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要旨

流体や粉体などのように大きな変形や移動を伴う対象に対して，外部の電界や磁界が作
用して進行する現象は多岐にわたる。このような現象は，流動性や変形性を持ちながら電
磁場に感応する特殊性を持つため，センサなどのデバイス，塗布などの工程など多くの応
用例がある。そのように多くの応用例が存在するものの，先に挙げた現象は，流体の流れ・
移動・あるいは分裂や粉体の閉塞・飛散や圧縮を伴う。さらにはこれらが電磁場と相互作用
するため，非常に複雑なものとなる。このため，実際の施工上において，設計パラメータ
や工程などは実験などの試行錯誤によって設定されており，効率的であるとは言い難い。
近年では，電磁機器や構造体の実設計に先立って，数値計算を用いた事前評価が行われ
るようになった。その結果，設計開発コストの低減が可能となり，性能を最大限引き出すこ
とが可能となってきた。一方で，流体や粉体と電磁場が相互作用する現象については，分
裂や飛散・大変形を伴うため，従来から使用されている有限要素法を用いることが難しい。
また，流体計算や粉体計算にはメッシュが不要な計算手法があるのに対して，電磁場の計算
についても，メッシュを用いないことが求められる。本研究では，流体計算や粉体計算と連
成する電磁場計算手法として，従来の微分方程式を用いるものではなく，積分方程式を用い
る手法を採用し，計算から計算点の再配置，メッシュ生成を含む一切のモデル変換を排した
計算手法を提案する。
第１章では，流体および粉体が外部電磁場と相互作用する現象について示し，それぞれ
について工学的な応用例を示す。また，それらの現象について，応用上の課題や問題点など
を示し，それに対する現状の解決策，先行研究を示す。さらに先行研究の抱える課題を明ら
かにし，本論文の目的を示す。
第２章では，１章で示した先行研究の問題点を解決し，対象としている電磁流体・粉体現
象のメカニズムを明らかにするために本研究で採用した計算手法を示す。流体計算，粉体計
算、磁界計算それぞれについて手法を示し，それらを連成することの有用性・優位性を明ら
かにする。また，磁界計算として採用した積分方程式法について，計算自由度を落として
計算コストを低減する高速化手法を提案する。
第３章では，電磁流体現象を実際に計算により再現する。代表的な電磁流体現象として
磁性流体を選択し，磁性流体の変形に関するメカニズムを計算結果から明らかにする。ま
た，実験結果と比較することによって本提案手法の妥当性・有用性を示す。さらに，磁性流
体の挙動と寸法パラメータとの関係を，提案手法による計算結果を通して検討し磁性流体
の挙動にパラメータが与える影響を明らかにする。以上の内容によって流体計算手法と積
分方程式法を連成することの有用性を明らかにする。
第４章では，電磁場と粉体が相互作用する現象を計算により明らかにする。粉体は非連続
体としてのふるまいをすることから，磁力計算における計算モデルを新たに導入する。そ
のモデルを用いて磁場中に置かれた磁性粒子の挙動計算を行う。実験との比較によって本手
法の有用性を示し，粉体計算と積分方程式法を連成することの有用性を明らかにする。加
えて，同様のモデルを用いて，希土類ボンド磁石の成型過程のメカニズムを明らかにする。
第５章では，これまでの結果を総括し，流体・粉体に対して電磁場が作用する現象への
計算手法として，積分方程式法を採用することの有効性と優位性を明らかにし，まとめと
する。
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第1章 緒論

1.1 研究背景

1.1.1 電磁流体及び粉体現象

電磁流体現象は，流体の運動が周囲の電磁場分布を変化させ，電磁場分布の変化によって

流体に外力が加わり移動・変形しながら進行する現象であり，主に溶融金属やプラズマなど

に見られるものである。その中でも，非圧縮性流体と相互作用することによって進行する

電磁流体現象には，静電霧化現象 [1,2]，磁性流体 [3,4]，MR流体 [5,6]や電磁浮遊現象 [7]

等がある。先に挙げた現象の多くが外部の電磁場に感応して流体の形状を変えたり見かけ

の物性を変化させることから，様々なデバイスや工法に応用されている。静電霧化現象は，

例えば帯電液滴の抗アレルゲン作用を利用して空調設備一般家電製品の空間清浄機能とし

て採用されている [2]。また，静電霧化現象の液滴が対向電極に誘引されることとレイリー

分裂を利用して，太陽電池用の薄膜成形のほか，自動車や電車の車体に対する塗装技術と

して実際に使用されている [8–10]。磁性流体は自在に磁路を変更できることに着目してセ

ンサや軸受としての応用例 [11,12]があり，MR流体には磁界印加中の剛性やせん断力の増

大などを利用したダンパやクラッチ [13,14]などの応用例がある他，磁性流体を用いた効率

的な研磨方法であるMAGIC研磨法も提案されている [15]。これらに加えて，金属を浮遊

させながら溶解させることが可能であり，高純度金属を得られることが期待されるコール

ドクルーシブル誘導溶解法 [16,17]には電磁浮遊現象 [7]が応用されている。

粉体と電磁場が相互作用して進行する現象は，電磁流体現象と同様に粉体分布やそれら

の運動が電磁場によって変化するものである。この現象は主に電磁場によって粉体の分布を

制御する手法として検討されており，例えば，印刷機のトナー定着器 [18]や電子写真現像

法の一つである磁気ブラシ現像 [19]などがその好例である。前述の現象とは別に，磁性体

粉を原料とする機能性材料の製作にもこの現象が関わっている。今日の電気機器には，絶

縁した磁性体粉末を押し固めた圧粉磁心 [20]，Nd-Fe-B粉末を押し固めて焼結したり，バ

インダーと混ぜて成形する永久磁石が使用されている [21–24]。

このように，電磁流体・粉体現象は多くの分野での応用例が存在する。さらに，それらの

挙動を細部に渡って把握できれば，それらを制御し，所望の操作を行うことが可能となる。

この結果，既存の応用先における製品の高機能化や工程の高効率化などを図ることが可能
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であり，これまでにない新たな材料が開発されることによりさらなる用途の創出が考えら

れ，今後も応用範囲の拡大が期待される。

1.1.2 電磁流体及び粉体現象に関する課題

流体や粉体は，形状や分布が自由に変化するため，その挙動の予測が難しい。それらが

電磁場と相互作用する場合，電磁場分布に応じて流体・粉体の形状や分布が変化する。さら

にその形状や分布によって電磁場分布が決まるため，電磁場と流体・粉体の相互作用する現

象は極めて複雑なものとなる。加えて，その現象中，流体の内部で生じている現象や粉体

間の相互作用などを実験により確認することが困難である。そのため，電磁流体や粉体と

電磁場の相互作用の理論的な考察が困難である。また，現象中での流体内圧力や物理量分

布の測定も難しいため，実験的に明らかになる事実は限定されることが多い。

また，材料の流動を可視化する手法として，透明な樹脂やポリマーとトレーサーを用い

るトレーサ追跡法 [25,26]などもあるが，これらは実際とは異なる材料を使用せざるを得な

い場合も多く，現象の大まかな傾向を推定できるにとどまる。この結果，現象の表面的な

挙動を観測できたとしても，その内部で生じている現象の詳細は，実験結果から推測する

ほかない。そのため，これら現象を応用したデバイスや工法の開発は，実際に設計・製作し

て性能評価の後改良を繰り返す試行錯誤や何らかの経験則に依存している。今日の電磁流

体・粉体現象の応用は膨大な実験的な知見の積み重ねによる経験則によって行われている。

電磁流体・粉体現象の応用のさらなる拡大には，こうした現象をそのメカニズムのブラック

ボックスな面を含めて定量的に明らかにすることが求められる。

1.2 先行研究

先述の課題は，流体もしくは粉体中での物理現象や物理量分布が不明で，現象のメカニ

ズムが十分に明らかになっていないことに起因している。現象のメカニズム解明に向けた

アプローチとして，実験による評価が行われているが，実験から明らかになるメカニズム

も限定的であることから，数値計算によってこれら現象を再現し，メカニズムを明らかに

しようとする試みが行われている。以下，電磁流体及び粉体に関する数値計算に関する先

行研究を挙げ，それらの抱える問題点について述べる。

1.2.1 メッシュを用いる計算手法

一般に電磁界や構造力学の数値計算には，有限要素法 (Finite Element Method: FEM)

[27, 28]や差分法などに代表される格子法が使用されている。とりわけ FEMは，計算空間

2
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を単一材料の小領域 (要素)に分割し，その領域内を低次関数で補間する手法であり，広い

分野の問題に対応できるため，本研究で扱う流体現象の計算に多く採用されている。例え

ば，Olgaらは，磁場下に置かれた磁性流体表面に生ずるスパイク現象を計算している [29]。

本報告では，磁性流体を透磁率を持った流体としてモデル化し，流体計算 FEMによって計

算し，一様磁場下における磁性流体の動きを計算している。また，Noguchiらは，磁性流体

を用いたガスクロマトグラフィー内の磁性流体の流動に関する数値解析結果を報告してい

る [30]。この中では，磁性体管内を流れる磁性流体に対して，外部から一様磁場を加えた時

の流体挙動の計算を行っている。本手法において，磁場解析には磁気モーメント法，流体計

算には有限要素法が用いられ，それらを弱連成することによってチャンバー内の磁性流体の

流れを予測している。この結果，ある時刻における磁性流体の管内流れを静的に計算する

ことに成功している。これらの手法では，流体計算に FEMを使用しており，流体の形状や

流れに関して，その定常的な解を得られている。しかしながら，その計算には一様磁場を

印加することや，特殊な周期境界条件を課しており，流体の流れの形成過程や形状の変遷な

どの過渡的な解を得ることが難しい。

流体の変形を追跡する場合，流体の持つ自由表面を定義する手法が重要となる。それに

は，格子法とVolume of Fluid法 [31]や Level Set法 [32,33]，ALE法 [34]などの自由表面

追跡手法を付加した手法が提案されている。これらにおいて，流体の自由表面は，要素の

サイズを持つ遷移層として定義される。そのため，一般に自由表面近傍の要素を小さくし

なければ誤差が大きくなる。また，計算の時間経過に伴い自由表面追跡の精度が低下する

が，それを回避するには，数値モデルや手法そのものに複雑な処理や条件を課す必要があ

り，対応できる問題が限られる。格子法は，固定された計算点からの視点で物理量の変化を

表現するオイラー表現の手法であるから，流体の流れや物理量の輸送などを直接的に表現

することができない。そのため，格子法では流体の運動方程式の離散化の際に移流項の計

算が必要となる。数値計算における移流項の計算では，数値振動などが生じやすく，これが

安定的な計算を困難にしている。

また，FEMを用いた磁性粉体を押し固めて製作する圧粉磁心の磁気特性の評価も報告さ

れている [35]。この報告の中で，圧粉磁心を構成する粉体はすべて立方体要素としてモデ

ル化され，それぞれに流れる渦電流を FEMによって計算することによって圧粉磁心の磁気

特性が評価されている。磁性粉体はすべて同じ大きさかつ整列しており，成形時の粉体の

移動や充填率を十分に検討するには至っておらず，さらなる詳細な検討が求められている。

また，2次元の離散要素法と 2次元有限要素法を用いた圧粉磁心の性能評価についても検討

されている。この手法では，圧粉磁心の材料となる磁性粉末の充填を離散要素法によって

計算した後，有限要素法によってモデル化し直して磁場解析を行うことによって透磁率の推

定を行っている。この手法では，離散要素法と有限要素法のモデル変換において，材料粉末

3
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Calculation point for fluid

Calculation point for Air

Undefined meshes

Fig. 1.1: Mesh generation of divided droplets.

Fig. 1.2: Failuer of meshing process.

