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Abstract

Despite the many results suggesting the universal principle in which animals select some gaits
consistent with their own body and the surrounding environment, underlying mechanisms
for generating the motor patterns in nature animals are still enigmatic. Motor patterns of
animals are, in general, produced as a result of interaction between the brain—nerve, body,
and uncertain environment. Although this interaction is quite complicated to clarify, it is
challenging to identify which factor is crucial in gait generation and transition. In quest
of this issue “what is the source of motor patterns?”’, this thesis proposes two distinct
approaches based on robotics and physiology.

This thesis is composed of two parts. In Part I, we develop a quadruped robot that provides
a clue to the issue: a sufficient condition for generating the animal gaits. The major contri-
bution of this part is discovery of a new phenomenon in which an extremely simple robot
exhibits various animal gaits and adaptive transition. Among them, surprisingly, although
the robot has no sensor, microprocessor or explicit controller, the robot changes their gait
from walk to gallop according to the input voltages. Moreover, the different types of brain-
less robots (snake-like and earthworm-like robots) generate various animal motions that suit
their own body dynamics and constraint condition from the environments. The key of the
adaptivity is an electrical passivity of low-torque DC motors which rotate each limb of the
robot. When disturbance force is applied from the ground surface to the foot, load torque is
applied to the motor shaft, and the torque affects the rotational speed of the motor through the
electrical passivity. In the robot design, instead of considering this delay as disturbance, we
exploit this external torque as a control law to adjust the phase differences between the limbs.
In other words, the low-torque DC motor is a physical device that has functions of sensor,
microprocessor, and actuator.

To evaluate this control strategy, we conduct some walking experiments and show that the
robot exhibits the animal gaits and adaptive transition (walk to gallop) according to the input
voltages. Moreover, to further investigate this characteristics of the low-torque motor, we
conduct some experiments, simulations, and theoretical analysis for two fundamental systems
(a spring-mass system and a planar quadruped model). The experiments and simulations
show a key feature that the electrical passivity of the motors generates resonant modes of
the system. This feature allows the robot to generate various large amplitude motions even
with uncertain body structures and environments. In the simulations, we investigate some
robustness for parameter variations, such as the motor parameters and initial states. The
theoretical results provide an interpretation for the function of the low-torque DC motor.

The proposed method has three clear advantages that differs from the conventional decen-
tralized controllers. First, since the method needs no sensor, microprocessor, certain precise
and high-torque motor nor explicit controller, it significantly reduces the implementation cost
of conventional decentralized controllers. Second, this method needs no global information
of the mechanical system and uses only the local force feedback. Therefore, the module may
generate resonance modes of uncertain or unpredictable systems. As a result, if the body
and environment dynamics is changed by some troubles, the electrical passivity of motors



instantly adjusts the motions and adapts to these uncertainty. Third, while the proposed con-
trol method is powerless and inaccurate, it can generates physically natural motion that suits
for the robot body and environment. Although this method does not suit for static and heavy
workload tasks (e.g., position control or object manipulation), it will be a new approach for
robot design by using this method as a fundamental basis of the robot motor control and
adding just a little explicit controllers, such as the motor command from the brain, for the
heavy workload tasks.

In Part II, we construct a physiological model showing that the interaction among the
local controllers in animal muscles plays an important role for generating motor patterns.
The major contribution of this part is to suggest that the fundamental basis of animal motor
patterns is found in the body dynamics, and the simple reflex controllers play a role to adjust
the waveforms of the body motions. This model utilizes a primitive local control in animals,
called the stretch reflex, and it is based on the analytical results of the brainless walking,
which is introduced in Part I.

To construct the physiological model, we extract a dominant dynamics from the brainless
walking in two steps. First, we construct a model based on a dominant dynamics of the
brainless walking, called the DFFB (Direct Force Feedback) model. To verify this model, we
show some simulations for a spring-mass system and a planar quadruped model. The DFFB
model provides almost the same time response and resonant modes as the low-torque DC
motor model.

Second, we focus on the other aspect of the DFFB model. The DFFB model can be consid-
ered as a rough model of the stretch reflex strategy of actual animals. When an animal muscle
receives a force from the body or environment, the stretch reflex functions to maintain its cur-
rent muscle length. As with the stretch reflex, the DFFB model maintains the current length of
the linear actuator by decreasing the oscillation speed when the module detects the reaction
force. Based on this analogy, we modify the DFFB model using the physiological knowl-
edge, and as a result, we construct a physiological model that explain a function of the reflex
chains. In the simulations, the reflex model automatically generates resonant modes without
any explicit neural connection between the models. Moreover, the model adjusts these motor
patterns adaptively to changes in the parameters of the body structure. From these results,
we conclude that a source of pattern formation is in the body dynamics, because the physical
interaction between the local stretch reflex controllers has a function to adjust the waveform
of the body motion.
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Chapter 1

Introduction

1.1 Motivation: The Mystery of Animal Gait Generation
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Fig. 1.1 Typical gaits of animals. What is the source?

Animals synchronize their rhythmic motions in each body part (e.g., limbs and spines)
and generate versatile motor patterns (Fig. 1.1). These patterns is typically observed in an-
imal locomotions, walking, running, hopping, crawling, swimming, flying and so on, and
these skills make nature animals possible to escape from predators or to seek food and water.
These characteristic patterns are called the gaits and defined as ‘““a pattern of locomotion char-
acteristic of a limited range of speeds, described by quantities of which one or more change
discontinuously at transitions to other gaits” [3]. Furthermore, it is well known that animals
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change their gaits from one to another adaptively. This behavior, called the gait transitions,
are typically observed in legged animals: for example, quadrupeds select a suitable one from
the six gaits according to their speed [4].

Animal gaits have long been studied in biology [5, 6, 7, 8], and also, attempts to understand
mechanisms underlying the gait generation and transition were proposed in some studies. An
experiment [9] shows that horses select an efficient gait in terms of oxygen consumption per
meter. This result explains an adaptability that animals select some kind of energetically op-
timal gait to survive in nature with limited resources. Studies with different types of animals
[10, 11] show that the stride frequency at the gait transition point (trot—gallop) changes in
a regular manner with body mass, and relation between the frequency and mass is linear in
logarithmic coordinates. This result suggests that the body dynamics is a crucial factor to
determine the transition point, and in other words, some universal principles in which the
different species select a suitable gait for their own body dynamics may be hidden.

Despite the many results suggesting the universal principle in which animals select some
gaits consistent with their body and the surrounding environment, underlying mechanisms
that enable the gait generation in nature animals are still enigmatic. Animal gaits are, in
general, produced as a result of interaction between the brain—nerve, body, and uncertain
environment. Although this interaction is quite complicated to clarify, it is challenging to
identify which factor is crucial in gait generation and transition. In quest of this issue “what
is the source of motor patterns?”, this thesis show a way to disentangle the interaction using
an approach, called the brainless robotics.

1.2 Background: Motor Controllers in Animals

In other to find out the source of motor control in animals, a large number of studies have
been performed in biology. In these study, some fundamental functions in animals that play an
important role for generating motor commands was reported. These functions are mainly pro-
duced by two controllers in animals: sensory feedback through the musculoskeletal system,
called reflex action, and neural networks in the spinal cord, called central pattern generators.

1.2.1 Local reflex action

Animals have two kinds of motor controllers, voluntary and involuntary ones (Fig. 1.2). The
voluntary control from the brain is suitable for complex cognitive tasks, but it causes long
delays (220 ms during a simple reaction time task [12]). Whereas the involuntary controller,
which is decentralized in each part of the animal body, enables a quick adaptation for changes
in the external environment. When an animal body receives some disturbance from the out-
side world, receptors in musculoskeletal system detect a physical quantity as the sensory
information*!. The sensory information is sent to motor neurons in the spinal cord through
nerve fibers, and the neurons produce motor commands to muscles (Fig. 1.3). Such funda-
mental response to a stimulus is the reflex action belongs to involuntary controls. The reflex

*I Strictly speaking, receptors are also in our joints, skins, and so on, but this thesis focus on the receptors in
muscles and tendons.
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Fig. 1.3 Motor neurons produce motor
commands to muscles.

Fig. 1.2 Animals have two kinds of motor
controllers, voluntary and involuntary ones
(e.g., cortical reflex and spinal reflex).

is mainly used for relatively quick and simple motion tasks, and its delay is 30 ms with
short-latency and is 50 to 60 ms with long-latency [13].

Functions of the reflex action for motor control have been reported by many researchers.
Experiments with decerebrate cats [14] showed that, the neural reflex circuits contribute to
adapt muscles activity to variable load [15], to stabilize walking gaits [16], and to compensate
for muscle nonlinearities and regulate muscle stiffness [17, 18]. Moreover, this reflex action
also contributes to human locomotions [19] during standing [20], walking [21], and hopping
[22, 23, 24]. These results suggest that the functions for quick adaptation are embedded in
our body as an enormous amount of local controllers. The interaction between the reflex
controllers, called the reflex chains, is thought to adjusts muscle activities each other and
shape the motor patterns.

1.2.2 CPG: Central Pattern Generator

Another key discovery in this research field is neural networks in the spinal cord, called
the central pattern generators (CPG) [25]. The CPGs are found in both invertebrate and
vertebrate animals [26, 27]. The spinal cord of the lamprey, that is isolated from the body,
produces fundamental rhythmic activities [28, 29], called the fictive locomotion. Moreover
CPG in the lamprey entrains its activity to a rhythmic mechanical stimulus from the outside
[30]. Similarly, an experiment on cat hind legs [31] showing that the spinal cord could still
generate stereotypic alternating activity between flexor and extensor muscles when it was
deafferented by cutting the dorsal roots. From these evidences, animals have some kind of
controller in their spinal cord to generate rhythms centrally.

In other experiments focusing on locomotor patterns, the decerebrated cat generates a
walking gait on a treadmill [32] and also shows gait transition from walk to trot to gallop
[33, 34] *2. The gait speed in the decerebrated cat depends on the stimulus intensity of
a region in the brain stem called Mesencephalic Locomotor Region (MLR) [35], and at a
threshold, higher stimulation induce gait transition from walk to trot to gallop [14].

*2 This result is in the unpublished film by T.G. Brown (https://www.youtube.com/watch?v=wPiLLplofYw)

_3_



1.2. BACKGROUND: MOTOR CONTROLLERS IN ANIMALS

Reflex chain CPG (half-center model)

.
=)

interneuron

X X
X X iIN Inhibitory
interneuron
—d Excitatory
synapse
—® |Inhibitory
synapse
Physical
interaction

Extensor Flexor Extensor Flexor

Fig. 1.4 Which is the source of motor patterns, the reflex chain or CPG?. At the beginning
of the 19th century, the source of animal motions was widely believed to result from the
reflex chains (chains of local sensory feedback through the muscles). However, after a key
result, it has been assumed that the source of animal motions is in the CPG, and the reflex
chains is not essential for generating the fundamental animal motions.

After the discovery of CPG, attempts to construct mathematical CPG models have been
conducted [27, 36]. Roughly speaking, the artificial CPGs are classified into the connection-
ist models and oscillator models. First, the connectionist approach, which is based on mathe-
matical neuron models, has been studied in order to explore the relation between inter-neuron
connections and generated patterns. A fundamental connectionist model is called the half-
center model [37], and it shows that mutually coupled neurons generate alternating rhythmic
activity. More complex models (e.g., a detailed neural and body model in animals [38] and a
multiple-layer CPG models [39, 40, 41]) have been proposed, and it can also produce some
cyclic motions.

Next, oscillator models, more abstract models, are based on nonlinear coupled oscillators.
The well-known Kuramoto oscillator [42] and Matsuoka oscillator [43] are relatively easy
to describe and analyze theoretically. These CPG models has also been employed as robot
controllers [36], however, most of the output waveform was fixed for a given frequency. Re-
cent advances in this field, a CPG model [44] exhibits some animal motions and its transition.
However the analysis for the generated motions and its mechanism is still limited, thus a ques-
tion “how animals generate gait patterns that suit their body and uncertain environment?” is
still unclear.

1.2.3 Which is the source of motor patterns, reflex chain or CPG?

As we mentioned above, animals have two different motor controllers, the reflex chains and
CPG. Now then—which is the source of motor patterns, the reflex chain or CPG? (Fig. 1.4).

Although this question still remains to be solved, there has been some discussions so far
[25, 36, 27]. At the beginning of the 19th century, the source of animal motions was widely
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believed to result from the reflex chains (chains of local sensory feedback through the mus-
cles) [45]. This reflex chain hypothesis claims that the sensory feedback plays an important
role in triggering switches between different phases in locomotion, such as the stance and
swing phase. Contrary to this hypothesis, T.G. Brown showed an evidence that the cat hind
legs could generate alternating activity without sensory feedback through the dorsal roots
[31]. After this result, it has been assumed that the source of animal motions is in the CPG,
and the reflex chains is not essential for generating the fundamental animal motions. We refer
to this claim as the CPG hypothesis.

Here, for discussions, we introduce following two terms: the “rhythm generation” that
provides the temporal rhythmicity, and the “ pattern formation” that adjust the waveform
of the body motions. The CPG hypothesis is clearly correct in terms of the simple “rhythm
generation” to generate some fundamental nerve activity (e.g., the heartbeat and the fictive
locomotion). However, it is a bit inaccurate in terms of more complex and synergetic “pattern
formation”. As pointed out in a review [25], the animals utilize both aspect, the reflex chains
and CPG, for generating synergetic motor patterns of muscles, such as gait patterns.

Although some physiological studies [41] proposed some novel CPG models (e.g., the
multiple-layer CPG model [39, 40] that is composed of two network layers that provide
the functions for the “rhythm generation” and “pattern formation” respectively), most of re-
searcher pay only little attention to the body dynamics where the sensory information comes
from. It is well known that gait patterns and its frequency are affected by the physical fea-
tures of animals (body size, mass, and morphology) [3, 4, 46, 10], therefore, the source of
gait patterns and adaptive transitions are not provided only by the CPG, but also by the reflex
chains through the body dynamics. In this thesis, particularly in Part II, we will investigate
the functions of the reflex chains through the body dynamics, rather than the CPG through
the neural circuit. The results based on the robot experiments in Part I and the physiological
simulation in Part II prove some functions of the reflex chains while generating and adjusting
the gait patterns.

1.3 Sub-Issues and Approaches

In the above sections, we overviewed some attempts to understand the mechanisms underly-
ing the gait generation and transition. Although some experimental knowledges have been
obtained by these studies, the source of motor patterns that integrate these knowledges is still
undiscovered. For this issue, we deal with following two sub-issues in this thesis:

1.3.1 Sub-lssue |. How to investigate the entangled nerve—body—
environment interaction?

Animal gaits are generated as a result of the entangled interaction between the brain—nerve,
body, and uncertain environment. The major difficulty in this challenge is that the nerve—
body—environment dynamics is quite complicated to understand which elements in animals
contribute to the gait generation (Fig. 1.5). Most of the traditional studies in nature science
have been based on the reductionism, an approach focusing on its constituent elements, to
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Fig. 1.5 The nerve-body—environment dynamics is quite complicated to understand
which elements in animals contribute to the gait generation. To identify the source of
motor patterns, we have to simplify the entangled interaction at a proper level in which the
gait generation is maintained.

explain a biomechanical phenomenon. However, a motor function in animals is provided
by the multiple feedback loops through the mechanical and electro-physiological elements,
and also these elements related to another motor functions. Therefore analyses based on the
reductionism break some feedback loops and obscure the essential phenomenon that should
be observed. To identify the source of motor patterns, we have to simplify the entangled
interaction at a proper level in which the gait generation is maintained.

To address this problem, in this thesis, we attempt to extract the source of patterns based
on a design approach, called the minimalistic design approach. This approach was taken
by D. Owaki and A. Ishiguro [47, 48], and they developed a simple legged robot based on
it. Their work showed that the animal gaits are generated even without an interlimb neural
connection. This result means that a new sufficient condition for the animal gait generation
was proved using the simple designed robot (for more detail, see the beginning of Chapter 2).
Based on this success, we also take the minimalistic design to address the first issue “How
to investigate the entangled nerve-body—environment interaction?”. We aim to identify a
sufficient condition for the animal gait generation by constructing further simple robots. This
extremely simple robot, called the brainless robot, has no sensor, microprocessor, or explicit
controller, but provides some fruitful suggestion to identify the source of motor patterns.

1.3.2 Sub-Issue Il. How to explain actual animal functions with simple
robot?

The brainless robot, which will be introduced in Part I, brought us some knowledges of the
gait generation conditions. However, roughly speaking, all biomimetic robots are not more
than a toy model of animals. Therefore it is difficult to explain the source of motor patterns
in terms of physiological view only with the minimalistic design approach. In contrast, the
realistic models (the connectionist CPG models) is complicated to even explain and under-
stand its own mechanisms. A new approach is needed to explain the relation between the toy
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models (in this thesis, the brainless robot) and actual animal functions.

To solve the issue “How to explain actual animal functions with simple robot?”, this the-
sis takes the gradual modeling approach. In this approach, we extract a dominant dynam-
ics of the brainless walking as another new oscillator model, called the DFFB (direct force
feedback) model. Moreover, gradually modify the DFFB model by focusing on the analogy
between the DFFM model and the reflex action in animals. As a result, we will introduce a
physiological model that explain some functions of the reflex chains in Part II.

1.4 Thesis QOutline and Contributions

This thesis take two distinct based on robotics and physiology. Each approach is described in
following two parts:

e Part I. Discovery of Brainless Walking
e Part II. Reflex Chains Generate Motor Patterns

1.4.1 Part |. Discovery of brainless walking
The contributions of Part I are follows:

e Chapter 2
— develop an extremely simple quadruped robot, called the brainless robot
* design the robot without a sensor, microprocessor, or explicit controller
% explain the mechanism of the brainless robot using an electrical passivity of
low-torque DC motors
— conduct some walking experiments
* show that the robot exhibits various animal gaits and adaptive transition
(walk to gallop) according to the input voltages
e Chapter 3
— conduct some experiments and simulations with a spring-mass system
« show a key feature that the electrical passivity of the motors generates reso-
nant modes of the system
* show some robustness for parameter variations

The major contribution in Part I is the discovery of a new phenomenon in which an ex-
tremely simple robot exhibits various animal gaits and adaptive transition (Fig. 1.6).

