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Abstract
We study the action of the dihedral group on the (equivariant) cohomology of the toric mani-
folds associated with cycle graphs.

1. Introduction

A graph G is an ordered pair (V, E), where V is a set of vertices and E is a set of unordered
pairs of nodes, called edges. A path graph P, is a graph whose vertex set is [n + 1] :=
{1,...,n,n+1}and edge setis {{i,i+ 1} | i = 1,...,n}. A cycle graph is a graph that consists
of a single cycle through all vertices, in other words, the cycle graph C,,;; is obtained from
the path graph P,,; by adding the edge {1,n + 1}.

A graph associahedron PG is a simple convex polytope whose facets correspond to the
connected proper subgraphs of G. The notion of a graph associahedron was introduced by
Carr and Devadoss ([1]) motivated by the associahedron. The associahedron As” is the n-
dimensional simple convex polytope in which each vertex corresponds to a way of correctly
inserting opening and closing parentheses in a word of n+ 2 letters and the edges correspond
to single application of the associativity rule, and it can be also constructed as the graph
associahedron corresponding to the path graph P,.;. Moreover, the permutohedron Pe”, the
cyclohedron Cy", and the stellohedron S¢* are the graph associahedra corresponding to the
complete graph K., the cycle graph C,,., and the star graph K, ,, respectively. They have
been studied in different contexts in mathematics such as algebraic combinatorics ([11, 2]),
discrete geometry ([9]) and so on.

An n-dimensional simple convex polytope is called a Delzant polytope if the (outward)
primitive normal vectors to the facets meeting at each vertex form an integral basis of Z".
Every graph associahedron can be realized as a Delzant polytope in a canonical way; we
will give the canonical construction in Section 2, also see [3] for details. Hence, by the
fundamental theorem of toric geometry, there is a toric manifold associated with a graph.
We denoted by Mg the toric manifold associated with the graph G.

The actions of a finite group on toric manifolds have been also studied by many people,
especially for the symmetric group. Garsia and Stanton studied the action of the symmetric
group on Stanley-Reisner rings, see [5]. Note that the Stanley-Reisner ring of a Delzant
polytope is isomorphic to the equivariant cohomology ring of the toric manifold over the
Delzant polytope. Procesi studied the action of the Weyl group on the (equivariant) coho-
mology of the toric manifold associated with Weyl chambers, see [8]. Note that the Weyl
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group of Type A is the symmetric group.

On the other hand, the automorphism group of the complete graph K,,.; is the symmetric
group S, and the toric manifold Mk, is the toric manifold associated with Weyl cham-
bers. In general, the automorphism group Aut(G) of a given graph G is a subgroup of the
symmetric group on V = [n + 1] and hence one can also study the action of Aut(G) on the
toric manifold Ms. Note that the dihedral group D, is the automorphism group of the
cycle graph Cp4 ;.

The purpose of this paper is to deduce an explicit formula for the representation of the
dihedral group on the equivariant cohomology of the toric manifold M, . It should be noted
that, for a toric manifold M, the equivariant cohomology ring H;.(M) := H*(ET X7 M) is
isomorphic to H*(M) ® H*(BT) as an H*(BT)-module. Hence the explicit formula for the
representation on Hy.(Mc,,,) gives the explicit formula for the representation on the ordinary
cohomology H*(Mc,.,).

This paper is organized as follows: in Section 2, we review the definitions and properties
of graph associahedra. Section 3 deals with the dihedral group action on a cyclohedron. In
Section 3, we study the subring of H}.(Mc,,,; C) determined by the facial submanifold M,
which is stable under the isotropy group of a face F of Cy". In Section 5, we deduce an
explicit formula for the representation of the dihedral group on the equivariant cohomology
of Mc,,,. Section 6 introduces a relationship between the faces of Cy" and annular non-
crossing matchings.

2. Graph associahedra

In this section, we review the construction and properties of the graph associahedron PG,
the simple polytope associated with a graph G.

Let G be a connected graph on the vertex set [n + 1]. For a subset / C [n + 1], we denote
by GII] the subgraph of G whose vertex set is I and whose edge set consists of all of the
edges of G that have both endpoints in /.

Let us review the construction of the graph associahedron PG. Let A" be a standard
simplex whose facets are (outward) normal to the negative of the standard basis vectors
—ey,...,—e, and the vector ), | e;. Then we denote by F; the facet of A” that is normal to
the vector —e; for 1 < i < n and F,,; the facet normal to the vector }_, ;. Then there is a
one-to-one correspondence between the nonempty proper subsets of [1n+1] and the nonempty
proper faces of A". Then the graph associahedron PG is obtained from A" by truncating the
faces corresponding to the connected proper induced subgraphs G[/] in increasing order
of dimension. We denote by F; the facet of PG corresponding to the connected induced
subgraph G[I]. The graph associahedron PG is a simple polytope of dimension n and it can
be realized as a Delzant polytope, where the normal vector of the facet F; is equal to the
vector

— Y€ ifn+1¢l1, or
nglej ifn+tlel

Hence there is a complex n-dimensional toric manifold associated with a connected graph
G on [n + 1], and we will denote by M the toric manifold associated with G.
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Fig.1. Construction of Cy?

ExampLE 2.1. Consider the cycle graph C4, see Figure 1, the first. Then the connected
proper subgraphs of Cy4 are

1,2,3,4,12,23,34,14,123, 124, 134,234.!