間の境界を排しており，実際とは異なる計算がなされていると考えられる。

格子法で時々刻々変化する流体の形状や動きの時間発展を追うためには，今の流体形状・

分布に合わせてメッシュを生成し直す作業が必要となる。その過程において，メッシュが破

綻したり，極端な形状を持つ要素が生成されるなど，以降の計算が正常になされない場合が

ある。例えば，Fig. 1.1においては，網掛け部の物性値が判断できない，あるは判断を誤る

ため，実際とは異なる計算が行われることがある。これとは別に，流体界面の形状を誤る

こともある (Fig. 1.2)。これは，流体計算点の位置関係が僅かに乱れることによって，それ

らによって構成される要素が空気に誤判定された為生じたものである。

こうした問題点から，計算対象の自由表面または境界面が大きく変形する場合または，分

裂が生ずる問題に対して，FEMを適用するためには，多くの工夫が必要となる。また，上

述のように要素を誤って定義することによって，「メッシュの破綻はなく，問題なく計算で

きているにもかかわらず，全く異なる挙動を示す」ということも発生する。以上より，流体

4
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や粉末のような変形・分裂・飛散を伴う対象に対しては，メッシュ生成を伴わない計算手法

を採用することが望ましい。

1.2.2 流体計算にメッシュを用いない計算手法

Yoshikawaらは，流体計算手法に粒子法の一つであるMoving Particle Semi-implicit /

Simulatiion (MPS)法を採用した連成計算手法を提案している [37]。粒子法は流体の動きに

合わせて移動する計算点によって計算対象を離散化する計算手法である。そのため，計算

点によって表面が直接定義でき，自由表面追跡が簡便なものとなる。加えて，本手法は移動

する計算点から見た物理量の変化を表現するラグランジュ表現の手法であるため，先に述

べた移流項の計算は不要である。さらに，本手法では，計算点の移動で流体の変形や分裂

を表現できるため，現象の過渡的な挙動や，物理量の時間的な変化・移動を追跡することが

可能である。しかしながら，Yoshikawaらの提案する連成手法では，電磁場の計算に FEM

を使用しており，粒子法の利点であるメッシュが不要である特徴を十分活かせているとは言

い難い。そのため，前小節で述べたメッシュ生成時の破綻の問題は依然残っており，計算対

象は比較的流体の動きの小さい現象に限られる。更に，FEMによって計算された電磁界に

よる外力をMPSにとって適切な形に変換する必要がある。

以上の点から，流体計算からメッシュを排する事によって，流体計算自体の安定化は図れ

ているものの，電磁場計算の際に流体計算点を用いてメッシュを生成するため，事実上メッ

シュフリーとは言い難い。メッシュの崩壊やメッシュ生成の煩わしさから開放されるために

は，流体計算と連成する電磁場計算手法にもメッシュフリー法を導入することが望ましい。

1.2.3 完全メッシュフリーの計算手法

以上の要請を受けて，Matsuzawaらは，外部磁場・電磁場の計算をメッシュフリーで行

うことを提案している [38,39]。本手法では，電磁界の支配方程式を，物理量を空間回帰す

ることによって強形式のまま直接離散化する方法である。材料の情報を各計算点が持ってい

る本手法では，原理上計算点同士を接続する辺や要素は不要であり，材料領域の誤判定や

メッシュの破壊が生じない。本手法は，物理量の補間を行う補間関数の次数が一般的な有

限要素法に比して高いので，計算精度が良いと考えられる。一方で，計算点に物理量を持

たせ，計算点の位置関係で微分方程式を離散化する本手法は，FEMにおける接点要素に対

応している。そのため，例えば FEMによる磁場計算のためには，磁気ベクトルポテンシャ

ルAの不定性を排除するため，次のクーロンゲージ条件を課す必要がある。

∇ ·A = 0 (1.1)
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Fluid
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Calculation points for fluid 
Calculation points for air 

Fuzzy area

Air

Fig. 1.3: Arrangement of calculation points on meshfree method.

また，電磁場計算に際しては Fig.1.3のように計算対象となる流体や粉体の周囲に空気計

算点を新たに追加するが，流体などの形状が複雑になると，配置が難しくなる，あるいは計

算点の充填不足による計算精度の低下が考えられる。加えて，空気計算点の充填では，FEM

と同様に計算点配置に粗密をつけて計算自由度を低減することが求められる。本手法では，

計算点の追加・削除が容易であり，この要件を満たしている。しかしながら接点同士を接続

して隣接関係を担保していない本手法では，極端な粗密をつけることが難しく，計算点の配

置に注意を要する。更に，本手法は前述の通り節点要素法に準ずる手法であるため，材料の

不連続な領域において，物性値の不連続性に十分に対応できないことが考えられる Fig. 図

1.3では，流体計算点と，空気計算点の間の領域が材料の界面として考えられるため，その

領域は遷移層として扱われる。遷移層では，物性値や物理量は遷移層を挟んだ材質のそれ

らの補間で表現される。そのため，電磁界計算において，界面形状が曖昧となり，離散化に

際して計算点の選定など特別な処理を施す必要がある [40]。

この手法は，流体計算及び電磁場計算において，メッシュを生成することが不要であるた

め，計算中でのメッシュの崩壊による計算の破綻は原理上生じない。しかしながら，電磁場

計算において，空気領域に計算点を配置する必要があるため，計算対象の大変形や分裂に

対する計算の破綻のリスクは依然残る。また，材料界面での離散化に曖昧さが生じ，計算

点の選定に特別な処理が必要となるなど課題も多い。そのため，理想的には計算中にモデ

ル変換が生じないことが求められる。

1.2.4 積分方程式法

ここまでに述べた計算手法において，流体形状や粉体分布などによらず，安定的な数値

計算を行うためには，追加する計算点の位置関係や配置に注意を要する。更に，計算点の

追加の仕方が計算の精度，安定性に大きく影響する。この問題を解決するためには,電磁場

計算から計算点の追加,配置を排除することが求められる。電磁場計算の多くではその支配
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方程式に微分方程式を用いている。支配方程式に積分方程式を採用している積分方程式法

は,計算点の追加・メッシュの生成の双方が不要である。積分方程式法では,任意の位置にお

ける物理量は,ソースから生ずる基本解の重畳で表現できる。また,計算点における物理量

の基本解はソースと計算点との距離で決まるため,計算空間をメッシュで区切る必要はなく,

また空気領域への計算点の配置も不要である。積分方程式法の例としては,境界要素法 [41]

や電荷重畳法などが提案されており,境界面のみの分割や，ソース点を配置するのみで空間

の物理量分布が計算できる。境界要素法では線形磁場の計算，電荷重畳法では温度場や波

動の計算がなされている [42, 43]。

本手法の優れた点は，任意の位置における物理量をそれとソース点の位置関係から直ち

に計算できることである。そのため，誤差の伝播はなく，境界条件の指定も不要である。

1.3 研究目的と研究方針

本研究の目的は，大変形や複雑な移動を伴う電磁流体・粉体現象を高精度・簡便に計算す

ることができる数値計算手法の開発である。そのためには，流体・粉体の挙動を計算する手

法と外部環境となる電磁場などを計算する手法が必要であり，更にはそれらの相互作用を

考慮するために連成手法も必要となる。

流体・粉体計算には前述したメッシュが不要である粒子法を採用する。これによってメッ

シュを用いた先行研究の抱える界面の破壊や材質の誤判定などを原理上排除できる。また，

格子法などとは異なり，流体・粉体の形状や分布を直接表現できる上，流体の自由表面も直

接定義できることから，優位性が高いと考えられる。これと電磁界計算手法を連成し，電

磁流体・粉体現象の数値計算手法の開発を行う。先行研究では，電磁場の計算手法として

FEMやメッシュフリー法など，微分方程式を離散化する手法を用いていた。そのため，実

際の計算に際しては，流体・粉体とは別に空気計算点の配置およびメッシュの生成が必要で

ある。このメッシュや計算点の配置が計算精度や計算の安定性に強く影響し，先述の問題を

生み出している。

そのような経緯から，電磁場計算では，メッシュ生成や計算点の追加配置などが伴わない

ことが望ましい。そのため，本研究では，メッシュ生成や計算点の追加などが不要な積分方

程式法との連成を検討する。通常 FEMなどの格子法やメッシュフリー法では，電磁場の計

算に使用する方程式は微分方程式であり，その離散化のためには，空間全体に渡って計算点

の近接作用を積み重ねる必要がある。一方積分方程式法では，任意の位置における物理量

を基本解の重畳により計算することができるため，目的の計算点まで近接作用を積み重ね

る必要がない。したがってメッシュ生成やそれに付随する計算点の配置などを排することが

可能である。
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本研究では，モデルの変更や変換の不要な電磁流体・粉体現象に対する数値計算手法を

開発し，流体・粉体それぞれの現象を計算する。そのために，先行研究で問題となっていた

電磁場計算として積分方程式法を採用することによって，メッシュの生成や計算点の追加配

置などのモデル変換を排して計算の安定性と精度を高める。本研究では，以下について取

り組む。

第一に，計算に際するコストの低減である。積分方程式法で扱うのは，基本解の重ね合わ

せによる相互作用問題である。この問題は，要素が 3つ以上存在する場合には典型的な多体

問題となる。数千の要素が相互作用する場合，その計算コストは莫大なものとなる。その

ため，計算精度を維持したまま計算自由度を下げる必要がある。多体問題に際しては，し

ばしば高速多重極展開 [44]などが用いられているが，本研究では，採用した積分方程式法

の特徴を利用して計算自由度の低減を図る。

第二に，流体・粉体計算との連成手法とその際のモデル化に関してである。本研究では，

流体計算及び粉体の挙動計算それぞれに別々の手法を採用し，それらを積分方程式法と連

成することを考える。その際に，磁力の計算や計算点の取扱い，計算しようとする現象に

対するモデル化などを検討し，新たに導入する。

第三に，検討した計算手法及びモデル化手法を用いて，実際に数値計算を行う。その結果

と簡易的な実験結果を比較し提案手法の有効性や優位性を検証する。加えて，寸法などの

各種パラメータが現象に与える影響について，提案手法による計算結果を通して検討する。

1.4 本論文の構成

本論文の構成について以下に示す。1章では対象となる電磁流体・粉体現象の用途や問題・

それに対するアプローチを述べ，本研究の背景とその目的・方針について述べた。2章では，

本研究で採用した数値計算手法の詳細と，計算コストの低減や精度検証について述べる。加

えて，実際の計算例から，各手法の有用性を示す。3章では，流体と磁場が相互作用する問

題について，積分方程式法及び流体計算手法を連成した計算手法を用いた計算を行い，実

験結果と比較してその有用性を検証する。また，計算に際するモデル化手法も合わせて示

す。4章では，粉体と磁場が相互作用する問題について積分方程式法及び粉体計算手法を連

成した手法による計算を行い実験結果と比較する。また，計算に際するモデル化及び，発

展的なモデル化を用いた希土類ボンド磁石の成形過程の数値計算を行う。5章では，本論文

のまとめとして，本研究で得られた知見を総括する。
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第2章 解析手法

近年のコンピュータ性能の向上は目覚ましく，より大規模かつ複雑な物理現象コンピュー

タによって解析可能となってきている。それを背景とし，多数の手法を組み合わせることに

よって，複数の物理現象が絡み合うマルチフィジックスの解析が試みられている。本章で

は，本論文において採用した解析手法について説明する。それぞれの計算手法の手順や特

徴を示し，各種法の連成にあたって親和性が高いことを明らかにする。

2.1 粒子法

現在，工学分野において広く用いられている解析手法として，有限要素法 [27,28]や差分

法が挙げられる。これらは空間をメッシュによって分割し，それらメッシュに物理量を変数

として割り当てて計算する手法である。一方で，粒子法はそれらとは異なりメッシュを一切

使用せず，計算点のみで解析対象を離散化する。この計算点を物理量を持った粒子として扱

うことで，解析対象の変形・移動を計算点群の移動としてとらえることができる。有限要素

法や差分法では，ある点における支配方程式の離散化には，その点と辺で接続している点

のみが関与する。これに対して粒子法では，接続関係の代わりに，計算点が離散化に関与で

きる領域を設ける。この領域は多くの場合球状をなしており，その半径を影響半径と呼ぶ。

粒子法にはその離散化方法の違いから，MPS(Moving Particle Semi-implicit / Simulation)

法や SPH(Smoothed Particle Hydrodynamics)法などがある。本論文では，これらに準ず

るものとして，重み付き最小二乗法 (Weighted Least Square Method)に基づくメッシュフ

リー法 [38–40],を採用した。

2.1.1 支配方程式

本論文で扱う流体はすべて非圧縮性流体と仮定している。そのため，流体の支配方程式

は，流体の粘性が一定であると仮定すると，以下に示す運動方程式と質量保存則からなる。

特に流体の運動方程式はNavier-Stokes方程式と呼ばれる。

∂u

∂t
+ (u · ∇)u = −1

ρ
∇P + ν∇2u+ g +

f

ρ
(2.1)

∇ · u = 0 (2.2)
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ここで，uは流体の速度，ρは流体の密度，P は圧力，νは動粘性係数，gは重力加速度で

