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111 TILFITYTILIESE

U4, CO BRI ERRANC £ £ HERREL 0> TS, #i 21T, 2015

#121% COP (Conference of Parties) 21 (235 T AR THUERIEIREA L5 R IC B Y fHTe 7~
DONTBENIRS NI, NIBHEIZLD &, DREIZEBWTIX 2030 4F F TITE=
TR A A % 26% (2013 4FELb) BT 2 Z & 7 HERICIBIT T\ 5. ELRERICL D &,
2016 FEOFENE D COMPEHEIL 122600 7 R TH VY, EDOND 2 & 1500 /7 k

> (17.9 %) SHBEVE - SIS OERTI 25 0 TH DO, £z, EREMHO O b
HENHEARICHB T A2 HEHH &3 86.2% % ), HAD COMEEHED 9 b 15.4%7 H )&

WD,

MOOPEH &S (K 11). BEIHEO CO P EDHHNITFE 2 FETH L 2> THY
@, % BB FRE A — U —I1THRAHNERE L T CO PR B2 M A 7-BAFERRET S KO b T

ELAEENAR L TND BRAEORE - CO R @Ickd L, BEHEOERE
1’ COp PR LRI H Y,

HEh O E(LA CO, HEH EDHIJECRE DA |k
ZHioodZEnbnd (K12)., £2TC, HEIEHOBRELOT-ODO—FHKE LT, ¥

B2 WM B AT IS E U E OB BAL 2 EN T D~ AT~ T U T UGG DS R RIS
WFFE S LTV L @0,

-
>

M2 IR E DM B TR S LD ~ v TF~ 7 U TGS, SBEEAPEHF £ OG0

DARFR T D, Rk L0 BFEM B OB & U TR~ O HINBZE SN T Y
®. ) 13 TR T L HITEL
na.

dE, ALTFRIERS, BB O 3 I K@) (0 =

WHEL LCIE, L—PIBEa-0a 3htA K » hEBE (Resistance Spot Welding: RSW)
(15, (18)  EEpE R 2 K > R ERBE (Friction Stir Spot Welding: FSSW)  (7)-@0) | & s ez A
(FSW: Friction Stir Welding) @1 @2 2= L % > k¥ (Friction Element Welding: FEW)

@) fKhi= L A > MAESE (Resistance Element Welding: REW) @9, L —4 7 L — L 7@,

@7 AT B, HATIESM & 70 S OB EEEE S (FSSW, FSW) 2332
INTNBHED,



i

it

=i

o

k=14
b

Z D1t
1{&7, 1007/%,
{14. 2%)

EWERPT
2{81, 5007

(EHE, NS

ky

1{&8, 800A",

€15. 6%)

€17. 9%)
%, AR
cogamue ’
T4 o
FET (201 645D - Slomn
4{&1, 800A", €17. 8%)
{34. 6%)
K EEERPT

SRRRRRIRLRRIRLL:

Fig. 1.1  The portion of CO, emission from automotive in Japan @.
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1.1 WY & 3

FEMRITRERE & LCIX, SPR (Self-Pierce Riveting) @89 KL [z X HFEFECO, X h =
Fvy ) T 7.6 EDS (Flow Drill Screws) G, ImpAcT (Impulse Accelerated Tacking)
G 7T A2 KUy REME) A~ 32 77 BRI B, 8k & 70 X OFERSIC SPR,
BEMELE RIBOREICT 74 FU Ry FREHRINTNDH,

bR EEG & LT, BECO6D, 7 275 43 - #24 (Gas Adsorption Joining: GAJ) “2,
RIETEE L@ ERFET O, UV RV T v @7 CIRE L a2 M EE T
PR, SPR LA AMATTHEE®LH L. ZoRTHEAEIL, (a) ka7 B E
e IcEA e, (b) EREOPIL, (c) #EAIH K &E, (d) mEEoSEgH
AIRE T, IREEOMifE O RS L0 bRV 2D Z N TH LR EDA Y v
N0, BEMEHESENO—FiEE LTRSS TV 5HE,

Mechanical
Fastening
* FSSW :
(Friction Stir Spot Welding) Chemical "SPR o
. FSW /— Bonding 4\ (Self Pierce Riveting)
(Friction Stir Welding) « Adhesion * Bolted joints
: - Mechanical clinchi
RSW . - Weld = GAJ . SPR + echanical clinching
(Resistant Spot Welding) Bonding | (Gas Adsorption | Aghesion | FDS '
+ Laser welding Joining) (Flow Drill Screws)
* Laser brazing * Surface activated * ImpAcT
- FEW bonding Y (ImpL}lse Accelerated
(Friction Element Welding) Tacking)
+ REW + Blind riveting

%esistamt Element Welding) / \ * Hemming J

Fig. 1.3  Three categories of the joining methods of dissimilar materials; welding, chemical
bonding, mechanical fastening.

1.1.2 BEEERO &R E FM

BEILLV VT ~T ) T IOUEIEZ G DB, F 3 B2 OB O SR AT
EChHD. SEOBEMMTELE LT, BERGOEHTOSEE AW (X 1.4
(2) RILLBERBROVO) (X 1.4 (b)) 72 ERREENBITbATE ., HlREN TV
RFEH 7B T D 5 | B A TR 15 & N 7= PR R AMIE S o &, 13 < BB o5
SN HEEBEMNESHTZ Y ORRME Fo CERALEZOMAK 1.5 ThHhD. ZOFET
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X, RERANTYXOHRTOMMTIMIZ/ARS & & B, X< BEBR TS b D R H
FeZsRFHCHEBEEAT 5 Z LIXRETH 5.

HRADOEMRFOLIRE AWEER T, #EMICEAR N2 TRiFE—2 b
WAELD. Z22TC, LOBEOESWEEAOSIEEAWRE LG50, —HELS
Rk T 53R A BERERCY > TAST (Thick Adherend Shear Test) ©9 7¢ EAMER X1
TS, £z, I<BHERBRIC A O FERH Y, REMRH DI, 90°1F < BERERC,
180°1% < HfEFRERCD 69, T JE 1L < BERBRCD Ve U3 b 5.

- 1 E
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(a) (b) j

Fig. 1.4  Test methods of adhesive strength: (a) Single lap shear test, (b) T-peel test.
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Fig. 1.5 Tensile shear strength and peel strength of commercial adhesives.
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LrL, ZbORBRER, FEDOWEIIKT H2#EROBERS ZRET D2 DOF
ETHY, BEEARREDT O OMERRE L OIREHNIIT e 203, FEHETHEINDIZ
WIS I BT DB OMEFRIIZ T O EEHATE RV, 22T, v AFvT Y
TOVAEIERRFHIIE, ZEG DY COBEERE OFEFEN TR E L 0D, BUfE, B
HBIEZA CDIS TN ES HREFMFE L LT, ko X 512, Rmmicx+ 2 e
Jin ) & AW ) % FV O 72 Quadratic stress criterion®® (2 (1.1) ), Tsai-Wu HI®Y (2 (1.2)),
IS IR B U T= Mises DZ:4=°, Drucker-Prager D56, Z LN DL EE D
AEREED (X (1.3)) IC X 2FHlER ERH 5.

O_t 2 o_c 2 O_sl 2 O_sZ 2
fQSC = (?J +(?j +(FJ +(F\J -1 (11)
fTsai-Wu = FG + FIJO-IO-j -1 (1.2)

f

failure

1 1
:Jz+§clll+§czllz+c3 (1.3)

X (1D ~ (1.3) OEFHMBIEIITEAEANIE CToM BN T A =5 (Zy, Ze, Zar, Zso,
Fi, Fij, C1,Co,Ca) 2B A TR, MBI A MEEFHICH A 2 AN EBRAYIC R T A —
Z[EE L2 T iudle 5720,

JETMENZEE DS S RERHE 21T 5 56, HERNIZR W TR ET A Uikl s
W THBEFEMBIE OB R T A =2 ZRET 2O Th 5. AikOELRE Ok
Fa Mgl AWraBo 1T < BERER, #2588 2S5 a2E L S5 2 &3
72 Arcan FRERCICO72 LIT WIS O B RIS W TR ERRAE L D720, A
FA—ZRAEIITHEVES 2. Z22°C, HEERBOBHRWmIZBIT 26 ERZ 72T
Napkin ring 8 6000 Z [ EERTIEPN IR STV 5. SIS 52361 285
FDIREE 25l 5 72012, Z @ Napkin ring #RBR I Z 2 lA B IS Do 51 8EE 5
EHAMIGE N ZAE L S K91, EREREE W EABIE 2 O CREA I251ED &
MV ORFEZ 5 2 53R FIEC (DI RLZIN TN D, ZOoRBFEZRGCL, £
S 155 CHEAS T OFRERHEREE D7 4 v T 4 T EATO ZEBAEETH D, Ll
Z DT DITILENEE 7o BRSO S AN G AL L 72 0, Z OFE ORI ERA T 4%
BIFRoN TS
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Z 2T, ABFIETIE L D LAY 70 5 [ REERE 2 W TR /15034 C 2 s S O
R % Al C & 2 M 2R AR BR T IEDIRE 24T O .

1.1.3 REFFMBEMICE ORBERFTFE

112 JHTIE, 28G5 OHER IR T 2 MM OM BN T A — % Z[FET

BB TIEIZ OV TIR 7=, Napkinring #B% fr & A AT ERBE V2 71E, 720
AMFFECHRET 2 5 iR 2 W fE R A L0, —HEEAOMEI T A —4
ZRIET D Z ENTEIUR, T OEREHZ AW HEE O LS ) N COMETN AT 9
ZLWTEDLEDITRD. TiE, ZHISH T TOHEEREZ®mDDHITIE, EDXHkk~
NF~T VT ARG & TIUXRNTEA 9 D, B D58 R4 & Off 2 OHEAINC
JEUTED XD R PG 23R at T R & 0%, SEHERHI O E ML LT,

B B RHMIBE I S EEE DORRF 21T D 2D O FELE LT, kb2 ohs.
MiERaE I, T A Y v 7 REE(EFETH D NEREIL L, 2 R TG AR
7 I Eci b FIETH HIREEE O L h R e o —faab™MicafEsns (1K 1.6).
BoNDRECEIROBHEE LTE, /X7 A MY v 7 Il b FE IR 2%k e L
TERINTWDEROEIZT UNBIREFEOBREN WD, /T A RN v 7
FEEFECB O TR 2RI 2 B ZER Lo Q 2REH% & L TRk
TH 7, BIERE OB L e, MIRABECHBICERESR TS Z N
T&E5. ZO7), NTA M) v 7 REgECFEEZHWDL I, 2RI A RN v
o b FEE VD E, YR K0 B RICEEOIRE B S, g0k
A XV ESELREERDRENRD .

Z T, ABFETIL v XT A MU I ek b AT IR L & VT
S 155 C OHEAETRE A1) | S 5 R iE O FIEORE L BT

* EEOREEEC F AR U— RO I 2 L— g BT, BERERE A
FEM RBEE A ER LT-R 7 B A7 8h AV CRIERITT 20BN H DD T, IIREHOBE
HEEIZ A v aRoR T BILOBIIKFET 5.



