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Abstract
For a positive Hopf plumbed arborescent Seifert surface S , we study the set of Hopf bands

H ⊂ S , up to homology and up to the action of the monodromy. The classification of Seifert
surfaces for which this set is finite is closely related to the classification of finite Coxeter groups.

1. Introduction

1. Introduction
Let S ⊂ S 3 be a Seifert surface of a link L, and let q be the quadratic form on H1(S ,Z)

associated with the Seifert form. Every oriented simple closed curve α ⊂ S can be thought
of as a framed link in S 3, where the framing is induced by the surface S and encoded by
the value which q takes on the homology class represented by α. For a fixed integer n,
we are interested in the set Cn(S ) of isotopy classes of n-framed unknotted oriented curves
α ⊂ S . By Rudolph’s work [13] on quasipositive surfaces we know for example Cn(S ) = ∅
whenever n � 0 and S is quasipositive. Here, we focus on positive arborescent (tree-like)
Hopf plumbings, where S is a surface obtained by an iterated plumbing of positive Hopf
bands according to a finite plane tree T . Positive arborescent Hopf plumbings are particular
examples of quasipositive surfaces. At the same time, they are fibre surfaces, i.e. pages of
open books with binding K = ∂S . In fact every fibre surface in S 3 can be obtained from the
standard disk by successively plumbing and deplumbing positive or negative Hopf bands.
This results from Giroux’ work on open books and contact structures (see the article [8]
by Giroux and Goodman). Not much is known about how (non-)unique a presentation of a
given fibre surface S as a plumbing of Hopf bands may be. In our previous article [12], we
have studied embedded arcs in fibre surfaces cutting along which corresponds to deplumbing
a Hopf band, and we gave examples showing that the plumbing structure can be highly
non-unique. Here, we take a similar, but different approach to understanding the plumbing
structure of S by studying the set Cn(S ) in the case n = 1, whose elements correspond to
Hopf bands that can potentially be deplumbed. The monodromy ϕ : S → S of the open
book acts on the set Cn(S ) as well as on its image Cn(S ) in H1(S ,Z), thus providing it
with additional structure. Finite trees can be divided into three families named spherical,
affine and hyperbolic, according to the classification of Coxeter groups (compare [2, 9]).
The spherical trees comprise two families, called An and Dn, plus three more trees named
E6, E7, E8 (see Figure 3), whereas the affine trees are denoted D̃n, Ẽ6, Ẽ7, Ẽ8 (see Figure 5).
Up to these exceptions, all trees fall into the class of hyperbolic trees.

2010 Mathematics Subject Classification. 57M27.
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Theorem. Let T be a finite plane tree and S ⊂ S 3 the corresponding positive arborescent
Hopf plumbed surface. Then the set of homology classes of Hopf bands C1(S ) is finite if and
only if T is spherical.
In contrast, if T is hyperbolic and ∂S T is a knot, C1(S ) consists of infinitely many orbits of
the monodromy.

Interestingly, the above correspondence between Coxeter groups and tree-like Hopf
plumbings does not seem to be of purely homological nature: in the exceptional cases that
correspond to affine Coxeter groups, there are in fact infinitely many ϕ-orbits of homology
classes a ∈ H1(S ,Z) such that q(a) = 1. However, it is conceivable that only finitely many
orbits can be realised by honest Hopf bands (that is, by unknotted embedded simple closed
curves in S ). We prove this for the smallest affine tree D̃4, where it already suffices to ex-
clude homology classes that are not representable by simple closed curves. In the case Ẽ6,
for example, infinitely many orbits can be realised by embedded (possibly knotted) simple
closed curves. We did not succeed in finding unknotted representatives of these homology
classes, though.

In the spherical cases, the set C1(S ) coincides with q−1(1) ⊂ H1(S ,Z) and consists of the
“obvious” Hopf bands only, that is, simple combinations of the ones used in the plumbing
construction, and their images under the monodromy. It might be interesting to study Cn(S )
or Cn(S ) for other n and other classes of Seifert surfaces, as well as the case where unknotted
curves are replaced by curves of a fixed knot type.

Plan of the article. In the subsequent section we define and briefly discuss the concepts
in question, that is, Seifert surfaces, the Seifert form, fibre surfaces, monodromy and Hopf
plumbing. Section 3 concerns the integral quadratic forms that arise from trees. The above
theorem is a consequence (in fact, a summary) of three propositions. Proposition 1 concerns
the spherical trees and is given in Section 4. In Section 5, the affine trees are discussed in
Proposition 2. Finally we address the hyperbolic case with Propostion 3 in the last section.

2. Terms and definitions

2. Terms and definitions2.1. Seifert surfaces, Seifert form.
2.1. Seifert surfaces, Seifert form. Throughout, S denotes a compact connected ori-

ented surface with boundary embedded in the three-sphere, a Seifert surface for short. The
Seifert form of a Seifert surface S is a bilinear form (· , ·) on H1(S ,Z) defined on oriented
simple closed curves α, β ⊂ S by (α, β) = lk(α, β+), where β+ is obtained by slightly pushing
β into S 3 \ S along the positive normal direction to S , and lk denotes the linking number.
The Seifert form induces a quadratic form q : H1(S ,Z)→ Z by q(a) = −(a, a). For a simple
closed curve α, the integer −q(α) describes the framing1 of an annular neighbourhood of α
in S .