ある。また，f は流体に加わる単位体積当たりの外力である。式 (2.1)の右辺第 1項は圧力

項であり，流体が圧力の下り勾配方向に移動することを示している。同第 2項は粘性項であ

り，流体内部の速度差を緩和するように運動量が拡散することを示している。これに加え

て，左辺第 2項は移流項と呼ばれ，計算点間で物理量が移動することを示している。有限

要素法や差分法などのオイラー的手法を用いる場合にはこの移流項を計算する必要がある。

移流項の計算は，数値的な振動や発散などの数値的取り扱いの困難さを含んでおり，計算に

は注意が必要となる。

流体の数値計算において，粒子法と格子法の決定的な差は，この移流項の取り扱いにあ

る。粒子法は，計算点自身が物理量を保持して移動するラグランジュ的手法であるため，上

記の移流項の計算は不要である。式 (2.1)をラグランジュ的記述に書き直せば，次式を得る。

Du

Dt
= −1

ρ
∇P + ν∇2u+ g +

f

ρ
(2.3)

上式D/Dtはラグランジュ微分であり，流体とともに移動する計算点から見た時間微分で

あり，計算上は通常の時間微分として扱うことができる。

2.1.2 粒子法のアルゴリズム

粒子法では,一般に圧力勾配項以外を陽的に計算し，その結果をもとに圧力を計算する半

陰解法を採用している。ある時刻,ある計算点における仮の速度 u∗
t は次式で求められる。

u∗
t = ut +

{
ν∇2u+ g +

f

ρ

}
∆t (2.4)

utは時刻 tでの速度,∆tは時間刻み幅である。この仮の速度を用いて,圧力を求める。非圧

縮性流体では,速度の発散が 0になるように圧力が分布するため,次のポアソン方程式を解

くことで圧力分布を求めることができる。

∇2Pt =
1

ρ
∇ · u∗

t (2.5)

このポアソン方程式は,ある一点に流れ込むような仮の速度分布の地点では圧力が大きくな

り,その点から計算点を押し出す働きをすることを示してる。その圧力分布を用いて，仮の

速度を修正することで次の解析ステップにおける速度 ut+1を得る。

ut+1 = u∗
t −

1

ρ
∇Pt (2.6)

その後,修正された速度を用いて，次の解析ステップにおける各計算点の位置を計算するこ

とで,流体形状の変遷を追跡することができる。
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2.1.3 重み付き最小二乗法による離散化

本小節では，重み付き最小二乗法を用いた離散化手法について述べる。有限要素法など

のメッシュを用いる解析手法では，場を規定する支配方程式を弱形式化して離散化する。弱

形式化とは，2階微分方程式を 1階に近似することである。これに対して，ここで述べる重

み付き最小二乗法に基づくメッシュフリー法は，場を直接最小二乗法により関数近似し，そ

の関数を直接微分することで支配方程式の近似関数を得る手法である。そのため，支配方

程式を弱形式化せずに，強形式で扱う。今，ある計算点 iまわりで物理量 F の微分係数を

求めることを考える。以降，特に断らない限り，物理量 F を近似する関数 f は次に示す 3

変数 2次方程式である。

f(x, y, z) = a1x+ a2y + a3z + a4x
2 + a5y

2 + a6z
2 + a7xy + a8xz + a9yz + a10 (2.7)

x, y, zは粒子 iとの相対座標である。ここで，一般化のために，ベクトル pを定義する。

p (r) =
[
x, y, z, x2, y2, z2, xy, xz, yz, 1

]
(2.8)

rは，計算点 iと任意の位置との相対位置ベクトルである。この pを以降基底ベクトルと呼

ぶ。また，aを係数項ベクトルとしたとき，近似関数 f は基底ベクトルと係数項ベクトルの

線形結合で表すことができる。ただし，ここで係数項ベクトルは pと同次の列ベクトルと

する。

f (r) = pT (r)a =

m∑
k

pkak (2.9)

また，mは基底関数の項数 (ここではm = 10)，この基底関数 f と，計算点 iの近傍粒子 j

の持つ物理量の差の重み付き 2乗和Eを最小にするように係数 ak(k = 1 · · ·m)を決定する

ことで，計算点 i近辺の物理量の分布を関数でフィッティングすることができる。以降，計

算点 iまわりでの重み付き最小二乗法の計算について一般化して述べる。今，計算点 iを原

点とする座標系において，その周囲に分布する計算点 jの持つ物理量 Fj と基底関数 f との

重み付き二乗和Eは次式で求められる。

E =

N∑
j

wij(Fj − f(rij))
2 (2.10)

計算点 jには，Fig.2.1に示すような計算点 iから一定距離以内の近接粒子を採用する。rij

は計算点 iと jの間の相対位置ベクトル，wij は計算点 jの重み，N は計算点 iの近傍粒子

数である。本研究では，重みには次に示す 4次スプライン関数を採用する。

wij = 1− 6
(rij
R

)2
+ 8

(rij
R

)3
− 3

(rij
R

)4
(2.11)

rijは計算点 iと jの間の距離，Rは影響半径である。この関数では，計算点 iにおける重み

が最大となるため，計算の結果得られる近似関数は，Fig.2.2のように計算点 iに近づくほ

11
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Influence region

Neighboring 
calculation points 

Focused 
calculation point

Fig. 2.1: Influence region.

ど実際の分布に近づく。また，b = [F1, F2, · · · , FN ]T，とすると，上式は次式のように書き

直すことができる。

E = (b−Xa)TW (b−Xa) (2.12)

ただし，X ∈ RN×m，W ∈ RN×N である。また，X，W はそれぞれ，以下のように定義さ

れる。

X = [p (ri1) ,p (ri2) , · · · ,p (riN )]T (2.13)

W = diag[wi1, wi2, · · · , wiN ] (2.14)

式 (2.12)を整理すると，次式を得る

E = aTXTWXa− 2aTXTWb+ bTWb (2.15)

このEを最小化するような aを探すため，aで微分すると，

dE

da
= 2XTWXa− 2XTWb (2.16)

以上より，Eが最小となる aを求めるには，次の線形連立方程式を解けば良いことになる。

XTWXa = XTWb (2.17)

上式のように変形することで、回帰に使用する計算点の数によらず，線形連立方程式の係数

行列は正規行列となり，擬似逆行列による解法は不要となる。本研究では，計算点ひとつひ

とつについて回帰曲面を設定する必要がある。そのため正規行列による解法は，擬似逆行

列によるものと比べて計算コストが抑えられることが期待できる。この結果求まった aを

12
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Fig. 2.2: Approximated curve by WLSM.

用いて，支配方程式の微分演算子を直接定義することができる。その例として，計算点 iま

わりの物理量 F の勾配を次式に示す。

∇F =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
= (a1, a2, a3) (2.18)

このように求めた微分演算子を支配方程式に代入することで，計算点 iにおける近似方程式

が得られる。

2.1.4 陰的計算時の離散化手法

ここまで，計算点の持つ物理量 F が既知であるときの重み付き最小二乗法について述べ

た。実際は，物理現象の支配方程式を離散化する際には，計算点の持つ物理量 F が未知で

ある場合がある。ここで式 (2.17)において，

XTWX = A (2.19)

XTW = B (2.20)

とする。このとき，係数項ベクトル aは次式で表される。

a = A−1Bb (2.21)

上式と式 (2.10)から，近似関数は次式で表される。

f∗ (r) = pT (r)A−1Bb (2.22)

13
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ここで，AおよびBは計算点の位置関係が変化しない限り同値を取るため，この近似関数

の微分値を求めるには pT (r)を微分すれば良い。これを計算点 i周りで微分した結果は，次

式で表される。

dpT (r)

dx
= [1, 0, 0, 0, 0, 0, 0, 0, 0, 0] (2.23)

dpT (r)

dy
= [0, 1, 0, 0, 0, 0, 0, 0, 0, 0] (2.24)

dpT (r)

dz
= [0, 0, 1, 0, 0, 0, 0, 0, 0, 0] (2.25)

d2pT (r)

dx2
= [0, 0, 0, 2, 0, 0, 0, 0, 0, 0] (2.26)

d2pT (r)

dy2
= [0, 0, 0, 0, 2, 0, 0, 0, 0, 0] (2.27)

d2pT (r)

dz2
= [0, 0, 0, 0, 0, 2, 0, 0, 0, 0] (2.28)

これと式 (2.22)を組み合わせる事により，物理量が未知数の場合にこれを陰的に求める場合

の微分方程式の離散化が可能となる。具体的には，求めたい微分係数に対応するA−1の列

ベクトルとBのベクトル積に，対応する基底ベクトルの微分を乗ずれば良い。例えば，物

理量 F に関するラプラス方程式を陰的に解くことを考える。

∇2F = 0 (2.29)

計算領域上にM 個の計算点が存在しているとすれば，このラプラス方程式を解くための剛

性マトリクスG ∈ RM×M が必要となる。このとき，その成分であるGij は計算点 jから計

算点 iへの寄与を示しており，以下の式で与えられる。

Gij = 2

(
m∑

h=1

A−1
4hB

j
h +

m∑
h=1

A−1
5hB

j
h +

m∑
h=1

A−1
6hB

j
h

)
(2.30)

A−1
4h は A−1の 4行 h列目を示す。Bj

hはBの h列目のうち計算点 jが関連している成分を

指し示す。以上により，流体の支配方程式 (2.1)は重み付き最小二乗法を用いたメッシュフ

リー法によって離散化される。

有限要素法などの格子法では，ポアソン方程式やラプラス方程式を離散化する際には，格

子で接続された計算点を用いて離散化を行う。そのため，計算点 iと jが接続している場合，

双方が等しく作用する。したがって，離散化の結果できあがる剛性マトリクスは対称行列で

ある。また，離散化には接続された計算点しか関与しないため，剛性マトリクスのほとんど

の成分は 0となる。このような行列を対称疎行列と呼ぶ。対称な疎行列の反復解法として

よく知られたものにCG(Conjugate Gradient)法や ICCG(Imcomplete Cholesky Conjugate

Gradient)法がある。これらは，少ない反復数で計算が収束するため，よく採用されている。

一方で，メッシュフリー法では，計算点 iと jにおいて作成される曲面が少しづつ異なるこ

14



第 2. 解析手法

Suaface
Approximation 
curve

Inner fluid

=Pressure boundary

Fig. 2.3: Particle types in WLSM.

とがあるため，完全な対称行列とならないことがある。そのため，前述の手法を用いるこ

とができない。そのため，本研究における圧力のポアソン方程式の求解には，非対称行列

にも適用可能な BiCGStab2(Bi-Conjugate Gradient Stabilized 2)法 [47]を使用する。

2.1.5 計算点の取り扱い

ここでは，本研究で採用している粒子法における計算点の取り扱いについて，その分類

とともに述べる。粒子法において，その計算点は Fig 2.3 に示すように表面計算点と内部計

算点に大別される。表面計算点は，流体と空気領域の界面を定義するために必要であり，粒

子数密度や法線ベクトル等によって決定される [48–50]。それに加えて，表面計算点は，計

算における境界条件としての役割を果たす。本研究では，界面を空気領域との間のみで定義

しているため，それを構成する表面計算点に対する境界条件として，表面張力による圧力

の境界条件を付与する。今，流体表面の微小領域における形状の非対称性を無視できると

すれば，表面計算点に対して加わる表面張力は，その法線成分のみで与えられる。

fs = γκ (2.31)

γは表面張力係数，κは表面計算点が構成する曲面の曲率である。この結果得られる表面張

力は，表面に対する応力であるから，この表面張力を圧力の境界条件として採用すること

によって系全体の圧力分布を求めることができる。ところで，表面の曲率は次式で与えら

れる [51]。

κ = −∇ ·
{

∇Z

(1 + |∇Z|2)1.5

}
(2.32)

Z = F (x, y)は，自由表面の計算点により定義される曲面の関数である。この曲面は，表面

計算点の座標の回帰曲面で定義できる [38–40]。また，本研究において表面張力係数には実

験値を採用し，それらは一定値をとるものと仮定する。

15
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2.1.6 メッシュフリー法の特長

メッシュフリー法は,物理量の離散化にメッシュを用いない。そのため,格子法では表現が

難しい流体の分裂や大変形などを容易に表現することが可能である。また，物理量を空間

近似するという原理上,疎な計算点分布をある程度許容できる。また,任意の位置に計算点

を追加し,解像度を上げることも可能である [39]。それに加えて，格子法では取り扱いが難

しかった流体の自由表面も直接的に扱うことができるため，流体との境界間のあいまいさ

が回避され，他の物理現象解析との連成が容易となる。

2.2 モーメント法

本小節では，磁場解析に用いたモーメント法について述べる。有限要素法で電磁場解析

を行う場合，その支配方程式には微分方程式を使用するが，ここでは支配方程式として積

分方程式を用いる。積分方程式を支配方程式に用いる利点として，メッシュが不要であるこ

と，解析領域の任意の地点におけるポテンシャルを基本解を重畳することによって計算でき

る点があげられる。

2.2.1 基礎方程式

電磁界の支配方程式は，以下に示すMaxwell方程式である。

∇×H = J +
∂D

∂t
(2.33)