We first truncate the vertices corresponding to the subgraphs 123, 124, 134, and 234 from
A3, see Figure 1, the third. Now we truncate the edges corresponding to the subgraphs 12,
23, 34, and 14, so that we can obtain the cyclonhedron Cy® in Figure 1, the last.

Note that two facets F; and F; of PG intersect if and only if / € J, J C I, or the induced
subgraph G[I U J] is disconnected. Hence a subset N c 2I"*11\ [n + 1] corresponds to a face
of PG if and only if it satisfies the following three conditions.

(N1) If I € N, then G[I] is connected.

(N2) If I,JeN,thenI C J,JCl,orINJ =0.

(N3) For any collection of k > 2 disjoint subsets Ji, ..., J; € N, their union J; U --- U J;,
does not induce a connected subgraph.

A subset N ¢ 2"\ [n + 1] is called a nested set of G if it satisfies (N1)~(N3). Let N'(G)
be the set of nested sets of G, and let N(G) = {N € N'(G) | IN| = k} for 0 < k < n. Then the
face poset F(PG) is isomorphic to the poset N (G) ordered by reverse inclusion, and there
is a one-to-one correspondence between N} (G) and the set of codimension-k faces of PG.
When G is a special kind of graphs such as complete graphs, cycle graphs, path graphs, and
star graphs, the face numbers of PG are well-studied. Among them, we only introduce the
case when G is a cycle graph.

Proposition 2.2. [10] For k = 1,...,n, the number of codimension-k faces of the n-
dimensional cyclohedron Cy" is equal to

k
flCy") = (’,Z)(”Z )

Consider the polynomial ring k[x; | I € N|(G)], where x;’s are of degree 2 and k is a
commutative ring with unity. Then the equivariant cohomology ring of the toric manifold
Mg, H7.(Mg;K) := H*(ET Xt Mg;K), is isomorphic to the quotient of K[x; | I € N1(G)] by
the Stanley-Reisner ideal of PG, the ideal generated by square-free monomials xy, - - - x;, for
{I,.... It} ¢ Ni(G). It is shown in [7] that every graph associahedron is ﬂagz, and hence
the Stanley-Reisner ideal of PG is generated by the monomials x;x; for {I,I'} ¢ N>(G).
Hence the equivariant cohomology ring of Mg is

IIf there is no confusion, we omit the curly braces or commas to save the space.
ZA simple polytope is called flag if any set of pairwise intersecting facets has nonempty intersection.
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2.1 Hp(Mg:k) = Klx; | T € Ny(G)] [{xpxp [{LLT') & N2(G))

where {I,I’} ¢ N>(G) if and only if G[1 U I’] is connected, I ¢ I’, and I’ ¢ I. Furthermore,
for each face Fy € F(PG), the monomial [],cy Xx; is a nonzero element of H;(Mg) of
degree 2i for i = 1,...,n, and for each nonzero monomial x?l‘ x?: of H;(Mg), the set
{I,..., It} belongs to N'(G). The ordinary cohomology ring of M is also described from
the information of the graph:

H*(Mg: k) :H;(MG;k)/<— Z X+ Z X Iisi3n>,
{i: iel, {i:igl

n+lgl} n+lel}

see [3] for details.

3. Dihedral group action on the cyclohedron Cy"

In this section, we introduce the terminologies and notations which we will use, review
the properties of dihedral groups as the automorphism groups of cyclic graphs, and then we
study the action of the dihedral group on the poset F(Cy") = N'(Cp1).

An automorphism of a graph G = (V, E) is a permutation o on V such that {u, v} € E if
and only if {o(u),o(v)} € E. The automorphisms of G form a group, and we will denote it
by Aut(G).

The automorphism group Aut(C,,) is generated by a rotation and a reflection. For each
positive integer k, the rotation o7 is the permutation on [n + 1] given by

o n+1]l > [n+1],i—i+k (modn+1),

such that o = (o) and the order of o is (n + 1)/ gcd(k,n + 1), where ged(k, n + 1) is the
greatest common divisor of k and n + 1. The reflection 7 is the permutation on [n + 1] given
by

T:[n+1]—>[n+1],i— —i (modn+1),

such 72 = e and o4t = 0',:1. Then for each positive integer k, o and ot form the

automorphism group of the cycle graph C,, |, which is the dihedral group
Dy ={o, oxt |1 <k <n+1}.

Note that the face poset of Cy" is isomorphic to the poset N'(C,1) ordered by reverse
inclusion. Hence to study the action of D,,; on Cy", it is enough to see the action of D,
on N(Cn+l)

There is a natural action of D,;; on N (C,;1) coming from the action of D, on C,,;
for each ¢ S Dn+1, if I = {i], ey ik} S Nl(cn+1), then ¢ -1 = {¢(l1), Ce ,¢(lk)} S N](C,H.]),
and hence if N = {I1,...,I;} € Ni(Cpi1),thendp - N ={¢-I1,...,¢ - It} € Ni(Cpy1).

For each N € N'(C,1), we denote by (D,11)y = {¢ € D,y1 | ¢ - N = N}, the isotropy
group of N. If N = 0, then (D,,+1)y = D,+1, and otherwise, (D,,+1)y is a proper subgroup of
D,.1. Note that the dihedral group D,,,; has two kinds of subgroups

(1) (o) for a divisor k of n + 1, and
(2) (o, 0,71)foradivisorkofn+1and 0 < r < k.

