

Title	CURVES WITH MAXIMALLY COMPUTED CLIFFORD INDEX
Author(s)	Kato, Takao; Martens, Gerriet
Citation	Osaka Journal of Mathematics. 2019, 56(2), p. 277-288
Version Type	VoR
URL	https://doi.org/10.18910/72319
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

CURVES WITH MAXIMALLY COMPUTED CLIFFORD INDEX

TAKAO KATO and GERRIET MARTENS

(Received November 17, 2017)

Abstract

We say that a curve X of genus g has maximally computed Clifford index if the Clifford index c of X is, for c > 2, computed by a linear series of the maximum possible degree d < g; then d = 2c + 3 resp. d = 2c + 4 for odd resp. even c. For odd c such curves have been studied in [6]. In this paper we analyze if/how far analoguous results hold for such curves of even Clifford index c.

1. Introduction

Let X denote a smooth irreducible projective curve defined over the complex numbers, and let $g \ge 4$ resp. $c \ge 0$ denote its genus resp. its Clifford index. We say that a (complete and base point free) linear series g_d^r on X, or a divisor in it, computes c if d < g, r > 0 and d - 2r = c. It is well known ([5, Thm. C]) that in this case we have $d \le 2c + 4$ if X is neither hyper- nor bi-elliptic (which certainly holds for c > 2). For c > 2 we say that the Clifford index c of X is maximally computed if X has a g_d^r computing c of the maximal possible degree, i.e. d = 2c + 3 resp. d = 2c + 4 if c is odd resp. even. Such curves exist for every c > 2 ([5, 3.3]) and examples are constructed on K3 surfaces.

Let *X* be such a curve. Then we have g = d + 1 ([5, 3.2.5]).

For odd c we also know: X has gonality c+3 and infinitely many pencils g_{c+3}^1 ([5, 3.2.2 and 2.3]), and by [6], 3.6 and 3.7 the g_d^r is the only series on X computing c (in particular, it is half-canonical, i.e. $|2g_d^r|$ is the canonical series of X, and very ample); moreover, the g_d^r is even normally generated.

For even c our knowledge on X is less complete ([5], [10]) mainly because a basic Diophantine equation ([6, sections 1 and 2]) valid for X in the case of odd c is not available if X has even Clifford index. One knows, for even c:

- X has gonality c + 2,
- for every pencil |D| of degree c+2 on X there is a pencil |D'| of degree c+2 on X such that $g_d^r = |D+D'|$ ([5, 3.2.3 and 3.2.4]),
 - X has no base point free pencil of degree c + 3 ([5, 3.2.1]),
- X has no series computing c of degree e with 3(c+2)/2 < e < 2(c+2) = d ([13, Cor. 1]); note that this implies that our g_d^r must be very ample.

In [5, 3.3.2] the following "recognition theorem" is proved: On any k-gonal curve ($k \ge 3$) having only finitely many base point free pencils of degree k and k + 1, a linear series g_d^r ,

²⁰¹⁰ Mathematics Subject Classification. Primary 14H45; Secondary 14H51.

The first named author expresses his thanks to Univ. Erlangen-Nürnberg for the hospitality during his stay.

 $r \ge 2$, computing its Clifford index c computes c maximally and is the only linear series computing c which is not a pencil. (Note that c is even, then, and the g_d^r is half-canonical.) Moreover, it follows that the g_d^r is even normally generated: Since there are (by assumption) only finitely many g_{c+2}^1 the curve embedded into \mathbb{P}^r by the g_d^r lies on only finitely many quadrics of rank ≤ 4 which implies (cf. [2, III, ex. D-1 and V, ex. C-7]) that it is quadratically normal, and to see that it is n-normal for all other integers $n \ge 1$ we can use Green's results on Koszul-cohomology, as is done in [6, proof of Theorem 3.6].

However, there are curves whose (even) Clifford index c is computed maximally which have infinitely many pencils of degree c+2; this will be shown in the next section where we discuss the case c=4 in greater detail. So the recognition theorem does not always answer the

QUESTION. Is, on our X, the g_d^r the only linear series computing c which is not a pencil?

In this paper we deal with this Question. For $c \equiv 0 \mod 4$ we prove in Section 3 that every effective divisor of X computing c is contained in a divisor of the g_d^r ; in particular, the g_d^r is then the only linear series on X computing c maximally. And for c = 4, c = 6 and c = 8 we answer our Question in the affirmative. Finally, for X lying, via the g_d^r , on a K3 surface of degree 2r - 2 we check if the divisor theory of the surface may be helpful to provide a negative answer.

Notation. The basic reference is [2]. For any curve X, Div(X) denotes its group of divisors and the symbol \sim means the linear equivalence of divisors. For D, $E \in \text{Div}(X)$ we write $D \leq E$ (and say that D is contained in E) if E - D is effective, i.e. $E - D \geq 0$, and for linear series g_d^r , g_e^s on X the notation $g_d^r \subset g_e^s$ means that every divisor in g_d^r is contained in a divisor of g_e^s (equivalently, $|g_e^s - g_d^r| \neq \emptyset$). We sometimes identify a complete g_d^r on X with the point in the variety $W_d^r = W_d^r(X)$ corresponding to it via the Abel-Jacobi map. (Specifically, for a canonical divisor K_X of X the canonical series $|K_X|$ likewise is the only point in W_{2g-2}^{g-1} , for g > 0.)

2. Clifford index c = 4

For c = 4 we construct a curve whose Clifford index c is maximally computed and satisfies $\dim(W_6^1) > 0$.

EXAMPLE. Let E denote a smooth elliptic curve and $S \to E$ be a ruled surface with invariant $e \ge 0$. Using the notations of [9, V, 2] we can find a smooth elliptic curve H in the numerical equivalence class of $C_0 + e \cdot f$ ($C_0^2 = -e, f$ a fibre); we have $h^0(H) = e + 1$, and $-C_0 - H$ is a canonical divisor of S ([8, 3.3]). Observe that $H^2 = e$ and $C_0 \cdot H = 0$. For e > 0 we consider the divisor D := 3H of S; then |D| is base point free and so a general member X in |D| is a smooth curve, by Bertini's theorem. Writing $X = X_1 + X_2$ with effective divisors X_1, X_2 of S, we thus must have $X_1 \cdot X_2 = 0$. If $X_1 = \alpha C_0 + \beta f$ (here = denotes numerical equivalence) we have $X_2 = (3 - \alpha)C_0 + (3e - \beta)f$ with integers $\alpha, \beta \ge 0$, $\alpha \le 3$, $\beta \le 3e$ ([8, 3.1]), and $X_1 \cdot X_2 = 0$ implies the relation $(2\beta - e\alpha)(2\alpha - 3) = 3e\alpha$ leading to $X_1 = 0$ for $\alpha = 0$ resp. $X_2 = 0$ for $\alpha = 3$ and $\beta = -e < 0$ for $\alpha = 1$ resp. $\beta = 4e > 3e$ for $\alpha = 2$. Thus it

follows that X is irreducible, and its genus is, by adjunction, g = 3e + 1.