In Chapter 2, we develop a quadruped robot that provides a clue to the issue: a sufficient
condition for generating the animal gaits. Among them, surprisingly, although the robot
has no sensor, microprocessor, or explicit controller, the robot changes their gait from walk
to gallop according to the input voltages. Moreover, the different types of brainless robots
(Fig. 1.7) generate various animal motions that suits their own body dynamics and constraint
condition from the environments*>. The key of the adaptivity is an electrical passivity of low-

*3 The snake-like robot and earthworm-like robot is introduced in Appendix
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Fig. 1.6 Overview of Part I. We develop the quadruped robot, called the brainless robot.
Among them, surprisingly, although the robot has no sensor, microprocessor, or explicit
controller, the robot changes their gait from walk to gallop according to the input voltages.

torque DC motors ** which rotate each limb of the robot. When a disturbance force is applied
from the ground surface to the foot, a load torque is applied to the motor shaft, and the torque
affects the rotational speed of the motor through the electrical passivity. In the robot design,
instead of considering this delay as a disturbance but exploit this external torque as a control
law to adjust the phase differences between the limbs. In other words, the low-torque DC
motor is a physical device that has functions of a sensor, microprocessor, and actuator. To
evaluate this control strategy, we conduct some walking experiments and show that the robot
exhibits various animal gaits and adaptive transition (walk to gallop) according to the input
voltages.

In Chapter 3, we show some experiments, simulations, and theoretical results for a spring-
mass system and a planar quadruped model to investigate the fundamental characteristics of
the low-torque motor. The experiments and simulations show a key feature that the electrical
passivity of the motors generates resonant modes of the system. This feature allow the robot
to generate various large amplitude motions even with uncertain body structures and environ-
ments. In the simulations, we investigate some robustness for parameter variations, such as
the motor parameters and initial states. The theoretical results provide an interpretation for
the function of the low-torque DC motor.

*4 Note that this passivity is different from the concept of backdriverbility. Our concept positively utilizes the
phase delay due to the low-torque motor for cooperative control
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Fig. 1.7 The different types of brainless robots generate various animal motions that suits
their own body dynamics and constraint condition from the environments. The snake-like
robot and earthworm-like robot is introduced in Appendix.

1.4.2 Part Il. Reflex chains generate motor patterns
The contributions of Part II are follows:

e Chapter 4
— construct a model, called the DFFB model
% extract a dominant dynamics of the electrical passivity of the low-torque DC
motors as another new model
* design the model without any electrical interaction between the models
— conduct some simulations with the spring-mass system
x show that the DFFB model achieves the same function (the resonant mode
generation, its transition, and time response) with the low-torque motors
e Chapter 5
— construct a physiological model of the reflex action in animals
% design the model without any neuronal interaction between the reflex models
— conduct some simulations with the spring-mass and musculoskeletal models
x show that the reflex model achieves the same function (the resonant mode
generation, its transition) with the low-torque motors and DFFB model
s« discuss that the reflex chain plays an important role in generating motor pat-
terns

The major contribution in Part II is to suggest that the source of pattern formation is in
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Fig. 1.8 Overview of Part II. We construct a physiological model in which local stretch
reflex controllers generate motor patterns through body dynamics (having no neural inter-
action). This controller is based on the analytical results of the brainless walking, which is
introduced in Part I.

the body dynamics, and the physical interaction between the local stretch reflex controllers
has a function to adjust the waveforms of the body motions (Fig. 1.8). In the end of Part II,
we construct a physiological model showing that the reflex chain through the body dynamics
plays an important role in generating motor patterns. This model denotes a primitive local
control in animals, called the stretch reflex, and it is based on the analytical results of the
brainless walking, which is introduced in Part I. To construct the physiological model, we
extract a dominant dynamics of the brainless walking gradually.

In Chapter. 4, we construct a model based on a dominant dynamics of the brainless walk-
ing, called the DFFB (Direct Force Feedback) model. To verify the model, we show some
simulations for a spring-mass system and a planar quadruped model. The DFFB model pro-
vides almost the same time response and resonant modes as the low-torque DC motor model.

In Chapter. 5, we focus on the other aspect of the DFFB model. The DFFB model can
be considered as a rough model of the stretch reflex strategy of actual animals. When an
animal muscle receives a force from the body or outside world, the stretch reflex functions to
maintain its current muscle length. As with the stretch reflex, the DFFB model maintains the
current length of the linear actuator by delaying the oscillation speed when the module detects
the reaction force. Based on this analogy, we modify the DFFB model using the physiological
knowledge, and as a result, we construct a physiological model that explain a function of the
reflex chains. In the simulations, the reflex model automatically generates resonant modes
without any explicit neural connection between the models. Moreover, the model adjusts
these motor patterns adaptively to changes in the parameters of the body structure. From these
results, I will conclude that the crucial source of pattern formation is in the body dynamics,
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because the physical interaction between the local stretch reflex controllers has a function to
adjust the waveform of the body motions.
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Chapter 2

Discovery of Brainless Walking

This chapter shows an extremely simple robot, called the brainless robot, in order to identify
a sufficient condition for generating the animal gaits. The major contribution of this chapter is
to show that an active walking with autonomous gait adjustment is possible without a sensor,
microprocessor, or explicit controller. The brainless robot is capable of generating typical
quadruped gaits and selects one of them automatically despite being composed of only a
purely physical mechanism. The key of the gait generation is the electrical passivity of a
low-torque DC motor. The low-torque DC motor that has the passive dynamics interact with
the ground surface, and as a result, the motor adjusts its own phase and makes it as an implicit
controller. Experiments show some fundamental characteristics of the robot and its gaits with
different input voltage.

In this chapter, first, we introduce some traditional approaches that exploit its body and
environment dynamics for robot locomotion. Second, we introduce the brainless robot that
has no sensor, microprocessor, or explicit controller. The brainless robot generates various
gaits by exploiting the electrical passivity of low-torque DC motors. Finally, we conduct
some experiments that show the robot exhibits various animal gaits and adaptive transition
(walk to gallop) according to the input voltages.

2.1 Background: Embodied Approach for Robot
Locomotion

Animal gaits are generated as a result of the entangled interaction between the dynam-
ics of brain—nerve (controller), body, and uncertain environment. Such controller—body—
environment dynamics is quite complicated to understand which element in animals con-
tribute to the gait generation, thus the reductionism break and obscure the essential phe-
nomenon that should be observed. As opposed to the reductionism, attempts to understand the
animal locomotor system without reducing to its constituent elements has been in robotics.
This attempts based on the holism is called the embodied robotics that pay attentions on
the interaction between the robot body and environment. The contributions of the physi-
cal dynamics for generating adaptive behaviors are gradually revealed in recent embodied
approaches [49]. Therefore, first, we show a few historical background to discuss this topic.



2.1. BACKGROUND: EMBODIED APPROACH FOR ROBOT LOCOMOTION

2.1.1 Limitation of classical Al and new approach for robotics

The first historical keyword is the behavior-based approach. The concept of behavior-based
was firstly proposed in the context of Al (artificial intelligence). We tend to believe that the
advanced computing in our brain function is crucial to achieve the intelligent and adaptive be-
havior. Therefore, Classical Als and robots (e.g., Shakey [50], the world-famous robot) were
also designed that mimics our thinking process. Shakey has an ability to construct internal
representation of his surroundings, and it explores the outside world based on an algorithm,
called the sense—-model-plan—act framework. In this framework, first, the robot constructs
a model for the outside world using symbolic representation from camera information, and
next, calculates the next action plan using the symbol-processing approach. However, the
shakey could only explore in a well-designed static world, and its computational processing
caused a non-negligible delay in the operation.

Such difficulty, the uncertainty of the outside world that the shakey faced, is also exists
in modern robotics. In general control design, we frequently take the model-based approach
that represents the system dynamics and uncertainty in the system. Additionally, we assume
that the fundamental structure of the system is not varying in process. However, in the real
world, the system dynamics of a robot is rapidly changed by the interaction between the robot
body and uncertain environment, thus a complete modeling of the outside world is nearly im-
possible. These problem is typically seen in recent robots, due to its large degree of freedom
[51, 52, 53] and with flexible continuum structures [54]. The complex nonlinearity and body
elasticity causes various constraint conditions due to the friction, slip, and discontinuous state
switching, and their body shape is constantly deformed by the external environment. To deal
with these uncertainty, a new paradigm without relying on the internal representation of the
outside world was needed.

To deal with these uncertainty of the robot body and outside world, R. Brooks proposed
a new paradigm, called the behavior-based approach [55, 56]. He mentioned the limitation
of the classical Al with the internal representation of the outside world and pointed out the
vailed ability in physical dynamics of robot bodies. Specifically, he showed some simple
examples in which the body—environment interaction is able to replace some functions of the
classical Al. He designed a six-legged robot Genghis by combining simple and decentralized
controllers that react the outside world. Despite having no internal models of the dynamic
outside world, his six-legged robot demonstrated some adaptive behavior. As a result of this
great quantum leap, the nature of the research questions was changed into “how to make use
of the entangled interaction between a robot body and the outside world?”.

2.1.2 Implicit controller underlying body—environment interaction

When we designer make a robot, the most of controller design would be based on the model-
based approach. However, as we mentioned above, a complete modeling of the robot body
and uncertain environment is nearly impossible, thus the paradigm of the model-based ap-
proach is able to deal with just a part of essential dynamics of the body—environment interac-
tion. A new paradigm to address this issue is the dynamics-based control that was proposed
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by K. Osuka [57]. The dynamics-based control is defined as a control strategy that utilize
the characteristic dynamics of the controlled object, and when the dynamics is emerged from
interaction between multiple elements (e.g., the robot body and environment), this control is
called the implicit control. The “implicit” means that the control law is not described explic-
itly in a robot. When multiple robots and the environment are interacting, new dynamics will
appear there, and in some cases, the dynamics may functions as a controller.

A related example of the implicit control is the passive dynamic walker that was proposed
by T. McGeer [58]. He constructed a quite simple machine by only pure mechanism and
demonstrated bipedal walking gait using the dynamics intrinsic to the robot body and the
environment (ground constraint and gravity). After this work, variations of passive dynamic
walkers were investigated by S. Collins [59]. A theoretical study [60] by Y. Sugimoto showed
that the pure body—environment interaction makes it as an implicit closed-loop controller, and
it contributes to the stability for the gait patterns. In terms of the gait transition, experiments
with passive quadruped walkers [61, 62] and a passive biped walker [63] exhibited various
gaits adaptively. These results suggested that the dynamics of the robot body is crucial to
generate its legged locomotion. As a recent advancement of this approach, Osuka’s group
developed a centipede-like robot, called the i-CentiPot [64]. Despite the i-CentiPot has also
no explicit controller or cranial nerves, it automatically searches its trajectory in which the
robot is able to easily go through the natural environment with a lot of obstacles.

2.1.3 Locomotion as a vibration

Another paradigm similar to the dynamics-based robotics is the morphological computation.
The way of thinking behind the morphological computation is that a part of the computations
for the robot control can be outsourced to dynamics of the robot body itself. A series of
studies by Pfeifer’s group [65, 66] performed some active motion generation by exploiting
morphology and materials of the robot body. The importance of body compliance were shown
by Raibert’s robots with springy legs in early years [67], and the roles of compliant leg [68,
69, 70] and torso [71] are still investigated. Besides that, large number of robots with body
compliance are still designed, such as monopeds [72, 73], bipeds [74], quadrupeds [75], and
hexapods [76].

From the viewpoint of the morphological computation, Reis and lida [77] investigated the
fundamental behavior of a simple robot, which composed of an elastic curved beam. Despite
such simplicity, the robot enables an energy-efficient hopping by exploiting the coupled dy-
namics between the elastic body and ground surface. The simple control strategy underlying
this robot, which we call the vibration-based locomotion, was the robot shaking its own body.
The robot has one DC motor with a small rotating mass on the top of elastic body. When the
DC motor rotates continuously, the coupled dynamics of the body and environment was en-
trained in its resonance mode, and thus, the body motion is automatically synchronized with
the uncertain environment. Moreover, simple biped with similar concept [78] that generated
various locomotion with a U-shaped curved beam was proposed. These results suggest that
the intrinsic dynamics in the robot’s morphology and materials is useful to generate efficient
locomotion with the body and environment dynamics.
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2.1.4 Non-neural interlimb interaction generates gaits

Finally, we introduce a key design concept to construct a distributed closed-loop system for
robot locomotion, called the TEGOTAE-based approach [47). The TEGOTAE-based control
is a scheme to generate the effective driving force that contributes to robot locomotion. D.
Owaki and A. Ishiguro introduced a function that quantify TEGOTAE, called the TEGOTAE
function, and they explained that “TEGOTAE” is a Japanese concept describing the extent
to which a perceived reaction matches an expectation [79]. Although the formulation of the
TEGOTAE-based controller can be classified as an oscillator model (a kind of CPGs), the
clear difference with the conventional CPGs is its simplicity. They demonstrated the capabil-
ity of this approach with a quadruped robot [47, 48], called the OSCILLEX. The OSCILLEX
has four decentralized controller in each limbs, and each controller determines the phase of
each leg. Remarkable point of this implementation is that the robot has no inter-neural com-
munication, but has the physical (non-neural) inter-limb interaction. Despite each controller
is perfectly decentralized, the robot showed adaptive and versatile gait transitions in nature
animals. This result suggests that interlimb physical interaction is playing a large role to
generate adaptive gaits than we thought.

2.2 Design Principle

The basic design principle of the brainless robot is also based on the embodied robotics, and
the aim of this chapter is to identify a sufficient condition for the animal gait generation by
constructing an extremely simple robot. In this thesis, we take the following three design
principles:

e Vibration-based locomotion for uncertain dynamics
e Actuator synchronization using local force information
e Brainless control using electrical passivity of DC motor

2.2.1 Vibration based locomotion for uncertain dynamics

Locomotor control in unpredictable environments is a major issue for legged robotics. As
seen in previous section, a complete modeling of the robot body and uncertain environment
is nearly impossible, due to the ground contact condition between the robot leg and envi-
ronment is rapidly changed by the friction, slip, and discontinuous state switching. To deal
with such uncertainty, and also to deal with the entangled controller—-body—environment dy-
namics, we employ the vibration-based locomotion which is proposed by M. Reis and F. lida
[77]. Their simple robot generated a hopping motion as a resonant vibration by rotating one
DC motor with a mass, and energy efficiency of this approach was evaluated by the cost of
transport in their article. Although this result seems to be trivial in terms of the forced vibra-
tion with one actuator, it would be an effective strategy for the animal locomotion. Nature
animals have to generate large-amplitude motions with a limited amount of energy, and an
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experiment [9] showed that actual horses select energy-eflicient gaits according to their lo-
comotion speed. Based on this experiment, a study [80] suggested a similarity between the
walking motion of a horse and natural vibration modes of its body model. These findings sug-
gest that animals exploit their own intrinsic body dynamics (some type of vibration modes) to
generate motions. This thesis shows a design method to extend this vibration-based approach
to general mechanical systems with other forms and multiple actuators.

2.2.2 Actuator synchronization using local force information

To vibrate a robot body with multiple actuators, we need a method to synchronize the
multiple-actuators and the dynamics of the robot body and environment. A key concept to
achieve this multiple actuator synchronization is found in the well-known synchronization
phenomenon, the Huygens synchronization [81]. The phenomenon, in which two pendulum
clocks hanging from a wall synchronize with each other, was first observed by Huygens
during the 17th century. Although such synchronization is observed in other oscillators in
the field of nonlinear dynamics (e.g., the Van der Pol oscillator [82], Kuramoto oscillator
[42], and Matsuoka oscillator [43]), most of oscillators need the electrical communications
each other unlike the Huygens synchronization. As a recent advance in this area, a simple
oscillator [47, 48] allowed a quadruped robot to generate typical animal gaits, and it is called
the TEGOTAE control, as introduced in previous section. The remarkable advancement
provided the oscillator was that it could adjust its own phase using only the local force
information. This concept using only the local forces does not require a precise model and
rigorous computation, because the oscillator adjusts its phase according to the reaction forces
from the environment. To synchronize multiple actuators in the vibration-based approach,
this thesis employ the control principle which exploits the local force information.

2.2.3 Brainless control using electrical passivity of low-torque DC motor

The key concept behind the brainless robot is to exploit the electrical passivity intrinsic to
the low-torque DC motor (Fig. 2.1). When a reaction force from the body and environment
is applied to the rotating low-torque motor, a load torque applied to the motor, a disturbance
corresponding to the load torque occurs in the motor phase. In conventional robot control,
this disturbance is compensated by the servo control because it makes a tracking error. In
this method, instead of considering this disturbance as an error but exploit it as a sensory
feedback law to adjust the phase differences between multiple motors. Thanks to the motor
passivity, the phases of the legs that received excessive load stay at that place and support
the load, and conversely if the load decreases, the legs kick the ground. In other words, the
low-torque DC motor is a physical device in which the functions of the sensor (detecting the
load), microprocessor (adjusting the leg phases), and actuator are all included.

The conventional oscillators need a sensor, microprocessor, and some peripheral circuits
for each control modules. In contrast, the brainless control without any explicit controller
significantly reduces the implementation cost of conventional oscillators.

—17 -



2.3. QUADRUPED WALKER “BRAINLESS II”

2. Low-torque motor
adjusts its own phase

Low-torque
DC motor

Slider

1. When a reaction force is
applied to the foot

Brainless robot
(side view)

————————————————

0(t) = w + N (t)cos(t).

motor  no-load | force linkage
velocity  velocity .- - ____ " __.

Electrical passivity behaves as a closed-loop controller

Fig. 2.1 The key concept behind the brainless robot is to exploit the electrical passivity
intrinsic to the low-torque DC motor.

2.3 Quadruped Walker “Brainless II”

This section describes an extremely simple quadruped robot that exhibits various animal gaits
and its transition without a sensor, microprocessor, or explicit controller.

An overview of the quadruped robot, called Brainless II, is shown in Fig. 2.2. This robot
is composed of fore and hind body modules, and the modules are connected with the flexible
spine, as shown in Fig. 2.3. Each module has right and left legs, and each leg has a slider-
crank mechanism that is connected to a low-torque DC motor. The total mass of the robot,
which includes the two body modules and four legs, is 150 g.

Body Modules

Fig. 2.3(A) illustrates the body modules. Two DC motors (Pololu 75:1 Micro Metal Gearmo-
tor HP) are mounted to each body module (four motors in total), and all the motors are directly
connected to a stabilized power source in parallel. When the robot is walking, each DC motor
simply rotates continuously under a constant voltage, thus it generates only a simple foot tra-
jectory. However the robot adjusts its own motion by exploiting the motor dynamics without
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Low-torque (D) Elastic Spine

Fig. 2.3 Structure of Brainless II. This robot
) ) ) is composed of (A) fore and hind body mod-
Fig. 2.2 Overview of Brainless II. ules, (B) legs, (C) circular feet, and (D) an
flexible spine.

