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Abstract

Reinforcement learning (RL) is one of machine learning techniques where an
agent tries to find an optimal decision making strategy, policy, in an unknown en-
vironment. Many successful applications of RL have been demonstrated such as
the tax collecting and the game of Go. Natural policy gradient (NPG) methods are
subset of RL methods, where the agent aims to acquire the locally optimal policy
parameter using the natural gradients. Many recent advances in RL researches are
based on the framework of NPG. Though for general machine learning methods the
estimation of the natural gradient requires to compute the inverse of Fisher infor-
mation matrix, it was shown more than a decade ago that the compatible function
approximation technique enables the NPG for RL to be estimated with O(d) com-
putational complexity and memory per update, where d is the dimensionality of
the parameter vector to be optimized. However, the incremental estimation of the
NPG is computationally unstable owing to its high sensitivity to the meta-parameter
values, especially to the step-size used to update the estimate of NPG.

In this dissertation we address the problem of how to safely estimate NPGs. In
the first study, we derive an adaptive step-size strategy for the incremental NPG
estimation. We first derive an upper bound for the step-size for a single update of
the parameter, and propose an adaptive step-size to implement the derived upper
bound. The proposed adaptive step-size guarantees that an updated parameter does
not overshoot the target signal, which is achieved by weighting the learning samples
according to their relative importances.

In the second study, we propose a new incremental and stable algorithm for the
NPG estimation. We call the proposed algorithm the implicit incremental natural actor
critic (I2NAC), and it is based on the idea of the implicit update of the parameter
vector. The asymptotic convergence analysis for 2NAC is provided. Theoretical
analysis results indicate the stability of I2NAC and the instability of conventional
incremental NPG methods.

The usefulness of the proposed methods were confirmed by numerical experi-

ments on the classical benchmark problems, and the results show that the proposed
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methods are less sensitive to the values of the meta-parameters, including the step-
size for the NPG update, compared to the existing incremental NPG method. It
was suggested that even in the meta-parameter settings where the conventional in-
cremental NPG method resulted in the policy degradation or the divergence of the
estimated parameter, I2NAC could still improve the policy.

Recently, the concept of compatible function approximation was generalized to
the broad class of gradient-like learning rules. The proposed methods in this dis-
sertation can be widely applicable to the approximation of the natural gradient with
O(d) computational complexity and memory per update, not only for the policy-
gradient-based RL methods but also for the general gradient-based machine learn-

ing methods and are worth further studies in the future.
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Chapter 1

Introduction: Safety in

Reinforcement Learning

In order to make a intelligent machine that can behave adaptively in unknown en-
vironments, the system should be designed so that it is capable of making the most
of experiences and improving its own decision making strategy. If some evaluation
signals to its behaviors are available, the decision maker should acquire the appro-
priate association between the stimuli and the responses. However, the problems
of how to assign an immediate evaluation to each past decision making and how to
reinforce the associations between the inputs and the outputs are non-trivial. Rein-

forcement learning is a strong candidate to answer this open problem.

1.1 Reinforcement Learning

The problem we are interested in is a sequential decision making in an unknown
environment (see Figure 1.1). The environment is a subset of the universe that is rele-
vant to the problem we try to solve. The decision maker is called an agent. The agent
observes the state of the environment, and makes a decision about which action to
choose. The action causes the environment to change the state according to its dy-
namics. At the same time the agent receives a scalar evaluative signal called a reward
according to a predefined reward function. The reward is the immediate evaluation
to the decision that was just made. The decision making rule of the agent is called
a policy. The agent, who initially does not know what are the “good behaviors” in

the environment, tries to change the policy so that the amount of the reward it will



2 Chapter 1. Introduction: Safety in Reinforcement Learning

receive in the long run future is maximized. As a criterion to determine whether the
policy is “good” or “bad”, it is often convenient to use value functions, which are de-
fined as the expected value of the return, the cumulative future rewards. The agent
should learn the value functions and regulate the policy so that the value functions

are maximized.

g
reward ‘<F:1 qiiﬁlb

function

policy dynamics

N—

action environment

agent

FIGURE 1.1: An overview of reinforcement learning.

If the complete model of the environment is available, that is, if the agent can
access to the dynamics and the reward function directly, an optimal policy can be
obtained by dynamic programming methods such as policy iteration or value iteration
(Howard, 1960; Bertsekas and Tsitsiklis, 1996). However, in practice, it is rare that
the dynamics and the reward function are available, thus somehow the agent has
to learn good policy without knowing the model of environment. This setting is
called model-free. Therefore it is required for the agent to collect the samples, the
tuples consist of state, action, successor state and reward, through the trial-and-error
interaction with the environment. This optimization problem is called reinforcement
learning (RL) (Bertsekas and Tsitsiklis, 1996; Kaelbling, Littman, and Moore, 1996;
Sutton and Barto, 1998; Szepesvari, 2010; Sugiyama, 2015; Sutton and Barto, 2017).

Ideally, the users of RL methods need not consider “how to achieve the goal”; the
agent learns it autonomously and we just need to design a reward function in which
“what the agent should achieve” is encoded. This philosophy was clearly stated by

Sutton and Barto, 1998; Sutton and Barto, 2017:
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[...] the reward signal is not the place to impart to the agent prior knowl-
edge about how to achieve what we want it to do [...]. The reward signal
is your way of communicating to the robot what you want it to achieve,

not how you want it achieved.

This is the big advantage of RL because it is often intractable to design how to solve
the problem in all the possible circumstances. In the literature, there are many
successful applications of RL methods; for example, playing the games such as
backgammon (Tesauro, 1995), Atari 2600 (Mnih et al., 2015), and Go (Silver et al.,
2016; Silver et al., 2017), soccer ball shooting (Asada et al., 1996), helicopter flight
(Ngetal., 2003; Abbeel et al., 2007), dexterous in-hand manipulation (OpenAl, 2018),
tax collecting (Abe et al., 2010), theorem proving (Kaliszyk et al., 2018) and devise
placement (Gao, Chen, and Li, 2018).

There are many taxonomies in RL methods. One of the important taxonomies
is value-based versus policy-based. In value-based methods, the action value function,
an expected value of the return conditioned on state-action pair, is learned. The
decision making follows the policy derived from the estimated action value function.
The classical and common strategies are greedy, e-greedy and softmax. The famous
examples of value-based methods are Q-learning (Watkins, 1989; Watkins and Dayan,
1992) and SARSA (Rummery and Niranjan, 1994).

On the other hand, in policy-based methods, the agent has a parameterized policy
which is represented independently of value functions. The purpose of the agent is
to optimize the policy parameter so that the expected return is maximized. A value
function may be used in the learning process, but is not required for the decision
making. Policy-based methods are also referred to as policy search methods. One of
the advantages of the policy-based methods is that since the policy is represented by
a function approximator, it is easy to deal with the continuous action space. There
are two main methods to optimize the policy parameter; the derivative free opti-
mization and policy gradient. The former includes evolutionary algorithm (Moriarty,
Schultz, and Grefenstette, 1999) and cross entropy method (Mannor, Rubinstein, and
Gat, 2003). In the latter approach, the policy parameter is updated by the gradient as-

cent, where the policy gradient is a steepest direction which maximizes the expected
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return (Gullapalli, 1990; Kimura and Kobayashi, 1998; Sutton et al., 1999; Baxter and
Bartlett, 2001). The focus of this dissertation is on the natural policy gradient methods,

which form a subset of policy gradient methods.

1.1.1 Natural Policy Gradient

The natural policy gradient (NPG) was originally proposed by Kakade, 2001, and is
an application of the natural gradient (Amari, 1998) to the policy gradient. The “gra-
dient” is the steepest direction to maximize the given learning objective function
and derived by solving a constrained optimization problem. Amari, 1998 proposed
to use the “natural” metric as the constraint and the derived steepest direction is
called the natural gradient. The natural gradient is a general technique and has been
widely applied in many fields with appropriate metrics, for example statistical es-
timation of probability density, optimization of neural network, and blind source
deconvolution (see (Amari, 1998) for the detail). In the literature of RL, the Fisher
information matrix (FIM) of the policy weighted by a state distribution is used as the
metric of policy parameter space. The important property of the NPG was shown by
Bagnell and Schneider, 2003, that it is covariant, that is, roughly speaking, the behav-
ior of learning rule is invariant even if the parameterization of the policy changes.
The usefulness of natural gradients in the RL domain was confirmed more than a
decade ago in high-dimensional control tasks of humanoid robots (Peters, Vijayaku-
mar, and Schaal, 2003; Peters and Schaal, 2008a). Furthermore, recent advances in
policy-gradient-based deep reinforcement learning methods are significantly based on
the NPG (Schulman et al., 2015; Duan et al., 2016; Wang et al., 2017; Chou, Maturana,
and Scherer, 2017; Wu et al., 2017; Schulman et al., 2017; OpenAl, 2018).

In general, the optimization of the policy parameter using NPG requires the fol-

lowing steps:

1. Estimation of the “vanilla” gradient of the policy parameter with respect to

given objective function.
2. Estimation of the FIM of the policy parameter.

3. Calculation of the inverse of the estimated FIM.
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4. Computation of the product of the inverse FIM and the estimated gradient.

This product gives the estimate of NPG.
5. The update of the policy parameter using the estimated NPG.

In order to implement the above procedures, one needs O(d?) memory complexity
and O(d3 ) computational complexity per update, where d is the dimensionality of
the parameter vector to be optimized. Even by the sophisticated methods (Amari,
Park, and Fukumizu, 2000; Park, Amari, and Fukumizu, 2000), (’)(dz) computational
complexity are required. Recently it was proposed to estimate the inverse of FIM
using Kronecker-factorization with very cheap memory and computation (Martens
and Grosse, 2015), it requires some assumptions such as the FIM is block-diagonal.
However, in RL, it was shown by Kakade, 2001 that using the compatible function
approximator (Sutton et al., 1999), the NPG can be estimated directly as a vector

without even storing any matrix.

1.2 Safety in Reinforcement Learning Algorithms

Given the brilliant successes, now a question arises: is the reinforcement learning
matured enough as a practical technique? The researchers will answer “No”, be-
cause there are many potential dangers in RL. A considerable research has been done
to ensure the safety of RL methods.

The word safe has been used as several meanings in the literature of RL. In this
section, we briefly review the researches directed to the safety of RL. The safeties in

RL methods can be categorized into four classes:
1. Safety in Exploration,
2. Safety via Optimization Criterion,
3. Safety via Constrained Optimization,
4. Safety in Optimization Procedure.

For the first three categories, a superb survey was provided by Garcia and Ferndn-

dez, 2015. In the following we review only a small subset of the literature and some



6 Chapter 1. Introduction: Safety in Reinforcement Learning

recent advances. The survey here is mainly focused on the model-free methods. The

safety that we focus on in this dissertation belongs to the last category.

1.2.1 Safety in Exploration

As stated in the above, it is usually assumed that the agent collects the learning sam-
ples through the trial-and-error interaction with the unknown environment. In order
to learn the good policy, the agent should explore the state and action spaces suffi-
ciently. The most naive exploration strategy is e-greedy in which the agent chooses
a random action with probability € while the agent exploits the current knowledge
by choosing the action whose value is the largest with probability 1 — €. Such a ex-
ploration strategy is dangerous because it is possible to result in a catastrophic state,
for example, self-driving car causes an accident. For the purpose of safe exploration,

many methods have been proposed:

* Incorporating Prior Knowledge: Many methods aim at the safe exploration
requiring prior knowledge of the target task. Maire, 2005 proposed a method
to derive initial value functions from a finite set of demonstrations by an ex-
pert. The high quality initial value function leads to the safe initial behavior.
Abbeel and Ng, 2005 proposed to estimate the dynamics of the environment
from demonstrations, derive the policy using the estimated dynamics and col-
lect new samples by exploiting the derived policy. Importantly, in their ap-
proach there is no need to use the exploring policy explicitly. On the other
hand, there are studies in which the existence of a “teacher”, who provides
advice to the agent when it is necessarily. The teacher advise can be an ac-
tion (Clouse and Utgoff, 1992), a set of actions from which the agent has to
choose, or an reward signal (Thomaz and Breazeal, 2006). As another line of
study, Perkins and Barto, 2001; Perkins and Barto, 2002 proposed to apply Lya-
punov design methods so that the state of environment is brought and kept in
a predefined subset of state space. Perkins and Barto, 2001 proposed to restrict
the agent to choose the action by which the designed Lyapunov function de-

creases. On the other hand, in (Perkins and Barto, 2002), the agent learns to
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switch base controllers which are designed using Lyapunov domain knowl-

edge and guaranteed to be safe even when taking the exploratory actions.

¢ Risk-directed Exploration: Another kind of researches does not require the
prior knowledge, in which a measurement of risk is learned in the learning
process instead. For example, Gehring and Precup, 2013 proposed to use the
mean absolute value of temporal difference error, an approximation error of
value function, as an indicator of how “controllable” the state is. If the tempo-
ral difference error of a particular state(-action pair) is varies considerably, the
state is less controllable. The estimated controllability is used as an exploration
bonus for the greedy action selection. Thus, the agent explores the controllable

subset of state space and the sample collection becomes safer.

1.2.2 Safety via Optimization Criterion

In another branch of researches, the optimization criterion, or the objective function
of the learning, is changed so that it is possible to deal with a notion of risk. In this
context, the conventional definition of optimization criterion — the expected value of
the return — is called a risk neutral (Puterman, 1994, § 4.1.1). Because this criterion is
a expectation over the state and action spaces, it is not always the suitable one for
the tasks where catastrophic states exist; again, for example, self-driving car causes

an accident.

* Worst Case Criterion: Heger, 1994 proposed the minimax criterion, which is de-
fined as the minimum expected value of the return. Maximizing the minimax
criterion means that the total reward in the “worst case scenario” is maximized,
therefore the minimax criterion is also called the worst case criterion. However,
the worst case criterion is too restrictive in general because it takes into account

very rare events that possibly never happens.

* Risk-Sensitive Criterion: In the risk-sensitive case, the objective criterion is
defined by the exponential utility functions (Howard and Matheson, 1972; Mi-
hatsch and Neuneier, 2002). Gosavi, 2009 proposed the penalization of the ob-
jective function by the variance of the return. The exponential utility also cor-

responds to the sum of expectation and variance of the return in the first order.



8 Chapter 1. Introduction: Safety in Reinforcement Learning

For both cases, a scalar parameter decides whether the agent is risk-aversion
or risk-seeking. Though these methods are model-based, Borkar, 2001 proposed
a model-free approach for the exponential utility objective and proved it con-
verges to the near-optimal with probability one. Tamar, Castro, and Mannor,
2013; Tamar, Castro, and Mannor, 2016 also proposed a model-free method to
estimate the variance of the return and showed its convergence with probabil-
ity one. Morimura et al., 2010c; Morimura et al., 2010b proposed to estimate the
density of the return instead of the expected value or variance and confirmed

its usefulness in the risk-sensitive RL.

1.2.3 Safety via Constrained Optimization

The third safety is achieved by maximizing the expected return subject to some con-
straints. Depending on the design of the constraints, the property of the resultant

RL algorithm dramatically changes.

* Constraint on Expected Return: In (Geibel, 2006), the expected return is con-
strained so that it is ensured to exceed some given threshold. This approach
is useful when we know a reasonable value of threshold, for example, we al-
ready have good policy and want to improve it by additional samples. This
motivation is also related to the that of the monotonic improvement methods

introduced in §1.2.4.

¢ Constraint on Action Selection: Abe et al., 2010 proposed a constrained RL
algorithm and applied their method to optimize the actual tax collection at
New York state. Their method uses the constraint for the action selection which

reflect business needs, resources, and legal constraints.

¢ Constraint on Policy Parameter: Thomas et al., 2013 proposed to use the con-
straint by which dangerous regions in policy space are specified. Their al-
gorithm projects the parameter to the safe region so that the constraints are

satisfied.
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1.2.4 Safety in Optimization Procedure

The last category is about the safety for the optimization procedure itself, where the
focus is on neither the exploration nor the learning objective. The focus is on how to
acquire the good policy without failure making the most of the collected samples so

that the given optimization criterion is maximized.

* Distribution Mismatch: The methods in this category aim at the off-policy
learning. In general, it is called off-policy if the distribution of the learning
samples does not match the distribution induced from the policy we want to
evaluate or improve. On the other hand, it is called on-policy if these distri-
butions are equivalent. The distribution mismatch crucially affect the learning
performance of RL methods. Notice that, as stated in the above, the purpose of
the general RL methods is to find a policy which maximize the expected long
term future reward. Therefore, the calculation of expectation from the collected
samples is the key factor of RL methods. It is obvious that when we calculate
an expected value of a random valuable empirically, we have to care about the
distribution from which the sample were generated. In RL setting, the action
of the agent is determined by the current policy and the state is determined
by a distribution induced by the current policy and the dynamics of the en-
vironment. Therefore, once we update the policy, the collected samples using
the previous policy becomes off-policy; the distribution of the collected learn-
ing samples so far does not match the current distribution of the state-action
pair. There are many research efforts which aim at efficient off-policy learn-
ing methods for both value-based methods (Singh et al., 2000; Precup, Sutton,
and Singh, 2000; Precup, Sutton, and Dasgupta, 2001; Sutton, Szepesvari, and
Maei, 2008; Maei et al., 2009; Sutton et al., 2009; Maei et al., 2010; Harutyun-
yan et al., 2016; Munos et al., 2016) and policy-based methods (Degris, White,
and Sutton, 2012; Silver et al., 2014; Nachum et al., 2017a; Imani, Graves, and
White, 2018). Furthermore, off-policy learning is an important element of deep
RL methods (Mnih et al., 2015; Lillicrap et al., 2016; Gu et al., 2017b; Gu et al.,
2017a; Haarnoja et al., 2017; Haarnoja et al., 2018).
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Though the notion of safety has not been used very often in the off-policy
learning literature, we introduce an important example: Munos et al., 2016
proposed an off-policy policy evaluation algorithm called Retrace in the paper

entitled “Safe and efficient off-policy reinforcement learning”:

In that sense this algorithm is not safe: it does not handle the case of

arbitrary “off-policyness”.
Thus, an off-policy algorithm is called safe if it can handle arbitrary off-policyness.

Monotonic Improvement: The purpose of the methods in this category is to
guarantee that each update of the policy produces at least as good policy as the
previous one. Though this is guaranteed for the policy iteration or the value
iteration methods if the complete model of the environment is available and
the representation of the value function is exact, it is non-trivial to guarantee
the performance improvement for RL settings where the model of the environ-

ment is unknown and function approximation is used.

Several researches (Kakade and Langford, 2002; Pirotta et al., 2013; Abbasi-
Yadkori, Bartlett, and Wright, 2016) address this problem where the authors
derived the lower bounds of the performance difference between two policies
and proposed RL algorithms which use the derived bound and generate the

non-decreasing sequence of the policies.

On the other hand, the safe reinforcement learning proposed by Thomas, 2015
(see also Thomas, Theocharous, and Ghavamzadeh, 2015a; Thomas, Theocharous,
and Ghavamzadeh, 2015b) uses importance sampling techniques and concen-
tration inequalities in order to guarantee that the performance of the policy
improves with probability at least bigger than 1 — J, where ¢ is a positive con-

fidence level. Thomas, 2015 defined the safety as follows:

[...] we call an RL method safe if it guarantees with high confidence
that every change that it makes to the decision-making mechanism

(policy) will be an improvement.

Though these methods are very sophisticated and have strong theoretical guar-

antees, their criterion to generate a new policy is sometimes too strict and
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these methods are computationally expensive compared to the conventional

RL methods.

* Learning Stability: Though there are many research efforts which aim at the
stability of RL methods, here we focus on the researches that are related to the
policy oscillation or policy degradation phenomena (Bertsekas and Tsitsiklis, 1996;
Gordon, 2000; Bertsekas, 2010; Bertsekas, 2011; Wagner, 2011; Wagner, 2013;
Wagner, 2014). It has been observed in the literature for many learning algo-
rithms that the performance of the policy first improves and then it is followed
by the oscillation between the sub-optimal policies and sometimes the learn-
ing results in the degradation of the policy performance. These phenomena
are called policy oscillation and policy degradation, respectively. Bertsekas,
2010 proposed an hypothesis called greedy partition that explains one possible
cause of the policy degradation in value-based RL methods. Roughly speak-
ing, the parameter of a approximated value function iteratively converges to
some fixed points whose corresponding greedy policies are suboptimal, and
under these greedy policies the fixed point of the approximated value function
is different. Though both policy oscillation and policy degradation are severe
problems especially in value-based RL methods, these phenomena were also
observed in a policy gradient approach (Wagner, 2014). Of course, if the policy
improves monotonically in the learning then policy oscillation and degrada-
tion does not occur, thus the researches in this category should be connected

with the previous one.

Safety of Natural Policy Gradient Methods

In this dissertation, we focus on NPG methods, especially on incremental natural
actor critic (INAC) algorithms (Bhatnagar et al., 2009; Degris, Pilarski, and Sutton,
2012; Morimura, Uchibe, and Doya, 2005; Thomas, 2014a), which form a subset of
NPG methods. INAC methods have three advantages: (i) the required memory
and computation per time step scale linearly with the dimensions of the estimated
parameters, (ii) all the update procedures can be executed by a simple stochastic

gradient descent, (iii) no assumption is required on the FIM such as block diagonal,
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and (iv) even when the FIM degenerates, INACs estimate the NPG by implicitly
calculating the pseudo inverse of the FIM (Thomas, 2014b).

However, INAC methods have a serious disadvantage in that the iteration for
NPG estimation is very unstable and divergent owing to its high sensitivity to the
values of the meta-parameters, especially to the step-size, used to update the estimate
of NPG. There are many studies that have improved the stability of the iteration to
update the policy (Greensmith, Bartlett, and Baxter, 2004; Matsubara, Morimura,
and Morimoto, 2010; Pirotta, Restelli, and Bascetta, 2013) and the state-value func-
tion (Dabney and Barto, 2012; Tamar et al., 2014). However, to the best of our knowl-
edge, very few studies have addressed the stability of NPG estimation.

In this dissertation, we call an RL method safe if it has a theoretical guarantee
that it can avoid the divergence of the estimated parameter. Now we can clearly
state that the purpose of this dissertation is to propose a safe algorithm to estimate

the natural policy gradient incrementally.

1.3 Organization and Contributions of Dissertation

The organization and contributions of this dissertation are summarized as follows:

¢ Chapter 2: The purpose of this chapter is to provide the mathematical for-
mulation of reinforcement learning methods. In order to describe what the
reinforcement learning estimate and learn, first we begin with formalizing the
Markov decision process, and review a fundamental dynamic programming
method by which the optimal policy is obtained exactly. Then, we show how
reinforcement learning methods approximate the exact solutions through trial-

and-error interaction with the unknown environment.

¢ Chapter 3: The purpose of this chapter is to provide the mathematical for-
mulation of incremental natural actor critic INAC) methods. This chapter
describes how the existing natural policy gradient methods approximate the
dynamic programming method. After reviewing the natural gradient, we pro-
vide the derivation of the policy gradient and the natural policy gradient.

Then, we review the existing methods which use NPGs, including INACs,
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in which the NPG is estimated by a simple linear regression of the temporal
difference error. Importantly, in the last part of this chapter, we provide an

motivative example for the safety in natural policy gradient methods.

¢ Chapter 4: In this chapter, we propose the first safe algorithm to estimate the
NPG incrementally; we propose an adaptive step-size strategy for INAC meth-
ods. We first derive an upper bound for the step-size to estimate the NPG. If
the magnitude of step-size is held below the derived upper bound, it is guar-
anteed that each update of the parameter vector does not overshoot the given
target signal. Then, we propose an adaptive step-size strategy to implement
the derived upper bound. The adaptive step-size is derived by considering the
infinite-times-update with infinitesimal step-size. The proposed adaptive step-

size strategy is guaranteed that it does not exceed the derived upper bound.

