · r)Ymc

lc
(θ, φ)dΩ. (3.47)

Here, the term P(nclc → kl′) in Eq. 3.46 is omitted since it is independent of e, thetak,
and φk. Comparing Eq. 3.46 with Eq. 3.39, one can recognize that the spectral weights of
the multiplet-split peaks are modulated from those in the isotropic spectral function by the
light polarization Am′

lcmc
(e) and photoelectron angular Ym′

lc+1(θk, φk) factors in the polarization-
dependent angle-resolved core-level photoemission spectra. Therefore, the multiplet line
shape can show the polarization and angular dependence in the CEF, where the coordination
axes for the electrons cannot be arbitrarily chosen.
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3.1.7 Inelastic mean free path
In the strongly correlated electronic material, the electronic state of the surface and the
inside (bulk) are drastically different. Therefore, bulk sensitive photoemission spectroscopy
measurement is required to measure the bulk electronic state. The choice of high energy
light with a long mean free path is one such means. Generally, for the excitation light
energy（10eV≤ hν ≤several keV） used in photoelectron spectroscopy, the photoelectrons
escape depth is sufficiently shorter than the light penetration depth (several hundred ÃĚ).
The detection depth in photoemission spectroscopy is generally approximated by the mean
free path of photoelectrons. Some electrons undergo inelastic scattering in solids by other
electrons or electrons collective excitation or phonons in the process of photoemission. The
mean free path λ that can move without such inelastic scattering effect is computationally
required as shown in Fig. 3.6. Tanuma, Powell and Penn proposed the general formula
TPP-2M of mean free path λ as shown below [46].

λ =
E

E2
p[β ln(γE) − C

E +
D
E2 ]

(3.48)

Ep = 28.8

√
NVρ

M
(3.49)

β = −0.10 +
0.944

(E2
p + Ee

g)
1
2

+ 0.069ρ0.1 (3.50)

γ = 0.191ρ−0.5 (3.51)
C = 1.97 − 0.91U (3.52)
D = 53.4 − 20.8U (3.53)

U =
NVρ

M
=

E2
p

829.4
(3.54)

E(eV) : Kinetic energy o f electrons
Ep : Plasmon energy
Eg : Band gap energy in nonconductor

ρ(g · cm−3) : Density o f solids
NV : Number o f valence electrons per atom or molecule
M : Weight o f atom or molecular

(3.55)

In the vicinity of the electron kinetic energy of 50 eV, λ is several Å. In such case, photoe-
mission spectroscopy is surface sensitive measurement. The electrons which transit to lower
energy states due to inelastic scattering lose information of the initial state and form a broad
background in the photoemission spectrum as secondary electrons.
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Figure 3.5: Schematic diagram showing the relationship between incident light energy and
bulk sensitivity

Figure 3.6: Relationship between photoelectron mean free path and kinetic energy [46]
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For bulk sensitive measurements, it is necessary to use high energy excitation light.
However, as mentioned above, the photoionization cross section of photoexcitation becomes
smaller as the energy becomes higher [38], the high resolution photoemission experiment is
difficult at high energy light over hard x-ray region in the past. In recent years, since bright
hard x-ray radiation can be obtained owing to the construction of a large synchrotron radia-
tion facility such as SPring-8, the small photoionization cross section at high photon energy
region bocomes to be overcome. has resulted in the brightness of light which compensates
for the low ionization cross section.

3.1.8 Background generation and Shirley method
Background in photoemission spectroscopy

In photoemission spectroscopy, there are generally two kinds of back ground. One is peak
background due to the presence of peak, and one is other matrix background (secondary
electron etc.) [30]. In general, matrix background does not matter in XPS. On the other hand,
the peak background is originated from photoelectrons which undergo inelastic scattering
many times and is released from the surface into vacuum, and that becomes a considerably
large background in general.
Assuming that the generated true peak as I(E0), the measured photoelectron peak J(E) is
expressed by [47]:

J(E) =
∫ ∞

E
I(E0)h(E − E0)dE0, (3.56)

where h represents the probability that photoelectrons with energy E0 lose the energy and
appear at the position of E. Therefore, h is considered as a response function. As just
described, the background of XPS is caused by multiple inelastic scattering of the photo-
electron peak and has information inside of the solid. That is, if the form of h is clear, it
is possible to obtain a true spectrum from the above formula, and information on the depth
direction of the detected element is obtained from background information.
The response function h of Eq. 3.56 becomes a very strong peak at the free electron plasmon
energy position in free-electronic substances such as alkali metals and aluminum. There-
fore, in this case, a sharp peak called as a plasmon satellite peak is observed. Free electron
plasmon energy is denoted by:

Ep = 28.8

√
NVρ

M
(eV), (3.57)

where NV is the number of valence electrons per atom or molecule, M denotes atom or
molecular weight, ρ stands for density (g · cm−3).

Shirley method

It is the first step in quantitative analysis to remove peak backgrounds in photoemission
spectroscopy. The typical method for subtracting backgrounds are listed below.

• Straight line method
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• Shirley method

• Tougaard method

In this thesis, we use Shirley method [48] for subtracting photoemission background. Fig 3.7
shows a conceptual diagram of the background for Shirley method. The shaded area rep-
resents the total background, and l1 denotes the background of the peak (b), l2 denotes the
background of the peak (a), l3 denotes the whole background l1 + l2. As is clear from above,
the most of character in Shirley method is that the number of inelastic scattering electrons is
proportional to the intensity of peak, but it is independent of energy loss. There are several
algorithms for Shirley method, this thesis introduce Proctor-Sherwood’s method [49].
Fig. 3.8 shows conceptual diagram of Proctor-Sherwood’s method. The basic flame of ap-

Figure 3.7: Conceptual diagram of the background in the Shirley method [30]

proaching is that the background intensity with no existence of peak becomes to be b (end
point), and the background intensity with all peaks existence becomes to be a, the back-
ground between from the point x to k depends on the ratio of the peak component to total.
Expressed as a formula, the background intensity at the point x is given by:

B(x) =
(a − b)Q(x; k)

T
+ b, (3.58)

where T is the total peak intensity, which is total area above B(x). Q(x; k) is the peak
intensity from the interval x to the end point k and is expressed as:

Q(x; k) =
∫ k

x
[J(t) − B(t)]dt (3.59)

, where J(t) denotes the photoelectron intensity. The total peak intensity T becomes to be
equivalent to Q(1; k).
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Figure 3.8: Background subtraction by the Proctor-Sherwood method [30]

In this method, the selection of the end point of the background on the higher energy side
is important, and when peak intensity almost stay constant with changing this end point, it
becomes good background subtracting. However, it is difficult to apply this method for the
case when there is a large difference in the background intensity between the higher and
lower energy sides, there is a satellite peak. In general, there is little problem for using the
same background range for a standard sample and an unknown sample, but extreme caution
is required for taking the background area.

3.2 Energy levels in 3d core-level photoemission spectroscopy
Since the core hole is generated in the final state for photoemission process, the energy level
states in the initial state and the final state are different. We explain the energy levels in the
Ce and Yb 3d core-level photoemission process.

3.2.1 Energy level in initial and final state for Ce 3d core-level photoe-
mission process

The possible configurations in the Ce system are |4 f 0⟩, |4 f 1⟩ and |4 f 2⟩. Firstly, we consider
the energy levels in the initial state. Assuming that the energy level of |4 f 0⟩ is equivalent to
0 (base state), the energy levels for |4 f 0⟩, |4 f 1⟩ and |4 f 2⟩ configurations in initial state are
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given by:

E(i)( f 0) = 0 (3.60)
E(i)( f 1) = −ϵ f (3.61)
E(i)( f 2) = −2ϵ f + U f f . (3.62)

ϵ f denotes the energy required to bring one electron from Fermi level to 4 f level, U f f stands
for Coulomb energy between 4 f electrons.
In the final state, these energy levels lower by ϵ3d due to the 3d core hole generated in pho-
toemission process. As ϵ3d is a constant, it may sometimes be ignored. When the Coulomb
interaction between the 3d core hole and the 4 f electrons is stood by U f c, the energy levels
in the final state are respectively,

E( f )( f 0) = −ϵ3d (3.63)
E( f )( f 1) = −ϵ3d + ϵ f − U f c (3.64)
E( f )( f 2) = −ϵ3d + 2ϵ f + U f f − 2U f c. (3.65)

So that in the final state |4 f 2⟩ state becomes the most stable. Similar energy levels are also
obtained in the final state for 4d core-level photoemission process, and |42⟩ becomes stable
in final state.
The schematic diagram of Energy level in initial and final state for Ce 3d core-level photoe-
mission process is shown in the Fig. 3.9.

3.2.2 Energy level in initial and final state for Yb 3d core-level photoe-
mission process

The possible configurations in the Yb system are |4 f 14⟩ and |4 f 13⟩. The approachment for
the Yb system is almost the same as that of the Ce system, but we consider as one 4 f hole
exist for Yb system. As is the case with the Ce system, assuming that the energy of |4 f 0⟩ is
equivalent to 0 (base state), the energy levels for |4 f 14⟩ and |4 f 13⟩ configurations in initial
state are given by:

E(i)( f 14) = 14ϵ f +

(
14
2

)
U f f = 14ϵ f + 91U f f (3.66)

E(i)( f 13) = 13ϵ f +

(
13
2

)
U f f = 13ϵ f + 78U f f . (3.67)

. Where the energy required to bring one electron from 4 f level to Fermi level, that is, the
energy required to bring one hole from Fermi level to 4 f level is defined as ϵhf ,

ϵhf = E(i)( f 14) − E(i)( f 13) (3.68)
= ϵ f − 13U f f . (3.69)
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Figure 3.9: Energy diagram of Ce 3d core-level photoemission process in initial and final
states. ϵ f in indicates naked 4 f level.

52



When the energy of the |4 f 14⟩ state is set to 0 (base state), the energy levels in initial state
are rewritten with ϵhf , as follows:

E(i)( f 14) = 0 (3.70)
E(i)( f 13) = −ϵhf . (3.71)

Since the hole is formed in 3d core level in final state, the energy level lower by −ϵ3d from
the initial state and Coulomb interaction between 3d core hole and 4 f hole Uh

f c(<0) accrues.
Therefore, the energy levels in the final state is

E( f )( f 14) = −ϵ3d (3.72)
E( f )( f 13) = −ϵ3d − ϵhf + Uh

f c. (3.73)

The basis functions in the initial state with SIAM in Yb compounds are shown below, and
the schematic diagram of Energy level in initial and final state for Yb 3d core-level photoe-
mission process is shown in the Fig. 3.10.
The schematic energy diagram of 3d XPS in Ce and Yb systems is shown in Fig. 3.11. In

the Ce system, the f 2 configuration state is located in the highest level in the initial state,
whereas in the final state it becomes the lowest level. It means that it is necessary to consider
the 4 f 2 final state for spectrum analysis.
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Figure 3.10: Energy diagram of Yb 3d core-level photoemission process in initial and final
states. ϵ f in indicates empty 4 f level.
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Figure 3.11: Conceptual energy diagram of different f level for Ce and Yb 3d XPS. ϵ f

denotes the naked and empty 4 f level for Ce and Yb system respectively.

3.3 Ion-model calculation of linear dichroism in photoe-
mission spectra

In this thesis, to clarify the origin of LD in the rare-earth core-level and 4 f photoemission
spectra, we have performed ionic calculations including the full multiplets [18] and the local
CEF splitting using the XTLS 9.0 program [19]. The advantage of the ion model is that we
should consider only the interaction parameter within the atom, the interaction parameter
with the ligands is not necessary to consider, since the rare-earth elements in compounds
are treated as ions. Also, once interaction parameters within the atom are determined, it can
be applied to any compounds containing the same rare-earth ions. All atomic parameters
such as the 4 f -4 f and 3d-4 f Coulomb and exchange interactions (Slater integrals) and the
3d and 4 f spin-orbit couplings have been obtained using Cowan’s code [25] based on the
Hartree-Fock method.
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Chapter 4

Polarized hard x-ray photoemission
spectroscopy

4.1 Synchrotron radiation light
Synchrotron radiation is the light radiated by the electrons or positrons accelerated to the
nearby speed of light due to the magnetic field [50].
The characteristic behavior of this light are shown below.