2.2. Fibre surfaces, monodromy.
2.2. Fibre surfaces, monodromy. A Seifert surface S is called a fibre surface if its inte-

rior S̊ is the fibre of a locally trivial fibre bundle S 3 \∂S → S 1, that is, S 3 \∂S has the struc-
ture of a mapping torus (S̊ × [0, 1])/(x,1)∼(ϕ(x),0). The glueing homeomorphism ϕ : S → S ,
called the monodromy, is determined by the fibration up to isotopy. It is known that the
Seifert matrix V of a fibre surface S with respect to a basis of H1(S ,Z) is invertible [4,
Lemma 8.6]. The matrix M of the homological action of the monodromy with respect to the

1The sign makes sure that q = +1 on positive Hopf bands.
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same basis can be computed using the formula M = (V−�)V , see [14, Lemma 8.3].

2.3. Hopf plumbing.
2.3. Hopf plumbing. Let H be a Hopf band, that is, an unknotted annulus with a (positive

or negative) full twist, as in Figure 1. Let S be a Seifert surface and let I ⊂ S be a properly
embedded interval with endpoints on ∂S (an arc for short).

Fig.1. Plumbing a Hopf band H to a surface S along I.

Take a neighbourhood D ⊂ S of I such that D is an embedded square with two opposite
sides in ∂S . Thicken D to one side of S to obtain a box B that intersects S exactly in D.
Similarly, take a square D′ ⊂ H with two opposite sides in ∂H. Place H inside B, matching
the square D with D′ such that the sides ∂H ∩D′ are parallel to I. The surface S ∪H is then
said to be obtained from S by Hopf plumbing. Two arcs that are isotopic in S yield isotopic
surfaces. Hopf plumbing preserves fibredness: If S is a fibre surface, then so is any surface
obtained from S by Hopf plumbing, compare [15, 6].

2.4. Positive arborescent Hopf plumbings.
2.4. Positive arborescent Hopf plumbings. Given a finite plane tree T , construct a fibre

surface S = S T by taking one positive Hopf band for every vertex of T and use plumbing
to glue all pairs of Hopf bands that correspond to adjacent vertices in T , respecting the
cyclic order of the edges adjacent to each vertex. A Seifert surface S obtained in this way
is called a positive arborescent Hopf plumbing. This construction is described and studied
in greater generality by Bonahon and Siebenmann in their work on arborescent knots [3].
For example, if T is the tree An shown in Figure 3, S T is the standard Seifert surface of the
(2, n + 1) torus link. For T = D4, we obtain the standard Seifert surface of the (3, 3) torus
link. Yet another example is illustrated in Figure 2 on the next page. The core curves (with
a chosen orientation) of the Hopf bands used for the construction form a basis of H1(S ,Z).
Relative to a basis, the Seifert quadratic form q is a homogeneous polynomial of degree two
in r variables, where r = rank H1(S ,Z) equals the number of vertices of T , or, equivalently,
the number of Hopf bands used to construct S T .

Remark 1 (on different notions of positivity). There are different possible ways to define
a Hopf band to be positive or negative. Here, by a positive Hopf band we mean an unknotted
oriented band whose boundary link with the induced orientation is a positive Hopf link, so
the core curve of a positive Hopf band has framing −1. Positive braid links are plumbings
of positive Hopf bands. The subsequent statements can be translated into statements about
negative Hopf plumbings.
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Fig.2. The spherical tree D5 and the corresponding Hopf plumbing S D5 .

3. Quadratic forms and Coxeter-Dynkin trees

3. Quadratic forms and Coxeter-Dynkin trees
Let T be a finite tree with vertices {u1, . . . , un}. Use the same symbols ui to denote the basis

of H1(S T ,Z) � Zn consisting of the core curves of the plumbed Hopf bands. We define the
matrix AT to be the symmetric integral r×r-matrix whose diagonal entries are 2’s and whose
off-diagonal i j-th entry is −1 if ui and u j are connected by an edge in T and 0 otherwise. The
orientations of the core curves may be chosen such that

qT (x1u1 + · · · + xnun) =
1
2

xAT x�, ∀x = (x1, . . . , xn) ∈ Zn.

Indeed, two non-adjacent Hopf bands being disjoint corresponds to the zero entries in AT

and positive Hopf bands being (−1)-framed fits the diagonal entries. Finally, the core
curves ui, u j of two plumbed Hopf bands intersect exactly once and do not link otherwise.
Thanks to the arborescent structure of the plumbing, we can choose orientations such that
{lk(ui, u+j ), lk(u j, u

+
i )} = {0, 1}. In other words,

−AT = V + V�,

where V is the Seifert matrix of S T with respect to the basis u1, . . . , ur.
The quadratic form qT is

• positive definite if T corresponds to a spherical Coxeter group,
• positive semidefinite if T corresponds to an affine Coxeter group,
• indefinite otherwise.