1.2 AWFFEOHIY 7

(a) W

/]
OF , ©
R X

Fig. 1.6  Three kinds of structural optimization; (a) size optimization, (b) shape optimization
and (c) topology optimization.
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1.2 AWHZEDBR

AT BN TIE, BINDIL U SRR Rt 2 & DA T 2~ T~ T U
T VEEEREE OIS ) T C ORI & iRE R i, (1) AR5 iR &
T B 22 B2 SRR TR ORRE L, (2) (1) TH LN 2 MRS Z 42
HRETIR OBl i FIEOREE AFROEN LT 5.

(1), (2) BEREIND &, LEOHEEFNTK L CHIERBIEIC L 0 Zls ) FTo

EARRIASRIE S A, € ORHBANZIES B 2 W L S DR 2 PR a5 5 2 L
TE LW Ens.

1.3 ARFHEXDHERK

AFHICT 5 TR L 72> T D, 1 ETIE, EPMSsHIRoRBLOLEN, FHic
HEIFEICBW T F =T U T IUEEOHIENT O TN D T IOV TR~ £ L
T, v VT =T U T IEEERETT D OISR A R e BFEEM B OEEAfT DO—> & LT
BHEARI L, BEAIOBEREBRIEIZ OV T L 72, S ORSE CIXZ8IS 1503 4E T
D128, IR 155 C OHAE RE OFERIE LE L 72 5. 2 ORI BT D
BEEFNIS UM BT A — 2 ZRIET I, Wk E RS AR ERREN LI LD
0, HERRBOTENEEND. WRIT, BEEMEOREHE LT, B 2MEREL DO
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2 DEEANCK LT ED XD RBERNEEE 2R TUT L& v ) EHEE R
TESE LTV D & 23R, M3 it (b TPk 3 B s o B ST B A D T MRk R L i
MTEL T &aili~, T LT, MERE(LFEDOT T VT A MY v 7 il
FEOHPHFLNDERO BHENG <, KRBT, V3T A Y v 7 2kl
b FIETH DTERIRBEZAT O 2 & ARk~ Tz,

ZLC, RO B E LT, (1) PLHAKZ SR 2 F VO 7= 8 7o 4255 508 3
FEORE L, (2) 507 MEFAMBIE 2 A\ - holi s Rk oL 4 Hi & 5
HZ b mak T,

B2 ETIE, AREOBHO—>ThS (1) BlRRBEEZ 7o 8 72 55 TR R
M FEOREZAT S . WREFHHIZIL, ST v Y VOH L RER W RS T v L
D2 RER I P ORER S LA X (1.3) 2 M5, RETIE, R L8
ERmE A S OMERBA A RE L, Hlhg 5RO E & 5 Rm OBRA G, HEE
AU DEEIGH EFAWIG N EZRHTEDLZ L2 T. £ LT, Bia2HEAAOMRE
B OB RAE) DR O DB ME - AALHHERN G, AR OBEMBNE LT, &
FERI O faf T & 2L OFRFEREI D B T 5 LB & E 2 L 2 O % K, [6] CIEAD
FRERAE R L 0 BB OMEI AT A =2 DEIEEITH . FTo, MHERE DSBS EEAMK
A LD L AR L, B D ELOHEREIC BB EH TE 25 X 5 IZHHEE
BOILREIT D .

B3 ETIE, AMIEOEK (2) & LT, AR L MERHE X b BE I
BT, REZ A ST FEIROREFIELELS. 2085 Gt FEL L T113
HTHIRRIZE B0, b TFEO—>Th a2k Z @A 5. B Sz
~VF =T U TSRS O SRR E GRS LT, () BRI RS F O
Yty (BARBIEDS 1L ITRAF LaWia) & (i) IEEZE L2 RO 22V IR B ZETEAZ 5
AR OGS (BHEREDS X ITRFE LRWES) OBEMIT 2175 . it s LT
I, ISER A UV ER M FEZE S REERE L L, BIIEV OHR, ML TDF, 5]
BR0 & ML OEAWEMEAT D L &0 IFEOMESMICH LT, Il /i fim
R E/RD. BN kol R ERICx LT, $5RE OGRS & Jrah v (i)
ICHER L TEBRL, AETRET IR FEORYMELZHGT 5.

HAETIL, B3 ETRE LR OEHFED V&V (Verification & Validation ;
FRRIE & S 4 PEfERR) D7=dic, HIGEIE S U C, kB BIS o B 5 fEIR N 3 i &
2%t & KS (Kreisselmeier-Steinhauser) B#78 % Fv 7456 Cled bt 2470, 553



1.3 KL OHERL 9

BCIT o 7o BRI D 2 e fnz AL & LA ORR & 21T . £/, 52
BETCRE LI BN T A — 2 2 b SRR RS THE R IR B LT 2170, 3 &
TITo72 () $KEICROWEERIOSE, (i) AL E DRV NAZETEIT R TE
BRIOGEDORR KT S, F28, HFIETHOWONLLIBABNIZAEL I8 E D
T T DRE D Z POV T S G IR ERMNTIC L 0 MEEETT O .

FEHETIHE, FETHOLNIHRIZONWTE LD, KX Ofbimail~25.
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F2E  ZHEICNIZOEERETHE
21 #%

][]

< VT =T U T IOAEERE OGO T2 0121E, FHEOREEICB W TAE U 5 Zihis 118
TOMELZ N LS G LR AZZDUENDD. ZOT2DIZIE, LS8 TOHEETR
JEABUNTAHE T 2 N AR TH Y, AT TIE, IWHT o IV DHE 1 ARERE L &
WAISTIT VY NVDE 2 RER L O TRSNDBEBEMRES L TN S.

ARETIE, VAR5 R EBREE 2 W TS 13512361 2 Bag JE OREE z2 3 3 %
R 2B T E AR E T 2. 2 2 Tl BE O BHE X, AWFRICR VL TE, R
L OGO ATE - B OLpIRE L TERT 2.

FlaRREREE A FW 3B & LT, SERGRBR T A O oS RS AUWERBR (2.2 &) &,
2.3 HiCTRET 2R Z b SRS HAE MR 2 HWics kRO 2 FEEZ17 ).
FPILTEHGRER T & W25 RE AWEBR L 0, BEEAIOW AWM R A HEET D L
EBIT, HBIRO O Bl AR F 3 KL OERS T O R AMKAEEIZ OV TRRETT 5. I
RRET 2 MNERBA Z TR 217V, i - AL IR A2 155 .

2.4 B CIIIRET 2B 0858 CTAE U D SIS SN, WMEFICL->TEL DS
BRI ) 0, TREIND Z EEEE, FIERBO LG LN IR (0) H DAHEREEZ
MT&E5Z LERT.

25 B CIXE O NIZHBIRNDIS T v VIV D 1 RERERAEGITT Y IVOF 2
RERZEFREL, BEREE I E UBHE S LT, RO ST 2 —% OFE
Z{TH. T LT, BRLEERBESOMBOTRNCHLEATE 5L 5, MHEEKOYIE
w2179
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22 FiRHERARZAV-5IEREAMER

2.2.1 FHREER DRI

LG SR RE TOBEETRE 2 30T 5 BN, PARBR A 2 AV TR AT ZS TR O
BAE TR ¢ & AWTHINERREL G 2792 . ARG A 13— I (TruLaser 5030:
rated output 6kW, Trumpf GmbH + Co. KG) (2L VX 21 (@) O LBV IZHIEL, HiRD
77 U NAAEFER] (Hardloc™: M-600-08, 7> 47 (£F)) 12X w21 (b) @ ANE L BB’
BRI WTHES Lz, ERORIEIX 3mm & L, 858 DOE AL 0.3mm 225 1.5mm O
PO & 2o 7o, HEERBOERIK 2.1 (b) THRATHEND 4 EFTOMmE (578
&P IZBNWT~A 7 rAa—AZ 0 EgEZ G L CEHIIZ T o7z, FHll S v
JEIE S LOVEHEERRE S h 2R 221073 VT ia ks BHET 7 L < =7 554 AB052
T, JIS HA& H4000 IZEDE, MEDIZR 21 DLBY THS.

200
50 .20 95 35
T
) ) ~ W \ —~ —
o~ = — ) ~7 L
—1 - — A A’
A\RI10 - VAVY: BN R A/
[ag} ' (ag] ~ =T
R10 B B R10
wy
= = = B B’
RPN
35 95 20 50 b =T
(a) 0 (b)
Fig. 2.1  Two plate specimens bonded with an adhesive in regions of AA' and BB'. (a) General

view of the specimens. (b) Magnified view of the adhesive layer. Red circles indicate
measurement points of the adhesive thickness.

Table 2.1  Chemical composition of A5052 based on JIS H 40007
Si Fe Cu Mn

[%] <0.25 <0.40 <0.10 <0.10

Mg Cr Zn Others

[9%] 2.2~28 0.15~0.35 <0.10 <0.15




Table 2.2 Thicknesses of adhesive layers of the plate specimens measured ((a) Nos. 1-7 and (b)

22 RGBT % V5 B AR

Nos. 8-13) at the eight points shown in Fig. 2.1 (b).

(a) Plate specimen No. 1 2 3 4 5 6 7
586.5 | 490.0 | 727.2 | 480.2 | 701.6 | 972.2 1047.0
AA’ (Front)
519.6 |477.2 | 7114 |511.7 | 671.1 | 999.7 1021.0
695.8 | 769.5 | 490.0 | 675.0 | 470.4 | 1200.5 | 1188.7
BB’ (Front)
Thickness 690.8 | 757.7 | 426.1 | 670.1 | 436.9 | 1225.0 | 1164.0
[wm] 658.3 | 623.9 | 425.1 | 711.4 | 337.5 | 1187.8 | 1224.1
BB’ (Back)
603.3 | 680.9 |436.9 |716.4 |358.2 | 1136.2 | 11139
590.4 | 478.1 | 786.2 | 592.4 |834.4 | 921.1 989.9
AA’ (Back)
617.0 | 528.4 | 679.9 | 543.2 | 826.6 | 997.8 1043.1
Mean value ho [pum] 620 601 585 613 580 1080 1099
Standard deviation ¢ [um] 59 124 155 93 203 120 86
Mean thickness h [um] 620 |601 |585 |613 |580 |1080 | 1099
(ho — 20 to hg + 20)
Crosshead speed 010 [1.00 |00l |0.10 [1.00 [001 |0.0
V; [mm/min]
(b) Plate specimen No. 8 9 10 11 12 13
803.9 847.2 872.8 823.6 800.2 842.3
AA’ (Front)
819.7 815.7 731.1 177.4 799.1 943.7
1388.5 | 1416.0 | 14455 |934.8 814.1 744.9
) BB’ (Front)
Thickness 1374.6 | 1427.8 | 14504 |912.2 720.0 825.6
[pm] 1268.4 | 1452.4 | 1388.4 | 948.6 779.3 746.9
BB’ (Back)
1241.8 | 1410.1 | 1364.8 | 866.9 753.7 766.5
997.8 821.6 761.1 834.4 836.4 897.4
AA’ (Back)
795.1 741.9 729.3 830.5 882.7 904.3
Mean value ho [pm] 1086 | 1117 |1093 | 866 798 834
Standard deviation ¢ [um] 261 333 345 60 50 77
Mean thickness h [pum] 1086 | 1117 | 1093 | 866 798 834
(ho —20toho+ 20‘)
Crosshead speed 100 |001 |010 |001 [100 [100
V; [mm/min]

13



14 B2 SIS ORISR T

2.2.2 SBlaREAMEER

X 2.2 1251 EE AWTAER (BIIEREIE . A — ~ 77 7 AG-50kNX, EEBUWERT (%),
~A /7 mAa—7:7Z300PC, MEE (#K)) OWBLZ =T . BFF 13 RO FHEER A 1%t
L, SRR T (293.9 £ 05K) T3 D 1m A~y NiEE V, (0.01,0.1, 1.0 mm/min)
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Fig. 2.2

Fig. 2.3

22 RGBT % V-5 B A TR

Tensile shear testing with a bonded plate specimen. Deformation in the adhesive layer
is measured by microscope.