Then the subgroup (o) is isomorphic to the cyclic group C; of order d = (n+1)/ged(k, n+1),
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and the subgroup (o, o,7) is isomorphic to the dihedral group D,.
For a nested set N = {I;,...,I;}, we set C,1[N] := Cpy1[l; U --- U I], the induced
subgraph of C,,.; by the union /; U- - - U ;. Note that for ¢ € (D,,11)n, Cpr1ld-N] = Cpi1[N].

Lemma 3.1. For each N € Ni(Cy1), (Dys1)n is isomorphic to Cyq or Dy for some com-
mon divisor d of |N| and k(C,+1[N]), where k(C,+1[N)) is the number of the components of
the graph C,1[N].

Proof. Note that (D,,41)y = D, ifand only ift N = 0. If «(C,,+1[N]) = 1, then a nontrivial
element ¢ fixing N must be a reflection. Hence (D, 1)y is {e) or D;.
Now assume that x(C,,+1[N]) = € and (D,)n is not a subgroup of D;. Then N can be

divided into the nested sets Ny, ..., N, such that |N;| = --- = [N, and (o,)""' - N; = N; for
i=1,...,d. Thenx = % and each of Ny, ..., N, can be identified with each other. Hence d

should be a common divisor of k and £. We take d as big as possible. Then C, is a subgroup
of (D,;1)n. If there is no reflection 7’ in D,,,| such that 7/- N = N, then (D,,41)y is the cyclic
group (o) = Cy.

If the isotropy group (D,+1)n has also a reflection 7 € D,,, then there exists an integer
i€[d]suchthatv"-N; = N;or v’ -N; = N;y1. If - N; = N;,1, then there exists a reflection 7"’
such that 77 - N; = N;. In fact, 77 = (o) "'7’. Hence (D, )y is isomorphic to (o, 7’) = Dj.
Furthermore, (D,4;)y, = D foreach 1 <i <d. O

ExampLE 3.2. Consider the action of Dg on N'(Cs), and the nested sets {12,45}, {1, 4},
and {1, 12, 4,45}, see Figure 2. Then {12,45} decomposes into two nested sets {12} and {45}
such that o3 - {12} = {45} and 7 - {12} = {45}. The nested set {1, 4} also decomposes into
two nested sets {1} and {4} such that o3 - {1} = {4} and (057) - {1} = {4}. Hence the nested
sets {12,45} and {1, 4} have the isotropy groups (o3, T) and (o3, 0,7T), respectively. Both
(03, Ty and (03, 0»T) are isomorphic to D;. On the other hand, there is no reflection in Dy
preserving {1, 12,4,45}, but {1, 12, 4, 45} decomposes into two nested sets {1, 12} and {4, 45}
satisfying o3 - {1, 12} = {4,45}. Hence the nested set {1, 12,4,45} has the isotropy group
<0'3> = C2.

2T

Fig.2. Isotropy groups of nested sets

Given a cycle graph C,,.1, we define
@pi1(d, k) = {N € Ni(Cyi1) | (Dys1)n = Cg)l, and
Brr1(d, k) = {N € Ni(Cps1) | (Dys1)n = Dy}l
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We can easily compute a,,+1(d, k) and 5,.1(d, k) in some special cases.

Lemma 3.3. We have the following.
(1) app1(d, k) =Boi(d, k) =0ifdtk,dtn+1,ord+k>n+1;
(2) ap1(1,1) = 0and By (1, 1) = n(n + 1);
3) an+1(%, mly = 0 andﬁ,ﬁl(%, 21y = 2 when n + 1 is even.

Proof. If (D,1)y is isomorphic to C; or Dy, then it is clear that d | kand d | n + 1.
Furthermore, since k < n+ 1,i1fd | kand d | n + 1, then we have d + kK < n + 1. This
proves (1). If N = {I} is a singleton, then (D,,+1)y = Dy, hence this proves (2). Whenn+1 is

n+l

even, the proper maximal divisor of  + 1 is “= and there are only two nested sets satisfying

o -N=N;{1,3,...,n}and {2,4,...,n + 1}. This proves (3). O

Note that s (@+1(d, k) + Br41(d, k)) is equal to the number of nested sets of cardinal-
ity k, where the summation is taken over all divisors of k, hence we have

3.1 D @ (d ) + B (d ) = (’;)(“ . ")
d: dlk

from Proposition 2.2.

Note that each cycle graph C, can be presented as ¢ dots equally spaced on a circle;
there is a one-to-one correspondence between the vertices i € [£] = V(C,) and the dots
Ui = (cos M{“, sin #) e S'.If ¢ is a divisor of n + 1, say pl = n + 1, then there is a
p-to-1 covering ¢: C,y; — C; via the correspondence:

p:1
{On+1,is Un 16405 - - o> Unt 1, (p=Dyewi} < {ve,i}
Hence if N € Ni(Cy), then ¢~ ' (N) € Np(Cps1) and (Dyi1)y1( is determined by (Dy)y.
If (De)y = Cy, then (Dypy1)g1vy = Cpas if (De)n = Dy, then (Dyy1)g-1(vy = Dpg. One can
easily see that the converse also holds.

Proposition 3.4. Let € be a divisor of n+1, say pf = n+1. A nested set N € N'(C,1) has
the isotropy group D, (respectively, Cpq) if and only if there exists a nested set Ny € N (C)
such that N = ¢~'(Ny) and (D¢)n, = Dy (respectively, (De¢)n, = Cq4), where ¢ is the p-to-1
covering Cp1 — Cy.