Now, let e = 4 and view the base curve E as an elliptic normal curve in $\mathbb{P}^{e-1} = \mathbb{P}^3$ (of degree e = 4); let S_0 denote the cone over E in \mathbb{P}^4 . Blowing up the vertex of the elliptic cone S_0 we obtain a ruled surface $S \rightarrow E$ of invariant e = 4 as above ([9, V, 2.11.4]), and the blow down $S \to S_0 \subset \mathbb{P}^4$ is defined by |H|. Our curve $X \subset S$ from above blows down to a curve $X' \subset S_0$ of degree $X \cdot H = 3H^2 = 3e = 12 = g - 1$ and X' is smooth since it misses the vertex of S_0 . Since $h^0(S, H - X) = h^0(S, -2H) = 0$ the linear series |H| of S cuts out on X a (maybe, incomplete) linear series of degree 12 and dimension $h^0(H) - 1 = e = 4$. Hence X has Clifford index $c \le 12 - 2 \cdot 4 = 4$. To see that c = 4 we recall that on a curve of genus 13 its Clifford index can be computed by pencils; so we have to show that the gonality k of X is 6. Since the natural map $\pi: X \subset S \to E$ has degree $X \cdot f = 3$ our curve X is a triple covering of an elliptic curve; in particular, X has infinitely many g_6^1 . If k < 6 we obtain, according to Castelnuovo's genus formula for curves with independent morphisms ([2, VIII, ex. C-1]), that $g \le (k-1)(3-1) + 3g(E) = 2k+1 \le 11$, a contradiction. So k = 6, c = 4, and the series $|H|_X|$ is a complete (and very ample) g_{12}^4 on X thus computing c=4 maximally. Since $W_6^1(X)$ contains (at least) the one-dimensional irreducible component $\pi^*W_2^1(E)$ we clearly have $\dim(W_6^1(X)) > 0$.

Proposition 2.1. Let X be a curve whose Clifford index c=4 is computed maximally. Assume that $dim(W_6^1) > 0$. Then X admits a triple covering $\pi: X \to E$ over an elliptic curve E, $\pi^*(W_2^1(E))$ is the only infinite irreducible component of W_6^1 , and this component is singular with finitely many singularities. Furthermore, X has only one series g_{12}^4 (computing c maximally), and the variety W_{12}^4 is not reduced.

Proof. By de Franchis' theorem, on any k-gonal curve X with an infinite set S of g_k^1 either infinitely many g_k^1 in S are compounded of the same irrational involution or there are only finitely many compounded g_k^1 in S. For k=6, in the latter case such a curve is a smooth plane septic (g=15) or we have $g \le 11$ ([4]), and in the first case infinitely many g_6^1 in S are induced by a covering $\rho: X \to Y$ over a non-hyperelliptic curve Y of genus 3 or by a triple covering $\pi: X \to E$ over an elliptic curve E. Now, let X be a curve whose Clifford index c=4 is computed maximally and admitting infinitely many g_6^1 . Since g=13 we then are in the first case from above.

Assume that $\rho: X \to Y$ is a double covering of X over a curve Y of genus 3. Then Y is a smooth plane quartic, and every g_6^1 on X is induced by ρ since otherwise we would have $g \le (6-1)(2-1)+2g(Y)=11$, by Castelnuovo's genus formula for curves with independent morphisms. Hence we have $W_6^1(X)=\rho^*(W_3^1(Y))=\rho^*K_Y-\rho^*(W_1(Y))$. Since we know that there are pencils g_6^1 , h_6^1 on X such that $g_{12}^4=|g_6^1+h_6^1|$ we thus have pencils L_1 , L_2 of degree 3 on Y such that $g_{12}^4=|\rho^*(L_1)+\rho^*(L_2)|$. But (cf. [12, p. 1797])

$$h^{0}(X, \rho^{*}(L_{1} + L_{2})) = h^{0}(Y, L_{1} + L_{2}) + h^{0}(Y, (L_{1} + L_{2}) - D) = 4 + h^{0}(Y, L_{1} + L_{2} - D)$$

for a divisor D of Y such that 2D is linearly equivalent to the branch divisor B of ρ (i.e. B is made up by the points of Y over which ρ ramifies). So $2\deg(D) = \deg(B) = 2g - 2 - 2(2g(Y) - 2) = 16$, i.e. $\deg(D) = 8 > 6 = \deg(L_1 + L_2)$ which implies that $h^0(Y, L_1 + L_2 - D) = 0$. Thus we obtain $h^0(X, \rho^*(L_1 + L_2)) = 4$ which contradicts $|\rho^*(L_1 + L_2)| = g_{12}^4$.

So X admits a triple covering $\pi: X \to E$ over an elliptic curve E. Our very ample g_{12}^4

embeds X as a curve of degree 12 in \mathbb{P}^4 . Assume that there is another series on X computing c maximally, i.e. a $h_{12}^4 \neq g_{12}^4$. Then $|h_{12}^4 - g_{12}^4| = \emptyset$, and, according to a refinement of the base point free pencil trick ([2, III, ex. B-6]) we have: $\dim(|h_{12}^4 + g_{12}^4|) \geq 2 \cdot 4 - \dim(|h_{12}^4 - g_{12}^4|) + 4 - 1 = 12 = g - 1$ whence $h_{12}^4 = |K_X - g_{12}^4|$ and so $|2g_{12}^4| \neq |K_X|$. Thus it follows that $\dim(|2g_{12}^4|) = g - 2 = 11 = 3 \cdot 4 - 1$, and so a result of Castelnuovo ([2, p. 120]) implies that X lies on a non-degenerate surface S of minimal degree in \mathbb{P}^4 , i.e. on a cubic rational normal scroll. But this is impossible: By Segre's formula for curves on a rational normal scroll whose ruling consists of n-secant lines for the curve, we obtain $13 = g = (n-1)(\deg(X)-1-(n/2)\deg(S)) = (n-1)(12-1-(n/2)\cdot3)$ which cannot hold. Consequently, we see that a $h_{12}^4 \neq g_{12}^4$ cannot exist on X, i.e. W_{12}^4 is a point, and this point is not a smooth point of W_{12}^4 since the tangent space to W_{12}^4 at it has positive dimension ([2, IV, ex. A-2]; observe that the unique g_{12}^4 on X is half-canonical).

 $W_6^1(X)$ has the irreducible component $\pi^*(W_2^1(E))$. The argument in the beginning of this proof shows that a further infinite irreducible component of $W_6^1(X)$ gives rise to a second triple covering $\pi'^*: X \to E'$ over an elliptic curve E'; but applying Castelnuovo's genus bound for curves admitting independent morphisms to the pair (π, π') of coverings we get the contradiction $g \le (3-1)(3-1) + 3g(E) + 3g(E') = 10$.