• Wide range of wavelength from vacuum ultraviolet to x-ray

• Collimation

• Polarization

• Pulse property

The energy of the electrons in storage ring of SPring-8 is the value of 8 GeV, at which there-
fore we can perform experiments with use of the hard x-ray. Though it had been difficult
to perform photoemission spectroscopy with hard x-ray due to the small photoionization
cross-section as mentioned in Chapter 3 in the past, the highly brilliant light by the large
synchrotron radiation facility has enabled to perform the photoemission experiment with
hard x-ray.
In this chapter, we present the instrumental status of BL19LXU in SPring-8 where we have
performed the experiments, and our developed polarization-switching technique and the in-
struments employed for our study.

4.2 BL19LXU in SPring-8
We have performed polarized hard-xray photoemission experiments at BL19LXU in SPring-
8. In this section, the features of the BL19LXU in SPring-8 are shown [51, 52, 53].

4.2.1 Layout of BL19LXU in SPring-8
The schematic layout of the BL19LXU in SPring-8 is shown in Fig. 4.1. The radiated
light from the long x-ray undulator are monochromated by double-crystal monochromator
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before reach to the experimental hatch. The experimental hatches which we can enter for
experiment are experimental hatch 1 (EH1) and EH3.

Figure 4.1: Schematic layout of BL19LXU in SPring-8[51]

4.2.2 Long x-ray undulator
The long x-ray undulator is used at the BL19LXU in SPring-8（Fig. 4.2). The all length of
the magnet of the undulator is 27 m, and the period length of that is 32 mm (781 period) [51].
The undulator consists of the NdFe permanent magnet. The maximum value of its magnetic
field is 0.59 T with the minimum undulator gap size of 12 mm [52].
Owing to this undulator, the beamline users can use the horizontally-polarized primary-light

Figure 4.2: The long x-ray undulator at BL19LXU in SPring-8[52]

of which energy range is from 7.4 keV to 18.8 keV [51, 52].
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4.2.3 Si(111) double-crystal monochromator
The primary-light radiated from the undulator have been firstly monochromated by the
Si(111) double-crystal monochromator. The first crystal size of that is 90× 50× 35t mm3,
and the second of that is 80 × 50 × 35t mm3.

4.3 Polarized hard x-ray photoemission system

4.3.1 Polarized hard x-ray photoemission system at BL19LXU in SPring-
8

Our system for polarized hard x-ray photoemission spectroscopy is shown in Fig. 4.3.
We have further monochromate the light monochromated by the Si(111) double-crystal
monochromator, and then we have swich the polarization of the light by using two single-
crystalline (100) diamonds as phase retarders at the EH1. Finally, we have focused the po-
larized light using an ellipsoidal Kirkpatrik-Baez mirror before the photoemission process
at EH3.

Figure 4.3: Schematic layout of the system for polarized hard x-ray photoemission at
BL19LXU in SPring-8
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4.3.2 Channel-cut crystal
A channel-cut crystal is designed to make Bragg reflection twice with the (+ -) configuration
in one crystal and enable us to utilize higher resolution light. There are several channel-cut
crystals, for example, using Si(440), Si(620), Si(551) reflections. We utilize the Si(620)
channel-cut crystal which obtain the reflection from Si(310) phase.

Figure 4.4: The Si(620) channel-cut crystal

4.3.3 Diamond phase retarders
We have switched horizontal polarization light to vertical polarization light using by two
single-crystalline (100) diamonds as phase retarders. The picture of the diamonds we actu-
ally use for experiment is shown in Fig. 4.5. The thickness of each diamond is 0.25 mm.
The theory of method to switch the polarization of the light is described later.

59



Figure 4.5: The two single-crystalline (100) diamonds for polarization switching

4.3.4 Kirkpatrik-Baez (KB) mirror
Since the both horizontal and vertical radiated light width at the mirror point are as small
as the value of 1 2 mm, Kirkpatrik-Baez (KB) mirror is often used to focus the light, which
consists of two meridian curved mirror. The KB mirror enable to reduce aberration in pro-
cess of focusing light, as compared with toroidal mirror. We have two-dimensionally (along
horizontal direction and vertical direction) focused the light reached to EH3, and the best
size of focusing light is 25 µm × 25 µm.
In actually, we have focused the excitation light within 30µm × 100µm to keep linearity of
photoelectron counts by multi-channel plate (MCP) as described later. Since it is necessary
to reduce the concentration of photoelectrons for keeping linearity of photoelectron counts,
we have released horizontal light focusing. The analyzer slit is horizontally broad, there is
little problem to releasing horizontal light focusing.

4.3.5 Hemi-spherical photoelectron spectrometer
Schematic representation of the electrostatic hemi-spherical photoelectron spectrometer is
shown in Fig 4.7. Hemispherical photoelectron analyzer was used to analysis the energy
of the emitted photoelectrons. In the hemispherical photoelectron analyzer, a negative po-
tential was applied outside the hemispherical −VP/2 while a positive potential was applied
inside the hemispherical VP/2. Photoelectrons which have a certain amount of kinetic en-
ergy are chosen from the electrons entered from a slit A and passed to another slit B. The
difference of electronic voltage between outside and inside the hemispherical is applied VP.
The kinetic energy of electrons which pass the slit B is described by the outside (R1) and
inside hemispherical radius (R2) as:

EP =
eVP

R2
R1
− R1

R2

. (4.1)
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Figure 4.6: The Kirkpatrik-Baez mirror at BL19LXU in SPring-8

The energy resolution ∆E is determined by the width of slit (w) between two hemispheri-
cal [54] as:

∆E =
wEP

R1 + R2
=

wEP

2R0
. (4.2)

Therefore, the ratio between pass energy (EP)andenergyresolution(∆E) can be expressed
as:

EP

∆E
=

R1 + R2

w
, (4.3)

which means this value is depend on only the shape of the analyzer including the slit width
(w), but independent with pass energy. The basic value of EP/∆E is about 50～200. The
electrons passed analyzer are amplified and counted by the channeltron. In case of mea-
suring by micro-channel plate (MCP), the counts of photoelectrons are recognized by the
image of the screen placed to back of MCP (induced ∼3.5 kV) which is imported by CCD
camera. Though the photoelectrons essentially intensity should be proportional to the counts
obtained from detectors, the linearity between them sometimes have not kept by using MCP,
due to the method of photoelectrons counts.
By sweeping pass energy EP, photoemission spectra can be obtained. Since the energy res-
olution ∆E for photoelectrons which have high kinetic-energy (low binding-energy) is so
large as ∆E～10eV in soft and hard x-ray region, when the value of EP/∆E is consistent
with sweeping EP, the photoelectrons have be deaccelerated in static electric field before
passing analyzer. The relation between deaccelerated electronic voltage (VR), photoelectron
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kinetic energy (EK), pass energy (EP) and the work function in analyzer (ϕA) can be given
as:

EP = EK − eVR − ϕA. (4.4)

So that we can obtain photoemission spectra with keeping small pass energy by sweeping
VR.
We have utilized A1-HE analyzer produced by MB Scientific company, and we have mea-
sured photoelectrons counts by MCP. To keep the linearity of photoelectrons intensity mea-
sured by MCP, we have controlled to make the photoelectron countrate at the p-polarization
configuration equivalent to that at the s-polarization configuration by using the attenuator
made of aluminum foils.
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Figure 4.7: Schematic representation of the electrostatic hemi-spherical photoelectron spec-
trometer

4.3.6 Developed low-temperature two-axis manipulator
Our using developed low-temperature two-axis manipulator is shown in Fig 4.8[55], which
fix and rotate samples. The low-temperature refrigerator for measuring samples is also
shown in Fig 4.9
By using the two-axis manipulator, the experimental geometry was controlled to easily

optimize the detection direction of photoelectrons. The rotation feedthrough provides polar
rotation θ. The top of the rotation stage gives the azimuthal rotation ϕ over a 90◦ range.
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Figure 4.8: Schematic view of developed low-temperature two-axis manipulator[55]

In order to observe the ground-state symmetries of strongly-correlated systems, the mea-
suring environment is required to cool to very low temperature. Using the closed-cycle He
refrigerator and the heater for temperature control are enable us to perform photoemission
experiment from 5 K to 300 K.
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Figure 4.9: Schematic view of closed-cycle He refrigerator at BL19LXU in SPring-8

4.4 Hard x-ray polarization switching method
The synchrotron radiated hard x-ray light from basic undulator is almost horizontally po-
larized. At the soft x-ray or vacuum ultraviolet rays beamline it is difficult to switch the
polarization by users. On the other hand, the polarization switching can be performed by
users for the hard x-ray in photon energy of 6～12 keV region (wavelength : 0.1～0.2
nm) [55, 56, 57]. In this section, the polarization switching method by two single-crystalline
diamond phase retarders.

4.4.1 Polarization switching by diamond phase retarders
The theory of polarization switching according to dynamic theory of diffraction is shown
below [50]. In the x-ray reflection at single-crystal phase, the wave front direction of hor-
izontal component and vertical component shift near Bragg angle, in result, birefringence
with a little difference wave number vector occurs. The phase difference between horizontal
component and vertical component (δ) is formed with propagating of wave field in crystal.
δ is described as:

δ = −π
2

[
r2

eRe[FhFℏ]
π2V2 · λ

3sin2θB

∆θ
]∆t. (4.5)

re:classical electron radius 2.8174 × 10−5Å
V:unit cell radius
Fh:crystal structure factor of Bragg reflection in index number of reflecting
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plane (hkl)
λ:wavelength
θB:Bragg angle
∆θ:angle shift from Bragg angle (offset angle)
∆t:effective thin of single-crystalline diamond

The formula 4.5 show that the phase difference is proportional to the effective thin of single-
crystalline diamond and inversely proportional to the angle shift from Bragg angle. We
have utilized two single-crystalline diamond phase retarders to get higher quality vertically
polarized light.
The phase going straight to the traveling direction of light is defined as x axis, and the
parallel direction to that is defined as y axis. Considered the shifting of electric field at the
observation point of light, the x and y component of electric field vectors are following as:

Ex = Ex0 cosωt (4.6)
Ey = Ey0 cos (ωt + δ). (4.7)

ω shows angular frequency and ω = 2πc/λ, λ show wavelength of light, and c is the speed of
light. Since in case of linear polarization the ratio between Ex and Ey is consistent for time,
the phase difference δ must be equivalent to 0 or ±π. By using the slope angle of electric
field vector from horizontal direction ϕ and the relations as Ex0 = E0 cos ϕ, Ey0 = E0 sin ϕ,
the electric field vectors are described as:

Ex = E0 cos ϕ cosωt (4.8)
Ey = E0 sin ϕ cosωt. (4.9)

The phase difference δ is treated as 0 in this formula. In case of ϕ = 0◦, 90◦, the polarizations
of light show horizontal and vertical respectively.
When the diamond phase retarder is set with 45◦ gradient from horizontally polarized light,
the relation as E0 cos ϕ = E0 sin ϕ = E0/

√
2 is given. So that the electric field vectors can

be described as

Ex =
E0√

2
cosωt (4.10)

Ey =
E0√

2
cosωt. (4.11)

(4.12)

In the case of using one diamond phase retarder, since σ polarization component is kept and
the phase for π polarization component shifts half wavelength (equal to 180◦), the linearly
polarized light of which angle direction shifts 90◦ from the incident light is obtained. The
schematic diagrams of polarization switching by one single-crystalline diamond phase re-
tarder are shown in Figs 4.10,4.11.
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Figure 4.10: Schematic diagram of polarization switching from horizontally polarized light
to vertically polarized light by one single-crystalline diamond phase retarder

Figure 4.11: Schematic diagram of electric field vector switching by one single-crystalline
diamond phase retarder (After passing a diamond phase retarder, the phase for π polarization
component shifts 180◦.)
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In case of using two diamond phase retarders, the first diamond is set to keep σ polariza-
tion component as the case of one diamond, and shift the phase of π polarization component
to 1/4 of wavelength, which follows that incident horizontally polarized light is switched
to circular polarization. The second diamond is set with 45◦ gradient from horizontally
polarized light, alternately facing to the first diamond, for suppressing blurring of phase dif-
ference δ by diffusion of finite light in scattering surface. Since π polarization component
is kept and the phase for σ polarization component shifts -1/4 of wavelength (−90◦) by the
second diamond, the circular polarized light is switched to vertically polarized light. The
schematic diagrams of polarization switching by two single-crystalline diamond phase re-
tarders are shown in Figs. 4.12,4.13.

