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Abstract
We study the action of the dihedral group on the (equivariant) cohomology of the toric mani-

folds associated with cycle graphs.

1. Introduction

1. Introduction
A graph G is an ordered pair (V, E), where V is a set of vertices and E is a set of unordered

pairs of nodes, called edges. A path graph Pn+1 is a graph whose vertex set is [n + 1] :=
{1, . . . , n, n+1} and edge set is {{i, i + 1} | i = 1, . . . , n}. A cycle graph is a graph that consists
of a single cycle through all vertices, in other words, the cycle graph Cn+1 is obtained from
the path graph Pn+1 by adding the edge {1, n + 1}.

A graph associahedron G is a simple convex polytope whose facets correspond to the
connected proper subgraphs of G. The notion of a graph associahedron was introduced by
Carr and Devadoss ([1]) motivated by the associahedron. The associahedron Asn is the n-
dimensional simple convex polytope in which each vertex corresponds to a way of correctly
inserting opening and closing parentheses in a word of n+2 letters and the edges correspond
to single application of the associativity rule, and it can be also constructed as the graph
associahedron corresponding to the path graph Pn+1. Moreover, the permutohedron Pen, the
cyclohedron Cyn, and the stellohedron S tn are the graph associahedra corresponding to the
complete graph Kn+1, the cycle graph Cn+1, and the star graph K1,n, respectively. They have
been studied in different contexts in mathematics such as algebraic combinatorics ([11, 2]),
discrete geometry ([9]) and so on.

An n-dimensional simple convex polytope is called a Delzant polytope if the (outward)
primitive normal vectors to the facets meeting at each vertex form an integral basis of Zn.
Every graph associahedron can be realized as a Delzant polytope in a canonical way; we
will give the canonical construction in Section 2, also see [3] for details. Hence, by the
fundamental theorem of toric geometry, there is a toric manifold associated with a graph.
We denoted by MG the toric manifold associated with the graph G.

The actions of a finite group on toric manifolds have been also studied by many people,
especially for the symmetric group. Garsia and Stanton studied the action of the symmetric
group on Stanley-Reisner rings, see [5]. Note that the Stanley-Reisner ring of a Delzant
polytope is isomorphic to the equivariant cohomology ring of the toric manifold over the
Delzant polytope. Procesi studied the action of the Weyl group on the (equivariant) coho-
mology of the toric manifold associated with Weyl chambers, see [8]. Note that the Weyl
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group of Type A is the symmetric group.
On the other hand, the automorphism group of the complete graph Kn+1 is the symmetric

group S n+1 and the toric manifold MKn+1 is the toric manifold associated with Weyl cham-
bers. In general, the automorphism group Aut(G) of a given graph G is a subgroup of the
symmetric group on V = [n + 1] and hence one can also study the action of Aut(G) on the
toric manifold MG. Note that the dihedral group n+1 is the automorphism group of the
cycle graph Cn+1.

The purpose of this paper is to deduce an explicit formula for the representation of the
dihedral group on the equivariant cohomology of the toric manifold MCn+1 . It should be noted
that, for a toric manifold M, the equivariant cohomology ring H∗T (M) := H∗(ET ×T M) is
isomorphic to H∗(M) ⊗ H∗(BT ) as an H∗(BT )-module. Hence the explicit formula for the
representation on H∗T (MCn+1 ) gives the explicit formula for the representation on the ordinary
cohomology H∗(MCn+1 ).

This paper is organized as follows: in Section 2, we review the definitions and properties
of graph associahedra. Section 3 deals with the dihedral group action on a cyclohedron. In
Section 3, we study the subring of H∗T (MCn+1 ;C) determined by the facial submanifold MF ,
which is stable under the isotropy group of a face F of Cyn. In Section 5, we deduce an
explicit formula for the representation of the dihedral group on the equivariant cohomology
of MCn+1 . Section 6 introduces a relationship between the faces of Cyn and annular non-
crossing matchings.

2. Graph associahedra

2. Graph associahedra
In this section, we review the construction and properties of the graph associahedron G,

the simple polytope associated with a graph G.
Let G be a connected graph on the vertex set [n + 1]. For a subset I ⊂ [n + 1], we denote

by G[I] the subgraph of G whose vertex set is I and whose edge set consists of all of the
edges of G that have both endpoints in I.

Let us review the construction of the graph associahedron G. Let Δn be a standard
simplex whose facets are (outward) normal to the negative of the standard basis vectors
−e1, . . . ,−en and the vector

∑n
i=1 ei. Then we denote by Fi the facet of Δn that is normal to

the vector −ei for 1 ≤ i ≤ n and Fn+1 the facet normal to the vector
∑n

i=1 ei. Then there is a
one-to-one correspondence between the nonempty proper subsets of [n+1] and the nonempty
proper faces of Δn. Then the graph associahedron G is obtained from Δn by truncating the
faces corresponding to the connected proper induced subgraphs G[I] in increasing order
of dimension. We denote by FI the facet of G corresponding to the connected induced
subgraph G[I]. The graph associahedron G is a simple polytope of dimension n and it can
be realized as a Delzant polytope, where the normal vector of the facet FI is equal to the
vector { −∑i∈I ei if n + 1 � I, or∑

j�I e j if n + 1 ∈ I.

Hence there is a complex n-dimensional toric manifold associated with a connected graph
G on [n + 1], and we will denote by MG the toric manifold associated with G.
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Fig.1. Construction of Cy3

Example 2.1. Consider the cycle graph C4, see Figure 1, the first. Then the connected
proper subgraphs of C4 are

1, 2, 3, 4, 12, 23, 34, 14, 123, 124, 134, 234.1

We first truncate the vertices corresponding to the subgraphs 123, 124, 134, and 234 from
Δ3, see Figure 1, the third. Now we truncate the edges corresponding to the subgraphs 12,
23, 34, and 14, so that we can obtain the cyclonhedron Cy3 in Figure 1, the last.

Note that two facets FI and FJ of G intersect if and only if I ⊆ J, J ⊆ I, or the induced
subgraph G[I ∪ J] is disconnected. Hence a subset N ⊂ 2[n+1] \ [n+ 1] corresponds to a face
of G if and only if it satisfies the following three conditions.