-3
Bonded view of a plate specimen. The red circle represents the location where we
measured the adhesive displacement with a microscope.
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Fig. 2.4  Microscopic image of the adhesive layer during a tensile shear test (h = 0.62 mm, V, =
0.1 mm/min). The shear displacement of the adhesive layer is calculated by
subtracting the current difference dy from the initial difference dyo.
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25
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Fig. 2.5  Load-displacement curves of tensile shear tests, where displacements were measured

with a microscope and by image processing analysis. The mean thicknesses of the
adhesive layers are (a) h ~ 1.10 mm, (b) h ~ 0.85 mm and (c) h ~ 0.60 mm.
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Fig. 2.6  Slopes of the least-squares fitting line are regarded as (a) the strain rate dependence

and (b) the thickness dependence.
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Fig. 2.7 (a) Example of a test specimen before adhesive bonding; the tilted cutting surface have

inclination angles ¢ of 20°, 45° and 75°. (b) Development of the cutting surface. Red
circles represent measurement points of the adhesive thickness.

A

- -—A
I




20 W28 Ll IO S TR

Table 2.3 Thicknesses of the adhesive layers of (a) 0° and (b) 20° pipe specimens measured at
the eight points shown in Fig. 2.7 (b). A dash indicates the unavailability of a
measurement owing to the border of the adhesive layer being unclear. Grey cells are
outliers that are more than 2¢ from ho.

@ ©0°

. . 1 2 3 4 5 6 7 8
Pipe specimen No.

416.2 | 330.3 | 371.1 | 246.2 | 221.4 | 300.1 | 746.9 612.0

599.6 | 467.6 | 297.6 | 298.4 | 290.5 | 328.7 | 577.6 317.8

1 4525 | 759.8 | 203.7 | 246.2 | 194.8 | 195.8 | 680.9 728.2

2 597.8 | 4445 | 233.8 | 219.6 | 204.6 | 169.2 | 1030.0 | 447.7

3 466.8 | 241.8 | 232.9 | 253.3 | 240.9 | 166.3 | 498.9 550.1
Thickness 4 4419 | 4835 | 271.0 | 241.8 | 208.1 | 282.4 | 617.0 718.3
[um] 5 693.4 | 458.7 | 317.0 | 262.1 | 213.4 | 292.2 | 599.3 495.9

6

7

8

567.4 | 448.1 | 200.1 | 224.9 | 183.3 | 286.3 | 549.1 820.7

Mean value ho [pum] 529 454 266 249 220 253 662 586

Standard deviation

99 149 |60 24 33 65 167 166
o [pm]

Mean thickness
h [um] 529 411 266 242 210 253 610 586
(ho—2ctoho+20)

(b) 20°
Pipe specimen No.

967.6 539.5 | 209.6 |190.4 |252.7 |239.5 |263.9 | 235.0

525.7 588.1 |382.6 | 2957 |237.6 | 657.4 |323.9 | 759.9

1 1043.0 |359.7 |307.8 |119.2 |105.0 | 261.1 |273.1 | 356.4

2 1046.0 | 372.6 |325.7 | — 153.3 | 290.7 | 322.4 | 329.3

3 345.8 4111 | - 261.4 | 123.3 | 468.9 | 7045 | 3253
Thickness 4 582.0 446.8 | 170.6 |239.2 |- 465.8 | 928.3 | 383.6
[nm] 5 423.4 266.1 | 185.8 | 186.8 | 145.0 | 261.7 | 261.7 | 304.3

6

7

8

265.8 583.4 | 109.5 | 258.0 |365.6 |621.9 |423.6 | 706.6

Mean value ho [pm] 650 446 242 222 198 408 438 425

Standard deviation
o [pm]

322 116 98 60 93 169 247 196

Mean thickness
h [um] 650 446 242 222 198 408 438 425
(ho—20toho+ 20)




Table 2.4 Thicknesses of the adhesive layers of (a) 45° and (b) 75° pipe specimens measured at
the eight points shown in Fig. 2.7 (b). A dash indicates the unavailability of a
measurement owing to the border of the adhesive layer being unclear. Grey cells are

2.3 R Z b OREEESE MR O 55kl

outliers that are more than 2¢ from ho.

21

(ho—20tohg+ 20)

(8) 45° 1 2 3 4 5 6 7 8
pipe specimen No.
1 1023.0 | 554.3 | 265.2 | 352.0 | 171.0 | 453.9 | 354.9 | 232.8
2 3430.0 |497.3 | 194.8 | 258.0 | 162.9 | 498.,5 | 213.7 | 236.0
3 458.5 5249 | 115.4 | 1825 | 189.5 | 448.3 | 612.3 | 347.2
Thickness 4 436.5 669.6 | — 121.9 | 105.6 | 381.8 | 624.4 | 261.1
[um] 5 1394.0 |380.1 |177.6 | 262.3 | 201.7 | 263.1 | 383.3 | 727.9
6 19555 | 477.9 [192.3 | 160.0 | 211.0 | 243.5 | 392.1 | 859.3
7 407.7 383.7 |130.4 | 151.7 |109.1 |575.4 | 228.9 |190.8
8 569.3 539.2 | 147.4 | 146.4 | 162.8 | 562.5 | 319.0 | 388.3
Mean value hg [um] 1209 503 175 204 164 428 391 405
Standard deviation | 10e) 14 (50 |79 |39 |125 |155 | 250
o [pm]
Mean thickness
h [um] 892 503 175 204 164 428 391 405
(ho—20toho+20)
(k.)) 75 ] 1 2 3 4 5 6
pipe specimen No.
1 408.6 |519.6 |471.2 |503.2 |339.6 |622.6
2 4940 | 368.6 |324.0 |400.9 |417.7 |405.5
3 301.8 |354.6 |141.7 |473.4 |512.2 | 386.0
Thickness 4 378.3 | 436.6 |324.4 |483.8 |419.8 | 499.1
[um] 5 333.2 |469.3 |454.0 |314.3 |439.9 | 600.9
6 420.7 | 407.3 |415.2 |397.7 |3324 |4215
7 396.9 |308.2 |408.8 |4435 |3139 | 3834
8 317.1 | 350.0 | 4156 |425.1 |450.4 |506.9
Mean value ho [pum] 381 402 369 430 403 478
Standard deviation 63 70 106 60 69 95
o [um]
Mean thickness
h [um] 381 | 402 | 402 | 430 |403 |478
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Fig. 2.8  Load-displacement curves obtained from tensile testing with four pipe specimens

having inclination angles of (a) 0°, (b) 20°, (c) 45° and (d) 75°.
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A example of the proportional limit obtained from the load-displacement curve (Fig.
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Fig. 2.10 Relationship between the mean thicknesses h and proportional limit ¢, obtained from
the load—displacement curves shown in Fig. 2.8.
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Fig. 2.11 Example of a Fe-Al bonded test specimen; the tilted adhesive interface have
inclination angles ¢ of 0°, 20° and 45°. (Upper part: A5052, Lower part: SS400)

Table 2.5 Chemical composition of SS400 based on JIS G 3101¢2),

P S
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Fig. 2.12 Load-displacement curves obtained from tensile testing with Fe-Al pipe specimens

having inclination angles of (a) 0°, (b) 20° and (c) 45°.
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Fig. 2.13 Relationship between the mean thicknesses h and proportional limit o;. Orange plots
are obtained from the load—displacement curves shown in Fig. 2.12.
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Fig. 2.14 (a) Coordinate transformation of the cylindrical coordinate system from (r, 6, z) to (»/,
@', z") in terms of angle ¢. (b) Stress tensor components based on the (+, 8', z')
coordinate system in the adhesive layer.
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Fig. 2.15 Two failure criteria estimated from the experimental results of h = 0.40 + 0.03 mm and
invariant values calculated from Eqs. (4) and (5). The coefficients of curve A, drawn in
black, are ¢c; = —0.60, ¢ = 0.18 and c3 = —14.04 while those of curve B, drawn in red,
arec;=0,c;=0.14and c3=—14.61.
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Table 2.6 Failure criterion of curve A (black curve) in Fig. 2.15. The coefficients of the failure
function are determined with the experimental results of h = 0.4 £ 0.03 mm.

Sum of squared residuals C1 C2 C3
210.37 -0.60 +4.11 0.18+0.24 —14.04 + 4.40
P-value 0.89 0.49 0.01

Table 2.7 Failure criterion of curve B (red curve) in Fig. 2.15. The coefficients of the failure
function with ¢; = 0 are determined from the experimental results of h = 0.4 £ 0.03

mm.

Sum of squared residuals C1 C2 Cs
210.94 0 0.14 £ 0.05 -14.61£1.94
P-value - 0.03 3.55x10°

251 R5—)LBEA# o AWV -EMMKEFE

X (2.10) OWEARBIHILF CHEASEIEIRE S & b DBkl R RETHDLN, Brd
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5:(1azxo) _I_\/b? , Where |a|= 40122—0—23, |b| = 12102—03, XO__Z_éZ (2.11)

A — VB O IR IR D OB AR TREBTH Y, d<1 DL SHHEME <0, 0
>1DEE >0 Lxin LTS, N (211) OZEHa b, x T (2.10) IZBWTF=0 &
Licl & & o=1 WEMARBEKE 2D LI ICRESND. K 2T OMEI T A—42L11,
A — VBB OEREHETH L, T a=1753,0=3.82,%=0 &72o7.

216 1T A — /LB § LB EHES h Oixt$k s 7 7 TH D, PO KBRIT
SR UT-HE5E S h=0.4mm (ZBI LT (log h, log 8) = (log 0.4, 0) &3 5 L 5 I The/h 3
ETCT7 49T 4 7 LTEEMTHD. EROMBE p=-060 THH=H, 27—/
§ LEEEEIE S hIZIZRAD & RAIOREGR)RH 5.