Figure 4.12: Schematic diagram of polarization switching from horizontally polarized light
to vertically polarized light by two single-crystalline diamond phase retarders
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Figure 4.13: Schematic diagram of electric field vector switching by two single-crystalline
diamond phase retarders (After passing the first diamond phase retarder the phase for π
polarization component shifts 90◦, and after passing the second diamond phase retarder, the
phase for σ polarization component shifts -90◦.)
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4.4.2 Observation system for polarization degree and transmittance
We have observed polarization degree by two NaI scintillation counters placed horizontally
and vertically downstream of the double diamond phase retarders. The transmittance of the
x-ray beam after the double diamond phase retarders has been observed by an ion-chamber
which measure relative intensity of light with the phenomena that the gas between electric
poles ionized by incident x-ray. We have set up diamond phase retarders and NaI scintilla-
tion counters and an ion-chamber as Fig 4.14.
Since the horizontal component is not scattered to horizontal direction (electric field direc-
tion) and vertical component is not scattered to vertical direction when a kapton film is set
with (111) plane before NaI scintillation counters, the counts for horizontal polarization
component have been measured by vertically placed NaI scintillation counter, and reversely
The counts for vertical polarization component have been measured by horizontally placed
scintillation counter.
In actual experiment, we have used the fluorescent plate and the CCD camera to find the
Bragg reflection. We have set the fluorescent plate near diamond phase retarders and moni-
tored emissions of light by diamonds with Bragg angle from outside of experimental hatch.
After finding the Bragg angle, we have measured the transformation of polarization degree
by scanning along angle direction of the counts obtained from NaI scintillation counters.

Figure 4.14: Schematic layout of diamond phase retarders and the observation system for
polarization degree and transmittance
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4.4.3 Transmittance of the x-ray beam after the diamond phase re-
tarders

The transmittance of the x-ray beam after the diamond phase retarders is obtained from the
intensity of the light measured by an ion-chamber or two NaI scintillation counters. The
transmittance of the x-ray beam for two diamond phase retarders with the thickness of 0.25
mm is about 50 % (70 % per one diamond).
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4.4.4 Degree of linear polarization
The degree of linear polarization PL is defined as:

PL =
IH − IV

IH + IV
(4.13)

The angle dependences of the degree of linear polarization PL for the first and second di-
amond phase retarder are shown in Figs. 4.15,4.16. The circular polarization which have
equivalent horizontal and vertical component is obtained with small offset angle (the angle
from Bragg angle) of ±18 arcsecond for the first diamond. After obtained the circular po-
larization by the first diamond, by using second diamond the minimum value of the degree
of linear polarization PLmin = −0.93 is obtained with offset angle of +18 arcsecond for the
second diamond. Since the ratio between horizontal component and vertical component is
following as 1+PL:1−PL, the vertically polarized light component is 96 % when the degree
of linear polarization PL has minimum value.
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Figure 4.15: The angle dependence of the degree of linear polarization PL, the counts of
horizontally and vertically polarized x-ray component, and the intensity of Bragg reflection
with the offset angle from Bragg angle for the first diamond phase retarder

73



Figure 4.16: The angle dependence of the degree of linear polarization PL, the counts of
horizontally and vertically polarized x-ray component, and the intensity of Bragg refrection
with the offset angle from Bragg angle for the second diamond phase retarder
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Chapter 5

Probing 4 f ground-state symmetry of
cubic YbB12 by linear dichroism in
core-level photoemission

Yb3+ has one 4 f hole (thirteen 4 f electrons). In this chapter, we discuss the 4 f ground state
for the Yb3+-dominated Yb compound by linear dichroism in Yb3+ 3d core-level photoemis-
sion spectra which multiplet structures clearly occurs. Especially we pick up YbB12 known
as Kondo semiconductor [15].

5.1 Energy splitting of Yb3+ 4 f levels in cubic symmetry

Figure 5.1: Schematic diagram of energy splitting of Yb3+ 4 f levels in cubic symmetry

The energy diagram of Yb3+ 4 f levels in cubic symmetry is shown in Fig. 5.1. Firstly, the
4 f levels are split by the spin-orbit interaction into sixfold degenerated J = 5/2 states and
eightfold degenerated J = 7/2 states. Since the size of splitting by the spin-orbit interaction
is ∼1.3 eV, and this value is enough larger than CEF splitting, we may consider only J = 7/2
states (assuming hole picture). The eightfold degenerated J = 7/2 states are further split due
to the CEF. There are three eigenfunctions for Γ6 (doublet), Γ7 (doublet), and Γ8 (quartet)
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states as mentioned Chapter2. These three functions are written by the linear combination
of |Jz⟩ states as follows:

|Γ6⟩ =
√

5/12| ± 7/2⟩ +
√

7/12| ∓ 1/2⟩, (5.1)

|Γ7⟩ = −
√

3/2| ± 5/2⟩ + 1/2| ∓ 3/2⟩, (5.2)

|Γ8⟩ =
{
−
√

7/12| ± 7/2⟩ +
√

5/12| ∓ 1/2⟩
1/2| ± 5/2⟩ +

√
3/2| ∓ 3/2⟩ .. (5.3)

Fig. 5.2 shows the Yb3+ 4 f hole charge distributions for each wave functions Γ6, Γ7, and

Figure 5.2: Yb3+ 4 f hole charge distributions with CEF in cubic symmetry

Γ8. The Γ6, Γ7, and Γ8 4 f charge distributions are elongated along the <100>, <111>, and
<110> directions, respectively. In the case of YbB12, since the accidentally degenerated
Γ6 + Γ7 states could be a candidate for the ground state [58], the 4 f hole spatial distribution
of the Γ6 + Γ7 state are also shown. Fig. 5.1 shows one instance of 4 f level scheme, and in
actual it is not clear which eigenfunction is the lowest state.

5.2 Overview of Yb 3d core-level photoemission spectrum
The polarization-dependent Yb3+ 3d HAXPES spectra in the [100] direction of YbB12 are
shown in Fig. 5.3. Generally there are four peaks originated from Yb2+ and Yb3+. Single
peak at a binding energy of ∼1519 eV and 1567 eV are corresponding to Yb2+ 3d5/2 and
Yb2+ 3d3/2 respectively, since the 4 f subshell is fully occupied in the Yb2+ sites with a
spherically symmetric 4 f distribution. Multiple peaks ranging from 1524 to 1534 eV and
1570 to 1584 eV are from Yb3+ 3d5/2 and Yb3+ 3d3/2 respectively. In addition the broadly
plasmon peaks exist at the 20 eV higher binding energy from the peak originated from Yb3+.
The substitution of photoemission background is too difficult for Yb3+ 3d3/2 spectral region
due to the plasmon peaks located in both higher and lower binding energy side, so that we
determine 4 f orbital symmetry by Yb3+ 3d5/2 photoemission spectra.
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Figure 5.3: Yb 3d core-level photoemission spectrum of YbB12

5.3 Simulated polarization-dependent Yb3+ 3d5/2 photoe-
mission spectra

Simulated polarization-dependent Yb3+ 3d5/2 core-level HAXPES spectra assuming the crystal-
field-split ground state in cubic symmetry at 3 photoelectron directions ([100], [111] and
[110]) are shown in Fig. 5.4. In the case of YbB12, since the accidentally degenerated Γ6+Γ7

states could be a candidate for the ground state, the simulations assuming the Γ6+Γ7 ground
state and its 4 f hole spatial distribution are also shown. Simulations shown in Figs.5.4(a),
(b), (c) is respectively corresponding to assuming photoelectron detection direction along
[100], [111], [110]. In Fig. 5.4, the blue lines show the spectra at p-polarization configura-
tion, and the red lines shows that at s-polarization configuration. We have performed these
ionic calculations including the full multiplet theory [18] and the local CEF splitting using
the XTLS 9.0 program [19]. All atomic parameters such as the 4 f -4 f and 3d-4 f Coulomb
and exchange interactions (Slater integrals) and the 3d and 4 f spin-orbit couplings have
been obtained using Cowan’s code [25]. The Slater integrals (spin-orbit couplings) are re-
duced to 88% (98%) to fit the core-level photoemission spectra [59].
LD defined by the difference in spectral weight between the s- and p-polarization configura-
tions is reversed between the [100] and [111] directions for all states displayed here. LD for
the Γ6 ground state has the same tendency as that for the Γ8 ground state. On the other hand,
LD for the Γ8 state is the smallest since the 4 f hole spatial distribution for the Γ8 state is
the nearest to a spherical shape among these three eigenfunctions. LD assuming the Γ6 + Γ7

state is reversed to that for the Γ8 state. These simulations indicate that the symmetry of the
Yb3+ state can be determined by LD in the core-level photoemission.
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Figure 5.4: Simulated polarization-dependent 3d5/2 photoemission spectra of Yb3+ ions as-
suming the crystal-field-split ground state in cubic symmetry in the 3 photoelectron detec-
tion directions, together with the corresponding experimental geometry. The 4 f -hole spatial
distributions for the corresponding states are also shown.
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5.4 Determination of 4 f ground-state symmetry by the lin-
ear dichroism in Yb3+ 3d core-level photoemission spec-
tra

5.4.1 Physical properties of YbB12

Figure 5.5: Crystal structure of YbB12（UB12 cubic structure)[60]

The crystal structure of YbB12 is shown in Fig. 5.5. The crystal structure of YbB12 is
cubic UB12 structure [60] that correspond to NaCl structure where B12 cluster is treated as
one atom. For discussion of the Yb3+ 4 f ground state, it is simple to understand considering
as Borons environ Yb ions.
The temperature dependences of electric resistivity and magnetic susceptibility are shown in
Figs. 5.6, 5.7 [61]. The resistivity increases with decreasing temperature below 100 K, and
magnetic susceptibility has a peak at 80 K and drop down below this temperature. YbB12 is
known as a Kondo semiconductor [62, 63, 64, 65, 66], which has been recently recognized
as a candidate for topological insulators [67], as intensively discussed for another Kondo
semiconductor, SmB6 [68, 69, 70]. The mean valence of YbB12 has been estimated as ∼2.9+
by bulk-sensitive 3d core-level hard X-ray photoemission (HAXPES) spectroscopy [59]. To
discuss the mechanisms of the gap opening at low temperatures [66, 71, 72, 73, 74, 75,
76] and the possibility of a topological insulator, it is essential to verify the ground-state
symmetry of the Yb3+ [4 f 13 (one hole)] state determined by crystalline-electric-field (CEF)
splitting.
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Figure 5.6: Temperature dependence of electric resistivity of YbB12[61]

Figure 5.7: Temperature dependence of magnetic susceptibility of YbB12[61]

80



5.4.2 CEF splitting of YbB12

The Contour plots of imaginary part of RPA dynamical susceptibility of YbB12 and the
results of polarized neutron scattering for YbB12 are shown in Figs. 5.8, 5.9 respectively [58,
77]. The former indicates the eightfold degenerated 4 f levels in YbB12 are split into two
quartets by CEF. Some peaks have observed in the latter, the peak named as Mh is only
corresponding to the CEF excitation and indicate Γ8 ground state. Furthermore, the LDA+U
calculation also suggest Γ8 ground-state [66]. However, a possible accidentally degenerated
Γ6 + Γ7 ground state is not completely excluded [58].