¢ Chapter 5: In this chapter, we propose the second safe algorithm to estimate
the NPG incrementally; we propose a new incremental and stable algorithm
for the NPG estimation based on the idea of the implicit update of the param-
eter vector. We call the proposed algorithm the implicit incremental natural actor
critic I2NAC), The asymptotic convergence analysis for I2NAC is provided.
Then, we compare the learning stability of the 2NAC and INACs by calculat-
ing the upper bound of the norm of the estimated NPGs. Theoretical analysis
results shows the stability of 2NAC and that the conventional INACs have a
element of danger which leads the estimated NPG to divergence even when

the learning procedure successes.

¢ Chapter 6: This brief chapter summarizes the contributions of this dissertation

and discusses possible directions for future works.
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Chapter 2

Background of Reinforcement

Learning

In this chapter, we provide the formal description of the sequential decision making
problem that we focus on in this dissertation. More specifically, in Section 2.1, we in-
troduce the Markov decision process and reinforcement learning problem. Then, we
describe the policy iteration in Section 2.2, which is one of the dynamic programming
method to optimize the decision making strategy. Policy iteration is model-based
and exact. Finally, in Section 2.3, we introduce the reinforcement learning as a ap-

proximate dynamic programming.

2.1 Markov Decision Process

We formalize the sequential decision making problem as an infinite horizon Markov
decision process (MDP) (Puterman, 1994) throughout this dissertation. Let f denote
the time step, which start from t = 0. An MDP is specified by a tuple (S, A, P, R, o),

where:

1. § is the finite set of possible states of an environment, and is called the state
space. We write s to denote an element of S and s; to denote the state that

occurs at time t.

2. A is the finite set of possible actions the agent can choose, and is called the
action space. We write a to denote an element of A and 4; to denote the action

that the agent takes at time ¢.
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For the convenience, let ¢;.7 denote the history of states and actions starting from

time ¢t and up until T:

gt:T é (Stl Aty St4+1,0¢+1, - - - ,ST,HT).

¢ is also called trajectory or sample path.

3. P:Sx AxS —[0,1] is called the state transition probability, the state transition
law or the dynamics. We define P (s'|s, a) to be the probability that the next state

is ' if action a is taken in state s:
P (s'|s,a) £ P (sp41 =5'|ss =s,ar =a),

for all s,a,s" and t > 0. Notice that we introduced the first Markov assump-
tion in the definition of the transition probability: the distribution over s;

depends only on s; and a;, that is,
P (St+1 = S/|5t =s,a;r=4a, §O:t—1) =P (St+1 = Sl‘St =54t = ﬂ) ’

for all s,a,s',¢ and t > 0. Furthermore, we assume the stationary Markov
chain: the transition probability is independent of the time, ¢, that is, for any

t > 0and t’ > 0, it holds that
P (si1=5|se=s,ar=a) =P (spy1 =5|sp =s,ap =a),

forall s,a and s'.

4. R : 8§ X A — [Rmin, Rmax] is called the reward function, which determines the
bounded reward r € [Rmin, Rmax]. We define R(s,a) to be the expected value

of reward r that the agent receives if action 4 is taken in state s:

R(s,a) 2 E[rs|s; = s,a; = a]

= Y  rP(n=rlss=sar=a),

re [RminrRmax]
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for all s,a and t > 0. We often write r = R(s,a). Here we introduced the
second Markov assumption: the reward at time ¢, r;, depends only on s; and

a;, that is,

P (ry=rlss =s,ai =a,8o4—1) =P (ry =rlsy =s,a; = a),

for all s,a,¢ and t > 0. Furthermore, we assume that the reward function is
stationary: the distribution over r; is independent of the time, ¢, that is, for any

t > 0and t > 0, it holds that

P (rr=rlss =s,a,=0a) =P (ry =rt|sy =s,ap =a),

foralls,a and r.

The tuple of the transition probability P and the reward function R is often called

the model of the environment.

5. po : § — [0,1] is called the initial state distribution because py is the distribution

over so: po(s) =P (sp =s).

Our purpose is to optimize the decision making strategy so that the trajectory
0.0 is generated in compliance with our desire. The decision making rule of the
agent to be optimized is called the policy and is denoted by 7r. The policy can be

either stochastic or deterministic.

e The stochastic policy 7t : S x A — [0,1] is the conditional distribution that the

agent takes action a given that the state of environment is s:

m(als) 2P (a; = a|s; = s).

Note that we introduced the final Markov assumption that the policy is mem-
oryless and stationary. The policy is memoryless because the probability of the

action at time t depends only on the state at time ¢:

P (ar =als; =s,804-1) =P (ar = als; =s),
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for all s,a,¢ and t > 0. The policy is stationary because the action probability

is independent of the time, t, that is, for any t > 0 and ¢ > 0, it holds that
P (ﬂt = [Z‘St = S) =P (at’ = g’st, = S),

for all s and a.

* On the other hand, the deterministic policy t : S — A is a function whose input
is a state and output is an action: a; = 7(s;). Note that the deterministic policy

we consider is also memoryless and stationary.

The purpose of the reinforcement learning methods is to find the optimal pol-
icy which maximizes the long term future reward. The “long term future reward”
is defined by using the cumulative of all the reward that agent will receive in the
future. The optimal policy enables the agent to maximize the expected cumulative
future reward irrespectively of the initial state. It is convenient to use value functions
for the definition of the expected cumulative future reward. In this dissertation, we
consider the two formulations of the value functions and the objective function as

follows.

2.1.1 Discounted Reward Formulation

First, we consider the discounted reward formulation. The cumulative future reward,

called a return, is defined by

(o]

Ri=) 7", (2.1)

=0

where v € (0,1) is a discount factor. The discount factor is defined so that the return
is finite. Note that v = 1 is allowed only for episodic MDPs, where the interaction
between the agent and the environment terminates in finite steps. Since our notion
of the problem is infinite-horizon MDP in this dissertation, we do not treat y = 1. In
the following, we write E [-] to show that the trajectory ¢ is drawn from the tuple

’

71, P. The state value function for the policy 7r, V7(s), is defined by

V7(s) = HIEP [R¢|st = s]. (2.2)

’
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Similarly, the state-action value function or simply action value function for the policy

7, Q7 (s, a), is defined by
Q™ (s,a) = E_[R¢|st = s,a; = a]. (2.3)
P

The state value and action value represent the expected future reward obtained by
following the policy 7t starting from a state and a state-action pair, respectively. The

following relation holds directly from the definitions of V" (s) and Q" (s, a):
V7i(s) = ) m(als)Q™ (s, ). (24)
acA

Though value functions are the functions of state or state-action pair, the main pur-
pose to consider these quantities in the learning perspective is to evaluate the policy.

Notice that the return R; satisfies the following recursion:
Ry =1t + YRy, (2.5)

and thus

[ee]

Z Y R(st1r,at47) = R(st,ar) + v Z ’YTR(St+1+r,ﬂt+1+r)- (2.6)

=0 =0
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Using the recursion above, we acquire the one step temporal consistencies of the

value functions. Namely, we have

V7(s)

=E.p[Rt|st = 5]

= IEmNT[,éHl;ooN(T(,'P) [ZOWTR(SH-T/ aH—T) |St - S]
=

= IEuwﬂ,émmw(n,P) [R(Sh”t) +y Z%)rYTR(St+1+T/at+1+T) |5t = S]
=

=0

=Y n(als)R(s,a)+ v ) m(als) Y P(s|s,a)

aeA ac A s'eS

= Eonr [R(st,ar) st = 8] + Y Eoor gy gn(nP) [Z YV R(St+140, Ars1+47) |5t = S]

(o)

T A

Eat+1~n,§f+zm~(nﬂ>) [Z Y R(5t+1+rrﬂt+1+r) |St+l =S ]
=0

= Z mt(als)R(s,a) +y Z Tia E P(s'ls,a) Exp [Rt+l |st41 = S/}

acA acA s'e€s

=Y n(als)R(s,a) + v Y_ m(als) Y P(s's,a)V7(s")
acA acA s'€s

= Y 7(als) <R(s,a) +7) 73(5'|S,0)Vn(5l>> :
acA s'eS

The similar argument holds for the action value function Q™ (s, a). The Bellman equa-

tions, stated in the following proposition, form the basis of RL theory.

Proposition 2.1 (Bellman Equations for Discounted Reward Formulation). Value func-

tions satisfy the following one step temporal consistencies:

=Y n(als) <R(s,a) +7 ), P(s/|s,a)V”(s/)> , (2.7)
acA

s'eS
Q"(s,a) = R(s,a) + v Y P(s'|s,a) Y n(a'|s")Q™(s,a’). (2.8)
s'eS aeA

The Bellman equations represent backups, that is, how value functions can be ex-
pressed recursively by using the values of successive state or state-action pair. This
important property is depicted in the Figure 2.1, called backup diagrams. Another im-

portant relation between the state value function V7 (s) and the action value function
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Q™ (s, a) is the following:
Q"(s,a) = R(s,a) +v Y_ P(s'|s,a) V(). (2.9)
s'eS

Eq. (2.9) is easily confirmed by by combining (2.8) and (2.4). Notice that both Egs.

(2.4) and (2.9) can be easily derived from the backup diagrams 2.1.

FIGURE 2.1: Backup Diagrams for (A) V7 (s) and (B) Q" (s,a). Each
white circle represents a state and each black circle represents a state-
action pair. Orange lines are possible action selections according to
the policy of agent and blue lines are possible state transitions ac-
cording to the dynamics of environment.
Given value functions we can evaluate the policy, because value functions define
a partial ordering over policies. Namely, for two policies 7t and 77/, we write 77 > 7/
if and only if V7(s) > V7 (s) for all s € S. For any MDP, there exists at least one
optimal policy, 7t*, that is better than or equal to all other policies, 77* > 7 for all 7.
Though there may exist more than one optimal policies, they share the same optimal
state value function

V*(s) = max V™(s) = V™ (s) (2.10)

T

and optimal action value function

Q*(s,a) = max Q" (s,a) = Q™ (s,a). (2.11)

Optimal value functions represent the expected future reward obtained by follow-
ing an optimal policy starting from a state and a state-action pair, respectively. Recall
that under the optimal policy, the agent choose an action by which the value is max-

imized. In other words, the probability mass of 77* must be concentrated on the set
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of actions that maximize Q*(s, a). Therefore, from (2.4) the optimal value functions

V*(s) and Q* (s, a) satisfy

Vi(s) =) m*(als) = max Q*(s,a) (2.12)
acA ac

Thus, the one step temporal consistency of the optimal state value function is:

Vi(s) = max Q™ (s,a)

=maxE  p [R¢|s = s,a; = a]
aceA !

= max ]Eém;ow(n*,??)

acA =0

R(st,ar) +7 Y, Y R(St4147 r147) |5t = s,a0 = a]

o]

T
Y R(St414w Ar147) |St = 5,8 = a
acA =0

= maXxX <R(S,Q) + ’)/:[E(:Hl:oo"(n*/rp) [

— !/
= max <R(s,a) - 75%73(5 |s, a) x

(o]

T _ !
]Eut+1~ﬂ*,r§t+z:oo~(7r*,7>) [ s R(St+1+rrat+1+r) |St+1 =S ])

=0

=max | R(s,a) +7v Y_ P(s'|s,a)Epe p [Res1 5141 = §']
acA s'eS

= max (R(s,a) +7) P(s/|s,a)V*(s/)> :

acA s'eS

The similar argument holds for the action value function Q*(s,a). The following

proposition states the Bellman optimality equations.

Proposition 2.2 (Bellman Optimality Equations for Discounted Reward Formula-

tion). Optimal value functions satisfy the following one step temporal consistencies:

V*(s) = max (R(s,a) +7 ), P(s’\s,a)V*(s’)) , (2.13)
aceA s'eS
Q*(s,a) = R(s,a) +7v Y_ P(s'|s,a) max Q* (s, a’). (2.14)
s'eS a'ed
Combining (2.12) and (2.14), we have
Q*(s,a) = R(s,a) +v Y_ P(s'|s,a)V*(s'). (2.15)

s'eS
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max

FIGURE 2.2: Backup Diagrams for (A) V*(s) and (B) Q*(s,a). Each

white circle represents a state and each black circle represents a state-

action pair. Red lines and arcs represent that the action is chosen so

that the values are maximized and blue lines are possible state transi-
tions according to the dynamics of environment.

As wee see later, the state value function V™ and the action value function Q™
are the unique fixed points of the Bellman equations (2.7) and (2.8), respectively.
Similarly, the optimal state value function V* and the optimal action value function
Q™ are the unique fixed points of the Bellman optimality equations (2.13) and (2.14),
respectively.

Further, we define p”(s) as the (unnormalized) y-discounted future state distri-

bution for the initial state distribution py under the policy 7

o]

07 (s) = Y_ ' P(s = s|po, 7). (2.16)
t=0

In order to express p”(s) in terms of po, P and 7, let us consider the n-step state
transition probability P™" from state s; to s;, under the Markov chain according to

the policy 7

P (St4nlst)

= Y m(aelse) Y Plserals,ar) Y, mlapalsisn) - -

ateA Sti1 €S llt+1€./4

XY Plstrn-tlstrn—2arin2) Y. T(@rn-1lStrn-1)P(StnlStin—1,arrn-1)-
stJrn—le‘S at+n—1€A

(2.17)
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Note that
P(s, = s|so = ', m) = P™"(s]s") (2.18)
and IP(sp = s|sop = s, 1) = 1. Then, p”(s) can be decomposed into

p"(s) = )_ ' P(st = s|po, 70)
t=0

=Y po(s’ ny (st =slso =5, 7)

SpES

=Y po(s 27*7?7” s|s’). (2.19)
t=0

SpES

The objective function of the learning is defined as the discounted future reward:

£ Y po(s)V7(s) = )_p"(s) Y m(als)R(s,a). (2.20)

seS seS acA
2.1.2 Average Reward Formulation

Next, we consider the average reward formulation. In the average reward formula-

tion, we require the following assumption:

Assumption 2.3. Under any policy 7t, the Markov chain resulting from the given MDP is

irreducible and aperiodic (ergodic).

Roughly speaking, if the Markov chain under the policy 7t is ergodic, then any
state is eventually reachable from any other state by following 7. Under Assumption
2.3, there exists a limiting state distribution p”(s) independent of the initial state:

7 (s) = lim P (s; = s|sp = s, ), Vs €8. (2.21)

t—o0

The limiting distribution p” (s) is the unique stationary distribution and satisfies the

balance equation:

=YY P(s'ls,a)m(als)p™(s). (2.22)

seSaceA
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The objective function of the learning is defined as the average reward:

7(rr) £ lim lg

T—oo T 7, P

T-1
» rt] =Y 0"(s) X nilals)R(s,a). (2.23)

seS acA

For each policy 7, the state value function V7 (s) and the state-action value function

Q™ (s, a) are given by

Vi(s) =), IEP [repc —n(m)|se = 5], (2.24)
=07
Q"(s,0) = ¥ E v n(mls = s =), (2.25)

p-‘
\ |

respectively. Analogous to the discounted reward case, the state value function

(2.24) and the action value function (2.25) satisfy the Bellman equations.

Proposition 2.4 (Bellman Equations for Average Reward Formulation). Value func-

tions satisfy the following one step temporal consistencies:

— Z rt(als) ( s,a) )+ Z P(s'ls,a)V7(s )) (2.26)

aeA s'eS
Q™ (s,a) = R(s,a) —n(m) + Z P(s'|s,a) Z n(a'ls") Q™ (s',a"). (2.27)
s'eS adeA

Another relations between the state value function V7 (s) and the action value

function Q” (s, a) are the following equations:

=Y m(a|s)Q(s,a), (2.28)
acA
Q7 (s,a) = R(s,a )+ Y P(s'|s, a)V7(s"). (2.29)
s'eS

Furthermore, the optimal state value function V*(s) and the action value func-

tion Q*(s, a) satisfy the following Bellman optimality equations.
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Proposition 2.5 (Bellman Optimality Equations for Average Reward Formulation).

Optimal value functions satisfy the following one step temporal consistencies:

V*(s) = max (R(s,a) max;y +s§s77 (s'|s,a)V*(s )) (2.30)

Q*(s,a) = R(s,a) — max;y +sgg77 s'ls,a meazQ (s, a"). (2.31)

The optimal value functions V*(s) and Q*(s, a) satisfy

V*(s) = max Q*(s,a), (2.32)
Q*(s,a) = R(s,a) — maxq )+ Y P(s'[s, a)V*(s"). (2.33)
s'eS

2.2 Dynamic Programming

Now we can formally state that the purpose of reinforcement learning methods is to

find an optimal policy 7* which maximizes the given objective function #(7):

" € argmax 1(7). (2.34)

7T

Note that any MDPs have at least one optimal deterministic policy 7* whose corre-
sponding value functions are optimal: V™ = V*, Q™ = Q*.

Although the focus of this dissertation is model-free reinforcement learning meth-
ods, let us assume here that the transition probability P and the reward function R
are provided. In the following, we describe policy iteration (Howard, 1960), which
is one of the dynamic programming methods to acquire the optimal policy in MDP.
For the brevity, here we consider the discounted reward formulation only. First, we
introduce the Bellman operators and show their contraction property. Next, we pro-
vide the policy improvement theorem. Then, we policy iteration is described, which
consists of policy evaluation step and policy improvement step. Importantly, policy it-
eration finds the optimal policy by generating a sequence of monotonically improving

policies.
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2.2.1 Bellman Operators

Let V = R and @ = RS*A. Then V is a space of all the functions V such that
V : S = Rand Q is a space of all the functions Q such that Q : § x A — R. We

define the Bellman operators underlying 7 77 : V — Vand 77 : Q — Q as follows:

(T7V)(s) = ) (als) (R(S,ﬂ) +7 ) P(S'\Sﬂ)"(S’)) /

acA s'eS

(T7Q) (s,a) = R(s,a) +7 ) P(s'ls,a) ) m(a'ls")Q(s", a).

s'eS aeA

Similarly, we define the Bellman optimality operators T : V — Vand T : Q — Q with
a slight of notation:

(TV) (s) = max (R(s,a) +y Z P(sﬂs,a)V(s’)) ,

aeA S

(TQ) (5.0) = R(s,a) +7 ¥ P(s'ls,a) max Q(s', )

s'eS

Note that the value functions V™ and Q" are the fixed points of the Bellman op-
erators, respectively: V™ = T7V7™, Q" = T"™Q”". Similarly, the optimal value
functions V* and Q* are the fixed points of the Bellman operators, respectively:
V¥ = TV*,Q" = TQ* Let |f|le = sup,.y |f(x)| be a supremum norm for a
function f whose domain is X'. As we see in the following, the Bellman (optimality)

operators are contraction mappings in || - || norms with contraction factor .

Proposition 2.6 (Contraction Properties of Bellman (Optimality) Operators). Let
Vi, Vo € Vand Q1,Q, € Q. Then it holds that

[TV =T V2l <7 VA = V2l
1TVi=TV2lle <7 [IVi = V2l s,
1T7Q1 = T" Q2o <7 1Q1 — Q2lless
1TQ1—TQalle <7[Q1 — Qlle -
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Proof. We provide the proof only for 77 and 7. First, it holds that

TV, — T™ Vs, = sup
seS

Y n(als) (R(s,a) +7Y, P(s’\s,a)Vl(s’)>

aeA s'eS

— Y 7n(als) <R(S,a) +7Y, 7’(8/|S,61)V2(5/)>‘

acA s'eS
Y, P s) (Vi(s') = Va(s'))

s'eS ‘

< ysup ) P |s) [Va(s') — Va(s')]|

s€S s'eS

< qgsup Y P s) [|[Vi — Vallo

s€S s'eS

=71 = V2| -

= ysup
sES

The last equality follows from Y o5 P™!(s'|s) = 1. Then, T is a contraction be-

cause y < 1. Similarly, we have

[TQ1—TQ2|lo= sup

R(s,a)+ Z P(s’]s,a)majl( Qi1(s',a")
ae

(sa)eSxA seS
—R(s,a) +7 Z P(s'|s,a) max Q(s’,a")
s'eS a'cA
=7 sup P(s'|s, a) (max Q1(s',a") —max Qy(s/, a’))
(s,m)ESxA sgﬁf a'eA aeA

<7y sup ZP(S’|S,a)

max Q1 (s’,a") —max Q,(s',a’)
(s,a)eESxAs'eS a'eA a'e

A

(a)
<7y sup ) P(s”s,a)ngax Qu(s',a") — Qa(s, )]
(s,0)ESxAs'eS aeA

< Y sup Z 'P(S/’S,(/l) HQl - Q2||oo
(sm)eSxAs'eS

=701 - Q2|

where (a) follows from

max f(x) —max g(x) < max|f(x) —g(x)|.
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Given Proposition 2.6, it follows immediately that the fixed points of Bellman
(optimality) operators, V™, Q™, V* and Q, are unique for the corresponding oper-
ators. Furthermore, by applying the operators successively, VV € V and VQ € Q
converges to the corresponding fixed point. For example, assume that 7 has a fixed

point V’ other than V™. Then, we have

VT =Vl = [TV = T™V'loo < 7|V = V'[|oo

& ([1=-7)V'-V]e <o
Since ¥y < 1land || - || > 0, we get
[VTF=V'|lo=0 <& VseS§ V7(s)=V(s).
Next, let VVy € V and let Vi1 = T V,. Then, it holds that

Vi =V leo = 1T Vi = TV |
< Vi1 = Ve
<P Vica = V7l

< ...

< ANV = V7|
and thus
lim ||V — V|| = 0.
k—00

2.2.2 Policy Improvement Theorem

As wee see later, policy iteration generates a sequence of monotonically improving

policies. This fact is justified by the following policy improvement theorem.

Proposition 2.7 (Policy Improvement Theorem). Let 7t and v’ be two policies such that

V7(s) < X 7 (als)Q%(s,a) (235)

aeA
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forall s € S. Then it holds that

V7(s) < V™ (s) (2.36)

foralls € S.

Proof. From Egs. (2.35) and (2.9), it holds that

) < ) 7(als)Q7(s,a)
acA
SETee (R(S’”) ) P(s’ls,a)V"(sO)
acA s'eS
= Z 7 (als) (R(s,a) +7 E P(s'|s, a) Z N/(a/|s/)Q7I(S/,a/)>
acA s'eS acA

= ]E"at"/ﬂl [R(St/af) + ’)/Vn(St+1)|St = S] .

By iteratively substituting the left hand side for the right hand side, we get, for any

n €N,

Vﬂ(s) < ]EatN”’/SH—lNP,ﬂH—lN”' [R(St' at) + ’YR(SH-l/ at-i-l) + ’)/ZVH(St+2)|St = S]

1
S Eomrt giiina~ (7, P) [Z VY R(St4r, atr) + 9"V (St4n) |5t = S] :
=0

Finally, taking the limit n — oo yields

Vn(s) < ]EatNH’,§t+1:ooN(7T’,77) [Z ’YTR(SH-T/ at-H')’St =s| = Vn, <S)
=0
|
Notice that if 77’ is deterministic, Eq. (2.35) reduces to
V() < Q" (s, 7' (s)). (2.37)

2.2.3 Policy Iteration

Policy iteration (Howard, 1960) is a method to find the optimal policy 7t* for any

given MDP. Policy iteration consists of two iterative procedures; policy evaluation
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and policy improvement (shown in Figure 2.3). Let k be a integer (not a environmental
time step t) and suppose that we have an estimate of the deterministic policy 7.
In policy evaluation step, one successively apply the Bellman operator 77 to the
arbitrary initialized function V' or Q until the convergence, respectively. Then, in

policy improvement step, one generate the new greedy policy 7ti.1 from V7% or Q"*

by the followings:
Mis1(s) = argmax | R(s,a) +v )_ P(s'ls,a)V7(s') |, (2.38)
acA s'eS
= argmax Q" (s, a). (2.39)
acA

The greedy policy improvement above is guaranteed to generate the deterministic

policy 7ti.1 at least as good as 7tx. From the definition (2.39), we have

V7 (s) = ) m(als)Q™ (s, a)

acA

< max Q™ (s, a)
acA

= Q" (s,argmax Q™(s,a))
ac A

= Q(s, 11(s))-

Thus, the greedy policy satisfies (2.37) and therefore from the policy improvement
theorem (2.7), it holds that

V7 (s) < V™+1(s), or Q7(s,a) < Q™+ (s,a),
for all s and 4, and thus

1(70) < 17(7kta)-

Therefore, iterating policy evaluation and policy improvement generates the se-
quence of monotonically improving policies and the policy is optimal if it converged.
It was proven that for the discounted reward objective the policy iteration are poly-

nomial (Ye, 2011; Scherrer, 2013).
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Value Functions
7T T
V k , Q k

Policy Policy
Evaluation Improvement

A
Model Policy
P, R Tk

FIGURE 2.3: Framework of Policy Iteration.