∇×E = −∂B

∂t
(2.34)

∇ ·B = 0 (2.35)

∇ ·D = σ (2.36)

磁界強度が大きすぎない範囲において，ある磁性体内における磁束密度Bは，磁性体の位

置における磁界強度H に比例する。

B = µrµ0H (2.37)

µrは磁性体の比透磁率，µ0は真空の透磁率である。式 (2.37)を磁性体の磁気感受率 χを用

いた形に直せば，次式を得る。

B = (1 + χ)µ0H = µ0H + χµ0H (2.38)

したがって，磁性体内の磁束密度は，その位置における真空の磁束密度に対してχµ0H = M

を加えたものであることが分かる。以降，このM を磁化と呼ぶ。磁性体に外部磁場を印加

16
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した際，磁性体内には磁化が励起される。モーメント法では，磁化が任意の位置に作る磁界

強度の基本解を扱う。以降，磁化M が任意の点に作る磁界強度H を誘導する。今，計算

領域に磁化を持つ閉領域 V が存在している場合を考える。その閉領域 V が立方体をなし，

その V 内で磁化M が一定であるとする。また，計算領域内には電流は流入せず，外部か

らの磁場印加もないものとする。この時，式 (2.35)に式 (2.38)を代入すれば，次式を得る。

∇ · (µ0H +M) = 0 (2.39)

また，静磁界を考えているので，式 (2.33)は，以下のように書き直せる。

∇×H = 0 (2.40)

式 (2.40)より，磁界強度H は磁気スカラポテンシャル ϕm を用いて以下のように表現で

きる。

H = −∇ϕm (2.41)

これを式 (2.39)に代入し，整理すれば，ϕmに関するポアソン方程式を得る。

∇2ϕm =
∇ ·M
µ0

(2.42)

このポアソン方程式の任意の点 Pにおける基本解は以下の式となる。

ϕm = − 1

4πµ0

∫
V

∇ ·M
|r|

dV (2.43)

rは磁化の位置から Pに向かう位置ベクトルである。上式は，ベクトル演算の公式より次

のように分解できる。

ϕm =
1

4πµ0

∫
V
M · ∇ 1

|r|
dV − 1

4πµ0

∫
V
∇ · M

|r|
dV (2.44)

この式の右辺第 2項は，ガウスの発散定理を用いて面積分に置き換えることができる。

− 1

4πµ0

∫
V
∇ · M

|r|
dV = − 1

4πµ0

∫
S

M

|r|
· ndS (2.45)

nは面 Sに対する単位法線ベクトルである。磁化M が領域 V 内で一定である場合，M/|r|

を面 S 上で面積分すると 0になる。これによって，第 2項を無視することができ，結局磁

気スカラポテンシャルの基本解は次式となる。

ϕm =
1

4πµ0

∫
V
M · ∇ 1

|r|
dV (2.46)

以上より，点Pの位置に磁化M を持った閉領域 V が作る磁界強度は，式 (2.41)と式 (2.46)

から，次式となる。

H = −∇ϕm = − 1

4πµ0
∇
∫
V
M · ∇ 1

|r|
dV (2.47)
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この式は，磁化M が rだけ隔てた位置に作り出す磁界強度を直接計算できることを示し

ている。また，磁化を持つ領域が複数存在する場合の磁界強度はこの式の重畳よって表現

できる。外部からの磁場はこの磁界強度に対して重畳することで考慮可能である。電流も

Viot-Savalt法で同様に考慮可能である。

ところで，先に述べたとおり，M は要素内で一定であるから，次式のように変形する

H = −∇ϕm = − M

4πµ0
· ∇
∫
V
∇ 1

|r|
dV (2.48)

上式の内,体積積分項の勾配は，要素が Fig.2.4に示す直方体であるとき，次式に示すテン

ソルで計算できる。

∇
∫
V
∇ 1

|r|
dV =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (2.49)

また，各テンソル成分 I はそれぞれ次式であらわされる。

Ixx =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

[
− tan−1

{
(yp − yi)(zp − zk)

(xp − xi)Rijkp

}]
(2.50)

Ixy =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln {Rijkp + (zp − zk)} (2.51)

Ixz =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln {Rijkp + (yp − yk)} (2.52)

Iyy =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

[
− tan−1

{
(xp − xi)(zp − zk)

(yp − yi)Rijkp

}]
(2.53)

Iyz =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k ln {Rijkp + (xp − xk)} (2.54)

Iyy =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

[
− tan−1

{
(xp − xi)(yp − yk)

(zp − zi)Rijkp

}]
(2.55)

また，Iyx = Ixy，Izx = Ixz，Iyz = Iyz である。

z2

x1, y1, z1

y2

x2

M

(xp, yp, zp)

Y
X

Z

Fig. 2.4: Ferromagnetic element on Method of Moments.
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2.2.2 磁化の相互作用

電流と複数の磁性体が存在する系では，電流の作り出す磁場によって磁性体に励起され

た磁化が周囲の磁性体に影響を及ぼす。磁性体をモーメント法で取り扱うとき，周囲の磁

性体との相互作用を考慮する必要がある。今，複数の矩形磁性体が磁界Hc中に存在すると

き，ある磁性体 i内の磁束密度Biは，電流の作り出す磁場と磁性体に励起された磁化の作

り出す磁場の重ね合わせで表現できる。それに加え，本手法は積分方程式法であるから，空

隙が存在する系や複雑な形状の系であっても適用が可能である。

Bi = µ0Hc +

N∑
i ̸=j

µ0Hji +Mi (2.56)

また，Biは磁気感受率を用いて，次のように表現できる。

Bi = (1 + χi)

µ0Hc +

N∑
i ̸=j

µ0Hji

 (2.57)

ここで，jは磁性体を示す添字，N は解析領域全体に存在する磁性体の数である。これらの

式から，磁性体の持つ磁化は，ソースの作る磁界強度とその他すべての磁性体の持つ磁化

からの磁界強度の寄与を合計したものに比例することが分かる。

Mi = χi

µ0Hc +

N∑
i ̸=j

µ0Hji

 (2.58)

この式のHjiを磁化を用いた式に書き直し，整理すると，次の体積積分方程式を得る。

Mi +
χi

4π

N∑
i ̸=j

∇
∫
Vj

Mj · ∇
(

1

|r|

)
dV = χiµ0Hc (2.59)

式 (2.59)は磁化 iに対するその他の磁化 jからの作用を表している。そのため，その他の磁

化についても式 (2.59)が成立する。この結果，磁化の数だけ体積積分方程式が作れる。これ

らを連立することで，各磁化同士の相互作用を計算することができる。その連立方程式は，

式 (2.49)を組み合わせることによって全ての磁化の相互作用を表す線形連立方程式を得る。

1

4π




C11 · · · C1n

...
. . .

...

Cn1 · · · Cnn

+ I




MT
1

...

MT
n

 =


χ1µ0H

T
1

...

χnµ0H
T
n

 (2.60)

ここで，Cij は磁化 jから磁化 iへの影響を表す係数行列である。nは磁化の数，Hは外部

磁界強度ベクトルである。その各成分は式 (2.50)～(2.55)で計算できる。この連立方程式を

磁化について解くことで，相互作用した結果の磁化を求めることができる。最後に，各々の

磁化による磁界強度を重畳することで空間の磁界強度分布を得ることができる。式 (2.60)

からも明らかであるが，左辺の係数行列は 3n次の非対称密行列となる。
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6 mm

1 mm
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33 mm

33 mm
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795775 A/m

Y

X

Fig. 2.5: Calculation model on 2D-FEM.

����

Magnetization: 1 T

0.2 mm

0.2 mm 1 m

Element

Fig. 2.6: Calculation model on method of moments.

2.2.3 計算例

計算例として，保磁力 795775 A/mを持つ線形永久磁石 (1 mm×6 mm)の上部に比透磁

率 3000の磁性体 (永久磁石と同サイズ)を配置したモデル [55]の計算を行った。また，比較

として，2次元 FEMソフトウェアである FEMM [56]を用いて FEMによる計算も行った。

2次元 FEMでの計算モデルを Fig. 2.5に示す。Fig. 2.5の最外部には境界条件として磁気

ベクトルポテンシャルAZ が 0であるディリクレ境界条件を課す。また，モーメント法は体

積積分を伴うため，2次元での計算が不可能である。そのため，2次元 FEMに条件を合わ

せるため，Z 方向のサイズを 1 mとした。永久磁石は 1 Tの残留磁束密度を持つ一つの要

素としてモデル化した。線形の永久磁石の持つ保磁力が 795775 A/mである時，残留磁束

密度は 1 Tになるため，FEMと同条件になる。また，磁性体は 0.2 mm× 0.2 mm×1mの

要素に分割し，その要素数は 150となった。
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Fig. 2.7: Estimation line

FEMとモーメント法双方の計算結果について，Fig. 2.7における線分A-B上の磁界強度

の Y 成分を Fig. 2.8に示す。 Fig. 2.8によれば，両計算結果は良好に一致しているとがわ

かる。永久磁石内での磁界強度が僅かに FEMの方が絶対値が大きい。これは，FEMが Z

方向の磁束漏れを計算していないのに対して，モーメント法はそれを無視せず計算してい

るためである。モーメント法は，少ない要素分割数でも高い計算精度を実現可能であるこ

とがこの結果からわかる。

2.2.4 要素のグルーピング

ここまで，モーメント法に関する原理とその計算結果について述べた。モーメント法で

は,先述の通り非対称密行列を扱う。FEMなどでは，離散化の結果作成される行列は,計算

にかかる時間・リソースのコストが多く必要となる。粒子法や後述する離散要素法と連成

する場合,モーメント法の計算解像度は粒子法側の解像度に依存するため,計算コストが膨

大になる問題を抱えている。そこで,モーメント法の要素分割数が少ない場合でも良好な結

果を得られるという特徴を利用し，計算負荷を低減する手法を検討する。本研究では，要

素のグルーピングを検討する。これは複数の小要素をまとめて 1つの大きな要素とみなし

計算する方法である。以下,粒子法との連成を前提にグルーピングの流れを説明する。

1. 解析空間を一定サイズの領域に分割する。便宜上この領域をボクセルと呼ぶ。

2. 解析ステップ開始時に,粒子法における計算点がどのボクセルに属しているかを判定

する。

3. 計算点の属していないボクセルを計算から除外する。また,所属している計算点が少
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Fig. 2.8: Magnetic field intensity on evaluation line.

Fig. 2.9: Particles and background sells.

なすぎる場合も除外する。

この処理から得られたボクセル群を,モーメント法における要素として通常のモーメント法

の計算を行う。これにより,粒子法の解像度に依存しないモーメント法が実行可能になり,計

算コストの削減が期待できる。

本手法では,得られる磁化はボクセルの重心上にのみ存在し,その解像度は粒子法とは異

なる。そのため,グルーピングにより得られた計算結果を,粒子法の解像度に補間する必要

がある。

1. 注目したボクセルの周囲のボクセルを標本点として抽出する。本稿では注目粒子の周

囲 26近傍のボクセルを用いる。

2. 標本となったボクセルの持つ磁化から,当該ボクセル内の磁化分布を最小二乗法によ

り関数近似を行う。

3. 近似関数に当該ボクセル内に属する計算点の座標を代入し,流体粒子の座標における
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Fig. 2.10: Voxels and election of voxels.

磁化を推定する。

1において,周囲に計算点の入っているボクセルが少ない場合はそのボクセル内の磁化を一

定とする。2の結果，次のような近似関数が得られたとする。

fx(r) = ax · p (2.61)

fy(r) = ay · p (2.62)

fz(r) = az · p (2.63)

添え字と pはそれぞれ,ベクトルの各成分，注目しているボクセルとの位置ベクトル rから

計算される基底ベクトルを示す。この時,当該ボクセルに所属する計算点 iの持つ磁化は,次

のようになる。

Mi = (fX(ri), fy(ri), fz(ri)) (2.64)

riは，計算点 iとボクセルの重心との位置ベクトルである。

前述のグルーピングによる高速化と，それによる計算精度の変化について検証を行った。

本検証では， 磁性液滴に対して磁場を印加した際のモーメント法による相互作用の計算実

行後における各粒子の持つ磁化ベクトルを比較する。グルーピングを行わないモーメント法

による磁化分布を真値として，グルーピングを行ったものがその値に対してどの程度の誤差

を持つかを明らかにする。Fig. 2.11に精度検証モデルの概略図を示す。磁性液滴の 19 mm

下方に 10 mm角の永久磁石 (線形，保磁力 159155 A/m)を配置した。また，精度検証の計

算条件をTable 2.1に示す。ボクセルサイズには 3種類用意し，それぞれ粒子法における計

算点サイズの 2,3,4倍とした。そのため，グルーピングによる空間解像度は，1/8,1/27,1/64

となる。

なお，磁化ベクトルの比較手段として，次に示す相関係数を使用する。

DM = 1− (M1 −m1e) · (M2 −m2e)

|M1 −m1e||M2 −m2e|
(2.65)

M1はグルーピングしていないモーメント法によって計算された磁化，M2はグルーピング

にしたモーメント法によって計算された磁化である。また，m1，m2はそれぞれM1，M2
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Table 2.1: Calculation conditions of accuracy verification.