For simplicity we identify our g_{12}^4 on X with the point ℓ of $W_{12}^4(X)$ corresponding to it. Then the irreducible component $\ell - \pi^*(W_2^1(E))$ of $W_6^1(X)$ coincides with $\pi^*(W_2^1(E))$. Hence there are four points $p_1,...,p_4\in E$ such that $\ell=|\pi^*(p_1+...+p_4)|$. Since, on E, $p_1+...+p_4\sim 2q_1+2q_2$ for two points $q_1,q_2\in E$ there exists a $g_6^1=|\pi^*(q_1+q_2)|$ on X such that $|2g_6^1|=\ell$, and since X has only finitely many 2-torsion points X has only a finite number of such g_6^1 . Recall that the embedding series ℓ is the only g_{12}^4 on X. Hence $|2g_6^1|=\ell$ is equivalent with $\dim |2g_6^1|\geq 4$, and it follows ([2, IV, 4.2]) that the g_6^1 in $\pi^*(W_2^1(E))$ satisfying $|2g_6^1|=\ell$ correspond to the singularities of the component $\pi^*(W_2^1(E))$ of $W_6^1(X)$.

Though $\dim(W_6^1) > 0$ is possible, on every curve X whose Clifford index c = 4 is computed maximally only the unique g_{12}^4 and the pencils of degree 6 compute c. To see this, recall that X has no series computing c of degree d with 3(c+2)/2 < d < 2(c+2), i.e. no g_{10}^3 . A g_8^2 on X (computing c) cannot be simple since we know that $W_7^1 = W_6^1 + W_1$ which implies that $|g_8^2 - P|$ has a base point, for every point $P \in X$. So a g_8^2 on X is compounded thus inducing a double covering $\rho: X \to Y$ over a smooth plane quartic, i.e. over a non-hyperelliptic curve of genus 3. But in the proof of the Proposition we observed already that this is impossible.

Finally, we just note that one can show that the curve X of Proposition 2.1 is as in the example. (In fact, viewing X as being embedded by the g_{12}^4 it lies in the intersection of two irreducible quadrics in \mathbb{P}^4 , i.e. on a surface of degree 4 which turns out to be an elliptic cone.)

3. The main result

The following general result is elementary but useful, for our purposes.

Lemma 3.1. On any curve Y of genus g and Clifford index c let D, E be effective divisors computing c. Then the greatest common divisor (D, E) of D and E has Clifford index $cliff((D, E)) \le c$, and if dim |(D, E)| > 0 then (D, E) and one of the divisors D + E - (D, E)

(the "least common multiple" of D and E) resp. its dual $K_Y - (D + E - (D, E))$ compute c.

Proof. Recall that, for a divisor Δ of Y, we have $\operatorname{cliff}(\Delta) = \deg(\Delta) - 2h^0(\Delta) + 2$, $\operatorname{cliff}(K_X - \Delta) = \operatorname{cliff}(\Delta)$, and that the Clifford index c of Y is the minimum of all $\operatorname{cliff}(\Delta)$ such that $h^0(\Delta) \ge 2$ and $h^1(\Delta) \ge 2$ holds.

It is easy to prove the inequality (cf. [14, 2.21])

$$\operatorname{cliff}(D) + \operatorname{cliff}(E) \ge \operatorname{cliff}((D, E)) + \operatorname{cliff}(D + E - (D, E)).$$

Since $\operatorname{cliff}(D) = c = \operatorname{cliff}(E)$ the first claim of the Lemma follows from this inequality provided that $\operatorname{cliff}(D+E-(D,E)) \geq c$. So assume that $\operatorname{cliff}(D+E-(D,E)) < c$. Since $h^0(D+E-(D,E)) \geq h^0(D) \geq 2$ we then must have $h^1(D+E-(D,E)) \leq 1$, and so we obtain $c > \operatorname{cliff}(D+E-(D,E)) = \operatorname{cliff}(K_Y-(D+E-(D,E))) = 2g-2-(\deg(D)+\deg(E)-\deg((D,E)))-2h^1(D+E-(D,E))+2 \geq \deg((D,E))$ (recall that $\deg(D) < g$ and $\deg(E) < g$). But $\deg((D,E)) < c$ implies that $h^0((D,E)) = 1$ whence it follows that $\operatorname{cliff}((D,E)) = \deg((D,E)) < c$.

Assume that $h^0((D, E)) \ge 2$. We then have $\operatorname{cliff}((D, E)) \ge c$, and by the (just proved) first claim of the Lemma we see that (D, E) computes c. Hence the inequality at the beginning of this proof shows that $\operatorname{cliff}(D + E - (D, E)) \le c$. Since $h^0(D + E - (D, E)) \ge 2$ it follows that |D + E - (D, E)| or its dual series computes c (depending on which of these two series has degree (D, E)) provided that $h^1(D + E - (D, E)) \ge 2$, too. But for $h^1(D + E - (D, E)) \le 1$ we obtain $c \ge \operatorname{cliff}(K_Y - (D + E - (D, E))) \ge 2g - 2 - (\operatorname{deg}(D) + \operatorname{deg}(E) - \operatorname{deg}((D, E))) \ge 2$ deg(D, E) whence $h^0(D, E) \le 1$, a contradiction.

From now on we use the following notation: X always denotes a curve of genus g whose Clifford index c is even and computed maximally. We set $d_0 := g - 1 = 2c + 4$, $r_0 := (d_0 - c)/2 = (c + 4)/2$, and $g_{d_0}^{r_0}$ is an arbitrary but fixed series on X (computing c maximally). Finally, I denotes the set of effective divisors D of X computing c such that deg(D) > c + 2. (Clearly, $I \neq \emptyset$ since it contains the $g_{d_0}^{r_0}$.)

Theorem 3.2. Assume that there is a divisor $D \in I$ which is not contained in a divisor of the $g_{d_0}^{r_0}$. Then $c \equiv 2 \mod 4$, D computes c maximally and $W_{d_0}^{r_0}$ is infinite.

Proof. For a divisor $D \in I$ let $d := \deg(D)$, and $r := \dim(|D|) = (d - c)/2 \ge 2$. Using a notation of [5], for any integer $e \ge r - 1$ the set

$$V_e^{r-2}(|D|) := \{ E \in \text{Div}(X) : E \ge 0, \deg(E) = e \text{ and } \dim |D - E| \ge 1 \}$$

is the variety of e-secant (r-2)-plane divisors of X; if $V_e^{r-2}(|D|) \neq \emptyset$ every irreducible component Z of it has dimension $\dim(Z) \geq 2(r-1)-e$. By [5,1.2] we know that $V_{2r-3}^{r-2}(|D|) \neq \emptyset$, and for $E \in V_{2r-3}^{r-2}(|D|)$ we have $|D-E| \in W_{c+3}^1 = W_{c+2}^1 + W_1$. Hence for every $E \in V_{2r-3}^{r-2}(|D|)$ there is exactly one point $P_E \in X$ such that $E + P_E \in V_{2r-2}^{r-2}(|D|)$. So the assignment $E \mapsto E + P_E$ defines a surjection $V_{2r-3}^{r-2}(|D|) \to V_{2r-2}^{r-2}(|D|)$ with finite fibres whence $\dim V_{2r-2}^{r-2}(|D|) = \dim V_{2r-3}^{r-2}(|D|) \geq 2(r-1) - (2r-3) = 1$. Let $i: V_{2r-2}^{r-2}(|D|) \to W_{c+2}^1$ be the natural map defined by $F \mapsto |D-F|$ for $F \in V_{2r-2}^{r-2}(|D|)$.