2.3 Reinforcement Learning as Approximate Dynamic Pro-
gramming
The convergence of policy iteration is guaranteed under the two assumptions:
1. the policy and the value functions have tabular representations,
2. the Bellman operators are applied exactly.

However, tabular representations are impractical for large state and action spaces.
Furthermore, the model of environment is often unknown and we cannot even ob-
tain the explicit form of Bellman operators in lack of the transition probability 7P and
the reward function R. Thus, we should introduce the approximations in the policy

iteration framework:

1. Function Approximations: the policy and the value functions are represented by

parametric function approximators,

2. Model-Free Learning: the optimization of the policy and the value functions
are performed using the samples, (s,a,r,s’), collected through the interaction

between the agent and the environment.

If function approximations are used in policy iteration framework, it is called approx-
imate policy iteration. A comprehensive survey of approximate policy iteration was

provided by Bertsekas, 2011. We also note that the algorithms we consider in this
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dissertation is optimistic policy iteration, where the policy evaluation is truncated in
finite number of iterations. In fact, we focus on fully incremental algorithms.

In this dissertation, we focus on the model-free reinforcement learning, by which
we perform approximate policy iteration where the agent aims to optimize the param-
eterized policy and value function through the trial-and-error interaction with the en-
vironment. The interaction between the agent and the environment consists of the
following procedures (shown in Figure 2.4): at each discrete time step ¢, the agent
observes the current state s; € S and chooses the action a; € A. The state of the
environment transits to the next state s; ;1 according to P (s;+1|s¢, a;), and the agent

receives the reward 7; € [Rpin, Rmax] according to R (s, a¢).

Agent
T
state : reward action
St 1Tt Qi
Environment

P, R

FIGURE 2.4: Diagram of how the agent and the environment interact.
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Chapter 3

Natural Policy Gradient and

Incremental Natural Actor Critics

In the previous chapter, we formally stated the learning objective in the reinforce-
ment learning and the model-based method called policy iteration. In this chapter,
we describe the natural policy gradient methods by which the policy iteration is ap-
proximately performed. The natural policy gradient methods are model-free and
work well with the large function approximator. First, we describe the natural pol-
icy gradients in Section 3.1. Then, we introduce the algorithms called incremental
natural actor critics in Section 3.2, that are the main focus in this dissertation. Im-
portantly, in the last part of this chapter, we provide an motivative example for the

safety in natural policy gradient methods.

3.1 Natural Policy Gradients

Now, we consider that the policy is parameterized: 7t(als;0), where € RY is a pa-
rameter to be optimized. We allow a shorthand notation 7y = 7(-|-;0) when it is

convenient. We require the following assumption on the parameterization.

Assumption 3.1. For any state-action pairs (s,a), 7t(a|s;0) is differentiable with respect

to 6.

Now, the purpose of the agent is transformed into finding a (locally) optimal

policy parameter 8* which maximizes the given objective function  (6) = 1 (719):

6* € argmax 1(0).
0
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Throughout this dissertation, we aim to optimize the policy parameter via gradient

methods. In the following, we briefly review vanilla gradients and natural gradients.

3.1.1 Natural Gradient

Assume generally (not restricted to the reinforcement learning) that we aim to maxi-
mize an objective function 77 : R — R : 0 + () by adjusting the parameter vector
0 € RY. We search for locally optimal parameters 6* by iteratively updating 6 as

follows:
0t+1 — 0; + DCtAglt, (31)

where Ay, is a steepest direction which maximizes 1(6; + Ag;) and {a;} is a scalar
step-size schedule.
The vanilla gradient, Ay = V11(0), is the steepest direction that maximizes # (6 +

Ag) subject to || Ag||? < €? for infinitesimal €, where
Ven®) = (@), @) (62)
o) =\ o0, 1\ 3, '
and || - ||*> denotes the Euclidean norm. By the gradient ascent,
O 41 < 0 +arVon (6;), (3.3)

6 is guaranteed to converge to a locally optimal parameter provided that 77(9) is con-
tinuously differentiable and the step-size schedule satisfies the following (Bertsekas

and Tsitsiklis, 2000):

ioct = 090, ia% < 0. (3.4)
t=0 t=0

Amari, 1998 proposed to use the ‘natural’ metric for what we aim to optimize.
Specifically, the constraint for Ay in parameter spaces is defined by a quadratic form

as follows:

Ay G(0) Ag < €%, (3.5)
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where d x d positive definite matrix G(6) is called the Riemannian metric tensor.

Under the constraint (3.5), the steepest direction Ay that maximizes 17(6 + Ay) is
Ao = Vo1(8) = G(8) Va1(6). (3.6)

The right hand side of Eq. (3.6) is called the natural gradient. If G(6) = I, natural

gradient reduces to the vanilla gradient.

An Example of Natural Gradient

The Riemannian metric G(6) should be chosen appropriately to what we optimize.
For example, in this section, we consider statistical estimation. Let x € X be a
random variable generated from a probability distribution g(x), where X’ is a set of
possible values x can take. We assume a statistical model p(x|0) and the problem is
to obtain the maximum likelihood estimator 6* by which the unknown distribution
q(x) is approximated in the best way. In this case, the objective 7 () is defined as

follows:

1(8) = E [logp(x[0)] =Y q(z)log p(x|). (3.7)

xeX

For the parameter space of a statistical model, the Riemannian structure is defined

by the Fisher information matrix:

G(6) = E(6)
[vg log p(x|0) Vg log p(x|6) ] (3.8)
= Z p(x16)Velog p(x|0)Velog p(x|6) "
xeX
=— Y p(x]0)Vilogp(x|6), (3.9)
xeX

where V2 1o x|60) is a Hessian matrix
glogp

9, logp(x[0) --- 3 logp(x|6)
Vilogp(x[6) = :

%, logp(x(6) - 3, logp(x|e)
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and we used a shorthand notation

az
03 = .
% ™ 96,00,

The equality (3.9) follows from the fact that the expected value of a score function is

zero. More specifically, we have

Y p(x]0)Vologp(x|6) = Y Vep(x|6) = Vg ) p(x]6) = Vo1 =0, (3.10)
xeX xeX xeX
thus, differentiating above with respect to 8 yields
Y p(x[6) (Volog p(x|6)Volog p(x|6) " + V3log p(x]0)) =

xeX

The constraint (3.5) corresponds to regulating the Kullback-Leibler divergence be-

tween the distributions p(x|0) and p(x|0 + Ay):

Dk, (6]10 + Ag) = Dir (p(-10) (-6 + Ag))

_ p(x[6)
= xg p(x]6) logm. (3.11)

In fact, the 2nd order Taylor expansion of (3.11) yields the Fisher information matrix:

Dx1 (9”9 + Ag)

0 1
= ¥ plxle) (1og 5~ 8] Valogp(x16) 5 (VElog p(xle)) o)

ek (x[6)
1
= =8¢ ) p(x|0)Vologp(x|0) — 549 (Z P(xIG)VélogP(xlf))) A
xeX xeX
= %A;PX(Q)AQ. (3.12)

Therefore, the constraint (3.5) assures that the distribution after updating the param-

eter, p(x|0 + Ag), is close to the distribution before updating the parameter, p(x|0).
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Remarks and Recent Advances

Natural gradient methods are invariant to re-parameterization, that is, their updates
produce the same sequence of functions even when their parameterizations are dif-
ferent. Learning rules with this property are called covariant (MacKay, 1996). It
is known that natural gradient method is covariant is an infinitesimal step-size is
used. Thomas, 2014b generalized the natural gradient to allow 6 to lie on a semi-
Riemannian manifold and established sufficient conditions for the convergence of
natural gradient methods. In this case, the pseudo-inverse matrix of Fisher informa-
tion matrix, G* (), is multiplied to the vanilla gradient. Thomas et al., 2016 gener-
alized the natural gradient to leverage the knowledge of both how the parametric

probabilistic model is parameterized and what it is a distribution over.

3.1.2 Natural Policy Gradient

In this section, we describe the natural policy gradient. The natural policy gradient
is the steepest direction on the Riemannian manifold which maximizes #(0 + Ayp),

where the objective 7(6) is

n(0) =) p"(s) ) 7i(als;0)R(s, a). (3.13)

seS aeA

First, we consider the vanilla policy gradient. Partially differentiating (3.13) with

respect to 6 yields

Vo (0) =) _p™(s) Y m(als;0) (Vologp™(s) + Velog m(als; 0)) R(s,a). (3.14)
seS acA

Even though the state distribution p”(s) is dependent on the policy 7t and thus indi-
rectly on the parameter 6, deriving Vglog p™ (s) is non-trivial. Morimura et al., 2010a
proposed a method for estimating Vg log p”(s) through backward Markov chain for-
mulation in the average reward objective setting and to use (3.14) directly. Morimura
et al.,, 2010a suggested that their method is a dual form of the actor critic algo-
rithm proposed by Konda and Tsitsiklis, 2003, which uses the action value function

Q7 (s,a) instead of Vylogp™(s) to estimate Vyy(0). Similarly, in the approximate
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dynamic programming literature, the dual forms was studied in which the proba-
bility distributions over state spaces or state-action spaces are estimated instead of
the value functions (Littman, Dean, and Kaelbling, 1995; Wang, Bowling, and Schu-
urmans, 2007), and the convergence properties of the dual algorithms were investi-
gated (Wang et al., 2008).

In this dissertation, we focus on the primal form, that is, we use the value func-
tions to approximate the policy gradient. The following proposition is one of the
fundamentals of the primal form, which relates the vanilla policy gradient Vg7 (0)

and the action value function Q" (s, a).

Proposition 3.2 (Policy Gradient Theorem (Sutton et al., 1999, Theorem 1)). In either
the discounted reward or average reward formulations, the vanilla policy gradient is given

as follows:

Von (6) = ZSP”(S) ZAN(QISUQ) (Q"(s,a) = b(s)) Vglog (als; ), (3.15)

where b(s) is a state-dependent arbitrary function termed a baseline function.

Proof. First, we consider the discounted reward formulation. From Egs. (2.4) and

(2.9), we have

VeV (s) (3.16)

=Vp ) _ 7(als;0)Q"(s,a)

aceA

=Y (Vort(als;0)Q(s,a) + m(als; 0)VeQ™ (s,a))
acA

=Y (Vgn(a]s;G)Q"(s,a) + 7t(als; 0)Vy (R(s,a) +7Y, P(s’|s,a)V”(s’)>>

ac A s'eS
=Y Vor(als;0)Q7(s,a) + ) n(als;0) Y P(s'ls,a)Vy Y n(d'|s’;0)Q7(s',a’).
acA acA s'eS aeA
(3.17)
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Notice the recursive structure between (3.16) and (3.17). Then, unrolling above

yields
VQVT[(S)
=Y Vemn(als;0)Q" (s, a)
aeA
+7 ) n(als;0) Y P(s']s, a)x
ac A s'eS
Y Ven(d'|s’;0)Q7 (s, a")
aeA
+9% Y n(als;0) Y P(s'|s,a) Y n(a'|s’;0) Y P(s"|s',a")x
aceA seS aeA s"eS
Z VQTL'(LZH’SH,' Q)QH(SH, H”)
a’e A
=) Von(als;0)Q7(s,a)
aeA
+ Z 73”1 Z Vort(als’;0)Q7 (s, a)

s'eS acA

#97 L P1s) T Varlals':0)Q7(s",a)

s"eS acA

1=
e

YPT(S |s) Y Ver(als’;0)Q7 (s, a)
acA

Y'IP(s; = §'|sg = s, 77) Z Vort(a|s’;0)Q7 (s, a),
aceA

U’)\
m
[V}
iy
Il
o

=
e

(f)\
m
05}
ey
Il
=}

where the equality (a) follows from Eq. (2.17) and the equality (b) follows from Eq.

(2.18). Summing both sides of the above over the initial state distribution py(s), and
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using Eq. (2.19), it yields that

Vo (6) = ) po(s")VeV7™(s")

SpES

=Y po(s) Y. Y AP(st =s|so =5, m) ) Vor(als;0)Q7 (s, a)
SoES seSt=0 ac A

= Z Z'yt]P(st = s|po, 77) Z Vort(als;0)Q™ (s, a)
seSt=0 acA

=Y 07"(s) Y Ver(als;0)Q"(s,a)
seS aeA

=Y 0"(s) )_ 7n(als;0)Velog m(als;0)Q7 (s, a),
sES acA

where in the last equality we used the fact that

Vom(als;0)

Volog rt(als;0) = (als;:0)

(3.18)

Next, we consider the average reward formulation. From Egs. (2.28) and (2.29),

we have

V@VH(S)

=V Z rt(als; 0)Q (s, a)

aeA

— Z (Vor(als;0)Q7 (s,a) + rt(als;0)VeQ™ (s,a))

ac A

=Y <V97T(a]s;9)Q”(s,a) + 7t(als; 0) Vg (R( )+ Y. P(s'ls,a)V7(s )))

ac A s'eS

=), <V97T(ﬂls;9)Q”(S/ﬁ)+7T(ﬂ|5;9) ( Ven(0) + ) P(s'ls,a) VoV (s )))

acA s'eS
Rearranging the above yields

V() =) <V97t(a|s;9)Q”(s,a) + 7t(als; 0) )| P(s/|s,a)V9V”(s’)> — VoV (s).

ac A s'eS
(3.19)
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Summing both sides of the above over the stationary distribution p™(s),

Y. 0" (s)Ven(0) = }_ p"(s) }_ Ver(als;#)Q"(s,a)

ses se§ aeA
+ Y 07(s) Y m(als;0) Y P(s[s,a) VeV (s')
seS ac A s'eS
- Z‘O VQVT[ )
seS

Using the balance equation of the stationary distribution (2.22), it holds that

Y 07 (s)Ven(0) = Y p"(s) Y Vert(als;0)Q™ (s, a)

seS seS aeA

+Y Y Y o7 (s)m(als; 0)P(s'|s,a) VoV (s")

seSacAs'eS

=Y. ) Y P (s)m(als’; 0)P(sls',a) VeV (s)

s’eSacAseS

=Y 0™(s) Y Vert(als;0)Q" (s, ).

seS aeA

Finally, we acquire Eq. (3.15) because it follows from an argument similar to (3.10)

that for any state-dependent function b(s),

Y p™(s) ) m(als;0)b(s)Volog rt(als;6)

seS ac A

=) _p"(s)b(s) ) m(als;0)Vglogm(als;6)
seS acA

=Y 07(s)b(s) )_ Voer(als;0)
seS acA

=Y 07 (s)b(s)Vy Y 7(als; 0)
seS acA

=Y p"(s)b(s)Vel = 0. (3.20)
seS

Importanlty, even though the choice of b(s) dose not affect Vg7 (), the variance
in the action-value function estimator is minimized by regulating the baseline b(s)
appropriately, as we see later.

A straightforward procedure to acquire the natural policy gradient consists of (i)
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computing the vanilla policy gradient Vg7 () from (3.15), (ii) computing an appro-
priate Riemannian metric tensor G(#) and its inverse G~!(#), and (iii) computing
the product G1(8) Vg#(0). This naive implementation requires high computational
complexity, O(d*). However, it has been shown that the natural policy gradient
can be estimated directly without even requiring the d x d matrix G(6), and the re-
quired computational complexity is only O(d) (Kakade, 2001; Morimura, Uchibe,
and Doya, 2005; Bhatnagar et al., 2009). The key factor is to use a compatible function
approximation (Sutton et al., 1999) as we see in the below.

Now consider the case in which the action value function Q™ (s,a) for a fixed

policy 7t(als; 0) is approximated by a linear function approximator f (s, a; w) defined

by
f(s,a;w) 2w ¢(s,a) 2 w' Vglogrt(als;0), (3.21)
where w € R? is a parameter vector to be optimized and
¥(s,a) & Vglogm(als;0) (3.22)

is called a compatible feature or a characteristic eligibility. The approximator f (s, a; w)

is compatible in the sense that the following equation holds:
Vuwf(s,a;,w) = Vylogm(als;0). (3.23)
Let ¢ (w) be a mean squared error of the function approximation:

(" (w) £ Y p™(s) Y m(als;0) (Q7(s,a) — b(s) — f(s,a;w))”. (3.24)

seS aeA

Note that ¢ (w) is convex with respect to w. Let w”™ = argmin,, " (w) denote the
optimal parameter vector under the current policy 7t(als; 8). The optimal parameter

w™ satisfies the following equation:

Y p™(s) ¥ mlalsi®) (Q(s,a) — b(s) — f(s,6:0™)) Varf(s,m:w™) = 0. (3.25)

seS acA

Therefore, the compatibility (3.23) yields the following proposition.
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Proposition 3.3 (Policy Gradient Theorem with Function Approximation (Sutton et
al., 1999, Theorem 2)). In either the discounted reward or average reward formulations, the

vanilla policy gradient is given as follows:

Vo (0) =Y _p"(s) Y m(als;0)f(s,a;w™)Vglog (als;0). (3.26)
s€S acA

Thus, policy gradient can be estimated by approximating Q" (s,a) projected on
to the subspace spanned by Vlog rt(als; ).

Now, we consider the choice of the baseline b(s). The purpose here is to ob-
tain the minimum variance baseline in the action value function estimator under the
current policy 7 and the given optimal parameter w™. Formally, we aim to obtain
b™(s) = argmin, ¢ (w™). Partially differentiating (3.24) with respect to b(s) under
w = w” yields

™ (w’™)
e = 2 L) L lalsi6) (Q°(s0) ~ bls) — fls,a:07).

seS acA

Equating the above to zero yields

Y, P (5)b7(s) =} p"(s) }_ 7(als; 0)b7(s)

seS seS acA

= L 07(s) X lalsi0) (Q7(s,0) = (s, )

seS aeA

=) P (s)V"

seS

where the last equality follows from (2.4) or (2.28) and

Y m(als; 0)f (s, a;w™) = w™" Y 7t(als;0)Vglog r(als; 0) = 0. (3.27)
acA acA

Therefore, the variance in the action-value function estimator is minimized when the
baseline b(s) is chosen to be the state value function V7 (s) for all s € S. We obtain

the following proposition from the above argument.

Proposition 3.4 (Sutton et al., 1999, Bhatnagar et al., 2009, Lemma 2). For any station-
ary policy 71, the minimum variance baseline V™ (s) in the action value function estimator

f(s,a; w™) is the state value function V7 (s).
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Given Proposition 3.4 and (3.27), it is better to consider f(s,a; w) to be approxi-

mation of the advantage function:
A" (s,a) = Q™(s,a) — V7 (s). (3.28)
Note that from the definition (3.28) and (2.4) or (2.28), it holds that

Y 7i(als;6)A™(s,0) = Y 7e(als; 6) (Q"(s,a) — V(s))

acA aceA

=Y 7(als;0)Q"(s,a) — V7(s) = 0. (3.29)

aeA

Note also that the definition of the advantage (3.28) is different from the original
definition by Baird, 1993:

A™(s,a) £ Q"(s,a) — max Q" (s,a).
acA
Importantly, substituting Eq. (3.21) into Eq. (3.26) yields

Von(0) = ng”(s) ;471(11\5;9) (w"TVG log n(a]s;@)) Volog m(als; 0)

— (2 07 (s) Y m(als;0)Vglog m(als;0)Velog Tt(a]s;B)T> w’

seS aeA

- (E P (s)F, (S;H)) w’™

seS
2 G(O)wT, (3.30)
where
Fi(s;0) = Y_ m(als;0)Volog m(als; 0) Vo log m(als;0) " (3.31)
acA

is the Fisher information matrix of the policy distribution 7t(als;0) at a state s and

thus

G(8) 2 ) o (s)Fa(s;6) (3.32)
seS
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is the Fisher information matrix of the current policy weighted by the state distribu-

tion p”(s). From Eq. (3.30), we obtain the following proposition.

Proposition 3.5 (Kakade, 2001, Theorem 1, Morimura, Uchibe, and Doya, 2005, Bhat-
nagar et al., 2009, Lemma 1). In either the discounted reward or average reward formula-

tions, the natural policy gradient is given as follows:
Vo (0) = G1(8)Ven(0) = w™, (3.33)

where the Riemannian metric G(0) is given by (3.32).

Proposition 3.5 indicates that when Eq. (3.25) holds, the parameter w™ of the
compatible function approximator f(s,a;w™) directly encodes the natural policy
gradient. As stated in Section 2.1, the reinforcement learning problem we deal in
this dissertation is equal to the optimization of sample path {p..o = (S0, a0, 51,41, .. ).
It was proved by Bagnell and Schneider, 2003; Peters, Vijayakumar, and Schaal, 2003
that the Riemannian metric (3.32) is is equal to the Fisher information matrix of the
statistical model of the sample path ... in either the discounted reward or average

reward formulations.
Remark 3.6. Given Proposition 3.5, we can update the policy parameter 6 using the
natural policy gradient by

0+ 0 +aw”, (3.34)
where « is a step-size. Therefore, we do not even need to estimate d x d matrix G(0)
and the required computational complexity to solve (3.34) is only O(d).

Importantly, it was shown by Kakade, 2001 that the update rule (3.34) approxi-

mates the greedy policy improvement step (2.39) in policy iteration.

Proposition 3.7 (Kakade, 2001, Theorem 3). Let 6’ be a parameter obtained by the update
(3.34). Then it holds that

nt(als;0') = rt(als;0) (1+af(s,a;w™)) + O(a?).
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Recall that
Fls mw) & A%(s,0) = Q7(s,) = E_ [Q"(5,m)]. (6:35)

Thus, given Eq. (3.35), Proposition 3.7 indicates that the probabilities to choose the
actions of which values are larger get larger, and the probabilities to choose the ac-
tions of which values are small get smaller. Therefore, the successive applications
of the update (3.34) lead the policy to choose the “best” action instead of the “bet-
ter” actions and the policy is moving toward the solution of the policy improvement

step.

An Example of Natural Policy Gradient

Now, we show an example of the policy gradient and the natural policy gradient
using a simple environment which has been used in a literature of the natural policy
gradient methods (Kakade, 2001; Bagnell and Schneider, 2003; Morimura, Uchibe,
and Doya, 2005). In this section, we choose to optimize the average reward defined
by Eq. (2.23).