(N1) If I ∈ N, then G[I] is connected.
(N2) If I, J ∈ N, then I ⊆ J, J ⊆ I, or I ∩ J = ∅.
(N3) For any collection of k ≥ 2 disjoint subsets J1, . . . , Jk ∈ N, their union J1 ∪ · · · ∪ Jk

does not induce a connected subgraph.
A subset N ⊂ 2[n+1] \ [n + 1] is called a nested set of G if it satisfies (N1)∼(N3). Let  (G)
be the set of nested sets of G, and let k(G) = {N ∈ (G) | |N| = k} for 0 ≤ k ≤ n. Then the
face poset  (G) is isomorphic to the poset  (G) ordered by reverse inclusion, and there
is a one-to-one correspondence between k(G) and the set of codimension-k faces of G.
When G is a special kind of graphs such as complete graphs, cycle graphs, path graphs, and
star graphs, the face numbers of G are well-studied. Among them, we only introduce the
case when G is a cycle graph.

Proposition 2.2. [10] For k = 1, . . . , n, the number of codimension-k faces of the n-
dimensional cyclohedron Cyn is equal to

fk(Cyn) =
(
n
k

)(
n + k

k

)
.

Consider the polynomial ring k[xI | I ∈ 1(G)], where xI’s are of degree 2 and k is a
commutative ring with unity. Then the equivariant cohomology ring of the toric manifold
MG, H∗T (MG; k) := H∗(ET ×T MG; k), is isomorphic to the quotient of k[xI | I ∈1(G)] by
the Stanley-Reisner ideal of G, the ideal generated by square-free monomials xI1 · · · xIk for
{I1, . . . , Ik} � k(G). It is shown in [7] that every graph associahedron is flag2, and hence
the Stanley-Reisner ideal of G is generated by the monomials xI xI′ for {I, I′} � 2(G).
Hence the equivariant cohomology ring of MG is

1If there is no confusion, we omit the curly braces or commas to save the space.
2A simple polytope is called flag if any set of pairwise intersecting facets has nonempty intersection.
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(2.1) H∗T (MG; k) = k[xI | I ∈1(G)]
/〈

xI xI′ | {I, I′} �2(G)
〉
,

where {I, I′} � 2(G) if and only if G[I ∪ I′] is connected, I � I′, and I′ � I. Furthermore,
for each face FN ∈  (G), the monomial

∏
I∈N xI is a nonzero element of H∗T (MG) of

degree 2i for i = 1, . . . , n, and for each nonzero monomial xa1
I1
· · · xak

Ik
of H∗T (MG), the set

{I1, . . . , Ik} belongs to  (G). The ordinary cohomology ring of MG is also described from
the information of the graph:

H∗(MG; k) = H∗T (MG; k)
/〈
−
∑
{i : i∈I,
n+1�I}

xI +
∑
{i : i�I
n+1∈I}

xI | i ≤ i ≤ n
〉
,

see [3] for details.

3. Dihedral group action on the cyclohedron Cyn

3. Dihedral group action on the cyclohedron CynIn this section, we introduce the terminologies and notations which we will use, review
the properties of dihedral groups as the automorphism groups of cyclic graphs, and then we
study the action of the dihedral group on the poset  (Cyn) � (Cn+1).

An automorphism of a graph G = (V, E) is a permutation σ on V such that {u, v} ∈ E if
and only if {σ(u), σ(v)} ∈ E. The automorphisms of G form a group, and we will denote it
by Aut(G).

The automorphism group Aut(Cn+1) is generated by a rotation and a reflection. For each
positive integer k, the rotation σk is the permutation on [n + 1] given by

σk : [n + 1]→ [n + 1], i �→ i + k (mod n + 1),

such that σk = (σ1)k and the order of σk is (n + 1)/gcd(k, n + 1), where gcd(k, n + 1) is the
greatest common divisor of k and n + 1. The reflection τ is the permutation on [n + 1] given
by

τ : [n + 1]→ [n + 1], i �→ −i (mod n + 1),

such τ2 = e and τσkτ = σ
−1
k . Then for each positive integer k, σk and σkτ form the

automorphism group of the cycle graph Cn+1, which is the dihedral group

n+1 = {σk, σkτ | 1 ≤ k ≤ n + 1}.
Note that the face poset of Cyn is isomorphic to the poset  (Cn+1) ordered by reverse

inclusion. Hence to study the action of n+1 on Cyn, it is enough to see the action of n+1

on  (Cn+1).
There is a natural action of n+1 on  (Cn+1) coming from the action of n+1 on Cn+1;

for each φ ∈ n+1, if I = {i1, . . . , ik} ∈ 1(Cn+1), then φ · I = {φ(i1), . . . , φ(ik)} ∈ 1(Cn+1),
and hence if N = {I1, . . . , I�} ∈k(Cn+1), then φ · N = {φ · I1, . . . , φ · I�} ∈k(Cn+1).

For each N ∈  (Cn+1), we denote by (n+1)N = {φ ∈ n+1 | φ · N = N}, the isotropy
group of N. If N = ∅, then (n+1)N = n+1, and otherwise, (n+1)N is a proper subgroup of
n+1. Note that the dihedral group n+1 has two kinds of subgroups

(1) 〈σk〉 for a divisor k of n + 1, and
(2) 〈σk, σrτ〉 for a divisor k of n + 1 and 0 ≤ r < k.

Then the subgroup 〈σk〉 is isomorphic to the cyclic group d of order d = (n+1)/gcd(k, n+1),
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and the subgroup 〈σk, σrτ〉 is isomorphic to the dihedral group d.
For a nested set N = {I1, . . . , Ik}, we set Cn+1[N] := Cn+1[I1 ∪ · · · ∪ Ik], the induced

subgraph of Cn+1 by the union I1∪· · ·∪ Ik. Note that for φ ∈ (n+1)N , Cn+1[φ ·N] = Cn+1[N].

Lemma 3.1. For each N ∈ k(Cn+1), (n+1)N is isomorphic to d or d for some com-
mon divisor d of |N| and κ(Cn+1[N]), where κ(Cn+1[N]) is the number of the components of
the graph Cn+1[N].

Proof. Note that (n+1)N � n+1 if and only if N = ∅. If κ(Cn+1[N]) = 1, then a nontrivial
element φ fixing N must be a reflection. Hence (n+1)N is 〈e〉 or 1.