Accordingly, we call a tree T spherical, affine, hyperbolic. Compare Figure 3 for a list of
the spherical trees and Figure 5 for the affine trees. Any finite plane tree not appearing in
one of these lists is hyperbolic. In fact, the so-called slalom knots introduced by A’Campo
can be described as arborescent Hopf plumbings, and the slalom knots given by a hyperbolic
tree are exactly the ones whose complements admit a complete hyperbolic metric of finite
volume [1, Theorem 1].

As we already suggested in the introduction, there is a bijective correspondence between
positive Hopf bands H embedded in S T (up to isotopy in S T ) and (−1)-framed unknotted
simple closed curves α ⊂ S T (up to isotopy in S T ). The correspondence is given in one
direction by assigning to a Hopf band H its core curve α, and in the other direction by
setting H to be a regular neighbourhood of α in S T . Passing to homology classes, we can
think of an element x ∈ H1(S T ,Z) as the homology class of a positive Hopf band if and only
if x can be realised as the homology class of an unknotted simple closed curve in S T and
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qT (x) = 1.

Definition. We denote by C1(S T ) the set of homology classes of positive Hopf bands in
S T . Note that C1(S T ) ⊂ q−1

T (1) ⊂ H1(S T ,Z).

We complete this section with a few remarks that concern the above definition and which
are important for the rest of the article.

Remark 2. If ∂S T is a knot, x ∈ H1(S T ,Z) is representable by a simple closed curve if
and only if it is primitive, i.e., if it cannot be written as a multiple of another vector (see [5,
Proposition 6.2] for a proof in the closed case). In particular, any x ∈ q−1

T (1) can be realised
by a (possibly knotted) simple closed curve if ∂S T is a knot.

Remark 3. Let T be a finite plane tree, S T the corresponding surface and ϕ : S T →
S T the monodromy. If w ∈ H1(S T ,Z) is a homology class represented by an unknotted
simple closed curve α, then ϕ(α) is again an unknotted simple closed curve, since the flow
of the monodromy vector field describes an isotopy from α to ϕ(α) in S 3. In addition, ϕ(α)
represents the homology class ϕ∗(w), whose framing equals the framing of w. In particular,
w ∈ C1(S T ) if and only if (ϕ∗)n(w) ∈ C1(S T ), ∀n ∈ Z.

Remark 4. If T ′ is a subtree of a tree T (that is, T ′ is obtained from T by contracting
edges), S T ′ can be viewed as a subsurface of S T in such a way that the map on homology
induced by the inclusion is injective. In particular, C1(S T ′) can be identified with a subset of
C1(S T ).

Remark 5. We immediately spot a certain number of Hopf bands in an arborescent Hopf
plumbing S T , such as the Hopf bands corresponding to the vertices ui of T that were used
in the Hopf plumbing construction. Based on this observation we say that x ∈ C1(S T ) is a
standard Hopf band if x ∈ C1(S T ′) for some subtree T ′ ⊂ T of type An. See Figure 4 for
an example and the paragraph after Proposition 1 for a complete description of all standard
Hopf bands in S An .

Fig. 3. The simply laced spherical Coxeter trees correspond to finite Cox-
eter groups. The numbers indicate the order of the chosen homology basis
vectors.

4. The spherical Coxeter-Dynkin trees

4. The spherical Coxeter-Dynkin trees
If T is one of the spherical trees An,Dn, E6, E7 or E8 depicted in Figure 3, the quadratic

form qT is positive definite. Therefore, the equation qT (x) = k has only finitely many
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integral solutions, for any fixed k and in particular for k = 1. In the rest of this section, we
explicitely determine all solutions to qT (x) = 1 for each of the spherical trees. These were
already studied and classified in the context of Lie algebra theory and Coxeter groups, see
for example the book by Humphreys [9]. The following proposition summarises the results
of this section (see Remark 5 for the definition of a standard Hopf band).

Proposition 1. If T is a spherical tree, then the set of integral solutions to qT (x) = 1
is finite. Moreover, every solution is contained in the orbit of a standard Hopf band under
the monodromy and is therefore realisable as an unknotted simple closed curve in S T . In
particular, C1(S T ) = q−1

T (1).

First let T = An. The associated quadratic form q then takes the following form with
respect to the basis of H1(S T ,Z) � Zn described above:

q(x) = x2
1 + · · · + x2

n − x1x2 − x2x3 − · · · − xn−1xn

=
1
2

((x1 − x2)2 + · · · + (xn−1 − xn)2 + x2
1 + x2

n).

For any integral solution x to q(x) = 1, necessarily |x1|, |xn| � 1. Therefore, we obtain

C1(S An) = {±(0r, 1s, 0t) ∈ Zn | r, t � 0, s � 1},
where cν stands for ν consecutive occurences of the number c. It is easily seen that all n(n+1)
elements of the above set can be represented by unknotted simple closed curves in S An , see
Figure 4 for an example.

Fig. 4. A standard Hopf band (in grey) in S A5 , representing the homology
class (0, 1, 1, 0, 0) with respect to the homology basis described above. The
arrows indicate the chosen orientations of the homology basis vectors.

For T = Dn, one finds:

q(x) = x2
1 + · · · + x2

n − x1(x2 + x3 + x4) − x4x5 − · · · − xn−1xn

= (
1
2

x1 − x2)2 + (
1
2

x1 − x3)2 +
1
2

(x1 − x4)2

+
1
2

((x4 − x5)2 + · · · + (xn−1 − xn)2) +
1
2

x2
n.