As we saw in Example 3.2, the nested sets {12, 45} and {1, 12, 4,45} in N'(C¢) have the
isotropy groups D; and C,, respectively. In fact, {12,45} and {1, 12, 4, 45} are induced from
the nested sets {12} and {1, 12} in N (C3) whose isotropy groups are D; and {e), respectively.

The proposition above tells us the following.

Corollary 3.5. Given a positive integer n + 1, if d is a common divisor of n + 1 and k,
then

it (A1) = s (1, S) and Bri1(d.K) = Buss (1, S)
Otherwise, ay,41(d, k) = Bn+1(d, k) = 0.

By using the Mobius inversion formula, we can compute y,,(d,k) = a,+1(d, k) +
Bn+1(d, k) from Proposition 2.2. We review the Mobius function and inversion formula
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briefly. A Mobius function for a poset P is a map pu: P X P — Z inductively defined
by the relation

1 forx =y,
MG Y) ==X, veey M(x,7)  forx <y,
0 otherwise.

For a finite poset P with Mobius function y, if f and g are the real valued function on P,
then the Md&bius inversion formula says that the following are equivalent:

f(x) = Z g(y), forall x € P

y<x
g(x) = Z,u(y, x)f(y) for all x € P.
Yy<x

Lemma 3.6. The number of nested sets N € Ni(Cp1) such that (C,.1)y is isomorphic to
CsorDyis

Y |
Yl k)= Y u(i)( “ )( i )
ilged(L &) id id
where 1 is the classical Mobius function® in number theory.
Proof. Consider the poset P = {(p,q) € ZX Z | p > g > 0} ordered by
(p,q) < (p',q) & there exists d € Z such that p’ = dp and ¢’ = dg.
That is, (p,q) < (p’,q’) if and only if (p,q) = %, %) for some d | ged(p’,q’). Define

the integer valued functions f and g on P by f(r,s) = y,(1,s) and g(p,q) = (p ;1)(1’ +Z_]),
respectively. Then we can rewrite (3.1) as

_[n\(n+k\ B K\ n+l k
g(n+1,k)—(k)( . )—Z%m(d,k)— > (LE)= X (),
dlk d|ged(n+1,k) d|ged(n+1,k)

where the third identity comes from the fact y,.(d, k) = O for d t n + 1. From the Mobius
inversion formula, we get

_ n+1 k n+1 k
3.2) fa+l= > 9(7’3)”((7’3)’("””‘))’
d|ged(n+1,k)
where p is the Mobius function of the poset 7. Note that the closed interval [(% 5), (n+

1,k))] of P is isomorphic to the poset Q = {i: i | d} with i <g i’ & i | i’ via the correspon-
dence i(%, f—i) € P & i€ Q. Hence u((%, %), (n + 1,k)) is equal to u(Q) = u(d). Hence
from (3.2) we get the following:

AR e B SR L O

ilged(*5H. )

3The classical Mobius function is defined on the set of positive integers by p(n) = (=1)* if n is the product of
k distinct primes and p(n) = 0 if n is divisible by a square.
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This proves the proposition. m|

Hence if we know one of a,(d, k) and 8,+1(d, k), then the other follows from y,.,(d, k).
We will discuss the computation of §8,+1(d, k) in Section 6.

4. Hilbert series of the subrings of H}.(Mc,,,; C) determined by nested sets

n+l ;
In this section, we study the action of the dihedral group D, on H;.(Mc¢
nested set N € N'(C,1), we first describe the subring of Hi(Mc

and then compute its Hilbert series.
Note that from (4) in Section 2, the equivariant cohomology of M¢, , is

.. C). For each
C) determined by N,

n+l?

H;(Mg;K) = Klxy | 1 € Ni(CorD)] [Cxpxp [{L I} & N2(Cii1))

where N (C,.1) consists of the subsets I ¢ [n + 1] such that 7 or [n + 1] \ I consists
of consecutive numbers, and {I,I'} ¢ N>(C,.1) if and only if C,;1[/ U I’] is connected,
I ¢ I' and I’ ¢ I. Furthermore, for any nonzero monomial x7' - - - x7* in H}(Mc,,,), the set
{I1, ..., I} belongs to N (C,1). For simplicity, we set

Xn = Xp ot Xp, fOI‘N:{I],...,Ik}EN(Cn+1)\®,
N 1 for N = 0.

Hence xy is of degree 2 if and only if N is a singleton. Then there is a natural action of D,

on H;.(Mc,,,; C); for every ¢ € D, and a nested set N € N'(Cp.1),
¢ . (1—[ )CI) = l—[ Xg-I-
IeN IeN
Then H7.(Mc,,,; C) is isomorphic to
(4.1) D cwirenmy= O D b

NeN (Cpir) NEN(Cpir) ac(Zopyy "

where a = (a; | I € N) € (Zs)". For simplicity, set Xy = [lren x;”. Then the action of
Dyy1 on Hy.(Mc,,,; C) is defined by

n+];

a _ a h . ap ary f D
¢-Xy =X,y thatis, ¢-| | X, = Xy, forevery ¢ € Dyyy.
IeN IeN

Hence Clx; | I € N]xy is (D, )y-stable.
Let N be a nested set in N'(C,1) whose isotropy group (D,,+1)y is isomorphic to D, or

C4. Without loss of generality, it is enough to consider the cases
(O ue1) if (D11 = Co,

Dy =9, < "
(w1, 7)) if (Dpi1)y = Da.