Fig.2.4 The leg linkage is composed of a crank that connects the motor to the shaft, and a
slider that connects the crank to the circular foot. Each leg has one degree of freedom, and
the motor in continuous rotation produces a simple elliptic trajectory through the slider-
crank linkage.

any closed-loop controller, as described later.

Elastic Spine

The flexible spine plays an important role in quadruped locomotion [83]. In this study, an
flexible spine was applied, as shown in Fig. 2.3(D). The spine is a polypropylene strip and is
easily deformed by a small external force in the roll direction (Fig. 2.5(a)) and yaw direction
(Fig. 2.5(b)). The thickness and width of the spine are 0.75 and 15 mm, respectively. We set
the distance between the two body modules to 100 mm.

Leg Linkage

Fig. 2.3(B) illustrates a robot leg. The leg linkage is composed of a crank that connects the
motor to the shaft, and a slider that connects the crank to the circular foot. Each leg has one
degree of freedom, and the motor in continuous rotation produces a simple elliptic trajectory
through the slider-crank linkage. The distance between the left and right legs is 60 mm, and
the length of each leg (i.e., the distance between the crank tip and toe tip) is 75 mm. The link-
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(a) Roll Motion (b) Yaw Motion

Fig. 2.5 The flexible spine is a polypropylene strip and is easily deformed by a small
external force in the (a) roll and (b) yaw directions.

age mechanism of each leg generates an elliptic trajectory of the foot, as shown in Fig. 2.4.
The lengths of the major and minor axes of the leg trajectory (Fig. 2.4) are 40 and 28 mm,
respectively.

Circular Foot

We introduce a circular foot for smooth switching between the stance and swing phases, as
illustratd in Fig. 2.3(C). The shape of the foot was designed as the arc of a circle. The center
point of the circle is defined by the same point to the crank tip. The chord of the arc is 45
mm, and the width of the foot is 8 mm.

2.4 Modeling of Leg Mechanism

This robot has any sensor, microprocessor, or explicit controller. The key concept behind the
brainless robot is an electrical passivity intrinsic to the low-torque DC motor. When a reaction
force from the body and environment is applied to the rotating low-torque motor, followed
by a load torque applied to the motor, a disturbance corresponding to the load torque occurs
in the motor phase. In this method, we exploit this disturbance as a sensory feedback law to
adjust the phase differences between the leg phases.

This section shows a model of the low-torque DC motor and the leg linkage to explain
some qualitative features of the brainless robot.

2.4.1 Electrical passivity of low-torque DC motor

The brainless robot exploits the electrical passivity intrinsic to the low-torque DC motor. Let
us consider a DC motor that simply rotates continuously under a constant voltage (having no
servo control). Moreover, we assume that the motor inertia J, friction D, and inductance Ly,
are sufficiently small than the motor constant K.
When a torque 7 is applied to the motor shaft, the mechanical equation of the motion of a
DC motor is given by
JO®t) + DO(t) = t.(t) + 1(0), 2.1
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where J is the rotor inertia, D is the viscous friction, 77, is the generated torque by the rotor.
The generated torque by the rotor 7, () is proportional to the current i(¢) as

70(0) = Kyi(?), 2.2

where Ky, is the motor constant*'. Substituting Eq. (2.2) for the mechanical equation of
motion (2.1), we get

1 . .
i(t) = —(JO(r) + DO(t) — 7(2)). (2.3)
Ky
The electrical equation of motion of the DC motor is given by

V = Lyi(t) + Ri(t) + E(1), (2.4)

where V is the input voltage to the motor and R is the internal resistance. The counter elec-
tromotive voltage E(?) is
E(t) = Ky 0(¢). (2.5)

Substituting Eq. (2.5) for (2.4), we get

, 1 .
ot) = K—M(v — Lyi(t) — Ri(1)). (2.6)

Using the assumption that the motor inertia J, friction D, and inductance Ly, are sufficiently
small, and substituting Eq. (2.3) for (2.6), we obtain the motor model as follows:

0(t) = w + &7(1), 2.7)

where w denotes the rotational speed of the motor in the no-load state and & > 0 is the
sensitivity of the motor to the external torque. Parameters w and & are calculated using

w= 2 and & = K%. Note that w is proportional to the input voltage to the motors, and
M

Ky
therefore, we can change w by varying the latter.

2.4.2 Motor and leg linkage functions as closed-loop controller

Next, we construct the linkage model and derive the entire motor—linkage dynamics. In the
derivation, we assume that the leg length is sufficiently long than the crank arm.

The low-torque DC motor interacts with the ground surface through the slider-crank link-
age (see the geometry in Fig. 2.6). Thanks to the shape of the circular foot, note that the
ground contact point is just under the tip of the crank. Using this condition, the axial force in
aleg N'(¢) is written as:

N'(t) = N(t)sing(1), (2.8)

*I When the motor has a gear head, the aspect ratio is included in Ky.
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| Low-torque DC Motor |

_____
\

Fig. 2.6 Low-torque DC motor rotates the circular foot through the leg linkage. When a
reaction force from the body and environment is applied to the rotating low-torque motor,
followed by a load torque applied to the motor, a disturbance corresponding to the load
torque occurs in the motor phase. In this method, we exploit this disturbance as a sensory
feedback law to adjust the phase differences between the leg phases.

where N(t) is the ground reaction force, ¢ is the leg angle. Here, the positive force N(f) > 0 is
defined as compressive. The reaction torque from the ground to the motor shaft is calculated
by

7(t) = AN'(f)sin(¢p(2) — 0(1)). (2.9)

where A is the crank length. By substituting (2.8) for (2.9), and assuming that the leg length
is sufficiently long than the crank arm (¢(¢) ~ 7r/2), the motor torque is written as:

7(t) = AN(t)cosH(1). (2.10)
Finally, by substituting (2.10) for (2.7), we get the entire model:
0(t) = w + eN(t)cosb(t). (2.11)

where € = £€A. From Eq. (2.11), when a reaction force N(t) > 0 is applied to the circular
foot, the low-torque DC motor adjusts its own phase through the leg linkage. In other words,
the passivity of the DC motor for the physical mechanism (2.11) makes it function like a
controller. If a large static reaction force N >> 1 from the ground is applied, the mechanism
(2.11) has a stable equilibrium point 6§ = 7/2 and unstable point § = 37/2. We call this
function as a closed-loop controller the compliant oscillator.

2.5 Experiments

In this section, we conduct experiments to demonstrate the gait generation ability of the
proposed mechanism.
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Fig. 2.7 Experiment with one body module (biped) to verify the fundamental motion of
the leg mechanism with the compliant oscillator. The initial state (a) and motor phases (b)
are from the motion capture system. The motor phases converge from the initial state to
walking gait (in-phase to anti-phase pattern).

2.5.1 Biped gait

To verify the fundamental motion of the leg mechanism with the compliant oscillator, we
conducted an experiment with one body module (biped).

Fig. 2.7(a) shows the initial state of the experiment. The initial phases of the motors were
set to #(0) = /2, and we set a tail made from nylon 66 as a stabilizer that restraint the pitch
angle. All of the motors were connected to a stabilized power source in parallel, and the
input voltage was 1 V. The phases of the motors were calculated from data with a motion
capture system (OptiTrack Primel3, NaturalPoint). Note that the motor phases had some
measurement error because of the motion capture system. Therefore, the phases did not reach
I or —1 in some cases. The phases are calculated by cos(@ + m/2) because of a geometrical
limitation in the calculation. Markers were set on the pivot of the slider, tip of the crank, and
top of the motor.

The experimental result is shown in Fig. 2.7(b). The phases of the two motors converged
from the initial state to walking gait (in-phase to anti-phase pattern). In other words, the robot
put the legs forward in turn, and a roll movement with large amplitude was excited.

2.5.2 Quadruped gaits

This section shows the gaits of the quadruped robot.
Fig. 2.8 shows the experimental setting. Just like with the previous experiment, the motors
were connected to a power source in parallel, and the input voltage was changed in 1.5, 2.5, 4
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Power Source

Fig. 2.8 Experimental setting. All of the motors were just connected to a stabilized power
source in parallel.

V. The robot motion was calculated from data with a motion capture system, and the Euler
rotation sequence is ZXY.

Result with 1.5V

Fig. 2.9 illustrates the results with an input voltage of 1.5 V. From top to bottom, the figure
shows the velocity of the center of gravity, roll, pitch, yaw angle, and phases of motors. The
roll and yaw are the relative angles of the modules, and the pitch angle is the orientation of
the robot. The robot generated low-speed locomotion of around 100 mm/s, and it was clearly
unstable because there were transitions between three types of gaits. However, the transitions
had a cyclic tendency, and the patterns seem to be repeated in the periods ¢ € [5,10], ¢ €
[10,15], and ¢ € [15, 20].

Result with 2.5 V

Fig. 2.10 illustrates the results with an input voltage of 2.5 V. The top figure shows that the
robot generated medium-speed locomotion with large roll and yaw oscillations around 150
mm/s. The robot generated stable locomotion, and the gait converged to a solution with a
diagonal-sequence (D-S) walk in which the feet moved in the order:

LF - LH —- RF — RH. (2.12)

Result with 4 V

Fig. 2.11 illustrates the results with an input voltage of 4V. The top figure shows the robot
generated medium-speed locomotion with a large pitch oscillation around 200 mm/s, and
around ¢t = 5 s, the robot was out of the measurable range and fell down at around 6 s.
Although the robot generated stable locomotion, the gait converged to another solution of a
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transverse gallop, where the feet moved in the order:

LF —» RH — LH — RF. (2.13)

2.6 Discussion

To achieve the animal gait generation and transition, we developed a quadruped robot that
has an extremely simple structure. The fore and hind modules are connected with the flexible
spine, and each module has right and left legs. Each leg has a slider-crank mechanism that is
connected to a low-torque DC motor. By exploiting the electrical passivity of the low-torque
DC motors, in the experiments, the robot generated and selected the typical quadruped gaits
despite having no sensor, microprocessor, or explicit controller (using only purely physical
mechanisms).

The fundamental behavior of the leg mechanism in Fig. 2.7 was confirmed that the motor
phases tended to converge to the anti-phase pattern at low voltage. As shown in Fig. 2.9,
gaits and its transition occurred at 1.5 V, and the types of gaits were roughly three. Although
these three gaits were clearly unsteady, the pair of left-right legs tended to be in-phase or
anti-phase. The tendency was similar to the fundamental characteristics of the single module
shown in Fig. 2.7. In terms of the order of transitions, a fixed rule was observed for an order
in which a gait changed. This cyclic transition was similar with a beat phenomenon in the
field of the mechanical vibration. This result suggests that the robot has three local minimum
(tri-stable, but a weak stability), and three modes had closely spaced frequencies, and as a
result, these modes mixed at low-speed locomotion.

As shown in Fig. 2.10, the motor phases converged to the D-S walk gait at 2.5 V. The D-S
walk is typically observed in monkeys. During the gait, the large roll and yaw oscillation was
observed between the body modules. This suggests that the flexible spine, which can easily
move in the roll and yaw, contributed to the medium-speed locomotion with the D-S walk.

Fig. 2.11 shows that the locomotion speed increased at 4 V, and the gait was changed from
the D-S walk to the transverse gallop. The transverse gallop is typically observed in horses.
In contrast to the D-S walk, although the roll and yaw oscillation decreased, and a large pitch
oscillation was observed. These two gaits at 2.5 and 4 V seem to correspond to the first and
second gaits in Fig. 2.9 at 1.5 V. As increasing the input voltage, the robot selected a suitable
gait from the unsteady gaits that are intrinsic to its own body.

During the design process for the robot, an increase of the body weight tended to stabilize
the gaits. The body mass would improved the amplitude of motion and contributed to avoid
unexpected contact of the swing leg. In the previous version of the robot (lizard-like Brainless
I), no similar phenomenon was observed. This suggests that the high center of gravity, which
is typical in quadruped mammals, contributed to the secure retraction of the swing leg.

From above discussion, the selected gaits were characterized by the body flexibility, body
mass, and height of the center of gravity. Therefore, the steady gaits seem to be selected from
the modes that are from its own body dynamics. These results suggest that the robot generated
some kind of intrinsic mode (e.g., the natural vibration modes) and quadruped animals also
employ similar strategies.
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Fig.2.9 Experimental results with an input voltage of 1.5 V. From top to bottom, velocity
of the center of gravity, roll, pitch, yaw angle, motor phases, and gait chart of the quadruped

robot. The robot generated unstable gaits.
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robot. The robot generated a stable gait (transverse gallop).
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Chapter 3

Analysis of Synchronization
between Low-torque DC Motors

In Chapter 2, we conducted the experiments with the brainless quadruped robot. This chapter
shows some experiments, simulations, and theoretical analysis for more fundamental sys-
tems: the spring—mass system and planar quadruped model. A robustness against the initial
phase difference and an improvement of the convergence property are reported.

3.1  Compliant Oscillator Module

To apply the compliant oscillator (introduced in Chapter 2) to the fundamental systems, we
design a decentralized control module, called the compliant oscillator module.

3.1.1 Modeling

Overview of the module is illustrated in Fig. 3.1. The module is composed of a low-torque
DC motor and linkage mechanism that is connected to a spring. The linkage is composed
of a crank that connects the motor to the shaft, and a slider that connects the crank to the
spring. The crank arm is rotated continuously by the DC motor and connected to the linkage
that transmits the driving force to the spring. In this implementation, ¢(¢) denotes the motor
phase, 7() is the reaction torque applied to the motor shaft through the crank arm with link
length A, and the positive values are defined as the counter-clockwise direction. N denotes
the reaction force from the linkage, and the positive force is defined as compressive force.
Note that the definition of the motor phase differs from Fig. 3.1 in Chapter 2 for illustration.
Each module drives natural length L(7) of the spring

L(t) = Ly + Acos¢(1), 3.1
where L is the reference length of L(#). The reaction force from the spring is given by
N(t) = —kx(t) — cx(1), (3.2)

where x(7) denotes the displacement of the spring and k, ¢ > 0 denote the spring and damping
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Fig. 3.1 The compliant oscillator module is composed of a low-torque DC motor and
linkage mechanism connected to a spring.

(a) Compressive Force

Equilibrium
Point

o) =7

-
-
-
~a

Equilibrium Point
St ¢(t) =0

Fig. 3.2 Behavior of the compliant oscillator. (a) If a large static reaction force N >> 1
is applied, the mechanism has a stable equilibrium point 6 = 7. (b) If a large tensile force
N << —11is applied, has a stable equilibrium point ¢(¢) = 0.

constants. Positive displacement x(#) > 0 is defined as the elongation direction.
Next, from Eq. (2.7) in Chapter 2, we revisit the motor model

¢(t) = w + E7(1), (3.3)

where w denotes the rotational speed of the motor in the no-load state and & is the control

gain. w and & are calculated using w = % and £ = K%, thus w is proportional to the input
M

voltage to the motors.
If link length / is sufficiently longer than A, motor torque 7 is approximated as

7(t) = AN(t)sing(1). (3.4)

Here, positive force N(f) > 0 is considered as the compressive force. Substituting (3.4) for
(3.3), we obtain

(1) = w + EAN(1)sing(r) (3.5)
= w + eN(1)sing(1), (3.6)
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~| Power Supply Marker

DC Motor and Crank Arm

Fig. 3.3 Experimental setting of spring—mass system. Two compliant oscillator modules
with low-torque DC motors are fixed on the rail to the left and right. The springs and
masses transmit the physical interaction between the motors and adjust the its own phases.

where € = £A. Thanks to the electrical passivity of the motor, reaction force N adjusts
rotational speed ¢ as a control law. Thus, the functions of the sensor, controller, and actuator
are all included in a low-cost DC motor. If a large static reaction force N >> 1 is applied,
the mechanism has a stable equilibrium point 8 = 7 (Fig. 3.2(a)), and if a large tensile force
N << —1is applied, has a stable equilibrium point ¢(¢) = 0 (Fig. 3.2(b)).

3.2 Spring—Mass Experiment

In this section, we report a few experiments with a simple spring—mass system to confirm
fundamental characteristics of the compliant oscillator module.

3.2.1 Experimental setting

The spring—mass system with the compliant oscillator module is shown in Fig. 3.3. This
system is composed of a slide rail, three masses connected by four springs, and two compliant
oscillator modules with low-torque DC motors (TAMIYA mini motor gear box (8-speed))
fixed on the rail on the left and right. The distance between the shafts of the two motors is
400 mm, length of each crank is 20 mm, and weight of each mass is 30 g. The springs and
masses transmit the physical interaction between the motors and adjust the its own phases.

3.2.2 Results: Spring—mass generated resonance modes

In the experiment, we employed a motion capture system (OptiTrack Prime13, NaturalPoint)
to detect the positions of the top of the cranks (motor phases) and masses. The initial phase
difference of the two motors is 7 at each experiment, and the input voltage is increased be-
tween 1.0-7.0 V at intervals of 0.5 V.

The experimental results are displayed in Fig. 3.4. The figure shows the time responses of
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Fig. 3.4 Experimental result. Time responses of the top of the cranks (motor phases)
and masses at 2.5, 4.5, and 7.0 V. The system converges to the resonance modes of the
spring—mass system as the input voltage increases.

the top of the cranks (the motor phases) and masses at 2.5, 4.5, and 7.0 V. It can be seen that
the system converges to different types of limit cycles as the input voltage increases, and the
solutions converged to the resonance modes of the spring—mass system as:

Model — Mode2 — Mode3. (3.7)

As depicted in the time responses of the cranks, the phases of the cranks are adjusted and
synchronized by the reaction force.

3.2.3 Effect of electrical passivity

Figs. 3.5(a)(b)(c) show the plots of the phase and rotational speed of motorl (angle, radius) =
(¢, ¢) in the polar coordinate. In the figure, the time response are similar to each other.
Thanks to the electrical passivity, the rotational speed clearly decreases at ¢ = n/2 and in-
creases in the third quadrant, 7 < ¢ < 3m/2. It means that the rotational speed decreases
when the motor is pulled by the mass and increases when the motor pulls the mass, and as a
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Fig. 3.5 Plot of the phase and rotational speed of motorl (angle, radius) = (¢, ¢) in the
polar coordinate. Thanks to the electrical passivity, the rotational speed is clearly decreased
at ¢ = n/2 and increased in the third quadrant, 7 < ¢ < 37/2.