Now assume that κ(Cn+1[N]) = � and (n+1)N is not a subgroup of 1. Then N can be
divided into the nested sets N1, . . . ,Nd such that |N1| = · · · = |Nd | and (σx)i−1 · N1 = Ni for
i = 1, . . . , d. Then x = n+1

d and each of N1, . . . ,Nd can be identified with each other. Hence d
should be a common divisor of k and �. We take d as big as possible. Then d is a subgroup
of (n+1)N . If there is no reflection τ′ in n+1 such that τ′ ·N = N, then (n+1)N is the cyclic
group 〈σx〉 � d.

If the isotropy group (n+1)N has also a reflection τ′ ∈ n+1, then there exists an integer
i ∈ [d] such that τ′ ·Ni = Ni or τ′ ·Ni = Ni+1. If τ′ ·Ni = Ni+1, then there exists a reflection τ′′

such that τ′′ ·Ni = Ni. In fact, τ′′ = (σx)−1τ′. Hence (n+1)N is isomorphic to 〈σx, τ
′〉 � d.

Furthermore, (n+1)Ni � 1 for each 1 ≤ i ≤ d. �

Example 3.2. Consider the action of 6 on  (C6), and the nested sets {12, 45}, {1, 4},
and {1, 12, 4, 45}, see Figure 2. Then {12, 45} decomposes into two nested sets {12} and {45}
such that σ3 · {12} = {45} and τ · {12} = {45}. The nested set {1, 4} also decomposes into
two nested sets {1} and {4} such that σ3 · {1} = {4} and (σ5τ) · {1} = {4}. Hence the nested
sets {12, 45} and {1, 4} have the isotropy groups 〈σ3, τ〉 and 〈σ3, σ2τ〉, respectively. Both
〈σ3, τ〉 and 〈σ3, σ2τ〉 are isomorphic to 2. On the other hand, there is no reflection in 6

preserving {1, 12, 4, 45}, but {1, 12, 4, 45} decomposes into two nested sets {1, 12} and {4, 45}
satisfying σ3 · {1, 12} = {4, 45}. Hence the nested set {1, 12, 4, 45} has the isotropy group
〈σ3〉 � 2.

Fig.2. Isotropy groups of nested sets

Given a cycle graph Cn+1, we define

αn+1(d, k) = |{N ∈k(Cn+1) | (n+1)N � d}|, and

βn+1(d, k) = |{N ∈k(Cn+1) | (n+1)N � d}|.
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We can easily compute αn+1(d, k) and βn+1(d, k) in some special cases.

Lemma 3.3. We have the following.

(1) αn+1(d, k) = βn+1(d, k) = 0 if d � k, d � n + 1, or d + k > n + 1;
(2) αn+1(1, 1) = 0 and βn+1(1, 1) = n(n + 1);
(3) αn+1( n+1

2 ,
n+1

2 ) = 0 and βn+1( n+1
2 ,

n+1
2 ) = 2 when n + 1 is even.

Proof. If (n+1)N is isomorphic to d or d, then it is clear that d | k and d | n + 1.
Furthermore, since k < n + 1, if d | k and d | n + 1, then we have d + k ≤ n + 1. This
proves (1). If N = {I} is a singleton, then (n+1)N = 1, hence this proves (2). When n+1 is
even, the proper maximal divisor of n+ 1 is n+1

2 and there are only two nested sets satisfying
σ2 · N = N; {1, 3, . . . , n} and {2, 4, . . . , n + 1}. This proves (3). �

Note that
∑

d|k (αn+1(d, k) + βn+1(d, k)) is equal to the number of nested sets of cardinal-
ity k, where the summation is taken over all divisors of k, hence we have

(3.1)
∑

d : d|k
(αn+1(d, k) + βn+1(d, k)) =

(
n
k

)(
n + k

k

)

from Proposition 2.2.
Note that each cycle graph C� can be presented as � dots equally spaced on a circle;

there is a one-to-one correspondence between the vertices i ∈ [�] = V(C�) and the dots
v�,i :=

(
cos 2π(i−1)

�
, sin 2π(i−1)

�

)
∈ S 1. If � is a divisor of n + 1, say p� = n + 1, then there is a

p-to-1 covering ϕ : Cn+1 → C� via the correspondence:

{vn+1,i, vn+1,�+i, . . . , vn+1,(p−1)�+i} p:1←→ {v�,i}.
Hence if N ∈ k(C�), then ϕ−1(N) ∈ pk(Cn+1) and (n+1)ϕ−1(N) is determined by (�)N .
If (�)N � d, then (n+1)ϕ−1(N) � pd; if (�)N � d, then (n+1)ϕ−1(N) � pd. One can
easily see that the converse also holds.

Proposition 3.4. Let � be a divisor of n+1, say p� = n+1. A nested set N ∈ (Cn+1) has
the isotropy group pd (respectively, pd) if and only if there exists a nested set N0 ∈ (C�)
such that N = ϕ−1(N0) and (�)N0 � d (respectively, (�)N0 � d), where ϕ is the p-to-1
covering Cn+1 → C�.

As we saw in Example 3.2, the nested sets {12, 45} and {1, 12, 4, 45} in  (C6) have the
isotropy groups 2 and 2, respectively. In fact, {12, 45} and {1, 12, 4, 45} are induced from
the nested sets {12} and {1, 12} in  (C3) whose isotropy groups are 1 and 〈e〉, respectively.

The proposition above tells us the following.

Corollary 3.5. Given a positive integer n + 1, if d is a common divisor of n + 1 and k,
then

αn+1(d, k) = α n+1
d

(
1, k

d

)
and βn+1(d, k) = β n+1

d

(
1, k

d

)
.

Otherwise, αn+1(d, k) = βn+1(d, k) = 0.

By using the Möbius inversion formula, we can compute γn+1(d, k) := αn+1(d, k) +
βn+1(d, k) from Proposition 2.2. We review the Möbius function and inversion formula
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briefly. A Möbius function for a poset  is a map μ :  ×  → Z inductively defined
by the relation

µ(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 for x = y,

−∑z : x≤z<y μ(x, z) for x < y,

0 otherwise.

For a finite poset  with Möbius function μ, if f and g are the real valued function on  ,
then the Möbius inversion formula says that the following are equivalent:

f (x) =
∑
y≤x

g(y), for all x ∈ 

g(x) =
∑
y≤x

μ(y, x) f (y) for all x ∈  .