For simplicity, we write oy := Ol Then d | |[N| and we can decompose N into the nested
sets Ny, ..., Ny such that (o)~ '-N; = N;. Hence when (D,+)y = C,, we label the elements
of each N; as follows:

N,-={A,-,J-|lsj3a}
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such that (o) Ay j = Aij. Note that if (D,+1)y = Dy, then (D,11)y, = D; and hence
there is a reflection 7 € (D,,,1)y such that 7’ - N; = Ny, and some of the elements in N are
fixed by the reflection 7’. Let a be the number of elements in N, such that 7/ - I = I. Then
|N| — a is even, say 2b. Then we label the elements of each N; as

4.2) Ni={Aijl1<j<a}U{Bjx|1<k<2b}

such that (oy)™~! “Ayj= A, (Ca e Bix = Bix,and 7' - By = Bj2p+1-¢ for each i € [d],
j € lal, and k € [2b].

For simplicity, for each x§, € H7.(Mc,
nent of XA, (respectively, xp, ;). That is,

a _ aij bij
Xy | |xAl_.j | | X |-

1<i<d 1<i<d
1<j<a 1<j<2b

n+l?

C) we denote by a; ; (respectively, b; ;) the expo-

Note that the exponents a; ; and b; ; are positive integers. Then we can compute the isotropy
group (Dy1)xe for each x4, € H}.(Mc,,,; C) as follows.

n+l?

Lemma 4.1. For the action of D, on Hy.(Mc,,,;C), the isotropy group (Dys1)x, is a
subgroup of the isotropy group (D, 1)y with respect to the action of D,,1 on N (Cp11).

Proof. Note that if ¢ ¢ (D,1)n, then ¢ - N # N. Hence ¢ - X3, = XZ_N # X4,

a

For a divisor £ of d, if a;j = ay j fori = 1" (mod ¢), then (on)t - Xy

reflection 7 € (D,,41)n satisfying the condition

— a 1
= xy. If there is a

(4.3) a; = ap.gforany I € N,

/w3 — A
then T Xy = Xy

Let ¢ be the smallest divisor of d satisfying

(4.4) aij=apjand by = by fori=i (mod %)
foreach1 < j<aand 1 <k <2b. Then fori=1,...,¢, we may set
— 1)d id
Li::{Ap,j,B,,,k -1 +ISPS%,1SjSa, andlskSZb}.

Then (oy)7%D - L, = L; for 1 <i < ¢. For the monomial x4 satisfying (4.4), there exists
a reflection satisfying the condition (4.3) if and only if there exists a reflection 7"/ such that

i = x’il. Therefore, (Dy+1)xe, = Dy if and only if the exponent a satisfies (4.4) and

77 x2

Ly
L, d ,
4.5) aij = ap andbl-,k=b,-/,k fori+i = Z-l—l,k-l—k =2b+1

for 1 < i,i" < ‘—é. If a satisfies (4.4) but not (4.5), then (D,/H.l)x?v = C;. This proves that
(D, 1)x‘;‘v is a subgroup of (D,+1)y in any case. O

ExampLE 4.2. Let us consider the cycle graph C»4 and a nested set
N={il,{j—-1,5,j+1}ie{l,3,..,23} and j € {2,6, 10, 14, 18,22}}.

Then (Dy4)y = {04, T) = Dg, see Figure 3-(a). We set
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(c) o8- X% =7 X% = X%

Fig.3. Isotropy groups of N and x3’s

Ny: A =1{1,2,3}, By ={1}, Bix=1{3}
Ny Az1 =1{5,6,7}, By =1{5}, By ={7}
N3 : Az =1{9,10,11}, B33 =1{9}, B;,={11}
Ny : Aqy =1{13,14,15}, Ba; ={13}, Bs, = {15}
N5 . A5’1 = {17, 18, 19}, BS,I = {17}, Bs’z = {19}
Ne : Ae1 =1{21,22,23}, By = {21}, Bep = {23}
(1) Ifay; =---=agrand byy = -+ =bgy = by =+ = bep, then (Dag)xa = (Doa)y =

Dg.

(2) Assumethatay; = a3 = as1,ax1 = as1 = ae1, b1,1 = b31 = bs1,b12 = b3 = bso,
byy =byy =bei1,and by = bay = b3o. If b1y # by, b1o # bap, 0ray; # ayy, then
Ly = N{UN,, L, = N3 U Ny, Ly = N5 U Ng, and (Dn+1)le = (e). Hence (D24)X?\, is
(o) = C3, see Figure 3-(b).

(3) Assume that ap ) = a1 = 4z = a4, = 4s;) = dg and b1,1 = b2,2 = b3’1 = b4,2 =
b5,1 = b6,2 and b1,2 = b2,1 = b3,2 = b4,1 = bs’z. If b1’1 * b1,2’ then L; = Ny U N,
L, = N3 UN,, Ly = N5 U Ng, and (Dn+1)x21 = D;. Hence (D24)x; is {05, T) = Ds,
see Figure 3-(c).

(4) Assume that a1 = ae1, a21 = a4, az1 = asy by = bep, bra = bey, bay = bsa,
bz’z = bS,l, b3,1 = b4,2, and b3,2 = b4,1. If ay # axy, a1 # asg, bl’j * bg,j, or
by,j # b3 j, then L; = N and (Daa)xs, is (1) = D, see Figure 3-(d).