Oscillator 1 Oscillator 2

@ ma mo ms @

Fig. 3.6 Simulation setting of the spring—mass system. Two compliant oscillator modules
are fixed on the wall on the left and right (red spring), and the springs that transmit the
physical forces between the modules and masses (black spring).

result the solution converges in a steady limit cycle.

3.3 Spring—Mass Simulation

The experiments were conducted with only a few parameters, thus the effect of the parameters
is still unclear due to some limits of the experiments. For more detailed analysis, this section
show the simulations of the spring—mass system with various parameters.

3.3.1 Simulation setting

Fig. 3.6 shows the simulation setting. Two compliant oscillator modules are fixed on the wall
on the left and right (red spring), and the springs that transmit the physical forces between
the modules and masses (black spring). The control input is given by (3.6), and we set the
identical parameters for all springs:

e=1,k=1,¢=05,Ly=1, A=0.3, ¢0) =0, (3.8)
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Fig. 3.7 Simulation result of the spring—mass system. The bullet color denotes the phase
difference of the converged solutions of the two modules. The blue bullets are the in-phase
solutions, and the red bullets are the anti-phase solutions.

3.3.2 Effect of initial phase difference

In this subsection, we present the effect of the initial phase difference of the two actuators on
the converged solutions.

The color of the bullets in Fig. 3.7 represents the converged phase difference of the two
modules by changing initial phase difference ¢,(0) — ¢,(0) and intrinsic angular velocity w.
The bullet color denotes the phase difference of the converged solutions of the two modules.
The blue bullets are the in-phase solutions, and the red bullets are the anti-phase solutions. As
illustrated in the top figure, the solution converges to one of the resonance modes from any
of the initial states, and the phase difference of the converged solutions changes as intrinsic
angular velocity w increases. The first and second transitions occur at around w = 0.8 and
w=1.7.

3.3.3 Effect of electrical passivity

Next, we show the effect of the electrical passivity of the low-torque motor to the convergence
property. In the simulations, we changed the motor parameter, and small parameter implies
low passivity, and € = 0 implies a high-torque motor without passivity. The phase difference
and angular velocity were set as ¢(0) — ¢2(0) = r/3 and w = 1.5.
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Fig. 3.8 Time response of the phase of motorl, massl1, and the spring force with £ = 10
(very low-torque motor). The motor adjusts its own phase when there exists an unmatching
force and mass displacement at ¢ € [4, 6].

Fig. 3.8 shows the phases of motorl, massl1, and the spring force with € = 10 (very low-
torque motor). It is shown that the motor adjusts its own phase when there exists a unmatching
force between the motor and mass at # € [4, 6]. The basic property of the motor phase is the
same as in Figs. 3.5(a)(b)(c). Moreover, Fig. 3.9 illustrates the power consumption of the
motor, the spring force between the motor and mass, and the rotational speed of the motor in
a very low-torque motor with & = 10. When the motor consume the electrical energy (when
the motor torque do work), it functions as that the motor delays its own phase when there
exists a large positive or negative spring force between at ¢t € [17,20] and 7 € [22, 25].

Figs. 3.10 (a)(b)(c) illustrate phase trajectories (x(7), x(z)) in 20 cycles of mass m; by
changing the motor parameter as € = 0, 5, 10. Figs. 3.10 (a)(b)(c) show the trajectory at
& = 0 (high-torque motor), € = 5 (proposal: low-torque motor), and £ = 10 (proposal: more
lower-torque motor). The red plots on the trajectory denote the points when motor phase ¢
passes through ¢; = 0. Fig. 3.10 (a) exhibits that the red points and trajectory are dispersed
and the convergence speed is slow. In Fig. 3.10 (b), the red points converge at an equilibrium
point and the trajectory is rapidly stabilized. In Fig. 3.10 (c), the red points converge in one
cycle, and the phase converges more rapidly as motor parameter € increases. The simulations
here show that the electrical passivity of the DC motor improves the convergence property.
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Fig. 3.9 Time response of the power consumption of the motor, the spring force between
the motor and mass, and the rotational speed of the motor in a very low-torque motor with
£ = 10. When the motor consume the electrical energy (when the motor torque do work),
it functions as that the motor delays its own phase when there exists a large positive or
negative spring force at r € [17,20] and ¢ € [22, 25].

3.4 Planar Quadruped Robot Simulation

This model is based on the sagittal plane model [1], which can be considered as a quadruped
robot model in side view. Fig. 3.11 shows the simulation setting. Although the robot is
quadruped, we assume that the motions of the left legs is mirrored to the right ones. Based on
the figure, we apply the control modules to each leg, and the ground reaction force is applied
to the modules through the springy legs.

MX, = —h(Ny) — h(N,) — Mg 3.9
16 = g{h(Nl) — h(N;)}cos#, (3.10)

where x, is the position of the center of gravity that is defined by x, = (x; + x2)/2, g is the
gravity constant, M, I denote the body mass and moment of inertia. L is the body length,
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Fig. 3.10 The phase trajectories (x(¢), Xx(¢)) in 20 cycles of mass m; with motor param-
eters € = 1, 5, 10. (a) The red points and trajectory are dispersed, and the convergence
speed is slow. (b) The red points converge at an equilibrium point and the trajectory is
rapidly stabilized. (c) The red point converges in one cycle, and the phase converges more
rapidly as motor parameter € increases.

S/

Fig. 3.11 The planar quadruped robot model [1]. The motions of the left side of the
model is mirrored to right. Two control module are applied to the fore and hind legs.

and N;, N, are the reaction forces in the fore and hind legs. We assume that the robot body
is a uniform rod, and the mass of the feet is sufficiently small. The flight phase of the legs is
defined by the switching function A(x) as follows:

hw:{g g;g. (3.11)

Here, ground reaction forces N; in each leg i to be zero when the corresponding leg leaves the
ground.
We set the following same parameters for all the models:

e=1, k=1000, ¢ =10, Lo =0.1, A = 0.03,
d=0.2, M =0.25,40)=0. (3.12)
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Fig. 3.12 Simulation result of the quadruped model. The bullet color denotes the phase
difference of the converged solutions of the two modules. The blue and red bullets are the
in-phase and anti-phase solutions.

Fig. 3.12 shows the simulation result by changing initial phase difference ¢;(0) — ¢,(0)
of the two modules and intrinsic angular velocity w. The bullet color denotes the phase
difference of the converged solutions of the two modules, and the blue bullets are the in-
phase solutions, and the red bullets are the anti-phase solutions. In this figure, the transition
occurs at around w = 35, and two types of motion patterns are generated in the animals as

Pronk — Bound, (3.13)

as illustrated in the top of the figure. However, around over w = 50, the phase difference does
not converge because the feedback is relatively smaller than w. This simulation shows an
example that the proposed control module can also generate resonance motions in a nonlinear
legged robot system.

3.5 Theoretical Analysis

In this section, we propose some theoretical results for the compliant oscillator (3.6). The
major contribution of this section is that the dynamics of the compliant oscillator (3.6) may
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DC Motor—»

Fig. 3.13 The compliant oscillator for a theoretical analysis

be interpreted as a closed-loop controller that make the system to down the slope of an energy
potential.

3.5.1 Modeling

For a theoretical analysis, we simplify the compliant oscillator model as shown in Fig. 3.13.
This system is composed of a low-torque DC motor (which has the electrical passivity) and a
slider—crank linkage. A spring is fixed on the tip of the slider, and the other tip of the spring
and the motor are fixed on the environment. When the motor rotates the crank, the slider
generates up—down cycles and drive the spring.
The displacement of the slider tip x(¢) is written using the motor phase ¢(¢) and the crank
length a as:
x(t) = asin ¢(1), (3.14)

and the spring force F is written as:
F(t) = —kx(1), (3.15)

where the positive force F' > 0 is defined as a force pushing the slider.
Next, remind the equation (3.6), the dynamics of the low-torque DC motor is

d(t) = w + eF (1) cos ¢(2). (3.16)

3.5.2 An interpretation using spring energy

The following lemma suggests that the dynamics of the compliant oscillator (3.6) may be
interpreted as a closed-loop controller that make the system to down the slope of a potential
of spring energy.
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DC Motor—»

Fig. 3.14 The compliant oscillator with a mass for a theoretical analysis

Lemma 1 Let us consider the system (3.14),(3.15),(3.16) that is illustrated in Fig. 3.13, the

dynamics of the compliant oscillator (3.16) is written as:
&€ 8Ispring(t)
a 0p(t)

Proof 1 Substituting the slider displacement (3.14) and spring force (3.15) for the motor
dynamics (3.16), we get

(1) = w (3.17)

#(t) =w — kx(t) cos (1) (3.18)
o - Ex(n 220
=w akx(t) 300)’ (3.19)

where using the spring energy Igping = %kx(t)z, the dynamics of the compliant oscillator can

be written as:
€ 8Ispring(t)

, 3.20
96(1) (320

(1) =w—
O

From the second term of the right side of (3.17), momentary, the motor phase ¢ might
be adjusted as the system down the slope of a potential of spring energy Ispine. This result
may be interpreted that the compliant oscillator (3.6) decrease the spring energy Igying Of the
mechanical system. However, in general nonlinear system, note that this result do not always
provide the minimum of the spring energy.

3.5.3 An interpretation using Hamiltonian

Next, we consider a dynamic behavior of the compliant oscillator (3.6) with a mass.
The model is shown in Fig. 3.14. Assuming that the viscosity of the system is sufficiently
small, the equation of motion for the mass m and its displacement x, is written as:

mia(f) = F(t), (3.21)
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where the positive displacements x;, x, > 0 is defined as elongation direction of the spring.
The spring force F is written as:

F(t) = —k(x1(?) + x2(1)), (3.22)

where the positive force F' > 0 is defined as a force pushing the slider.

The following theorem suggests that the dynamics of the compliant oscillator (3.6) may be
interpreted as a closed-loop controller that make the system to down the slope of a potential
of Hamiltonian.

Theorem 1 Let us consider the system (3.14),(3.21),(3.22),(3.16) that is illustrated in
Fig. 3.14, the dynamics of the compliant oscillator (3.6) is written as:

£ aIspring(t) _ € Ol ass (1)

o) = w 2 060) 2 960) (3.23)
_ & OH (1)
= w— 300 (3.24)

where Lgping = %k(xl () + x2(1))? is the spring energy, Inass = %m;’cz(t)2 is the inertial energy,
H = Ispring + Imass 1s the Hamiltonian for the spring and mass.

Proof 2 Substituting the slider displacement (3.14) and the equation of motion (3.21) for the
motor dynamics (3.16), we get

. P d

B(1) = w+ {ZF(t) a);z(gt)) + &F(f) cos ¢(1))) — ZF(t) 8);2((; ) (3.25)
g () +x@), e L 0x()
= W FO| =g ) - mm 5 (3.26)

Deforming this equation and substituting the spring force (3.22), the motor dynamics is writ-
ten as:
: g 0(x1(t) + x2(1))
H=w+-F{t)————— 3.27
¢) =w + —F (1) 9600 (3.27)
g 0x(1) 0x2(1) 0x2(1)

a" o ) a6 (3.28)
= w2 a(xl(;)(;;"‘(t)) - Emia(t aa’;f ((Z)) (3.29)
@20
- a)—g ‘Zj((t’)). (3.31)

where Igping = %k(xl(t) + x2(2))? is the spring energy, Inass = %m)'cz(t)2 is the inertial energy,
H = Ispring + Imass 1s the Hamiltonian for the spring and mass. O
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From the second term of the right side of (3.17), momentary, the motor phase ¢ might be
adjusted as the system down the slope of a potential of spring energy Isping. This result may be
interpreted that the compliant oscillator (3.6) decrease the Hamiltonian H of the mechanical
system.

Note that this result is able to apply to the coupled spring—mass system with N masses
and springs. When the spring—mass is the coupled system, the motor dynamics is written as
follows:

- = . (3.32)

a alspring,i(t) &€ u 8Imass,i(t)
— 09()  a 0p(n)

) =w- "
a «

1

Moreover, the result is able to apply to the case when the system has the viscosity.

Theorem 2 When we consider the viscosity in the system (3.14),(3.21),(3.22),(3.16) that is

illustrated in Fig. 3.14, the motor dynamics is illustrated as:
eOH@) £0D(t)
a dp(r)  a op(r)’

where H = Ispring + Imass is the Hamiltonian for the spring and mass, D = %c(;’cz(t))2 is the
dissipation energy.

¢(1) = (3.33)

Proof 3 Substituting the slider displacement (3.14) and the equation of motion (3.21) for the
motor dynamics (3.16), we get

. 0
3 =0+ (SF() a’;f((t’))

Oxp(1) . Oxp(1)

+ eF (1) cos ¢(1))}
g . Ox(p)

£
— ;{F(t) GQS(I) —CX) a¢(t) } — ;C)Q%, (334)
and each terms cen be deformed as follows:
Lo falspring(t) _ Ealmass(t) _ faD(t)
o) =w as()  a 0e(t)  a o)
£ OH (1) & 0D(1) (3.35)

a d¢()  a (1)

where Lpring = 2k(x1(1) + x2(1))* is the spring energy, Imass = 3mX2(1) is the inertial energy,
H = Ispring + Imass 1s the Hamiltonian for the spring and mass, D = %c()'cz(t))2 is the dissipation
energy.

This result suggests that the electrical passivity of the low-torque DC motor may also
decrease the dissipation energy, momentary.

3.6 Supplementary Lemmas

Following theoretical results are the supplementary lemmas for the system Fig. 3.14.
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3.6.1 Relation between the energy consumption and motor speed

The following lemma shows that the energy consumption P is proportional to the difference
between the rotational velocity ¢(f) and no-load velocity w of the motor.

Lemma 2 Let us consider the system Fig. 3.14, then the relation between the energy con-
sumption P and rotational speed of the motor ¢ is

a .
P() = —;w(q&(r) - w). (3.36)

Proof 4 The energy consumption P of the system Fig. 3.14 is written as:
P@) =i()V(1) (3.37)

R .
= (1) = $()7(0)). (3.38)
KM

where the first term of the right side is the dissipation energy per unit time, and the second
term is the work per unit time of the motor. Substituting Eq. (3.4) related to the torque 7 and
the motor dynamics (3.16), we obtain following relationship

P(t) = s(aF(£)cosd(1))® — d(t)aF (1)cosd(r) (3.39)
= —wakF (t)cosp(t) (3.40)
- —Zw((iﬁ(t) —w). (3.41)

From this equation, the relation between the energy consumption P and rotational speed of
the motor ¢. O

3.6.2 Solution of the motor phase

In the following lemma, we attempted to derive the motor phase assuming a periodicity of
the solution.

Lemma 3 Assuming that Fig. 3.14 has a steady limit cycle with a period of %T then the
dynamics of motor phase ¢(t) is written as:

1

(1) = w — gak(l + ————)sing(t)cosp(t). (3.42)
mkw? — 1
The motor phase ¢(¢) is derived as:
P(t) = (3.43)
X = V4w? = X2tan(3(C V4w? — X? — 1 V4w? - X?))
tan~ . (3.44)
2w
where X = gka(1 + ——) and C are constants.

—43 -



3.7. DISCUSSION

Proof 5 Assuming that Fig. 3.14 has a steady limit cycle with a period of %, then a periodic
steady state x; is

X (t) = Eg + Z(Eckcoskwt + Eysinkw?), (3.45)
k=1

where Ey, E, Eg are constants. Note that the bias term is to be Ey = 0 by the symmetry
of the limit cycle. Using (3.45), from the equation of motion (3.21), the following relation is
derived

0 =(—=— )xl(t) (3.46)

mkoo? —
Substituting (3.46) for the spring force (3.15), and using the equation for x; (3.14), we get

F(t) = ~ak(1 + ———)sing(1). (3.47)

mkew 2 _

Finally, substituting (3.47) for the motor dynamics (3.16), we get an equation for the motor
phase ¢(7)

(1) = w — eak(1 + +)sin¢(t)cos¢(t). (3.48)
mkw? — 1

Deriving (3.48), the motor phase ¢(t) is explicitly derived as:

1 — V4w? — X2tan(3(C V4w? — X2 — t V4w? — X2))
¢(t) = tan~ . (3.49)
2w
where X = gka(l + m) and C are constants. O

3.7 Discussion

This chapter shows some experiments, simulations, and theoretical analysis for the funda-
mental systems: the spring—mass system and planar quadruped model.

First, we introduced a decentralized control module, called the compliant oscillator mod-
ule. The experiments in Fig. 3.4 showed that the system converged to the resonance modes as
the input voltage was increased. The effect of the electrical passivity was verified in Fig. 3.5,
and the motor speed decreased when the motor pulled the mass and increased when the motor
was pulled by the mass. From this results, the compliant oscillator module adjusted its own
phases when there existed an unmatching force to its own motion, and as a result, the motion
converged to the resonance modes.

In the simulations, a robustness against the initial phase difference and the convergence
property with different motor parameter were reported. In Fig. 3.7, the system converged to
one of the resonance modes from any of the initial states.

In the theoretical analysis of the compliant oscillator module, an interpretation for the
function of low-torque DC motor is obtained. The function of electrical passivity of the low-
torque DC motor is interpreted as an implicit controller to down the slope of the Hamiltonian
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potential for the system and dissipation energy, momentary. In other words, the compliant
oscillator may decrease the Hamiltonian and energy loss of the mechanical system. However,
note that this result do not always provide the minimum of the energy potential in general
nonlinear system.

3.8 Future Works

This control method based on the compliant oscillator module has some clear advantages that
differs from the conventional decentralized controllers.

3.8.1 Model-less control for terrible nonlinear and uncertain systems

The compliant oscillator module generates resonance modes of a system and synchronize
themselves using only the local force feedback. In other words, each module needs no global
information of the mechanical system, thus the module may generate resonance modes of
uncertain or unpredictable systems. As a result, if the body and environment dynamics is
changed by some troubles, the electrical passivity of motors instantly adjusts the motions and
adapt to these uncertainty. A future work of this research is to apply this method to other
systems with a complex morphology, terrible nonlinearity, and uncertainly, such as the field
robots and soft robots.