The state space is S = {s1,s2} and the action space is A = {a3,a2}. The agent
can take either of two actions in each state. The state transition probability and
the reward function are shown in Tables 3.1 and 3.2, respectively. ~The policy is

TABLE 3.1: State transition probabilities on the MDP with two states

Current state  Action M
51 52
S1 a 1 0
51 a, 0 1
S2 a 0 1
So an 1 0

TABLE 3.2: Reward function on the MDP with two states

Current state Action Reward

S1 a 1
S1 ar 0
S ay 2
S2 ar 0

characterized by a parameter vector § € R?, using the sigmoidal function in each
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state:

1
_ L o
 1+exp(—6) & , (3.36)

7'[(a2|51',' 91) =1- 7'[(611|Si; 91) =1- 7T

7'[(611 ‘Sl',' 91>

where i € {1,2}. In this small MDP, we can explicitly compute the stationary dis-
tribution, p™(s) = (07 (s1),0™(s2)) " 2 (oI, 1—pF)". Recall that p”(s) satisfies the

balance equation:

p"(s1) | [ P(silsi,a1) Plsilsi,a2) Plsilsz,a1) Plsi|sz, a2)
07 (s2) P(sals1,a1) P(s2ls1,a2) Plsalsa,a1) P(s2|s2, a2)
71’((11|51;91) 0
7 (az]s1;601) 0 p”(s1)
0 (a1]s2;02) | \p"(s2)
0 7'[(612‘82,‘ 92)
s 0
o7 1001 1-m 0 o7
1—pf 0110 0 uo 1—pT
0 1-— 7T
T 1—7m o7
1—-m T 1—pf
Solving above yields
m(s) = 1—m 1—-m T
p T \2-m-—m'2-m—-m/)
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Therefore, the learning objective is given by

77(9):<R(51,[11) R(S],ﬂz) R(Sz,ul) R(Sz,ﬂz))

mt(ai]s1;601) 0
mt(az|s1;61) 0 p”(s1)
0 mt(ar]s2;62) | \ p™(s2)
0 7t(az|s2;02)
g 0
O | R [ (= .
0 - 2—7 =Ty 2— 711 — T
0 1—rm

7T + 271 — 3711710
2—7'(1—7'[2 '

(3.37)

The optimal decision making in this MDP is to choose a; in s; and a; in s5. Thus,
the optimal policy parameter is 8" = (—o0,0) " and the corresponding average re-
ward is 7(6*) = 2. Even though this MDP is very simple, it is well known that
the learning using the vanilla policy gradient suffers from a serious plateau phe-
nomenon. Here we calculate the analytical flows of vanilla and natural policy gradi-

ent. Deriving (3.37) with respect to 0 gives the vanilla policy gradient:

(1—m)(1—m) [ m(2-3m)

o — )2 ’
(2—m —m) 7o (4 — 379)

Von(0) =

where we used the following relations:

7'(((11’51‘; 91') = 7'(1‘(1 — 7'(1‘),

96;
879117'((612’51‘;91') = —7'(,‘(1 — 7'[,‘),
0 1 Jd
—1 0 —  — 7 0.) — 1 — 7
aei 087'((“1’51/91) 7-[([1]‘51','01‘) aein(al‘sllel) 1 7T,
1

0
— log rt(az|s;; 6;) =

20; mt(azls;; ;) = —7i.

7t(az]si; ;) 06;
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Further, we calculate the weighted Fisher information matrix (3.32) of the policy

(3.36) as follows:

G(0)
= " (s1)7t(a1]s1;,0) Vo log m(ai|s1;0)Vglog (ay|sy; G)T
+ 0™ (s1)7t(az|s1;0) Vg log rt(az|s1;0) Vg log 7 (az|sy; 9)T

+ 0™ (s2)7t(a1]s2;0) Vg log 7t (ay|sz; 6 )Vglog7'[(al\s2;9)T
)

+ " (s2) 7t(a2|s2;0) Vg log 7 (az]s2;0) Vg log 7t(az|sz;(9)T
1— 7'L'1 2 0 - (—7’[1)2 0
= p"(s1)7t(ms1;0) +p"(s1)7(azls1;0)
0 0
. 0
+ p" (s2) 7t (a1]s2;0) + 0™ (52) 7t (a2]32; 0)
0 (1 - 7'[2)2 0 (—7'[2)2
1-m)(1-m) [m 0
2— 71 — T 0 m
The inverse of the above matrix is given as:
G_l(()): 2— 7] — T m 0
7'[17'[2(1—7'[1)(1—7‘[2) 0 m
Therefore, the natural policy gradient in this MDP is given by
Vo (6)
=G (0)Ven (0)
B 2—m —m m 0 (1—m)(1—m) [ m(2-3m)
7T17'[2(1—7T1)(1—7T2) 0 m (2—7‘[1—7‘[2)2 7'[2(4—37'[1)

1 2—37‘(2

_2—711—71’2 4—-3m

Figure 3.1 shows how much the parameter space is distorted. The red ellipses
in the left graph are the same distances from the orange points measured by the

Euclidean metrics; ||A|| = 1. The blue ellipses in the right graph are also the “same”
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SNONO,

|

-5 0 6, 5 -5 0 6, 5

FIGURE 3.1: Visualization of the landscape in the parameter space.

The ellipses represent the “same” distances from the orange points

measured by the Euclidean metrics ||A]| = 1 (left) and the Rieman-

nian metrics AT G(#)A = 0.1 (right). The brightness of the back-
ground represents the average reward.

distances from the orange points measured by the Riemannian metrics; AT G(6)A =
0.1, where the Riemannian metric G(0) is the weighted Fisher information matrix
calculated by (3.31) and (3.32). Figure 3.2 shows the analytical gradient flows. The
red arrows in the left graph are the analytical flow of the vanilla policy gradients
(3.14). and the blue arrows in the right graph are the analytical flow of the natural
policy gradients. The brightness of the background color represents the average
reward. Suppose that the policy parameter is initially 6y = (1.4, —2.2) ", which is
shown as an orange dot in each of the left and right graph in the Figure 3.2. Then,
using the vanilla policy gradient, the parameter shall steer away rightward in the
graph area, that is, the policy remains to choose a1 in 51 and 4, in s;. This suboptimal
policy stays in an extremely flat plateau with average reward # = 1. On the other
hand, using the natural policy gradient, the policy quickly becomes to choose a; in

s and achieves average reward 1 ~ 2 by avoiding the plateau.

Remarks and Recent Advances

It was formally proven that the natural policy gradient is a covariant update rule

(Bagnell and Schneider, 2003). Schulman et al., 2015 proposed trust region policy
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-5 0 6, 5 -5 0 6, 5

FIGURE 3.2: Analytical flows of the vanilla policy gradients (left)
and the natural policy gradients (right) in the parameter space. The
brightness of the background represents the average reward.

optimization method, which constraints the update direction of the policy and the
step-size by KL divergence, and the gradient it uses is equivalent to the natural pol-
icy gradient. The natural policy gradient is widely used in recent policy-gradient-
based deep reinforcement learning methods in the name of trust region constraint
(Schulman et al., 2015; Duan et al., 2016; Wang et al., 2017; Chou, Maturana, and
Scherer, 2017; Wu et al., 2017; Schulman et al., 2017; Nachum et al., 2017b; OpenAl,
2018). Importantly, Thomas, Dann, and Brunskill, 2018 generalized Proposition 3.7
to the broad class of gradient methods and gradient-like learning methods such as
temporal difference (TD) learning. This generalization is not limited to reinforce-
ment learning methods, but applicable to supervised and unsupervised learning

methods.

3.2 Algorithms for the Estimation of Natural Policy Gradi-

ents

There are many possible ways to estimate the natural policy gradient. In the most
straightforward way (Peters and Schaal, 2006; Peters and Schaal, 2008b), first the
vanilla gradient is estimated (e.g. using GPOMDP (Baxter and Bartlett, 2001)) and

the natural policy gradient is calculated according to Eq. (3.6) using the empirical
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estimate of the Fisher information matrix. In another method (Peters, Vijayakumar,
and Schaal, 2003; Peters and Schaal, 2005; Peters and Schaal, 2008a), w™ is estimated
based on the least square temporal difference methods (Boyan, 1999; Bradtke and
Barto, 1996). Both of above methods require at least O(d?) computational complex-
ity and memory. These methods are called Natural Actor Critics.

The focus of this dissertation is on the Incremental Natural Actor Critic (INAC)
algorithms (Bhatnagar et al., 2009; Degris, Pilarski, and Sutton, 2012; Morimura,
Uchibe, and Doya, 2005; Thomas, 2014a), which estimate the natural policy gra-
dient (3.33) fully incrementally and require only O(d) computational complexity
and memory. INAC algorithms use the state value function to estimate w™. In the
following, first we review TD(A), which is a method to estimate V7 (s) with linear

computational complexity and memory. Then, we present INAC algorithms.

3.2.1 Estimation of the State Value Function

Our goal here is to approximate the true state value function V7 (s) of the current
policy 7r. Let V(s;v) be a parameterized state value function where v € R! is a
parameter to be learned. We allow a shorthand notation V, = V(-;v) when it is

convenient. Let ¢'(v) be a squared loss of the function approximation:

" (0) £ ZSP”(S) (V7(s) = V(s;0))*. (3.38)

The purpose is to find a locally optimal parameter v which minimizes the loss:

,07'[

= argmin, /" (v). Note that the true state value function V7 (s) appears in the
definition of the loss function (3.38) and is not available in the learning. Many meth-
ods have been proposed to replace V" (s) to estimated value.

First, suppose that the current time step is t and we have the return:

[ee]

Ri=) (Yreec—171), (3.39)

=0

where 7 € [0,1) and 7; = 0, Vt for the discounted reward objective and v = 1 and
i is an estimate of the average reward for the average reward objective. Then we

can use R; as an unbiased estimate of V" and update the parameter v along with the
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direction
AN & (Ry = V(s1;0)) VoV (s1;0). (3.40)

The methods which use the return (3.39) as in (3.40) are called the Monte Carlo meth-
ods.

Unfortunately, the return R; is not directly available at time step t because R
depends on the future rewards. The alternative approach is the bootstrapping: to use
the prediction by the current parameter v as an estimate of V™. More specifically, we

use the quantity r; — 7j; + YV (st+1;v) in place of V7, that is,
A};’? o« (re — 7t + YV (st41;0) — V(s 0)) Vo V(s 0). (3.41)
The term
St 21—+ YV (si41;0) — V(si0) (3.42)

is called the Temporal Difference (TD) error and the methods which use (3.41) are
called TD methods.

Next, we present the TD(A), which is a technique to unify Monte Carlo methods
and TD methods (Sutton, 1988; Watkins, 1989). Here, A € [0,1] is a parameter that
allows to interpolate Monte Carlo and TD: as we see later, A = 0 yields TD while
A = 1 yields a Monte Carlo method. In this sense, TD(0) means the TD learning
(3.41) and TD(1) means the Monte Carlo method (3.40).

Forward View: A Return

TD(A) is based on the idea of the multi-step look ahead of rewards. Let Rgn) be the

n-step return defined by

|
—

Rt(n) = (Y 7tre = 71) + "V (St4050). (3.43)

T

Il
=)

From the definition, the n-step return consists of the actual rewards observed for

n steps and later term of the return is bootstrapped by 7"V (s;4y;v). Therefore we
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have Rgl) =1y — 7t + YV (s¢41;0) forn = 0 and RE") — Ryasn — oo.
Importantly, as we see in the following, the expected value of the n-step return is

a better estimate of V' (s) than the approximator V (s;v) is. It holds that

n—1
E [Rgn) St = S} =E | Y. (Y e — ) |se =s| + Y P s)Y"V (st = 5’5 0).
P P =0 s'eS

Similarly, it holds that

V7(s) = ]Ep Y (Y e =) st = S]
7T =0
n—1

- ]EP Z (Y Ttrr — 7t) |5t = 5]

n n
+ Y P |s n

s'eS

Z Y Ttrnsr — 1t)

/
St+n:S].

Let V(" (s;0) 2 E [RE”)

S = s} . Then we have

7w, P
AL V”H = sup {Rgn) S = S] — V7 (s)
(e} =y ,P
=9"sup|)_P™"(s'|s) (V(s';v) — V”(s’))‘
€S |s'eS

< "sup Y _PT(s|s) |V (s';0) = V()]
s€S s'eS

< o"sup Y _P(s|s)[|[Vo — VT
s€S s'eS

=7 Vo = V"

oo

(3.44)

oo -

The last equality follows from Y o5 P™"(s'|s) = 1. The above relation (3.44) is
called the error-reduction property of the n-step return.

Now, we present the forward view of TD(A). Let R} be the A-return defined by

R} 2 (1—A) Y AR, (3.45)

n=1

The A-return is the weighted average of n-step returns, and decay factor A € [0,1]

determines how each n-step return is weighted. Given the A-return, the forward
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view of TD(A) is:
A?Ij,‘i/fv“ (R;\_V(St/ )) V,V (St/ ) (3.46)

Note that, analogous to the conventional return (2.5), the A-return satisfies the fol-

lowing recursion:

R} = (1-2) (R + AR + A2R 4 )
=1=A)(re =7t + YV (st41;0))
+(1—=A)A <Vt — 1t + 7R£}21>
+ (=M (r =+ 7R ) +

( i A ) )+ (1= )V (s1420) + 7M1 = A) Y AR

n=1

=1 =1+ ((1 — M)V (st11;0) + /\RtH) (3.47)
Therefore, R} = r; — 7j; + YV (sy11;0) for A = 0and R} = R; for A = 1.

Backward View: TD(A) and Eligibility Traces

Next, we present the backward view of TD(A). Let e,; € IR! be a vector defined by

t

eor = Y (YA) VLV (s150). (3.48)

=0

The vector e, is called an accumulating trace, which is one of the variants of the

eligibility traces. The backward view of TD(A) is given as follows:
ABY o Sieyr, (3.49)
where §; is the TD error defined in Eq. (3.42).

Importantly, the following proposition holds.

Proposition 3.8 (Equivalence of Forward and Backward Views (Sutton, 1988; Watkins,
1989)). Provided that the approximated state value V (s;v) is static and the policy 1t(als; 6)

is static or converging to an equilibrium point, the overall update produced by the forward



58 Chapter 3. Natural Policy Gradient and Incremental Natural Actor Critics

and back ward views are equivalent (:)

[ee]

y (Rf‘ — V(sy;v )) VoV (s 0 Zétevt (3.50)

t=0

Proof. The overall update produced by the backward view is

Z(Stevt = 25f Z ATV LV (s450)
=60V, V(sp;v)
+ 01 (Vo V(sy1;0) + YAV, V (s0;0))
+ 82 (VoV(s2;0) + YAV, V (51;0) 4 (YA)* VoV (s;0)) + - - -
= VoV (s0;0) (80 + YAS1 + (YA)?62 + -+ +)
+ VoV(sy;0) (61 +yA6+--+)

+ VoV(sg;0) (a4 )+---

=) VoV(s;v) Z YA) TS,
=0 T=t
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Furthermore, it holds that

RtA —V(s;0)

=—V(s;v)+(1— 2 A 1R
=1
~V(si0) + (1= A) (RY + AR + AR + - )
= —V(s;;0) ( — i+ YV (str1;0 ))
+(1- AM( =+ T — g1 + 72V(5t+2; U))
+(1—A)A7 (Tt — e+ 11 — T + Trg2 — M2 + 7V (s1435 U)) +.--

=—V(syv)+(1-A) ((2 /\"_1> (re — 1) + “YV(StH;U))
+(1=A)yA ((i An_l) (re41 = r1) + ’YV(St+2;U)>
n=1
£ (1= (AP (()Of W) 2 i) + w<st+3;v>> o

=1t =1t + YV (st41,0) — V(s 0)
+9A (Vt+1 fir1 + YV (St42,0) — V(St+1;v)>
+ (P2 (11 = i1 + 7V (514370) = Visia;0) ) + -+

i,y/\’rté
[ |

Even though the equivalence of the forward and backward view breaks, the fol-
lowing heuristics is widely used where the state value parameter v is updated fully

incrementally:

eot = YAy i1 + VoV (st vy), (3.51)
O =1 — T + YV (st11;06) — V(s vt), (3.52)
Vi1 = 0 + &pdieyt, (3.53)

where «, is the positive step-size. The convergence of TD(A) for the discounted

objective was proven by (Tsitsiklis and Roy, 1997) provided that the representation
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of the state value is linear with respect to the parameter v and under some technical
assumptions. An important extension of TD(A) was proposed by (van Seijen and
Sutton, 2014); they proposed a new forward view called the n-step truncated A-return,
and derived a new backward view which is equivalent to the new forward view even
when the update of the state value is performed at every time step. The proposed
algorithm is called True Online TD(A). (van Hasselt, Mahmood, and Sutton, 2014)

extended the true online method to the off-policy learning.

3.2.2 Incremental Natural Actor Critic Algorithms

A number of algorithms have been proposed to estimate w™ satisfying Eq. (3.25),
incrementally (Bhatnagar et al., 2009; Degris, Pilarski, and Sutton, 2012; Morimura,
Uchibe, and Doya, 2005; Thomas, 2014a), which we refer to as INAC algorithms. In
this section, we derive the general form of INAC iterations, and as special cases, we
introduce the existing INAC algorithms.

A key to the derivation of INAC algorithms is the following Proposition 3.9
shown by Morimura, Uchibe, and Doya, 2005; Bhatnagar et al., 2009, which states
that the Temporal Difference (TD) error can be used as an unbiased estimate for the

advantage function:

Proposition 3.9. The expectation of the TD error in the state-action space is equal to the

advantage function:

E [67|s,a] = A7 (s,a).

7w, P

Proof. First, for the average reward objective, let the TD error 6™ be defined by

5 A —p(8) + VT(s) — V(s). (3.54)
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Thus, the expectation of 6 in the state-action space yields
p pacey

E [67s, a]

P - 7_11’57,[7‘_77(@ +V7(s') = V7(s)ls, a]
= R(

s,a) —n(0) + Y P(s,a,s)V7(s') = V7(s)
s'eS

= Q" (s,a) =V’ (s) = A”(s,a).
Next, for the discounted reward objective, let the TD error 6™ be defined by
ST E 4 yVT(s') — V7 (s). (3.55)
Thus, the expectation of 6™ in the state-action space yields

E [67|s,a] = E [r+ V7 (s') — V7 (s)|s, a]

,P ,P

=R(s,a)+7v ) P(s,a,s V(') —V7(s)

s'eS

= Q"(s,a) =V (s) = A" (s,a).

Thus, the update direction A, of w is given as the gradient to minimize the mean-

squared error (MSE) of the TD error regression:

Ay x —leg % (A" — f(s, a;w))2

=E[(A" — f(s,4,w0) ) Vef(s,a;w)]

= E[(67 — f(s,) J9(5,0)]

Finally, introducing the eligibility traces es; and ey;, we obtain the general form of

INAC recursions:

Wi = Wi+ a (§esp — f(se,a;wi)esy), (3.56)

where « € R, is the step-size. As we show later in Section 5, the values of « and ||¢||

are the keys for the stability of INAC algorithms. The main aim of this dissertation
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is to weaken this sensitivity of INACs to the values of a and ||i||. The eligibility
traces were introduced to use the multi-step bootstrapping in an online manner.
Note that the definitions of the estimated TD error é; and the eligibility traces s, ef s

are different for each algorithm, as shown in the following.

NTD: The natural policy gradient utilizing the temporal differences (NTD), which
was proposed by Morimura, Uchibe, and Doya, 2005, was the first incremental and
O(d) algorithm to estimate the NPG. The NTD algorithm produces a biased estimate
of NPG for the average reward objective. In the NTD algorithm, the TD error and the

eligibility traces are defined as follows:

0t =i+ V(sts1) = V(st), (3.57)
t
est =efr =Y (YA) e (3.58)
=0

where V is the approximated state value function, A € [0, 1] is the decay factor of the

trace, and we give a shorthand notation, 1, = P(st, ar).

NAC-AP: Natural-gradient actor-critic with advantage parameters (NAC-AP) were
proposed by Bhatnagar et al., 2009. The NAC-AP can produce an unbiased estimate
of the NPG for the average reward objective, and its asymptotical convergence is
proven. In NAC-AP, the TD error is computed using the estimate of the average

reward, 77, and does not use the eligibility trace:

O =1 — 1+ V(st41) — V(st), (3.59)

65,t = ef,t = Ipt. (360)

INAC: The INAC (Degris, Pilarski, and Sutton, 2012) is an extension of the NAC-AP,
which uses the eligibility trace. The INAC also produces an unbiased estimate of the

NPG for the average reward objective, and a biased estimate for the discounted reward
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objective. The TD error and the eligibility traces are defined as follows:

(5t =T — 171} + ’)’V(St—&—l) — V(St), (361)
t
e5,t - Z(,Y)L)ti’rlp”[‘/ ef,t - ll)t/ (362)
=0

where v = 1 for the average reward setting, and 77 = 0 for the discounted setting.

NAC-S(A): The natural actor critic using Sarsa(A) (NAC-S(A)) was proposed by
Thomas, 2014a. NAC-S(A) produces an unbiased estimate of NPG for the discounted

reward objective. The TD error and the eligibility traces are defined as follows:

0 =1+ YV (st41) — V(se),

t
€5 = €fp = Z YA Ty, (3.63)
=0

As shown in Eq. (3.63), each ¢ term in the eligibility traces for NAC-S(A) has
an additional discount by a factor of 7/, which enables the sampling from the -
discounted future state distribution (2.16), thus generating the unbiased estimate for
the discounted reward objective.

Algorithm 3.2.1 is a complete algorithms for the general form of INACs.

3.2.3 A Motivative Example for the Safety of INACs

Environment: The pendulum swinging up and the stabilization problem with lim-
ited torque (see Figure 3.3) is a well known benchmark in continuous state-action
space RL (Doya, 2000; Morimura, Uchibe, and Doya, 2005). The state of the environ-
ment consists of an angle g € [, 7r] and an angular velocity 4 € [—15,15] of the
pendulum, that is, s = (g,4)". The action of the agent is applied as a torque to the
pendulum after scaling, that is, 5a = 7 € [—5,5]. The dynamics of the pendulum is
given by
ml%j = —pg + mglsin(q) + 7,

where m = 1 = 1,¢ = 98 and y = 0.01, and it is numerically integrated with

At = 0.02. An episode lasts for 1000 steps and the initial state in each episode is
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Algorithm 3.2.1: Incremental Natural Actor Critic (INAC)

1 initialization:

2 | parameterized policy 7t(-|-;0);

3 parameterized state value V( -;v);
4 initial parameters 6y, wy, vo;
5 step-sizes ag, &, &y;
6 | eligibility decay rate A;

if DISCOUNT then
7 L discount rate -y;
8 else
9 L step-size for average reward «a,, = ca, with a positive scalar c;

10 Initialize eligibility traces: es 1 = 0,¢f, 1 =0,e,-1 =0;
11 if not DISCOUNT then
12 L -1 =0;

13 Draw initial state and action selection: so ~ po(-), ag ~ 7t(+|s0;60);

14 fort=20,1,2,... do

15 Environmental step: s;1 ~ P( - [sy,at), 1t = R(s,at);

16 Action selection: a;1 ~ 71(+|s¢41;0);

17 if DISCOUNT then

18 L Compute TD error: & = 1t + YV (s141;01) — V(56 01);

19 else

20 Update average reward: 7j; = (1 — &y c)7i—1 + toctt;

21 L Compute TD error: §; = 1y — 7 + V(S41;0¢) — V(s 04);

22 Update eligibility trace for state value: e, = yAey ;1 + VoV (si;04);
23 | Update eligibility traces for compatible function approximators es , ey +;
> algorithm specific

24 U1 = 0 + ‘vasw,tev,t/'

35 | w1 =w+a(desp — fst,apwi)esy);

26 | 01 =0+ agwy;

return: locally optimal policy parameter 6*;
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so = (qo, O)T, where g is determined randomly. The reward function is defined as

R(s) = cos(q) — (4/157)?,

and there is no penalty for over-rotation.