Lemma 3.6. The number of nested sets N ∈k(Cn+1) such that (n+1)N is isomorphic to
d or d is

γn+1(d, k) =
∑

i|gcd( n+1
d ,

k
d )

μ(i)
( n+1

id − 1
k
id

)( n+k+1
id − 1

k
id

)
,

where μ is the classical Möbius function3 in number theory.

Proof. Consider the poset  = {(p, q) ∈ Z × Z | p > q > 0} ordered by

(p, q) ≤ (p′, q′)⇔ there exists d ∈ Z such that p′ = dp and q′ = dq.

That is, (p, q) ≤ (p′, q′) if and only if (p, q) = ( p′
d ,

q′
d ) for some d | gcd(p′, q′). Define

the integer valued functions f and g on  by f (r, s) = γr(1, s) and g(p, q) =
(

p−1
q

)(
p+q−1

q

)
,

respectively. Then we can rewrite (3.1) as

g(n + 1, k) =
(
n
k

)(
n + k

k

)
=
∑
d|k
γn+1(d, k) =

∑
d|gcd(n+1,k)

γ n+1
d

(
1, k

d

)
=

∑
d|gcd(n+1,k)

f
(

n + 1
d
,

k
d

)
,

where the third identity comes from the fact γn+1(d, k) = 0 for d � n + 1. From the Möbius
inversion formula, we get

(3.2) f (n + 1, k) =
∑

d|gcd(n+1,k)

g
(

n + 1
d
,

k
d

)
µ
((

n + 1
d
,

k
d

)
, (n + 1, k)

)
,

where µ is the Möbius function of the poset  . Note that the closed interval [( n+1
d ,

k
d ), (n +

1, k))] of  is isomorphic to the poset  = {i : i | d} with i ≤ i′ ⇔ i | i′ via the correspon-
dence i( n+1

d ,
k
d ) ∈  ↔ i ∈ . Hence µ(( n+1

d ,
k
d ), (n + 1, k)) is equal to µ() = μ(d). Hence

from (3.2) we get the following:

γn+1(d, k) = f
(

n + 1
d
,

k
d

)
=

∑
i|gcd

(
n+1

d ,
k
d

) g
(

n + 1
id
,

k
id

)
μ(i).

3The classical Möbius function is defined on the set of positive integers by μ(n) = (−1)k if n is the product of
k distinct primes and μ(n) = 0 if n is divisible by a square.
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This proves the proposition. �

Hence if we know one of αn+1(d, k) and βn+1(d, k), then the other follows from γn+1(d, k).
We will discuss the computation of βn+1(d, k) in Section 6.

4. Hilbert series of the subrings of H∗T (MCn+1 ;C) determined by nested sets

4. Hilbert series of the subrings of H∗T (MCn+1 ;C) determined by nested sets
In this section, we study the action of the dihedral group n+1 on H∗T (MCn+1 ;C). For each

nested set N ∈  (Cn+1), we first describe the subring of H∗T (MCn+1 ;C) determined by N,
and then compute its Hilbert series.

Note that from (4) in Section 2, the equivariant cohomology of MCn+1 is

H∗T (MG; k) = k[xI | I ∈1(Cn+1)]
/〈

xI xI′ | {I, I′} �2(Cn+1)
〉
,

where 1(Cn+1) consists of the subsets I � [n + 1] such that I or [n + 1] \ I consists
of consecutive numbers, and {I, I′} � 2(Cn+1) if and only if Cn+1[I ∪ I′] is connected,
I � I′, and I′ � I. Furthermore, for any nonzero monomial xa1

I1
· · · xak

Ik
in H∗T (MCn+1 ), the set

{I1, . . . , Ik} belongs to k(Cn+1). For simplicity, we set

xN =

{
xI1 · · · xIk for N = {I1, . . . , Ik} ∈ (Cn+1) \ ∅,
1 for N = ∅.

Hence xN is of degree 2 if and only if N is a singleton. Then there is a natural action of n+1

on H∗T (MCn+1 ;C); for every φ ∈ n+1 and a nested set N ∈ (Cn+1),

φ ·
⎛⎜⎜⎜⎜⎜⎝
∏
I∈N

xI

⎞⎟⎟⎟⎟⎟⎠ =
∏
I∈N

xφ·I .

Then H∗T (MCn+1 ;C) is isomorphic to

(4.1)
⊕

N∈ (Cn+1)

C[xI | I ∈ N]xN �
⊕

N∈ (Cn+1)

⊕
a∈(Z>0)N

C〈∏
I∈N

xaI
I 〉,

where a = (aI | I ∈ N) ∈ (Z>0)N . For simplicity, set xa
N :=

∏
I∈N xaI

I . Then the action of
n+1 on H∗T (MCn+1 ;C) is defined by

φ · xa
N = xa

φ·N , that is, φ ·
∏
I∈N

xaI
I =

∏
I∈N

xaI
φ·I for every φ ∈ n+1.

Hence C[xI | I ∈ N]xN is (n+1)N-stable.
Let N be a nested set in  (Cn+1) whose isotropy group (n+1)N is isomorphic to d or

d. Without loss of generality, it is enough to consider the cases

(n+1)N =

⎧⎪⎪⎨⎪⎪⎩
〈σ n+1

d
〉 if (n+1)N � d,

〈σ n+1
d
, τ〉 if (n+1)N � d.

For simplicity, we write σN := σ n+1
d

. Then d | |N| and we can decompose N into the nested
sets N1, . . . ,Nd such that (σN)i−1 ·N1 = Ni. Hence when (n+1)N = d, we label the elements
of each Ni as follows:

Ni = {Ai, j | 1 ≤ j ≤ a}
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such that (σN)i−1 · A1, j = Ai, j. Note that if (n+1)N � d, then (n+1)N1 = 1 and hence
there is a reflection τ′ ∈ (n+1)N such that τ′ · N1 = N1, and some of the elements in N are
fixed by the reflection τ′. Let a be the number of elements in N1 such that τ′ · I = I. Then
|N| − a is even, say 2b. Then we label the elements of each Ni as

(4.2) Ni = {Ai, j | 1 ≤ j ≤ a} ∪ {Bi,k | 1 ≤ k ≤ 2b}
such that (σN)i−1 · A1, j = Ai, j, (σN)i−1 · B1,k = Bi,k, and τ′ · B1,k = B1,2b+1−k for each i ∈ [d],
j ∈ [a], and k ∈ [2b].