SochP (2.12)
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FL72 B IR B OB RIS L CTBHEBI% (U (210) ZEMATE 5 X )12 5720,
EBIHETHDOMEI T A—F 3 RAD KO IR EE S h OB LTHT.

X 2 h p
c, =b? {a—g—(h—j } (2.13)
ZZThYNIZMESEES (h*=040mm) THD. X (213) L 0AkHEEE T % h=0.2,
0.6, 1.1mmIZOWTCHE L, ZNENOMHEMIRE R L7202 X 217 Th 5. X (2.13)

K0 R SRR R & ARBRAE R A T D &, BRI = 0°DRBRIE RN R DR A
~OILRIERBIE D RN SR E SHENTWD Z LR35,

0.6

04

02
“w
éﬂ 0
AD°
202 b {200 I
045° : ‘
A75° | I
-04 | @Plate | }
(V.=0.
mm/min) | ‘
h=04 | ¢
0.6 I 1. I
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log h

Fig. 2.16 Power law of the relation between the scale function J and thickness h. The gradient of

the bold line calculated with least-squares fitting is —0.60 and ¢ is thus proportional to
h*O.GO_
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7.0
A 0°
X 20°
o 4s5°
A 75°
® Plate
(V,=0.1 mm/min)
ey = fi = (0.2 mm
o,
= —_—h=04
o — = =0.6
) - = -h=11
A
0.53
0.0 5.0 10.0 15.0 20.0 25.0 30.0

I, [MPa]

Fig. 2.17 The failure criteria dependent to the thickness h. The red curve is curve B in Fig. 2.15
and the blue ones are calculated from Eqg. (2.13).
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4 217 (23T, BB & RRMEHREIE (R (2.10), (2.13)) 2D3RE 2 Rl
EDAR—EDFERZH LN T D720, 216 DEEEFE S h & 27— V% 6 D%t
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DITWEEREICEE > TN D 720, FIZE ORBRZIT 21X, h=02mm (28 1) 5 Bt
INEL 7R B1EA 9 LEbRS.
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EHa/hEnZ Enbngd. EmElH F=0) Té=1L%MTHLZLNnE, N
TV OAED R MR S T bR AL SN E N S,



34 B2 SIS 5 ORISR T
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Fig. 2.18 The fitting lines of log ¢ versus log h corresponding to the inclination angles (¢ = 0°,
20° and 45°) and the tensile shear plate.
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Fig. 2.19 Power law of the relation between the scale function ¢ and thickness h for ¢ = 20°,
45°, 75° and the plate.
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Fig. 2.20 The failure criteria dependent to the thickness h for ¢ = 20°, 45°, 75° and the plate.
The blue curves are obtained from Eq. (2.13) by substituting p = —0.79. The orange
curves are the experimental fitting curves estimated from the average values of c3

25 EHEAIORE

®» X

20°

45°

75°

Plate

(¥,=0.1 mm/min)

— 1=0.4 mm
e 7=0.2 Eq.(2.13)
e = 1=0.6 Eq.(2.13)

listed in Table 2.8.

— = h=1.1 Eq.(2.13)
h=0.2 Test
$7=0.6 Test
hi=1.1 Test
10.0 15.0 20.0 25.0 30.0
I, [MPa]

Table 2.8 The coefficients cs calculated from Eq. (2.13) and test results.

h [mm] 0.20 0.60 1.10
Average value of test results —34.59 -12.63 —6.13
Eq. (2.13) -25.20 -10.62 —6.59

Table 2.9 Comparison of the scale functions and the power exponents p for v=0.2, 0.3 and 0.4.

v a b Xo pin Eq. (2.13)
0.40 17.53 3.82 0 -0.79£0.16
0.30 16.45 3.82 0 -0.79+0.16
0.20 17.41 3.82 0 -0.79£0.16

35
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253 REMHEEFAGRBER B0

AKIE T, RIFEAMEHE SRR A O h™ = 0.4 mm OB R L0 [FE S - e (X
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Fig. 2.21 The plots of stress invariants obtained from the test results with bonded pipe
specimens which consist of similar materials (black ones) or dissimilar materials
(orange ones). The material parameters of the failure criterion (red curve) are showed
in Table 2.7.
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32 ERMEHEESEOIK&KELREE

321 BEEREZELOVILFITUTZILEHEETIL

AETIE, ERERRECREZEH T 572012, I3~ F~7 U 7L
IRTLESMEREZE 2 5. KETHWSRLEFZRATEXRTS.

_00)
()= p (3.2)
y=P20
0=, 3.3)

BB Z AL A, HEERIZ B L35 L~ F~T U TIMEBOEGRE T LILX
31 LB KA, FiE & p, BAEICBT DM ESERT vrvan T 5L,
X 3.1 O~ )LF~T U TILFEBIZE W TRID R Y S0,

op;+fi=0inQ (m=A,A, B) (3.4)
u;=0 on 7, (3.5)
o;n;=p; on I, (3-6)
oinl=—opn® onl,, (m=A,A,) (3.7)

X (34) ~ (37) IFEnFn, PR, Dirichlet 8RS, Neumann BERLSAt:, #
ERE EOER DDV HENKTHD.
1w a(u,v), hu, VB LIOT—wEXI(V)Z%KA (3.8) ~ (3.11) TEXFETD.

a, (u,v) J oi (W&l (v (m=A., A, B) (3.8)
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'(V):Irz pNdl+ [ f vdQ (3.9)
h,(uV)=[ ol (unfvdr  (m=A, B) (3.10)
V)= op(unjvdr  (m=A,, B) (3.11)

ZZTHEEDORY bLviL, A TERINHIEZER U OEZETH H.

U={V€H1(Q;R3)‘V=00n Fl} (3.12)

7272 L HYIZ Hilbert 222 9. fEE DX L v RN & BaEE, an(u, v)IZHN
EROAAEE, I(IFAN OB, him(u,v), ham(u) XA (0, 1) OFFEEE &
A2 enTEsn. Zokx, X (B4 ~ (36) OFHE L TkD AR
NP A/RVASR

a (uv)—hy, (Uv)+a, (Uv)=h,, (UV)+ag(uv)—hg(uv)—hg(uv)-I(v)=0, VveU (3.13)

< VF =T U TR OB E R [, [ FTEEDRY hLv RNk Th b L RET
5.

=v® onr7,., (@M=A,A) (3.14)

X (B14) LEERE EoFERNIDO-Y H WA (37) kv, FEHERX (3.13) 1Tk
D L) IZfEFElLIND.

a, (uv)+a, (uv)+ag(uv)-I(v)=0, vveU (3.15)
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Material: A, Material: A,

QAIU-QAZUQB:Q
run=r

Fig. 3.1  Multi-material model consisting of two materials of A1 and A, bonded by adhesive of
B; suppose that traction p is applied at boundary I, and body force f acts in . The
region is kinematically supported at boundary 773.
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f =coJ2+éclll+%c2If+cs (3.16)
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b OBEERI O LG S PRIBIC BT DR ST CX 5. ABIETIE, H2ETH
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X (3.16) DIHERIR =0 D & XHEE THIBNE U D L AR T DN, EEEOHS
JEPIZ BN TS D0 AT D 72, EBIEf & F /BB BN THfi 5. 2 D72,
BEEREE DM 2 17 L SEDICIIMHEBR IO 2 E 5T 20NR K00 EEZ DN
N5,
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TR 2 b OMEL A RE LR TR 6T, HAOMEITH LTEL DI85 D
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INE TR DA TR Qs A RDILZ IV, Tbb,

(f—c,) dQ

Find Qg :minF, where F="% _ (3.17)
% dQ

2

X (3.17) FIE L < IHMEHBBIE O EHIHE cs ZFRWZBEIE D 2 BRI TH D43, LABEOCE
THRHIRRIEDN 2083, PRERBIS D 2 ff Litib 35, 2 2°C, FIZARPLERT
oY, FRRNERDBEEHE Qs ZBIEMTHICRS Z LT, v F~T U T
EOBABREZN LI EHEEREIREHGLZENTED. 2L Qs DIFIRFERFO
BrCEE IR KDL 5, #ERBICAREIINEHRT L T5.

LLEX Y, PEEIEMEE Qs 2 i bxtg & L, #25 RER O ham L3 kT
ER(LTE D,

min F(1,3,)
subject to Eg. (3.10) and (3.18)
V, =V, whereV, :IQ do

ZIT, VI EERBOEEEINMETH Y, BEEBOWEIEEL 35, X (3.18) Dl
Gtfc, ZEHEAL LTk sz (3.15) TiEAe<X 313) #AnsZ Lic
HET 5. 323 IHT Lagrange LSO ERI% (X (3.25)) Z K HEfic, K (3.13)
Ze DTG A IREE AT 7 F v v DZE AR (oviox) DOIENBIN 575, N (3.15) %
AW GE1E oviox OIIFE 2. Zudl (3.15) <iF, & 37) & (3.14)
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£0 EELODﬁ% hlm (th) Om=B&m= A1 (AZ) ®IE75)ED\GC?T%(‘E' L/El\l/\, hlm
(ham) DENIFAEL 72N TH S, Lo L, BFEMERE E T vidEs: (X (3.14))
7203, ovlox 3R TlE R, Tb b,

SXL(:);&:XL; on I,y (M=A,A,) (3.19)
ZDT=®, ovlox DIEIIM=B £ m=A; (A)) THWIFIBHIELHDOT, BRIz
TUXZDHIFARIL S 2T e b, - T, A (3.13) DTN EZAWSIZ
D D3 Y Th v, Lagrange LEIELDOFBS (X (3.25)) & k724120 (3.7) & (3.14)
DREARE WS,

2 (3.18) DAL D Lagrange YLEA%L L 13 Lagrange 34 A 2 AN TIRA L 72 5.

I_Q (f _C3)ng
- —{an, (U V) =hy, (U v)+a,, (U v)-h,y (U, v) (3.20)

L:

2

+ag (U, V) =g (U, V) = hyg (U, V) = 1(v)} + A(Vy =T

S HIFI o & o L REIZ 645 Lagrange Fe451409 X v, Lagrange ILEE% (X (3.20))
TSR XY RS AL Q130 (3.18) DfREDEM LS.

3.2.3 fEEEEIZHFSFEMDERE

Lagrange ILEIECDIER &2 KD B 72012, SEIAENCIE Y L OEEKAENT 5
VERHSH. A (3200 & (38) ~ (3.11) XV Lagrange INLEIEIIFEIK Q, Qn DFE Y
HEBER Dy Tog OFDTEOFNTH D . D728, LB OB g(x) OfERE Y & B
D REIZE BN 5 2 E A% S Rk £, Lagrange ILBIZR BRI L RD b 5. (8K Q
(ERFER T ) TERBSNDEEDOREE g(x) OIS U CHRElBFE M oL
lo & BEFFE OB N ZRAD L D ITEERT D,

|Q=Lgumg (3.21)

|F=Lgumr (3.22)

Tl E, B o, | OEBAENC R 5 EBBITEES V 2 VTN ERAT
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FINHO,
I'szigg’(x)dQJrJ'rg(x)n‘VdF (3.23)
I =] {9’ (0)+(Vg(x)-n+g(x)x)n-V }dr (3.24)

I TrITFEHHMED 2HFOMHETHS.