Let x ∈ Zn be a solution of q(x) = 1. Then |xn| � 1, since otherwise the last summand
would already be larger than one. If xn = 0, then x ∈ C1(S Dn−1 ). Otherwise, we may assume
xn = 1, up to changing the sign of x. If x1 = 0, then x2, x3 cannot be both nonzero, so we can
view x ∈ C1(S An−1 ). Hence we may assume x1 � 0. If x1 is odd, then the first two squares
are in 1

4N \ N while the last summand is equal to 1
2 . This implies that the rest vanishes, i.e.,

x1 = x4 = x5 = . . . = xn = 1, and hence x2, x3 ∈ {0, 1}. If x1 is even, the first two squares are
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in N and must therefore vanish, while

(x1 − x4)2 + (x4 − x5)2 + · · · + (xn−2 − xn−1)2 + (xn−1 − 1)2 = 1.

This implies that exactly one of these squares equals one and the rest vanishes, so we obtain
the following solutions (recall that x1 � 0 by assumption).

x = (2, 1, 1, 2r, 1s) ∈ Zn, r � 0, s � 1.

If M denotes the matrix of the homological action of the monodromy with respect to the
basis u1, . . . , un, the following relations hold for r � 0, s � 1:

(1r+3, 0n−r−3)� = (−1)r+1Mr+2(0n−r−1, 1r+1)�,

(2, 1, 1, 2r, 1s, 0n−r−s−3)� = (−1)r+1Mr+1(1, 0, 0, 1s−1, 0n−s−2)�.

Hence all solutions to q(x) = 1 are contained in orbits of standard Hopf bands under the
monodromy and are therefore realisable by unknotted simple closed curves in S T . In total,
we obtain

C1(S Dn) = {±(2, 1, 1, 2r, 1s, 0t) ∈ Zn | r, t � 0, s � 1}
∪ {±(1, x2, x3, 1r, 0s) ∈ Zn | x2, x3 ∈ {0, 1}, r, s � 0}
∪ {±(0r, 1s, 0t) ∈ Zn | r � 3, s � 1} ∪ {±u2,±u3}.

A combinatorial calculation shows that #C1(S Dn) = 2n(n − 1).
For T = E6, the quadratic form q takes the following form:

q(x) = x2
1 + · · · + x2

6 − x1(x2 + x3 + x4) − x3x5 − x4x6

= (
1
2

x1 − x2)2 +
1
3

((x1 − 3
2

x3)2 + (x1 − 3
2

x4)2)

+(
1
2

x3 − x5)2 + (
1
2

x4 − x6)2 +
1

12
x2

1.

E6 contains A5 and D5 as subtrees, whose sets of Hopf bands we know. Let x be a solution
of q(x) = 1 different from these (in particular, x2, x5, x6 � 0). From the condition 1

12 x2
1 � 1

we obtain |x1| � 3. If x1 = 0, at most one of x2, x3, x4 can be nonzero. It follows that x
is supported in one of the arms of the tree, which we excluded. Therefore we may assume
x1 ∈ {1, 2, 3} (up to changing the sign of x). If x1 = 3, then 1

12 x2
1 =

3
4 and ( 1

2 x1−x2)2 ∈ 1
4N\N.

So x2 ∈ {1, 2} and x3 = x4 = 2, x5 = x6 = 1, hence

x = (3, x2, 2, 2, 1, 1), x2 ∈ {1, 2}.
If x1 = 2, then x2 = 1 (otherwise ( 1

2 x1 − x2)2 + 1
12 x2

1 > 1), and similarly x3, x4 ∈ {1, 2},
which implies x5 = x6 = 1 (remember we excluded x5 = 0 or x6 = 0). This yields the four
possibilities

x = (2, 1, x3, x4, 1, 1), x3, x4 ∈ {1, 2}.
Finally, if x1 = 1, we can successively deduce |xi| � 1 for i = 2, . . . , 6, hence

x = (1, 1, 1, 1, 1, 1).

It turns out that all of these homology classes can be realised by unknotted simple closed
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curves. In fact, they all lie, up to sign, in the orbits of u1, u1 + u2, u1 + u3, u1 + u4 under the
monodromy. In total, we have 14 vectors plus 2 · (#C1(S D5 )) − #C1(S D4 ) + 2 = 58 vectors
coming from the subtrees D5 and A5, so #C1(S E6 ) = 72.
For E7, we obtain:

q(x) = x2
1 + · · · + x2

7 − x1(x2 + x3 + x4) − x3x5 − x4x6 − x6x7

= (
1
2

x1 − x2)2 +
1
3

((x1 − 3
2

x3)2 + (x4 − 3
2

x6)2)

+
2
3

(
3
4

x1 − x4)2 + (
1
2

x3 − x5)2 + (
1
2

x6 − x7)2 +
1
24

x2
1.