For simplicity, for each xa
N ∈ H∗T (MCn+1 ;C) we denote by ai, j (respectively, bi, j) the expo-

nent of xAi, j (respectively, xBi, j). That is,

xa
N =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏
1≤i≤d
1≤ j≤a

xai, j

Ai, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∏
1≤i≤d

1≤ j≤2b

xbi, j

Bi, j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Note that the exponents ai, j and bi, j are positive integers. Then we can compute the isotropy
group (n+1)xa

N
for each xa

N ∈ H∗T (MCn+1 ;C) as follows.

Lemma 4.1. For the action of n+1 on H∗T (MCn+1 ;C), the isotropy group (n+1)xa
N

is a
subgroup of the isotropy group (n+1)N with respect to the action of n+1 on  (Cn+1).

Proof. Note that if φ � (n+1)N , then φ · N � N. Hence φ · xa
N = xa

φ·N � xa
N .

For a divisor � of d, if ai, j = ai′, j for i ≡ i′ (mod �), then (σN)� · xa
N = xa

N . If there is a
reflection τ′ ∈ (n+1)N satisfying the condition

(4.3) aI = aτ′·I for any I ∈ N,

then τ′ · xa
N = xa

N .

Let � be the smallest divisor of d satisfying

(4.4) ai, j = ai′, j and bi,k = bi′,k for i ≡ i′ (mod d
�

)

for each 1 ≤ j ≤ a and 1 ≤ k ≤ 2b. Then for i = 1, . . . , �, we may set

Li :=
{

Ap, j, Bp,k

∣∣∣∣∣ (i − 1)d
�

+ 1 ≤ p ≤ id
�
, 1 ≤ j ≤ a, and 1 ≤ k ≤ 2b

}
.

Then (σN)
d
� (i−1) · L1 = Li for 1 ≤ i ≤ �. For the monomial xa

N satisfying (4.4), there exists
a reflection satisfying the condition (4.3) if and only if there exists a reflection τ′′ such that
τ′′ · xa

L1
= xa

L1
. Therefore, (n+1)xa

N
� � if and only if the exponent a satisfies (4.4) and

(4.5) ai, j = ai′, j and bi,k = bi′,k for i + i′ =
d
�
+ 1, k + k′ = 2b + 1

for 1 ≤ i, i′ ≤ d
�
. If a satisfies (4.4) but not (4.5), then (n+1)xa

N
� �. This proves that

(n+1)xa
N

is a subgroup of (n+1)N in any case. �

Example 4.2. Let us consider the cycle graph C24 and a nested set

N = {{i}, { j − 1, j, j + 1} | i ∈ {1, 3, ..., 23} and j ∈ {2, 6, 10, 14, 18, 22}} .
Then (24)N = 〈σ4, τ〉 � 6, see Figure 3-(a). We set
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Fig.3. Isotropy groups of N and xa
N’s

N1 : A1,1 = {1, 2, 3}, B1,1 = {1}, B1,2 = {3}
N2 : A2,1 = {5, 6, 7}, B2,1 = {5}, B2,2 = {7}
N3 : A3,1 = {9, 10, 11}, B3,1 = {9}, B3,2 = {11}
N4 : A4,1 = {13, 14, 15}, B4,1 = {13}, B4,2 = {15}
N5 : A5,1 = {17, 18, 19}, B5,1 = {17}, B5,2 = {19}
N6 : A6,1 = {21, 22, 23}, B6,1 = {21}, B6,2 = {23}

(1) If a1,1 = · · · = a6,1 and b1,1 = · · · = b6,1 = b2,1 = · · · = b6,2, then (24)xa
N
= (24)N �

6.
(2) Assume that a1,1 = a3,1 = a5,1, a2,1 = a4,1 = a6,1, b1,1 = b3,1 = b5,1, b1,2 = b3,2 = b5,2,

b2,1 = b4,1 = b6,1, and b2,2 = b4,2 = b3,2. If b1,1 � b2,1, b1,2 � b2,2, or a1,1 � a2,1, then
L1 = N1 ∪ N2, L2 = N3 ∪ N4, L3 = N5 ∪ N6, and (n+1)xa

L1
= 〈e〉. Hence (24)xa

N
is

〈σ8〉 � 3, see Figure 3-(b).
(3) Assume that a1,1 = a2,1 = a3,1 = a4,1 = a5,1 = a6,1 and b1,1 = b2,2 = b3,1 = b4,2 =

b5,1 = b6,2 and b1,2 = b2,1 = b3,2 = b4,1 = b5,2. If b1,1 � b1,2, then L1 = N1 ∪ N2,
L2 = N3 ∪ N4, L3 = N5 ∪ N6, and (n+1)xa

L1
= 1. Hence (24)xa

N
is 〈σ8, τ〉 � 3,

see Figure 3-(c).
(4) Assume that a1,1 = a6,1, a2,1 = a4,1, a3,1 = a4,1 b1,1 = b6,2, b1,2 = b6,1, b2,1 = b5,2,

b2,2 = b5,1, b3,1 = b4,2, and b3,2 = b4,1. If a1,1 � a2,1, a2,1 � a3,1, b1, j � b2, j, or
b2, j � b3, j, then L1 = N and (24)xa

N
is 〈τ〉 � 1, see Figure 3-(d).

Let us consider the representation of (n+1)N on C[xI | I ∈ N]xN . If (n+1)N is trivial,
then (n+1)xa

N
is also trivial, and the Hilbert series of C[xI | I ∈ N]xN is

(
t

1−t

)|N |
. If (n+1)N =
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〈τ〉 � 1, then (n+1)xa
N

is trivial or 1. Hence

C[xI | I ∈ N]xN = Ind1
1
C〈xa

N | (n+1)xa
N
� 1〉 ⊕ Ind1

〈e〉C〈xa
N | (n+1)xa

N
� 〈e〉 〉.