FIGURE 3.3: Pendulum swing up and stabilization with limited
torque

Parameterization: The policy is a Gaussian distribution:

(als:60) = bl

1

a(s)V2r F (_ 209 (s)?

where the mean 1y (s) and the standard deviation 0y (s) are determined by the output
of a fully connected neural network with a single hidden layer. The input vector is
(cos(g),sin(q),4) ", and the hidden layer has 10 sigmoidal units. The output layer
consists of two units: the mean unit has a tanh activation and the standard deviation
unit has a sigmoidal activation. A small constant value, 0y = 0.01, is added to
the output of the standard deviation unit in order to prevent the divergence of ;.
The state value function is approximated by the 7th-order Fourier basis (Konidaris,
Osentoski, and Thomas, 2011). The eligibility traces for both w and v are reset to

zero vectors at the beginning of each episode.

Algorithms: We show the learning results for NTD algorithm. Thus, the TD error

and the eligibility traces are defined as Eqs. (3.57) and (3.58), respectively.
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Grid Search: We performed a grid search such that

a,a, € {1071,5-1072,...,107},

wg € {107%,5-107°,...,1077}.

The discount factor y was set to 0.98 and the decay rate A was set to 0.9. For each set-
ting of the meta-parameters, the learning trials were conducted for 10 independent

runs with different random seeds.

Results: Figure 3.4 shows the learning results for all the combinations of step-sizes
in the grid search. The horizontal axes indicate the number of the episodes and the
vertical axes indicate the average reward. If the estimate of even one run diverged,
then the learning curve for that combination is truncated. Obviously, many learning
trials resulted in the divergence of estimates and in many cases these divergences
followed the improvement of the policy. Quantitatively speaking, 88% sets in the
grid search were resulted in the divergence of the estimated parameters. This result

highlights the difficulty of the tuning and the potential instability of INACs.
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FIGURE 3.4: Learning curves for NTD in inverted pendulum domain

with various settings of the step-sizes. The horizontal axis indicates

the training episodes, and the vertical axis indicates the average re-

ward. Each curve is the learning result for the different setting in the

gris search. and is a mean of 10 independent runs with different ran-

dom seeds. If the estimate of even one run diverged, then the learning
curve for that combination is truncated.
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Chapter 4

Adaptive Step-Size via Relative

Importance Weighting

The step-size is a parameter of fundamental importance in learning algorithms, par-
ticularly for the natural policy gradient (NPG) methods. Recently, RL agents, whose
value functions and policies are parameterized using deep neural networks, were
shown to give remarkable performance (Mnih et al., 2015; Silver et al., 2016). The op-
timization of these networks is a highly non-linear problem, which makes adaptive
step-size methods, such as AdaGrad (Duchi, Hazan, and Singer, 2011) and ADAM
(Kingma and Ba, 2015), essential for the learning process. In previous RL studies,
various adaptive step-size methods were proposed for policy gradient algorithms
(Matsubara, Morimura, and Morimoto, 2010; Pirotta, Restelli, and Bascetta, 2013)
and for conventional policy evaluation algorithms (Hutter and Legg, 2007; Dabney
and Barto, 2012).

On the other hand, the NPG is estimated using a linear function approximation
and a squared loss function. Though general adaptive step-size strategies such as
AdaGrad and ADAM are applicable to NPG estimation, performance and stability
can be further improved by using an adaptive step-size method that is specific to
NPG estimation. To the best of our knowledge, despite its importance, such a special
adaptive step-size method for NPG estimation has not been proposed to date.

Theoretically, the step-sizes, a,, & and &y, must be decreasing positive values that
satisfy Y5> a; = o0 and Y52y a? < oo to guarantee convergence (Bertsekas and Tsit-

siklis, 2000). In practice, however, the step-size is usually a fixed small value because
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the RL problem is not static. In other words, the change of policy shifts the distribu-
tion of the state-action pair. This chapter focuses on the method for determining
Q.

The purpose of this paper is to propose an adaptive step-size strategy for NPG
methods that can stabilize the NPG estimation in INACs. In this chapter, we focus
on the Natural policy gradient utilizes the Temporal Differences (NTD) algorithm
(Morimura, Uchibe, and Doya, 2005). Therefore, we assume the followings through-

out this chapter:

(St =71+ ’)/V(St_H) — V(St), (4.1)
t
€5t = €f = 2 (YA T S e (4.2)
=0

It is straightforward to extend the proposed method here to other INAC methods.
The structure of this chapter and our contributions are summarized as follows.
In Section 4.1, we derive an upper bound of the step-size for NTD, «f, which avoids
oscillation and divergence of the estimated NPG. In particular, we focus on the NTD
algorithm. This upper bound directly encodes a local optimum wy, ., for a given
single sample. We also provide the tight upper bound and the lower bound for the
step-size which consider the global effect of each sample, though they are not suitable
for INACs. In Section 4.2, extending the approach of Karampatziakis and Langford,
2011, we propose an adaptive step-size method for general linear regression using
the trace of the feature vector, which guarantees that an updated parameter does not
overshoot the target. This is achieved by weighting the learning samples according
to their relative importances. Next, in Section 4.2.1, in order to apply the derived up-
per bound «}, we applied the derived general adaptive step-size method to NTD>
The local optimum wy, , is approached gradually by weighting the learning sam-
ple according to its given relative importance. The proposed step-size approaches
the derived upper bound a; as the relative importance approaches infinity. In other
words, the proposed adaptive step-size determines the “aggressiveness” of the up-
date from a given meta-parameter. Figure 4.1 outlines these two approaches. In
Section 4.3, we evaluate the validity of the proposed adaptive step-size using classi-

cal benchmarks. Section 4.4 concludes this chapter.
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error

w

FIGURE 4.1: Overview of the derived upper bound and the proposed
step-size method.

4.1 Upper Bound of Step-Size

First, the upper bound of the step-size « is derived. The underlying concept and
derivations of the bounds are similar to Dabney and Barto, 2012, but the resulting
bound is different. We simply compare the errors of the TD error regression before
and after the update, and derive the upper bound of & to avoid overshooting the

target.
Lemma 4.1. The upper bound for non-negative step-size « is:

plee<0 = a=0, (4.3)

plee>0 = a< 2 (4.4)

¥ e

Proof. Letw; and w;1 be w at times t and f 4- 1, respectively. We adopt the shorthand
notation = (st a;). Then, the error of the TD error regression at time t before the

update is:

Swt = 0 — W, Yr. 4.5)
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When 6, = 0, w is not updated. Assume that &, 7 0. Similarly, the error after the

update is given by

S = 0 — w1
=6 — (wy + 065w,t€t)T Py

= O — aéw,thtTet- (4.6)
When ¢, ¢; = 0, the update does not affect &,,;, and therefore
Ple=0 <= dur = duy.

We are interested in the case where ¢, ¢; # 0. If both |6, y/| < |84,| and sign(8y,) =
sign(dy ¢ ) are true, the error does not increase and the update does not overshoot the

target. The errors before and after the update are then compared:

substituting (4.6) above yields

Ogl—athet <1,
0<aye <1. 4.7)
When ¢,"¢; < 0, the inequality (4.7) yields

1

¥ e

IN

a <0. (4.8)

Thus, the requirement a > 0 enforces & = 0. Finally, when 9, e; > 0, the inequality

(4.7) yields

Using the bound (4.4) as the step-size directly is too aggressive because the upper
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bound given by Lemma 4.1 reflects only the local effect of the update using a given
single sample. Thus, the bound (4.4) is safe only locally.
Theorem 4.2, given below, provides a tight upper bound that takes into account

the global effect for the stationary policy.

Theorem 4.2. If the policy is stationary,

5w T,t
(X* < min ——%— 4.9
Tt = T€[0,f] 5w/tl,l)1T€t ( )

is a tight upper bound for a non-negative step-size a, where dy, 1 1 is the Tth experienced error

before the tth update:
(Sw,r,t =67 — thlPT-

Proof. We prove the theoren by contradiction. Assume the contrary proposition that

there exists some ayp € (0, zx?t) such that ayp is an upper bound for a. From this

assumption, it follows that (i) using a7 ; at time t causes an error in the past, T € [0, t],
to increase the absolute value or change the sign, (ii) while ayg does not cause such

an effect. The tth experienced error before the tth update is:
5w,r,t - 51’ - w;rll)r-

Assume that 6, 7# 0. Similarly, the Tth experienced error after the tth update

using « is given by

5w,’r’,t = (57 - wI&-llIJT
=07 — (wt + 0€5w,tet)T q)r

-
= dw,t — “5w,fl1br et.

We compare the tth errors before and after the tth update:

) ] o
OOt ] g ypTe =12, (4.10)
5w,1’,t 6ZU,T,t n
where 7 = Suri_ Then, the contrary assumption implies that there exists some T

‘Sw,t ll];r et
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[0, t] such that 0y, v+ / 6w, r,p > 10T Oy 114/ Sz < Ofora = i, and 0 < 0y v 4/ O, <
1 for &« = ayg.

Let a = a7, then if 6y, /6wt < 0, Eq. (4.10) yields a7 /57 > 1. This implies
that there exists some 7 such that 7 € [0,a};], which is a contradiction because #
is the element of the set in which a7, is the smallest value. If 6y, /6wt > 1, Eq.
(4.10) yields a7 ;, /17 < 0. In this case 7 < 0 because a7 ; > 0. Now we consider using

&« = ayp in this context:

0< 5w,r/ p S 1,
5w,r,t

0< 1-%B ¢
1

< aus <0.
This is again a contradiction because it was assumed that ayg > 0. Therefore, there
exists no lower upper bound such that ayp € (0,47 ;). [ |
The lower bound is also given by Theorem 4.3.
Theorem 4.3. If the policy is stationary,

W, > L 4.11)

ot 2
[0w,tet|| maxccpo ’

1T
5w,‘r,t
is a lower bound for a non-negative step-size «.

Proof. The least upper bound given by Theorem 4.2 yields

* . 5w,r,t
T,t
T€(0,¢] 5w,t1,b1Tet

-1
= <max 5w’tl’bjet>

te0t]  Owrt

-1
<5ZU,tetl (Slp’ft> ‘) ’
w,T,

= ( max
T€[0,4]
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where (-, -) denotes the inner product. Then, the Cauchy-Schwarz inequality yields

<5w,t€t, (;’th > ’
w,T,

< max |6 et || -

1
= max
Krp  TE[O]

TE [O,t] (sw,rlt
[ rer]| max ||| .
TE [O,f} (Sw,’r,t

Note that the straightforward applications of both the upper (4.9) and lower
bounds (4.11) require the computation and memory storage for all T € [0,t]. One
of the possible heuristics for applying the upper bound (4.9) with the memory and

the computation of O(d) per time step is to take the minimum upper bound:

®; = min {zxth 1] , (4.12)

|/ e

where ag = 1.0, similar to the application of alpha bound (Dabney and Barto, 2012).
However, we assume that the policy is updated at each iteration, and therefore our
policy is not stationary. Thus, decreasing the step-size simply may be too conserva-

tive.

4.2 Adaptive Step-Size via Relative Importance Weighting

4.2.1 Adaptive Step-Size for the Linear Function Approximator with the

Trace via Relative Importance Weighting

Next, we derive an adaptive step-size for the general linear-function approximation
using the trace of a given feature vector. The aim is to propose the adaptive step-
size that avoids an overshoot, and that can interpolate a very aggressive update and
a less aggressive update according to given relative importance. The derivation is
similar to Karampatziakis and Langford, 2011, but the resulting step-size is different
because we consider the trace.

Let x € R be a feature vector and y € R be a target signal. We focus on a linear

T

function approximator, § = w'x, where w € R? is a parameter. Let /({,y) be a
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loss function. The goal is to find w* such that w* = argmin Y, £(w " x;,y:), using
stochastic gradient descent. Further, let z; £ ZtT:o 7'"Tx; be a trace of the feature
vector. Notice that though the arguments in this section hold for any bounded fea-
ture vector z;, in this dissertation we consider the trace only. The update of w at time

t using the standard stochastic gradient descent is

Wi = Wi — thwE(wat,yt)

=w —a%
= w; 59

Xt,
7=w"x;

where « is again a small positive step-size. In this dissertation, however, we focus

on the update using the trace of the feature vector:

w =w —“% Z

J=w'x;

The derivation of the adaptive step-size begins with the following lemma where

the relative importance is an integer.
Lemma 4.4. Let h € Ny be a relative importance. Updating w h times using a sample
(xt,y¢) is equivalent to the following update:

Wiy = wr — ¢(h)zy,

where the scaling factor ¢(h) has the recursive form:

Y,
¢(h+1)=c¢(h) +¢x? , (4.13)
Ylg=(wi—c(h)z)Tx

¢(0) =0.

Proof. We prove the lemma by induction with respect to /. The initial case h = 0 is

self-evidently true. The intermediate parameter updated & times is

wy = wy — ¢(h)zs.
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Thus, after i 4+ 1 updates, the result can be written using wy as follows:

ol
Wiy = Wy — K=

97

Zt

g=w)x;

ol
=Wt — (Q(h)-i-txaA >Zt
Y ly=(wi—(h)z) Tx:

This dissertation considers the squared loss, £(7,y;) = %(y: — §)%. Substituting

this value into (4.13) yields

6 +1) = c(h) +a ((wr = c(h)z) "5 =)

=¢(h) (1 —ax, zt> +a (wt Xt — yt>

Note that a recurrence relation of the form

¢(h+1) =¢(h)p+q, 6(0) =0

is solved by

Therefore, we have

h
c(h) = 1-(1- txxtTTZt)) N (wt X — yt>

1—(1—axz

1—(1—ocxtht)h ( - )
= x
X, z¢ @r Xt Y

_wtxt Vi (1 (1 eTs )"
= T (1 (1 ax; zt) )

Furthermore, we fix i and consider updating w hK times, each with step-size

«/K, where K € IN:

WXy () (T K
c(hK) = e (1 (1 X zt) ) (4.14)
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In the limit K — oo,

Ta hK
lim ¢(hK) = lim 2ttt (1 - (1 - Z;x?zt> )

K— oo K—00 Xy Zt
T
Wy Xt — Yt
= tTiy <1 — exp (—hzxx?zt)) .
Xy Zt

Thus, the update of w; can be expressed as

Wiy = Wi + = Yr — Wy Xy

1 — exp(—hax/ z;) -
. 4.15
T ( )z (4.15)

Next, we generalize Lemma 4.4 to the case h € R, as in Karampatziakis and
Langford, 2011. By analogy with Eq. (4.14), the key idea is to perform K times more

updates, each with a step-size smaller by a factor of K.

Theorem 4.5. The limit of the gradient descent process with the trace for one sample using

an infinitesimal step-size and a relative importance h € R>¢ equals the update
Wi = wr —g(h)ze,

where ¢(h) satisfies the differential equation

¢ (h) = ucgli , (4.16)
Y= (wi—c(h)z) T
¢(0)=0

Proof. First, Lemma 4.4 holds for a step-size a /K. The dependence on K is indicated
explicitly by writing ¢,k (h) instead of ¢(h):
«
ga/K(h + 1) = ga/K(h) + EA(QN/K(h))/
ga/K(O) =0,

where

ol

A(gtx/K(h)) - aiyA yA:(wf*Qa/K(h)zt)Txt‘
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Second, let 6o (i) = G, k(Ki) be a function whose argument is a non-negative ratio-

nal number i = h/K € Q>p. Then, it follows that

6Q(i+1/K) = ga/x(Ki+1)

= Ga/ac(Ki) + D (6a/x(KD))

= cali) + A(cali))- (4.17)

Note that the recurrence (4.17) corresponds to an K-fold multiple of updates, each

with a step-size smaller by a factor of K. By rearranging (4.17), we have

coli+1/K) —gqli) _ ,
o Vi Q) — aA(sqli)). (4.18)

Therefore, taking the limit K — oo of Eq. (4.18) and changing the notation yields
(4.16). [

Again, in this dissertation, we focus on the squared loss (7, y) = 3(y — 7)% The

differential equation (4.16) reduces to

¢'(h) = a ((w —c(hz) " x~w),

and is solved by

¢h) = —=—— (1 - exp(—hucx?zﬂ) .

Xy Zt

Thus, the update of w can be written

1 —exp(—hax, z
Wil = Wt + px(Tz r 2) (yt - w:xt) Zt, (4.19)
t 4t

which is equivalent to (4.15), except that & is a non-negative real number in Eq. (4.19).
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Finally, we compare the errors before and after the update using Eq. (4.19). As-

sume that y; — w/ x; # 0. The error after the update is:

-
Yt — W1 Xt
1 — exp(—hax, z;)
T p ¢ At T T
=Yy — Wy Xt — T2 (yt — Wy xt) Zy Xt
t 4t

= <yt - thxt> exp(—hocx?zt).

Thus, the update (4.19) does not overshoot the given target:

-
Yi — W1 Xt
T

— = exp(—hax, z;) > 0.
t— Wy At

If x/z; > 0, the update decreases the error. The meta-step-size « and the relative
importance h determine the aggressiveness of the update. On the other hand, if

T

x; z¢ < 0, then the error after the update can become very large and can even di-

verge. Therefore, rejecting the sample becomes an option.

4.2.2 Adaptive Step-Size via Relative Importance Weighting for INAC

We apply the derived update (4.19) to INAC iteration (5.1) with (4.1) and . Substi-

tuting x¢, z; and y; for ¢, e; and J;, respectively, Eq. (4.19) yields

W <— W+ <5t — lelJt) e,

1 —exp(—hayp, e;) .
a = ¥/ e ($re>0) (4.20)

0 (¥ e <0)

Remark 4.6. The derived step-size (4.20) lies within the upper bound (4.3,4.4). Fur-
thermore, in the limit # — oo, the adaptive step-size (4.20) reduces to the upper
bound (4.3,4.4). Thus, we can choose any relative importance & € [0,c0) to each
learning sample. Notice that for any choice of &, the proposed adaptive step-size is

at least locally safe.

We refer the proposed adaptive step-size via relative importance weighting as

RIW. Algorithm 4.2.1 shows a naive implementation of RIW. As explained in the
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previous subsection, if 1, e; < 0, the update can cause a divergence of the estimated
NPG. However, rejecting all these samples becomes very inefficient. In order to use
all the samples, we can choose the conservative step-size strategy (4.12) if ] e; < 0.

Algorithm 4.2.2 shows the aggressive & conservative step-size strategy, where oy =
1—exp(—hap, e;)
e

a procedure of NTD with RIW.

1

is used instead of ——
[ et

in this implementation. Algorithm 4.2.3 show

Algorithm 4.2.1: RIW with Obeying Bound (R1w-OB)
1 initialization:
2 L h/ i, l,bt/ €,
3 if ¥/ e > 0 then
s | w=(1—exp(—hay/e)) /e
5 else
6 L ar = 0;
return: adaptive step-size ay;

Algorithm 4.2.2: RIW with Aggressive & Conservative (RIW-AC)

initialization:
h/ , ll)t/ et,
if FIRSTCALL then

Lp=r

f ) e; > 0 then
ar = (1 —exp(—hay, e;)) /¢, er; > aggressive
if a; < B then

B Lﬁzﬂét;

9 else
10 L xt = B; > conservative

1
2
3
4

=

@ NN o G

return: adaptive step-size ay;

4.3 Numerical Experiment

In this section, we evaluate the validity of the proposed adaptive step-size method

using classical benchmarks.

4.3.1 MDP with Two States

First, we confirm that the proposed method can estimate the NPG even though it

does not use all the samples, that is, a; = 0 for IlJtT e; < 0. The task is an MDP with
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Algorithm 4.2.3: NTD-R1w

1 initialization:

2 | parameterized policy 7t(-|-;0);

3 | parameterized state value V( -;v);

4 initial parameters 6, wy, vo;

5 (meta-)step-sizes ag, &, ay;

6 | eligibility decay rate A, discount rate 7y;
7 | Riwe {Riw-OB, RIw-Ac};

8

Initialize eligibility traces: es 1 = 0,¢ef,1 =0, €,

1=0;
9 Draw initial state and action selection: sy ~ po(-), a0 ~ 7t(+|so; 60);
10 fort=0,1,2,... do
11 Environmental step: s;11 ~ P(-|st, at), 1 = R(st, ar);
12 Action selection: a;1 ~ 71(+|s¢41;0);
13 Compute TD error: 6 = 1y + YV (s411;0¢) — V(se; v4);
14 Update eligibility trace for state value: e, ; = yAey ;-1 + VoV (st v¢);
15 | Update eligibility traces for compatible function approximators:
er = yAer 1+ ¢y
16 | Choose relative importance /;
17 ar = RIW(h,a, i, e1);
18 Vi1 = Ut + &ply o t;
19 W1 = Wy + a; (0 — f(se,awr)) ey;
20 Or1 = 0 + apwy;

return: locally optimal policy parameter 6*;

two states (Kakade, 2001; Bagnell and Schneider, 2003; Morimura, Uchibe, and Doya,
2005), which was already introduced in Section 3.1.2. The state transition law and
reward function is summarized in Figure 4.2. Recall that the policy is characterized
by 6 € R?, using the sigmoidal function:

mt(a1lsi;0;) =1/ (1+exp(—0;)) (4.21)

nt(azls;; 0;) =1— m(as]s;; 6;)

where i € {1,2}. The optimal decision making in this MDP involves choosing a, in
s1 and a; in s, and thus the optimal policy parameter is 8* = (—o0,0) . We choose
the initial parameter 6y = (1.4, —2.2)T, which will be trapped into a plateau without
natural gradients. By using this environment, we can evaluate how fast the agent
can estimate the NPG. In this experiment, we compare the proposed step-size with
the fixed step-size. Figure 4.3 shows the learning results for the best meta-parameter
values which yield the fastest learning without divergence. We used Algorithm 4.2.1

with fixed h = 1. Performance was evaluated by averaging over 100 runs.
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a = ay a = ay
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FIGURE 4.2: MDP with two states
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FIGURE 4.3: Learning curves in the MDP with two states. Mean and

standard deviation of the average reward over 100 runs. The hori-

zontal axis indicates the time steps and the vertical axis indicates the
mean of the average reward.

4.3.2 Pendulum Swing Up and Stabilizing with Limited Torque

In the next experiment, we evaluated the robustness with regard to step-size tuning.

Setups
Environment and Parameterization: See Section 3.2.3.

Algorithms: The base algorithm we use is NTD, that is, the TD error and the el-
igibility traces are defined as Eqgs. (4.1) and (4.2.2), respectively. Fixed step-size
and the proposed adaptive step-size is applied. We use Algorithm 4.2.1 and h =
1/ (||w|| + ||oe]|). This choice of relative importance is justified because it satisfies
h € [0,00). For comparison, we also applied AdaGrad (Duchi, Hazan, and Singer,

2011) and Adam (Kingma and Ba, 2015) to the estimation of NPG. More specifically,
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we used the following equations for the update of w; as AdaGrad and Adam, re-

spectively:
S =8-1+8
Wia1 = W+ a—St 4.22)
\/§ +€
and

Smt = B18me—1+ (1 —B1)gt
Sot = Bodos—1 + (1 — B2)g?,

_ pt ~
VIZP2 g (4.23)
1= B ourte

where € = 10_8, ,31 =0.9, ﬁz = 0.999,gA_1 = gAm,_l = gAU,_l =e¢_1=0and

Wiy = Wt +

ey = yAe—1 + Py,

8t = (5t —f(St, at; wt)) €t.

Note that all of the operations above for the vectors are element-wise. In order
to avoid the incomplete estimate of the NPG, the policy parameter is not updated
within the first 100 episodes. The state value function is estimated by TD(A) (Sutton,
1988).

Grid Search: We performed a grid search such that
A €{0,0.5,0.7,0.9,0.95,0.99,1.0},

w,a, € {1071,5-1072,...,107*},

wg € {1074,5-107>,...,1077}.

The discount factor oy was set to 0.98. For each setting of the meta-parameters, the

learning trials were conducted for 10 independent runs with different random seeds.
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Results

Table 4.1 summarized the learning results for all the combinations of the meta-
parameters. The divergence of NPG can avoided if AdaGrad of the proposed RIW
is used. The column “< 0.0” indicates that the final performance (average reward in
the last episode) is less than zero, which corresponds to the case that the pendulum
keeps over rotating. The column “failures” indicates the sum of rates of divergence
and “< 0.0”, and means the rate that the learning completely failed. Table 4.1 in-
dicates that RIW is more robust with regard to the value of meta-parameters than

NTD, AdaGrad, and ADAM.