For any pencil L in the image of i there is a divisor $F \in V^{r-2}_{2r-2}(|D|)$ resp. a pencil L' of degree c+2 on X such that |D|=|L+F| resp. $g^{r_0}_{d_0}=|L+L'|$, and for any point P in the

support of F we can find a divisor $E' \in L'$ containing P. Hence for any $E \in L$ the greatest common divisor G := (E + F, E + E') of $E + F \in |D|$ and $E + E' \in g_{d_0}^{r_0}$ contains the divisor E + P. So $\deg(G) > \deg(E) = c + 2$, and by Lemma 3.1 we know that $\operatorname{cliff}(G) \leq c$. Since $\dim |G| \geq \dim |E| = 1$ we see that G computes c, i.e. $G \in I$.

Now assume that D is not contained in a divisor of the $g_{d_0}^{r_0}$. Then G is properly contained in $E+F\in |D|$, and so $\deg(G)< d$. Thus the divisor H:=(E+E')+(E+F)-G has degree $g-1+d-\deg(G)\geq g$, and, again by Lemma 3.1, $|K_X-H|$ is a linear series of degree at most g-2=2c+3 computing c which implies that $\deg(K_X-H)\leq 3(c+2)/2$, i.e. we have $2(c+2)-d+\deg(G)=\deg(K_X-H)\leq 3(c+2)/2$. Hence $\deg(G)\leq d-(c+2)/2$, and since $\deg(G)>c+2$ we obtain d>3(c+2)/2. It follows that d=2c+4=g-1, i.e. |D| is a $g_{2c+4}^{(c+4)/2}$ on X different from our chosen $g_{d_0}^{r_0}$.

CLAIM. Assume that X has a linear series computing c maximally which is different from our $g_{d_0}^{r_0}$. Then $W_{d_0}^{r_0}$ is infinite, and X has linear series of degree 3(c+2)/2 computing c.

To prove this claim let $h_{d_0}^{r_0}$ be a $g_{2c+4}^{(c+4)/2}$ on X different from our $g_{d_0}^{r_0}$. For any $L \in W_{c+2}^1$ there is a unique pair (L', L'') of different pencils L', L'' of degree c+2 on X such that $g_{d_0}^{r_0} = |L+L'|$ and $h_{d_0}^{r_0} = |L+L''|$. Let L = |E|.

Assume that L' and L'' are not compounded of the same involution. Then the General Position Theorem ([1, 4.1]) implies that there is a divisor $E' \in L'$ having with every divisor $E'' \in L''$ at most one point in common, and for every point P in the support of E' we can find a divisor $E'' \in L''$ containing P. With this choice we see, by Lemma 3.1, that G := (E + E', E + E'') = E + (E', E'') = E + P is a divisor computing C which is impossible since $\deg(G) = C + 3$.

Hence the two pencils $L'=|g_{d_0}^{r_0}-L|$, $L''=|h_{d_0}^{r_0}-L|$ are compounded of the same (irrational) involution. Then there is a covering $\pi:X\to Y$ of maximum possible degree n such that L',L'' are induced from pencils of degree (c+2)/n on the curve Y (in particular, n divides c+2). For this pair (L',L'') specified by L=|E| we can choose, for any point $P\in X$, unique divisors $E_P'\in L'$, $E_P''\in L''$ having the point P in common. Then the greatest common divisor (E_P',E_P'') of E_P' and E_P'' is the divisor $\pi^*(\pi(P))$ of degree n of X. (Clearly, $\dim|(E_P',E_P'')|=0$. Choosing $E_Q'\in L'$, $E_Q''\in L''$ having another point $Q\in X$ in common we either have $(E_Q',E_Q'')=(E_P',E_P'')$ - which happens only in the case $\pi(Q)=\pi(P)$ - or that (E_Q',E_Q'') and (E_P',E_P'') have no point in common.) The divisor $G_P:=(E+E_P',E+E_P'')=E+(E_P',E_P'')$ has degree $\deg(G_P)=c+2+n=((\lambda+1)/\lambda)(c+2)$ if $2\le \lambda:=(c+2)/n$, and according to Lemma 3.1 it computes c. We will show that $\lambda=2$, i.e. $\deg(G_P)=3(c+2)/2$; then Y is an elliptic curve.

For $m \geq 2$ points $P_1, ..., P_m$ of X such that (E'_{P_i}, E''_{P_i}) and (E'_{P_j}, E''_{P_j}) have disjoint support for $1 \leq i < j \leq m$ we set $G_{P_1,...,P_m} := E + (E'_{P_1}, E''_{P_1}) + ... + (E'_{P_m}, E''_{P_m})$. Then $(G_{P_1,...,P_{m-1}}, G_{P_m}) = E$ computes c, and we have $G_{P_1,...,P_m} = G_{P_1,...,P_{m-1}} + G_{P_m} - E = G_{P_1,...,P_{m-1}} + G_{P_m} - (G_{P_1,...,P_{m-1}}, G_{P_m})$. Inductively applying Lemma 3.1 we see that $G_{P_1,...,P_m}$ computes c as long as $\deg(G_{P_1,...,P_m}) = c + 2 + mn = c + 2 + m(c + 2)/\lambda = (1 + (m/\lambda))(c + 2)$ is strictly smaller than g, i.e. for $m \leq \lambda$. If $\lambda \geq 3$ we choose $m = \lambda - 1$ and obtain that $G_{P_1,...,P_{\lambda-1}}$ is a divisor computing c of degree strictly between 3(c + 2)/2 and 2(c + 2); this is not possible. Hence we have $\lambda = 2$. Then we choose $m = \lambda$ whence $\deg(G_{P_1,P_2}) = 2c + 4 = d_0$. Since, for $Q \in X$, we have $G_{P_1,P_2} \sim G_{P_1,Q}$ iff $(E'_{P_2}, E''_{P_2}) = (E'_{Q}, E''_{Q})$ (i.e. $\pi(P_2) = \pi(Q)$) we see

that - fixing P_1 but varying P_2 - we obtain this way infinitely many linear series on X which compute c maximally. This proves the claim.

Finally, we observe that $3(c+2)/2 = \deg(G_P) \equiv c \equiv 0 \mod 2$ implies that $c \equiv 2 \mod 4$.

Corollary 3.3. In the case $c \equiv 0 \mod 4$ the $g_{d_0}^{r_0}$ is the only linear series on X computing cmaximally.