3.8.2 Thousand actuators in a robot

In a general implementation of this type of decentralized controller, each control module
needs a sensor (to obtain x and x), a microprocessor, and some peripheral circuits (to calcu-
late ¢ and send signals to the motors). Additionally, such a system typically needs a certain
precise and high-torque servo motor to achieve the target state (3.1), and thus, the robot de-
signer needs a huge number of cost to implement these systems. Mass production of the
decentralized control module had a limitation, and it was a bottleneck in the field of dis-
tributed cooperative control. However, this method significantly reduces the implementation
cost of conventional decentralized controllers because the functions of the sensor, controller,
and actuator are all provided by the low-cost DC motor. Therefore, this method has a po-
tential to embed thousands of control modules (each module has the functions of sensors,
actuators, and controllers) in one robot system, similar to animal muscles or neurons.

3.8.3 Fundamental basis for next generation robot design

The proposed control method is powerless and inaccurate, but can generates physically nat-
ural motion that suit for the robot body and environment. Although this method does not
suit for static and heavy workload (e.g., position control or object manipulation), it will be
a new approach for robot design by using this method as a fundamental basis of the robot
motor control and adding just a little explicit controllers, such as the motor command from
the brain, for the heavy workload tasks. To achieve such next-generation robot design, we
have to investigate some known and unknown limitation of the method correctly and give a
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design methodology to integrate the proposed “weak’ controller and powerful controller.
Here, there are three known limitations, and the improvement for these disadvantages is
also the future works.

1. The motor torque is low
In a real system, an excessively low-torque motor would easily become stuck owing to
some disturbances (e.g., friction). Moreover, this controller does not suit for static and
heavy workload tasks (e.g., position control or object manipulation). Module design
that generates sufficient forces at a proper timing for the static tasks is a future work.

2. The mechanism and theoretical conditions are not proved
Although some figures and theorems suggested the mechanism and theoretical condi-
tions for generating resonance modes, these are still not unclear, yet. Therefore, the
limitation of the proposed method (applicability for a system with terrible nonlinearity
or uncertainly) is also unclear.

3. Applicable range is unclear
The proposed control method may be applicable to wide range of systems that has
uncertainty. However, related to the above limitation, the applicable range and con-
dition is still unclear: e.g., what kind of morphology, nonlinearity, and uncertainly
is allowed?. The theoretical analysis and accumulation of case studies are the future
work.
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Chapter 4
Direct Force Feedback Model

4.1 From Brainless Walking to DFFB (Direct Force
Feedback) Model

In Chapter 3, the result Fig. 3.8 showed that the low-torque motor adjusts its own phase
when there exists a large force and mass displacement. Moreover in Fig. 3.9, when the motor
consumes the electrical energy (when the motor torque do work), it functions as that the
motor delays its own phase when there exists a large positive or negative spring force.

From these result, in this chapter, we attempt to extract the dominant dynamics in which
the motor delays the phase when spring force |N| > 0 is applied. The proposed model with
the extracted control strategy is called the DFFB (Direct Force Feedback) model.

4.2 DFFB (Direct Force Feedback) Model

This chapter introduces a simple controller by extracting the dominant dynamics in which the
motor delays the phase when spring force |[N| > 0 is applied.

Fig. 4.1 shows the overview of the proposed control module, called the DFFB model. The
proposed controller is written as:

¢:(t) = w — eIN;(D)], 4.1

where ¢;(¢) is the phase of the i th controller, w > 0 is the intrinsic angular velocity, £ > 0
is sensory gain, N;(?) is the internal force in the actuator. To prevent reverse rotation of the
phase ¢;(¢), we determine the sensory gain so as to satisfy a condition € > w/Np,x With an
expected upper limit of the internal force Np,.x. In this paper, the expected upper limit of the
internal force Ny,,x was estimated through trial and error.
Each linear actuator i is modeled as a spring—damper, thus the internal force in the actuator
are given by
Nit) = —ki(xi(2) = Li(0)) = ci(%i(2) = Li(®)), 4.2)

where x;(7) denote the actuator length, and k; and ¢; denote the viscoelastic constants. Each
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Fig. 4.1 Overview of the proposed control module, called the DFFB model. Each module
is composed of an actuator part and a controller part. The actuator is modeled as a linear
one with a spring—damper. When an external force is applied to the control module from
the robot body and environment, the module detects internal force in the spring—damper,
and it adjusts the natural length of the actuator part.

control module i drives the natural length L;(¢) of the actuator

Li(t) = Ly — Asin(¢;(2)). (4.3)

Fig. 4.2 illustrates the dynamics of the proposed control module. In a constant frequency
w, when the controller does not detect forces N;(f) = 0, it oscillates the body by driving
the linear actuator. And when the module detects a non-zero internal force N;(¢) # O in the
spring—damper, the feedback term —&|N;(?)| is activated, and it slows down the oscillation.

4.3 Spring—Mass Simulation

We conduct some simulations to investigate fundamental characteristics of the proposed con-
trol module.

The simulation setting is illustrated in Fig. 4.3. The system is composed by three masses
and four spring—dampers, thus it has three vibration modes corresponds to each resonance
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Oscillation
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il BN
¢i(t) = w — g|Ni(t)]

Fig. 4.2 Behavior of the proposed control module. When the module does not detect
forces, in a constant frequency, it oscillates the body by driving the linear actuator. And
when the module detects a non-zero internal force in the spring—damper, it slows down the
oscillation.

frequency. In this simulation, we show an adaptability to changes in the vibration frequency
and the body parameter. We compare the resonance frequencies the simulated and analyti-
cally derived ones.

4.3.1 Resonance Frequency Analysis

The resonance frequencies of the spring—mass system can be estimated analytically. We
assume that the all spring constants, the natural length, and the mass weights are identical
(ky=ky=ks=kys =k, L =L, = L3 = Ly = Ly, my = mpy = mz = m), and the damper effect
is sufficiently small. Let a new state z;(t) = x;(#) — Lo, then the model in Figure 4.3 is written
as follows:

7Z1(0) —2k/m  k/m 0 z1(0)
@) |=| k/m =2k/m  k/m () |. (4.4)
Z3(0) 0 kim — =2k/m || z3(?)

By using eigenvalue analysis of the state matrix (4.4), the resonant frequencies of the me-
chanical dynamics w; < w; < w3 can be calculated as:

o = |GV \/@ w0y = 1| @+ VDR (4.5)
m m m
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Controller ¢1(t) Controller ¢2(t)
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K 1L, |

Fig. 4.3 Simulation setting of the spring—mass system. Two control modules are fixed on
the wall on the left and right (red spring), and the springs that transmit the physical forces
between the modules and masses (black spring).

4.3.2 Results

We conducted some simulations with three different spring constants kK = 1, 2 N/m. In each
parameters, simulations are performed iteratively by changing the initial phase difference
#1(0) — ¢2(0) and the intrinsic angular velocity w rad/s. The control input is given by (4.1)
and we set the following parameters for all spring—dampers and actuators identically:

e=2,c=01Ns/m, Ly=1m, A=0.1m, m=1kg. (4.6)
We set the initial states of each controller
¢1(0) = O rad, ¢;(0) =0, ¢>(0) = Orad/s, 4.7)

and change ¢,(0) in [0, n] rad,and w in [0, 5] rad/s.

Fig. 4.4(a)(b) shows the simulation results with different spring constants k = 1, 2. The
bullet color denotes the phase difference of converged solutions of two control modules.
The blue bullets are the in-phase solutions, and the red bullets are the anti-phase solutions.
The triangles at the top of graph indicates the resonance frequencies w;, w,, w3 which is
analytically derived. From these figures, the phase differences of converged solutions change
as the intrinsic angular velocity w increases. In Fig. 4.4(a) with k = 1, the first transition
occurs at around w = 1.2, and the second is w = 1.8, and in Fig. 4.4(b) with k = 2, the first
is w = 1.8, and the second is w = 2.8. Each solution converged to the resonance modes and
achieves transitions between the modes as illustrated in the upper of Fig. 4.4(a)(b):

1st Mode — 2nd Mode — 3rd Mode. (4.8)

4.3.3 Comparisons between analysis and simulation

Table. 4.1 shows the comparisons between the simulated and analytically derived resonance
frequencies. From the tables, the three modes in Fig. 4.4(a)(b) were excited around the ana-
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Fig. 4.4 Simulation result of the spring—mass system. The bullet color denotes the phase
difference of the converged solutions of the two modules. The blue and red bullets shows
the in-phase and anti-phase solutions. The triangles at the top of graph indicates the reso-
nance frequencies w;, w,, w3 which is analytically derived.

Table 4.1 Comparisons between the analysis and simulation

(a)k=1
| Istmode | 2ndmode | 3rd mode
Analysis w; = 0.77 wy =141 w3 = 1.85
Simulation || w; = [0.6, 0.8] | wy, =[1.4, 1.6] | w3 =12, 2.6]
b)k=2
| 1stMode | 2ndMode | 3rd Mode
Analysis w; = 1.08 wy) =2 w3 = 2.61
Simulation || wy = [04, 1.4] | wy, =1[2.2, 2.4] | w3 =[3, 3.6]

lytically derived frequencies w;, w,, ws. This result shows that the proposed module (4.1)
automatically selects and generates a resonance mode which is most easily excited, because
the module functions to adjust the phases when there exists an unmatching force.

However, in Fig. 4.4(a)(b), with very low or high frequencies, the solutions depend on the
initial values due to the too small sensor values. With low frequencies, the internal forces
for feedback were small due to the too slow movement of the masses. And with high fre-
quencies, the internal forces were also small due to the low amplitude motion due to the
gain characteristics of the mechanical system. Moreover, particularly in the 3rd mode in Ta-
ble. 4.1(a)(b), the analytical and simulated results are with disagreement. It is assumed that
these disagreement are due to the assumptions in the analysis.

- 52 —



4.4. PLANAR QUADRUPED ROBOT SIMULATION

4.4 Planar Quadruped Robot Simulation

This section shows some simulations with a planar quadruped robot model to evaluate the
proposed controller.

The robot model is the simplified planar model for a quadruped robot [1], which has two
known vibration mode. We show that the robot model with two proposed control modules
can excites and selects these modes automatically.

441 Model formulation

The model of the quadruped robot is same as the model that was introduced in Chapter 3
Fig. 3.11.
Two modules are attached in the fore and hind legs as follows:

Pr(t) = w — eINp(1)], (4.9)
Pu(t) = w — &lNu(?). (4.10)

Each module drives the natural length of fore and hind springy legs L, Ly as follows:

Li(1) = Lo — Asin(¢gr(1)), (4.11)
Lu(?) = Lo — Asin(¢u(?)). (4.12)

4.4.2 Resonance frequency analysis

In this section, we adopt a few assumptions for the resonant frequency analysis.

We assume that the robot feet are fixed on the ground, all of the natural lengths are equal
Ly = Ly = Ly, and the damper effect is sufficiently small. Assuming that the infinitesimal
angle 6, a linearized model around the origin is as:

d d
Ni(t) = —k((xg(1) + 590)) — Lo), Nu(t) = —k((xg(1) - 59(0) - Ly)
cosO(t) =~ 1, sind(t) =~ 6(r). (4.13)

Let a new state z,(f) = x,(f) — Lo, the model in Figure 4.3 is formulated as follows:
. d d
Mz, (1) = —k(z,(2) + EH(I)) — k(zg(1) - EG(I)) - Mg (4.14)

. d d d
16(r) = E{k(zg(t) + 59(1‘)) — k(zg(1) — EG(I))}. (4.15)

By using eigenvalue analysis of the state matrix (4.14) (4.15), the resonant frequencies can

be calculated as
2k kd? 6k
= 4\/— =/ — = 1|/ — 4.1
UCENM TN T Nm (4.16)
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Fig. 4.5 Simulation result of the quadruped robot model. The bullet color denotes the
phase difference of the converged solutions of the two modules. The blue and red bullets
shows the in-phase and anti-phase solutions. The triangles at the top of graph indicates the
resonance frequencies w;, w, which is analytically derived.

where we assume that the rigid spine is a uniform rod, thus 7 = %Mdz. The frequency w;
corresponds to the pronk gait, the fore and hind legs are in an in-phase manner, and the w; is
the bound gait, the fore and hind legs are in an anti-phase manner.

443 Results

Finally, we show the simulations with the quadruped robot model.

The simulations are performed iteratively by changing the initial phase difference ¢;(0) —
¢>(0) and the intrinsic angular velocity w. We set the following parameters identical for all
spring—dampers and actuators:

e=2, k=500N/m, ¢ = 10 Ns/m (4.17)
Ly=01m A=03m, d=02m,M =0.5kg. (4.18)

We set the initial states of each controller
¢1(0) = O rad, ¢;(0) =0, ¢>(0) = Orad/s, (4.19)

and change ¢,(0) in [0, 7] rad, w in [0, 80] rad/s.
Fig. 4.5(a) shows the simulation result. Similar to the above simulations, the color of
sphere denotes the phase difference of converged solutions of two modules. The blue sphere
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Table 4.2 Comparisons between the analysis and simulation

| 1stmode | 2ndmode

Analysis w) =44.7 wy =715
Simulation || w; = [20, 24] | w, = [36, 44]

denotes the solutions that the two legs are in an in-phase manner, and the red sphere are the
solutions in an anti-phase manner. The triangles at the top of graph indicates the resonance
frequencies w;, w, that is analytically derived. Each solution converged to the resonance
modes as illustrated in the upper figure. In these figures, clearly, the phase differences of
converged solutions depend on the initial values.

This result means that the resulting phase difference is sensitive to the initial values (not to
the choice of the parameter w). Now, let us consider selecting the motion pattern by choosing
the parameter w and make it insensitive to the initial values. For this purpose, we modify the
control module in the next subsection.

4.4.4 Results with modified controller

Based on above failure, we apply a modification to the modules. In this modification, we alter
the sensory information (the spring—damper force in (4.10)) to the spring force as follows:

. (1) = w = elk.(x. () = L.O)I. (4.20)

Although this modification is discovered in chance, some evidence in conventional researches
are agree with this result, as written later.

Fig. 4.5(b) shows the result with the modified module. In these figures, the phase differ-
ences of converged solutions change as the intrinsic angular velocity w increases. From the
upper figure, the in-phase gait is generated in w = [0, 28], and the anti-phase is generated in
w = [32, 50]. In other words, at around w = 30, there is the following gait transition occurs
as:

Pronking — Bounding. 4.21)

Table. 4.2 shows the comparison between the resonance frequencies, which is analytically
derived, and the excited frequencies in the simulations. From the table, there is large dis-
agreements between the analytical and simulated frequencies: the simulated one is almost
half of the analytical one. These disagreements were due to the modeling error from the as-
sumption that the feet of the robot model are fixed on the ground: the flight phase were not
considered in the analysis. A similar disagreement were also reported in [78].

4.45 Discussion

By comparing these two results Fig. 4.5(a)(b), in the quadruped robot model (a nonlinear
system with the switching between the swing and stance state), the spring force feedback is
effective than the spring—damper force feedback for the steady gait generation. Although this
modification is discovered in chance, some evidence in conventional researches are agree
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Fig. 4.6 Comparison between the time response of the compliant oscillator model and
DFFB model. The figure shows the phase of motor1, massl1, and the spring force between
them in a very low-torque motor with € = 10. The time responses with two models are
similar each other.

with this result. In biology, it is well known that the receptor called the muscle spindle,
which contributes the stretch reflex in animals, have two feedback pathway: one sends an
information of the muscle displacement, and the other one sends the muscle velocity [84].
A research [85] shows that the sensitivity of the muscle displacement is mainly activated
while periodic motions in a walking and running cat. In contrast, the receptor for the muscle
velocity is deactivated while the periodic motions.

The major advantages of this module is the simplicity. The control strategy is quite simple:
just delays the phase when there exists an unmatching force |N| > 0 to the body motions.
Compared with a recent controller [47], the proposal (4.1) does not use any information of
current phase ¢; or function form cos(x) that designed considering the body structure. This
advantage simplifies controller design, e.g., when we design a system with this controller, no
need to consider the detailed model of the whole body dynamics.

4.5 Comparison between Motor Model and DFFB Model

Finally, we compare the time responses between the compliant oscillator model (original),
which is proposed in Chapter 3, and the DFFB model, which is proposed in this chapter.
Fig. 4.6 (a)(b) shows the time response of the compliant oscillator model and DFFB model.
The figure shows the phase of motorl, mass1, and the spring force. The parameters are the
same as the simulation Fig. 3.9. From the figure, both the compliant oscillator model and
DFFB model delays the phase when spring force |N| > 0 is applied, and these response is
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similar each other.
This result shows that despite the simplicity of the strategy, the proposed DFFB model
reproduced the dominant dynamics of the compliant oscillator model.
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Chapter 5

Physiological Model using Stretch
Reflex

5.1 From DFFB Model to Physiological Model

In Chapter 4, we extracted the dominant dynamics in which the motor delays the phase when
spring force |[N| > O is applied. The extracted control strategy, called the DFFB model,
shows some similar features to the compliant oscillator model that can excites and selects the
resonant modes adaptively and automatically. Moreover, from Fig. 4.6, the time responses
of both two models (the compliant oscillator model and DFFB model) are similar to each
other. This result shows that despite the simplicity of the strategy, the proposed DFFB model
reproduced the dominant dynamics of the compliant oscillator model.

@ Input stimulus @ Output response
@ Feedback

When muscle

stretched... Shrink

Fig. 5.1 When an animal muscle receives a force from the body or outside world, the
stretch reflex functions to maintain its current muscle length.

The other aspect of the DFFB model is a rough model of the stretch reflex strategy of actual
animals (Fig. 5.1). When an animal muscle receives a force from the body or outside world,
the stretch reflex functions to maintain its current muscle length. As with the stretch reflex,



5.2. OVERVIEW, AND REVISIT THE ISSUE

the DFFB model also maintains the current length of the linear actuator by delaying the oscil-
lation speed when the module detects the reaction force. The results in Fig. 4.5(a)(b) provide
a few suggestion for understanding the source of motor patterns of animals. First, the results
suggest that the physical interaction of the local stretch reflex strategy is effective to generate
the motor patterns as resonance modes. The strategy generating resonance modes might be
an advantageous for animals to generate the large amplitude motions and survive in nature
with limited resources. Second, for generating the resonance modes in the quadruped model,
the muscle displacement information is more important than the muscle velocity information.

The results in the above chapters suggest a hypothesis that the local stretch reflex in animals
contributes the motor pattern generation by exploiting the physical interaction through the
body dynamics. To verify this hypothesis, in this chapter, we introduce a simple physiological
model of the stretch reflex pathways in animals.