Figure 5.8: Contour plots of imaginary part of RPA dynamical susceptibility of YbB12 [58],
which indicate the 4 f levels are split into two quartets by CEF
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Figure 5.9: Polarized neutron scattering for YbB12[77]、Mh correspond to CEF excitation.
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5.4.3 Experimental conditions
The experimental conditions for YbB12 is shown in below table. Single crystals of YbB12

synthesized by the traveling-solvent floating-zone method [65, 78] was given by Professor
Iga (College of Science, Ibaraki University). The experimental geometry was controlled
using a developed two-axis manipulator [55], where the normal emission direction parallel
to the [100] direction in Fig. 5.4(a) was changed to the photoelectron detection in the [111]
direction in Fig. 5.4(b) by azimuthal rotation of 45◦ and polar rotation by ∼55◦.The measur-
ing temperature is 9 K, which is sufficiently lower than the excited state (≳ 250 K) [77].

5.4.4 Shirley-type background and normalization of Yb3+ 3d5/2 core-
level HAXPES spectra of YbB12

The polarization-dependent Yb 3d5/2 HAXPES spectra in the [100] direction of YbB12 are
shown in Fig. 5.10. Also we show the same raw spectra in the expanded scale ranging
from 1524.5 to 1530.5 eV in Fig. 5.10. A slight but intrinsic LD is seen in the highest and
second-highest peaks in the raw spectra. The so-called Shirley-type backgrounds are also
displayed in Fig. 5.10. We have optimized the backgrounds as follows: After the normal-
ization of the background-subtracted spectra by both Yb2+ and Yb3+ 3d5/2 spectral weights,
the relative Yb2+/Yb3+ contributions and the intensities in the high-binding-energy region
of 1534−1540 eV become equivalent between the s- and p-polarization configurations. The
reference binding energy on the higher side has been set to 1536.2 eV corresponding to the
local minimum of the raw spectral weight in the p-polarization. As a result, there are finite
spectral weights at ∼1536 eV in the background-subtracted spectra. However, these should
be intrinsic owing to the overlap of the tails of the lifetime-broadened Yb3+ 3d5/2 main peaks
and a plasmonic energy-loss structure at the higher binding energy. Note that we have con-
firmed the robustness of LD in the 1524−1531 eV region regardless of background intensity.
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Figure 5.10: Polarization-dependent Yb 3d5/2 core-level HAXPES raw spectra (solid lines)
of YbB12 in the [100] direction and optimized Shirley-type backgrounds (dashed lines). The
raw spectra have been normalized by the Yb2+ spectral weight. The same spectra in the
expanded scale are also shown.
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5.4.5 Linear dichroism in Yb3+ 3d5/2 core-level HAXPES spectra of
YbB12

A comparison of the polarization-dependent background-subtracted Yb3+ 3d5/2 HAXPES
spectra of YbB12 and their LD with the photoelectron directions of [100], [111] and [110]
with the simulated ones for the Γ8 ground state is shown in Fig. 5.11. The highest peak is
slightly stronger in the p-polarization configuration (p-pol.) than in the s-polarization one
(s-pol.), and the second highest peak is stronger in the s-pol. for both experimental and sim-
ulated spectra in the [100] direction. These tendencies are reversed in the data in the [111]
direction. The LD in the spectra along the [110] direction is much reduced compared with
those along the [100] and [111] directions. As shown in Figs. 5.11, the observed LDs and
spectra are quantitatively reproduced by the simulations for the Γ8 ground state, for which
the 4 f charge distribution is shown in Fig. 5.12. If the 4 f ground state of YbB12 were in
the Γ6 symmetry, LD would be much larger than the experimental one. The sign of LD for
the Γ7 or accidentally degenerated Γ6 + Γ7 ground state is completely inconsistent with our
experimental results. For the experimental LD along the [110] direction, its sign as a func-
tion of binding energy is unclear since the required statistics is much better than that along
the [100] and [111] directions according to the simulations. Nevertheless, the observed LD
seems to be qualitatively consistent with the simulation for the Γ8 ground state rather than
that for the accidentally degenerated Γ6+Γ7 state. At least, our experimental result for the
detection angle parallel to the [110] direction is not contradictory to the prediction of the
Γ8 state. Such a quantitative reproducibility of the observed LD and core-level spectra by
the simulations surely indicates the Yb3+ (4 f 13) ions in the Γ8 symmetry mixed with a small
quantity (∼ 10%) of the Yb2+ (4 f 14) component [59] in the ground state of YbB12.

5.4.6 Discussion
Our finding of the Γ8 4 f symmetry for the Yb3+ sites in the ground state is consistent with the
prediction by a band-structure (local density approximation + on-site Coulomb repulsion,
LDA+U) calculation, where the Γ6 and Γ7 states are on the occupied side [66]. One might
consider that the Γ6 and Γ7 states are possibly mixed in the ground state due to the hybridiza-
tion between the 4 f and valence-band orbitals at low temperatures well below the Kondo
temperature (∼ 240 K for YbB12 [62, 63, 64, 65]). As widely recognized for the local elec-
tronic structures of transition metal oxides, on the other hand, note that the so-called CEF
splitting actually seen in realistic materials is a consequence of the anisotropic hybridization
effects in addition to static ligand potentials. The latter would be much smaller than the for-
mer for YbB12 since the ligand-field potential on the Yb sites is to some extent nearer to a
spherically symmetric one, being caused by the crystal structure [62, 63, 60] where the Yb
ion is surrounded by the truncated octahedron made of 24 boron ions as shown in Fig. 5.12.
The 4 f -hole spatial distributions are elongated along the centers of the truncated octahedron
faces for the Γ6 and Γ7 states, whereas they are elongated along the edges of the hexagonal
faces for the Γ8 state, which leads to the conclusion that the 4 f holes in the Γ8 state are
relatively stabilized by the hybridizations compared with those in the Γ6 and Γ7 states with
different symmetries, as suggested by the LDA+U calculation. Then, the possible Γ6 and/or
Γ7 state mixture would be experimentally insignificant in our data.
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Figure 5.12: 4 f -hole spatial distribution for the Yb3+ ion with the Γ8 symmetry and crystal
structure of YbB12 [60]

5.4.7 Sample quality
The experimental Laue image is shown in Fig. 5.13. I have pasted the sample to the sample
holder with the surface direction along [100] direction (normal photoemission detection
direction).

Figure 5.13: Experimental Laue image of YbB12
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The sample and surface qualities were examined on the basis of the absence of any core-
level spectral weight caused by possible impurities including oxygen and carbon as shown
below. No peaks from O 1s and C 1s have observed in spectra of YbB12.

Figure 5.14: Wide energy range HAXPES spectrum of YbB12

Figure 5.15: The photoemission spectrum of YbB12 around the binding energy of O 1s peak
position
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Figure 5.16: The photoemission spectrum of YbB12 around the binding energy of C 1s peak
position
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Chapter 6

Spectroscopic observations of 4 f
ground-state symmetry by linear
dichroism in core-level photoemission in
cubic Ce compounds

In Ce3+, there is a 4 f 1 configuration. While the Yb3+ state (4 f 13 configuration) is rather well
separated from the Yb2+ state (4 f 14 configuration), in the Ce compounds, the 4 f 0 state and
4 f 2 state are energetically close to the Ce3+ state (4 f 1 final state). Therefore, it is necessary
to verify whether the LD in the core-level PES for Ce compounds can be reproduced by the
ion-model calculations reflecting their 4 f charge distribution determined by the CEF theory.
Then we have performed LD-HAXPES experiments for CeB6 and CeAl2, of which the CEF-
split ground states have already been revealed. The ground state of the former is well known
as Γ8 ground state originated from quadrupolar ordering, and the physical properties of the
latter is explained by Γ7 ground state.

6.1 Energy splitting of Ce3+ 4 f levels in cubic symmetry
The energy diagram of Ce3+ 4 f levels in cubic symmetry is shown in Fig. 6.1. Firstly, the
4 f levels are split by the spin-orbit interaction into sixfold degenerated J = 5/2 states and
eightfold degenerated J = 7/2 states. Since the size of splitting by the spin-orbit interaction
is ∼0.3 eV, and this value is enough larger than CEF splitting (several dozen ∼ hundreds
meV), we may consider only J = 5/2 states (electron picture). The sixfold degenerated
J = 5/2 states are further split due to the CEF into Γ7 doublet and Γ8 quartet as mentioned
in Chapter 2. These wave functions are written by the linear combination of |Jz⟩ states as
follows:

|Γ7⟩ = −
√

1/6| ± 5/2⟩ +
√

5/6| ∓ 3/2⟩, (6.1)

|Γ8⟩ =
{
| ± 1/2⟩√

5/6| ± 5/2⟩ +
√

1/6| ∓ 3/2⟩ (6.2)

Fig. 6.2 shows the Ce3+ 4 f hole charge distributions for each wave functions Γ7, and Γ8.
The Γ7, and Γ8 4 f charge distributions are elongated along the <111>, <100> respectively.
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Figure 6.1: Schematic diagram of energy splitting of Ce3+ 4 f levels in cubic symmetry

Figure 6.2: Ce3+ 4 f electron charge distributions with CEF in cubic symmetry

91



6.2 Overview of Ce 3d core-level photoemission spectrum
The polarization-dependent Ce 3d region HAXPES spectra in the [100] direction of CeB6
and CeAl2 are shown in Figs. 6.3, and 6.4. There are three kinds of peaks originated from
three configurations 4 f 0, 4 f 1, and 4 f 2 in final state.
Generally the peaks in binding energy ranging from 896 to 920 eV are corresponding to
Ce 3d3/2, and the peaks in binding energy ranging from 876 to 903 eV are corresponding
to Ce 3d5/2 orbital. Especially, the peaks in binding energy ranging from 914 to 918 eV
(3d3/2) and 900 to 904 eV (3d5/2) originate from 4 f 0 configuration, and the peaks in binding
energy ranging from 904 to 912 eV (3d3/2) and 883 to 892 eV (3d5/2) originate from 4 f 1

configuration, and the peaks in binding energy ranging from 896 to 902 eV (3d3/2) and
878 to 884 eV (3d5/2) originate from 4 f 2 configuration. For discussion of Ce3+ 4 f orbital
symmetry, the observed multiplet structures are located in binding energy ranging from 878
to 892 eV (Ce 3d5/2). In contrast to Yb compounds, since the 4 f 0 state and 4 f 2 state are
nearby Ce3+ state (4 f 1 configuration) in Ce compound, it is necessary to pay attention for
the analysis of LD in Ce core-level photoemission spectra.