The vectors x satisfying q(x) = 1 that are not supported on the D6 or E6 subtrees are (up to
sign)

(4, 2, 3, 3, x5, 2, 1), (3, x2, 2, x4, 1, 2, 1), (2, 1, x3, 2, 1, x6, 1),
(4, 2, 2, 3, 1, 2, 1), (3, x2, 2, 2, 1, 1, 1), (2, 1, x3, 1, 1, 1, 1),
(1, 1, 1, 1, 1, 1, 1),

where x2, x3, x5, x6 ∈ {1, 2} and x4 ∈ {2, 3} can be freely chosen. As before, these homology
classes are contained in the orbits of the Hopf bands u1, u2, u3, u1 + u3, u1 + u4, u4 + u6,
u1 + u4 + u6 under the monodromy, hence realisable by unknotted simple closed curves. A
count of elements yields #C1(S E7 ) = 126.
Finally, for E8

q(x) = x2
1 + · · · + x2

8 − x1(x2 + x3 + x4) − x3x5 − x4x6 − x6x7 − x7x8

= (
1
2

x1 − x2)2 +
1
3

((x1 − 3
2

x3)2 + (x6 − 3
2

x7)2) +
2
5

(x1 − 5
4

x4)2

+
3
8

(x4 − 4
3

x6)2 + (
1
2

x3 − x5)2 + (
1
2

x7 − x8)2 +
1

60
x2

1.

The vectors not supported on the D7 or E7 subtrees are

(6, 3, 4, 5, 2, 4, 3, x8), (6, 3, 4, 5, 2, x5, 2, 1), (6, 3, 4, 4, 2, 3, 2, 1),
(5, x2, 4, 4, 2, 3, 2, 1), (5, x2, 3, 4, y5, 3, 2, 1), (4, 2, 3, 4, y5, 3, 2, 1),
(4, 2, 2, 4, 1, 3, 2, 1), (4, 2, 3, 3, y5, 3, 2, 1), (4, 2, 3, 3, y5, 2, x7, 1),
(4, 2, 2, 3, 1, x6, 2, 1), (4, 2, 2, 3, 1, 2, 1, 1), (3, y2, 2, 3, 1, 3, 2, 1),
(3, y2, 2, 3, 1, 2, x7, 1), (3, y2, 2, 2, 1, 2, x7, 1), (3, y2, 2, 2, 1, 1, 1, 1),
(2, 1, x3, 2, 1, 2, x7, 1), (2, 1, x3, x4, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1, 1),

where x3, x4, x7, x8, y2, y5 ∈ {1, 2}, x2, x6 ∈ {2, 3}, x5 ∈ {3, 4}. Again, these vectors all lie in
the orbits of u1, u2, u3, u4, u1+u2, u1+u3, u1+u4, u6+u7, u7+u8, u1+u4+u6 under the monodromy
and are therefore represented by unknotted simple closed curves. Together with the vectors
supported on the D7 and E7 subtrees, they add up to a total count of #C1(S E8 ) = 240.

5. The affine Coxeter-Dynkin trees

5. The affine Coxeter-Dynkin trees
Proposition 2. If T is an affine tree, the set of solutions to qT (x) = 1 contains at least one

infinite orbit of a standard Hopf band under the monodromy. In particular, the set C1(S T )
is infinite. More precisely, there exist vectors u,w1, . . . ,wd ∈ H1(S T ,Z), such that every
solution x to qT (x) = 1 is of the form x = wi + ku for some k ∈ Z, i ∈ {1, . . . , d}.
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Fig.5. The simply laced affine Coxeter trees.

Let T be an affine tree and let n be the number of vertices of T . Observe that T is
obtained by adding one edge and one vertex un to a suitable spherical subtree T ′. In terms
of the associated quadratic forms qT , qT ′ this means: there exists a subspace of codimension
one on which qT has a positive definite restriction, i.e., the radical kerAT of qT (x) = 1

2 xAT x�

is one-dimensional. Let u ∈ Zn be such that Zu = kerAT . Observe that

qT (w + ku) = qT (w) + kwAT u� + k2qT (u) = qT (w),

for all w ∈ Zn, k ∈ Z. Let V be the Seifert matrix of S T with respect to the basis u1, . . . , un
of H1(S T ,Z) and denote by M the matrix of the monodromy of S T with respect to the same
basis. As mentioned in Section 2.2 and in Section 3 respectively, the Seifert matrix V is
invertible and the following relations hold.

M = (V−�)V, −AT = V + V�.

Since u ∈ kerAT , we have Vu = −V�u and therefore Mu = −u. Moreover, we will see that
the last coordinate of u (corresponding to the vertex un of T ) equals ±1. Therefore, k ∈ Z
can be chosen such that w + ku is supported in T ′, so

q−1
T (1) = {w + ku | w ∈ q−1

T ′ (1) × {0}, k ∈ Z}.
To simplify notation, we identify the vector (x1, . . . , xn−1) ∈ Zn−1 with the vector (x1, . . . ,

xn−1, 0) ∈ Zn. It should be clear from the context when a last entry equal to zero is to be
deleted from a vector and when a zero should be appended to a vector.

The smallest example of an affine tree T is the the “X”-shaped tree D̃4 with five vertices
u1, . . . , u5 where u1 has degree four and u2, . . . , u5 have degree one (compare Figure 5). In
that case, q(x) = qT (x) can be written as a sum of four squares:

q(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − x1(x2 + x3 + x4 + x5)

= (
1
2

x1 − x2)2 + (
1
2

x1 − x3)2 + (
1
2

x1 − x4)2 + (
1
2

x1 − x5)2.