5.2 Overview, and Revisit the Issue

5.2.1 Overview

This chapter introduces a simple model as a simple configulation of the motor control system
in animals. This model denotes a primitive local controller in animals, called the stretch
reflex. Each model is composed of one muscle and one motor neuron, thus each of these has
only identical and simple function. Here, a notable point is that the model has no explicit
inter-muscular neural connection, but it has physical connection through body dynamics.
Surprisingly, despite having no inter-muscular neural interaction (electrically isolated from
the other models), each model synchronize themselves using the physical interaction through
the body dynamics. Although many studies have focused on the animal reflex [86, 87, 88],
the remarkable points of this model is the absence of inter-muscular neural connection and
its simplicity (remind, Fig. 1.6). The extremely simple configulation for the animal reflex
system provides a sufficient condition for generating the motor patterns.

In this chapter, first, we present the formulation of the stretch reflex model, and a funda-
mental step response is demonstrated. Second, to investigate the property of the reflex model,
we conducted theoretical analysis and simulations. To prove some fundamental property, we
present the theoretical analysis for a single muscle model and an antagonistic muscle pair.
Additionally, we conduct some simulations with different three types of models: a single
muscle model, one link limb model with antagonistic muscle pair, and two link limb model
with multiple muscles.

5.2.2 The way to address the issue

As introduced in the first chapter (Chapter 1), to discuss the major issue of this thesis “what is
the source of motor patterns?”’, we introduce following two terms: the “rhythm generation”
that provides the temporal rhythmicity, and the “ pattern formation” that adjust the waveform
of the body motions. For the rhythm generation, we introduce two candidates, called the
self-excitation and forced-excitation method. In the self-excitation method, we exploit the
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Nerve dynamics
Tr(t) = —r(t) + I

I Adjuster ' Receptor'

Spindle

@ Reflection
Ta(®) = h(ka(enna(®) +£28(1)) | =y,

Muscle mechanics
mz(t) = —k1z(t) — ci(t) — e1r(t)

Fig. 5.2 Overview of stretch reflex model. This model is composed of one muscle and
one motor neuron.

dynamics intrinsic to the reflex model as a rhythm source. Thanks to the saturation in sensors,
when we increase the sensor gain of the reflex model, the muscle generate a steady limit cycle.
We exploit this limit cycle as a candidate of the source of animal rhythm. Next, in the forced-
excitation method, we apply a periodic external force to the body structure. This method
is equivalent to a function in animals in which the motor control signal is generated by the
CPGs and the upper central (e.g., the motor cortex).

For the pattern formation, we introduce the physical interaction of the local stretch reflex
models. In the simulations, using whichever these two candidates of the rhythm source, the
reflex model can automatically generate resonant modes without any explicit neural connec-
tion between the models. Moreover, the model adjusts these motor patterns adaptively to
changes in the parameters of the body structure.

From these results, I will conclude that a candidate of the source of pattern formation is in
the body dynamics, because the physical interaction between the extremely reflex controllers
has a function to adjust the waveform of the body motions.

5.3 Overview of the Stretch Reflex Model

In this section, we present the formulation of a stretch reflex model as a simple configuration
of the motor controller in animals.

Fig. 5.2 shows an overview of the stretch reflex model, which is composed of two parts: the
muscle mechanics and nerve dynamics. The muscle mechanics are expressed by a simplified
equation of motion for muscle displacement. The nerve dynamics describe the reflex action
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through a motor neuron, which senses and reacts to the muscle displacement and velocity.
The proposed model is written as follows:

mi(t) = =k x(t) — cx(t) — g, r(t) (5.1
7it) = =r(t) + h(ka(£,1x(1) + £,0.5(1))), (5.2)

where Eq. (5.1), (5.2) expresses the muscle mechanics and nerve dynamics. States x(¢) and
r(t) represent the muscle displacement and nerve activity. k; and ¢ denote the viscoelastic
constants of the muscle mechanics, and k; is the sensor gain of the muscle spindle, which
is an organ in the animal muscle corresponding to a sensor. 7 is the time constant, and
E1, &1, &y are the control and sensor gains. The sensor gains &1, &,, are the sensitivity
of the muscle displacement and velocity, which is adjusted by the upper central [89]. As
will be discussed below, we can control the limit cycle generation (called, self-excitation, in
following sections) by adjusting the sensor gain €,1, €,,. The saturation function A(x) with
parameter a is defined as follows:

h(*):{a-sgn(*> (I«]>a) (53)

* (I <a)

5.4 Modeling of Stretch Reflex System

The proposed model (5.1), (5.2) is based on the stretch reflex system in animals and consists
of the following four elements:

I(t) = h(ka(ey1x(1) + £,25(1))) (5.4)
Ti(t) = —r(t) + 1,(t) (5.5)
fult) = £17(1) (5.6)
mi(t) = —kyx(t) — cx(t) — f,(2). 5.7

Each element model represents the muscle spindle (5.4), the motor neuron (5.5), end effector
(5.6), and muscle with body inertia (5.7). In this section, we present the details of the element
models.

5.4.1 Muscle spindle

Muscles have mainly two types of sensors, called the muscle spindle and the golgi tendon
organ. These receptor are connected to the @ motor neuron in the spinal cord through the
sensory nerve fibers, which are called the Ia, II, and Ib fibers [89]. Among these, in this
thesis, we focus on the muscle spindle that is closely related to the local feedback control in
a single muscle.

The muscle spindle has a structure wherein the sensory part and the actuator part are con-
nected in series. The sensory part has a function that provides feedback regarding the muscle
length and velocity, and the sensory value is sent to the @ motor neuron through the Ia and II
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fibers. The muscle spindle has individual sensors the static bag fibers and dynamic bag fibers.
The static bag detects both the muscle length and velocity, and the dynamic bag detects only
the velocity. The actuator part adjusts the sensitivity of the muscle spindle by signals from the
upper central through the y motor neuron in the spinal cord [89]. The y motor neuron has two
types of pathways, namely, the static y efferent and dynamic 7y efferent [84]. These efferents
adjust the sensitivity of the static and dynamic bag fibers in the spindle, respectively. A pre-
vious research [85] has shown that the sensitivity of the static bag fibers is mainly activated
while cat walking and running.

Considering that the sensory part is modeled as an elastic element [90], we obtain the
activity of the 1,(¢) fibers as follows:

L(6) = h(I,(0)) = h(ka(e,1 (1) + £,25(1))), (5.8)

where x(¢) and k, denote the muscle displacement and sensor gain of the sensory part. For
simplicity, we assume that the muscle displacement x(7) is same as that of the entire muscle.
We added the saturation £ of the receptor defined by (5.3), and &y, &,, are the sensitivity
of the muscle displacement and velocity adjusted by the upper central through the y motor
neuron.

5.4.2 Nerve dynamics

Neurons have characteristics that outputs a spike when the membrane potential reaches a
certain threshold, and thereafter the potential begins to fade. A popular neuron model [91]
describes the dynamics of nerve activity r(z) for the @ motor neuron and is written by the
following differential equation:

Ti(t) = —r(t) + o(2), (5.9)

where the parameter o (¢) denotes the sum of the input signals applied to the @ motor neuron.
Additionally, we considered o(¢) as the fiber activity (o = 1,(?)).

5.4.3 Muscle mechanics

The end effector in the muscles is driven by receiving signals from the @ motor neuron.
Although Hogan [92] has proposed a bilinear model for the relationship between the neuron
activity r(#) and the muscle actuation force f,(f), we assume that these have a proportional
relationship as follows:

Ja(t) = e11(1), (5.10)

where g is the control gain.

The physical mechanics of the muscles are non-linear and frequently modeled using the
Hill type model [93]. In this study, for simplicity, we employed a second-order model [94]
and considered the muscle property as a linear viscoelastic element with a body inertia*!.

mi(t) = =k x(t) — cx(t) — fu(t). (5.11)

*I This model is equivalent to the Hill type model without a series elastic element
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Fig. 5.3 Time response of single muscle to external force disturbance. The top figure
shows the stepwise disturbance force, the middle is the muscle displacements with different
sensor gains, and the bottom is the corresponding actuation force &,r(¢) of the muscle with
the feedback.

Using these approach as we mentioned, we obtain the entire reflex model (5.1), (5.2) by
summarizing the element models (5.4)—(5.7).

5.4.4 Step response of single muscle

First, we demonstrate the step response of the single muscle in Fig. 5.2. The parameters,
gains, and initial states are as follows:

ki=1,k=1N/m,m=1kg, c=1sN/m, g, =1,7=1,a=1 (5.12)

x(0) =0 m, x(0) =0m/s, r(0) =0, +0) =0, (5.13)
and the sensor gain of the muscle displacement and velocity are changed in (g,1, &) =
0, 0), (1, 0), (1, 2).

Fig. 5.3 shows the time response of the single muscle. In this simulation, we applied a
stepwise disturbance force of 0.5 N to the mass of the single muscle. The top figure shows
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Fig. 5.5 Nyquist diagram of G,G,,G,; with-

Fig. 5.4 Block diagram of single muscle. o )
out the muscle velocity information &,, = 0.

the stepwise disturbance force, the middle is the muscle displacements with different sensory
gains, and the bottom is the corresponding muscle force with the feedback. In the simulation
with (g,1, &) = (1, 0), (1, 2) (green and blue lines), it can be seen that the generated
actuation force &r(f) cancels the displacement caused by the disturbance force. Moreover
in the simulation with the muscle velocity information (g,1, &,2) = (1, 2) (blue line), the
oscillation in the transient response was suppressed. This result with a small sensory gain
suggests that the stretch reflex model reproduces the well-known reflex action in animals, and
particularly, the muscle velocity information plays a role to stabilize the muscle response.

In the following sections, we present the characteristics of the proposed model from the
viewpoint of control theory.

5.5 Theoretical Analysis of Single Muscle

5.5.1 Stability analysis of single muscle

Fig. 5.4 shows a block diagram of the muscle mechanics and nerve dynamics (5.1), (5.2),
where G,, denotes the muscle mechanics (5.1) and nerve dynamics (5.2) consisting of two
sub-models: a receptor and a motor neuron; G,; and G,, denote the linear and non-linear
part of the receptor; G, denotes the motor neuron. The transfer functions of each linear part
G,1, G, Gy, are expressed as follows:
G = ka(ey1 + &,25), G L ¢ ol (5.14)

1 =ko(e £,5), = —, = .

: 2yl T e s+ 10" ms? +cs + ky
Thus, we obtain the open loop transfer function of the linear part between I, and I, as

follows:
k281(871 + 872.5')

Tms3 + (tc + m)s? + (thky + o)s + ki

GGGy = — (5.15)
The following theorem shows a stability condition for the stretch reflex model.
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Theorem 3 Let us consider the system (5.1), (5.2) without the muscle velocity information
&y = 0. If and only if the physical constants m, ki, k>, ¢, and the parameters 7, &1, &, satisfy

the following condition:
kreig,1Tm

<1, (5.16)

c(t?ky + T +m)

then, the equilibrium is asymptotically stable. Therefore, if the parameters satisfy the follow-
ing condition:
kreigy1Tm

>1, 5.17
c(t?ky + Tc +m) (5-17)

then, a steady limit cycle is generated, and its frequency is calculated as follows:

Tk + ¢
™

) (5.18)

Proof 6 In this proof, we employ the describing function method. When we input a sine
wave with an amplitude A in the saturation block G,,, the describing function N(A) of the
saturation can be expressed as follows:

a a
— 4+ —

a2
T\ (5.19)

N(A) = %(sin_l
V4
where a is the parameter of the saturation function A(x). The amplitude locus of the saturation
is illustrated in Fig. 5.5 as a half line on the real axis starting from point 1/N(A) = 1.
When we replace the non-linear part G,, with N(A) in Fig. 5.4, we obtain the following
condition from the characteristic equation 1 — N(A)G,G,,G,1(s) = 0:

1
G.GG(jw) = ——. 5.20
1(jw) N (5.20)
If there is a limit cycle with an angular velocity w and amplitude A, these parameters must
satisfy Eq. (5.20). Additionally, if there is no solution for Eq. (5.20), then, there is no limit
cycle. Because the intersection point of the Nyquist locus of the system and the real axis is
expressed as follows:

krerey ™M
St : (5.21)
c(t?ky + Tc + m)
and if and only if the parameters satisfy the following condition:
kre1ey ™M 1
eatbal (5.22)

< =1,
c(t?ky + tc+m) N(A)

then, the equilibrium is asymptotically stable. Moreover, if the parameters satisfy the follow-
ing condition:

kreigy1Tm - 1

c(t?ky +tc+m) — N(A) =1L (5.23)
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Fig. 5.6 Simulation results of single muscle by changing the sensory gain &, €

{1, 3, 10}. The top figures show the muscle displacement, while the bottom figures show
the actuation force that is proportional to the nerve activity.

then, the system converges to a steady limit cycle because the amplitude locus and Nyquist
locus have an intersection point. The frequency of the limit cycle is calculated as the angular

Tk +C
™

frequency when the Nyquist locus is at the intersection point w = O

Theorem 1 states that the stretch reflex model is stable with a small sensor gain &,. More-
over it can generate a steady limit cycle with a large &1, and that the frequency of the limit
cycle is around the resonance frequency of the physical muscle. In this thesis, we call it as a
self-excitation phenomenon. A previous study [95] has reported the phenomenon of periodic
motion generation that occurs by applying a continuous (non-periodic) electrical stimula-
tion. This phenomenon is similar to the limit cycle generation in the following simulations,
wherein it occurs by adjusting the sensor gain &,;.

5.5.2 Self-excitation of single muscle

We conducted a simulation to confirm the existence of the steady limit cycle in the single
muscle by adjusting the sensor gain &,;. From Theorem 1, the stretch reflex model can
generate a steady limit cycle with a large sensory gain &,1. Here, we exploit this function as
a candidate of the rhythm source (we call this method as the self-excitation).

The parameters and gains of each muscle were the same as those in the previous simulation,
except for g1, &,,. We chose the sensory gain of &,; = 1, 3, 10, and there is no muscle
velocity feedback &,, = 0. The initial states are as follows:

x(0) =0.5m, x(0) =0m/s, r(0) =0, (0) =0. (5.24)

Fig. 5.6 shows the time response during &,; € {1, 3, 10} without the muscle velocity
information &,, = 0. The top figures show the muscle displacement, and the bottom figures
show the actuation force that is proportional to the nerve activity. As can be seen in the
figures, the solution converged to the origin at &,; = 1, and a limit cycle was generated
at &, = 3, 10. This result is in good agreement with Theorem 1, and we can observe a
bifurcation in Fig. 5.5 because the Nyquist locus and the amplitude locus intersect at &, > 3.
Moreover, by focusing on the case at &,y = 10, when the muscle receives a large force
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Fig. 5.7 Nyquist diagram of G,G,,G,; with &,; = 3 and different velocity gains.

from the mass, the nerve maintains a large activation and converts kinetic energy to elastic
energy. In contrast, when the muscle force begins to decrease, the sign of the actuation force
is quickly inverted and the muscle converts elastic energy to kinetic energy.

Next, we show that the muscle velocity feedback suppresses the limit cycle. Fig. 5.7 shows
the nyquist diagram of G,G,,G,1 with &,; = 3 and different velocity gains &,, = (0.1, 1, 2).
The half line on the real axis starting from point 1/N(A) = 1 is the amplitude locus of the
saturation. As can be seen in the figure, the muscle velocity information prevent to intersect
the Nyquist locus and the amplitude locus.

5.6 Antagonistic Muscle Pair

5.6.1 Stability analysis of antagonistic muscles

Our aim in this chapter is to clarify the contribution of the physical inter-muscular interaction
through the body dynamics. To analyze the fundamental physical interaction of muscles,
in this section, we introduce an antagonistic muscle pair. Fig. 5.8 shows the antagonistic
muscle pair. This system is composed of a flexor—extensor muscle pair, and a pendulum. The
muscles actuate the rotary joint of the pendulum through a pulley that is fixed on the wall.
As mentioned in the introduction, the muscles have no inter-muscular neural interaction (two
models are electrically isolated from each other). This model represents the case wherein the
inhibitory inter-neurons between the flexor and extensor muscles are disconnected (see the
right figure in Fig. 1.8).
The mechanics of the antagonistic muscle are expressed as follows:

mi(t) = —(ki p + ki g)x(t) = (cr + cp)x(t) — e1(rp(t) — rg(1)), (5.25)

where 7 = 2I/d is a constant determined by the limb inertia I = mi?>/4 and the pulley
diameter d; ki r, k1 g and cp, cg are the viscoelastic constants of each muscle. We defined

—67 -



5.6. ANTAGONISTIC MUSCLE PAIR

Pulley (fixed on the wall)

-y ¢ (t)
(t) [
Flexor Extensor
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Fig. 5.8 Antagonistic muscle pair. This system is composed of a flexor—extensor muscle
pair, and a pendulum. The muscles actuate the rotary joint of the pendulum through a
pulley that is fixed on the wall.

the muscle displacements as the state of x(f) = xp(f) = —xg(¢) under the assumption of
xp(t) = —xg(t). Additionally, we assumed no slacking for the muscles. Here, xz and xg
correspond to the displacements of the flexor and extensor muscles.

The nerve dynamics of the flexor and extensor muscles are expressed as follows:

1rp(t) = —rp(0) + h(ka.p (1 X(0) + £12(1)))
r() = —re(t) - h(kp.e (8,1 X(0) + £,01(1))), (5.26)

where ky r, ky g is the sensory gain of the muscle spindles in the flexor and extensor muscles.
The sign difference of the second term is caused by the definition of muscle coordinates.
The following theorem shows a stability condition for the antagonistic muscle pair.

Theorem 4 Let us consider the system (5.25), (5.26), and assume that k, = kp p = ko p. If
and only if the constants m, ki, ki g, k», cr, cg and the parameters 7, &, &, satisfy the
following condition:

2k281871Tﬁ1

— <1, 5.27)
(cr + cp) (T2 (ki F + ki) + T(cp + cp) + 1) (

then, the equilibrium is asymptotically stable. Therefore, if the parameters satisfy the follow-
ing condition:
2](281 871 ™m

— > 1, (5.28)
(cr + cp)(T?(kiF + ki) + T(cp + cE) + 1)

then, a steady limit cycle is generated and its frequency is calculated as follows:

\/T(kl,F + ki g)+ (cr +cE)

(5.29)

™
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Proof 7 Let #(t) = rp(t) — rg(f), ky = kir + ki g, and ¢ = cr + cg; then, the system (5.25),
(5.26) is rewritten as follows:

mx(t) = =k x(t) — ¢x(t) — &, 7(t) (5.30)
Ti(1) = = (1) + 2h(ko (8,1 X(1) + £2%(D)), (5.31)

Similar to (5.14), the transfer functions of each linear part G,;, G,, G,, are expressed as

follows: 5
€1
Gh=¢,1k, Gy =—, G, =——. 5.32
P s+ 1 ms? + ¢s + ki (5.32)

Let ky = 2k;, then we obtain the open loop transfer function of the linear part with the same
form as (5.15):

/_62818y1
GGGy = —— —— — —, (5.33)
Tms3 + (1¢ + m)s? + (tky + ¢)s + k;
Therefore, the result is proven in the same manner as Theorem 1. O

5.6.2 Synchronization of antagonistic muscles

Next, we prove the synchronization of the antagonistic muscle pair.