Figure 6.3: Ce 3d core-level photoemission spectrum of CeB6
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Figure 6.4: Ce 3d core-level photoemission spectrum of CeAl2

6.3 Simulated polarization-dependent Ce3+ (4 f 1) 3d5/2 pho-
toemission spectra

The simulated polarization-dependent Ce3+ 3d5/2 core-level HAXPES spectra in cubic sym-
metry at two photoelectron directions ([100] and [111]) are shown in Fig. 6.5, the blue
lines shows the spectra at p-polarization configuration, and the red lines shows that at s-
polarization configuration. We have performed ionic calculations including the full multi-
plet theory [18] and the local CEF splitting using the XTLS 9.0 program [19] just like Yb
ions [15]. All atomic parameters such as the 4 f -4 f and 3d-4 f Coulomb and exchange inter-
actions (Slater integrals) and the 3d and 4 f spin-orbit couplings have been obtained using
Cowan’s code [25] based on the Hartree-Fock method. The Slater integrals (spin-orbit cou-
plings) are reduced to 76% (99%) from the values obtained by Cowan’s code to fit the 3d
core-level photoemission spectra (which values are consistent with ref. [79, 80]).
The tendency of LD for the Γ7 ground state is the completely opposite to that for the
Γ8 ground state. LD defined by the difference in spectral weight between the s- and p-
polarization configurations is reversed between the [100] and [111] directions for each states
considered in cubic symmetry displayed here. Clear LDs are expected to observe in the top
of the main peak around the binding energy of 882.3eV. In addition, it should be noted that
we can obtain large LD in the bottom of the peak at the binding energy from 878 to 882 eV
and from 885 to 889 eV.
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Figure 6.5: (a) Simulated polarization-dependent 3d5/2 photoemission spectra of Ce3+ ions
assuming the crystal-field-split ground state in cubic symmetry in the [100] direction, to-
gether with the corresponding experimental geometry. (b) Same as (a) but for the pho-
toelectron in the [111] direction. The 4 f -hole spatial distributions for the corresponding
states are also shown.
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6.4 Simulated polarization-dependent Ce3+ (4 f 1) 4d pho-
toemission spectra

The simulated polarization-dependent Ce3+ 4d core-level HAXPES spectra in cubic sym-
metry at two photoelectron directions ([100] and [111]) are shown in Fig. 6.6, the blue
lines shows the spectra at p-polarization configuration, and the red lines shows that at s-
polarization configuration. The Slater integrals (the spin orbit couplings) are reduced to
80% from the values obtained by Cowans code to fit the experimental spectra. The values
of these parameter are shown in Table. 6.1.
There is advantage in 4d spectra, the clear LD can be obtained compared with 3d spectra
owing to the distinctly multiplet structures. However, the peaks originated from other ele-
ments often exist in same binding energy region. As is the case with 3d core-level spectra,
the tendency of LD for the Γ7 ground state is the completely opposite to that for the Γ8

ground state, and LD is reversed between the [100] and [111] directions for each ground
states in cubic symmetry.

Figure 6.6: simulated polarization-dependent Ce3+ 4d core-level HAXPES spectra in cubic
symmetry at two photoelectron directions ([100] and [111])
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Ce3+ (4d94 f 1)
F2

(4d4 f ) F4
(4d4 f ) G1

(4d4 f ) G3
(4d4 f ) G5

(4d4 f ) ζ4d ζ4 f

11.55 7.41 13.72 8.62 6.10 1.20 0.10

Table 6.1: The values of the Slater integrals and spin orbit couplings used for simulations.
These values have reduced to 80% from the values obtained by Cowan’s code. The value of
spin orbit coupling for 4d orbital corresponds to ref. [79, 96]

6.5 Determination of 4 f ground-state symmetry by the lin-
ear dichroism in Ce 3d and 4d core-level photoemission
spectra

6.5.1 Physical properties of CeB6

The crystal structure of CeB6 is shown in Fig. 6.7. The crystal structure of CeB6 is cubic
CaB6 structure [81]. The B6 clusters locate in <111> direction from Ce atoms. Antiferro-
magnetic ordering at Néel temperature TN =2.3 K for CeB6 is observed by neutron scatter-
ing, NMR, elastic x-ray scattering. Γ7 4 f ground state was considered natural for CeB6 by
its crystal structure [82, 83, 84], Γ8 ground state for CeB6 due to the quadrupolar ordering
have been revealed.

Figure 6.7: Crystal structure of CeB6（CaB6 cubic structure) [81]
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6.5.2 Quadrupolar ordering and CEF of CeB6

The temperature dependence of the "elastic constant" indicating the elastic energy stored
per unit volume can generally be understood as the quadrupole susceptibility [85]. The
quadrupole susceptibility means the electronic dipole moment induced per unit strain. When
the ground state is degenerate to the quadrupole, a decrease of the elastic constant propor-
tional to the inverse temperature of 1/T occurs at low temperature. The quadrupole operator
classified by the irreducible representation of the cubic O group is shown in the Table 6.2,
and the corresponding five components of the electronic quadrupole are shown in Fig. 6.8.
There are three independent elastic constants in cubic symmetry, C11 ,C12 and C44. The
quadrupole susceptibility corresponding to the Γ3 symmetry distortion is the response of the
quadrupole O2

2, and corresponds to the transverse wave elastic constant (C11 − C12)/2. The
quadrupole susceptibility corresponding to the Γ5 symmetry distortion denotes the response
of the quadrupole Oxy,Oyz,Ozx, and corresponds to the transverse wave elastic constant C44.
As already mentioned, the Ce3+ 4 f levels are split into Γ7 and Γ8 by CEF. Γ7 is a Klamath
doublet which splits by the magnetic field, but the splitting by the strain field does not occur.
On the other hand, the Γ8 quartet has 4 × 4 = 16 degree of freedom for not only magnetic
dipole but also electronic quadrupole and magnetic octupole, since it is the degenerated two
Klamath doublets. Therefore, for Ce compounds with Γ8 ground state, quadrupole or oc-
tupole can become ordered variables.
Fig. 6.9 shows the result of inelastic neutron scattering of CeB6 [86]. In this result, the

Table 6.2: Quadrupole operator expressed in irreducible form for cubic O group [85]

Symmetry quadrupole operator
Γ3 O0

2 =
1
2 (2J2

z − J2
x − J2

y )
O2

2 =
√

3
2 (J2

x − J2
y )

Γ5 Oxy =
√

3
2 (JxJy + JyJx)

Oyz =
√

3
2 (JyJz + JzJy)

Ozx =
√

3
2 (JzJx + JxJz)

Figure 6.8: Five components of electric dipole by cubic symmetric expression [85]

peak due to the CEF excitation is observed at 46 meV (∼530 K), the Γ8 ground state and the
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Γ7 excited state for CeB6 and the CEF energy splitting of 545 K are indicated. In addition,
the temperature dependence of elastic constants of CeB6 are shown in Fig. 6.11 [87]. The
two kinds of elastic constants (C11 − C12)/2 and C44 decrease in proportion to 1/T at low
temperature. Also the Fig. 6.10 shows the extended low temperature part of temperature
dependence of elastic constant C44 of CeB6 [87]. It can be seen from this figure that anti-
ferro quadrupolar ordering occurs at TQ = 3.3 K. The Γ8 quartet ground state is split into
two Klamath’s doublets by the quadrupole-strain interaction of the antiferro quadrupolar
order. As a result, the proportional decrease to 1/T of C44 stops at TQ, and it slowly rises
at low temperature. The bending of the elastic constant observed at 2.3 K corresponds to
the antiferromagnetic transition. At low temperature, elasticity anomalies due to quadrupo-
lar ordering is observed, but quadrupole interaction should not work at a sufficiently higher
temperature (ex. room temperature) than TQ. It is natural that the ground state of CeB6 is in
the Γ7 ground-state symmetry in terms of crystal structure, specific heat, magnetic suscep-
tibility [82, 83, 84, 88]. Therefore, it is suggested that the exchange of states of active Γ8

and inactive Γ7 for quadrupoles may occur at high temperatures at which quadrupole order
interaction does not work[88].
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Figure 6.9: Inelestic neutron scattering for CeB6[86]

Figure 6.10: Extended low temperature part of temperature dependence of elastic constant
C44 of CeB6 [87]
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Figure 6.11: Temperature dependence of elastic constants of CeB6 [87]
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6.5.3 Physical properties of CeAl2
The crystal structure of CeAl2 is shown in Fig. 6.12. The crystal structure of CeAl2 have
Laves phase [89]. The squared temperature dependence of specific heat of CeAl2 is shown
in Fig. 6.13 [90]. Antiferromagnetic ordering occurs at Néel temperature TN =3.8 K for
CeAl2. The magnetic behavior for CeAl2 is well explained by the Γ7 ground state and Γ8

excited state [91].

Figure 6.12: Crystal structure of CeAl2（Laves phase) [89]

Figure 6.13: Squared temperature dependence of specific heat of CeAl2[61]
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6.5.4 CEF splitting of CeAl2
The results of inelastic neutron scattering for CeAl2 are shown in Figs. 6.14 [94]. There
are two peaks in results, it indicates two excited states, it is uncommon in cubic symmetry,
for CeAl2. It is considered that phonon softening in CeAl2 causes the split of a quartet Γ8

excited state [92, 93].

Figure 6.14: Inelastic neutron scattering for CeAl2[92]
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6.5.5 Experimental conditions
The experimental conditions for CeB6 and CeAl2 are shown in below table. Single crystals
of CeAl2 (given by Professor Takao Ebihara (Department of Physics, Shizuoka Univer-
sity)) synthesized by Czochralski pulling method and CeB6 (given by Professor Fumitoshi
Iga(College of Science, Ibaraki University)) synthesized by the traveling-solvent floating-
zone method [97] were fractured along the (100) or (110) plane in situ, where the base
pressure was ∼1×10−7 Pa. The experimental geometry was controlled using a two-axis
manipulator [55], where the normal emission direction parallel to the [110] direction was
changed to the photoelectron detection in the [100] direction in Fig. 6.5(a) by azimuthal
rotation of 0◦ and polar rotation by ∼45◦ in the [111] direction in Fig. 6.5(b) by azimuthal
rotation of 90◦ and polar rotation by ∼35◦. The measuring temperature is 5 K, which is suffi-
ciently lower than the excited state (∼ 100 K for CeAl2 [94, 95] and ∼ 530 K for CeB6 [86]).

6.5.6 Shirley-type background and normalization of Ce 3d5/2 and 4d
core-level HAXPES spectra

The polarization-dependent Ce 3d5/2 core-level HAXPES raw spectra (solid lines) of CeAl2

in the [100] direction and optimized Shirley-type backgrounds, which we have subtracted
from the raw spectra (dashed lines) is shown in Fig. 6.15. Strong peak with binding energy
∼882.5 eV is assigned to the 3d5/2 peaks with a 4 f 1 final state. The sholder structure ap-
proximately 4 eV to lower binding energy are attiributed to the 3d5/2 peak with a 4 f 2 final
state, which is consistent with privious work [98]. We show the same raw spectra in the
expanded scale ranging from 879.5 to 883.5 eV in Fig. 6.15. The peak is stronger in the
p-polarization configuration (p-pol.) than the s-polarization configuration (s-pol.) around
the binding energy of 882.5 eV, in contrast, the bottom of peak is stronger in s-pol. than
p-pol. around the binding energy of 880.5 eV. Therefore, there is slight but intrinsic LD in
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Figure 6.15: Polarization-dependent Ce 3d5/2 core-level HAXPES raw spectra (solid lines)
of CeAl2 in the [100] direction and optimized Shirley-type backgrounds, which we have
subtracted from the raw spectra (dashed lines). The raw spectra have been normalized by
the height of the main peak. The same spectra in the expanded scale are also shown.

the main peak originated from 4 f 1 final state. We set the binding energy on the higher side
to 889.4 eV corresponding to the local minimum of the raw spectral weight in the s-pol.
After background subtracting, we normalize Ce 3d5/2 spectra by both Ce3+ 3d5/2 spectral
weights from the binding energy of 879.4 eV to 889.4 eV (even though there are some spec-
tral weights originated from 4 f 2 final state in the normalized region).
The polarization-dependent Ce 3d5/2 core-level HAXPES raw spectra (solid lines) of CeB6

in the [100] direction and optimized Shirley-type backgrounds, which we have subtracted
from the raw spectra (dashed lines) is also shown in Fig. 6.16. The backgrounds are sub-
tracted by the same manner as Ce 3d5/2 spectra, and then the spectra are normalized by both
Ce 4d overall spectral weights including the both peaks originated from 4 f 1 and 4 f 2 final
states, since the peaks from 4 f 2 final state is very nearby to the peaks from 4 f 1 final state.
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Figure 6.16: Polarization-dependent Ce 4d core-level HAXPES raw spectra (solid lines)
of CeAl2 in the [100] direction and optimized Shirley-type backgrounds, which we have
subtracted from the raw spectra (dashed lines).
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6.5.7 Linear dichroism in Ce 3d5/2 core-level HAXPES spectra of CeB6
and CeAl2