Number of calculation points 9093

Droplet diameter [mm] 12

Calculation point diameter [mm] 0.5

Voxel size [mm] 1.0, 1.5, 2.0

Voxels/calculation points 1/8, 1/27, 1/64

Relative pereability 1.5

Magnetization of magnet [T] 0.2

Magnetization
0.2 T

10 mm

14 mm

10 mm

12 mm

y

xz

Relative 
permeability 1.5

Fig. 2.11: Numerical model of accuracy verification.
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Table 2.2: Calculation conditions of accuracy verification.

Voxel size[mm] DM

Average 1.65×10−5

1.0 Maximum 7.22×10−4

Minimum 3.26×10−14

Average 1.86×10−5

1.5 Maximum 9.76×10−4

Minimum 1.11×10−15

Average 2.76×10−5

2.0 Maximum 9.39×10−4

Minimum 3.91×10−13

の次元要素の平均値，eはすべての要素が 1のベクトルである。この係数は，0に近いほど

ベクトルが一致していることを示している。計算結果を次の Table2.2に示す。また，計算

に要した時間は，グルーピングをしなかった場合とボクセルサイズ 1 mmの場合について

それぞれ 121 s，3 sであった。Table2.2からも，ボクセルサイズを大きくしても計算精度

に大きな影響を与えないことがわかった。以上により，要素グルーピングによるモーメン

ト法の高速化が有効であることが示された。また，本コスト低減手法は，モーメント法の

要素を一つにまとめることによって計算自由度を減少させる手法である。そのため，モー

メント法の計算手法を限定することがない。加えて，静磁場を想定している場合において，

時間刻みに制限はない。また，ボクセルサイズに関しては，経験上最も小さなモーメント

法の要素の 4倍程度までであれば計算結果に大きな影響はないと考えられる。

2.2.5 モーメント法の特長

モーメント法は積分方程式により定義された基本解を重ね合わせることにより物理量分

布を求める手法である。そのため,ソースとなる要素と計算したい位置が決まればその位置

での物理量が直ちに計算できる。そのためメッシュは必要ではなく，刻一刻と形を変える流

体や粉体と磁場の連成に適しているといえる。加えて，少ない要素分割でも良好な精度を

得られるため，グルーピングを利用することで大規模な問題にも適用することが可能であ

ると考えられる。
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2.3 離散要素法

2.3.1 接触力の計算

離散要素法 (Disclete Element Method: DEM) [57–59]は広義の粒子法であり，粉体挙動

の計算に使用される手法である。本手法は粉末を微小な剛体粒子の集合としてとらえる。本

稿では，剛体粒子各々を球形の要素と仮定している。今，2粒子の衝突を取り上げ，DEM

の計算手法を解説する。Fig. 2.12に示すように，2つの粒子が衝突しているとき，その衝

突判定は次式によって判定する。

|Oi −Oj | < ri + rj (2.66)

この衝突判定のため，粒子同士の重なりはある程度許容される。ただし,その重なりは粒子

径の数% までであれば計算上問題とはならないと言われている。衝突している粒子間に働

く接触力は,次の Fig.2.13 に示すKelvin-Voigtモデルによってモデル化される [60]。本モデ

ルは,接触をバネ-ダンパ系で表現したものである。バネは粒子の剛性,ダンパはエネルギー

の散逸を担っており,本研究ではそれぞれ線形のものを使用する。いま，接触している 2粒

子間の接触力は法線方向と接線方向に分割して計算される。これは，粒子間の動摩擦を考

慮するためである。

m
d2x

dt2
+ c

dx

dt
+ kx = F (2.67)

I
d2p

dt2
+ cr2

dp

dt
+ kr2p = τ (2.68)

mは粒子の質量，x変位の法線成分，cは減衰係数，kはバネ定数,F は外力，Iは慣性モー

メント，pは回転変位，rは粒子半径である。まず，接触した粒子について，粒子 iを圧縮

Penetration

ri

rj

Oj

Oi

Fig. 2.12: Penetration between paticles.
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Fig. 2.13: Kelvin-Voigt model.

する方向を正とし，法線ベクトルを求める。

nij =
Oi −Oj

|Oi −Oj |
(2.69)

Oiは粒子 iの重心の位置ベクトルである。粒子の重なりが δである時，変位の法線方向は

次で与えられる。

xn = δnij (2.70)

また,相対速度の法線方向成分は,粒子間の相対速度を用いて，次式で与えられる。

un = {(ui − uj) · nij}nij (2.71)

これに対して，相対速度の接線成分を求めるには相対速度からその法線成分を減じればよ

いので，次式で表すことができる。

u∗
s = (ui − uj)− un (2.72)

これに加えて，粒子自身の回転による相対速度が加わる。今，粒子 iと jがそれぞれ，ωi，

ωj の角速度にて回転しているとき，粒子 iに対する jの相対速度は，それぞれの表面速度

によって定義することができる。

us = u∗
s + (riωi + rjωj)× nij (2.73)

さらに，変位の接線成分（pに相当する)は，粒子が接触してから離れるまでの時間 teにわ

たる usの積分で表現できる。

xs =

∫ te

0
usdt (2.74)

以上より，粒子 iに加わる接触力は各成分それぞれ次式であらわすことができる。

Fn = −kxn − cun (2.75)

Fs = −kxs − cus (2.76)
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ただし，接線方向の力 Fsは摩擦力に制限される。

F
′

s =


Fs

|Fs|
µd|Fn| (|Fs| > µd|Fn|)

Fs (Otherwise)

(2.77)

ここで，µdは動摩擦係数である。これに外力 Feとトルク τeを加えて，粒子 iの駆動力と

する。

fc = Fn + Fe (2.78)

τc = rinij × F
′

s + τe (2.79)

この結果求まった駆動力を用いて陽的に位置の更新を行う。これを繰り返すことによって粉

体の挙動を計算することが可能である。

また，Voigtモデルに線形ばねを用いる場合，それと並列に接続されるダンパは，反発係

数により求めることができる [59]。今，粒子の反発係数が eであるとき，その粒子における

Voigtモデルのダンパは，式 (2.80) (2.82)を用いて表すことができる。

α = − 1

π
ln e　 (2.80)

γ =
α√

1− α2
(2.81)

c = γ
√
mk (2.82)

mは粒子の質量である。以降本稿では，この結果求められた減衰係数を用いる。また，反

発係数の選定は，計算の安定性を重視して行い，その値は経験則によって決定される。

2.3.2 離散要素法の特長

離散要素法は元来，土木や薬学の分野で使用された計算手法である。その特徴は極めて

簡単なモデル化によって粉末の挙動を計算することが可能であるという点にある，並進運

動に加えて，回転の自由度も考慮できるため，用途が広い。また，球でモデル化した要素

を組み合わせることで，複雑な形状の粒子をモデル化することが可能であり汎用性が高い。

また，これまで紹介した手法同様，メッシュを用いない計算手法である。そのため，これま

で紹介した計算手法と相性がよく，連成時の制限が少ない。

2.4 まとめ

本章では,本研究で用いる数値計算手法についてそれぞれ紹介し,簡単な計算例や高速化

手法について示した。

本提案手法はある一定条件化で定式化されたものである。以下にその主な条件を列挙する。

28



第 2. 解析手法

• 静磁場かつその磁界強度は大きくない

• モーメント法における要素内で磁化は一定かつ要素は立方体要素である

• 流体は非圧縮性流体である

• 粉体粒子は真球形である

流体計算手法としての粒子法について述べ，それを用いて計算する流体の運動方程式に

ついて述べた。また，今回採用するメッシュフリー法の考え方を示し，最小二乗法を用いた

空間回帰から微分係数を直接定義する流れを示した。また，同手法を用いたポアソン方程

式の解法を詳述し，メッシュフリー法の特長を説明した。

磁場に関する積分方程式法であるモーメント法について，Maxwellの方程式を出発点と

した定式化を詳述した。また，磁化の相互作用を導入することによって磁性体内部の磁場も

計算可能であることを示した。そしてモーメント法と FEMの計算結果の比較を行い，モー

メント法は少ない要素数でも FEMと同等の計算精度を得られることを示し，その利点を用

いた計算コストの低減手法を提案した。同様に，離散要素法に関して，その計算手法と取

扱を説明した。

また，モーメント法は積分方程式法の一つであり，磁場分布の計算には，積分方程式を用

いる。そのため，その離散化はメッシュを介することなく遠隔作用にて行われる。この特性

のため，メッシュフリー法の利点を最大限活かすことが可能であり親和性が高い。これに

加えて，モーメント法において計算自由度の低減手法としてグルーピングを提案し，積分

方程式法の欠点の一つである計算時間とコストを低減させ，今回目的にしている電磁流体・

粉体現象を数値計算により再現できることを示した。
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第3章 磁性流体の数値解析

本章では，2章で紹介したメッシュフリー法とモーメント法を用いて磁性流体の挙動に関

する数値計算を行う。そのために，先に紹介した計算手法を連成するために，対象となる現

象に関するモデル化手法を検討し，実際にそれを用いて，磁性流体の挙動計算を行う。その

計算結果を通じて，磁性流体の挙動に対する諸因子や運動メカニズムについて明らかにし

ていく。

3.1 磁性流体のモデル化

磁性流体は，溶媒内に極めて小さな磁性粉を分散させたコロイド溶液である。Fig. 3.1に

磁性流体のモデルを示す。磁性流体を構成する磁性粉には，凝集を防ぐために界面活性剤

によるコーティング処理が施されている。このため，今回の計算にあたっては，溶質である

磁性粉が溶媒内に均一に分布していると仮定し，溶媒と溶質をまとめて一つの均一な粒子

としてモデル化する。その粒子群で磁性流体を離散化して，メッシュフリー法とモーメン

ト法の連成によって計算を行う。本研究では，磁性流体内部の流体挙動を追跡することが

必要である。そこで，磁性流体モデルの粒子一つ一つを磁化を持つ要素と仮定し，それら

に加わる磁力を計算する。ある磁化M を持つ要素を磁石と仮定して，それが外部磁界H

中に置かれた際に加わる磁力を求める。まず，磁石のポテンシャルエネルギーは，磁化の磁

極を無限遠点からその位置に持ってくるために必要な仕事として評価できる。その仕事は，

各磁極の磁荷を ±m，磁極間距離を δl，その位置における磁位をそれぞれ ϕm，ϕm + δϕm

Surfactant

Ferromagnetic 
particles

Solvent

Ferrofluid
particle model

Fig. 3.1: Ferrofluid particle model in Meshfree method.
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とすれば，次の式で計算できる [61]。

U = −mϕm +m(ϕm + δϕm) = mδϕm = mδl

(
∂ϕm

∂l

)
= −M ·H (3.1)

今，磁化Miを持つ要素に対する外部磁界強度Hiは，周囲の磁化及びソースから生ずる磁

界強度を重畳したものである。

Hi = − 1

4πµ0

∑
i ̸=j

∇
∫
V
Mj · ∇

(
1

rij

)
dV (3.2)

以上から，磁化Miに加わる単位体積あたりの磁力は次式で与えられる。

fm = −∇U = ∇(Mi ·Hi) (3.3)

なお，この勾配の計算には最小二乗法を用いる。また，メッシュフリー法とモーメント法

の連成に際しては，各手法のモデルにおける計算点の座標のみを共有するだけでよい。メッ

シュフリー法により求めた計算点の座標をモーメント法に引き渡し，その情報をもとに磁場

計算，磁力計算を行う。また，Fig. 3.1に示すようにメッシュフリー法における 1計算点は

モーメント法における 1要素として扱われるため，各手法間でモデルの変換が不要である。

式 (3.3)によって計算された磁力は単位体積あたりの磁力であり，要素一つ一つに均一に

加わるため，式 (2.1)の外力項に代入することによって流体計算と磁場計算の連成が可能で

ある。
Du

Dt
= −1

ρ
∇P + ν∇2u+ g +

fm
ρ

(3.4)

以上から，流体-磁場連成計算は以下の流れで遂行される。

1. 現在のステップにおける流体計算点の座標にモーメント法の要素を配置する。

2. モーメント法により磁界分布の計算を行い，式 (3.3)より各要素に加わる磁力を求める。

3. 磁力を式 (3.4)へ代入し，陽解法によって仮の速度を決定する。

4. 仮の速度を用いて，圧力計算を行い，得られた圧力分布を用いて計算点の位置を修正

する。

今回提案した計算手法は，先行研究では磁界分布の計算に必須であった，メッシュ分割や

空気計算点の追加は不要である。流体計算における計算点の座標に，モーメント法の磁性

体要素を配置するだけで良く，モデル変換が必要ない。加えて，モーメント法を始めとした

積分方程式法のや基本解を重畳する手法では，境界上で誤差が最大になることが知られて

おり，それ以外では良好な計算精度が得られる。そのため，本手法は，磁界分布の計算につ

いて先行研究にはない安定性と，計算精度を持つ。また従来の手法と異なり計算点や辺を

共有しないため，要素ごとに特性を変更することが容易であり，計算対象となる現象に応じ

て柔軟なモデル化が可能である。。
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Fig. 3.2: Numerical Model of ferrofluid deformation analysis.