Let us consider the representation of (D,.1)y on Clx; | I € N]xy. If (D,41)y is trivial,
N|
then (Dps+1)x2, is also trivial, and the Hilbert series of C[x; | I € N]xy is (ﬁ)l l. If (D, )N =



Toric MANIFOLDS OVER CYCLOHEDRA 247
(T) = D, then (Dn+1)x§, is trivial or D;. Hence
Clxy | 1€ Nixy = Indp) Cx} | Dy = D1) @ Ind) Tk} | (D, = (e)).

Let |[N| = a + 2b, where a is the number of elements / € N such that 7 -/ = I. Then the
Hilbert series of C(x%, | (Dn+1)x=;v = D) and C(x}, | (Dn+1)xg, = (e) ) are

(ﬁ)(l iz,z)b and %{(ﬁ)% i (1;4)(1 t_ztz)b}’

respectively. In general, if (D,;1)y = H < D,+1, then

Clx | 1€ Nixy = () Indjj,C(x} | (H)yg, = H).

H'<H
That is, if (D,,1)y = Cy, then we have
Clx; |1 € Nlxy = (D) IndEC(x} | (Cadg, = Co;
tld
if (D,4+1)y = Dy, then we have
Clx; | 1€ Nixy = () (IndDC(xy | (Da)s, = D) @ Indp C4x, | (D), = Cr)).
tld

Lemma 4.3. When H := (D,1)y is isomorphic to Cg, the Hilbert series of C(x, | (H )X7v =
Cg) is

I
b tmf mt
E%M(m)(l—tm") :

where p is the classical Mobius function of number theory.

Proof. Note that (H)xa = Cy if and only if a; ; = a; j for 1 < i,i" < d. Hence the Hilbert

NI/d
series of C(x}, | (H)x, = Cy) is (1t-_dzd)| '

For two divisors ¢ and ¢’ of d, if £ | {’, then a;; = a; j for i = i’ (mod %) implies that
a;j = ay ;fori =i (mod ‘—;). Hence we need to use the inclusion-exclusion principle to find
the Hilbert series of C(x, | (Cd)x;', = Cy).

Note that two divisors ¢ and ¢’ of d satisfy ¢ | ¢’ if and only if there is an integer m | %
such that m¢ = ¢’. Hence the inclusion-exclusion principle says that the Hilbert series of
Cxy | (Da)xa, = Co) is

IN|
tmf

£ ml
PWCICETE

d

O

For example, for the nested set N = {1,12,4,45} in Example 3.2, (Dg)y = C, and the
Hilbert series of C(x, | (Co)xa, = (e))1is

%{(1t_z)4_(1t_2;2)2}'
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Lemma 4.4. When H := (D,,11)y is isomorphic to D, for d < n+ 1, the Hilbert series of
(Y | (), = Dy is

ad bd
£ tmt’ mé t2m€ ml
Ezﬂ(m)(l_tmf) (]_ﬂm[) ’

m\%
and the Hilbert series of C(x% | (H Ix, = Cyp) is

V4 tm(’ % tmf ,% t2m€ %
z_d; (l_tmf) _(1_tm€) (1_t2m€) :
mie

Proof. First, (H)x2 = Dy ifand only if a; ; = ay jand b; j = by j = bjsps1-j = bir pps1-j for

1 < i, < d. Hence the Hilbert series of C(x}, | (H)Xa;, =D,y is (li—dﬂ,)a (%)b . From (4.1),
(H)X?v = C, for some ¢ | d if and only if the exponents a;;’s and b;;’s satisfy (4.4) and
(4.5). Note that if two divisors £ and ¢’ of d satisfy ¢ | £’ and the exponents a; ;’s and b;;’s
satisfy (4.4) and (4.5) with respect to ¢, then the exponents a; ;’s and b;;’s satisfy (4.4) and
(4.5) with respect to £. Hence, from the inclusion-exclusion principle, the Hilbert series of

Cxy | (H)xa, = Dy) is

ad bd
£ tmf ml t2m€ ml
Ezﬂ(m)(l_tmé’) (1_t2m€) :

m\%

Secondly, the Hilbert series of C(x%, | (H)ya, = Cy)is

1 [d a+2b td a tzd b
2 (1—td) _(1—td) (1—t2d)

from the inclusion-exclusion principle. Consequently, the Hilbert series of C(x}, | (H)x,

Cd> is
b tmt’ % tm[ % t2mt’ %
ﬁz; (1_tm€) _(1_tm€) (1_t2m5) :

mlg

13

Applying Lemmas 4.3 and 4.4 to (4.1), we can conclude the following.

Proposition 4.5. For a nested set N € N'(Cp1), if (Dys1)y = Ca, then the Hilbert series
of Clx; | I € N]xy is
IN|

L ¢, tmt’ mt
> g(lndcfl)zluw) —| -
m|g

tld

if (Dps1)n = Dy, then the Hilbert series of Clx; | I € N]xy is
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I ; d1 gt \wi [ Q2mt o \ni
I ) tmf 1 - t2m€

(a+2b)d ad bd
l (I dDdl) tmt’ me B tm[ mé t2m€ mé
2 n 1 =t 1 —¢mt 1 — 2mt :

5. Dihedral group representations on H;.(Mc,,,; C)

Z Zu(m)

ad = e

In this section, we deduce explicit formulas for the dihedral group representation on
H;(MC)H-I )'
Note that from Lemmas 3.1 and 4.1, we have

HyMc,:0= @ @ .