A (3.23) & (3.24) M\ T Lagrange ILEE% (X (3.20)) OERIAEH T 5.
31 OBR I EE MBI Qn OBER ECERSNIEELZZNZENV, Vo £T5
&, Lagrange JLBIE DERIFITIR L 72 5.

2[ #'(f-c,)d@ PRY —c,)’dQ
. J, f(f-ci) =) Ju-e) o

R O RZRTI

—[aAl (u,v)+a, (u, v')—_“rm(ai?lnfl) vidr—hy, (u,v')

+a, (U, v)+a, (uVv)-[ (ofnf )'vidf—hZAz (u, v
(ai?njB),vidF—

+ag (U, v)+ag (u, v’)—f (ai?njB)’vidF

I'ns

—hyg (U, V') = hyg (U, v’)—I(v’)+J. o (u)e; (V)V,dr (3.25)

ro

I py8

(u)el (v)Virdr+ LAIB of (u)el (V)V,odr
(

ij

u)er? (VV, 2 dr + LA B ot (u)eg (V)Vidr

ApA AL SAnAY nA s o AnAy oAy A
oin )‘kvink +onty, Nt +olnhvkc }Vn dr

B B.B B B.B B B
)’kvink +on®v, e + o’k }Vn dr

A, A A A, A, A A A A
NV NE + 0PNV 2}Vn 2dr”

ogny) ving +opniv ng +a.3n.Bv./cB}VanF

Ay A A
(a.j n’ )’kvink2 +07
( ijrhj otk ijilj Vi

[ (P + pvis)V,d = fiviVndF} +A(Ve =V )+ A[ VAT

ZZTV,=nV, V'=n".v" THD.
HEAE P L THERRA Y BV e, SEREIRRER O 2 B5 OAE w, IR ES; OIER T RS Vo™ (12
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DWTIRADNEL D L.
nf :—njB
K"=—x®onrl,, (m=A4,A4,) (3.26)
Vnm =_VnB

X (3.26), i EoREIIDO-D HW (3.7) &iEkEoOX (3.14) KLY Lagrange B4
HoEpE X (3.25) FklLins.

L=—{a,, (UV)+a,, (uv)+ag (u,v)-1 (V)]

2f f'(f-c,)dQ

j%dg

(3.27)

{aAl (U, v)+a, (U, v)+ag(u,v)-
+A’(VB —VB)HG(\/ ®)

72721, AN CIIBESE R OREREE 2 & 2 5720, BRI ECTOMEROIER)
My Va=0 & L7z, X (3.27) D Ig(VB) 1ZEEEEAEOEES VEOETH Y, Kk
TEREIND.

|G(\/B)=jrAlBGAanB-der+jr Gpen®-Vods (3.28)

AB

T2 T G RGBSR TH Y, KA THSNSD,

—c.) f-c, “de
ey L7002 e on ) )

" J, 40 (j%dg)z (3.29)

+oon (v =V )ng + 4 (m=A,A,)

A (3.27) XV Lagrange LB MERE T 5720 D u, v, 4 DSEAIEIT,

a, (uVv)+a, (uVv)+ag(uv)-1(v)=0, wv'eU (3.30)

a,, (u, v)+aAz (U, v)+ag(u',v)-

=0, Vu'eU (3.31)

A(Vy=74)=0 (3.32)
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X (3.30) IEffE{b SN/l RN (3.15) LEMTHY, AREHRE (FEM) T
BiEfig L UTEMY (u(x),xeQ) Zk 5. N (3.31) 1FTFEEY Fvv ORffE K
Ths. X (3.32) [ THAEEEIK Qs DEFEHIKIRIME 2 ET.

REFE R (3.31) (MRS DA & N —RIE an (W V)P TH D Z & 2
L ERATRES.

a, (V,U)+a, (v,u')+ag(v,u’)-1,(u)=0, vu'eU (3.33)
2(f-c,) of 0oy

[, (u)= LupdQ

. (U) L% L%dg 2o ou, (3.34)

2 (3.33) FfEE L S A7 B TR (3.15) (TR W THMEMEAB SR DIH | & 1 127 E #2
ZTbDEEMTHS. TRbLEMENY bvid, K (3.34) O LICHIET 54 1%
~NF~T VT IVERRET VOSSR FICER EE72 L EICE L LMY bL L%
MiChd. >, MEFEHREXARET DHHE~T S (v(x), xeQ) HEUEME LT
FEM TR 5.

BEA5 g O FUE R X HEY ARLE D TE 2 Vv 5. HYAREIIIIRE#T % b5
DI HNEERDOZOOUGHEETIETH Y, INETIIHEEEES 2R THEY V 3%
TRED.

a(V,w)=-lg(w), VeC,, VweC, (3.35)

Z 2T Co IITEIRZ B 2 7= Y, V O RBEZEMTHY, <7 b w ik
CoDILEDEZTH LS. K (3.32) OLELDOMEMIIEME L LT, #ERIOWIEMEZ v
T FEM fRMTIC X 0 3 S V 2 E T 5.

ARBFFECIXBESE RO Z AR E L TERL TS, O, HEAIDHEIET 2
ELATE TIERIERERA R Y e b, 0 (3.30), (3.31), (3.35) OfifILHIEHAMNE FEM fi#tT
TRED. X (335) OfFOEEY VIR TERINDHEY; Vo & VaOEHEQAE DY
TR T& 5.

V =V, +V, (3.36)

a(VA,WA)=—|A(WA)=—J. An®.w dI, V,eC,, Vw,eC, (3.37)

Ia+l a8
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a(Vg, Wg ) =—lg (Wg)

=— rAlBG'AanB.WG,dF— FAZBG'AZBnB.WG,dF, V, eCy, YWy eCy (3.38)
2
4 f—c ’ .[ (f _C3) de m m
" :( d;.Q) B = 2 _{O-i?(u)gilj3 (V)_O-ij (u)gij (V)}
IQB (L)ﬂdQ) (339)

+O—i?n?(vil,3k _Vir?k)nkB' (m=A_A))

RBEHIRSR I (3.32) (IR R DOBEASTE OREE Ve BPIHIHATEV, L E L 725
ZEEERLTEY, TOREOIILEES V OEREENCEE S ARE A 22T X
v, X (336) ~ (339) KV HES VIEZ—HRATE (4) ITXVAELLIENYE (REY
Vi) ERRAERE (KX (3.29) O AUSNOEEINTIE LTEBICAE T 280 GEE
§iVe) OFITHD. D718, KEHIFKIZEMX (3.32) Z/-TI01E, HES Ve LF
JESH Vo IC X DR L BN AW B LA ZIT XL, REERIREENmZ Sh D &
9 1Z Lagrange %k A4 (3R E S 4150,

3.24 EESFREMIKZEILEHTOR

U O ORI Z R 32 17T, ETMIRG R DR L bOYALTF~T VT
IVHEEREATE 7 V2B (3.3.1 3H) L, #UEHME FEM MEHTIC & v 5E5YERTE R (3.4)
~ (3.7) OFEA (3.30) Eyli/-T AN u RO D, EERBOKEEROISEIENS
ST VDE LR R L L REIS AT VDR 2 RER L EHE L, K (3.16)
X0 AR f AR E OSBRI LCHE SN, & f 5D BB F U

(317)) &KW, 1 DHIDAT » T HHD F OELFEN 103 £ /A S WA, IR L7z
CHEL, REfRET 5.

F OZEN 10° L oSG A 13T 26T L, BEfEFREA (3.31) Mot~ by
V& FEM I TR 5. WIS, bRz lEtE~2 MLy & iR (330) i d
BRI U 7 B AR AR Gre (X (3.29)) ZEHHT 5. TR ARIBIHL Gue % Lagrange
FH A DIEL ZNLSDIE G, (531, J1EIC L VA (3.37), (3.38) THES Vi, Ve
&2 NEIFEM I £ 0 sReb 5. RESHIFGE (X (3.32)) %729k 9 1< Lagrange
B AFEEL, TOLEDV, & Ve NHHESV (KX (336)) #455. LLELV#E
LITZHEY V 2 W TS RRRIR 2 BT 5.
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Initial FEM model
—>] Solving the boundary-value problem |

| Calculating the objective function F|

Convergence ?

No

Optimal design

| Solving the adjoint equation l

!

| Calculating the shape gradient function G]

| Velocity analysis using traction method |

4| Updating the interface between adherends and adhesive layer ‘

Fig. 3.2  Flow chart of the shape optimization process. In this process, an adhesive interface of
the thin-walled butt-joined cylinder model is updated with velocity V obtained from
traction method (Eq. (3.35)). When the rate of objective function F evaluated from
FEM model becomes less than 107, the corresponding FEM model is regarded as an
optimal shape.

33 FAMABRGEREBEDNR&KREL

331 AREZRETIL

AR TIERM W 5T % AR E G DY RIBOE IS T8 B Min TS
PR ET S, AT CIIA B TORAET ZEET 572012, K33 (a) DL 5 e
AR EBE S A Rd R & 42, RN E O —im (K Z7eaEEL, i
g (ki) (ZHIRME L vy OREWELEM S TEE - IS B2 LT S8
%.

GlEWMEAZ F L b7z T L9458, HAEMEIZ L > Tl b 4B 72 wii M
AT RERIZAE C 2 EIEIG S 0 L AWIST) o1, HE O EEZ R, A% a, W
JBxztld oLk ATERSND.
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F F

Gfidw—aﬂzbmt (3.40)

2T T
7(R* —a*) 2ra’t

7(r) =

(3.41)

3.3 (b) IEETHEES V 2R T 5 & & OEABHNAG 2R, BAMRO
SRS DT O T HEB L & L, B BRI O S0 z 71 o 2588
LT 5.

FEAT IS N T BAEA B AL A EHEEAIB DY U 73R, N7 Vo ewaFK3LITTRT. £
7=, ST ET VOV A X UREER, W¥ERa h MRS, BEEES) 2% 3215
T AHETIIRER Z AT 5 - OICEERES 2 EELV b REVED L L,
3.4.1 T THEHTIC X 0 15 DL 2 ik & M SR8 S 2 BERfE & D217 5 .

W1 FEM E7 L OBETBNIZAE L 5 BE)IS ) 0,(3(3.40)) & AWET) (F(3.41))
DHARIEI a ZIRXTEHET 5.

a=o,l7t (3.42)

AWFZE CIIMAEIE I a=0 (P27 TOR), a— o BIEHMEFOHR), a=2.0 (T
& FOBEATWE) ORAEIY BT, #EERERO ML 217 5.