The polarization-dependent background-subtracted Ce 3d5/2 HAXPES spectra of CeAl2

and CeB6 and their LD with the photoelectron directions of [100] and [111] are shown
in Fig. 6.17. The sholder structures at the binding energy from 875 to 879.5 eV exist in
both experimental spectra of CeAl2 and CeB6 which originate from 4 f 2 final state. These
structures are larger in CeAl2 than in CeB6. These spectral shapes as well as the intensity
of the peaks due to the 4 f 2 final state are respectively simular to the previous work [79, 99].
The shape for the LD in the spectra of CeAl2 has different feature from that of CeB6 in the
[100] directions, such the sign of the LD in [100] direction for CeAl2 changes from plus
to minus with getting higher binding energy but the that for CeB6 changes minus to plus.
The LD for CeAl2 compared with the simulated ones for the Γ7 ground state and the LD for
CeB6 compared with the simulated ones for the Γ8 ground state are also shown in Fig. 6.17.
The features of LD for CeAl2 is corresponding to the simulated LD for the Γ7 ground state,
and that for CeB6 is near to the simulated LD for the Γ8 ground state with the photoelectron
directions of the [100] direction. Also the shape for the LD in the spectra of CeAl2 is differ-
ent from that of CeB6 in the [111] direction, in addition, the former is near to the simulated
LD for Γ7 ground state and the latter is corresponding to the simulated LD for Γ8 ground
state. Therefore, there are little effects from 4 f 2 final state for LDs in the Ce 3d5/2 spectra in
the case that we have to discriminate the ground state for Ce compounds in cubic symmetry.
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Figure 6.17: (a) Polarization-dependent Ce 3d5/2 core-level HAXPES spectra and LD of
CeAl2 and CeB6 in the [100] direction. The LD for CeAl2 compared with the simulated
ones for the Γ7 ground state and the LD for CeB6 compared with the simulated ones for the
Γ8 ground state are also shown. (b) Same as (a) but data in the [111] direction.
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6.5.8 Linear dichroism in Ce 4d core-level HAXPES spectra of CeB6

The polarization-dependent background-subtracted Ce 4d HAXPES spectra of CeB6 and
their LD with the photoelectron directions of [100] and [111] are shown in Fig. 6.18. Sim-
ulated polarization-dependent Ce3+ 4d core-level HAXPES spectra in cubic symmetry with
the photoelectron directions of [100] and [111] are also shown in Fig. 6.18. The tendency for
the LD in almost overall Ce 4d spectra is corresponding to the LD of simulations assuming
Γ8 ground state in both photoelectron directions of [100] and [111], except at the binding
energy from 99 to 106 eV of [100] direction. For example, the spectra at the binding energy
from 109 to 114 eV is slightly stronger in the s-pol. than in the p-pol. one, and the spectra
at the binding energy from 114 to 121 eV is stronger in the p-pol. for both experimental and
simulated spectra for Γ8 ground state in the [100] direction. In contrast, the spectra at the
binding energy from 109 to 117 eV is slightly stronger in the p-pol. than in the s-pol. one,
and the spectra at the binding energy from 101 to 109 eV is stronger in the s-pol. in the [111]
direction. Thus, since the LDs in Ce 4d spectra of CeB6 in both two photoelectron directions
are near to simulated ones for Γ8, the contributions from 4 f 2 final state for LDs in the Ce
4d spectra are almost negligible for the discussion of the ground state for Ce compounds in
cubic symmetry.

6.5.9 Discussion
The LDs in core-level photoemission spectra appears stronger in 4d spectra than in 3d5/2

spectra. One reason for these results are regared as the non-dividing 4d spectra due to the
small value of spin orbit coupling for 4d orbital. In addition, we suggest another reason.
The values of Coulomb and exchange interactions Fn and Gn are larger in 4d-4 f than in 3d-
4 f [80]. Since the multiplet structures in core-level photoemission spectra are represented
by the linear combinations of these Fn and Gn values, LDs in these multiple structures
are obtained more clearly in the orbit which the Slater integrals between core-level and 4 f
orbital have large values.

6.5.10 Sample quality
The experimental Laue image is shown in Fig. 6.5.10, 6.19. I have pasted the samples
to the sample holder with the surface direction along [100] and [110] direction (normal
photoemission detection direction).
The sample and surface qualities were examined on the basis of the absence of any core-

level spectral weight caused by possible impurities including oxygen and carbon as shown
below. Though there is a little peak from O 1s in Figs. 6.21 (2015.12) and 6.24, the influence
of oxidation is negligible for measuring HAXPES spectra. The peaks from other impurities
including carbon have not been observed.
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Figure 6.18: (a) Polarization-dependent Ce 4d core-level HAXPES spectra and LD of CeB6

and the simulated ones in the cubic symmetry in the [100] direction. (b) Same as (a) but
data in the [111] direction. The Shirley-type background has been subtracted from the raw
spectra.
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Figure 6.19: Experimental Laue image of CeB6

Figure 6.20: Wide energy range HAXPES spectrum of CeB6
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Figure 6.21: The photoemission spectrum of CeB6 around the binding energy of O 1s peak
position

Figure 6.22: The photoemission spectrum of CeB6 around the binding energy of C 1s peak
position
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Figure 6.23: Wide energy range HAXPES spectrum of CeAl2

Figure 6.24: The photoemission spectrum of CeAl2 around the binding energy of O 1s peak
position
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Figure 6.25: The photoemission spectrum of CeAl2 around the binding energy of C 1s peak
position
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Chapter 7

Determination of 4 f orbital symmetry of
tetragonal SmCu2Si2 by linear dichroism
in core-level photoemission

In the crystalline solids, Sm ions have two state as trivalent (4 f 5 electrons) and divalent
(4 f 6), which leads to interesting phenomena such as valence fluctuation and Kondo (or
topological) semiconducting states. Photoemission experiment for Sm compounds have
been performed long years. However, the applicability of LD in the core-level PES for
probing the orbital symmetry has been completely unclear. So that Sm3+-dominated com-
pounds should be tested for the determination of 4 f orbital symmetry by LD-HAXPES with
the ion-model calculation. In this chapter, we show the study of tetragonal SmCu2Si2, in
which the Sm ions exist as trivalent state.

7.1 Energy splitting of Sm3+ 4 f levels in tetragonal sym-
metry

The energy diagram of Sm3+ 4 f levels in tetragonal symmetry is shown in Fig. 7.1. Firstly
the sixty-sixth-fold degenerated 4 f levels are split by the spin-orbit interaction into six J
multiplets J = 15/2, 13/2, 11/2, 9/2, 7/2, 5/2 states. With electron picture, we should con-
sider the lowest J multiplet state. Since the size of splitting by the spin-orbit interaction
is ∼0.15 eV, and this value is enough larger than CEF splitting (several dozen ∼ hundreds
meV), we may consider only sixfold degenerated J = 5/2 states. The sixfold degenerated
J = 5/2 states are further split due to the CEF into three doublets as Γ6 and Γ1

7, and Γ2
7, as

mentioned in Chapter 2. These wave functions are written by the linear combination of |Jz⟩
states as follows:

|Γ6⟩ = | ±
1
2
⟩ (7.1)

|Γ1
7⟩ = a| ± 5

2
⟩ −
√

1 − a2| ∓ 3
2
⟩ (7.2)

|Γ2
7⟩ =

√
1 − a2| ± 5

2
⟩ + a| ∓ 3

2
⟩ (7.3)

(0 ≤ a ≤ 1). (7.4)
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Figure 7.1: Schematic diagram of energy splitting of Sm3+ 4 f levels in cubic symmetry
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Fig. 7.2 shows the Sm3+ 4 f electrons charge distributions with pure |Jz⟩ states. Γ6 is pure

Figure 7.2: Sm3+ 4 f electrons charge distributions with pure |Jz⟩ states

|Jz⟩ = | ± 1/2⟩ state, and Γ7 two consists of linear combinations of |Jz⟩ = | ± 5/2⟩ state and
|Jz⟩ = | ∓ 3/2⟩ state. The difference of charge distribution between Γ1

7 state and Γ2
7 state is

occurred in rotation around c axis by 45◦. It is noticed that the charge distributions for all
pure |Jz⟩ states are close to spherical shape due to the larger number of Sm3+ 4 f electrons
compared with the number of Ce3+ 4 f electron and Yb3+ 4 f hole.

7.2 Overview of Sm 3d core-level photoemission spectrum
The polarization-dependent Sm 3d region HAXPES spectra in the [100] direction of SmCu2Si2
are shown in Fig. 7.3. A multiple peak ranging from 1076 to 1090 eV originate from Sm3+

3d5/2, and that ranging from 1102 to 1120 eV is from Sm3+ 3d3/2. In addition, a single peak
originated from Cu 2s orbital is observed at binding energy ranging 1090 to 1102 eV for
SmCu2Si2 especially. Since the substitution of photoemission background is too difficult for
Sm3+ 3d3/2 spectral region due to the peak from Cu 2s in lower binding energy side and the
plasmon peaks in higher binding energy side, we determine 4 f orbital symmetry by Sm3+

3d5/2 photoemission spectra.
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Figure 7.3: Sm 3d and Cu 2s core-level photoemission spectra of SmCu2Si2

7.3 Simulated polarization-dependent Sm3+ 3d5/2 photoe-
mission spectra

Simulated polarization-dependent Sm3+ 3d5/2 core-level HAXPES spectra assuming pure
|Jz⟩ ground states in experimental geometry with θ = 60◦ (photoelectron detection direction
in along [001] direction) is shown in Fig. 7.4, together with the corresponding 4 f charge
distributions. In Fig. 7.4, the blue lines show the spectra at p-polarization configuration, and
the red lines shows that at s-polarization configuration. We performed the ionic calculations
including the full multiplet theory [18] and the local CEF splitting for 4 f photoemission
spectra by using the XTLS 9.0 program [19] as is the case with 3d core-level photoemis-
sion. All atomic parameters such as the 4 f -4 f Coulomb and exchange interactions (Slater
integrals) and the 4 f spin orbit couplings have been obtained using Cowan ’s code [25]
based on the Hartree-Fock method. The 3d-4 f Slater integrals are reduced to 87% and the
ratios of the 4 f -4 f Slater integrals F2, F4 and F6 have been chosen as F4/F2 = 0.726 and
F6/F2 = 0.5726 as in the same manner as in Ref. [100], where F2 is reduced to 68% from
the value obtained using the Cowan ’s code. The spin orbit coupling is reduced to 98%.
As shown in Fig. 7.4, the Sm3+ 3d5/2 spectra for |Jz⟩ = | ± 1/2⟩ ground state has sloping

shape, on the other hand that for |Jz⟩ = | ± 5/2⟩ has sharp peak structure around binding
energy of 1080.5 eV. Since Γ6 is pure |Jz⟩ = | ± 1/2⟩ state, and Γ7 two consists of linear
combinations of |Jz⟩ = | ± 5/2⟩ state and |Jz⟩ = | ∓ 3/2⟩ state, these ground states can be
distinguished by the visual of Sm3+ 3d5/2 spectra. For the Sm compound which 4 f ground
state is in Γ6 symmetry, observed the Sm3+ 3d5/2 spectra become sloping shape, with higher
s-polarization spectrum than p-polarization one around binding energy of 1080.8 eV and
higher p-polarization spectrum than s-polarization one around binding energy of 1083 eV.
In contrast, For the Sm compound which 4 f ground state is in Γ7 symmetry, the Sm3+ 3d5/2

spectra become sharp, with higher p-polarization peak than s-polarization one around bind-
ing energy of 1081 eV. Since the photoelectron detection direction is along [001] direction
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Figure 7.4: Simulated polarization-dependent 3d5/2 photoemission spectra of Sm3+ ions as-
suming pure |Jz⟩ ground states at photoemission detection direction [001] direction, together
with the experimental geometry. The 4 f -hole spatial distributions for the corresponding
states are also shown.
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(c axis), it is impossible to distinguish Γ1
7 and Γ2

7 symmetry in this experimental geometry.
Therefore, it is essential to change experimental geometry.