NEN(Cpir) acZog) "

5.1
- EB @ Ind2'Clx; | I € NIxy,

H<D,,+] NC[xlIeN]xy
(Dpy1)n=H

and we know the representation of (D,,1)y on the subring C[x; | I € N]xy. Now we are
ready to deduce the representation of D, on H(Mc,, ).
Recall that we define the numbers

@ne1(d k) = [IN € Ni(Cpit) | (Dus)y = Cal|,
Bus1(d, k) := [{N € Ni(Cyi1) | (Dys1)y = Dy, and
Yur1(d, k) := @1 (d, k) + a1 (d, K.

By using the definition of the sets A; ; and B; ; defined in (4.2), we also define
Burs1(d, k,a) := |{(N € Ni(Cpst) | (Dyat)y = Dy, |Aijl = a, and |B | = k — a}|.

Theorem S.1. The representation of D1 on Hy.(Mc,,,;C) is
k
nt
Dn+
I+ Z D Ywa(d, ) ) (ind? 11)— D Hlm )( tmt,)
k=1 din+1 {ld I’I‘lll
dlk
ad bd
D "y ml l.2m€ ml
+ Z >, Zﬁn+1(d k.a) ) (Indpy 1) Zu( |+ (1 - fsz) ,
k=1 drel a=1 0d

where u is the classical Mobius function in number theory.

Proof. We can rewrite (5.1) as follows.

HyMc,.;0=| @ P P IndpCy | (Hys = H|.

H<D,,; NeN(Cpy ) H'<H
(Dpy)N=H

Note that if N = 0, then xy = 1, (D,x1)y = D,41, and C[x; | I € N]xy = C. Since
IndZ”+l (IndZ, 1) = IndZ, 1, the theorem follows from the above by applying Proposition 4.5.
O
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Considering the actions of the cyclic group C,;; on N'(C,1) and Hy(Mc
the following representation.

;C), we get

n+l?

n+l ’ C) is

Corollary 5.2. The representation of C,.1 on H;.(Mc
L

1+ZZyn+1(d k)Z(IndC"”l) Z,u( )( tmg) :

—1 din+l
it bd m|% ‘

where u is the classical Mobius function in number theory.

6. Relationship with annular non-crossing matchings

In this section, we construct annular non-crossing matchings and then find a relationship
with nested sets. We also discuss the relationship between the number of annular non-
crossing matchings and the number £5,,.1(d, k).

Note that if n + 1 is even, then there are two kinds of reflections; one fixes two vertices of
C,+1 and the other has no fixed vertices. If n+1 is odd, then every reflection fixes exactly one
vertex. Now we define annular non-crossing matchings related to a nested set N € N'(C,41)
which can be fixed under some reflection in D,,,;.*

Before we construct annular non-crossing matchings, we first consider an arrangements
of beads on a disjoint union of arcs on a unit cycle.

Arrangements of beads on a disjoint union of intervals. Let [',...,T", be pairwise dis-
joint arcs on a unit circle arranged in counterclockwise. We put k beads with colors blue and
white on I'y U - - - U I, in the following rules.

(R1) Put a blue (respectively, white) bead By onI';,.
(R2) We put a bead B, onI';,, depending on its color.

(R2-1) If both B; and B, are blue (respectively, white), then i, < i; (respectively,
i» > 11), and we do not put on the intervals I'; for j > i; (respectively, j < i)
any more.

(R2-2) If B; and B, have the different colors, that is, B, is white (respectively, blue),
then i, > i; (respectively, i < i;), and then we choose one of the union of
intervals I';, U---UTy,_; or I 1) U---UIY, in order not to put any bead on it.

(R3) We put a bead B;, on some possible interval by comparing with the color of B;, in
the same rule (R2), and continue in this fashion until we arrange k beads.

Consider the annulus {(x,y) € R? | i < x? + y* < 1} with dots Un+1, ON the outer circle,
1 <i<n+1.LetI; be the open arc between v,41; and v,4141 fori=1,..., L”%IJ.

Construction of annular non-crossing matchings of type 1. We put k beads with colors
blue and white on the arcsI'; U---UT 21 under the rules above.

By matching the beads in the following five steps, we obtain an annular non-crossing
matching, see Figure 4.

“In fact, our annular non-crossing matchings are circular non-crossing matchings, non-crossing matchings
of curves embedded within a disk ([6]), but for convenience of explanation we use the idea of the annular non-
crossing matchings in [4], and they are slightly different from the original definition; we add more conditions.
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(S1) Identify all blue beads that lie directly right of a white bead.

(S2) Repeatedly apply the previous step.

(S3) If there is a blue bead not lying right of a white bead, draw a line to the arc {(x, 0) |
-l1<x<-1)

(S4) If there is a white bead not connected to a blue bead, draw a line to the arc {(x, 0) |
L<x<1)

(S5) Reflect along the x-axis.

v3 v3
V2 V2
Vg V4
/AR . N
\_/ ) \_/
Vs (%
v7 v7r
Ve Ve

Fig.4. The annular non-crossing matching of type 1 corresponding to the
nested set {{1}, {3}, {6},{3,4,5,6}} € Ny(C7)

Let Ann, (k) be the set of all annular non-crossing matchings of type 1. It follows from
the construction that for even n we have |Ann,. (k)| = |Ann,(k)|.

Proposition 6.1. Let n + 1 be odd. For each integer 1 < k < n, the sum of beta numbers,
ik Prr1(d, k), is equal to

(n+ 1) X |Ann, (k).