3.3 (a) OHWME FEM £ 7 /L& SERICHIRIFR L 35 L BE RO 0z ORIk
BALSHE Z B a7z, B IR TR END 2 5 m O oA~ 5, % 5

27z

R .
o, =——sin(26 3.43
= 50551 (20) (343)

F IR UL, Oz HI~OHEREOTIRZE(LITIER 35729, 85 m o S ek}
WAETIRNE S, HEMEO r il FmOERSERE 2 & Lz, AT 6 miko
—REHRT, PENEIT 6400 FHE, BIERE IR TIL 38400 R TR I TN D.

LI EDOfrE T VA IR L L, 3.24 HOMHrOfth (K3.2) ([2hE- CTHEE R
WREGE L 21772 5. BABIEUIMERIEL (f-c) @2 Ffn (X (3.17)) &L, filfER
5 f (X (8.16)) OMERT A—H o, 01,003 & LTITE 33D 2MEERTY LT 5.
KI3IDOMENT A =213, 2 EDT 7 U V35| (Hardloc™: M-600-08, 7 > 71 (#K) )
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DORFE - BN L VO DHBIRRZ b L IZFE LM RT X —% (3 27) )
b, (i)ca=c2=0 & L7GE, 720 bHRIEHKEICROVEERIOMEL ST A —2 0
Ha L, (i)co=c=0 & LIEBh, 720 BEREALZ L7200 k) 23 25 AT B8
WEESRIOM BT A —F DA ZIE LTZ. AW TIE, #EROMIEZ AR E L
TEZRLTCND70, MHERET =0 & 722 F TR BRI CREMrETh 5. %
D=, WHERTORESME (F=0N,T=160N-m (a=0), F=3.3X10°N,T=110N-m (a
=20), F=50X10°N,, T=0N-m (a > ) &5 %, #HIEHED FEM f#HTIC L0 855
JEIZAE U 205 15 % 2 3Tl L 7.

Free of change
at any direction

Fig. 3.3 (&) Thin-walled butt-jointed cylinder model of which adhesive layer has an initial
imperfection (Eq. (3.43)) is subjected to tension-torsion combined load. (b) Boundary
condition for the velocity V in Eqg. (3.35).

Table 3.1 Material properties of A1, Az and adhesive B.

Material Young’s modulus Poisson ratio
A1 210 GPa 0.3
Az 70 GPa 0.3

B 352 MPa 0.4




52 B3E AN ORREL

Table 3.2 Size of FEM model.

Outer radius R 67.5 mm
Inner radius a 65.5
Length of cylinder A; or A 200
Thickness of adhesive 18

Table 3.3 Material parameters of failure function (Eq. (3.16)) for the adhesives with the major
properties of (i) hydrostatic pressure and (ii) distorsion, respectively.

Co C1 C2 C3
(M 1.00 0 0 -14.61
(i) 0 0 0.14 -14.61

3.3.2 TR

TERRECIC &> TR O RE R EERZ X 34 & 3519, K341% () Mk
INER KRS SRS RIOMEL T XA —2 O86, M 35 13 (i) HERIND N AR5
WEEERIOMEL T 2 =2 DA T, ThEHMEARIEII a=0,2.0,0 ORFESREIC
BT 2EEAHRTHD. X34 (@) 1 () D a=0 OFTHER T, A0 bIEIE,
B ok (AT SO0k ALZIERR), 5N f—cs (=cody) 531,
AROBE% F R (3.17)) L4EEBIAE Ve OHER TH Y, BRIEK L BB IEEIIEN
ZNAHME FoE kKBRS k=0 Dff) TEAITLL WD, X35 (b) T, k=294
IZBWTHEIREBNIM D A v 3 2 ORGP NI L TR E DR T2 P IN, k
=294 ZRHEIBIRE LTS, EMITIC L - T, @& CHMBIESBAME & 7225 b
Db H DN, TOLEIIFHOE NBEBOZELEN 10° L /NS <725 ETHRIT 21T o 72

34 kv (i) HEEEHKEIZROEEROME T 2 —2 D54, EEIST a
DOEN/NE L 2T D1FE, 37205 M7 OBEIENRREL 2R DT E, HEE
DIERANRKEL o TVDZ ENbND. ZhuE, MZIck> THEAMEIZAET D
FAWE D, #ERTmORTADSYHW (K (3.4)) 1LY EERBICE T 5 EHIE
TN ZEBREN DR GER2 by n) Lo Tn bl tEzons. £i-,
3.4 (c) IZBWTIIHIHIIR D DIE & A ETRIREAL A U TR0, ZHudgiie
WOBBEICRET RN ITNVEIR TH - 727200 Th 5.

— T35 £V, (i) HEMDNHBEITTRNEE R OB T 2 — 2 OG5 1T
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BEICAE o DERKE L 2T 512 E, TRbbLBIEMEOEI G N K E i
HIFE, HERBOERNKEX LI RoTWADORLIA. 21t () o8a L3, &
WHEICBIT 2 REINC N ZHEERBICB T 28 AMIE RIS AT 5K LR 5728

ThHD. 35 (b) &H2 & HMBEEDHBD 7T 7128\ T k = 100 THUR(EZ &

v, ZO®KBEEENED L TWD Z Enbnd. ZNTRETHBEET 57, BV
B i/ M 2 TR 215 2 72 0 I3 B S PR B DA B R T XA — 21T T
T, WU 2R 2 @RS LN H D T L AR LTV D . ATV T, #5A)
DB T A =2 DIENIZ KL D2 BAMEEIEIHICEB T D IE R OEWICER T 572

0, ATR— DR T IRFEL 21T - 7z
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I 1.534E+01 0.4 .
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: 1 D07E+00 0 10 20 30 40 50
Iteration number &
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4523E+400 0
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Iteration number &

Fig. 3.4  Shape optimization results for three kinds of ratios of tensile stress to shear stress: (a)
o= 0 (only torsion), (b) a = 2.0 (tension-torsion combined load), (¢) @ — oo (only
tension) . The material parameters of the failure function (Eqg. (3.16)) are (i) co = 1.0,
€1=0, c2=0and cs = —14.61, respectively.



54

i
w
it

(e2/3) I,* [MPa?]

4.639E-04
[ 4.124E-04

255 St O IR o b

.............................................

3.609E-04 « Objective function
— 3.093E04 « Volume
r 2.578E-04
2003040 AT e
157E0 RS 02 | Tt
1onE0 o $ 00 0 Tt
5/166E-05 10 20 30 40 50

1.188E-07

Iteration number k

T
: * Objective function
'
! + Volume
|
T

'

'

i \

'

'

I

I

'

'

'

'

'

k=100

0 50 100 150 200 250 300

Tteration number k

¢,/ 3) I2[MPa?] 12

3 B6BE400 I R SRR LEES FETT PP SIS
[ 3.266E+00 08

2.866E+00 + Objective function
— 2.4B5E+00 0.6 « Volume

2.065E+00

1.665E+00 0:4

1.264E+00 0.2

8642E01 R 0O 0 W K | et tiitiiteeesennaes

4.639E-01 0

6.357E-02 0 10 20 30 40 50

(a) :
(b) (¢>/3) I2 [MPa?]
6.632E+00
[ 5.895E+00
5.158E+00
— 4.422E+00
[ 3.685E+00
2.948E+00
2.211E+00
1.474E+00
7.370E-01
5.066E-05
(©) f |

Iteration number k&

Fig. 3.5  Shape optimization results for three kinds of ratios of tensile stress to shear stress: (a)
a. = 0 (only torsion), (b) o = 2.0 (tension-torsion combined load), (¢) & — oo (only
tension) .The material parameters of the failure function (Eq. (3.16)) are (ii) co =0, 1
=0, ¢ =0.14 and c3 = —14.61, respectively.
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Fig. 3.6  Inclination angle ¢ defined as a counterclockwise rotation angle around r axis. The
adhesive layer of optimal cylinder has two inclination angles of ¢* and ¢~. The optimal
design in this figure is corresponding to the case of (i) f =c,J,+c,and a =0 (only
torsion).

34 HEEREMIKDEE

3.4.1 mEfEOEEREIERS

332 HTHR LN HEMAR D2 YA MRETT 27201, RIETIIREEER A o DO
W& 72 BRER AR 22 SR o0 TIRET 2. £ T BEE BN OJE T M OF B OGE & N F R OE
LV, BERBICELCDINT] 6® B A o OREE LTERL, ISHRER 1(p), Jo(p) % E
B9 2. LT, () f=code+cs (HRKIEIZTRWEEEROMEL T 2 —42) OE L (i)
f=(Ca/ 3) 12+ C3 (DM AZETAI TRV AN DI EL ST A —F) DFEITHONT f & fiv )y,
MRIZT HBRA ¢ Z3RD D

BEERE OBRME ¢ 22 3.6 O L D BRI MO RFE DY ZIEL T HElERA & L
TEETD. HPD (r,0,7) FEERIZMNEEESR (r, 0,2) 2»OEERA o TE#H LT
JEFESRC, O EIIEEE R E L OPAT L e D MRS ARRIERE OB A, BEE N E
FHENZHERE LT\ D729, [X3.6 DL 9 ITAKFHED D OHEREE ORI IE & 72 5557 &
B LD E D, 2T, EEMCERMG o DELRDENE of, ALRD
Hw e &ELTKBITS.

PHE M ORIPEDRHE AR OMITE L D b+ REWTZD, B8 OER I E M S
THREIND. 201, BEBICAECLIEFAOEEOT HITHH/ISNET 5.
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£2~0 (3.44)

BERBIELDN/ NS WESIEE 2 FOR (2.2) O LI, ERIFAOEEOT A543/
SV EARETE D . AT ClIEaE IR 2 IS T D 1o O ERBEANRENET L &
W2 7=, HAME E U COER T M OIENS T & ABS T35/ SWRE O 2 %
HAWs. T7bb,

op~0 (i=r,0,1) (3.45)

ri

X (3.44), (3.45) DREDZMMET 4.4.2 T THUEHM: FEM 12 X 0 BAEMAT B MG
T5.

—fi%ft. Hooke =R XV, BEERICA LD T HEEOTHIEEREDY v 7R E,
T Yoy VTR LR D.

£y =—{G§ —v(af,’ +op )} (3.46)

A (3.46) LREEREOILT) - OTHOME (X (3.44), (3.45)) X vEEENEFHH O
WEIC IR TEEIND.

oy =vol (3.47)

PAEREICBITD2RE OS5V (37) LR (347) LY, BEEBOISIIS o8,
o8, oPlIMEEBEM DICTIIY ot ol ZHNTIRATESIND.

o8 =i (3.48)
-, (3.49)
oo =voh (3.50)

2 THR ALIDIS R W THEE B DI J1&2 &K Loy, K (3.40), (3.41) 22600
D E B AR BIDIEI THRIL THSH. A (3.48) ~ (3.50) Do & ohnld, X 3.6
TERIND LREGTROKNGFTE DY OREEA ¢ & VTR LY, SO FT
IZ X > THAL D8IEIET) 0, (X (3.40)) & EHEAMNGT ¢ (X (341)) & VTR
TERIND.