7.4 Determination of 4 f ground-state symmetry by the lin-
ear dichroism in Sm3+ 3d core-level photoemission spec-
tra

7.4.1 Physical properties of SmCu2Si2

Figure 7.5: Crystal structure of SmCu2Si2（ThCr2Si2 tetragonal structure)

The crystal structure of SmCu2Si2 is shown in Fig. 7.5. The crystal structure of SmCu2Si2
is tetragonal ThCr2Si2 structure as same as YbCu2Si2 and YbRh2Si2 that we firstly reported
determination of 4 f ground state by LD-HAXPES [14].
The temperature dependences of magnetic susceptibility is shown in Fig. 7.6 [102]. The
magnetic susceptibilities have a peak and the inverses of that (1/χ) have a cusp structure
at Néel temperature TN = 9 K. The temperature dependences of specific heat (a), magnetic
specific heat (b), and magnetic entropy (c) of SmCu2Si2 are shown in Fig. 7.7 [101]. The
magnetic specific heat in Fig. 7.7(b) was obtained by subtracting specific heat of LaCu2Si2
from total specific heat of SmCu2Si2 (Fig 7.7(a)). As shown in Fig. 7.7(c), magnetic entropy
attain to R ln 2 around 40 K and total CEF splitting energy is lower than 100 K.
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Figure 7.6: Temperature dependence of magnetic susceptibility of SmCu2Si2 [102]

Figure 7.7: The temperature dependences of specific heat (a), magnetic specific heat (b),
and magnetic entropy (c) of SmCu2Si2 [101]
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7.4.2 Experimental conditions
The experimental conditions for SmCu2Si2 are shown in below table. Single crystals of
SmCu2Si2 was given by Visiting Professor Yoshitika Onuki (Faculty of Science, University
of the Ryukyus). The experimental geometry was controlled using a developed two-axis ma-
nipulator [55]. We perfomed LD-HAXPES at three experimetal geometries for the normal
emission direction parallel to the [001] direction, and two significantly different photoelec-
tron directions far (∼70◦) from the c axis (one is a configuration that a axis exist in scattering
plane : named as Geometry1, and one is a configuration that a axis not exist in scattering
plane, [110] direction exist in the plane : named Geometry2). The measuring temperatures
were 10 K for for SmCu2Si2 in the paramagnetic phase [102]

7.4.3 Shirley-type background and normalization of Sm3+ 3d5/2 core-
level HAXPES spectra of SmCu2Si2

The polarization-dependent Sm3+ 3d5/2 HAXPES spectra (and apart of Cu 2s spectra) in the
[001] direction of SmCu2Si2 are shown in Fig. 7.8. A intrinsic LD is seen in the multiplet
structures in the Sm3+ 3d5/2 raw spectra. The subtracting Shirley-type backgrounds are also
displayed in Fig. 7.8. The reference binding energy on the higher side has been set to 1086.8
eV corresponding to the local minimum of the raw spectral weight in the p-polarization. For
SmCu2Si2, the spectral intensities of Cu 2s are drastically different between s-polarization
configuration and p-polarization. Since the intensity of Cu 2s spectrum is very larger in
p-polarization than s-polarization, we subtract Shirley-type background with remaining a
little intensity at higher binding energy side for p-polarization configuration.
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Figure 7.8: Polarization-dependent Sm3+ 3d5/2 core-level HAXPES raw spectra (solid lines)
of SmCu2Si2 in the [001] direction and optimized Shirley-type backgrounds (dashed lines).

7.4.4 Linear dichroism in Sm3+ 3d5/2 core-level HAXPES spectra of
SmCu2Si2

The polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra of SmCu2Si2
and its LD (defined by the intensity at s-polarization configuration minus the intensity at p-
polarization configuration) in the photoelectron detection directions of [001] (normal emis-
sion) are shown in Fig. 7.9. The simulation spectra and LD, which reproduce experimental
LD, are also shown in Fig. 7.9. The Sm3+ 3d5/2 spectra have sharp peak structure around
binding energy of 1081 eV with higher intensity of p-polarization than s-polarization, and
shoulder structure around binding energy of 1083 eV with higher intensity of s-polarization
than p-polarization. These features of spectrum are completely different from that for
|Γ6⟩ = | ± 1/2⟩ ground state. It means the Sm3+ 3d5/2 HAXPES spectra and its LD in
normal emission direction indicate |Γ7⟩ = a| ± 5/2⟩ ±

√
1 − a2| ∓ 3/2⟩ ground state. So that

we reproduced the experimental spectra and LD with linear combination of |Jz⟩ = | ± 5/2⟩
and |Jz⟩ = | ∓ 3/2⟩ by ionic calculation, and determined the coefficient value of a. As de-
termine the value of a to reproduce experimental LD quantitatively, the 4 f ground state of
SmCu2Si2 are given by:

|Γ7⟩ =
√

0.6| ± 5
2
⟩ ±
√

0.4| ∓ 3
2
⟩. (7.5)

The 4 f electron charge distributions corresponding to this determined ground state are also
shown in Fig. 7.9. In this experimental geometry the rotation symmetry around c axis cannot
be distinguished.
The polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra of SmCu2Si2
and simulated ones assuming two ground states, which have been made the candidates by re-
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Figure 7.9: Polarization-dependent Sm3+ 3d5/2 core-level HAXPES spectra and LD of
SmCu2Si2 with the simulated ones which reproduce experiment in photoelectron detection
direction along [001] direction, together with experimental geometry and Sm3+ 4 f charge
distributions corresponding to the ground state assuming in ionic calculation
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sults in normal emission direction, at two significantly different photoelectron directions far
(∼70◦) from the c axis named Geometry1 and Geometry2 are shown in Fig. 7.10, together
with corresponding 4 f charge distributions. The feature of experimental spectra in Geom-
etry1 have little difference to that in Geometry2. For perfect determination of 4 f ground
state, A comparisons of LDs in Sm3+ 3d5/2 HAXPES spectra of SmCu2Si2 and simulated
ones assuming nominated two ground states in Geometry1 (green lines) and Geometry2
(blue lines) are shown in Fig 7.11. The total structure LD of SmCu2Si2 in Geometry1 exists
in higher binding energy than that in Geometry2. The feature in experimental LDs is con-
sistent with that in simulated LDs assuming Γ1

7 ground state.
So that our finally determined Sm3+ 4 f ground state of SmCu2Si2 is as follows:

|Γ1
7⟩ =

√
0.6| ± 5

2
⟩ −
√

0.4| ∓ 3
2
⟩ (7.6)

Figure 7.10: Polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra of
SmCu2Si2 and simulated ones assuming candidate two ground states (Γ1

7 and Γ2
7) in Geom-

etry1 and Geometry2, together with experimental geometry and corresponding 4 f charge
distributions
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Figure 7.11: Polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra
of SmCu2Si2 and simulated ones assuming candidate two ground states (Γ1

7 and Γ2
7) in Ge-

ometry1 (green lines) and Geometry2 (blue lines), together with experimental geometry and
corresponding 4 f charge distributions 125



7.4.5 Discussion
The three dimensional view and top view of determined Sm3+ 4 f -hole spatial distribution
with crystal structure of SmCu2Si2 are shown in Fig 7.12. The Sm3+ 4 f charge distribu-
tion is elongated Si side and this feature is consistent with the 4 f charge distribution of
YbCu2Si2 [14]. For RT2Si2 (R:rare-earth, T:transition metal), most of 4 f CEF ground-state
charge distributions have reported to be elongated to Si side, so the hybridization between
4 f electrons in rare-earth and conduction electrons in Si makes energetically stable state.
Thought the coefficient value of a is related to hybridization, for discussion of these rela-
tions it is better to know other 4 f charge distributions of SmT2Si2 compounds.
Exactly, the 4 f charge distribution of Sm3+ ion is close to spherical shape due to its 4 f
electrons number. So that the features of 4 f charge distributions are difficult to distinguish.
In our experiments, the experimental polarization-dependent Sm3+ 3d core-level spectra has
little difference between Geometry1 and Geometry2. However, from this measurements, we
have proved that LD-HAXPES can useful to determine 4 f CEF ground state even in case
4 f charge distribution is close to spherical shape.

Figure 7.12: Three dimensional view and top view of determined Sm3+ 4 f -hole spatial
distribution with crystal structure of SmCu2Si2

7.4.6 Linear dichroism in Sm3+ 3d5/2 core-level HAXPES spectra of
SmCu2Si2 at another photoelectron detection directions

The polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra and LDs of
SmCu2Si2 and simulated ones assuming two candidate ground states in other experimental
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geometry (shown in insets of Figure) are shown in Fig 7.13. These results are consistent
with Γ1

7 ground state for SmCu2Si2.

Figure 7.13: Polarization-dependent background-subtracted Sm3+ 3d5/2 HAXPES spectra
of SmCu2Si2 and simulated ones assuming candidated two ground states (Γ1

7 and Γ2
7) in

experimental geometries shown in insets
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7.4.7 Sample quality
The sample and surface qualities were examined on the basis of the absence of any core-
level spectral weight caused by possible impurities including oxygen and carbon as shown
below. There is little peaks from O 1s and C 1s in spectrum of SmCu2Si2 as shown in
Figs. 7.14, and 7.15

Figure 7.14: The photoemission spectrum of SmCu2Si2 around the binding energy of O 1s
peak position

Figure 7.15: The photoemission spectrum of SmCu2Si2 around the binding energy of C 1s
peak position
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Chapter 8

Linear dichroism in 4 f valence-band
photoemission spectra of strongly
correlated rare-earth compounds

Since 4 f photoemission process has the 4 f 12 (two 4 f holes) configuration in the final states,
LD in valence-band 4 f PES spectra have been expected to observe more clearly because of
their multiplets structures with many components. Therefore, we have also performed the
polarization-dependent valence-band 4 f PES at BL27SU in SPring-8 [20].

8.1 Simulated polarization-dependent Yb3+ 4f photoemis-
sion spectra

Simulated polarization-dependent 4 f photoemission spectra of the Yb3+ ions assuming the
pure Jz ground state and the corresponding 4 f hole spatial distributions are shown in Fig. 8.1.
We performed the ionic calculations including the full multiplet theory [18] and the local
CEF splitting for 4 f photoemission spectra by using the XTLS 9.0 program [19] as is the
case with 3d core-level photoemission. All atomic parameters such as the 4 f -4 f Coulomb
and exchange interactions (Slater integrals) and the 4 f spin orbit couplings have been ob-
tained using Cowan’s code [25] based on the Hartree-Fock method. The ratios of the 4 f -4 f
Slater integrals F2, F4 and F6 have been chosen as F4/F2 = 0.726 and F6/F2 = 0.5726 as
in the same manner as in Ref. [100], where F2 is reduced to 80% from the value obtained
using the Cowan ’s code. The spin orbit coupling is reduced to 98%. As shown in Fig. 8.1
LD in Yb3+ 4 f photoemission spectra is clearly predicted for almost pure Jz states. In the
case of Yb3+ ions in tetragonal symmetry, the eightfold degenerate J = 7/2 state splits into
four doublets as:

|Γ1
7⟩ = c| ± 5/2⟩ +

√
1 − c2| ∓ 3/2⟩, (8.1)

|Γ2
7⟩ = −

√
1 − c2| ± 5/2⟩ + c| ∓ 3/2⟩, (8.2)

|Γ1
6⟩ = b| ± 1/2⟩ +

√
1 − b2| ∓ 7/2⟩, (8.3)

|Γ2
6⟩ =

√
1 − b2| ± 1/2⟩ − b| ∓ 7/2⟩, (8.4)

129



Figure 8.1: Simulated polarization-dependent 4 f photoemission spectra of the Yb3+ ions
assuming the pure Jz ground state, together with the corresponding 4 f hole spatial distribu-
tions.