Let |N| = a + 2b, where a is the number of elements I ∈ N such that τ · I = I. Then the
Hilbert series of C〈xa

N | (n+1)xa
N
� 1〉 and C〈xa

N | (n+1)xa
N
� 〈e〉 〉 are

( t
1 − t

)a
(

t2

1 − t2

)b

and
1
2

⎧⎪⎪⎨⎪⎪⎩
( t
1 − t

)a+2b
−
( t
1 − t

)a
(

t2

1 − t2

)b
⎫⎪⎪⎬⎪⎪⎭ ,

respectively. In general, if (n+1)N = H < n+1, then

C[xI | I ∈ N]xN =
⊕
H′<H

IndH
H′C〈xa

N | (H)xa
N
� H′〉.

That is, if (n+1)N � d, then we have

C[xI | I ∈ N]xN =
⊕
�|d

Indd
�
C〈xa

N | (d)xa
N
� �〉;

if (n+1)N � d, then we have

C[xI | I ∈ N]xN =
⊕
�|d

(
Indd

�
C〈xa

N | (d)xa
N
� �〉 ⊕ Indd

�
C〈xa

N | (d)xa
N
� �〉

)
.

Lemma 4.3. When H := (n+1)N is isomorphic to d, the Hilbert series ofC〈xa
N | (H)xa

N
�

�〉 is

�

d

∑
m| d�
μ(m)

(
tm�

1 − tm�

) |N |
m�

,

where μ is the classical Möbius function of number theory.

Proof. Note that (H)xa
N
� d if and only if ai, j = ai′, j for 1 ≤ i, i′ ≤ d. Hence the Hilbert

series of C〈xa
N | (H)xa

N
� d〉 is

(
td

1−td

)|N |/d
.

For two divisors � and �′ of d, if � | �′, then ai, j = ai′, j for i ≡ i′ (mod d
�′ ) implies that

ai, j = ai′, j for i ≡ i′ (mod d
�
). Hence we need to use the inclusion-exclusion principle to find

the Hilbert series of C〈xa
U | (d)xa

U
� �〉.

Note that two divisors � and �′ of d satisfy � | �′ if and only if there is an integer m | d
�

such that m� = �′. Hence the inclusion-exclusion principle says that the Hilbert series of
C〈xa

N | (d)xa
N
� �〉 is

�

d

∑
m| d�
μ(m)

(
tm�

1 − tm�

) |N |
m�

.

�

For example, for the nested set N = {1, 12, 4, 45} in Example 3.2, (6)N � 2 and the
Hilbert series of C〈xa

N | (2)xa
N
� 〈e〉 〉 is

1
2

⎧⎪⎪⎨⎪⎪⎩
( t
1 − t

)4
−
(

t2

1 − t2

)2⎫⎪⎪⎬⎪⎪⎭ .
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Lemma 4.4. When H := (n+1)N is isomorphic to d for d < n + 1, the Hilbert series of
C〈xa

N | (H)xa
N
� �〉 is

�

d

∑
m| d�
μ(m)

(
tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�

,

and the Hilbert series of C〈xa
N | (H)xa

N
� �〉 is

�

2d

∑
m| d�

⎧⎪⎪⎨⎪⎪⎩
(

tm�

1 − tm�

) a+2b
m�

−
(

tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�
⎫⎪⎪⎬⎪⎪⎭ .

Proof. First, (H)xa
N
� d if and only if ai, j = ai′, j and bi, j = bi′, j = bi,2b+1− j = bi′,2b+1− j for

1 ≤ i, i′ ≤ d. Hence the Hilbert series of C〈xa
N | (H)xa

N
� d〉 is

(
td

1−td

)a ( t2d

1−t2d

)b
. From (4.1),

(H)xa
N
� � for some � | d if and only if the exponents ai, j’s and bi,k’s satisfy (4.4) and

(4.5). Note that if two divisors � and �′ of d satisfy � | �′ and the exponents ai, j’s and bi,k’s
satisfy (4.4) and (4.5) with respect to �′, then the exponents ai, j’s and bi,k’s satisfy (4.4) and
(4.5) with respect to �. Hence, from the inclusion-exclusion principle, the Hilbert series of
C〈xa

N | (H)xa
N
� d〉 is

�

d

∑
m| d�
μ(m)

(
tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�

.

Secondly, the Hilbert series of C〈xa
N | (H)xa

N
� d〉 is

1
2

⎧⎪⎪⎨⎪⎪⎩
(

td

1 − td

)a+2b

−
(

td

1 − td

)a ( t2d

1 − t2d

)b⎫⎪⎪⎬⎪⎪⎭
from the inclusion-exclusion principle. Consequently, the Hilbert series of C〈xa

N | (H)xa
N
�

d〉 is

�

2d

∑
m| d�

⎧⎪⎪⎨⎪⎪⎩
(

tm�

1 − tm�

) a+2b
m�

−
(

tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�
⎫⎪⎪⎬⎪⎪⎭ .

�

Applying Lemmas 4.3 and 4.4 to (4.1), we can conclude the following.

Proposition 4.5. For a nested set N ∈  (Cn+1), if (n+1)N � d, then the Hilbert series
of C[xI | I ∈ N]xN is

∑
�|d

�

d
(Indd

�
1)
∑
m| d�
μ(m)

(
tm�

1 − tm�

) |N |
m�

,

if (n+1)N � d, then the Hilbert series of C[xI | I ∈ N]xN is
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∑
�|d

�

d

∑
m| d�
μ(m)

⎡⎢⎢⎢⎢⎢⎢⎣
(
Indd

�
1
) ( tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�

+
1
2

(
Indd

�
1
) ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

tm�

1 − tm�

) (a+2b)d
m�

−
(

tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦ .

5. Dihedral group representations on H∗T (MCn+1 ;C)

5. Dihedral group representations on H∗T (MCn+1 ;C)
In this section, we deduce explicit formulas for the dihedral group representation on

H∗T (MCn+1 ).
Note that from Lemmas 3.1 and 4.1, we have

H∗T (MCn+1 ;C) =
⊕

N∈ (Cn+1)

⊕
a∈(Z>0)N

C〈∏
I∈N

xaI
I 〉,

=
⊕

H<n+1

⊕
NC[xI |I∈N]xN
(n+1)N�H

Indn+1
H C[xI | I ∈ N]xN ,

(5.1)

and we know the representation of (n+1)N on the subring C[xI | I ∈ N]xN . Now we are
ready to deduce the representation of n+1 on H∗T (MCn+1 ).