TABLE 4.1: Summary of Learning Results.

step-size | non-divergent < 0.0 wvdiverged w diverged failures
Fixed 19.4% 5.6% 34.5% 46.1% 86.2%
AdaGrad 80.0% 33.8% 20.0% 0.0% 53.8%
Adam 50.6% 11.7% 48.8% 0.6% 61.1%
RIW 76.1% 17.7% 23.9% 0.0% 41.6%

4.4 Closing Remarks

In this chapter, we derived the upper bound of the step-size used for the INAC
algorithms, especially for NTD. and proposed an adaptive step-size method that
weights the learning samples according to their relative importance, in order to im-
plement the derived upper bound. The proposed adaptive step-size determines its
aggressiveness from the given meta-parameter and is guaranteed that it is safe lo-
cally. Numerical experiments validated the proposed method. We also provided the
tight upper and lower bound for the step-size, though they are not suitable for the
incremental learning where the policy keeps changing in each step. To the best of
our knowledge, this is the first adaptive step-size method used for NPG estimation.

An interesting extension to this work is to seek for another criterion to determine
h. One possible criterion for choosing / is the derivative of the logarithmic station-

ary distribution, VyInd™(s), which can be estimated as in Morimura et al., 2010a.
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By regulating h adaptively depending on the state distribution even indirectly, the

approximation of the expectation would be accelerated.
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Chapter 5

Implicit Incremental Natural Actor

Critic

In the previous chapter, we proposed an adaptive step-size method called RIW and
we confirmed by the numerical experimental that by using the proposed method the
divergence of the estimated NPG can avoided. However, though RIW satisfies the
upper bound and safety is guaranteed, RIW has a big drawback; RIW is very sample
inefficient because it does not update NPG if gth ¢; < 0. Further, notice that there still
remains a open question: why are INACs unstable? The main research aim of this
chapter is to answer this question.

The goal of this chapter is to determine the reason for which existing INAC al-
gorithms are unstable, and to propose an incremental and stable algorithm for the
NPG estimation. The proposed method, which we refer to as an implicit incremental
natural actor critic (I2NAC), is motivated by the ideas of the implicit stochastic gradi-
ent descent (Toulis, Rennie, and Airoldi, 2014; Toulis and Airoldi, 2015; Toulis, Tran,
and Airoldi, 2016), and especially of the implicit temporal differences (Tamar et al.,
2014). Theoretical analysis indicates the stability of 2NAC and the instability of the
existing INAC methods. In a classical benchmark task, it is shown that 2NAC is
less sensitive to the values of the meta-parameters, including the step-size for NPG
estimation.

The structure of this chapter and our contributions are summarized as follows.
In Section 5.1, we derive I2NAC, which is a new incremental and stable algorithm,
to estimate the NPG. The existing INAC algorithms can be generally extended to

I2NAC. After the asymptotic convergence analysis of I2NAC is shown in Section
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5.2, we compare the stabilities of 2NAC and INACs theoretically in Section 5.3,
where we highlight the reason for which INACs are unstable, and the stability of
I2NAC iterations is shown. In Section 5.4, we present numerical experiments using
the classical benchmark to verify the stability of I2NAC. The experimental result
suggests that I2NAC can avoid the divergence of the estimated NPG and the policy

degradation phenomenon. Finally, Section 5.5 concludes the paper.

5.1 Implicit Incremental Natural Actor Critic

In this section, we present our proposed method, i.e., the implicit incremental natural
actor critic 12NAC), which is based on the ideas of the implicit stochastic gradient
descent (Toulis, Rennie, and Airoldi, 2014; Toulis and Airoldi, 2015; Toulis, Tran,
and Airoldi, 2016; Toulis and Airoldi, 2015; Toulis, Tran, and Airoldi, 2016), and
especially the implicit temporal differences (Tamar et al., 2014). Recall that INAC

iteration is given as
Wil = W+ (5t€5,t — f(st,as wt)ef,t) . (6.1)
First, we add two terms to INACs” update, which sum to zero:
Wi = Wy + a (Sresy — f(st,aiwe)epy) +1 (w?et - w?et) e,

where 1 > & and an eligibility trace e; can be ¢;; or ef;. Here, we introduce the

implicit update:
W1 = Wi + a (Sresy — f(st,aiwi)epy) +1 (w:et — leet) er. (5.2)

Eq. (5.2) is implicit in the sense that the parameter after the update, that is, w1,
appears on both sides of the equation. We call : as an implicit rate. Note that the fixed

point of Eq. (5.2) is the same as the fixed point of (5.1). It follows that

(I + letetT) Wry1 = (I + lé’tetT) Wi+ a (Sresr — f (s, ar;wi)es ),
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where the matrix I + iese, is positive definite. Finally, using the Sherman-Morrison

formula (A.2), we have the implicit incremental natural actor critic 12NAC):

-1
Wi = Wi+« (I + zete?) (bress — f (st ar;wr)egy) (5.3)

2
_ I— ————ee] ) (65, — f(s1, a1 : 4
o JHX( 1+ 1f]el] 2" > (Grese — f(st,a;wr)egy) (5-4)

The difference between I2NAC and INACs is only the multiplication of the matrix
I— mete?. All of the INAC algorithms of the form (5.1) can be converted into
I2NAC. Note that the required memory and computation to solve (5.4) remain O(d)
because (5.4) can be solved only by computing the inner products, scalar multipli-

cation and summation or subtraction of vectors. Algorithm 5.1.1 gives the overall

procedure for 2NAC.

5.2 Asymptotic Convergence Analysis

In this section, we present the convergence analysis for I2NAC. The convergence is
provided in a manner that is similar to that done by Bhatnagar et al., 2009. Here,
we introduce the additional restriction on the problem formulation, and show that
[2NAC generates a locally optimal policy when ef; = ;. This convergence proof
is based on the two-timescale method (Borkar, 1997) and the ODE method (Borkar
and Meyn, 2000) for a stochastic approximation.

First, for the purpose of the analysis, we transform the problem from the maxi-
mization of the reward into the minimization of the cost. In the recursion (5.4), this

is accomplished by simply taking the negative of the TD error:

L T
= J———— —0 — LA . 5.5
Wil = W+ ( 1 +l!|€t||2etet ) ( test — f(st,ar wt)ef,t) (5.5)

Let the step-size a; be time dependent, and
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Algorithm 5.1.1: Implicit Incremental Natural Actor Critic (I2NAC)

1
2
3
4
5
6

10

11
12

13
14
15
16
17
18

19
20
21

22
23

24
25
26
27

28

initialization:

parameterized policy (- | -;0);
parameterized state value V( -;v);
initial parameters 6, wy, vo;
step-sizes ag, &, &y;
eligibility decay rate A;

if DISCOUNT then

L discount rate -y;

else
L step-size for average reward «a,, = ca, with a positive scalar c;
implicit rate (> a); Initialize eligibility traces:
es,-1=0,e5,1=0,65-1=0;
if not DISCOUNT then
| 71=0;

Draw initial state and action selection: sg ~ po(-), a9 ~ 7(+|s0;60);
fort=0,1,2,... do

Environmental step: s;11 ~ P( - |s, at), re = R(st, ar);
Action selection: a;1 ~ 71(+|s¢41;0);
if DISCOUNT then

L Compute TD error: 6; = r; + YV (s¢41;01) — V(55 04);

else
L Update average reward: 7j; = (1 — &y )7i—1 + (o ctt;
Compute TD error: 6; = ry — s + V(s¢41;0¢) — V(S 04);
Update eligibility trace for state value: e, = yAey 11 + VoV (st 04);
Update eligibility traces for compatible function approximators e; 1, s +;
> algorithm specific
Lete; € {est ef4};
Utt1 = Ut + &l tloyt;
A = resr — f(st,at; wt)ef,t}
Wi = wi + (A — 1/ (1+ der||*)ere] A);
> calculate from right to left
9t+1 = Bt + KgWt,

return: locally optimal policy parameter 6*;
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which is positive definite. We choose ef; = ;. Then, Eq. (5.5) can be rewritten as

follows:

Wiq = (1 — 0, Gy, ) wy — 05,G ey . (5.6)

Next, let C™ be a compact set such that C™ = {0|g;(8) < 0,i = 1,...,m} C RY,
where the functions g;(-),i = 1,...,m represent the constraints that C™ satisfies. Let
I' be a projection I : R? — C7, such that for any 0 € RY, I'(f) € C"and for 6 € C7,

I'(6) = 0. We assume that the policy parameter is updated as follows:
9t+1 =T (Qt + (X@rtwt> , (5.7)
where g, is the time-dependent step-size for the policy parameter. We require the
following assumptions.
Assumption 5.1. Approximated TD error 6 is uniformly bounded by a constant Cs.
Assumption 5.2. There exists a constant C,s such that ||es || < C,s |||l -
The traces (3.58), (3.60), (3.62), and (3.63) satisfy Assumption 5.2.

Assumption 5.3. The eligibility y; is uniformly bounded, and the matrix Py, is positive
definite.

Assumption 5.4. ]E [07est] = Von () holds.

Note that, for example, the conventional cumulative trace such as Eq. (3.58) sat-

isfies Assumption 5.4.

Assumption 5.5. The two schedules for the step-sizes satisfy

Z“f = Z“G,t = 0o, Z“% < oo,Zaért < oo, wgy=o(ay). (5.8)
7 7 7 7

Assumption 5.6. The sequence (s, S¢11,1t)>0 1S i.i.d., and has uniformly bounded second

moments.

Even though it is not practical, the assumption that the sequence (s, s¢11,7¢)1>0

is i.i.d. has been used in the literature on RL (Sutton, Szepesvari, and Maei, 2008;
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Degris, White, and Sutton, 2012). The extension for the Markov noise case is outside
of the scope of this study.

As we see later, given Assumptions 3.1 and 5.1 - 5.6, it is possible to show that w;
obtained by I2NAC converges to some @ almost surely. However, in order to ensure
that @ = w™, we require the implicit rate ¢ to be time dependent, and the following
mild assumption for the sequence {i}. Under Assumption 5.7 below, 1; decreases

much slower than a;. Furthermore, it holds that G;* — [ as t — oo.

Assumption 5.7. The sequence of implicit rates {1;} satisfies the following properties: (1)

it — 0ast — o0, (2) 1y > ay, Vt, and (3) ar = o(1t).

We have the following theorem, which states that the I2NAC iteration converges
to w”™ almost surely. Note that this result is also generally applicable to INAC algo-

rithms by simply setting G;* = I.

Theorem 5.8. Under a given parameter 0, w; obtained from the recursion (5.6) satisfies

w; — —G~1(0)Ven(0) as t — oo almost surely.

Proof. First, we consider the following ordinary differential equation (ODE) that is

associated with (5.6) for a given 6:
= E |~ G pupw — 67 Gl esy] 2 hw). (5.9)

The function h(w) is Lipschitz continuous with respect to w owing to the bounded-
ness of the reward and the eligibility. Let o (w) = Ch_)nc}o h(cw)/c. The function he (w)
exists and satisfies ho(w) = —]]95 [Gy“¢ip/ | w. For the ODE w = —]E (G e/ | w,
the origin is an asymptotically stable equilibrium with L; (w) = ||w||?/2 as the asso-
ciated Lyapunov function because IE [G/“pip/' ] is positive definite.

Next, let { M;} be a martingale sequence,

M; = (-Gé'elptl[]t—rwt — 5?(;;’865/,5)

+]§ [—Gé'ellftllftT wy — 6 G es | Fi t] ,
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where F; = 0 (w¢, M, T < t). Under the assumptions pertaining to the bounded-

ness, it is easy to verify that there exists a constant C < oo such that
B M| Fe] < C(1+ [[wr]|?), ¢ >0,
Finally, for the ODE (5.9), consider the following function
1 N
L(w) = 5 o -,
where
-1
= —E [y | EL07Ges].

Then, we have

dL,(w
= (w— w)Tlg [—Gi’elﬁtli’?w - JfGi’eeé,t}
T Le T Le 7171 T ALe
= —(w-) E[Gl'yy/ (w +E Gy | ELTGE e(s,t])
= —(w-) B[y | (w—)
<0, Yw#d.

Therefore, an asymptotically stable equilibrium for the recursion (5.9) is @. Now,
from the arguments above, Theorem 2.2 in Borkar and Meyn, 2000 holds, and the
recursion (5.6) converges to @ almost surely. Furthermore, under Assumption 5.7,

G/ — I as t — oo. Therefore, we have

~ Le T -1 T Le
w= _]g [Gt' ey } Ig: 07 Gy es,t)
-1
= —E [y | E[5]es

= -G 10)Vey(0) = w™.

Thus, the recursion (5.6) converges to w™ almost surely. u
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Furthermore, the following corollary holds immediately because under Assump-
tions 3.1 and 5.1 - 5.7 and Theorem 5.8, Theorem 4 provided by Bhatnagar et al., 2009
holds.

Corollary 5.9. The parameter of the policy, 6;, converges to the local optimum almost surely

ast — oo.

5.3 Stability Analysis

In this section, we analyze the stability of INACs and I2NAC. We mainly analyze the
stability of the I2NAC iteration. Note that the argument is also generally applicable
to INAC algorithms by simply setting G;“ = I. A similar analysis was conducted by
Tamar et al., 2014.

First, the recursion for update (5.4) can be rewritten as follows:
Wy = (I — ocGé'eef,ﬂptT) wi + a0 Gy .

Let wy denote the initial value of the NPG. The estimate of the NPG attime T+ 1 €

IN>( obtained by I2NAC can be rewritten as

T T-1 T
wr4+1 = HAtwo + Z H Azbt + br,
t=0 t=0 T=t+1

where
Ay =1—aGyes ), by = abiGi ey .
Thus, the L2 norm of the NPG estimated by I2NAC is upper bounded as follows:

T T-1 T
lwrall < TTHAdwoll + Y TT A<l lbell + [lorl-
+=0 =0 T=t+1

When Assumptions 5.1 and 5.2 hold, there is a constant C;, such that ||b;|| < Cp||9:]|.
Therefore, ||A;|| governs the boundedness of the norm of the estimated NPG; if

II — aGifersp/ || < 1 for all t, ||wy|| stays bounded. Else it may diverge. The
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same argument holds for INACs. The following theorem gives ||I — aefp/ || and

1T = aGieripy |-

Theorem 5.10. ||I — aGyef /" || is given as follows:

11— aGier |

02x? — 20 + aky \/txzxtz — 4oy + 4
=max{1,\|1+ 5 } (5.10)

where
K 2 ||Grfeps| el and v 2 (Giepy) .

Setting Gy = I in Eq. (5.10) yields || — xes /" ||.

In the proof of Theorem 5.10, we use the following lemma (Lemma 2 in (Tamar

et al., 2014). See (Tamar et al., 2014) or Appendix A.1 for the proof).

Lemma 5.11. Let X = x1y] + xoy, € R, then the matrix X has d — 2 eigenvalues

that are equal to 0, and the remaining two eigenvalues are given by

[+ 3] ys 4/ (4] 1 — 1] y2)2 + 4(x 1) (] 1)
> .

Proof of Theorem 5.10. We consider 2NAC. For INAC algorithms, G;¢ = I gives || —
aef,tlp? | from the definition. The norm of a real-valued matrix A is given by the

square root of the maximum eigenvalue of A" A. Thus,

.

(I — ocGﬁ’Eef,ttptT> (I — (xGé'eef,tgth>

=1—ay; (Gé"”ef,t)T — (XG;’eef,tl[JtT + a2y (Gé’eef,t)T Gé’eef,tlp:
T

=17 —+ lPt (az HG;’ee'f’tHZ lPt — lXGé’eef’t> — aG;’gEff/tllJtT

21+ X. (5.11)

Note that G; ey is a vector. Thus, from Lemma 5.11, the matrix X on the right-hand

side of Eq. (5.11) has d — 2 eigenvalues equal to 0, and the remaining two eigenvalues
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are given by

w?x? — 20 + aky \/(xzxtz —davy + 4
2 Vs

where

Kt £ HG;'eef,tH H’ath sVt = (Gé'eef,t)T Py

Therefore, the matrix on the right-hand side of Eq. (5.11) has d — 2 eigenvalues equal

to 1, and the remaining two eigenvalues are given by

w?x? — 20 + aky \/ocsz —4avy + 4

1
+ 2

Taking the square root of the above gives ||I —aGyef ] ||. |

Theorem 5.10 enables us to compare the stability of I2NAC with INACs. In par-
ticular, by setting es; = e =6t =, the difference between the stabilities of 2NAC

and INACs becomes apparent.

Remark 5.12. Setting e;; = ef; = er = ¢, it holds that

1
Giesy = Gyl = :
S A R
Then, for INAC algorithms,
1A = 1T = agprpy’ |
= max{L, [afg:]* -1} > 1, (5.12)

1Bl = al| e, (5.13)
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and for I2NAC,

1Al = 11T — a Gy |

_ _ gl
= max{1,|1 T+ [0 HZ\} (5.14)
el = 7= HlP T e 1ol (5.15)

The last equality in Eq. (5.14) holds because : > «. Here, we assume that the policy

is Gaussian, NV (p, 0). Then, the eligibility is given by

Yu=(a—pn)/0% o= ((a—pn?’-0*)/c.

In MDP, the optimal policy is deterministic. Thus, if the learning progresses success-
fully, 0 — 0 and ||i|| — oo. Therefore, Egs. (5.12) -(5.15) indicate that the iterations
by INACs may diverge regardless of the value of the step-size a, even if the learning
successes, while the iteration by I2NAC stays bounded. In other words, I2NAC is

guaranteed to be safe.

Note that by applying the decreasing step-size « — 0, || A¢|| — 1 and ||b;|| — O as
t — co. However, for INACs, the norm || A;|| may take a value larger than 1 in finite
t depending on the values of « and ¢;. Therefore, the product I'l;|| A;|| may become

large, and the learning becomes unstable in finite ¢.

5.4 Numerical Experiment

In Section 5.3, we analyzed the stabilities of 2NAC and INACs, especially for the
case wheree;; = e it =6 = . In this section, we empirically evaluate the learning

stability and speed for the case where the eligibility trace is used.
5.4.1 Setups

Environment and Parameterization: See Section 3.2.3.

Algorithms: For the estimation of NPG, NTD and I2NAC based on NTD iteration

are applied. Thus, the TD error and the eligibility traces are defined as Eqgs. (3.57)
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and (3.58), respectively. Both constant step-sizes and decreasing step-size schedules
are applied. The schedules that we utilized, which satisfy Assumption 5.5, are as

follows (Bhatnagar et al., 2009):

. 14 " o Ky
I Y RV e

and ap; = %o (5.16)

A 1+t/t’

where we chose T = 10°. For comparison, we again applied AdaGrad (4.22) and
Adam (4.23) to the estimation of NPG. In a similar way in Section 3.2.3, the policy
parameter is not updated within the first 100 episodes. and the state value function

is estimated by TD(A) (Sutton, 1988).

Grid Search: We performed a same grid search as done in Section 4.3.2. For 2NAC,

we chose | = «.

5.4.2 Results and Discussions

Stabilities: First, we evaluate the learning stability of 2NAC. There are three pos-
sible causes that make the learning system divergent: (i) the policy parameter 6;
diverges; (ii) the state value parameter v; first diverges, resulting in a divergent
learning signal J; for NPG estimation; and (iii) NPG wy first diverges, resulting in
a divergent learning signal for the policy. Because our grid search does not include
too large a value of ag, the case (i) above was not observed.

Table 5.1 shows the percentages of the non-divergent sets and the cause of diver-
gences in the grid search. The main causes of divergence for NTD were the diver-
gence of w. I2NAC was far more stable than NTD, and its main causes of divergence
were v. For both NTD and I2NAC, the use of decreasing step-sizes (DS) decreases
the divergence. NTD with AdaGrad was the least divergent algorithm, and very
few divergences were caused by w. Thus, Table 5.1 contains the value 0.0. The di-

vergences of NTD with Adam were also less caused by w, but more caused by v.
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TABLE 5.1: Percentages of non-divergent sets and the cause of diver-
gences in the grid search.

non-divergent v diverged w diverged
NTD 19.4% 34.5% 46.1%
NTD with DS 34.1% 24.8% 41.1%
I2NAC 65.5% 29.0% 5.5%
I2NAC with DS 77.9% 16.5% 5.6%
NTD with AdaGrad 80.0% 20.0% 0.0%
NTD with Adam 50.6% 48.8% 0.6%

Performances for Best Meta-Parameter Values: Second, we evaluate the learning
speed of I2NAC. Figure 5.1 shows the learning curves for the best meta-parameter
values. Each learning curve is an average of 10 independent runs with different
random seeds. Table 5.2 shows the best meta-parameter values and the final per-
formances with standard deviations. “Best” indicates that the acquired average re-
wards were largest and the estimates did not diverge. NTD could improve the policy
initially, but the performance of the policy degraded in the later stage of the learn-
ing. For both NTD and I2NAC, the application of the DS schedules resulted in the
degradation of the learning speed. The learning of AdaGrad was the fastest. The
final performance of I2NAC was comparable to that of AdaGrad, and slightly better

than that of Adam.
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FIGURE 5.1: Learning curves for the best meta-parameter values in

the sense that the acquired average reward were largest and the es-

timates did not diverge. The horizontal axis indicates the training

episodes, and the vertical axis indicates the average reward. Each

learning curve is a mean of 10 independent runs with different ran-
dom seeds. The shaded areas indicate standard errors.

TABLE 5.2: Best meta-parameter values found in the grid search. The
right-most column shows the mean of the final performances with
standard deviations over 10 independent runs.

A Ko o Ny final performance
NTD 1.0 107 5.107% 107 0.679 + 0.353
NTD with DS 095 10° 5-107* 5.1073 0.634 +0.298
NTD with AdaGrad | 0.9 5-107° 107! 1073 0.888 + 0.025

NTD with Adam 099 10°° 103 5-107* 0.872 + 0.041
I2NAC 1.0 10-° 103 104 0.896 + 0.007
I2NAC with DS 1.0 5-10°® 5.-10% 1073 0.816 + 0.068
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Comparison with Adaptive Step-size Strategies: Now, we compare the overall per-
formances of 2NAC with those of AdaGrad and Adam. Table 5.3 shows the percent-
ages of the meta-parameter values in the grid search by which the learning resulted
in poor final performances (less than 0; the pendulum keeps rotating) . Table 5.3
indicates that the percentage of AdaGrad that results in the poor final performances

are relatively higher than those of 2NAC and Adam.

TABLE 5.3: Percentages of the final performances in the grid search.