130



where the coefficients 0 ≤ b ≤ 1, 0 ≤ c ≤ 1. Then large LD in 4 f PES is expected to be
observed especially in tetragonal symmetry.

8.2 Experimental linear dichroism in 4 f valence-band PES
of rare-earth compounds

8.2.1 Experimantal conditions
We have performed LD in 4 f valence-band PES at BL27SU of SPring-8 using SPECS
PHOIBOS 150 hemispherical photoelectron spectrometer. The excitation light was con-
trolled by the figure-8 undulator [103]. Single crystals of YbRh2Si2 [104], YbCu2Si2 [101,
105] and SmCu2Si2 [102] were cleaved along the (001) plane, and those of YbIr2Zn20 were
cleaved along (111) plane in situ, where the base pressure was ∼8× 10−8 Pa. The measuring
temperatures were 12 K for the Yb compounds and 20 K for SmCu2Si2 in the paramagnetic
phase [102], at which the contributions of the excited 4 f levels were negligible [14].
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8.2.2 Linear dichroism in 4 f valence-band PES of tetragonal YbRh2Si2
and YbCu2Si2

The polarization-dependent Yb3+ 4 f valence-band PES spectra of tetragonal YbRh2Si2 and
YbCu2Si2 in the two photoelectron directions are shown in Fig. 8.2. The multiple structures
exist in the experimental spectra ranging from a binding energy of 5 to 12 eV. These mul-
tiplet structures are similar to the 4 f PES spectra of ionic multiplet calculation [106] and
other Yb compounds [107]. Our simulated polarization-dependent 4 f PES spectra in the
two emission directions assuming the crystal-field-split ground state determined by LDs in
Yb3+ 3d core-level PES spectra [14] are also shown in the figure, showing clear detectable
LDs. The overall features of LDs in experimental spectra of YbRh2Si2 are qualitatively
consistent with those of simulated spectra in all multiplet 4 f peaks except for those of the
peaks at the binding energy of 6.7 and 7.2 eV with θ = 0◦. On the other hand, whereas the
experimental LDs are qualitatively consistent with the simulated ones for the peaks at 10.8
and 11.2 eV with θ = 0◦ and those at 6.7 and 7.4 eV with θ = 45◦, the signs of LDs for many
4 f multiplet peaks are different between the experiments and simulations for YbCu2Si2. In
addition, LDs in the 4 f PES spectra of both YbRh2Si2 and YbCu2Si2 are much smaller than
simulated ones and not quantitatively reproduced.
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Figure 8.2: Experimental (Exp.) and simulated (Sim.) polarization-dependent Yb3+ 4 f
valence-band photoemission spectra of tetragonal YbRh2Si2 YbCu2Si2, where the Shirley-
type backgrounds have been subtracted from the raw spectra. Corresponding 4f charge
distributions for tetragonal YbRh2Si2 and YbCu2Si2 determined by LDs in the 3d core-
level PES spectra [14] are shown in the inset. Experimental geometry and ThCr2Si2-type
tetragonal crystal structure of YbRh2Si2 and YbCu2Si2 are also shown.
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8.2.3 Linear dichroism in 4 f valence-band PES of cubic YbIr2Zn20

As mentioned in Chapter5, the Yb3+ 4f levels are split into two doublets and a quartet by
CEF as follows:

|Γ6⟩ =
√

5/12| ± 7/2⟩ +
√

7/12| ∓ 1/2⟩, (8.5)

|Γ7⟩ = −
√

3/2| ± 5/2⟩ + 1/2| ∓ 3/2⟩, (8.6)

|Γ8⟩ =
{
−
√

7/12| ± 7/2⟩ +
√

5/12| ∓ 1/2⟩
1/2| ± 5/2⟩ +

√
3/2| ∓ 3/2⟩ .. (8.7)

The polarization-dependent Yb3+ 4 f PES spectra of YbIr2Zn20 and simulated spectra along
the [111] photoelectron direction for the CEF-split ground state in cubic symmetry are
shown in Fig. 8.3. The multiple peaks in the higher binding energy side than 8.5 eV are
overlapped with the strong Zn 3d contributions (not shown here). The simulated 4 f pho-
toemission spectra for the cubic symmetry predict much clear LD even for the Γ8 state, for
which the LD in the 3d5/2 core-level PES spectra is much smaller than those for the Γ6

and Γ7 states as explained by YbB12 in Chapter5 [15]. This would be ascribed to the more
anisotropic 4 f charge distributions in the 4 f -photoemission final states with the 4 f 12 (4 f 2

hole) configurations than that in the Γ8 initial state with the 4 f 1 hole configuration. On the
other hand, the experimental LD in Yb3+ 4 f spectra of cubic YbIr2Zn20 seems to be almost
negligible, being inconsistent with the predictions for every ionic 4 f -initial state in cubic
symmetry.

8.2.4 Linear dichroism in 4 f valence-band PES of tetragonal SmCu2Si2
Fig. 8.4 displays the polarization-dependent valence-band PES spectra of SmCu2Si2. A
prominent spectral weight is seen around 4 eV in both spectra, which is ascribed to the
almost fully occupied Cu 3d bands. The Sm3+ 4 f multiplet structure appears in the bind-
ing energy ranging from 5 to 10 eV, which is similar to that for atomic multiplet calcu-
lation [106] and so far reported ones of other Sm compounds [109, 110]. Clear LD (or
polarization dependence) is seen in the Cu 3d band spectral weight rather than the Sm3+ 4 f
multiplet structure. For instance, the peak at 3.8 eV in the spectrum in the p-pol. is reduced
and seen as a subtle shoulder in that in the s-pol. whereas another peak appears at 4.0 eV
in the Cu 3d band region. On the other hand, in contrast to the Sm3+ 3d5/2 core-level PES
spectra, the LD in the Sm3+ 4 f PES spectra are almost negligible as well as that in Yb3+ 4 f
PES spectra of YbIr2Zn20.
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Figure 8.3: Experimental (Exp.) and simulated (Sim.) polarization-dependent Yb3+ 4 f
valence-band photoemission spectra of cubic YbIr2Zn20, where the Shirley-type back-
grounds have been subtracted from the raw spectra together with 4 f charge distributions
in cubic symmetry. Experimental geometryand CeCr2Al20-type cubic crystal structure of
YbIr2Zn20 [108] are also shown.

135



Figure 8.4: Valence-band photoemission spectra of SmCu2Si2 along the [001] direction.
The Shirley-type backgrounds have been subtracted from all raw spectra. The valence-band
spectra are normalized to the spectral weight in the binding energy from 5.1 to 12.0 eV in
the Sm3+ 4 f region. The assigned 4 f multiplets based on Ref. [106] are also shown.

8.2.5 Discussion
To summarize our results on polarization-dependent valence-band 4 f PES, the observed
LDs are not consistent with the predictions from the ionic model under CEF for the tetrag-
onal and cubic Yb compounds. Furthermore, they are almost negligible for tetragonal
SmCu2Si2 although the clear LD is seen in the Sm3+ 3d core-level PES spectra as men-
tioned in Chapter7. Considering the fact that the polarization dependence is clearly ob-
served in the Cu 3d valence-band region, we conclude that the suppressions of LDs in the
Sm3+ and Yb3+ 4 f spectral weight are not caused by extrinsic effects such as relatively high
surface sensitivity at the soft x-ray excitation compared with the hard x-ray excitation. On
the other hand, it has been well known that the linear polarization dependence of so-called
ARPES (k-resolved angle-resolved photoemission) spectra reflects the symmetry of the oc-
cupied valence bands in a reciprocal space [111, 112] due to the inter-site hybridizations.
Although the observed Sm3+ and Yb3+ 4 f spectral line shapes have so far been qualitatively
explained by the atomic-like multiplets, the LDs in the 4 f spectra reflecting the informa-
tion of the anisotropic 4 f distributions in a real space would be more or less smeared out
by the inter-site effects. In the 3d core-level PES final states, on the other hand, the outer
trivalent rare-earth 4 f states are spatially localized by the core-hole interactions U f c > U
giving a highly reduced inter-site mixing, and further by the effective“ shrink”of the 4 f
orbitals also due to the core-hole interactions leading to the so-called configuration depen-
dence [113]. Therefore, the polarization-dependent core-level PES would be suitable for
probing the anisotropic localized 4 f charge distributions owing to the presence of U f c in the
core-level excitations rather than the direct 4 f PES.
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Chapter 9

Conclusion

In the preceding chapters, we have discussed the 4 f -orbital symmetry of the strongly cor-
related rare-earth compounds based on the linear dichroism in core-level and valence-band
photoemission, which has shown the power of linear dichroism in angle-resolved core-level
photoemission spectroscopy for probing the orbital symmetry.
Firstly, we have successfully determined the 4 f symmetry of the Yb3+ sites in the CEF-split
ground state for cubic YbB12 as the Γ8 symmetry by LD in the Yb3+ 3d5/2 core-level HAX-
PES at BL19LXU in SPring-8 in two different photoelectron directions. Our result also
suggests that the Yb3+ ion model under the effective CEF, in which the hybridization effects
are implicitly taken into account, is suitable even for the valence-fluctuating system at low
temperatures well below the Kondo temperature. The applicability of LD in the core-level
HAXPES even to the system in the cubic symmetry (not restricted to systems with lower
symmetry) demonstrated here would be promising for revealing the strongly correlated or-
bital symmetry of the ground state in a partially filled subshell, the charge distribution of
which deviates from the spherical symmetry.
Secondly, we have observed LDs which indicate Ce3+ 4 f ground-state symmetry, Γ7 for
CeAl2 and Γ8 for CeB6 in Ce core-level HAXPES spectra. Effective linear dichroism in the
4d core-level photoemission with little contributions from 4 f 2 final-state configurations is
also found to be useful for the determination of ground-state symmetry of localized cubic
Ce system.
Thirdly, we perfectly determine the Sm3+ 4 f ground-state symmetry including the rotation
around c-axis of tetragonal SmCu2Si2 as |Γ1

7⟩ =
√

0.6| ± 5/2⟩ −
√

0.4| ∓ 3/2⟩, of which the
4 f charge distribution is closer to spherical shape than the previously revealed ones for the
Ce and Yb systems.
For LD in 4 f valence-band PES measurement, though the LDs in 4 f photoemission spectra
have also been expected to observe by the theoretical calculations for localized ions, the
observed LDs in the 4 f spectral weights in the valence bands are reduced or suppressed
compared with the predicted ones. These phenomena indicate the polarization-dependent
core-level PES would be suitable for probing the anisotropic localized 4 f charge distribu-
tions owing to the presence of Coulomb interactions between 4 f electrons and d core holes
in the core-level excitations rather than the direct 4 f PES.
LD in rare-earth core-level photoemission study should be applicable for all rare-earth com-
pounds and use for determination of 4 f excited states, not only ground state. So that, we
should perform experiment for temperature dependence of LD in the future. Indeed, we
should try to verify the applicability of LD in core-level photoemission for the Sm com-
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pounds with mixed valence system next time.
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