Recall that we define the numbers

αn+1(d, k) :=
∣∣∣{N ∈k(Cn+1) | (n+1)N � d}

∣∣∣ ,
βn+1(d, k) :=

∣∣∣{N ∈k(Cn+1) | (n+1)N � d}
∣∣∣ , and

γn+1(d, k) := αn+1(d, k) + βn+1(d, k).

By using the definition of the sets Ai, j and Bi, j defined in (4.2), we also define

βn+1(d, k, a) :=
∣∣∣{N ∈k(Cn+1) | (n+1)N � d, |Ai, j| = a, and |Bi, j| = k − a}∣∣∣ .

Theorem 5.1. The representation of n+1 on H∗T (MCn+1 ;C) is

1 +
n∑

k=1

∑
d|n+1

d|k

γn+1(d, k)
∑
�|d

(Indn+1
�

1)
�

n + 1

∑
m| d�
μ(m)

(
tm�

1 − tm�

) k
m�

+

n∑
k=1

∑
d|n+1

d|k

k∑
a=1

βn+1(d, k, a)
∑
�|d

(Indn+1
�

1)
�

2(n + 1)

∑
m| d�
μ(m)

(
tm�

1 − tm�

) ad
m�
(

t2m�

1 − t2m�

) bd
m�

,

where μ is the classical Möbius function in number theory.

Proof. We can rewrite (5.1) as follows.

H∗T (MCn+1 ;C) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⊕

H<n+1

⊕
N∈ (Cn+1)
(n+1)N�H

⊕
H′<H

Indn+1
H′ C〈xa

N | (H)xa
N
� H′〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

Note that if N = ∅, then xN = 1, (n+1)N = n+1, and C[xI | I ∈ N]xN = C. Since
Indn+1

H

(
IndH

H′1
)
= IndH

H′1, the theorem follows from the above by applying Proposition 4.5.
�
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Considering the actions of the cyclic group n+1 on  (Cn+1) and H∗T (MCn+1 ;C), we get
the following representation.

Corollary 5.2. The representation of n+1 on H∗T (MCn+1 ;C) is

1 +
n∑

k=1

∑
d|n+1

d|k

γn+1(d, k)
∑
�|d

(Indn+1
�

1)
�

n + 1

∑
m| d�
μ(m)

(
tm�

1 − tm�

) k
m�

,

where μ is the classical Möbius function in number theory.

6. Relationship with annular non-crossing matchings

6. Relationship with annular non-crossing matchings
In this section, we construct annular non-crossing matchings and then find a relationship

with nested sets. We also discuss the relationship between the number of annular non-
crossing matchings and the number βn+1(d, k).

Note that if n+ 1 is even, then there are two kinds of reflections; one fixes two vertices of
Cn+1 and the other has no fixed vertices. If n+1 is odd, then every reflection fixes exactly one
vertex. Now we define annular non-crossing matchings related to a nested set N ∈ (Cn+1)
which can be fixed under some reflection in n+1.4

Before we construct annular non-crossing matchings, we first consider an arrangements
of beads on a disjoint union of arcs on a unit cycle.

Arrangements of beads on a disjoint union of intervals. Let Γ1, . . . , Γ� be pairwise dis-
joint arcs on a unit circle arranged in counterclockwise. We put k beads with colors blue and
white on Γ1 ∪ · · · ∪ Γ� in the following rules.

(R1) Put a blue (respectively, white) bead B1 on Γi1 .
(R2) We put a bead B2 on Γi2 , depending on its color.

(R2-1) If both B1 and B2 are blue (respectively, white), then i2 < i1 (respectively,
i2 > i1), and we do not put on the intervals Γ j for j ≥ i1 (respectively, j ≤ i1)
any more.

(R2-2) If B1 and B2 have the different colors, that is, B2 is white (respectively, blue),
then i2 > i1 (respectively, i2 < i1), and then we choose one of the union of
intervals Γi1 ∪ · · · ∪ Γi2−1 or Γi1+1 ∪ · · · ∪ Γi2 in order not to put any bead on it.

(R3) We put a bead Bi3 on some possible interval by comparing with the color of Bi2 in
the same rule (R2), and continue in this fashion until we arrange k beads.

Consider the annulus {(x, y) ∈ R2 | 1
4 ≤ x2 + y2 ≤ 1} with dots vn+1,i on the outer circle,

1 ≤ i ≤ n + 1. Let Γi be the open arc between vn+1,i and vn+1,i+1 for i = 1, . . . , � n+1
2 �.

Construction of annular non-crossing matchings of type 1. We put k beads with colors
blue and white on the arcs Γ1 ∪ · · · ∪ Γ� n+1

2 � under the rules above.
By matching the beads in the following five steps, we obtain an annular non-crossing

matching, see Figure 4.

4In fact, our annular non-crossing matchings are circular non-crossing matchings, non-crossing matchings
of curves embedded within a disk ([6]), but for convenience of explanation we use the idea of the annular non-
crossing matchings in [4], and they are slightly different from the original definition; we add more conditions.
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(S1) Identify all blue beads that lie directly right of a white bead.
(S2) Repeatedly apply the previous step.
(S3) If there is a blue bead not lying right of a white bead, draw a line to the arc {(x, 0) |

−1 ≤ x ≤ − 1
4 }.

(S4) If there is a white bead not connected to a blue bead, draw a line to the arc {(x, 0) |
1
4 ≤ x ≤ 1}.

(S5) Reflect along the x-axis.

Fig. 4. The annular non-crossing matching of type 1 corresponding to the
nested set {{1}, {3}, {6}, {3, 4, 5, 6}} ∈4(C7)

Let Annn+1(k) be the set of all annular non-crossing matchings of type 1. It follows from
the construction that for even n we have |Annn+1(k)| = |Annn(k)|.

Proposition 6.1. Let n + 1 be odd. For each integer 1 ≤ k ≤ n, the sum of beta numbers,∑
d|k βn+1(d, k), is equal to

(n + 1) × |Annn+1(k)|.
Proof. For each annular non-crossing matching  ∈ Ann(n + 1, k), we can find a nested

set N ∈ k(Cn+1) which is fixed under the reflection σ1τ. Note that σ−1
i σ2i+1τσi = σ1τ.