Theorem S Let us consider the system (5.25), (5.26), and assume that k; = ko = kp g. The
activities of the antagonistic muscle pair synchronize and satisfy the following condition:

re(t) = —rg(). (5.34)

Proof 8 We consider the behavior of the sum of nerve activities for # = rr + rg. From
Eq. (5.26), the sum of two nerve dynamics is expressed as follows:

(1) = =7 (1). (5.35)

This system is clearly exponentially stable, and the sum of nerve activities ¥ = rp + rg
converges to the origin. O

Theorems 3 state that the antagonistic muscle pair synchronize individually into an anti-
phase mode, wherein each muscle shrinks alternately without losses by cancelling the actua-
tion force. Moreover, this synchronization is achieved independently of the form of function
h(*) and the body properties. In other words, even if there is the muscle velocity feedback,
and if the muscles have asymmetries or errors, the antagonistic muscle pair can generate
lossless motions.
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Fig. 5.9 Simulation results of self-excited antagonistic muscle pair obtained by changing
the sensory gain &,; € {1, 5, 10}. The top figures show the muscle displacement, and the
bottom is the actuation force that is proportional to the nerve activity.

5.6.3 Self-excitation of antagonistic muscle pair

Next, we present the simulation result obtained by the self-excited antagonistic muscle pair
without inter-muscular interaction. In this simulation, we do not consider gravity, and choose
the parameters, gains, and initial states as follows:

kirp=kig=1ky =1N/m, m=1kg, cr =cg=1sN/m (5.36)
e1=1,6,=0,7=1,a=1,l=1m, d=05m (5.37)
x(0) =0.5m, x(0) =0m/s, rp(0) = rg(0) =0, 7£(0) = i£(0) =0, (5.38)

Additionally, we choose the sensory gain g,; € 1, 5, 10.

Fig. 5.9 shows the time response with &,; € 1, 5, 10. The top figures show the muscle
displacement, and the bottom is the actuation force that is proportional to the nerve activity.
In the figures, the solution converged to the origin at ,; = 1, and a limit cycle was generated
at g, = 5, 10. These results are in agreement with the Theorems 2 and 3 because the limit
cycle exists if £,; > 5, and the actuation forces proportional to nerve activity converge to
re(t) = —rg(2).

5.7 Limb with Multiple Muscles
5.7.1 Limb model

Finally, we present the simulation results of the limb model with multiple muscles.

Fig. 5.10 shows the simulation setting of the limb model with multiple muscles. This
system consists of two flexor—extensor muscle pairs, and two link limbs. The muscles actuate
the limb joint through pulleys that are fixed on the wall and lower limb. The limb model is
expressed as follows:

MO())6(t) + H(O(1), (1)) + DO(t) = gF (), (5.39)
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Fig. 5.10 Limb model with multiple muscles. This system is composed of two flexor—
extensor muscle pair and two link limbs. The muscles actuate the limb joints through the
pulleys fixed on the wall and the lower limb.

and each element is expressed as follows:

oy | | o w4 o010 =60 s

.00 = | ok | 540

D:[ o C(Zz (5.42)

Fo == St O] T e [0~ | S ray |
(5.43)

where x(¢) = [x1(¢), x2(£)]" is the muscle displacement, the new state 6(r) = [0;(z), 6.(1)]"
denotes the angles of each rotary joint, each joint has viscous friction with constant cg;, cg.
F(¢) is the muscle force, and rp; and rg; represent the activity of the flexor and extensor
muscles for joint i, respectively.

5.7.2 Self-excitation of limb model

Next, we present the simulation result obtained by the self-excited limb model without an
inter-muscular neural interaction.

The simulations were conducted iteratively by changing the initial phase difference 6,(0) —
6,(0) € [-30, 30] deg. Moreover, we changed the mass parameter m € (0, 1] to show that
the muscles can generate various periodic motions adaptively with different body parameters.
The masses of the limb were determined from the mass parameter m as m; = m, m; =
0.6m kg. The initial phase and phase difference were set as 6,(0) = 30 deg, 6,(0) — 6,(0) €
[-30, 30] deg, and the viscoelastic constants of all muscles were identical. In this simulation,
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Fig. 5.11 Simulation results using the self-excited limb model by changing the initial
phase difference 6,(0) — 6,(0) € [-30, 30]deg and mass parameter 1 € (0, 1]. The blue
bullet denotes that the two joints converged to a solution in an in-phase manner, and the
red bullet denotes anti-phase manner. The top figures illustrate the converged solution.

we considered the gravity with constant g, and selected the other parameters, gains, and initial
states, as follows:

kir1 = kier = kip2 = ki g2 = ko = 100 N/m (5.44)
crl=cpl =cp2=cg2=0.1, cyy =cep =1sN/m, 7=0.1, a=1 (5.45)
e1=10,&,=10,6,=0,/=05m,d=04m, g =928 s?/m (5.46)
6,(0) = 0 deg/s, rr(0) = r(0) = 0, i(0) = i£(0) = 0. (5.47)

Fig. 5.11 presents the simulation results with different mass parameters m € (0, 1]. The
bullet color denotes the phase difference of the converged solution of the two joint angles.
The blue bullet denotes that the two joints converged to a solution in an in-phase manner,
and the red bullet denotes an anti-phase manner. In these figures, the phase differences of
the converged solution change as the mass parameter 7 increases. The transition is appeared
at approximately /n = 0.3, and each solution converged to the resonance modes, as shown
in the top figures. From Eq. (5.29) in Theorem 2, it is understood that the frequencies of
the generated motions decrease as the body mass increases. Although the simulation setting
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Fig. 5.12 Time response of limb angles #; and 6, with initial phase difference 6,(0) —
6,(0) = 30. The left figure illustrates the limb angles 6; and 8, with the mass parameter
m = 0.2, and the right figure is the result with the mass parameter m = 0.4.

were slightly different to those in Theorem 2, a similar tendency still existed. Therefore, as
the mass parameter /. increased, the transition from the 2nd mode to the 1st mode (higher to
lower resonance frequency) occurred. The notable point of this result is that the self-excited
muscles synchronized themselves and achieved an adaptive motion transition only by inter-
muscular interaction through the body dynamics.

Fig. 5.12 (a)(b) shows the time response of the limb angles 6, and 6, in Fig. 5.11. We
present the results with two initial phase difference 6,(0) — 6,(0) = 30, — 30, and with two
different mass parameters m = 0.2, 0.4. The left figure (a) illustrates the result with the mass
parameter m = 0.2, and the right figure (b) is the result with the mass parameter m = 0.4. In
the figures, (a) the angles converged to the 2nd mode in an anti-phase manner and (b) to the
Ist mode in an in-phase manner, respectively.

These results suggests that the limit cycles that is generated by the stretch reflex pathway
in animals is possible to be a candidate of the rhythms source. Therefore, the local reflex
strategy also contributes to the pattern formation by exploiting inter-muscular interaction
through the physical body dynamics.

5.7.3 Forced excitation of limb model

Finally, we present the simulation result obtained by the force-excited limb model without
inter-muscular interaction. The forced-excitation, in which we apply an periodic external
force to the joint angles, is equivalent to a function in animals in which the motor control
signal is generated by the other candidate of the rhythm source: the CPGs and the upper
central. We aim to investigate the pattern formation ability of the synchronization using the
body dynamics with the CPGs and the upper central.

The simulations were conducted iteratively by changing the initial phase difference 6,(0) —
0,(0) € [-30, 30] deg. Moreover, we changed the frequency of the periodic external force
w € (0, 30]. to show that the muscles can adapt with the periodic external forces with various
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Periodic external force

Fig. 5.13 Force-excited limb model with an periodic external force. The periodic force
is applied to the upper joint, and the flexor and extensor muscle pair is fixed on the bottom
joint.

frequencies. The initial phase and phase difference were set as 6,(0) = 30 deg, 6,(0)—6,(0) €
[-30, 30] deg, and the viscoelastic constants of all muscles were identical. The periodic
external force is applied as 10sin(w?). In this simulation, we considered the gravitational
acceleration g, and selected the other parameters, gains, and initial states, as follows:

my; =0.2, my =0.12, k1 p = k1 g = ko = 100 N/m, (5.48)
cr=cg=0.1, coy =cepp=1sN/m, =001, a=1 (5.49)
e1=10,&,=10,£,=0,1=05m,d=04m, g=9.38 s?/m (5.50)
61(0) = 0 deg/s, rr(0) = rg(0) = 0, i+(0) = i£(0) = 0. (5.51)

Additionally, we choose the sensory gainin (g,1, &,1) = (1, 0), (0, 1), (1, 1).

Fig. 5.14, 5.15, and 5.16 presents the simulation results with the different sensory gain in
(&y1, 1) = (1, 0), (0, 1), (1, 1). The color of the sphere denotes the phase difference of
the converged solution of the two joint angles. The blue sphere denotes that the two joints
converged to a solution in an in-phase manner, while the red sphere denotes that the joints
converged to a solution in an anti-phase manner.

In the Fig. 5.14, the phase differences of the converged solution change as increasing the
frequency of the periodic force w. The transition took place at approximately w = 10, and
each solution converged to the resonance modes as shown in the top figures. This result shows
the reflex controller in the muscle pair adjusted its own motions and generated suitable gaits
for body dynamics adaptively to the external force. However, in the Fig. 5.15 and 5.16, the
phase differences of the converged solution did not change as the frequency of the periodic
force w increases. This result shows the muscle reflex keeps the joint angle 6, to the excited
joint #; due to the muscle velocity feedback ¢,, stabilized the bottom joint 6.

Fig. 5.17, 5.18, and 5.19 show the time response of the limb angles 8, and 6, in Fig. 5.14
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Fig. 5.14 Simulation results using the force-excited limb model with only the muscle
displacement feedback &,; = 1, &,, = 0. We changed the initial phase difference 6,(0) —
6,(0) € [-30, 30]deg and the frequency of the periodic external force w € (0, 30]. The
blue sphere denotes that the two joints converged to a solution in an in-phase manner, while
the red sphere denotes that the joints converged to a solution in anti-phase manner. The
top figures present the converged solution.

with various sensor gains. The initial phase difference and the frequency of the external force
are 61(0) — 6,(0) = 30, and the left and right figure show the result with w = 8, 12. Fig. 5.17
(a)(b) shows the results with only the muscle displacement feedback &, = 1, g, = 0.
In the figures, (a) the angles converged to the 1st mode in an in-phase manner and (b) to
the 2nd mode in an anti-phase manner, respectively. From the figures, the stretch reflex
with the muscle displacement feedback &,; = 1 adjusted and amplified the waveform of the
limb motion that is caused by the forced-excitation, and as a result, the system converged
to the resonance modes. Fig. 5.18 (a)(b) shows the results with only the muscle velocity
feedback &,; = 0, &, = 1. In the figures, (a) (b) the angles converged to the 1st mode in
an in-phase manner. From the figures, the stretch reflex with the muscle velocity feedback
&y, = 1 synchronize the limb angle with the external force and decrease the amplitude of
oscillation. The results in Fig. 5.19 (a)(b) are almost same, and it suggest that the muscle
velocity feedback €,, = 1 is more dominant than the displacement feedback.

From these results, also with the forced-excitation by the CPG and upper central (the sec-
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Fig. 5.15 Simulation results using the force-excited limb model with only the muscle
velocity feedback &,; = 0, &,, = 1. We changed the initial phase difference 6,(0) — 6,(0) €
[-30, 30]deg and the frequency of the periodic external force w € (0, 30]. The blue sphere
denotes that the two joints converged to a solution in an in-phase manner, while the red
sphere denotes that the joints converged to a solution in anti-phase manner. The top figures
present the converged solution.

ond candidate of the rhythm source), the local reflex strategy also contributes to the pat-
tern formation by exploiting inter-muscular interaction through the physical body dynamics.
Moreover, the reflex controller can easily suppress and stabilize the corresponding joint by
increasing the sensor gain for the muscle velocity.

5.8 Discussion

The theoretical results in Theorem 1 and Theorem 2, and the simulation results
Fig. 5.6, 5.9, 5.11 shows that the large sensor gain causes the limit cycles in reso-
nance frequency. These self-excited limit cycles that is generated by the dynamics of the
stretch reflex is the first candidate of the rhythm generator. With the self-excitation, the local
reflex strategy contributes to the pattern formation by exploiting inter-muscular interaction
through the physical body dynamics.

As a second candidate of the source of rhythm generation, we employed the forced-
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Fig. 5.16 Simulation results using the force-excited limb model with both the muscle
displacement and velocity feedback ¢,; = 1, &, = 1. We changed the initial phase
difference 6,(0) — 6,(0) € [-30, 30]deg and the frequency of the periodic external force
w € (0, 30]. The blue sphere denotes that the two joints converged to a solution in an
in-phase manner, while the red sphere denotes that the joints converged to a solution in
anti-phase manner. The top figures present the converged solution.

excitation by the external periodic forces. The forced-excitation is equivalent to a function
in animals in which the motor control signal is generated by the other candidate of the
rhythm source: the CPGs and the upper central. Fig. 5.14, 5.15, 5.16, 5.17, 5.18, and 5.19
presented the simulation results with the muscle displacement and velocity information
through two kinds of feedback pathway, the static and dynamic y. From these results, also
with the forced-excitation, the local reflex strategy also contributes to the pattern formation
by exploiting inter-muscular interaction through the physical body dynamics.

Moreover, these results showed that animals adjust their motor patterns by changing the
sensory gain of the muscle displacement g,; and velocity €,,, such as increase &,; when a
large amplitude motion is needed, or increase €,, when a careful and powerful motion or a
stable position control is needed. Such gain adjustment is in agreement with measurements
of cat motions [85]. When the cat relax, both the activity of the static v neuron (mainly,
increase the muscle displacement gain) and dynamic vy (increase the velocity gain) keep low
level. However, the activity of the static y increase when the cat walking and running, the
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feedback &,; = 1, &,, = 0. The initial phase difference and the frequency of the external
force are 6,(0) — 6,(0) = 30. The left and right figure show the result with w = 8, 12.
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Fig. 5.18 Time response of limb angles 6, and 8, with only the muscle velocity feedback
g1 =0, g, = 1. The initial phase difference and the frequency of the external force are
0:(0) — 6,(0) = 30. The left and right figure show the result with w = 8, 12.

dynamic y increase when the forced motions, such as when lifting the cat body. Both the
static and dynamic vy increase when in the difficult tasks, such as the cat walking on a balance
beam.

As shown in the result, the stretch reflex strategy without an electrical inter-muscular com-
munication provides a function of the pattern formation adaptively to the body dynamics.
The pattern is the resonant modes, which is most easily excited motion through body dynam-
ics and advantageous to generate various large amplitude motion. The other function—the
rhythm generator, which is needed for the motor patterns of animals, is considered to be the
self-excitation phenomenon of muscles, the central nervous networks (CPG and upper cen-
tral), or both. Although it is unclear that which (or both) of these is the source of rhythm
generation, using whichever two candidates of the rhythm source, the reflex model provides
the function of the pattern formation. From this result, we concluded that the source of
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Fig. 5.19 Time response of limb angles 8, and 6, with both the muscle displacement and
velocity feedback ¢,; = 1, €, = 1. The initial phase difference and the frequency of
the external force are 6,(0) — 6,(0) = 30. The left and right figure show the result with

w =238, 12.

pattern generation is in the physical interaction between primitive stretch reflex controllers
through body dynamics, because the physically natural modes appear even in the quite simple
configuration having no electrical inter-muscular communication.

5.9 Future work

In this thesis, the local reflex chains through the physical body dynamics generated various
physically natural and large amplitude motions, and the brainless robot that has the roughly
equivalent (implicit) controller automatically generated typical animal gaits. The extremely
simple configuration for the animal motor functions provides a sufficient condition for the
motor pattern generation of animals. The results in this study suggested that the physically
coupled reflex chain is a strong candidate for the fundamental basis for the pattern formation
in animals.

However, some works are remains for supporting the result. The simulated limb model has
no interaction between the ground surface, thus a walking simulation and experiments are
needed. To show more reliable result, some experiments using actual animals or biomimetic
robot models that duplicate animal musculoskeletal system and motor functions. Moreover,
the source of rthythm generation is still unclear, and particularly, more detailed explanation
for the self-excitation phenomenon using physiological evidences is a future work.
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Chapter 6

Conclusion

This thesis investigated underlying mechanisms that enable the motor patterns (typically ob-
served as gaits) in nature animals by using an extremely simple legged robot and physiolog-
ical reflex model. As a result, we showed a candidate of the fundamental basis for motor
control of legged robots and animals.

6.1 Part |

In Part I, we developed a quadruped robot that provides a clue to the issue: a sufficient condi-
tion for generating the animal gaits. The brainless walking robot having no explicit controller
showed typical animal gaits (walk and gallop), and the different types of brainless robots
(snake-like and earthworm-like robots) generate various animal motions that suits their own
body dynamics and constraint condition from the environments. The key of the adaptivity
was an electrical passivity of low-torque DC motors, and these passivity adjusts each motor
phase by exploiting the physical force interaction through the body and environment dynam-
ics.

To evaluate this control method, some experiments, simulations and theoretical analysis
were conducted for the brainless robot and two fundamental systems (a spring-mass system
and a planar quadruped model). The experiments and simulations showed a key feature that
the electrical passivity of the motors generates resonant modes of the system. This feature
allowed the robot to generate various large amplitude motions even with uncertain body struc-
tures and environments. The theoretical results provide an interpretation for the function that
is interpreted as an implicit controller to down the slope of the Hamiltonian potential for
the system and dissipation energy, momentary. In other words, the compliant oscillator may
decrease the Hamiltonian and energy loss of the mechanical system, but more theorems for
nonlinear systems are needed to prove that ability.