Table 3.1: Calculation conditions of ferrofluid deformation.

Number of calculation points 362640

Number of fluid points 200690

Distance between particle [mm] 0.5

Voxel size [mm] 2

Relative pereability 1.5

Density [kg/m3] 1400

Viscosity [Pa·s] 0.09

Surface tension coeff. [N/m] 0.03

Magnetization of magnet [T] 0.3

Acceleration of gravity[m/s2] 9.8

Time step 5000

Time interval [s] 2×10−5

3.2 定常磁場下における磁性流体挙動解析

3.2.1 計算モデル

まず，磁性流体の変形について，本計算手法を通じてその因子を明らかにする。計算モデ

ルを Fig. 3.2に示す。本モデルでは，直径 80 mmの円筒容器に磁性流体を配置し，さらに

その下方 10 mmに残留磁束密度 0.5Tを持つ線形永久磁石を配置した。磁石形状は立方体

とし，容器は非磁性とした。流体及び容器に対する計算点の充填方法は格子状とし，初期

粒子間距離は 0.5 mmとした。壁と永久磁石は磁性流体及び重力・磁力の影響を受けず，解

析を通して静止するものとする。これに加えて，計算条件を Table 3.1に示す。
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Fig. 3.3: Time variation of ferrofluid shape.

Table 3.2: Physical quantities of DS50.

Density [kg/m3] 1400

Viscosity [Pa·s] 0.09

Saturated Magnetization [mT] 44.3

3.2.2 計算結果

計算結果として，磁性流体表面中央部の高さの時間発展をグラフとして Fig. 3.3に示す。

また，各時間における磁性流体形状を Fig. 3.4に示す。Fig. 3.4からは，0.05 s時に最大高

さ 4.5 mmまで上昇しており，その変形は極めて短い時間で進行している。磁性流体の高さ

は，0.05 s以降低下しているが，0.1 s以降，磁性流体の駆動力と重力が釣り合う位置でバ

ランスすると考えられる。また，Fig.3.4では，磁性流体中央部の液面が隆起し，ドーム状

となっていることが確認できた。

3.2.3 比較実験

計算と同様の条件で，実験を行った。実験装置概略図を Fig. 3.5に示す。円筒型のアク

リル水槽内に，磁性流体 (シグマハイケミカル社，DS50)を 5 mm入れ，表面磁束密度 0.5

T(公称値)のNd-Fe-B焼結磁石を磁性流体底面から 10 mmの位置に設置した。DS50の公

称物性値をTable3.2に示す。 実験結果として，定常状態の磁性流体の形状を Fig. 3.6に示

す。Fig. 3.6によると，計算結果と異なり，磁性流体はその表面に 4つの突起を生じて静止

した。また，磁性流体中央は大きく隆起しており，突起はその隆起した先端から生じてい
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Fig. 3.4: Time variation of ferrofluid shape.

80 mm10 mm

120 mm

10 mm

10 mm

5 mm

5 mm

Fig. 3.5: Whole view of experiment system.
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Fig. 3.6: Bird-eye view of ferrofluid under a magnetic field.

る。磁性流体が容器中央に集められるため，容器壁面際の磁性流体水位は約 2 mm低下し

た。その際の側面図を Fig. 3.7に示す。Fig. 3.7によれば，突起を含む磁性流体液面の高さ

は，底面から 15 mm，隆起部では約 8 mmであった。一方で，磁性流体特有であるスパイ

ク現象は確認できなかった。この原因としては，モデル化や実際に用いた磁石や磁性流体

の物性値の違いが挙げられる。まずモデル化誤差としては，Fig. 3.1に示すように複数の磁

性粒子と溶媒をまとめて一つの粒子としてモデル化したことが挙げられる。また，磁性流

体表面にスパイクを形成する条件として，Rosensweig不安定性が提案されている [62, 63]。

これは，平滑平面状態から磁性流体表面に突起が生ずる磁束密度について論じており，この

臨界磁束密度をモデルに導入することも必要だと考えられる。

実際の現象では，磁力は磁性粒子のみに作用するため，要素全体に磁力を加える本モデ

ルと駆動原理が異なる可能性がある。加えて，磁性粒子そのものの比透磁率は数 100～数

1000程度であるため，磁力計算の結果に大きな影響を与えた可能性がある。さらに，解像

度の問題として，本計算における計算解像度が 0.5 mmと大きいこともこの差の原因として

挙げられる。磁性流体を構成する磁性粉末は数 10 nm～数 µm程度と極めて小さく，溶媒中

に分散している。磁性流体の挙動を十分に再現するには，モデルの解像度の向上や，コロ

イド溶液の詳細なモデル化が必要であると考えられる。一方で，磁性流体に加えられる磁

場が小さい時，磁性流体の変形は隆起のみにとどまる。この点において，計算結果との定

性的な一致が認められる。
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Fig. 3.7: Side view of ferrofluid under a magnetic field.

3.2.4 考察

計算結果では，磁性流体特有の現象であるスパイク現象を再現することができなかった

が，実験でも観測した磁性流体の隆起は再現できている。ここでは，その挙動が生じた理

由について考察する。計算初期段階での磁力分布を Fig. 3.10に示す。Fig. 3.10によれば，

磁性流体粒子に対する磁力は磁石に向かうように加えられている。また，同時刻における

磁性流体の速度分布を Fig.3.11 に示す。速度分布は磁力とは反対を向いており，磁性流体

上部に向かう速度を持っていることがわかる。この理由を詳細に検討するために，Fig. 3.8

に計算初期の圧力分布を示す。Fig. 3.8では，磁性流体下部中央において圧力が高くなって

いることがわかる。これは磁性流体が磁力によって容器底部に引き寄せられていることが

原因である。

Fig. 3.9に磁性流体の隆起メカニズムの流れを示す。まず，磁性流体は磁石による磁力を

受け磁石に向かって移動する ( 1⃝)。これによって磁性流体底面の圧力が上昇する ( 2⃝)。し

かし，その周囲から磁石に引き付けられた磁性流体が流れ込んでくるため，圧力の上昇を

緩和するために，磁性流体底部から上に向かう流れが生じる ( 3⃝)。その結果磁性流体中央

部が隆起すると考えられる ( 4⃝)。以上から，磁性流体の隆起には，その内部の対流が寄与

していることがわかる。先行研究 [15]で上げた磁性流体研磨は，磁性流体内に非磁性体を

入れ磁場を印加すると非磁性体が磁性流体表面に押し出されるという現象を利用している。

この現象も，磁性流体内部の圧力上昇によるものであると考えられる。

3.3 水深・磁石との距離と挙動の関係

3.3.1 計算モデル

次に，磁性流体の水深と，磁石との距離が磁性流体の挙動に及ぼす影響について，提案手

法を用いて検証する。本検証モデルを Fig.3.12に示す。本計算では，磁性流体の水深 hと，
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Fig. 3.8: Pressure distribution in ferrofluid.
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Fig. 3.9: Procedure of ferrofluid behavior.

Fig. 3.10: Distribution of magnetic force density.
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Fig. 3.11: Distribution of velosity.

h

10 mm

φ80 mm

10 mm

d

Fig. 3.12: Numerical Model of ferrofluid.

磁石と磁性流体の距離 dを変更して，磁性流体の変形を計算する。Table 3.3に，hと dの

組み合わせを示す。 hと dにはそれぞれ 4,3水準を用意し，計 12 Caseの組み合わせについ

て計算する。計算条件を Table 3.4に示す。

3.3.2 計算結果と考察

計算結果として，各 Caseにおける磁性流体液面の変位の時間発展を Fig. 3.13～3.16に

それぞれ示す。 いずれの計算結果においても，磁性流体が時間とともに隆起することがわ

かる。しかし，その到達高さはCaseによって異なる。これらの計算結果を確認すると，磁

性流体の挙動と寸法パラメータの関係について，以下の 2点がわかる。

1. 磁性流体の推進が同じであるとき，磁石が近いほど流体変位が大きい。

2. 磁石と磁性流体底面との間の距離が同じであるとき，水深が浅いほど流体変位が大

きい。
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Table 3.3: Cases of measurements h and d.

Case No. h[mm] d[mm]

1 4.5 7

2 4.5 8

3 4.5 9

4 5 7

5 5 8

6 5 9

7 5.5 7

8 5.5 8

9 5.5 9

10 6 7

11 6 8

12 6 9

Table 3.4: Calculation conditions.

Distance between particle [mm] 0.5

Voxel size [mm] 2

Relative pereability 1.5

Density [kg/m3] 1200

Viscosity [Pa·s] 0.03

Surface tension coeff. [N/m] 0.05

Magnetization of magnet [T] 0.2

Acceleration of gravity[m/s2] 9.8

Time step 2500

Time interval [s] 2×10−5
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Fig. 3.13: Time variation of fluid height (case 1-3)

Fig. 3.14: Time variation of fluid height (case 4-6)
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Fig. 3.15: Time variation of fluid height (case 7-9)

Fig. 3.16: Time variation of fluid height (case 10-12)
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Fig. 3.17: Pressure distributions on each depth (d=8 mm).

この 2点について，考察を行う。まず，前者については，磁石-磁性流体間のギャップが小さ

くなることによって，磁性流体にはより強い磁力が作用する。前項にて述べたように，磁性

流体の駆動は磁力による磁性流体底部の圧力上昇が引き起こしているから，磁性流体に作

用する磁力が大きくなれば磁性流体の隆起高さも高くなることが予想できる。

一方，後者については検証するために，d = 8 mmにおける，磁性流体の各水深での圧力

分布を Fig. 3.17に示す。この図において，横軸に水面からの距離を取っており，0 mmが

磁性流体の水面を示している。Fig.3.17によると，水面からの距離が同じである時，その圧

力は水深が浅いものの方が高い。Navier-Stokes方程式によれば，流体は圧力の高い地点か

ら低い地点へ移動する。そのため，表面付近の圧力勾配が大きく，更に全体的に圧力勾配が

大きくなっている h = 4.5 mmものの隆起高さが最も高くなっている。次に，dと hの合計

を一定とした時の圧力分布を Fig. 3.18に示す。ここでは，d+ h = 13 mmとし，計 4 Case

が該当する。Fig. 3.18では，すべての水深の圧力分布はよく一致していることがわかる。

このことから，水深 hと磁石-磁性流体間距離 dの合計が同じであれば，磁性流体はその水

深にかかわらず同じ傾向の挙動を示すことを示唆している。それを確認するため，d+ hが

等しくなる組み合わせである Case 5, 10及び Case 6, 11の流体変位を比較する。それぞれ

Fig. 3.19，Fig. 3.20に示す。

d+ hが同値である時，磁性流体の隆起過程はほぼ同一であることが，これらの図からも

わかる。また，両者ともに磁石との距離が大きいものは，磁性流体の隆起が遅れている。こ

れは，磁性流体に加わる磁力が小さく，駆動力が低下したためであると考えられる。その一
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Fig. 3.18: Pressure distributions of same mesurement (d+ h).