Hence, for each N ∈ (Cn+1), there is an annular non-crossing matching  ∈ Ann(n+1, k)
such that N = σi · N, where N is fixed under the reflection σ2i+1τ. �

Given an annular non-crossing matching , let b be the number of pairs of beads directly
connected to each other in Steps (S1) and (S2), and let a = k − 2b. Then we can see that

a = |{I ∈ N | σ1τ · I = I}| and 2b = |{I ∈ N | σ1τ · I � I}|.
We denote by Annn+1(k, b) the set of annular non-crossing matchings in Annn+1(k) such
that there are b pairs of beads connecting to each other directly in Steps 1 and 2. Then
Annn+1(k) = ·⋃k

b=1 Annn+1(k, b).
When n+1 is even, we also consider another kind of construction of annular non-crossing

matchings.

Construction of annular non-crossing matchings of type 2. We put k beads on the arcs
Γ1∪· · ·∪Γ n−1

2
satisfying rules (R1)∼(R3), and we slightly change steps (S3)∼(S5) as follows.

(S3′) If there is a blue bead not lying right of a white bead, draw a line to the left arc of the
intersection of the annulus and the straight line through the origin with angle − π

n+1 .
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(S4′) If there is a white bead not connected to a blue bead, draw a line to the right arc
of the intersection of the annulus and the straight line through the origin with angle
− π

n+1 .
(S5′) Reflect along the straight line through the origin with angle − π

n+1 .

Then we obtain an annular non-crossing matching corresponding to a nested set N ∈
k(Cn+1) which is fixed under the reflection τ, see Figure 5.

Fig. 5. The annular non-crossing matching of type 2 corresponding to the
nested set {{2}, {5}, {2, 3, 4, 5}} ∈3(C6)

Let Ann′n+1(k) be the set of all annular non-crossing matchings of type 2. Since both
Annn+1(k) and Annn(k) are constructed from the same arrangements of beads, we can see
that for odd n

(6.1) |Ann′n+1(k)| = |Annn(k)|.
Proposition 6.2. Let n + 1 be even. For an integer 1 ≤ k ≤ n, the sum of beta numbers,∑

d|k βn+1(d, k), is equal to the number

n + 1
2

(|Annn+1(k)| + |Annn(k))|) .
Proof. If an annular non-crossing matching  is in Ann(n+ 1, k) (respectively, Ann′(n+

1, k)), then we reflect the matching along the y-axis (respectively, the straight line through
the origin with angle (n−1)π

2(n+1) ), and then we change blues beads to white beads and white beads
to blue beads. Let ′ be the resulting annular non-crossing matching. Then the nested set
N′ can be obtained from N by the reflection σ n+3

2
τ (respectively, σ n+1

2
τ).

Since there is no nested set N such that τ · N = σ1τ · N = N, we get Ann(n + 1, k) ∩
Ann′(n + 1, k) = ∅. From the similar argument to the proof of Proposition 6.1, we have

n + 1
2

(
|Annn+1(k)| + |Ann′n+1(k)|

)
.

Therefore, the proposition follows from (6.1). �

Recall that βn+1(d, k) is the cardinality of the set
{
N ∈k(Cn+1) | (n+1)N � d

}
.

Hence we can compute βn+1(d, k) by using the same argument in the proof of Lemma 3.6,
if we know |Annn+1(k)| for odd n + 1. Furthermore, if we know Annn+1(k, a), then we can
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also count the nested sets N ∈k(Cn+1) such that (n+1) � d and the number of elements
I ∈ N fixed under some reflection τ′ ∈ (n+1)N is equal to a. We can explicitly compute
|Annn+1(k, a)| when k or k − a is small as follows.

�����k
a

k k − 2 k − 4 · · ·

1 2
(� n+1

2 �
1

)
2 3

(� n+1
2 �
2

) (� n+1
2 �
2

)
3 4

(� n+1
2 �
3

)
4
(� n+1

2 �
3

)
+ 2

(� n+1
2 �
2

)
4 5

(� n+1
2 �
4

)
9
(� n+1

2 �
3

)
+ 6

(� n+1
2 �
3

)
2
(� n+1

2 �
4

)
+ 2

(� n+1
2 �
3

)
5 6

(� n+1
2 �
5

)
16
(� n+1

2 �
5

)
+ 12

(� n+1
2 �
4

)
10
(� n+1

2 �
5

)
+ 14

(� n+1
2 �
4

)
+ 3

(� n+1
2 �
3

)
...

...
...

...

k (k + 1)
(� n+1

2 �
k

)
(k − 1)2

(� n+1
2 �
k

)
+ (k − 1)(k − 2)

(� n+1
2 �

k−1

)

Table 1. Annn+1(k, a)

Note that the coefficients of
(� n+1

2 �
�

)
on Table 1 for 1 ≤ � ≤ k are coming from the number of

arrangements of two letters B and W satisfying certain conditions, for example, k+1 =
∑k

i=0 1
is the number of arrangements satisfying that there is no W lying on the left side of B,
(k−1)2 =

∑k−2
i=0

{
(k−1−i)!

1!(k−2−i)! + i
}

is the number of arrangements satisfying that there is only one
W lying on the left side of some B or there is only one B lying on the right side of some W,
and (k − 1)(k − 2) =

∑k−3
i=0

{
(i+1)!
1!i! +

(k−2−i)!
1!(k−3−i)!

}
is the number of arrangements satisfying that it

contains the word WBB or WWB and also satisfying that there is only one W lying on the
left side of some B or there is only one B lying on the right side of W.

Example 6.3. For the cycle graph C4, the representation of 4 on H∗T (MCn+1 ;C) is

1 + (Ind4
〈e〉1)

[
3t2

(1 − t)2 +
2t3

(1 − t)3 +
1
2

{
t2

(1 − t)2 −
t2

1 − t2

}]

+ (Ind4
1

1)
[

3t
1 − t

+
t2

(1 − t)2 +
t

1 − t
t2

1 − t2 +
1
2

{
t3

(1 − t)3 −
t

1 − t
t2

1 − t2

}]

+ (Ind4
2

1)
(

t2

1 − t2

)
.

By substituting |G||H| instead of (IndG
H1) in the above, we get the Poincaré series of H∗T (MC4 ;C)

1 +
12t

1 − t
+

30t2

(1 − t)2 +
20t3

(1 − t)3 .
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