Proof. For each annular non-crossing matching M € Ann(n + 1, k), we can find a nested
set Nyy € Ni(C,s1) which is fixed under the reflection ;7. Note that 0'1.‘10'2,~+ \TO; = 0| T.
Hence, for each N € N'(C,,1), there is an annular non-crossing matching M € Ann(n+1, k)
such that N = o; - N, where N is fixed under the reflection o, 7. m]

Given an annular non-crossing matching M, let b be the number of pairs of beads directly
connected to each other in Steps (S1) and (S2), and let @ = k — 2b. Then we can see that

a=WleNy|loyt-I=1} and 2b=|{l € Ny | o7 -1 # 1}|.

We denote by Ann,,(k, b) the set of annular non-crossing matchings in Ann,.(k) such
that there are b pairs of beads connecting to each other directly in Steps 1 and 2. Then
Ann,, i (k) ={Jj_; Anng, (kD).

When n+1 is even, we also consider another kind of construction of annular non-crossing
matchings.

Construction of annular non-crossing matchings of type 2. We put k beads on the arcs
rnu-- -UF% satisfying rules (R1)~(R3), and we slightly change steps (S3)~(S5) as follows.

(S3’) If there is a blue bead not lying right of a white bead, draw a line to the left arc of the

intersection of the annulus and the straight line through the origin with angle —-75.
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(S4’) If there is a white bead not connected to a blue bead, draw a line to the right arc

of the intersection of the annulus and the straight line through the origin with angle
s
(S5’) Reflect along the straight line through the origin with angle — %

n+l°
Then we obtain an annular non-crossing matching corresponding to a nested set N €

N (C,1) which is fixed under the reflection 7, see Figure 5.

v3 V2 v3 V2

Us Ve Us Ve

Fig.5. The annular non-crossing matching of type 2 corresponding to the
nested set {{2},{5}, {2, 3,4, 5}} € N3(Ce)

Let Ann/_, (k) be the set of all annular non-crossing matchings of type 2. Since both
Ann,, (k) and Ann,(k) are constructed from the same arrangements of beads, we can see

that for odd n
6.1) |Ann;, , (k)| = |Ann,(k)|.

Proposition 6.2. Let n + 1 be even. For an integer 1 < k < n, the sum of beta numbers,
2k Bna1(d, k), is equal to the number

n+1
2

Proof. If an annular non-crossing matching M is in Ann(n + 1, k) (respectively, Ann’(n +
1,k)), then we reflect the matching along the y-axis (respectively, the straight line through
the origin with angle (2’2;)17; ), and then we change blues beads to white beads and white beads
to blue beads. Let M’ be the resulting annular non-crossing matching. Then the nested set
N ¢ can be obtained from N, by the reflection T T (respectively, T ust 7).

Since there is no nested set N such that 7- N = oy7- N = N, we get Ann(n + 1,k) N

Ann’(n + 1,k) = 0. From the similar argument to the proof of Proposition 6.1, we have

(I1Ann,4 (k)] + [Ann, (K))]) .

n+1
2
Therefore, the proposition follows from (6.1). m|

(1Ann,.1(0)] + |Ann,,, (K)]).

Recall that 5,,.1(d, k) is the cardinality of the set
{N € Ni(Coi1) | (Dps)v = Dy}

Hence we can compute S,,,1(d, k) by using the same argument in the proof of Lemma 3.6,
if we know |Ann, (k)| for odd n + 1. Furthermore, if we know Ann,.(k, a), then we can
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also count the nested sets N € Ny (C,1) such that (D,.) = D, and the number of elements
I € N fixed under some reflection 7 € (D,1)y is equal to a. We can explicitly compute
|Ann,,, | (k, a)| when k or k — a is small as follows.

k k k-2 k-4
v
2 3(1) (1)
| ) (%) +2()
ntl ntl ntl ntl ntl
: S(tij) g(tij) r LL§;)J LL‘ZJ(L : J) Ti(JL ’ J) !
5 6(3) 16(“7) + 12(75) 10(°1 )+ 14(75 ) +3('3)

£ aen( ) e () re-ne-2(F)

Table 1. Ann,.(k,a)

Note that the coefficients of (L?J) on Table 1 for I < ¢ < k are coming from the number of
arrangements of two letters B and W satisfying certain conditions, for example, k+1 = f:o 1
is the number of arrangements satisfying that there is no W lying on the left side of B,
(k—1)? = {;—02 { 1('121;—12_—1)1')' + i} is the number of arrangements satisfying that there is only one
W lying on the left side of some B or there is only one B lying on the right side of some W,
and (k- 1)(k—-2) = Zf:_g { (’;r,f,) by %} is the number of arrangements satisfying that it
contains the word WBB or WW B and also satisfying that there is only one W lying on the

left side of some B or there is only one B lying on the right side of W.

ExampLE 6.3. For the cycle graph Cy, the representation of Dy on Hy.(Mc,,,;C) is

37 28 1 1 1
1+ (Ind?*1 - -
+(n<e>)[(1—r)2+(1—z)3+2{(1—r)2 1—:2}]

3t 1 t 2 1 & t 12
Ind?*1 - -
+(ndD1)[1—t+(1—t)2+1—t1—t2+2{(1—t)3 1—t1—t2}}

D r
+ (IndD;l)(1 - t2).

By substituting % instead of (Indgl) in the above, we get the Poincar€ series of H;.(Mc,; C)

12t 3072 207

1+ + + .
-t (-0 (-1}
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