A

o, (p)=0,C08* p+2rc0SPSing (3.51)
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op(p)=-0,sinpcosp+(cos’ p-sin’p)r

57

(3.52)

PLEX Y, $5ENOISHT Y LVDE 1 AEE L CIRESTTT v IIVDF 2 R
B LA ERA o o s LTETZENTES. KX (345), (348) ~ (350) #HW

% L L(p), bp) IXFNZRKAD L 5 ICHIND.

L(p)=0c +o, +on =A+v)or (p)

(BN

2 2 2 2 2 2\ 1
B B B B B B 2
J,(p)= —{( v +o, +o, +20.,+20,,+20,, )— 3 I, }

L ovt)or (o)) +(o 0)

N

2

(GO

(3.53)

(3.54)

X (353), (354) ZHARBIEK f O (3.16) IZRAL T (ot 10g), (0°F100°) L1 3y 12

DR NETZ IR E 70D o ZRDD. Thdb,

of _ 93, 1 08l 1 21’

—= +
op °o¢p 3 'op 3% op

s 2o ofv? v -2)ol +3a]

:%(_aSinzcﬂﬂLZCOSZ@){(vz —v—2)(a+ac032go+ 25in2(p)+304}r2

a1,2

P =4(1+v) ot o

=2(1+ v)2 cosp(acosp+2sing)(—asin2p+2cos2¢)z?

032 2 (265 —ar){2(2—v)(1+v)o —3arl - S(2-v)1+v)of
8(02 3 z z 3 o'z
o%1,° 2 2

6(p12 =—4(1+v)’ (20‘?1 —aropt =20, )

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

it (356) &i‘t (358) O){ffq‘%c]: D s Jo Z))*@/J\i f:&ijf@j(& fcﬁ 5{@\%"‘% ®@miny, Pmax 61%“

THAEEIEI a IS CIRATRD B D.

() (G
(Omin 2 a 2 —(pmin - 2

(3.60)
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T

<ou s;j (3.61)

wmaxtanl{z(vz)(v+l)+\/4(‘/2) (v+1) 30!2(21/221/1)} (_

3a

NN

gji, fh (357) k iﬁ (359) @fﬁi%i D , |12 75%‘@/]‘& f:&i@k& /—cﬁ z)'ﬂ:/ﬁ\ﬁll‘ﬁ @min, Pmax
ITZEN VAN 0 IS IR TRD BN S.

DPrmin =%’ tanl(_%j [_%S(pmin S%] (362)
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Fig. 3.7  Relationship between inclined angle ¢ and log « at the cases of (a) f =c,J,+c, and
(b) f= (Cz /3) 1,2 +c, . Red lines and dashed gray ones are the simplified theoretical
solutions of the local minimum angle gmin and the local maximum angle @max,
respectively.
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Fig. 3.8 Kinked part of the optimal shape in the adhesive layer at the case of (i) f =c,J,+c,,a
= 0; (a) upper part and (b) lower part of the tilted adhesive layer.
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Fig. 3.9  Kinked part of the optimal shape in the adhesive layer at the case of (ii)
f =(c,/3)1,>+c,, @ — 0; (a) upper part and (b) lower part of the tilted adhesive layer.



62 B3E AN ORREL

ARETIE, ZMIENGTO~VTF~T U 7SR EOEERER DD, LG
7155 CHREEREAT AT RE 70 AR BI S D 2 Sefnz HADILBE R & U, B8 iR il LR &
BH L7, BEMEOHITET L L LT, ISHETOA U iER M RS R BE
WIZAIRME, MLy, MEOEEMELAMN LICET VEE A, BHREEOMEL T
A=z L LT (i) #KEIZROVEER (c1=c=0) D& L (i) KREEE DR
DNHITAZTRNEFEA] (Co=c1=0) DHFEITHO W THRIBE(LZIT>72. REIR K D #5
LITHERIZLL T O LB TH 5.

- BB R DA BIERER

o saE ik ORI LT, () OBATIE, A ELTHEMELIY S b
NI IBRELBRDIZONB SN DR b REL RDMMZ R L. £ENZEhDs 1%
PETHE LN RBEROBERE oF, - XS LTZET A0 b & F DR gmin & 3T
VME & 2R 7.

—77 (i) OHBETIE, AN ELTIEMELY S M7 BNRE S RDITONVEHKS
ORI/ NS e DM AR LTc, 2R ENOREBIKOMRMIE, T gmin=90°
IEETIEARVD, K 60° DR AERN A LT,

H e T O T 2 ke CHETIR Thaiifb 217 9 &, WIHTBRNG o9 O—75
PMERIZTERL L K 9 & T D8R, #5RITETTMICER L TV D 72D F baddh L, of
& IERIRFICBMATER T 5 Z Licd. 20D, —HMERIZRE<T25 (b
KT %) FmchhEzsb b, MFMERE2RE<TD UhE<TD) HRkmz
Foha, TR E7 VIS Lo UdkEfr e R E< B0 EE 6L HD. L
L, iipim ks zliz, mE s bRz RE<T5 (hE<T5) TRz
DRI D L, REMIZBULBEEDSED L, ¢ ¢ & HITK L ORI 23T
TLZLEBMERES N, TDZ LI, REIRIZE DI, TSRO RN T A —4
(205 U CHIEIER 2 @Y R SN N 5 D Z L2 RIB LT D,

- BEMROERBHEA Y (M)
() focg,sc, TRy ORDBAMSNDHE, BEBOFHMAY L, &AM
NRELBREBERD SEDLIBREBL, Rorik e o, (i)



35 Hi = 63

F=(c,/3)1,7 +¢, TRIBEMEDHNEM SNDHE, Frilnt v B @I R A4y <
720, BHFOBEREIC L0 L AHAKEL SRS E D LD 2k E oz,
PLED Lk, AECRET MO 2 TRl 5 < R R Tk,
B S A T2 1 O < IR AVE U 3 R 510 T b B 2 ) b S B AR
AELNDFETHD LV,






65

FAE mELEFEORIEEZ MR
41 &

][]

B IETIIEERNO f ONMICKH LT, 2 FMER/IMET 5 Z & B3EEEtEEOMmE
i ESED LB AETIE, ARIRBEEE U CTHARBIE f D5 BN O
ExERAW=GE (4211H) EAHERI%L 12 KS (Kreisselmeier-Steinhauser) BE%(® % i
& THAE BN O i KA % Fe/IME T 5 09 09 58 2SO TR IR i b 2 17
W, BFHATEIRIRIZOWTHIR 21T 5. HFERN S, 2 i HRULBEERic T2 2 &
DA M SWTHERRT 5.

W, F2EORBRE VG ONTZT 7 U NEEBRIOM BT A — 4 % VW CTHRE R
TR B ZAT, GONTEREMOZE LT 5. 202 LIk y, [EEOHEE
FNZHRT LT, 52 EOMMEARMETMTPIEC L VMBI T A =2 ZREL, LN
HEIHAE W T 3 mo R mBIkEE b A1T 5 2 & T, MEZ M EIE2REHEE 215
HZEMTEDLZ EH—HlE L TRT.

BB, 28, B3 ECHWEESBICELZIEN EOTHIZONTORE (K

(2.2) £721350 (3.44), (8.45)) DEUPEIT ST FEM MBATIC XLV a5

4.2 BeLNEA#OREET

421 EEERAOREREMFESEZR UV -&EL

X (B.17) OHMIPLEEEF %, #EREROMEREEf O FHHEE L TERLET.
Tbb,

Jog 140

F:T—da (4.1)

IOl X, BRABREE Gre (X (3.29)) EREHFRXOAN IR T > v VL) (K
(3.34)) IILkRICEZHZ HNA.



66 FAE REEFIEOREE & 2% PERERD

f [, fdQ
Gpe = - 3 —{ai?(u)gi?(v)—a{}‘(u)gi’}‘ (V)}
log 42 ([, dQ) (4.2)
+opn? (vf‘k -V )nkB +4 (m=A,A,)
, 1 of © i
L) =], T ude (4.3)

I%dgéanaw

X (41) ~ 43) ZHNT (i) f=(c,/3)12+c, PDIHH THBE{LFR 21T o7z, fifbTE
TIVIEER 3 EOMR M E G EREAEME (K 33) T, Madiiitka=0,20 o (C
DWTOMENTRERZ K 4.1 128 T. 423 HIZEWT, KS BEEIC X 2R R Lt 2
TN OFRHTHE R & ik 21T 5 .

4.2.2 FHIERE%D KS B#ER\-&Et
HEOULEIEF %, fREEIES IO KS B E L TERLE TR L 5.
1
== *id
F - n{jQBe .Q} (4.4)

DL xE, IRAECEE Gre & FELE TR O IR T v LIEL W) (X (3.34))
IRAICEE B O5ND.

e
G.=—— 5B B(v)-o m
mB pLzB e”'dQ {O-lJ (u)gu (V) Tij (u)gu (V)} (4.5)
+opn; (vfk —vif‘k)nf +4 (m=A,A,)
e”" of doy
I ’ — 1) r
2(u ) J._QB I%epfdg 80'” auk deQ (46)

KSR D/ RT A =% p=10 & LT, (ii) f=(c,/3)1,2+c, D&H T LEIR 21T 72,
F72, KS B¥EAWLEGEIIRKNELE b OBEEF DO R/FTZREBIC LY, 3 <I2m
INRIZESTLEIOT, B/ RIZIR L TV D EHESNDHAETHLZEDE i %
BeAT L, T D% BB — I L CHROMNEIZBUR L TV D861, %E & ik
Ik & Uiz, hadfbfs R 21X 4.2 1277



(2)

(b)

(c)

Fig. 4.1

(c>/3) 1> [MPa?]

1.679E-03
[ 1.492E-03
1.306E-03
— 1.119E-03
= 9.327E-04
— 7.462E-04

5.596E-04
3.731E-04
1.865E-04

1.768E-10

(¢»/3) 1> [MPa?]

1.176E+02
[ 1.046E+02

9.149E+01

— 7.842E+01
T 6.535E+01
= 5.228E401

3.921E+01
2.614E+01
1.307E+01

2.029E-03

(c»/3) 1> [MPa?]
8.156E+01
[ 7.250E+01
6.345E+01
— 5.439E+1

— 45336+
— 3.627E+D1

2721E+
1.816E+01
9.089E+0

4.060E-02

3.00E-03
2.50E-03

2.00E-03

-
O 1.50E-03
|

& 1.00e-03

3

5.00E-04

0.00E+00

1.80E+00
1.60E+00
1.40E+00
1.20E+00
1.00E+00
8.00E-01
6.00E-01
4.00E-01
2.00E-01
0.00E+00

4.00E+00
3.50E+00
3.00E+00
2.50E+00
2.00E+00
1.50E+00
1.00E+00
5.00E-01
0.00E+00

67

2 4 6 8

[teration number k&

......
........

10 20 30 40 50 60

Iteration number k

....
..............