One easily finds that the vector u = (2, 1, 1, 1, 1) spans the radical. The subtree whose
vertices are u1, . . . , u4 is of type D4. Therefore, all solutions x to q(x) = 1 are of the form x =
w+ku, where k ∈ Z and w ∈ C1(S D4 ) ⊂ Z4. We know from the previous section on spherical
trees that C1(S D4 ) consists of the following vectors, up to sign and up to permutation of the
last three entries:

w1 = (2, 1, 1, 1), w2 = (1, 1, 1, 1), w3 = (1, 1, 1, 0),

w4 = (1, 1, 0, 0), w5 = (1, 0, 0, 0), w6 = (0, 1, 0, 0).

The matrix M of the (homological) monodromy with respect to the basis u1, . . . , u5 of
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H1(S T ,Z) can be computed using the formula in terms of the Seifert matrix V mentioned
above. Concretely:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 1 1 1
−1 1
−1 1
−1 1
−1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The following relations hold:

M2(w1) = w1 + u, M2(w2) = w2 − u, M2(w3) = w3

M2(w4) = w4 + u, M2(w5) = w5 + 2u, M2(w6) = w6 − u.

We will now deduce from these relations that the set of homology classes of Hopf bands
C1(S T ) decomposes into finitely many orbits under the action of the monodromy M. Indeed,
the above relations imply that the families {wi + ku}k∈Z, i � 3, fall into finitely many orbits.
On the other hand, each of the vectors w(k) := w3 + ku, k ∈ Z, is fixed by M2, so they
cannot be contained in a finite union of M-orbits. However, w(k) � C1(S T ) for k � 0,−1,
since these homology classes cannot be represented by a simple closed curve in S T , as we
demonstrate now. S T is a surface of genus one with four boundary components. If we
forget about the embedding of S T ⊂ S 3, we can abstractly glue three disks to cap off all but
one boundary component. The result is an abstract (non-embedded) once punctured torus.
Therein, a nonzero first homology class c can be represented by a simple closed curve if
and only if c is a primitive vector, that is, if c = λc′ implies |λ| = 1 for λ ∈ Z (compare
Remark 2). To make use of this criterion, we change the basis (u1, . . . , u5) of H1(S T ,Z) to
the basis (u1, u2, u2 − u3, u3 − u4, u4 − u5). The last three elements of this new basis can be
represented by three of the four boundary curves of S T . Therefore, capping off these three
boundary components has the effect of deleting the last three entries of the corresponding
coordinate vectors. Rewriting w(k) in the new coordinates yields the vector

(2k + 1, 4k + 2,−(3k + 1),−2k,−k).

Under the inclusion of S T into the capped-off surface, we obtain the vector

(2k + 1, 4k + 2) = (2k + 1) · (1, 2),

which is primitive for k ∈ {0,−1} only. Hence w(k) � C1(S T ) for k � 0,−1 and the set C1(S T )
decomposes into finitely many orbits under M.
For the other members of the D̃n family (n � 5), we obtain

q(x) = (
1
2

x1 − x2)2 + (
1
2

x1 − x3)2

+
1
2

(
(x1 − x4)2 + (x4 − x5)2 + · · · + (xn−2 − xn−1)2

)

+(
1
2

xn−1 − xn)2 + (
1
2

xn−1 − xn+1)2.

whose radical is spanned by u = (2, 1, 1, 2n−4, 1, 1). As for D̃4, the solutions to q(x) = 1
are the vectors of the form wi + ku, where k ∈ Z and wi ∈ C1(S Dn), i ∈ {1, . . . , 2n(n − 1)},
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are the homology classes of Hopf bands supported in the Dn subtree of D̃n. A calculation
with the monodromy matrix M and the first standard Hopf band u1 shows that Mn−2u1 =

(−1)n(u1 + 2u). Since Mu = −u, this implies

M(n−2)ku1 = (−1)nk(u1 + 2ku), ∀k ∈ Z.
Therefore, there is at least one infinite orbit of homology classes of Hopf bands in C1(S T ).
In contrast, there do exist wi such that the family {wi + ku}k∈Z does not fall into finitely many
orbits under the monodromy and still consists of homology classes of simple closed curves.
For example, the vectors w = (0r, 1s, 0t) ∈ Zn+1, 3 � r � n − 1, 1 � s � n − r − 1, are in
fact all fixed by M2(n−2), and w + ku is realisable as a simple closed curve, for every k ∈ Z.
However, we do not know whether it can be realised as an unknotted simple closed curve
for k � {0,−1}. The same situation occurs for Ẽ6, Ẽ7 and Ẽ8. For T = Ẽ6, the corresponding
quadratic form q can be written as follows:

q(x) =
1
3

(
(x1 − 3

2
x2)2 + (x1 − 3

2
x3)2 + (x1 − 3

2
x4)2

)

+(
1
2

x2 − x7)2 + (
1
2

x3 − x5)2 + (
1
2

x4 − x6)2.