Remark. Let $V_e^n(g_{d_0}^{r_0}) := \{E \in \operatorname{Div}(X) : E \ge 0, \deg(E) = e \text{ and } \dim(|g_{d_0}^{r_0} - E|) \ge r_0 - 1 - n\};$ here $n \in \mathbb{Z}$ with $n \le e - 1$ and $n \le r_0 - 1$. Choose an integer r such that $1 < r < r_0$ and set d = c + 2r (note that $d_0 - d = 2(r_0 - r)$). The upshot of the Theorem, then, is that $V_{2(r_0-r)}^{r_0-1-r}(g_{d_0}^{r_0}) \cong W_d^r$ (via $E \mapsto |g_{d_0}^{r_0} - E|$). For r = 1 (i.e. d = c + 2) this bijection is wrong since $V_{2r_0-2}^{r_0-2}(g_{d_0}^{r_0})$ is the set of all effective divisors of degree $2r_0-2=c+2$ of X which move in a non-trivial linear series, i.e. $V_{2r_0-2}^{r_0-2}(g_{d_0}^{r_0})=\{0\leq E\in \mathrm{Div}(X): |E|=g_{c+2}^1\};$ so $V_{2r_0-2}^{r_0-2}(g_{d_0}^{r_0})$ is a \mathbb{P}^1 -bundle over W_{c+2}^1 .

The Theorem thus relates the question if $W_d^r \neq \emptyset$ (1 < $r < r_0$) to the existence of a $2(r_0 - r)$ secant $(r_0 - 1 - r)$ -plane for the curve X viewed as imbedded into \mathbb{P}^{r_0} by the $g_{d_0}^{r_0}$. And for 2(c+2) > d > 3(c+2)/2 (i.e. for $0 < r_0 - r < (c+2)/4$) we know that there is no such plane.

Corollary 3.4. Assume that there exists a divisor $D \in I$ of degree d < g - 1. Then W_{c+2}^1 contains a one-dimensional irreducible component W such that for every pencil $L \in W$ we have $\dim |D - L| = 0$, and the unique divisor in |D - L| is contained in a divisor of the pencil $|g_{d_0}^{r_0} - L|$ of degree c + 2.

Proof. We use the notation from the proof of the Theorem. Let $r := \dim(|D|)$ and $i|_Z$: $Z \to W^1_{c+2}$ be the natural map from an irreducible component Z of $V^{r-2}_{2r-2}(|D|)$ into W^1_{c+2} ; recall that dim(Z) ≥ 1 . Since there is no pencil of degree 2r - 2 = d - c - 2 < c + 2 on X the map i is injective whence we have $\dim(i(Z)) \ge 1$. But since $\dim(W_{c+2}^1) \le 1$ ([2, VII, ex. C-2]) it follows that $\dim(i(Z)) = 1 = \dim(Z)$. (In particular, $V_{2r-2}^{r-2}(|D|)$ is equi-dimensional of dimension 1.)

Let W := i(Z). Then W is an infinite irreducible component of W_{c+2}^1 , and for every $L \in W$ there is a divisor $F \in \mathbb{Z}$ such that |D| = |L + F|. Since $\deg(F) = 2r - 2 = d - (c + 2) < c + 2$ we have $|D - L| = \{F\}$, and, by the Theorem, F is contained in a divisor of the pencil $|g_{d_0}^{r_0} - L|$.

Recall that $D \in I$, $\deg(D) < q - 1 = 2c + 4$ implies that $\deg(D) \le 3(c + 2)/2$, and for $c \equiv 0 \mod 4$ we even have d < 3(c+2)/2 since $d \equiv c \equiv 0 \mod 2$. We add the following observation.

Corollary 3.5. In Corollary 3.4, if d < 3(c + 2)/2 then W_{c+2}^1 contains a one-dimensional irreducible component (namely $g_{d_0}^{r_0}$ – W) such that no two different pencils in it are compounded of the same involution.

Proof. In Corollary 3.4 we have $|g_{d_0}^{r_0} - D| \subset |g_{d_0}^{r_0} - L|$ for any $L \in W$. Setting $d = \deg(D)$ we clearly have $\deg(|g_{d_0}^{r_0} - D|) = d_0 - d$, and we know that $(c+2)/2 = 2(c+2) - 3(c+2)/2 \le d$ $d_0 - d \le (2c + 4) - (c + 4) = c$. In particular, $|g_{d_0}^{r_0} - D|$ consists of a single divisor $E \ge 0$.

Assume that two pencils $L' \neq L''$ in $g_{d_0}^{r_0} - W$ are compounded of the same involution thus giving rise to a covering $\pi: X \to Y$ of degree $n \geq 2$ such that L', L'' are induced from pencils of degree (c+2)/n on the curve Y. We can choose divisors $E' \in L', E'' \in L''$ whose greatest common divisor (E', E'') contains E. We may assume that $n = \deg((E', E''))$; then $n \geq \deg(E) \geq (c+2)/2$, and so we obtain $n = (c+2)/2 = \deg(E)$. Thus d = 3(c+2)/2; Y is an elliptic curve, then, and $g_{d_0}^{r_0} - W = \pi^*(W_2^1(Y))$. However, for d < 3(c+2)/2 this does not occur.

We see that the divisor $D \in I$ in Corollary 3.5 endows X with a feature of its pencils of minimal degree which - observing that their Brill-Noether number is negative - is apparently only known to be shared by the smooth plane curves (of degree \geq 6). Cf. Remark 3.8 in [6].

Corollary 3.6. For integers d, r such that $c + 2 \le d \le g - 1$ and d - 2r = c we have $dim(W_d^r) \le 1$.

Proof. We have $\dim(W^1_{c+2}) \leq 1$ ([2, VII, ex. C-2]), and since $W^{r_0}_{d_0} \subset g^1_{c+2} + W^1_{c+2}$ for a fixed pencil g^1_{c+2} on X it follows that $\dim(W^{r_0}_{d_0}) \leq 1$. So we assume that $c+2 < d < d_0 = g-1$. Let K be an irreducible component of maximal dimension of W^r_d . Then $\bigcup_{g^r_d \in K} i(V^{r-2}_{2r-2}(g^r_d)) \subset W^1_{c+2}$ is a union of one-dimensional irreducible components W_1, \ldots, W_n of W^1_{c+2} . If $K_j := \{g^r_d \in K | i(V^{r-2}_{2r-2}(g^r_d)) \supset W_j \}$ $(j=1,\ldots,n)$ we thus have $K=K_1 \cup \ldots \cup K_n$. Fixing $L_j \in W_j$ we have, by Corollary 3.4, a map $\gamma_j : K_j \to \mathbb{P}^1$ which assigns to $g^r_d \in K_j$ that divisor of the pencil $|g^{r_0}_{d_0} - L_j|$ which contains the (unique) divisor $E = |g^{r_0}_{d_0} - g^r_d|$. Since E specifies g^r_d (and since the divisor $\gamma_j(g^r_d)$ of degree c+2 contains only a finite number of effective divisors of degree $d_0 - d \leq c$) the fibres of γ_j are finite. Choosing j such that $\dim(K_j) = \dim(K) = \dim(W^r_d)$ it follows that $\dim(W^r_d) \leq \dim(\mathbb{P}^1) = 1$.