10 20 30 40 50
[teration number k

Shape optimization results for three kinds of ratios of tensile stress to shear stress: (a)
a. = 0 (only torsion), (b) a = 2.0 (tension-torsion combined load), () & — oo (only
tension) . The material parameters of the failure function (Eqg. (3.16)) are (i) co =0, 1
=0, ¢ =0.14 and c3 = —14.61, respectively. Objective functional is calculated as the
average value of the failure function as expressed in Eq. (4.1).
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Fig. 4.2  Shape optimization results for three kinds of ratios of tensile stress to shear stress: (a)
a. =0 (only torsion), (b) o = 2.0 (tension-torsion combined load), (¢) & — o (only
tension) . The material parameters of the failure function (Eq. (3.16)) are (ii) co = 1.0,
c1=0, c2 = 0.14 and c3 = —14.61, respectively. Objective functional is calculated as the
KS function of the failure function as expressed in Eq. (4.4).
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Fig. 4.3  Optimal shapes obtained from each interfacial shape optimization which minimizes (a)
the square sum of the failure function, (b) the average value of the failure function and
(c) KS function of the failure function, respectively.

4.2.4 KSEABDINTA—E p LIEFERDIER

KS BB /X7 A =% p IZENRKE T IUEKREWVIZERKELERTHZ L &720,
KB ZE/MET 27201003 p ZHDFREREXRMEICTILERS L. —F, p /S
T 25&, HEBIAEL DRI T ORKETIT2 B ARICET D f OfE4H
HT DX B LD, 22T, pOfEE 422 HTHWE 10 L0 b/hEfEE LT
KRB Z ATV, TSR Y Th 2R L 7285 Rk s KS B%ca: Fv iz
BAETHROLND DRETT 5.

AR OB T A —212 422 HEFRRIC (i) c0=0,c=0,c,=0.14,c3=-14.61 &
L, frEEMHIFRESH DR OBEER a > o GIRMEDOAR) & LT, p=5.0,10,0.5,
0.1 ITOWTENENIRIT 21T o T2,

M 4.4 \ZfRfTHE R AR, W27 5 70 FIZEILER G (4.4)), fou 33258
NOHEBB O KEEZ R L, ZNZI (F-cs), (fnax— C3) ZFIWIE (i fb S 18 B k
=0 Of) THKRITLIZbDE7 Yy FLTW5S.

4.4 XY, p=0501DGEEIIMERZ & OEERE LKL TNDZ ENRDLND



71

£72, K44 ), () 77 7Ly, HEREFMK LT p=05010& X (FIKEFHED
MBS CRRNMEZ M ETE Y, AiIETHIR2 L9 ISR KEZ H/IMET 5 faEil
TIHERAZ R TERNTHAH ZENRBEND.

X 4.4 (d) (p=05) OfORKEOHB LY, BEFIRO f ORKEL, WIHRIKES
L0 p=10,51IZB T HREKROBEREL Y b REKFT LTINS Z NS, Z
X, 423HTHBARZ2FMAERH W — A LFRIUT, RPNCRKEZEMIETT
HERIZ AR L CHESEBEEO 2 T, TO®RKEEZ FTFDE5BRETHZ &
T, FUEFHROIIMBRE N DR RME A F/IMET 5 2 L 2 B E Lciaift (p=10 DY
B E) KV LRKEARTIEZ0ELEEZZI 5.

— i p=010%E (K44 (e) X, HREBROEKKENPRKEIEML NS, Zh
1%, 423 TR FEIEE AWz 7r— 2 LR UC, #EERBEEO KRN fl2 T
HZEDHEHRMELTLED, IRNEFREFRELCLEoTcZiZkDboiELE
Zb5.

VLB RO KT IR0 TiE, () RO SEmR fEE T o2 8L, () fo
DADOEE/NSLSTHZERMFFTE 5 2FM (KX (317) F/zidp =05 O KS B
HBREE LI2GaI1s, N 2 s R AE N D 2 & i R ST,



72 4

(Cz/ 3) 1]2
[MPa?]
7.345E+00
[ 6.788E+00
6.231E+00
— 5673E400

5.116E+10
n—— 4 559E-+00

4.002E+10
3.444E4+00
2887E+00

2.330E-+00

(2)

(CQ!’ 3) 112
[MPa?]
7.192E+H0
[E.EEEE-‘GU

B.117E+00

(b)

3.966E+10
3.429E+00
2891E+00

2.353E+00

(©

(e2/3) 1, 12
[MPa’]

— 5.840E+00
[ 5.264E+00
4.68BE+00

4.112E400
3.536E+00
2.960E+00
2.384E+00
(d) (c,/3)1 12
[MPa?]
2531E400
[ 2307E+400
20236400
— 1.739E+400

[ 1.455E+00
1.171E+00

8.870E-01
6.031E-01
3.192E-01

3.526E-02

(c2/ 3) I
[MPa?]

1.480E+01

[ 1.316E+01

1.152E+01

— 9.881E+00

8.241E+00
6.600E+00

4.960E+00
3.320E+00
1.6B0E+00

3.931E-02

(e)

Q= . R

I THE DIRGEE & 2 5 RS

L 55798400 B —————
5.042E+00
e —
4.504E+00

Fig. 4.4 Shape optimization results for five kinds of parameters of KS function: (a) p = 10, (b) p
=5,()p=1,(d)p=05and (e) p = 0.1. The ratio of tensile stress to shear stress a —

oo (only tension). The material parameters of the failure function are (ii) co =0, c1=0,
c2 = 0.14 and c3 = —14.61, respectively.
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Fig. 4.5  Shape optimization results for (a) & = 0 (only torsion), (b) o = 2.0 (tension-torsion
combined load) and (c) « — o (only tension) . The material parameters of the failure
function (Eq. (3.16)) are co = 1.0, ¢1 =0, ¢ = 0.14 and cs = —14.61, respectively.
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k=150 k=294

(b)

k=0 k=2 k=4 k=6 k=11
Fig. 4.6  Shape optimization processes for o = 0 (only torsion) in the case of (a) f =c,J, +c,, (b)
f =cod, +(c, /3)17 ¢, ©) ¢ =(c, /3)1,2 +c, - The material parameters of the failure
function are co = 1.0, ¢, = 0.14 and c¢3 = —14.61, respectively.
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Fig. 4.7

k=0 k=50 k=100 k=150 k=294

Shape optimization processes for a = 2.0 in the case of (a) f =¢,J, +c, , (D)
f =cod, +(c, /3)17 ¢, ©) ¢ =(c, /3)1,2 +c, - The material parameters of the failure
function are co = 1.0, ¢, = 0.14 and c¢3 = —14.61, respectively.
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Fig. 4.8  Radial stress and strain assumptions in the case of (a) thin adhesive layer and (b) thick
adhesive layer.

9 =45° OFFTET VAKX 4912, FATICHWEM B AR 411073, K410
BEEAI O ABIAINESREL G 13 2.2.2 THTIT o 725 1R AMakBim DS/ EC, (ARFEHME
KK T ABRIMERE G=126 MPa LR 7T Y bk v=0.2,0.3,04 LREHEESNHET
H5.

M R RRBR T DO SIFRED DRENTE T VI U4 Tk & L, A% 45 mm, WE 3 mm, 4
£300mm & L7z, ffrer VOEmRZ5E2FEE L, EimlZo8EEE V, = 0.10 min/mm
THFA) 0.01 s £ TENT 21T o 7o, BEERICRIT D OT BT 68, 28, 8 ORHTHER %
410 (@) ~ (c) lT7.

Fig. 4.9  The quarter analysis model of the pipe specimen with outer radius of 45 mm and
thickness of 3.0 mm that has an inclination angle ¢ = 45°. The thickness of the
adhesive h = 0.5 mm and the tensile speed V, = 0.10 mm/min.

Table 4.1 The material parameters of aluminum pipe specimens and adhesive.

Pipe specimens Adhesive
G [GPa] 26.9 G [MPa] 126
K [MPa] 586, 272 and 167
K[GPa] 58.3 (v) (0.4,0.3and 0.2)
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Fig. 4.10  The distribution of the strain tensor components (a) &, (b) €9 and (c) &; based on
cylindrical coordinate in the adhesive layer. The parameters of adhesive are G = 126
MPa and K = 586 MPa (v = 0.4).

Table 4.2 The ratio of averaged normal strains of ¢ and &¢ to the &.. v= 0.4 (G = 126 MPa, K =
586 MPa) and h = 0.5 mm.

0° 20° 45° 75°
e lez —-0.17 —-0.15 —-0.14 —0.16
o lex —0.00 —-0.02 —0.09 —-0.10
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Table 4.3 The ratio of averaged normal strains of ¢ and ¢¢ to the .. v=10.3 (G = 126 MPa, K =
272 MPa) and h = 0.5 mm.

0° 20° 45° 75°
& lex —0.09 —0.08 —-0.07 —-0.09
o lex —0.00 —-0.01 —0.06 —0.08

Table 4.4 The ratio of averaged normal strains of ¢ and ¢¢ to the .. v=10.2 (G = 126 MPa, K =
167 MPa) and h = 0.5 mm.

0° 20° 45° 75°
e lez —0.05 —0.04 —0.04 —0.05
o lex —0.00 —-0.01 —0.05 —0.07

442 BEWNVEEBRBANDIGAEVTHDRE

PEHENENGAEE, K48 (b) DL, e FPAICHLEENELDEEZ LN, #
A E L COER RO EEIS IR0/ NS WREDHE WS, AETIE, 3.3 #iT
T2 4.11 ORIIAEE (R(3.43)) 2 Bt A IR £ 7 L (PEME & 91 X3k (3.1),

(3.2) M) 1Zxf LT, OptiStruct2017 (Y V77— v=71V 7 () 12XV #R
TEGRYE FEM FEFNT 21TV, 5 BICELDIGT), 0T AofMaEt Lz, eBs 150
ELTIE, a=100 L XDOFEMEF, M7 T4 (340) ~ (3.42) Lok, AT
S5,

Initial imperfection

Fig. 4.11 Thin-walled butt-jointed cylinder model the adhesive layer of which has initial
imperfection.
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Fig. 4.12 The distribution of the stress tensor components (a)or, (b)os, (C)o, (d)ors, (€)oe, and
(Fozr obtained from finite elements analysis of the thin-walled butt-jointed cylinder in
Fig. 4.11.
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Fig. 4.13 The ratio of stress components of a; t0 o4 (equal to ) on the line AA’ in Fig. 4.12.
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Fig. 4.14 The ratio of stress components of oy, 6,9, or; and oy t0 o7 on the line AA’ in Fig. 4.12.
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Fig. 4.15  The distribution of the strain tensor components (a)er, (b) s, (C) &z, (d) &ro, (€) €0 and
() &z, obtained from finite elements analysis of the thin-walled butt-jointed cylinder
in Fig. 4.11.
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Fig. 4.16 The ratio of strain components of ¢ and ¢ t0 &; on the line AA’ in Fig. 4.15.
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