Only the percentages for poor performance sets and good perfor-

mance sets are shown. For each set of meta-parameter values, the
result is averaged over 10 iterations for different random seeds.

poor final performances

NTD with AdaGrad 33.9%
NTD with Adam 11.7%
I2NAC 14.0%

As stated above, we also observed that (i) 2NAC was more stable than NTD
with Adam, while applying AdaGrad was the least divergent, (ii) for the best meta-
parameter values, NTD with AdaGrad exhibited the fastest initial improvement of
the policy, and (iii) the final performance of I2NAC was comparable to that of Ada-
Grad and slightly better than that of Adam. Note that from Egs. (5.4), (4.22), and
(4.23), the adaptive values of the step-sizes at each update for these methods are

dependent on the following quantities:

for AdaGrad,

X
Véite
ADAPT 4 \/1— B

Ky = & 2 for Adam, (5.17)

\/gv,t+€ 1_‘35

!
a(I———— ee) for 2NAC.
< T+ e 2 )H

From the above expressions, it is apparent that APAPT for 2NAC and Adam in Egs.
(5.17) can either increase or decrease during the learning process, while for Ada-

Grad, aAPAPT is always decreasing. Thus, it is possible that a*PAPT for AdaGrad
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in Egs. (5.17) decreases too fast, and that the learning results in premature conver-
gence. Indeed, for small values of a in the grid search, we observed that af*PAPT
for AdaGrad decayed in the early learning stages and the amounts of updates of
w, that is, the estimate of NPG, became very small. As a result, the policy did not
improve that much. Figure 5.2 provides examples of this phenomena, where the
meta-parameter values that are used are the same as those in Table 5.2, with the ex-
ception of a. For AdaGrad, a*PAT decays to a very small value, especially when a is
small. Therefore, it appears that the learning of AdaGrad was less divergent, while
many more learning trials resulted in premature convergence compared to the case
for 2NAC and Adam for small «, as is also indicated by Table 5.3. Even though such
a premature convergence can be avoided by the much larger value of « compared
to 2NAC and Adam (see Figure 5.1 and Table 5.2), this issue would be much more
serious in tasks that require many more training episodes. For Adam, a*PAPT tends
to increase, and when & is set to the large value, a*PATT grows large leading to the
divergence of the estimates. Combined with Tables 5.1, 5.3 and Figure 5.2, it appears
that the percentage of Adam that results in a poor performance is the lowest among
the three methods at the cost of divergence. For 2NAC, although a‘tA‘DAPT appears to
be constant, it in fact keeps changing dramatically over a small range. Furthermore,
Table 5.3 and Figure 5.2 indicate that I2NAC is the least sensitive to the value of «.

Note also that the update direction of Adam is determined by ¢, and ¢,:. Both
of these values are the cumulative of g;, which already contains the information
pertaining to e;. Thus, the application of Adam to INACs completely breaks the
equivalence between the forward and backward views, which is established by the
eligibility traces (Sutton, 1988; Morimura, Uchibe, and Doya, 2005). In contrast, as
we showed in the previous sections, at least the fixed point of I2NAC is equivalent

to the fixed point of the base INAC algorithm. This may be one of the reasons for

which the final performance of Adam is slightly worse than that of 2NAC.
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FIGURE 5.2: Learning curves for various values of x. The meta-
parameter values were the same as in Table 5.2, except for x. The
horizontal axis indicates the training episodes. Top: the vertical axis
indicates the average reward. Bottom: the vertical axis indicates
the average value of uc{*DAPT (defined in Eq. (5.17)) in each episode.
Each result is a mean of 10 independent runs with different random
seeds. For clarity, only the means are shown. When & = 107! and
a =5-1072, the learning curves for NTD with Adam are truncated
because the estimates of NPG diverged.

Effect of : on the learning stability and speed: Finally, we evaluate the effect of
implicit rate ¢ on the learning stability and speed of I2NAC. In order to evaluate the
learning stability, we conducted an additional grid search with a fixed A = 1 and
1 € {a,2a,5a,10a,1}. Table 5.4 shows the percentages of the non-divergent sets and
the cause of divergences in terms of ;. The result indicates that as ¢ increases, the

learning process gradually becomes more stable.
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TABLE 5.4: Percentages of the non-divergent sets and the cause of
divergences for the various values of .

t | non-divergent v diverged w diverged

o 55.5% 4.6% 39.9%
2u 55.6% 4.5% 39.9%
5u 57.3% 4.4% 38.3%
100 58.4% 4.6% 37.0%

1 61.5% 4.8% 33.7%

In order to evaluate the learning speed, we considered the following two cases
for NTD: (A) the estimate of NPG diverged, or (B) the performance of the policy
degraded at the later stage of the learning. Table 5.5 shows the meta-parameters
by which the divergence and the degradation occurred. We applied I2NAC with
t € {a,2a,50,10a,1} to both of the above cases. We used identical meta-parameter
values and random seeds for I2NAC. Figures 5.3 (A) and 5.3 (B) show the learning
results for the divergent and the degradation cases, respectively. Each learning curve
is a mean of 10 independent runs with different random seeds. In Figure 5.3 (A), the
estimate of NPG by NTD diverged, where the learning curve is truncated. In Figure
5.3 (B), the performance of the policy acquired by NTD degraded at the later stage
of the learning, even though the estimates did not diverge. For both cases, 2NAC
improved the policy without divergence or degradation. When : = a« and 1 = 2«, the
learning speed decreased slightly. However, as : became large, the learning speed
decreased substantially. These results indicate that I2NAC can improve the stability
at a small cost of the learning speed when the value of  is small. Although the
performance of I2NAC was less sensitive to the value of : compared to other meta-
parameters such as the step-size, these results indicate that : = « is a good choice for

the implicit rate.
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TABLE 5.5: Meta-parameter values used to evaluate the effect of «.

case A Xg o Ky

divergence |09 5.0-107% 5.0-107%* 1.0-107

degradation | 1.0 1.0-107® 5.0-107* 1.0-107*

5.5 Closing Remarks

In this chapter, we proposed I2NAC, which is an incremental estimation algorithm
of the NPG based on the implicit update. Existing INAC algorithms can be generally
extended to I2NAC. The convergence of I2NAC iteration was proven under conven-
tional and mild assumptions. Theoretical analysis results showed why the existing
INAC methods are unstable, and how the use of I2NAC overcomes the instability
and results in the safe incremental estimation of NPG. Using the classical benchmark
task, it was shown that I2NAC is less sensitive to the values of the step-sizes. While
the adaptive step-size methods for policy (Matsubara, Morimura, and Morimoto,
2010; Pirotta, Restelli, and Bascetta, 2013) or state value function (Dabney and Barto,
2012) would further stabilize the whole learning process, this issue is outside of the

scope of this study.
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FIGURE 5.3: Effect of 1 on the learning speed. The horizontal axis indicates the training
episodes, and the vertical axis indicates the average reward. With the exception of :
for 2NAC and random seeds, the same values of the meta-parameters (shown in Table
5.5) were used. Each learning curve is a mean of 10 independent runs with different
random seeds. The shaded areas indicate the standard errors. (A) the estimate of NPG
by NTD diverged, where the learning curve is truncated. (B) the performance of the
policy acquired by NTD degraded at the later stage of the learning, even though the
estimates did not diverge.
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Chapter 6

Conclusion and Future Work

In this dissertation, we proposed two methods which aim at safe estimation of the

NPG. Our main contributions are summarized as follows:

¢ In Chapter 4, we proposed an adaptive step-size strategy for INAC methods.
Though the analysis and proposal in this chapter were focused on NTD al-
gorithm, they can be easily extended for any other INAC methods. We first
derived an upper bound of the step-size for local update, so that each update
of the parameter vector does not overshoot the given target signal. We also
provided the tight upper and lower bounds. Then, we proposed an adaptive
step-size strategy to implement the derived upper bound, which takes into ac-
count the global effect. The adaptive step-size was derived by considering the
infinite-times-update with infinitesimal step-size. The proposed adaptive step-
size strategy is guaranteed that it does not exceed the derived upper bound.
We evaluated the usefulness of the proposed method in classical benchmark

problems.

¢ In Chapter 5, we proposed a new incremental and stable algorithm for the NPG
estimation based on the idea of the implicit update of the parameter vector.
We named the proposed algorithm the implicit incremental natural actor critic
(I2NAC), Existing INAC methods can be generally extended to I2NAC. We
provided the asymptotic convergence analysis of 2NAC. Then, we compared
the learning stability of the 2NAC and INACs by calculating the upper bound
of the norm of the estimated NPGs. Theoretical analysis results showed the

stability of 2NAC and that the conventional INACs have a element of danger
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which leads the estimated NPG to divergence even when the learning proce-
dure successes. We evaluated the usefulness of the proposed method in classi-
cal benchmark and confirmed its usefulness. The experimental results showed
that I2NAC is less sensitive to the values of the meta-parameters, including
the step-size for the NPG update, compared to the existing incremental NPG
method. Though I2NAC has an additional meta-parameter 1, it was shown
that the learning performance is less sensitive to 1 compared to other meta-
parameters. Importantly, it was suggested that even in the meta-parameter
settings where the conventional incremental NPG method resulted in the pol-
icy degradation or the divergence of the estimated parameter, I2NAC could

still improve the policy.

6.1 Future Work

Although we proposed two algorithms to assure the safety of incremental NPG es-
timation, recall that our notion of afety has only restricted meaning and there are

many open problems.

Off-policy Learning

As described in §1.2.4 Off-policy learning is an important element of deep reinforce-
ment learning methods (Mnih et al., 2015; Lillicrap et al., 2016; Gu et al., 2017b; Gu et
al., 2017a; Haarnoja et al., 2017; Haarnoja et al., 2018). The proposed methods in this
dissertation are on-policy methods, mainly because the base INAC algorithms are
on-policy. Extending the proposed methods to off-policy policy gradient algorithms

(Degris, White, and Sutton, 2012; Silver et al., 2014) is a promising future direction.

Monotonicity of Performance Improvement

TRPO proposed by Schulman et al., 2015 is based on a theoretical analysis in which
they derived a lower bound for the performance difference of two policies. The de-
rived bound indicates that by constraining the update of the policy with respect to

the KL divergence between the policies before and after update, it is theoretically



6.1. Future Work 109

possible to acquire a sequence of policies with non-decreasing performances. Sim-
ilar analyses were performed by Kakade and Langford, 2002; Pirotta et al., 2013.
Extending their analyses to compatible function approximation and combining pro-
posed methods will result in safe algorithms in two sense; the estimate of the natural
policy gradient is safely obtained without diverging and the policy is safely updated

with monotonic improvement. This future direction is worth to investigate.

Extension to Supervised and Unsupervised Learning Methods

As we have already stated in §3.1.2, Thomas, Dann, and Brunskill, 2018 generalized
Proposition 3.7 to the broad class of gradient methods and gradient-like learning
methods such as TD learning. This generalization is not limited to reinforcement
learning methods, but applicable to supervised and unsupervised learning meth-
ods. Their proposal is named as a naturalization of learning rules. By using their
naturalization techniques, it is possible to estimate the natural gradients for gen-
eral gradient-like learning rules requiring only O(d) computational complexity and
memory. An important future work is to extend the proposed methods in this dis-
sertation so that it is possible to apply them to the naturalization learning method.
This extension will enable the safe and incremental estimation of natural gradient

for general gradient-like learning rules.
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Appendix A

Mathematical Background

In this chapter, mathematical background we use is summarized.

A.1 Linear Algebra

This section provides background on linear algebra. See (Meyer, 2000) for complete
explanation. Notice that throughout this dissertation, all the vectors are column
vectors.

We use the following property for a matrix defined by the outer product of vec-

tors:

Property A.1. Let n < d and let x;,y; € RY,i € {1,...,n}. The rank of the following

matrix is n:

n
A= 2 xiyiT.
i=1

Definition A.2 (Trace of Matrix). Let 4;; denote the element in i-th row and j-th

column of a matrix A € R?*?. A trace of matrix A, tr(A), is defined as follows:

d
tr(A) = Z aj.
i=1

We use the following properties of the trace of matrix.
Property A.3. The trace of matrix has the following properties:

1. Let A, B € R4, Then it holds that

tr(A+ B) = tr(A) + tr(B). (A.la)



112 Appendix A. Mathematical Background

2. Let A;,i € {1,...,d} denote the eigenvalues of a matrix A € R4 Then it holds
that

tr(A) =) As (A.1b)
More generally, letting k € INy, it holds that

d
tr(AF) =Y AL (A.1¢)

i
i=1

3. Let xy" € R4, where x,y € R?. Then it holds that

tr(xy') = x'y. (A.1d)

Sherman-Morrison

Let A € R™4 be a non-singular matrix and b,c € R? be vectors such that 1 +
c"A7'b # 0. Then, the sum A + bc' is non-singular and it holds that

A lpcT AL

At+bc Yy l=pa1-— " |
( +C> 1+CTA—1b

(A2)
The equation above is called Sherman-Morrison formula.

Matrix Norm

There are several definitions of matrix norms. In this dissertation, we used a matrix
norm induced by the euclidean vector norm. Let || x|| denote the euclidean norm for

a vector x.

Definition A.4 (Matrix Norm Induced by the Euclidean Norm). Let A € R"*? and

x € R%. The norm of A is given by

|A|| = max ||Ax]|. (A.3)
[lx[|=1



A.l. Linear Algebra 113

Property A.5. Let A € R, Let Amax be the largest eigenvalue of AT A. Then, it holds
that

HAH =V Amax- (A4)
The following lemma (Lemma 2 in (Tamar et al., 2014)) gives the norm of a matrix
defined by X = x1y; + x2y, € R™?, where x1,11,x2,2 € R%.

Lemma A.6. The matrix X = x1y{ + xoy, € R has d — 2 eigenvalues that are equal

to 0, and the remaining two eigenvalues are given by

Xy +xyp+ \/(xlTyl — Xy Y2)? + 4(x] y2) (%) y1)
5 i

Proof. The rank of X is 2 from Property A.1. We calculate the remaining two eigen-

values, A1, A;. Using Property A.3, we have:

M+ A= tr(X)
= tr(x1yy ) + tr(x2y; )

=X y1+ % v (A.5)
Similarly, it holds that

A+ A = tr(X?)
= tr(xyy{ x1y{ ) + tr(2viy] xayy )+ tr(xoy; x2y7 )

= (2] y1)* 4+ 2(x1 y2) (%3 y1) + (x3 y2)*.
Thus, we have

MAz = (A4 2A2)* = (AT + A7) /2

= (21 y1) (%3 y2) — (x] v2) (x3 1) (A.6)
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Combining (A.5) and (A.6) yields

A= (x4 xdya) A+ (e ) y2) = (x y2) () =0, i € {1,2}.

Solving above equation completes the proof. |

A.2 Stochastic Approximation

The purpose of this section is to present a two-timescale stochastic approximation, which

is a theoretical fundamental of the incremental natural actor critic algorithms.

Definition A.7 (Almost Sure Convergence). A sequence of random variables { X, }

converges almost surely to X if

P (nm X, = X) —1. (A7)

n—oo

Two-timescale Approach

Now, we proceed to the two-timescale stochastic approximation. Let X; € RY,Y; €
R!,t € Ny be two sequences of parameters governed by the following difference

equations:

Xip1 = Xe+ o (f(Xe, Ye) + Mx441), (A.8)

Yivr1 =Ye+ B (§(Xe, Vi) + My 111), (A9)

where f : RY x R! — R? and g: RY x R! — R are Lipschitz continuous functions
and Mx ;1 and My ;1 are martingale difference sequences w.r.t. the c-algebras
Fi = 0(Xe, Yr, Mx 7z, My -, T < t). Fiis a filtration which satisfy F;, C F;, whenever

i’1 < fz and
E [[| M1 ]| F] < CA+ (X2 +[|Ye)?), z€{XY}t>0, (A.10)

for some constant C < co. We require the following assumptions for the two step-

size schedules {«;} and {B:}.
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Assumption A.8. The step-size schedules {w;} and { B} satisfy the following relations:

Yu=YB=c, Yai=) pi<oc, (A.11)
t t t t
B = o(ar). (A12)
Under the condition (A.12), B; — 0 faster than {a; }. Therefore, the iteration (A.9)

proceeds at a “slower rate” than (A.8). Intuitively, the faster component X(t) sees

the slower component Y(f) as quasi-static. Now, consider the following coupled

ODEs:
X = f(X(#),Y(t)), (A.13)
Y =0, (A.14)
or
X = f(X(t),Y), (A.15)

where Y is a constant because of (A.14).

Suppose that following assumptions hold.
Assumption A.9. sup || X;|| < oo, sup ||Yi|| < co.

Assumption A.10. The ODE (A.15) has a globally asymptotically stable equilibrium u(Y)

where u : R! — RY is a Lipschitz continuous function.

Assumption A.11. The following ODE

Y = g(u(Y(), Y(£). (A16)

has a globally asymptotically stable equilibrium Y*.

Let {&;} and {B:} be two real-valued sequences such that

—_

t—

t—1
’p = xr and B = Z B,
=0

T

I
=}
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respectively. Note that (A.11) implies (&; —&;_1) — Oand (B — B;_1) — Oast — .
Let X(&) and Y (&) denote continuous time processes such that X(a;) = X; and

Y (&) = Y}, respectively, with & € R>¢ and linear interpolations in between. For

B >0, let XP(a) and YP (&) be the solutions of (A.13) and (A.14), respectively, with

gu

(5) X(B) and YP(B) = Y(B), where &@ > B. Note that (A.14) implies Y (a) =
Y(B)w > B.

Now, one can write (A.9) as

Yivi =Y+ <'B: (e(X,Y)+ My,t+1)) (A17)

Notice that (A.12) implies the term multiplying «; on the r.h.s above vanishes in the
limit. Therefore, (A.8) and (A.9) can be considered as Euler discretizations of the
ODEs (A.13) and (A.14) with noise terms Mx ;1 and My ;1 and time discretization

{@}. Borkar, 1997 showed that for any given T > 0,

sup || X(a) - XP(a)|| 0 and  sup [¥(a)-YP(@)|| -0
ae[B,B+T) a€(BB+T]
almost surely as B — co. Similar argument holds for the iteration (A.9) with the ODE
(A.16) and the time discretization {B;}.
The following proposition establishes the convergence of two-timescale stochas-

tic approximations:

Proposition A.12 (Borkar, 1997, Theorem 1.1). Under Assumptions A.8- A.11, (X, Y¢) —

(u(Y*),Y*) as t — oo almost surely.
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=
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natural numbers

NuU{0}

real numbers
non-negative real numbers

non-negative rational numbers

probability
expectation

expectation with respect to a distribution p

finite state space
finite action space
state transition probability, state transition law or dynamics

reward function

state

action

reward

return

history, trajectory or sample path
time steps

learning objective function

policy
optimal policy
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0o

-
o
A
v o

T

initial state distribution

future state distribution under the policy 7

discount factor

state value function under the policy 7
action value function under the policy 7
advantage function under the policy 7

optimal state value and action value

Bellman operator under policy 7t

Bellman optimality operator
temporal difference error
eligibility trace

decay factor of eligibility trace

parameter of policy

parameterized policy
parameter of compatible function approximator for advantage
compatible function approximator for advantage

basis function for compatible function approximator

parameter of state value function

parameterized state value function

step-size

Riemannian metric
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Fisher information matrix

Kullback-Leibler divergence

relative importance

scaling factor

implicit rate






121

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Professor
Minoru Asada. He not only has been my supervisor since my undergraduate, but
also motivated me to be a researcher when I was a high school student. Though my
current research field is the reinforcement learning, the idea of the cognitive develop-
mental robotics has always been attracting my interest since that day. Furthermore,
he provided me a freedom of research throughout my days in the emergent robotics
laboratory.

Iacknowledge my thesis committee, Professor Koh Hosoda and Professor Koichi
Osuka. Their insightful comments and hard questions helped me to deepen my
thinking and gave me a chance to reaffirm my stance on the research.

I greatly thank Dr. Hiroki Yokoyama for inspiring ideas, many discussions, and
other efforts to help me. He was my advisor in the last half of my master course.
Most importantly, he gave me a chance to conduct the research on the reinforcement
learning field, and made me realize how interesting to work on theoretical researches
and mathematics.

My sincere thanks also goes to Dr. Eiji Uchibe. He readily accepted to review my
master thesis and thenceforth he has been the most familiar researcher to me in the
reinforcement learning field. He gave me the opportunity to enter the community of
reinforcement learning researchers.

I also thank the members and alumni of the emergent robotics laboratory, espe-
cially for Dr. [immy Baraglia, Dr. Yuji Kawai, Dr. Takato Horii, Mr. Jihoon Park, Dr.
Takumi Kawasetsu and Dr. Hisashi Ishihara.

Last, but not least, I thank my family for their love and support.






123

Bibliography

Abbasi-Yadkori, Yasin, Peter L. Bartlett, and Stephen J. Wright (2016). “A Fast and
Reliable Policy Improvement Algorithm”. In: Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, pp. 1338-1346.

Abbeel, Pieter and Andrew Y. Ng (2005). “Exploration and Apprenticeship Learning
in Reinforcement Learning”. In: Proceedings of the 22nd international conference on
Machine learning, pp. 1-8.

Abbeel, Pieter et al. (2007). “An Application of Reinforcement Learning to Aerobatic
Helicopter Flight”. In: Advances in Neural Information Processing Systems 19, pp. 1-
8.

Abe, Naoki et al. (2010). “Optimizing debt collections using constrained reinforce-
ment learning”. In: Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 75-84.

Amari, Shun-ichi (1998). “Natural Gradient Works Efficiently in Learning”. In: Neu-
ral Computation 10.2, pp. 251-276.

Amari, Shun-ichi, Hyeyoung Park, and Kenji Fukumizu (2000). “Adaptive method
of realizing natural gradient learning for multilayer perceptrons”. In: Neural Com-
putation 12.2, pp. 1399-14009.

Asada, Minoru et al. (1996). “Purposive Behavior Acquisition for a Real Robot by
Vision-Based Reinforcement Learning”. In: Machine Learning 23, pp. 279-303.
Bagnell, ]. Andrew and Jeff Schneider (2003). “Covariant policy search”. In: Proceed-

ings of 18th the International Joint Conference on Artificial Intelligence, pp. 1019-1024.

Baird, Leemon C. (1993). Advantage Updating. Tech. rep. WL-TR-93-1146. Wright-
Patterson Air Force Base Ohio: Wright Laboratory.

Baxter, Jonathan and Peter L. Bartlett (2001). “Infinite-Horizon Policy-Gradient Esti-

mation”. In: Journal of Artificial Intelligence Research 15, pp. 319-350.



124 Bibliography

Bertsekas, Dimitri P. (2010). “Pathologies of Temporal Difference Methods in Ap-
proximate Dynamic Programming”. In: 49th IEEE Conference on Decision and Con-
trol, pp. 3034-3039.

— (2011). “Approximate policy iteration: A survey and some new methods”. In:
Journal of Control Theory and Applications 9.3.

Bertsekas, Dimitri P. and John N. Tsitsiklis (1996). Neuro-Dynamic Programming. Athena
Scientific.

— (2000). “Gradient convergence in gradient methods with errors”. In: SIAM Jour-
nal on Optimization 10.3, pp. 627-642.

Bhatnagar, S. et al. (2009). “Natural Actor-Critic Algorithms”. In: Automatica 45.11,
pp. 2471-2482.

Borkar, Vivek S. (1997). “Stochastic approximation with two time scales”. In: Systems
& Control Letters 29, pp. 291-294.

— (2001). “A sensitivity formula for risk-sensitive cost and the actor—critic algo-
rithm”. In: Systems & Control Letters 44.2, pp. 339-346.

Borkar, Vivek S. and Sean P. Meyn (2000). “The O.D.E. method for convergence of
stochastic approximation and reinforcement learning”. In: SIAM Journal of Con-
trol and Optimization 38.2, pp. 447—-469.

Boyan, Justin A. (1999). “Least-squares temporal difference learning”. In: Proceedings
of The 16th International Conference on Machine Learning, pp. 49-56.

Bradtke, Steven J. and Andrew G. Barto (1996). “Linear least-squares algorithms for
temporal difference learning”. In: Machine Learning 22, pp. 33-57.

Chou, Po-Wei, Daniel Maturana, and Sebastian Scherer (2017). “Improving Stochas-
tic Policy Gradients in Continuous Control with Deep Reinforcement Learning
using the Beta Distribution”. In: Proceedings of The 34th International Conference on
Machine Learning, pp. 834-843.

Clouse, Jeffery A. and Paul E. Utgoff (1992). “A teaching method for reinforcement
learning”. In: Machine Learning Proceedings, pp. 92-101.

Dabney, William and Andrew G. Barto (2012). “Adaptive Step-Size for Online Tem-
poral Difference Learning”. In: Proceedings of the 26th Conference on Artificial Intel-
ligence (AAAI-12), pp. 872-878.