Corollary 3.7. If the $g_{d_0}^{r_0}$ on X is not unique then every pencil of degree c+2 on X is induced by a pencil of degree 2 on a smooth elliptic curve (which is covered by X with (c+2)/2 sheets), and I consists of divisors of degree 3(c+2)/2 and $2(c+2)=d_0$.

Proof. Let $L \in W^1_{c+2}$. There are pencils $L', L'' \in W^1_{c+2}$ with $L'' \neq L$ such that $\dim(|L' + L|) = r_0 = \dim(|L' + L''|)$, and from the proof of the Claim in the proof of the Theorem we see that L and L'' are compounded of the same elliptic involution of order (c + 2)/2. The remaining assertion follows from Corollary 3.5.

Lemma 3.8. X has no net computing c if c > 8.

Proof. Assume that X has a net g_{c+4}^2 . Then for every point $P \in X$ the pencil $g_{c+4}^2(-P)$ of degree c+3 has a base point since $W_{c+3}^1 = W_{c+2}^1 + W_1$. Hence the g_{c+4}^2 is not simple. Then it induces a morphism $X \to Y$ of degree m>1 upon an integral plane curve Y of degree (c+4)/m. If m>2 or if Y has singularities the normalization of Y has a pencil of degree d<(c+2)/m which induces a pencil of degree md<(c+2)/m which cannot exist. Hence m=2 and Y is a smooth plane curve of degree (c+4)/2. Then Y has genus g(Y)=(1/2)((c+4)/2-1)((c+4)/2-2)=c(c+2)/8, and by the Riemann-Hurwitz genus formula for coverings we obtain $2c+5=g\geq 2g(Y)-1=c(c+2)/4-1$, i.e. $(c-3)^2\leq 33$ which implies $c\leq 8$.

For c = 6 and c = 8 we don't know yet if X has no net computing c.

4. Clifford index c = 6 and c = 8

In this section we turn to the Question posed in the Introduction, for c = 6 and c = 8. In these cases the series computing c, besides those computing c maximally, are at most pencils, nets and webs. First, we reduce to pencils and nets, by the

Lemma 4.1. Let c = 6 or c = 8. If X has a web computing c then it also has a net computing c.

Proof. Assume that X has a g_{c+6}^3 . Then this series is base point free and simple thus inducing a birational morphism onto an integral space curve X' of degree c+6.

Let $D \in g_{c+6}^3$. The number ρ_2 of conditions imposed on quadrics in \mathbb{P}^2 by a general plane section of X' is at most $h^0(2D) - h^0(D)$, and from the proof of Corollary 1 in [13] we know that $h^0(2D) \geq 4 \cdot 3 - 2 = 10$, i.e. $|2D| = g_{2c+12}^r$ with $r \geq 9$. If $r \geq 10$ then X has a $g_{24}^{10} = |K_X - g_8^2|$ for c = 6 which is impossible resp. X has a $g_{28}^{10} = |K_X - g_{12}^2|$ for c = 8 in which case there is a net computing c = 8 on C. So we may assume that c = 9 whence $c = 10 - 4 = 6 = 2\dim(|D|)$. By a lemma of Castelnuovo and Fano's extension of it ([3, 1.10 and 3.1]) this implies that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 cannot lie on a quadric; so c = 10 - 4 = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 - 4 = 10 in [13] shows that c = 10 - 4 = 10 - 4 = 10 - 4 = 10 in [14] shows that c = 10 - 4 = 10 - 4 = 10 - 4 = 10 in [15] shows that c = 10 - 4 =

The projection $\pi: X' \to \mathbb{P}^2$ with center a smooth point of X' is birational onto its image Y since c+5 is a prime number for c=6 and c=8. Hence Y is a plane curve of degree c+5 which cannot be smooth. Since X has no base point free g^1_{c+3} all singular points of Y are triple points (points of multiplicity 3). Thus the fibre of π at a singular point of Y consists of 3 points of X'. Consequently, X' has a quadrisecant line through every smooth point. Clearly, then, all these lines must lie on the cubic S; since our g^3_{c+6} is complete this is only possible if S is an elliptic cone. The ruling of the cone makes X a 4-fold covering of an elliptic curve. In particular, X has infinitely many g^1_8 which is impossible for c=8. For c=6 we use Segre's formula for the arithmetic genus of a curve on an elliptic scroll whose ruling are n-secant lines for the curve,

 $p_a(X') = (n-1)(\deg(X') - 1 - (1/2)n\deg(S)) + n = 3(12 - 1 - (1/2) \cdot 4 \cdot 3) + 4 = 19 > g = 17.$ So X' has at least one singular point; taking the projection $X' \to \mathbb{P}^2$ with center this point we obtain a net of degree $m \le \deg(X') - 2 = c + 4 = 10$ on X. Since c = 6 we must have m = 10, and so we are done.

Theorem 4.2. For c = 6 and c = 8 the $g_{d_0}^{r_0}$ is the only non-pencil on X computing c.

Proof. By Corollary 3.7, Lemma 4.1 for c=6 resp. Corollary 3.3 for c=8, the $g_{d_0}^{r_0}$ on X is unique (and so, in particular, half-canonical). By Lemma 4.1 it remains to show the non-existence of nets on X computing c. So assume there is a g_{c+4}^2 on X. As in the proof of Lemma 3.8 we see that this net induces a double covering $\pi: X \to Y$ over a smooth plane curve Y of degree (c+4)/2. Let σ ($\sigma^2 = id$.) denote the unique automorphism of X/Y.

By Theorem 3.2 there is an effective divisor D_c of X of degree $d_0 - (c+4) = c$ such that $g_{c+4}^2 = |g_{d_0}^{r_0} - D_c|$. Since the g_{c+4}^2 is base point free the support of a general divisor $D' \in g_{c+4}^2$ consists of pairwise different points (is "separable") and is disjoint to the support of D_c . Since all divisors in our g_{c+4}^2 are of the form $\pi^*(\delta)$ for a divisor δ in the unique net $g_{(c+4)/2}^2$

on Y the divisor D' (being separable) contains no ramification point of π and is σ -invariant (i.e. $\sigma D' = D'$).

Let $D_0 := D' + D_c$. Then $D_0 \in g_{d_0}^{r_0}$. Since the $g_{d_0}^{r_0}$ on X is unique we have $\sigma(g_{d_0}^{r_0}) = g_{d_0}^{r_0}$. In particular, $D' + D_c = D_0 \sim \sigma D_0 = \sigma D' + \sigma D_c = D' + \sigma D_c$, i.e. $\sigma D_c \sim D_c$. But $\dim |D_c| = 0$, and so it follows that $\sigma D_c = D_c$ and, then, $\sigma D_0 = D_0$.