Fig. 3.19: Time variation of fluid height (case 5, 10)
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Fig. 3.20: Time variation of fluid height (case 6, 11)

方で，水深が浅いことによって液面を隆起させるのに必要な駆動力も小さいため，最終的

に到達する隆起高さはほぼ等しくなる。以上より，この差は駆動する磁性流体の質量によっ

て引き起こされていることが推測できる。

また，Fig. 3.18からは，磁石から同じ距離隔てた磁性流体には，同値の圧力が加わって

いることがわかる。この結果から，磁力が磁性流体の静水圧の影響に対して十分大きい時，

磁性流体の任意の位置における圧力は，磁石からの距離で決まることがわかる。

3.4 まとめ

本章では，紹介した提案手法のうちメッシュフリー法とモーメント法を使用した磁気流

体の計算を行った。磁気流体の代表例として磁性流体を取り上げ，磁性流体の挙動メカニ

ズムについて提案手法を通して検討した。その結果，磁性流体の挙動に関する知見として、

磁力による圧力上昇が駆動力になりうるという知見と，磁性流体特有の現象であるスパイ

ク現象の計算には，解像度を上げるほかに，さらなる詳細なモデル化が必要なことが示唆

された。それには例えば，計算解像度を上昇させることやコロイド溶液のモデル化などが

挙げられ，今後の課題となる。また，磁性流体の挙動と寸法パラメータの関係について本

数値計算手法を用いて検討し，磁性流体の挙動は，磁石と磁性流体液面の距離で決まるこ

とが示唆された。

メッシュフリー法とモーメント法の連成による数値計算手法は，粒子それぞれに加わる

磁力を独立して計算することが可能である。そのため，流体内部で生じている現象を詳細
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にシミュレートする事が可能である。磁性流体の計算では，磁石寸法や磁性流体の水深な

どの構造パラメータが最も挙動に影響すると考えられる。一方で，磁性流体のような流体

の速度が小さい対象に対する計算に関しては，時間刻みなどの計算パラメータの影響はさ

ほど強くない。これまでに，磁性流体の挙動メカニズムや挙動に対して寄与している因子

に関して数値計算から報告している例は少ない。電磁流体現象のメカニズム解明にとって

有用であることが明らかになった。
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第4章 磁性粉挙動解析

本章では，離散要素法とモーメント法を用いた連成手法を用いて，磁性粒子が磁場下に

てどのようにふるまうかを計算する。計算モデルは基本的に 3章で紹介したものを使用す

るが，流体計算と粉体挙動の計算は根本的に挙動が異なるため，新たに計算モデルを導入

する。その計算手法を用いて粉体が磁場と相互作用する現象の計算を行う。ここでは 2例取

り上げ，それぞれに対する計算結果とメカニズムの考察について述べる。

4.1 静磁場下の磁性粉挙動の解析

もっとも典型的な磁性粉末の挙動として，まずは磁性鋼球の磁場下における挙動を考える。

4.1.1 モデル化

磁場下における磁性粒子の振る舞いを計算するには，離散要素法における式 (2.67)，(2.68)

の外力項，トルク項にそれぞれ磁界によって生じたものを採用すれば良い。ここで，磁性粒

子に加わる外力・トルクは，以下の式で与えられる。[19]。

Fm = (M · ∇H)V (4.1)

τm = (M ×H)V (4.2)

M は粒子の持つ磁化，Hは粒子からみた外部磁界強度，V は粒子の体積である。前章の流

体計算と異なり，粉体を連続体として取り扱うことが難しいため，式 (4.1)における磁界強

度勾配テンソルの計算のために Fig. 4.1に示すようなモデルを新たに導入する。

本モデルでは，本来の計算点である磁性粒子の近傍に追加で計算点を配置する。本報告

では，計算コストを抑えることを目的とし，計算点の追加位置は磁性粒子の 6近傍とし，各

計算点毎に追加計算点を配置する。なお，この追加計算点は 8近傍なども考えられるが，そ

の計算点ごとに磁界強度を計算する必要があるため，追加計算点の数は計算精度を保つ程

度で抑制する必要がある。また，追加計算点の位置は，対象としている粒子の大きさによっ

て変化する。これら計 7つの計算点における磁界強度をモーメント法によって計算する。そ

の後，それらの磁界強度を用いて磁界強度勾配テンソルを計算する。磁界強度勾配テンソ
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Additional 
calculation points

Gravity point of 
particle

Fig. 4.1: Additional calculation points for magnetic field gradient tensor.

ルは次式に示すように各成分が一回微分で表されている。

∇H =


∂Hx

∂x

∂Hx

∂y

∂Hx

∂z
∂Hy

∂x

∂Hy

∂y

∂Hy

∂z
∂Hz

∂x

∂Hz

∂y

∂Hz

∂z

 (4.3)

そのため，磁界強度の成分毎に最小二乗法の関数フィッティングを行う。この際，計算点の

数が少ないため，フィッティング関数には 3変数 1次式を用いる。本モデルでは，任意の位

置にある計算点の周囲に計算点を追加するだけでなく，それらの位置の磁界強度を正確に

計算する必要がある。2章でも紹介したように，モーメント法にはメッシュが必要でないば

かりでなく，任意の位置における磁界強度を計算することが可能であるから，本モデルと親

和性が極めて高い。本モデルを用いることによって，孤立した粒子に対する磁力の計算が

可能となり，汎用性と計算安定性の上昇が見込める。

以上により計算された磁力及びトルクを，式 (2.78)と (2.79)の外力項である Fe及び τe

として採用することによって粉体計算と磁場計算の連成が可能である。したがって，本計算

手法は以下の手順で遂行される。

1. 現在のステップにおけるDEM要素の座標にモーメント法の要素を配置する。

2. モーメント法により磁界分布の計算を行い，式 (4.1)より各要素に加わる磁力を求める。

3. この磁力を外力として採用し，DEMによって要素の位置更新を行う。

4.1.2 計算モデルと計算結果

先に述べたモデル化手法を用いて，静磁場下の磁性粒子の挙動の計算を行った。数値モデ

ルを Fig. 4.2に示す。磁性粒子には直径 0.5 mmのステンレス鋼球 (SUS440C)を想定して
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Fig. 4.2: Numerical Model of ferromagnetic particles.

Table 4.1: Calculation conditions of ferrofluid deformation.

Number of particles 968

Particle diameter [mm] 0.5

Particle density [kg/m3] 7780

Spring Coefficient [N/m] 800

Coefficient of restitution 0.6

Dynamic friction coefficient 0.8

Relative pereability 1000

Density [kg/m3] 1400

Time interval [µs] 4

Steps 10000

いる。Fig. 4.2における粒子群の初期状態には，ランダム生成した粒子を自由落下させた結

果を用いている。その粒子群の 5 mm上方に，10 mm角の永久磁石 (残留磁束密度 0.3 T)

を配置した。計算条件を Table 4.1に示す。

計算結果として，磁性粒子群の挙動の時間発展を Fig. 4.3に示す。

SUS440C鋼球が時間とともに上部に置かれた永久磁石に引き寄せられていることが確認

できる。20 ms時点で，ほぼ安定的な形状に収束していることが確認できる。また，安定時

では鋼球が一直線に連なるいわゆる鎖クラスタの形成が確認できた。この鎖クラスタがそ

れぞれ永久磁石から生ずる磁束の通り道として機能している。加えてクラスタそれぞれが

磁束に沿って安定するため，磁石から放射状に形成される。また，鎖クラスタは単独で存在

するのではなく，大きな壁上のクラスタを形成する。これは近くにあるクラスタが組み合わ

さってより大きな磁路を形成した結果である。ただし，磁石から出る磁束は放射状である
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Fig. 4.3: Calculation result.

Fig. 4.4: Experimental results (top view and side view).

ので，すべてのクラスタが一体化することなくいくつかの磁路を形成する。本計算結果は，

定性的に妥当であると判断できるが，次節に実験結果との比較を掲載する。

4.1.3 実験結果

計算に用いたステンレス鋼球を用いて計算と同様の実験を行った。SUS440C鋼球には，

天辻鋼球製作所製のもの (呼び径 0.5 mm，等級 20，相対誤差 1.0µm)を用いた。この等級

と相対誤差から，実験に使用した鋼球は均一であるといえる。実験結果として，上面図及び

側面図を Fig. 4.4に示す。上面図では，クラスタ間に空壁ができていることが確認できる。

加えて側面図でもクラスタが形成されていることが確認できる。また，それは計算結果と

同様に放射状に形成されていのと同時にいくつかの鎖クラスタが組み合わさって形成され

ている。加えて，計算結果の上面図と側面図を Fig. 4.5に示す。上面図では，鋼球のクラス

タの間に空壁が存在していることが確認できる。これは実験結果と良好に一致している。
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Fig. 4.5: Calculation results (top view and side view).

以上の結果から，離散要素法とモーメント法を連成することによって不連続体である磁

性粒子の挙動の解析が可能であることが示された。

4.2 ボンド磁石成型の解析

次に，粉体と電磁場に対する数値計算手法を利用して，希土類ボンド磁石の成型過程に

関する数値解析を行った。希土類ボンド磁石の成型過程は，圧縮成形と射出成形の 2種類に

大別される。今回は，圧縮成形を提案手法で計算する。希土類ボンド磁石の材料には，材料

となる強磁性体 (Nd-Fe-Bなど)に熱硬化性樹脂のコーティングを施した粉末材料が用いら

れる。Fig. 4.6に実際に用いられる粉末とその概略図を示す。通常，樹脂の圧縮成形には熱

硬化性樹脂を用いる。希土類ボンド磁石のバインダーにも熱硬化性樹脂が用いられる。こ

れに加えて，希土類ボンド磁石の圧縮過程の手順を Fig. 4.7に示す。まず，ヒーターにより

加熱された金型に Fig. 4.6に示す材料粉末を給粉する。この段階で一部の熱硬化性樹脂が

溶融し始める。給粉の後にパンチを降ろし材料を圧縮する。このタイミングと前後し，磁

気配向または着磁を目的として磁場を印加する。硬化温度に達した樹脂は徐々に硬化する。

この硬化したものを離型して所望のボンド磁石を得る。希土類ボンド磁石は，高靱性，生

産性が高く，多くの電気機器に応用されているが，製造工程で割れやひけなどが生じて磁石

としての特性が低下したり，磁石の特性を一定に保つことが難しいなどの製造上の問題を

抱えている。そのため，製造工程での材料挙動を確認する必要がある。

ここでは，離散要素法とモーメント法を用いて希土類ボンド磁石の圧縮成形過程の数値

計算を行う。
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Fig. 4.7: Procedure of compression molding process.
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Fig. 4.8: Simple model of a material particle

4.2.1 磁気配向のモデル化

まず，計算の簡単化のため，材料粒子を簡単にモデル化する。Fig. 4.8に示すように，実

際に使用されている材料粒子は，原料となるNd-Fe-Bなどの結晶の集まりに対して樹脂コー

ティングを施したものである。そのため，材料粒子内には複数の磁区が存在する。今回の計

算では，材料粒子一つをDEMにおける要素一つとしてモデル化する。このため，本計算に

おける粒子は単一磁区を持つ真球形をなす粒子として扱われる。実際の材料では，磁場を

印加することにより，その材料を構成している磁区が磁壁移動を起こし，自発磁化を生じ

る。今回の計算では，モーメント法の要素として磁化を使用するので，粒子の磁壁移動は

既に完了していると仮定でき，単一磁区を持つ仮定に無理は生じない。また，反磁場のエ

ネルギーを十分大きいと仮定すれば，磁場などによる磁化の減磁は生じないため，モーメ

ント法における磁化の相互作用の計算は不要となる。

また，今回の計算では，希土類ボンド磁石の着磁は，材料粉末の磁気配向を持って行わ

れるものとする。材料は計算開始段階で着磁されているから，材料は既に磁気飽和したも

のとして扱う。そのため，本計算において，式 (2.59)に示す体積積分方程式での磁気感受

率は常に 0である。したがって，モーメント法における相互作用の計算はここでは行わず，

式 (2.60)による磁場計算のみを行う。また，磁化をもった粒子は，周囲の粒子との衝突及

び磁場から受けるトルクによって回転運動を行う。着磁された粒子が磁化とともに回転す

るため，粒子の持つ磁化を粒子の回転とともに回転させる必要がある。今，磁化M を持っ

た粒子が外部磁界によって角速度 ωで配向することを考える。この時，この回転に関する

クォータニオン qは次のように与えられる。

q =

[
cos θ, sin θ

ωx

|ω|
, sin θ

ωy

|ω|
, sin θ

ωz

|ω|

]
(4.4)

ここで，θ = |ω|dt/2である。この qは磁化ベクトルの回転変位を示しており，これの共役

53



第 4. 磁性粉挙動解析
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Fig. 4.9: Numerical model of magnetize calculation.