Bibliography 125

Degris, Thomas, Patrick M. Pilarski, and Richard S. Sutton (2012). “Model-free rein-
forcement learning with continuous action in practice”. In: Proceedings of the 2012
American Control Conference.

Degris, Thomas, Martha White, and Richard S. Sutton (2012). “Off-policy actor-critic”.
In: Proceedings of The 29th International Conference on Machine Learning, pp. 457—
464.

Doya, Kenji (2000). “Reinforcement Learning in Continuous Time and Space”. In:
Neural Computation 12.1, pp. 219-245.

Duan, Yan et al. (2016). “Benchmarking Deep Reinforcement Learning for Continu-
ous Control”. In: Proceedings of the 33rd International Conference on Machine Learn-
ing, pp. 1329-1338.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive subgradient meth-
ods for online learning and stochastic optimization”. In: The Journal of Machine
Learning Research 12, pp. 2121-2159.

Gao, Yuanxiang, Li Chen, and Baochun Li (2018). “Post: Device Placement with
Cross-Entropy Minimization and Proximal Policy Optimization”. In: Advances
in Neural Information Processing Systems 31, pp. 9992-10001.

Garcia, Javier and Fernando Ferndndez (2015). “A comprehensive survey on safe
reinforcement learning”. In: Journal of Machine Learning Research 16, pp. 1437-
1480.

Gehring, Clement and Doina Precup (2013). “Smart Exploration in Reinforcement
Learning using Absolute Temporal Difference Errors”. In: Proceedings of the In-
ternational Conference on Autonomous Agents and Multi-Agent Systems, pp. 1037-
1044.

Geibel, Peter (2006). “Reinforcement learning for mdps with constraints”. In: Pro-
ceedings of the 17th European Conference on Machine Learning, pp. 646—653.

Gordon, Geoffrey ]. (2000). “Reinforcement learning with function approximation
converges to a region”. In: Advances in Neural Information Processing Systems 13,
pp- 1040-1046.

Gosavi, Abhijit (2009). “Reinforcement learning for model building and variance-
penalized control”. In: Proceedings of the Winter Simulation Conference, pp. 373

379.



126 Bibliography

Greensmith, Evan, Peter L. Bartlett, and Jonathan Baxter (2004). “Variance Reduc-
tion Techniques for Gradient Estimates in Reinforcement Learning”. In: Journal
of Machine Learning Research 5, pp. 1471-1530.

Gu, Shixiang et al. (2017a). “Interpolated policy gradient: Merging on-policy and
off-policy gradient estimation for deep reinforcement learning”. In: Advances in
Neural Information Processing Systems 30, pp. 3846-3855.

Gu, Shixiang et al. (2017b). “Q-prop: Sample-efficient policy gradient with an off-
policy critic”. In: The 5th International Conference on Learning Representations.

Gullapalli, Vijaykumar (1990). “A stochastic reinforcement learning algorithm for
learning real-valued functions”. In: Neural Networks 3.6, pp. 671-692.

Haarnoja, Tuomas et al. (2017). “Reinforcement Learning with Deep Energy-Based
Policies”. In: Proceedings of The 34th International Conference on Machine Learning,
pp- 1352-1361.

Haarnoja, Tuomas et al. (2018). “Soft Actor-Critic: Off-Policy Maximum Entropy
Deep Reinforcement Learning with a Stochastic Actor”. In: Proceedings of The 35th
International Conference on Machine Learning, pp. 1861-1870.

Harutyunyan, Anna et al. (2016). “Q(A) with Off-Policy Corrections”. In: Proceedings
of The 27th International Conference on Algorithmic Learning Theory, pp. 305-320.
Heger, Matthias (1994). “Consideration of risk in reinforcement learning”. In: Pro-
ceedings of The 11th International Conference on Machine Learning, pp. 105-111.

Howard, Ronald A. (1960). Dynamic Programming and Markov Processes. MIT Press.

Howard, Ronald A. and James E. Matheson (1972). “Risk-sensitive Markov decision
processes”. In: Management Science. Vol. 18. 7, pp. 356-369.

Hutter, Marcus and Shane Legg (2007). “Temporal difference updating without a
learning rate”. In: Advances in Neural Information Processing Systems 20, pp. 705—
712.

Imani, Ehsan, Eric Graves, and Martha White (2018). “An Off-policy Policy Gradient
Theorem Using Emphatic Weightings”. In: Advances in Neural Information Process-
ing Systems 31, pp. 96-106.

Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore (1996). “Rein-
forcement Learning: A Survey”. In: Journal of Artificial Intelligence Research 4, pp. 319-
350.



Bibliography 127

Kakade, Sham (2001). “A natural policy gradient”. In: Advances in Neural Information
Processing Systems 14, pp. 227-242.

Kakade, Sham and John Langford (2002). “Approximately optimal approximate re-
inforcement learning”. In: Proceedings of The 19th International Conference on Ma-
chine Learning.

Kaliszyk, Cezary et al. (2018). “Reinforcement Learning of Theorem Proving”. In:
Advances in Neural Information Processing Systems 31, pp. 8835-8846.

Karampatziakis, Nikos and John Langford (2011). “Online Importance Weight Aware
Updates”. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelli-
gence, pp. 392-399.

Kimura, Hajime and Shigenobu Kobayashi (1998). “An Analysis of Actor/Critic Al-
gorithms using Eligibility Traces: Reinforcement Learning with Imperfect Value
Function”. In: Proceedings of The 15th International Conference on Machine Learning,
pp- 278-286.

Kingma, Diederik P. and Jimmy Lei Ba (2015). “Adam: A method for stochastic opti-
mization”. In: International Conference for Learning Representations.

Konda, Vijay R. and John N. Tsitsiklis (2003). “On actor critic algorithms”. In: SIAM
Journal of Control and Optimization 42.4, pp. 1143-1166.

Konidaris, George, Sarah Osentoski, and Philip Thomas (2011). “Value function ap-
proximation in reinforcement learning using the Fourier basis”. In: Proceedings of
the 25th Conference on Artificial Intelligence (AAAI-11), pp. 380-385.

Lillicrap, Timothy P. et al. (2016). “Continuous control with deep reinforcement learn-
ing”. In: The 4th International Conference on Learning Representations.

Littman, Michael L., Thomas L. Dean, and Leslie P. Kaelbling (1995). “On the com-
plexity of solving Markov decision problems”. In: Proceedings of the 11th Confer-
ence on Uncertainty in Artificial Intelligence, pp. 394-402.

MacKay, David J.C. (1996). Maximum Likelihood and Covariant Algorithms for Indepen-
dent Component Analysis. Tech. rep. University of Cambridge.

Maei, Hamid Reza et al. (2009). “Convergent Temporal-Difference Learning with
Arbitrary Smooth Function Approximation”. In: Advances in Neural Information

Processing Systems 22, pp. 1204-1212.



128 Bibliography

Maei, Hamid Reza et al. (2010). “Toward off-policy learning control with function
approximation”. In: Proceedings of The 27th International Conference on Machine
Learning, pp. 719-726.

Maire, Frederic (2005). “Apprenticeship learning for initial value functions in re-
inforcement learning”. In: Proceedings of the IJCAI'05 Workshop on Planning and
Learning in A Priori Unknown or Dynamic Domains, pp. 23-28.

Mannor, Shie, Reuven Rubinstein, and Yohai Gat (2003). “The Cross Entropy method
for Fast Policy Search”. In: Proceedings of the 20th International Conference on Ma-
chine Learning, pp. 512-519.

Martens, James and Roger Grosse (2015). “Optimizing Neural Networks with Kronecker-
factored Approximate Curvature”. In: Proceedings of the 32nd International Confer-
ence on Machine Learning, pp. 2408-2417.

Matsubara, Takamitsu, Tetsuro Morimura, and Jun Morimoto (2010). “Adaptive step-
size policy gradients with average reward metric”. In: Proceedings of 2nd Asian
Conference on Machine Learning, pp. 285-298.

Meyer, Carl D. (2000). Matrix Analysis and Applied Linear Algebra. Siam.

Mihatsch, Oliver and Ralph Neuneier (2002). “Risk-Sensitive Reinforcement Learn-
ing”. In: Machine Learning 49.2-3, pp. 267-290.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement
learning”. In: Nature 518, pp. 529-533.

Moriarty, David E., Alan C. Schultz, and John J. Grefenstette (1999). “Evolutionary
algorithms for reinforcement learning”. In: Journal of Artificial Intelligence Research
11, pp. 241-276.

Morimura, Tetsuro, Eiji Uchibe, and Kenji Doya (2005). “Utilizing natural gradient
in temporal difference reinforcement learning with eligibility traces”. In: Proceed-
ings of the 2nd International Symposium on Information Geometry and Its Applications,
pp- 256-263.

Morimura, Tetsuro et al. (2010a). “Derivatives of logarithmic stationary distributions
for policy gradient reinforcement learning”. In: Neural Computation 22.2, pp. 342—

376.



Bibliography 129

Morimura, Tetsuro et al. (2010b). “Nonparametric return distribution approximation
for reinforcement learning”. In: Proceedings of The 27th International Conference on
Machine Learning, pp. 799-806.

— (2010c). “Parametric return density estimation for reinforcement learning”. In:
Proceedings of The 26th conference on Uncertainty in Artificial Intelligence, pp. 8-11.

Munos, Rémi et al. (2016). “Safe and efficient off-policy reinforcement learning”. In:
Advances in Neural Information Processing Systems 29, pp. 1054-1062.

Nachum, Ofir et al. (2017a). “Bridging the Gap Between Value and Policy Based
Reinforcement Learning”. In: Advances in Neural Information Processing Systems
30, pp. 2775-2785.

— (2017b). “Trust-PCL: An Off-Policy Trust Region Method for Continuous Con-
trol”. In: The 5th International Conference on Learning Representations.

Ng, Andrew Y. et al. (2003). “Autonomous helicopter flight via reinforcement learn-
ing”. In: Advances in Neural Information Processing Systems 16, pp. 799-806.

OpenAlI (2018). “Learning Dexterous In-Hand Manipulation”. In: arXiv. Vol. 1808.00177.

Park, Hyeyoung, Shun-ichi Amari, and Kenji Fukumizu (2000). “Adaptive natural
gradient learning algorithms for various stochastic models”. In: Neural Networks
13, pp. 755-764.

Perkins, Theodore J. and Andrew G. Barto (2001). “Lyapunov-Constrained Action
Sets for Reinforcement Learning”. In: Proceedings of the 18th International Confer-
ence on Machine Learning, pp. 409-416.

— (2002). “Lyapunov Design for Safe Reinforcement Learning”. In: Journal of Ma-
chine Learning Research 3.

Peters, Jan and Stefan Schaal (2005). “Natural actor-critic”. In: European Conference on
Machine Learning, pp. 280-291.

— (2006). “Policy gradient methods for robotics”. In: IEEE/RS] international confer-
ence on intelligent robots and systems, pp. 2219-2225.

— (2008a). “Natural actor-critic”. In: Neurocomputing 71.7, pp. 1180-1190.

— (2008b). “Reinforcement learning of motor skills with policy gradients”. In: Neu-

ral Networks 21.4, pp. 682-697.



130 Bibliography

Peters, Jan, Sethu Vijayakumar, and Stefan Schaal (2003). “Reinforcement learning
for humanoid robotics”. In: Proceedings of the Third IEEE-RAS International Con-
ference on Humanoid Robots, pp. 103-123.

Pirotta, Matteo, Marcello Restelli, and Luca Bascetta (2013). “Adaptive step-size for
policy gradient methods”. In: Advances in Neural Information Processing Systems,
pp- 1394-1402.

Pirotta, Matteo et al. (2013). “Safe Policy Iteration”. In: Proceedings of the 30th Interna-
tional Conference on Machine Learning, pp. 307-315.

Precup, Doina, Richard S. Sutton, and Sanjoy Dasgupta (2001). “Off-policy temporal-
difference learning with function approximation”. In: Proceedings of The 18th In-
ternational Conference on Machine Learning, pp. 417-424.

Precup, Doina, Richard S. Sutton, and Satinder Singh (2000). “Eligibility traces for
off-policy policy evaluation”. In: Proceedings of The 17th International Conference
on Machine Learning, pp. 759-766.

Puterman, Martin L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley.

Rummery, Gavin and Mahesan Niranjan (1994). On-line Q-learning using connectionist
systems. Tech. rep. CUED/F-INFENG/TR 166. Cambridge University.

Scherrer, Bruno (2013). “Improved and Generalized Upper Bounds on the Complex-
ity of Policy Iteration”. In: Advances in Neural Information Processing Systems 26,
pp- 386-394.

Schulman, John et al. (2015). “Trust region policy optimization”. In: Proceedings of the
32nd International Conference on Machine Learning, pp. 1889-1897.

Schulman, John et al. (2017). “Proximal Policy Optimization Algorithms”. In: arXiv.
Vol. 1707.06347.

Silver, David et al. (2014). “Deterministic policy gradient algorithms”. In: Proceedings
of the 31st International Conference on Machine Learning, pp. 387-395.

Silver, David et al. (2016). “Mastering the game of go with deep neural networks and
tree search”. In: Nature 529.4, pp. 484-489.

Silver, David et al. (2017). “Mastering the game of Go without human knowledge”.
In: Nature 550, pp. 354-359.



Bibliography 131

Singh, Satinder et al. (2000). “Convergence Results for Single-Step On-Policy Reinforcement-
Learning Algorithms”. In: Machine Learning 38.3, pp. 287-308.

Sugiyama, Masashi (2015). Statistical reinforcement learning: modern machine learning
approaches. Chapman and Hall/CRC.

Sutton, Richard S. (1988). “Learning to predict by the method of temporal differ-
ences”. In: Machine Learning 3, pp. 9-44.

Sutton, Richard. S. and Andrew. G. Barto (1998). Reinforcement Learning: An introduc-
tion. MIT Press.

— (2017). Reinforcement Learning: An introduction, second edition. MIT Press. ISBN:
http:/ /incompleteideas.net/book/the-book-2nd.html.

Sutton, Richard S., Csaba Szepesvéri, and Hamid Reza Maei (2008). “A convergent
O(n) algorithm for off-policy temporal-difference learning with linear function
approximation”. In: Advances in Neural Information Processing Systems 21, pp. 1609—
1616.

Sutton, Richard S. et al. (1999). “Policy Gradient Methods for Reinforcement Learn-
ing with Function Approximation”. In: Advances in Neural Information Processing
Systems 12, pp. 1057-1063.

Sutton, Richard S. et al. (2009). “Fast gradient-descent methods for temporal-difference
learning with linear function approximation”. In: Proceedings of The 26th Interna-
tional Conference on Machine Learning, pp. 993-1000.

Szepesvari, Csaba (2010). “Algorithms for reinforcement learning”. In: Synthesis Lec-
tures on Artificial Intelligence and Machine Learning. Vol. 4. 1. Morgan and Claypool,
pp- 1-103.

Tamar, Aviv, Dotan Di Castro, and Shie Mannor (2013). “Temporal Difference Meth-
ods for the Variance of the Reward To Go”. In: Proceedings of the 30th International
Conference on Machine Learning, pp. 495-503.

— (2016). “Learning the Variance of the Reward-To-Go”. In: Journal of Machine Learn-
ing Research 17.

Tamar, Aviv et al. (2014). “Implicit temporal differences”. In: Neural Information Pro-
cessing Systems, Workshop on Large-Scale Reinforcement Learning.

Tesauro, Gerald (1995). “Temporal Difference Learning and TD-Gammon”. In: Com-

munications of the ACM 38.3, pp. 58-67.



132 Bibliography

Thomas, Philip S. (2014a). “Bias in Natural Actor-Critic Algorithms”. In: Proceedings
of the 31st International Conference on Machine Learning, pp. 441-448.

— (2014b). “GeNGA: A generalization of natural gradient ascent with positive and
negative convergence results”. In: Proceedings of the 31st International Conference
on Machine Learning.

— (2015). “Safe reinforcement learning”. PhD thesis. University of Massachusetts
Ambherst.

Thomas, Philip S., Christoph Dann, and Emma Brunskill (2018). “Decoupling Gradient-
Like Learning Rules from Representations”. In: Proceedings of The 35nd Interna-
tional Conference on Machine Learning, pp. 4917-4925.

Thomas, Philip S., Georgios Theocharous, and Mohammad Ghavamzadeh (2015a).
“High Confidence Off-Policy Evaluation”. In: Proceedings of the 29th Conference on
Artificial Intelligence (AAAI-15), pp. 3000-3006.

— (2015b). “High Confidence Policy Improvement”. In: Proceedings of The 32nd In-
ternational Conference on Machine Learning, pp. 2380-2388.

Thomas, Philip S. et al. (2013). “Projected Natural Actor-Critic”. In: Advances in Neu-
ral Information Processing Systems 26, pp. 2337-2345.

Thomas, Philip S. et al. (2016). “Energetic natural gradient descent”. In: Proceedings
of The 33nd International Conference on Machine Learning, pp. 2887-2895.

Thomaz, Andrea L. and Cynthia Breazeal (2006). “Reinforcement learning with hu-
man teachers: Evidence of feedback and guidance with implications for learning
performance”. In: Proceedings of the 21st National Conference on Artificial Intelligence
(AAAI), pp. 1000-1005.

Toulis, Panos and Edoardo M Airoldi (2015). “Scalable estimation strategies based
on stochastic approximations: classical results and new insights”. In: Statistics
and computing 25.4, pp. 781-795.

Toulis, Panos, Jason Rennie, and Edoardo M. Airoldi (2014). “Statistical analysis of
stochastic gradient methods for generalized linear models”. In: Proceedings of The
31st International Conference on Machine Learning 32.1, pp. 667-675.

Toulis, Panos, Dustin Tran, and Edo Airoldi (2016). “Towards stability and optimal-
ity in stochastic gradient descent”. In: Proceedings of the 19th International Confer-

ence on Artificial Intelligence and Statistics, pp. 1290-1298.



Bibliography 133

Tsitsiklis, John N. and Benjamin Van Roy (1997). “An analysis of temporal-difference
learning with function approximation”. In: IEEE Transactions on Automatic Control
42.5, pp. 674-690.

van Hasselt, Hado, A. Rupam Mahmood, and Richard S. Sutton (2014). “Off-policy
TD(A) with a true online equivalence”. In: Proceedings of the 30th Conference on
Uncertainty in Artificial Intelligence, pp. 330-339.

van Seijen, Harm and Richard S. Sutton (2014). “True Online TD(A)”. In: Proceedings
of the 31st International Conference on Machine Learning, pp. 692-700.

Wagner, Paul (2011). “A reinterpretation of the policy oscillation phenomenon in ap-
proximate policy iteration”. In: Advances in Neural Information Processing Systems
24, pp. 2573-2581.

— (2013). “Optimistic policy iteration and natural actor-critic: A unifying view and
a non-optimality result”. In: Advances in Neural Information Processing Systems 26,
pp- 1592-1600.

— (2014). “Policy oscillation is overshooting”. In: Neural Networks 52, pp. 43-61.

Wang, Tao, Michael Bowling, and Dale Schuurmans (2007). “Dual Representations
for Dynamic Programming and Reinforcement Learning”. In: Proceedings of the
IEEE International Symposium on Approximate Dynamic Programming and Reinforce-
ment Learning, pp. 44-51.

Wang, Tao et al. (2008). “Stable dual dynamic programming”. In: Advances in neural
information processing systems 20, pp. 1569-1576.

Wang, Ziyu et al. (2017). “Sample Efficient Actor-Critic with Experience Replay”. In:
The 5th International Conference on Learning Representations.

Watkins, Christopher John Cornish Hellaby (1989). “Learning from Delayed Re-
wards”. PhD thesis. Cambridge University.

Watkins, Christopher John Cornish Hellaby and Peter Dayan (1992). “Q-learning”.
In: Machine Learning 8, pp. 279-292.

Wu, Yuhuai et al. (2017). “Scalable trust-region method for deep reinforcement learn-
ing using Kronecker-factored approximation”. In: Advances in Neural Information

Processing Systems 30, pp. 5279-5288.



134 Bibliography

Ye, Yinyu (2011). “The simplex and policy-iteration methods are strongly polynomial
for the markov decision problem with a fixed discount rate”. In: Mathematics of

Operations Research 36.4, pp. 593-603.



135

List of Publications

Journal Articles

* Ryo Iwaki, Hiroki Yokoyama and Minoru Asada. "Incremental Estimation of
Natural Policy Gradient with Relative Importance Weighting." IEICE Transac-
tions on Information and Systems, Vol. E101-D, No.9, pp. 2346-2355, 2018.

¢ Ryo Iwaki and Minoru Asada. "Implicit incremental natural actor critic algo-

rithm." Neural Networks, Vol. 109, pp. 103-112, 2019.

Conference Proceedings (refereed)

* Ryo Iwaki and Minoru Asada. "Incremental, Scalable and Stable Algorithms
for Natural Policy Gradient Estimation." The 3rd Multidisciplinary Conference

on Reinforcement Learning and Decision Making (RLDM), 2017.

* Ryo Iwaki and Minoru Asada. "Implicit Incremental Natural Actor Critic." The
24th International Conference on Neural Information Processing (ICONIP),

2017.

* Ryo Iwaki, Hideyuki Takahashi and Minoru Asada. "Adaptive Leader-Follower
Role Switching Based on Rhythm Stability: Toward Modeling of Dynamic
Infant-Caregiver Interaction." In Proceedings of the Fourth Joint IEEE Interna-
tional Conference on Development and Learning and on Epigenetic Robotics,

Vol.USB, pp.100-101, 2014.

Awards

¢ JSAI Annual Conference Student Incentive Award, 2016.



	Abstract
	Introduction: Safety in Reinforcement Learning
	Reinforcement Learning
	Natural Policy Gradient

	Safety in Reinforcement Learning Algorithms
	Safety in Exploration
	Safety via Optimization Criterion
	Safety via Constrained Optimization
	Safety in Optimization Procedure
	Safety of Natural Policy Gradient Methods


	Organization and Contributions of Dissertation

	Background of Reinforcement Learning
	Markov Decision Process
	Discounted Reward Formulation
	Average Reward Formulation

	Dynamic Programming
	Bellman Operators
	Policy Improvement Theorem
	Policy Iteration

	Reinforcement Learning as Approximate Dynamic Programming

	Natural Policy Gradient and Incremental Natural Actor Critics
	Natural Policy Gradients
	Natural Gradient
	An Example of Natural Gradient
	Remarks and Recent Advances

	Natural Policy Gradient
	An Example of Natural Policy Gradient
	Remarks and Recent Advances


	Algorithms for the Estimation of Natural Policy Gradients
	Estimation of the State Value Function
	Forward View:  Return
	Backward View: TD() and Eligibility Traces

	Incremental Natural Actor Critic Algorithms
	A Motivative Example for the Safety of INACs


	Adaptive Step-Size via Relative Importance Weighting
	Upper Bound of Step-Size
	Adaptive Step-Size via Relative Importance Weighting
	Adaptive Step-Size for the Linear Function Approximator with the Trace via Relative Importance Weighting
	Adaptive Step-Size via Relative Importance Weighting for INAC

	Numerical Experiment
	MDP with Two States
	Pendulum Swing Up and Stabilizing with Limited Torque
	Setups
	Results


	Closing Remarks

	Implicit Incremental Natural Actor Critic
	Implicit Incremental Natural Actor Critic
	Asymptotic Convergence Analysis
	Stability Analysis
	Numerical Experiment
	Setups
	Results and Discussions

	Closing Remarks

	Conclusion and Future Work
	Future Work
	Off-policy Learning
	Monotonicity of Performance Improvement
	Extension to Supervised and Unsupervised Learning Methods



	Mathematical Background
	Linear Algebra
	Sherman-Morrison
	Matrix Norm


	Stochastic Approximation
	Two-timescale Approach


	Acknowledgements
	Bibliography