Let $R_1, ..., R_n$ be the ramification points of π ; then $R := R_1 + ... + R_n \in \operatorname{Div}(X)$ is the ramification divisor of π , and we have n = 12 for c = 6, n = 4 for c = 8. For a σ -invariant divisor $D = \sum_{i=1}^n k_i R_i + \sum_j l_j (P_j + \sigma(P_j)) \in \operatorname{Div}(X)$ with $P_j \neq R_i$ for all i, j we define a divisor $\pi_0 D$ of Y by $\pi_0 D := \sum_{i=1}^n [k_i/2]\pi(R_i) + \sum_j l_j \pi(P_j) \in \operatorname{Div}(Y)$, and we let $V_e(D) := \{f \in H^0(D) | f \circ \sigma = f\}$ resp. $V_o(D) := \{f \in H^0(D) | f \circ \sigma = -f\}$ be the even resp. odd part of $H^0(D)$. Then $\deg(\pi_0 D) \leq (1/2) \deg(D)$, and we have equality here iff $\pi^*(\pi_0 D) = D$. Furthermore, $V_e(D) \cong H^0(Y, \pi_0 D)$ (since $f \in V_e(D)$ has a pole of even order at every ramification point R_i of π), and $H^0(D) = V_e(D) \oplus V_o(D)$.

Let $V_e := V_e(D_0)$, $V_o := V_o(D_0)$. Since $H^0(Y, \pi_0 D') \cong V_e(D') \subset V_e$ we have $\dim(V_e) \geq h^0(\pi_0 D') = 3$. Furthermore, $\dim(V_e) = h^0(\pi_0 D_0)$ with $\deg(\pi_0 D_0) \leq d_0/2 = c + 2 = 2\deg(Y) - 2$. Since Y is a smooth plane curve it follows that $h^0(\pi_0 D_0) \leq 4$, and if $h^0(\pi_0 D_0) = 4$ holds then $\deg(\pi_0 D_0) = c + 2$. So we see that $\dim(V_e) \leq 4$, and if $\dim(V_e) = 4$ then $\pi^*(\pi_0 D_0) = D_0$.

We first consider the case $\dim(V_e) = 3$, i.e. $V_e = V_e(D')$. Then $\dim(V_o) = h^0(D_0) - 3 = (((c+4)/2) + 1) - 3 = c/2$.

Let $D_c \leq R$ (i.e. $\pi_0 D_c = 0$); this is only possible for c = 6. By adjunction we have $K_X \sim \pi^*(K_Y) + R \sim \pi^*(2\delta) + R \sim 2D' + R$ for a divisor δ in the net $g_{(c+4)/2}^2$ on Y, and since $|D_0|$ is half-canonical we have $K_X \sim 2D_0 = 2D' + 2D_c$. Hence we have $2D_c \sim R$. For a suitable numbering of the ramification points $R_1, ..., R_{12}$ of π we thus have $2(R_1 + ... + R_6) \sim R_1 + ... + R_6 + R_7 + ... + R_{12}$, i.e. $R_1 + ... + R_6 \sim R_7 + ... + R_{12}$. But X has no g_6^1 ; hence it follows that $R_1 + ... + R_6 = R_7 + ... + R_{12}$ which is not true.

So we have $2R_i \leq D_c$ for some i or $P + \sigma(P) \leq D_c$ for a non-ramification point $P \in X$. Let $k_i \geq 2$ resp. $l \geq 1$ be the multiplicity of R_i resp. P in D_c ; note that k_i is odd. Choose a basis $f_1, ..., f_{c/2}$ of V_o such that R_i resp. P is a pole of order k_i resp. l of these functions. Then there are $a_1, ..., a_{(c/2)-1} \in \mathbb{C}$ such that the functions $g_j := f_{c/2} - a_j f_j \in V_o$ (j = 1, ..., (c/2) - 1) have a pole of order $k_i - 2$ at R_i resp. l - 1 at P (and $\sigma(P)$). Then the vector space $V_e \oplus \operatorname{span}(g_1, ..., g_{(c/2)-1})$ of dimension $\dim(V_e) + ((c/2) - 1) = (c/2) + 2$ gives rise to a linear series on X of dimension (c/2) + 1 and degree $\deg(D') + 2((c/2) - 1) = 2c + 2$. Since this series computes c we obtain a contradiction.

So we have $\dim(V_e) = 4$, i.e. $h^0(\pi_0 D_0) = 4$. Then $\pi^*(\pi_0 D_0) = D_0$ whence ([12, p. 1797])

$$((c+4)/2) + 1 = h^0(X, D_0) = h^0(X, \pi^*(\pi_0 D_0)) = h^0(Y, \pi_0 D_0) + h^0(Y, \pi_0 D_0 - E)$$

for a divisor E of Y such that 2E is linearly equivalent to the branch divisor $\pi_*(R)$ of π .

Thus we obtain $h^0(\pi_0 D_0 - E) = (c + 6)/2 - 4 = (c - 2)/2$, i.e. $h^0(\pi_0 D_0 - E) = 2$ for c = 6 and $h^0(\pi_0 D_0 - E) = 3$ for c = 8. But for c = 6 we have $\deg(E) = n/2 = 6$ and so $\deg(\pi_0 D_0 - E) = (1/2) \deg(D_0) - \deg(E) = (c + 2) - 6 = 2$, i.e. $|\pi_0 D_0 - E|$ is a g_2^1 on Y which is impossible. Let c = 8. Then we have $\deg(E) = n/2 = 2$ whence $\deg(\pi_0 D_0 - E) = 8$, i.e. $|\pi_0 D_0 - E|$ is a g_8^2 on Y. Let δ be a divisor in the unique net g_6^2 on Y. Then there are points p_1, p_2, q_1, q_2 of Y such that $\pi_0 D_0 \sim 2\delta - p_1 - p_2$ and $\pi_0 D_0 - E \sim \delta + q_1 + q_2$. (In

fact, it is well known that $W_8^2(Y) = W_6^2(Y) + W_2(Y) = |\delta| + W_2(Y)$ for a smooth plane sextic Y whence $W_{10}^3(Y) = |K_Y| - W_8^2(Y) = |3\delta| - (|\delta| + W_2(Y)) = |2\delta| - W_2(Y)$.) So we obtain $\delta + q_1 + q_2 \sim \pi_0 D_0 - E \sim 2\delta - p_1 - p_2 - E$, i.e. $\delta - E \sim p_1 + p_2 + q_1 + q_2$ which implies that $h^0(\delta - E) \ge 1$. But we have $3 = h^0(X, \pi^*(\delta)) = h^0(Y, \delta) + h^0(Y, \delta - E) = 3 + h^0(Y, \delta - E)$ which shows that $h^0(Y, \delta - E) = 0$, and this contradiction proves the Theorem.