The radical of q is spanned by the vector u = (3, 2, 2, 2, 1, 1, 1), and M2u1 = u1 + u, where
M and u1 denote again the monodromy and the first standard Hopf band, respectively. This
implies that the orbit of u1 under the monodromy is infinite. For the tree Ẽ7, we have:

q(x) = (
1
2

x1 − x2)2 + (
1
2

x5 − x8)2 + (
1
2

x6 − x7)2

+
2
3

(
(
3
4

x1 − x3)2 + (
3
4

x1 − x4)2
)

+
1
3

(
(x3 − 3

2
x5)2 + (x4 − 3

2
x6)2

)
.

The radical is generated by u = (4, 2, 3, 3, 2, 2, 1, 1) and one verifies the relation M3u1 =

−u1 − u. Finally, for Ẽ8, we obtain:

q(x) = (
1
2

x1 − x2)2 + (
1
2

x3 − x5)2 + (
1
2

x8 − x9)2

+
3
5

(
5
6

x1 − x4)2 +
2
5

(x4 − 5
4

x6)2 +
2
3

(
3
4

x6 − x7)2

+
1
3

(
(x1 − 3

2
x3)2 + (x7 − 3

2
x8)2

)
.

The radical is the span of u = (6, 3, 4, 5, 2, 4, 3, 2, 1), M5u1 = −u1 − u.
In summary, every solution x to the equation qT (x) = 1 (T affine) is of the form x = wi+ku

for some k ∈ Z, where u generates the radical of qT and the wi are finitely many homology
classes of Hopf bands contained in S T ′ for a spherical subtree T ′ ⊂ T . For certain i, the
family {wi + ku}k∈Z is contained in finitely many orbits under the monodromy M of S T ,
while the members of the remaining families are fixed by some power Md. Among the
latter, there are homology classes that cannot be realised by simple closed curves, and there
are such families whose members are realisable by simple closed curves.
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Question. Can these homology classes be realised by unknotted simple closed curves?
In other words, does C1(S T ) decompose into finitely many orbits under the monodromy, for
any affine tree T?

6. Infinite sets of orbits for hyperbolic trees

6. Infinite sets of orbits for hyperbolic trees
As described above, C1(S T ) is finite for the spherical trees and infinite for the affine trees.

However, C1(S T ) could still decompose into finitely many orbits under the monodromy. We
claim this is not anymore true for hyperbolic trees, at least when ∂S T is a knot.

Proposition 3. Let T be a hyperbolic tree, let S T be the corresponding fibre surface and
denote the monodromy by ϕ. If ∂S T is a knot, then the set C1(S T ) of homology classes of
Hopf bands consists of infinitely many ϕ∗-orbits.

The key idea for proving the proposition is to take an affine subtree T ′ ⊂ T and to compare
the action of the monodromy ϕ′∗ on H1(S T ′ ,Z) with the action of ϕ∗ on H1(S T ,Z). In the
previous section, we found ϕ′∗-orbits of Hopf bands consisting of vectors uk ∈ H1(S T ′ ,Z)
that grow linearly in k ∈ Z with respect to any norm. This was possible because the Jordan
normal form of ϕ′∗ has Jordan blocks of size two to eigenvalues which are roots of unity.
However, it turns out that the monodromy ϕ∗ of the larger surface S T does not have such
Jordan blocks. Therefore, the family uk cannot be a union of finitely many orbits under
ϕ∗ since the “gaps” between consecutive members of an orbit must either stay bounded or
grow exponentially. More specifically, the proposition will follow from the two subsequent
lemmas.

Lemma 1. Let T be a hyperbolic tree such that ∂S T is a knot, and denote the correspond-
ing monodromy by ϕ : S T → S T . The Jordan normal form of ϕ∗ : H1(S T ,Z) → H1(S T ,Z)
cannot contain any Jordan block of size greater than one to an eigenvalue of modulus one.

Proof. The main ideas for the proof are contained in an appendix by Feller and Liechti
to an article of Liechti [11], see also [7]. However, we choose to reformulate them here for
the reader’s convenience. Let A be a Seifert matrix for S T with respect to some basis of
H1(S T ,Z). Then, the monodromy ϕ∗ has matrix (A−�)A with respect to that basis. Given an
eigenvalue ω of ϕ∗, we denote the algebraic and geometric multiplicities of ω by malg(ω) and
mgeom(ω), respectively. Thus, malg(ω) is the multiplicity of the zero ω of the characteristic
polynomial of ϕ∗, while mgeom(ω) is the number of Jordan blocks to ω in the Jordan normal
form of ϕ∗. Our goal is to prove mgeom(ω) = malg(ω) for every eigenvalue ω ∈ S 1 of ϕ∗, or,
equivalently, of ϕ−1∗ . Suppose to this end that ω ∈ S 1 is an eigenvalue of ϕ−1∗ = A−1A�. Then
we have

0 = det(A) det(ωI − ϕ−1
∗ ) = det(ωA − A�) = ΔK(ω),

where ΔK(t) denotes the Alexander polynomial of the knot K = ∂S T and I denotes the
identity map on H1(S T ,Z). For ω ∈ S 1, the ω-signature (after Levine and Tristram [16]) is
defined to be the signature σω ∈ Z of the Hermitian matrix