The proposed method has three clear advantages that differs from the conventional decen-
tralized controllers. First, since the method needs no sensor, microprocessor, certain pre-
cise and high-torque motor, nor explicit controller, therefore, it significantly reduces the im-
plementation cost of conventional decentralized controllers. Second, this method needs no
global information of the mechanical system and uses only the local force feedback. There-
fore, the module may generate resonance modes of uncertain or unpredictable systems. As a



6.2. PART II

result, if the body and environment dynamics is changed by some troubles, the electrical pas-
sivity instantly adjusted the motions and adapt these uncertainty. Third, the proposed control
method is powerless and inaccurate, but can generates physically natural motion that suit for
the robot body and environment. Although this method does not suit for static and powerful
tasks (e.g., position control or object manipulation), it will be a new approach for robot de-
sign by using this method as a fundamental basis of the robot motor control and adding just
a little explicit controllers for the powerful tasks, as with the motor command from the brain.

6.2 Partll

The major contribution of Part II is to show that a candidate of the source of animal motor
patterns is in the body dynamics, and the extremely simple reflex controllers play a role to
adjust the waveforms of the body motions. This model denotes a primitive local control in
animals, called the stretch reflex, and it is based on the analytical results of the brainless
walking, which is introduced in Part I.

First, we constructed a model based on a dominant dynamics of the brainless walking,
called the DFFB (Direct Force Feedback) model. The DFFB model provides almost the
same time response and resonant modes as the low-torque DC motor model, and next, we
constructed a physiological model by focusing on an analogy between the DFFB model and
stretch reflex in animals. To discuss the major issue of this thesis “what is the source of
motor patterns?”’, we introduced two terms, the “rhythm generation” that provides periodic
rhythms, and the “ pattern formation” that adjust the waveform of the body motions. For
the rhythm generation, we introduce two candidates, called the self-excitation and forced-
excitation method, and we mainly investigate the function of pattern formation in the animal
reflexes.

In the simulations, the reflex model automatically generates resonant modes without any
explicit neural connection between the models using whichever two candidates of the rhythm
generation. Moreover, the model adjusts these motor patterns adaptively to changes in the
parameters of the body structure. The extremely simple configuration for the animal reflex
system provides a sufficient condition for generating the motor patterns. From these results,
I will conclude that the physically coupled stretch reflexes are a strong candidate for the
fundamental basis for the pattern formation in animals.
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Appendix A

A.1 Brainless Earthworm-like Robot

Based on the successes of the brainless quadruped robot, we developed an earthworm-like
robot that has a different body structure from the other brainless robots. In this chapter,
we develop an extremely simple earthworm-like robot as a minimal configuration of the
earthworm-like wave generation.

Numerous earthworm-inspired robots have been developed previously with various drive
systems, electric motors [96, 97], solenoid [98], SMA [99, 100, 101, 102, 103, 104], DEA
[105], magnetic field [106], and pneumatic [107]. For these artificial earthworms, some con-
trollers for adaptive control [108, 109], gait generation [110, 111, 112] have been proposed.
However, these previous robots and controllers employed predesigned phase differences or
heuristic and complicated algorithms to generate gaits. Therefore, the source of the wave
locomotion of earthworms is still unclear. An decentralized adaptive controller in an earth-
worm simulation was proposed in articles [113, 114], and we achieve a similar control law
mechanistically by exploiting the electrical passivity intrinsic to motors.

The major contribution of this work is showing that autonomous peristaltic gait genera-
tion is possible without any explicit controller. Actual earthworms generate the contraction—
expansion waves from head to tail, and the contracted segment inflates to generate friction
from the ground [2]. To reproduce an earthworm-like body function, the proposed robot is
composed of multiple body segments that are mutually coupled by a linear joint that contracts
and expands its own body. Inflation of the body segments are reproduced by a flexible bottom
plate that connects two adjacent segments. Each linear joint is connected to a low-torque DC
motor through a slider-crank linkage, and produces periodic contraction—expansion motions
under a constant voltage. Each motor, which drives the corresponding linear joint, adjusts
its own phase according to the load torque applied from the other segments and ground sur-
face. As a result, phase differences between linear joints and motors converge, and the robot
generates peristaltic locomotion automatically.
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A.2 Earthworm-like Robot without a Brain

A.2.1 Structure of the earthworm-like robot
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Fig. A.2 Schematic of an earthworm. Real

Fig. A.1 Overview of the brainless earthworms generate contraction—expansion

earthworm-like robot. waves from head to tail, and the contracted
segment inflates to generate friction from the
ground [2].

In this chapter, we develop a brainless earthworm-like robot that autonomously generates
a peristaltic wave without a sensor, controller, or microprocessor. The proposed robot is
composed of six body segments, and each segment has one low-torque DC motor (Pololu
75:1 Micro Metal Gearmotor HP). Fig. A.1 shows the overview of the earthworm-like robot.
The total weight of the robot is 409 g. The deformation length of each joint is 20 mm, and
the total length during contraction and expansion are 430 mm and 510 mm, respectively. The
total height during contraction and expansion are 125 mm and 120 mm, respectively.

Real earthworms generate contraction—expansion waves from head to tail, and the con-
tracted segment inflates to generate friction from the ground [2] (Fig. A.2). To reproduce an
earthworm-like structure, each segment is mutually coupled by a linear joint that contracts
and expands its own body. Each linear joint is connected to a low-torque DC motor through a
slider-crank linkage mechanism (Fig. A.3). This linkage is composed of a crank that connects
the motor to the shaft, and a slider that connects the crank to the linear joint. The crank in
continuous rotation produces periodic contraction—expansion motion. Inflation of the body
segment is reproduced by a flexible polypropylene plate that connects two adjacent segments,
and we attached anti-slip sheets (PVC foam sheets) to the bottom surfaces of the plate. In
Fig. A.4, when the crank is rotated by the motor (red arrow), it produces periodic contraction—
expansion waves under a constant voltage (blue arrow); at the same time, the bottom surface
is pushed up and pulled down (green arrow).
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Fig. A.5 Model of the contraction and expansion mechanism.

A.2.2 Modeling of the contraction and expansion mechanism with a low-
torque DC-motor

This robot has no sensor, controller, or microprocessor. The key concept behind this brainless
earthworm-like robot is to exploit the passivity intrinsic to the low-torque DC motor in each
linear joint as a control law. Each motor rotates continuously under a constant voltage from a

stabilized power source, and adjusts its own phase by exploiting the dynamics intrinsic to the
motor itself.
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Fig. A.5 shows a model of the contraction and expansion mechanism. First, we assume
that the flexible plate at the bottom can be approximated as a linkage in Fig. A.5 (link OABC,
orange link), and that the link lengths OA and AB, DE and EF are equal, respectively.

When the ground reaction force N(¢) is applied to the bottom link, a force N’(¢) to expand
the body segment is generated as follows:

N'(t) = ?tanq&(t), (A.1)

where 0 < ¢(f) < m/2 is the angle of the bottom linkage. The force N’(¢) is transmitted
through the linkage OABC and causes a disturbance torque 7 that is applied to the motor
shaft

7(f) = 2A0ON’(t)cos®. (A.2)

Finally, by substituting Eq. (A.1) and Eq. (A.2) for Eq. (3.3), we get the entire model:
0(t) = w + a(t)N(t)cos#, (A.3)

where a(f) = eAOtang(?) is a function that changes the transmission rate of the ground reac-
tion force. From Eq. (A.3), when a ground reaction force N(¢) > 0 is applied to the bottom
surface, the low-torque DC motor adjusts its own phase through the linkage mechanism. In
other words, the passivity of the DC motor for the purely physical mechanism Eq. (A.3)
makes it function like a state feedback controller. The dynamics of Eq. (A.3) from the pure
mechanical linkage is very similar to the controllers that generates quadruped gaits [47, 48],
earthworm gaits [113], and caterpillar gaits [114].

A.3 Experiment

In this section, we conduct fundamental experiments to investigate the generated motor pat-
terns.

Fig. A.6 shows the experimental setup. All of the motors were connected to a power source
in parallel. The initial state of all linear joints was set to contract (all of the motor phases are
0 = 3x/2 in Fig. A.5 ). The trial was conducted once for each input voltage of 2 V and 3
V. The states of the robot was captured by a motion capture system, and the markers were
attached above the each motor shaft.

Fig. A.7 and Fig. A.8 show the locomotion of the robot with 2 V. In the figures, after
approximately 15 s, the linear joints generated wave from right to left, and as a result, the
robot moved to the right (retrograde wave). Fig. A.9 shows the spatiotemporal plots of the
motor phase with 2 V. From the figure, a steady peristaltic gait was generated as

Motorl — Motor2 — Motor3 — Motorl — Motor2 — ... (A4)

This manner of wave was the same as the gait of real earthworms. This result was caused
by the interaction between the body segments and the ground contact conditions through the
physical body dynamics. The movement of each motor was suppressed by the left and right
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Fig. A.6 Experimental setup.

adjacent segments, and the ground reaction and friction forces. For these reasons, only the
end segment moves first, and it seems that a chain expansion motion starting from the end
segment occurred. However, there was a slow drift of the motor4 phase at t = [15,40]s. This
result assumed that the motor4 cannot receive a sufficient ground reaction forces owing to the
lack of rigidity of the linear joint. The robot structure will be improved in future work.

Fig. A.10 and Fig. A.11 show the locomotion of the robot with 3 V. In the figure, the motors
generated a steady in-phase pattern from beginning to end; as a result, the robot moves to the
left. Fig. A.12 shows the spatiotemporal plots the motor phase with 3 V. The movement, in
which all the motors contracted and expanded at the same time, was the 1st resonance mode
of the robot body. It is assumed that this movement was caused by the inertial force between
the body modules becoming greater than the frictional force.

A.4 Conclusion

In this chapter, we reported an extremely simple earthworm-like robot as a minimal config-
uration of the earthworm-like wave generation. This robot generated the peristaltic gait of
actual earthworms autonomously without a sensor, controller, or microprocessor. The results
suggest the contribution of the forces interacting between the body segments. Moreover, the
robot generated different locomotion that adaptively corresponds to the input voltage. We
expect that comparison of these two different phenomena will provide critical clues to under-
standing the contributions of friction and inertial force to peristaltic gait.

— 86 —



A

4. CONCLUSION

Position of each segment = (mm)

|

500

Joint | me=  Joint2 se==  JOint 3 e
Joint 4 === Joint 5 s

IS
1=}
S

k%

N
o
=)

=

>

AAAAAAAAAAAAAAAAAAAAA

o
S

-100
0

I I I
10 20 30

Time (s)

Fig. A.7 Experimental result with 2 V: hor-

izontal displacement of the each joint.

— 87—

Retrograde wave appears

B _/f mf\p'

_..........‘ — ‘!"':lr"-!!"

As a result, moves right

Fig. A.8 Snapshot of the locomotion with 2
V. The red and blue arrows denote extended
joints. The robot generates retrograde wave
(from right to left); as a result, the robot
moves to the right.
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Fig. A.9 Spatiotemporal plot of the motor phase with 2 V. From the figure, in motorl,
motor2, and motor3, a steady peristaltic gait is generated. However, there is a slow drift of
the motor4 phase at t = [15,40]s.

— 88 —



A.4. CONCLUSION

In-phase pattern appears

Joint | === Joint2 === Joint 3 e

S
=)
S

Joint 4 === Joint 5 me

- o w
=) 1=} S
o =3 S =3

Position of each segment = (mm)

!
~
o
153

5
Time (s)

Fig. A.10 Experimental result with 3 V:
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As a result, moves left

Fig. A.11 Snapshot of the locomotion with
3 V. The robot generates in-phase pattern; as
a result, the robot moves to the left.

— 89—



A.4. CONCLUSION

Motor phase

Gait with in-phase pattern generated sind

1
Motor 4

Motor 3

Motor 2

Motor 1

Time (s)

Fig. A.12 Spatiotemporal plot of the motor phase with 3 V. The movement, in which all
the motors contract and expand at the same time, is the 1st resonance mode of the robot
body.
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Appendix B

B.1 Brainless Snake-like Robot

Based on the successes of the brainless quadruped robot, we developed a snake-like robot
that has a different body structure from the other brainless robots. In this chapter, we devel-
oped an extremely simple snake-like robot as a minimal configuration of the snake-like wave
generation and its environmental adaptability.

B.1.1 Structure of the snake-like robot

Fig. B.1 Overview of the brainless snake-like robot.

In this chapter, we develop a brainless snake-like robot (Fig. B.1) that generates motion
patterns adaptively and autonomously without a sensor, controller, or microprocessor.

Fig. B.2 shows the structure of the proposed robot. The total weight of the robot is around
430 g, and the total length is around 500 mm. The proposed robot is composed of six body
segments with passive wheels, and each segment has one low-torque DC motor (Pololu 75:1
Micro Metal Gearmotor HP). Each segment is mutually connected by revolute joint, and each
joint is connected to a low-torque DC motor through a slider-crank mechanism. The distance
between the revolute joints is around 90 mm, and the crank length is around 12 mm.

Fig. B.3 shows the link mechanism in the robot. This linkage is composed of a crank
connected to the motor shaft and a slider connected the crank to the revolute joint. The crank
in continuous rotation swings the slider and produces a periodic joint motions.
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Fig. B.2 Structure of the brainless snake-like robot.
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Fig. B.3  Structure of the slider-crank mechanism.

B.2 Experiment

In this section, we conduct locomotion experiments on different environments (flat ground,
water, and sand) and investigate generated motion patterns.

The initial state of all joint was set to be on a straight line. All of the motors were connected
to a power source in parallel, and the input voltage was changed in 2 to 4 V at 1 V intervals.

B.2.1 Environmental adaptability on flat ground

First, we confirm environmental adaptability of the proposed snake-like robot on the flat
ground.

In this environment, we conducted two experiments with different ground contact condi-
tions. Fig. B.4 (a)(b) show each contact condition. In the first condition, all the passive
wheels touch the ground, and in the second, the wheels of one end segment are removed (the
end segment is floating).

Fig. B.4 (c) shows the experimental result when all the passive wheels touch the ground
with 3 V. In Fig. B.4 (c) with all wheels, the robot moves toward the lower side while adjusting
the motor phases. However, after around 10 seconds, the joint angles falls into an stationary
wave in anti-phase manner (adjacent joints move in an opposite direction), and the robot stays
in there.

Fig. B.4 (d) shows the experimental results when the wheels of one end segment are re-
moved with 3 V. In Fig. B.4 (d) without wheels of one end segment, the robot moves forward

—-02
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[Conaiion?

(a) Ground contact condition 1 with (b) Ground contact condition 2 with
dynamical fore—hind symmetry: all the dynamical fore—hind asymmetry: the wheels
passive wheels touch the ground of one end segment are removed

. . Retrograde wave a
falls into an stationary wave
(anti-phase manner) i

as a result, moves forward

(c) Experimental result when all the passive  (d) Experimental result when the wheels of
wheels touch the ground with 3 V one end segment are removed with 3 V

Fig. B4 Two ground contact conditions and corresponding experimental results. (C)
The robot moves toward the lower side while adjusting the motor phases. However, after
around 10 seconds, the joint angles falls into a stationary wave in anti-phase manner (ad-
jacent joints move in an opposite direction) (D) The robot moves forward while adjusting
the motor phases. After around 3 seconds, the joint angles converge into a retrograde wave
(that in a direction opposite to travelling direction of the robot).

—93_



B.2. EXPERIMENT

Actuated joint |

Fig. B.5 Experimental condition for water and sand. To break the fore-hind symmetry
of the body structure, we fixed the joint of one end segment.

while adjusting the motor phases. After around 3 seconds, the joint angles converge into
a retrograde wave (that in a direction opposite to travelling direction of the robot), and the
robot continues to move forward. The result in all other voltages were almost the same as
this result.

A difference of these two results is in the symmetry of the robot body structure. The
first pattern in Fig. B.4 (c) has a fore-hind symmetry. However, patterns that contribute to
locomotion need to propagate waves from fore to hind, or hind to fore.

B.2.2 Environmental adaptability on water and sand

Second, we conduct the experience on water and sand.

To break the fore—hind symmetry of the body structure, we fixed the joint of one end seg-
ment (only the joints except the joint of one end segment are driven, as shown in Fig. B.5).
Moreover, we made minor modification to the contact surface corresponding to the environ-
ments. Fig. B.6 (a)(b) show each contact surface for water and sand. In Fig. B.6 (a), we
put floats, stabilizers, and fins under the robot, and in Fig, B.6 (b), we put smooth bottom
surfaces.

Fig. B.6 (c) shows the experimental result on water with 4 V. In Fig. B.6 (c), the robot stays
while adjusting the motor phases. After around 15 seconds, the joint angles converge into a
retrograde wave, and as a result, a forward locomotion is occurred. However, with all other
voltages except 4 V, we could not observe steady state locomotion. One of the reasons of the
unsteady locomotions in the other voltages except 4 V can be considered that the interaction
between the contact surface (with the floats and the fins) and the environment is too small, as
compared with the motor torque.

Fig. B.6 (d) shows the experimental result on sand with 4 V. As with the result on water,
in Fig. B.6 (d), the robot stays while adjusting the motor phases. Around 30 seconds, the
motion pattern was changed dominantly, and a retrograde wave and a very slow forward
locomotion is occurred. The result in all other voltages were almost the same as this result,
but the convergence time of all other voltages were shorter than 4 V dominantly (less than
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10 second). It is considered that the dominant pattern transition with 4 V is caused by a
characteristic inherent in sand locomotion. Focusing on the trail of robot locomotion on sand,
the robot pushed sand aside and made a sand wall around the robot. We call this phenomenon
inherent in sand locomotion the self environmental modification, in which the robot itself
modifies the environment for its own locomotion. A plan to investigate this phenomenon is
now ongoing, and it will be reported in our future work.
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- (a)
Contact surface for water: floats, stabilizers,
and fins under the robot

“E] L AT

~ \"“'

as a result,
moves forward

\-."\_ e ~ 3' ©

Experimental result on water with 4 V

(b)

Contact surface for sand: smooth bottom
surfaces under the robot

The robot pushes sand aside
and makes a sand wall

A A

) =
r

(d)

Experimental result on sand with 4 V

Fig. B.6 Two contact surfaces for locomotion on water and sand, and corresponding ex-
perimental results. The robot stays while adjusting the motor phases. Around a few tens of
seconds, the motion pattern was changed and a forward locomotion with retrograde wave

is occurred
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