If a smooth curve in \mathbb{P}^5 on a cone over a 4-gonal canonical curve of genus 5 is cut out there by a quadric hypersurface it has maximally computed Clifford index 6 and infinitely many g_8^1 ; so Theorem 4.2 is, for c = 6, not merely a consequence of the recognition theorem stated in the Introduction.

5. X on a K3 surface

Viewing X as being embedded into \mathbb{P}^{r_0} by our $g_{d_0}^{r_0}$ it possibly lies on a smooth projective K3 surface S of degree $2r_0-2$ in \mathbb{P}^{r_0} . (In fact, the examples of curves with maximally computed Clifford index have been constructed in this way, cf. [5, 3.2.6, 3.2.7].) If so, observing that c < [(g-1)/2] = c+2 there exists an effective divisor D of S such that its restriction $D|_X$ to X computes C ([7]). Hence one may ask if it is possible to find an (unexpected) g_{c+2r}^r with $1 < r < r_0$ on $X \subset S$ with the aid of a suitable divisor of S. As a consequence of an interesting result of Knutsen for curves on a K3 surface ([11, 3.4]) we have the

Theorem 5.1. Assume that X lies, as a curve of degree d_0 , on a K3 surface S of degree $2r_0 - 2$ in \mathbb{P}^{r_0} . Then for every complete linear series |D| of S without a base curve such that $D|_X$ computes c we have $\deg(D|_X) = 2c + 4$ or $\deg(D|_X) = c + 2$.

Proof. Let H be a hyperplane section of S. We have $H^2 = \deg(S) = 2r_0 - 2 = c + 2$, $X^2 = 2g - 2 = 4c + 8$ and $H \cdot X = d_0 = 2c + 4$, i.e. $(H \cdot X)^2 = 4(c + 2)^2 = H^2X^2$ which implies, by the Hodge index theorem ([9, V, 1.9 and ex. 1.9]), that $X \sim ((H \cdot X)/H^2)H = 2H$. Since the canonical series of S is trivial we have $h^0(H - X) = h^0(-H) = h^2(H) = 0$ and $h^1(H - X) = h^1(X - H) = h^1(H) = 0$ ([15, 2.2]) whence by a standard exact sequence and by the Riemann-Roch theorem ([9, V, 1.6]) it follows that $h^0(X, H|_X) = h^0(H) = 2 + (1/2)H^2 = r_0 + 1$, i.e. $|H|_X| = g_{do}^{r_0}$.

Let D be an effective divisor of S such that |D| has no base curve and $D|_X$ computes c. Then $D^2 \ge 0$, and since $\deg(D) = D \cdot H = (1/2)D \cdot X = (1/2)\deg(D|_X) < g-1 = d_0 = \deg(X)$ we have $h^0(D-X) = 0$.

Assume that $h^1(D) = 0$. Then a standard exact sequence shows that $h^0(X, D|_X) = h^0(D) + h^1(D - X)$. Likewise, if X_0 is an arbitrary smooth irreducible curve in |2H| we have $h^0(X_0, D|_{X_0}) = h^0(D) + h^1(D - X_0)$. Clearly, $D - X_0 \sim D - X$ implies that $h^1(D - X_0) = h^1(D - X)$ whence $h^0(X_0, D|_{X_0}) = h^0(X, D|_X)$. Since, by [7], X_0 has the same Clifford index C as X, we see that $D|_{X_0}$ computes the Clifford index of X_0 .

Choose X_0 general in |2H|. Then X_0 has only finitely many pencils g_{c+2}^1 , according to a theorem of Knutsen ([11, 3.4]), and since the Clifford index c of X_0 is maximally computed (by $H|_{X_0}$) there are no base point free g_{c+3}^1 on X_0 . Consequently, the recognition theorem (applied to X_0) shows that $D|_{X_0}$ computes c maximally or $|D|_{X_0}| = g_{c+2}^1$. Hence, for X, we have $h^0(X, D|_X) = r_0 + 1$ or (provided that $D^2 = 0$) $h^0(X, D|_X) = 2$.

Assume that $h^1(D) \neq 0$. Then $D \sim kE_0$ for an irreducible curve E_0 with $E_0^2 = 0$ and some integer $k \geq 2$ ([15, 2.6]). We have $k \deg(E_0|_X) = \deg(D|_X) \leq g - 1 = 2c + 4$, and since $h^0(X, E_0|_X) \geq h^0(E_0) \geq 2 + (1/2)E_0^2 = 2$ we have $\deg(E_0|_X) \geq c + 2$. Thus we obtain k = 2 and $\deg(D|_X) = 2c + 4$.

References

- [1] R.D.M. Accola: On Castelnuovo's inequality for algebraic curves. I, Trans. Amer. Math. Soc. 251 (1979), 355–373.
- [2] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Geometry of Algebraic Curves. I, Grundlehren Math. Wiss., 267, Springer, New York 1985.
- [3] C. Ciliberto: *Hilbert functions of finite sets of points and the genus of a curve in a projective space*; in Lecture Notes in Mathematics **1266**, Springer, New York, 1987, 24–73.
- [4] M. Coppens: Smooth curves having infinitely many linear systems g_d^1 , Bull. Math. Soc. Belg., Ser. B **40** (1988), 153–176.
- [5] M. Coppens and G. Martens: Secant spaces and Clifford's theorem, Compositio Math. 78 (1991), 193-212.
- [6] D. Eisenbud, H. Lange, G. Martens and F.-O. Schreyer: The Clifford dimension of a projective curve, Compositio Math. 72 (1989), 173–204.
- [7] M. Green and R. Lazarsfeld: Special divisors on curves on a K3 surface, Invent. Math. 89 (1987), 357–370.
- [8] F.J. Gallego and B.P. Purnaprajna: Normal presentation on elliptic ruled surfaces, J. Algebar 186 (1996), 597–625.
- [9] R. Hartshorne: Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer, New York 1977.
- [10] S. Kim: On the algebraic curve of Clifford index c, Comm. Korean Math. Soc. 14 (1999), 693-698.
- [11] A.L. Knutsen: On two conjectures for curves on K3 surfaces, Int. J. Math. 20 (2009), 1547–1560.
- [12] C. Keem and G. Martens: Curves without plane models of small degree, Math. Nachr. 281 (2008), 1791–1798.
- [13] C. Keem, S. Kim and G. Martens: On a result of Farkas, J. Reine Angew. Math. 405 (1990), 112–116.
- [14] H.H. Martens: Varieties of special divisors on a curve. II, J. Reine Angew. Math. 233 (1968), 89-100.
- [15] B. Saint-Donat: Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602-639.

Takao Kato 13–1 Ogori-Ozaki-cho, Yamaguchi, 754–0006 Japan e-mail: kato@yamaguchi-u.ac.jp

Gerriet Martens Department Mathematik Univ. Erlangen-Nürnberg Cauerstr. 11, D–91058 Erlangen Germany

e-mail: martens@mi.uni-erlangen.de