Table 4.2: Calculation conditions of magnetize calculation.

Number of particles 3146

Particle diameter [mm] 0.2

Magnetic field [T] 0.5

Particle density [kg/m3] 7780

Spring Coefficient [N/m] 800

Coefficient of restitution 0.6

Time interval [µs] 1

Steps 2500

クォータニオン q̂を用いて，回転後の磁化M
′
を求める。

M
′
= qM q̂ (4.5)

4.2.2 磁気配向の計算

前述の一連の計算によって外部磁場を印加された際の粒子の配向の様子が計算できる。本

項では，磁場投入時の樹脂・及び温度の影響を無視した状態で磁気配向の計算を行う。Fig.

4.9と Table 4.2に計算モデルと計算条件をそれぞれ示す。

このモデルは，自由落下させた材料粒子を上から圧縮したものである。このため，粒子

の位置関係は固定され，回転のみが許容される。このモデルに対して，0.5 Tの一様磁場を

Y 方向に印加する。その時の系全体に渡る磁化の平均の時間発展を追跡する。なお，材料

粒子は初期段階において 0.5 Tの自発磁化を持ち，その保磁力は十分大きいものとする。こ

こでは，材料粒子の摩擦係数を変化させて，磁気配向の過程を計算する。今回摩擦力を変

化させるのは，磁気配向の阻害の主な力に摩擦力が関与していると考えられるからである。
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Fig. 4.10: Time variation of a y component of magnetization.

計算結果として，各粒子の持つ磁化の y成分の時間発展を Fig. 4.10に示す。Fig.4.10中の

muは，摩擦係数を示している。これによれば，摩擦係数が大きいほど，材料が早く配向さ

れていることがわかる。特に摩擦係数が 0である時，材料粉末はほとんど配向していない。

これは，粒子間の摩擦力がブレーキとして働かないため，粒子が外部磁場を磁区として回

転しているためである。摩擦を一切考慮しないため，この回転は単振動となる。平均の磁

化が時間的に振動しているのはそのためである。その他，周囲の材料の磁化からの影響も

あるものの，外部磁場によるトルクに比べて極めて小さく，ブレーキとしては機能しない事

が考えられる。

一方，摩擦係数 0でないものも上述の回転を行うが，周囲の粒子との摩擦がブレーキと

して機能するため，その回転は減衰振動となる。摩擦係数が大きい場合には，そのブレー

キ力が増加するため，磁化の回転が抑制される。そのため，粒子は磁場印加方向を通り過

ぎることなく回転し，その結果着磁までの時間が短くなることが考えられる。高摩擦係数

において計算初期段階で磁化が大きく乱れるのは，回転しようとする粒子と接触している

粒子が異なる回転をしたためと考えられる。時間が経過すると，磁化が配向し始めるため，

接触による干渉が緩和され磁化の乱れは小さくなる。

本計算では，粒子の摩擦力は大きくなるに連れて配向効率は上昇しているが，これは材

料粉末を真球としてモデル化しているためである。このモデルでは，粒子同士の接触面積

が小さく，粒子同士が滑りやすくなっている。実際の材料は Fig. 4.6に示すようないわゆ

るれき形状をなしているため，接触面積が大きい場合や引っ掛かりが生じて粒子が回転で

きない場合が考えられる。
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Fig. 4.11: Surface magnetic flux density distribution.

4.2.3 表面磁束密度の評価

次に，前節において完全に配向した計算結果を用いて，その表面磁束密度の評価を行っ

た。先程の計算モデルの上方 0.5 mmの位置に，評価面を設置し，その面における磁束密度

を計算する。なお，ここで評価する磁束密度は評価面上における磁束密度の z成分とした。

計算結果として，評価面における磁束密度の分布を Fig. 4.11に示す。

表面磁束密度は材料粒子群上方でおおよそ 100 mT程度である。また，その分布はおお

よそ磁石形状と一致していることと，材料粉末は完全に配向していることから，この計算

結果は妥当であると考えられる。また，磁束密度の分布が均一でない原因として，材料の

分布のムラが挙げられる。

また，実際の希土類ボンド磁石の成形では，材料粉末の形状の不揃いや樹脂に起因する

磁気配向不良や着磁不良，材料の偏析などが生ずることが考えられるため，表面磁束密度

分布は更に乱れることが予想できる。

4.3 まとめ

本章では，紹介した提案手法のうち離散要素法とモーメント法を使用した磁場中での粉

体挙動の計算を行った。その際に必要なモデル化手法を説明し，新たなモデルを導入した。

典型的な現象として鋼球の挙動を取り上げ，実験結果と計算結果を比較した。その結果，計

算結果と実験結果は鎖クラスタの形成やその分布において良好に一致し，本手法を用いて

磁場中に置かれた粉体の計算が可能であることを示した。また，本手法の応用として，希
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土類ボンド磁石の成形過程の一部である磁気配向の計算を行い，圧縮した材料粉末に対し

て磁場を印加した際の磁気配向過程を明らかにした。加えて，希土類ボンド磁石の評価手

法として表面磁束密度分布の推定が可能であることを示した。

これらの結果から，離散要素法とモーメント法の連成による数値計算手法は，磁場中で

の粉体挙動の計算に対して有用であることが明らかになった。
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第5章 結論

本論文では，電磁流体及び粉体現象に対する数値計算手法として，積分方程式法を採用

した完全にメッシュフリーかつモデルの変更・追加の不要な連成手法を検討した。また，積

分方程式法を扱うに当たり，要素サイズの計算精度に与える影響が小さいことを利用し，計

算速度・コストを大幅低減する手法を提案し，同法の持つ弱点を克服し，かつ精度を保ちな

がら計算が可能であることを示した。そして，提案手法の有効性を検証するために，流体-

磁場の相互作用問題，粉体-磁場の相互作用問題をそれぞれ数値計算を行った。

以下に各章を要約する。

第１章では，研究の背景として，電磁流体や粉体の応用例やそれらのさらなる拡大には

現象のメカニズムの解明が重要であること述べた。そのために行われている先行研究を示

し，それらの利点と問題点を上げた。そして積分方程式法採用によってそれらの問題点が

解消されると期待できることを示し，研究の目的および方針を明確に示した。

第２章では，本研究で採用する計算手法について，扱う現象ごとに述べた。まず，流体計

算手法には，重み付き最小二乗法を用いたメッシュフリー法を採用し，それを用いた支配方

程式の離散化手法とアルゴリズムについて詳述し，本手法がなぜ対称とする現象の計算に

有効なのかを説明した。また，電磁界解析手法に，積分方程式法であるモーメント法を採用

し，Maxwell方程式を出発点として積分方程式を導出した。また，既存の手法である FEM

と計算結果を比較し，要素分割が少ない場合でも良好な計算精度が得られることを示した。

加えて，その利点を利用し，モーメント法における複数の要素をまとめて一つの要素とみ

なすグルーピングを提案し，モーメント法を始めとした積分方程式法の弱点である計算コ

ストや計算時間の問題を解決した。最後に，粉体計算手法である離散要素法について説明

し，粉体計算手法に本手法が有効であることを示した。

第３章では，メッシュフリー法とモーメント法の連成による電磁流体現象の数値解析を

行った。磁力計算法や材料のモデル化について説明し，それらを用いて磁性流体の挙動の

計算を行った。その結果，計算結果と実験結果が定性的に一致し，積分方程式を用いた電磁

流体現象の数値計算が有用であることを示した。また，磁性流体の隆起は，磁力による磁

性流体の底部圧力の上昇が原因であることを明らかにした。それに加えて，磁性流体の挙

動と各寸法パラメータの関係を，本手法を用いた計算結果から明らかにし，本手法が，電

磁流体現象のメカニズム解明に有用であることを示した。
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第４章では，離散要素法とモーメント法の連成による粉体現象の数値解析を行った。粉

体は流体と異なる挙動を示すため，新たに磁力計算用のモデルを導入した。計算結果と実

験結果はよく一致し，積分方程式を用いた粉体現象の数値計算が有用であることを示した。

本手法を応用し，希土類ボンド磁石の成形過程の数値計算を行い，より良い特性の磁石を

得るためには，磁場印加タイミングや樹脂溶融・凝固の制御が重要であることを明らかに

した。一方で，より詳細な検討を行うためには，より現実に近いモデル化が必要であるこ

とを示した。

以上の通り，本論文で検討した計算手法は，計算を通してメッシュを用いないばかりか，

新たに計算点の追加などのモデル変換は必要でない。また，積分方程式を採用したことに

より，要素個別に物性値を設定できるため，ラグランジュ法であるメッシュフリー法・離散

要素法との親和性が高い，また，基礎となる計算モデルが極めて単純であり，現象ごとに詳

細なモデル化手法を変更できるなど，汎用性も高く，対応できる現象が多い。したがって，

積分方程式を採用した完全にメッシュフリーの計算手法は，先行研究の抱える課題を克服し

ていると言える。本計算手法のモデルは極めて単純なモデル化によって構成されているた

め，対象とする現象に応じたモデルを導入することによって所望の対象の計算を行うこと

ができる。今回取り上げた 2つの対象に対しても，異なるモデルを導入することによって

それぞれに適した計算手法を構築することができた今後の展望として，本手法を土台とし

て，細かなモデルを積み重ねることによってより複雑な現象のメカニズムをより詳細に明

らかにすることが期待できる。
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付 録A Biot-Savalt法

本論文で取り上げたモーメント法は，磁化M による磁界強度の基本解を重畳する手法で

ある。この時，要素となりうるのは磁石や磁性体などの自発磁化を持つものに限られる。一

方，解析領域に電流が流れ込むことを考える時，モーメント法と同様に基本解を構成する

ことができる。この基本解はBiot-Savaltの法則に基づいているため，本手法をBiot-Savalt

法と呼ぶ。

A.1 磁気ベクトルポテンシャル

直流電流が計算領域に流れ込んでいるとする時，静磁場に関するMaxwell方程式は次の

ようになる。

∇×H = J (A.1)

∇ ·B = 0 (A.2)

式 (A.2)から，次に示す磁気ベクトルポテンシャルAを定義できる。

∇×A = B (A.3)

ところで，Fig. A.1に示すように，ある線電流要素 Idsが任意の位置につくる磁界強度は，

Biot-Savaltの法則によれば次式で与えられる。

dH =
Ids× r

4π|r|3
(A.4)

この時，この導体に電流が流れている時の磁気ベクトルポテンシャルは，次式となる。

A =
µ

4π

∮
C

I

|r|
ds (A.5)

ここで，C は電流の流れている導体に沿った積分路である。この時，電流が導体に一様に

流れていると仮定し，電流密度ベクトルを J とした時，式 (A.5)は体積積分に書き直すこ

とができる。

A =
µ

4π

∫
V

J

|r|
dV (A.6)
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Fig. A.1: Magnetic field intensity generated by the line current.
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Fig. A.2: Current density and conductor area.

これを式 (A.3)を用いて書き直せば次式を得る。

H =
1

4π

∫
V
∇× J

|r|
dV (A.7)

これを整理すると，次式を得る。

H = − 1

4π

∫
V
J ×∇

(
1

|r|

)
dV (A.8)

以上より，ある空間内で電流密度の向きと大きさがわかれば，その電流密度が任意の位置

につくる磁界強度は，電流密度が流れる領域の体積積分で計算することができる。この時，

式 (A.8)の右辺の積分を次のように定義する。

ζ =

∫
V
∇
(

1

|r|

)
dV (A.9)

電流の流れている微小導体領域が Fig. A.2に示すように直方体で表される時，ζ の x成分

は次式で計算できる。

ζx =

∫
V

∂

∂x

(
1

|r|

)
dV =

∫ x2

x1

∫ y2

y1

∫ z2

z1

xp − x

{(xp − x)2 + (yp − y)2 + (zp − z)2}1.5
(A.10)
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この積分は次式で与えられる。

ζx =

2∑
i=1

2∑
j=1

2∑
k=1

(−1)i+j+k

×
[
Ypj ln {Rijk + Zpk}+ Zpk ln {Rijk + Ypj} −Xpi tan

−1

{
YpjZpk

XpiRijk

}]
(A.11)

Xpi = xp − xi (A.12)

Ypj = yp − yi (A.13)

Zpk = zp − zi (A.14)

Rijk =
√

X2
pi + Y 2

pj + Z2
pk (A.15)

他の成分については，座標を循環させることによって同様に求まる。以上より，直方導体を

流れる電流密度 J が任意の計算点に作る磁界強度は次式で与えられる。

H = − 1

4π
(J × ζ) (A.16)
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