Mω = (1 − ω)A + (1 − ω̄)A� = −(1 − ω̄)(ωA − A�),

that is, the number of positive eigenvalues minus the number of negative eigenvalues of Mω.
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As ω = eπit traverses one half of the unit circle for t ∈ (0, 1], the ω-signature σω stays
constant except at zeros ω0 of ΔK (by the first equation above), where it may jump by some
even amount 2 jω0 . In addition, if ω ∈ S 1 is an eigenvalue of ϕ−1∗ ,

| jω| � null(Mω) = null(ωI − ϕ−1
∗ ) = mgeom(ω) � malg(ω),

where null(B) denotes the nullity of a matrix B, that is, the geometric multiplicity of the
eigenvalue 0 of B. For ω ∈ S 1 near 1 we have σω = 0 (see Feller and Liechti’s appendix
of [11]), whereas for ω = −1, σω takes the value of the classical signature invariant for
knots, σ(K). This implies

σ(K) = σ−1(K) � 2 ·
∑
ω∈S 1

+

| jω| � 2 ·
∑
ω∈S 1

+

malg(ω) = σ(K),

where S 1
+ = {eπit | t ∈ (0, 1]} denotes the upper half of the unit circle. The last equality

follows from the fact that the number of zeros of ΔL on S 1 (counted with multiplicity) equals
σ(L) + null(L) for any tree-like Hopf plumbing L, where null(L) = null(M−1) equals zero
if L is a knot. This is proven in Liechti’s thesis [10, Proposition 5.6]. Therefore the above
inequalities are in fact equalities, which implies mgeom(ω) = malg(ω) for all zeros ω ∈ S 1

+ of
ΔK . By the symmetry of Alexander polynomials, the same holds for the zeros ω of ΔK(t)
such that −ω ∈ S 1

+. Finally, ΔK(1) � 0 because K is a knot. This ends the proof. �

Lemma 2. Let Φ be a matrix of size n × n with coefficients in C, and let u ∈ Cn be any
vector. Suppose that the Jordan normal form of Φ does not contain any Jordan block of size
greater than one to an eigenvalue of modulus one. Then the sequence {Φk(u)}k∈N is either
bounded or grows exponentially (with respect to any norm ‖.‖ on Cn).

By exponential growth of a sequence {uk}k∈N ⊂ Cn with respect to a norm ‖.‖ we mean the
existence of constants h > 1, c > 0, d � 0, such that ‖uk‖ � chk − d for all k ∈ N.

Proof of Lemma 2. We may first assume that Φ is already in Jordan normal form, and
second thatΦ consists of just one Jordan block to some eigenvalue λ. If u = 0, the conclusion
is clear, so we assume u � 0. If |λ| < 1, the sequence Φk(u) is bounded, if |λ| > 1, it grows
exponentially and if |λ| = 1, Φ is of size one, so Φk(u) is bounded. �

Proof of Proposition 3. Let T be a hyperbolic tree. Since T contains an affine subtree
T ′, we have at least one infinite family {uk}k∈N of elements uk ∈ C1(S T ′) ⊂ C1(S T ) which
grow linearly in k when seen as a sequence of vectors in H1(S T ,Z) ⊂ H1(S T ,C) � Cn. More
precisely, the uk are pairwise distinct, and there exist constants a > 0, b � 0, such that

‖uk‖ � ak + b, ∀k ∈ N.
Indeed, we found such families for every affine tree in the preceding section. Assume now
that ∂S T is a knot. While the family {uk} could still decompose into finitely many orbits
under the monodromy ϕ′∗ of the smaller surface S T ′ , we will show this cannot be the case for
orbits of ϕ∗, the monodromy of S T . Namely, assume to the contrary that there were r indices
k1, . . . , kr ∈ N such that the ϕ∗-orbits of uk1 , . . . , ukr covered the whole sequence {uk}k∈N. By
Lemma 1 and Lemma 2 (applied toΦ = ϕ∗), we obtain the following, for every i ∈ {1, . . . , r}.
Either the ϕ∗-orbit of uki is bounded and thus finite, or there exist hi > 1, ci > 0, di � 0, such
that ‖ϕk∗(uki)‖ � cihk

i − di for all k ∈ N. Replacing hi, ci, di by minimal or maximal values
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h > 1, c > 0, d � 0 respectively, we have

‖ϕk
∗(uki)‖ � chk − d, ∀k ∈ N.

Now, let K ∈ N be large (to be specified later) and set R := aK + b. We would like to
compare the numbers

p := #{k ∈ N | ‖uk‖ � R},
q := #{(k, i) ∈ N × {1, . . . , r} | ‖ϕk

∗(uki)‖ � R}.
First, p � K, since ‖uk‖ � aK + b = R for all k � K, and the uk are pairwise distinct. Second,
taking N :=

⌊
K
r

⌋
− 1, we have K > rN, and

chN − d = ch�
K
r 
−1 − d � aK + b = R,

for large enough K, since h, c > 1. Then, we have q � rN, since ‖ϕk∗(uki)‖ � chN − d � R
as soon as k � N. Thus p � K > rN � q, contradicting our assumption on the sequence uk
being covered by the ϕ∗-orbits of its members uk1 , . . . , ukr . This finishes the proof. �

Question (by PierreDehornoy). Can every embedded Hopf band in S T be obtained from
one of the Hopf bands ui by successively applying the monodromies of S T ′ , where T ′ ranges
over suitable subtrees of T?
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