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Fig. 1.1 Categories of power source of consumable electrode welding?.
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Fig. 1.2 Relationship between groove shape and thickness of base metal
for each welding process?.
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Table 1.1 Characteristics of melted flux and bonded flux?.
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Fig. 1.3 Schematic illustration of SAW.
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Fig. 1.4 Oxygen contents in weld metal for each welding process?.
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Fig. 1.5 Classification of molten metal droplet transfer?.
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Fig. 1.6 Relationship between welding current, arc voltage
and molten metal droplet transfer modes®.
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Fig. 1.7 Schematic illustrations of vertical cross-section in SAW
showing four different types of penetration mechanism?*?.
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Fig. 1.8 Experimental results of X-ray observation®.
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Fig. 1.10 Experimental result by direct observation®.

Fig. 1.11 Vertical cross-section after direct observation®®.
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Fig. 1.12 Energy balance during MIG welding?®.
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Fig. 1.13 A sequence of droplet impinging onto the weld pool??.
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Fig. 1.14 Simulation result of fusion zone on a longitudinal cross-section
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Fig. 1.16 Numerical results of plasma temperature?®.
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Fig. 1.17 Arc heat flux modeling by Abel inversion and Fowler-Milne method??.
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Fig. 1.19 Temperature field during laser additive manufacturing processes*?.
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Fig. 1.21 Time averaged velocity fields
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Fig. 2.1 Wave length and frequency for each electromagnetic wave*?.
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BHREBIARESSBEENREWVITE, 72 XBRBMIER %185

HHEDNEWIEEFEREKEDO X BMOEENKL 725, Table 2.1 ITREM R ILEOLFEED
X BT D2 EBEWIVRE 23 9. FiIH 200, FFHESDO/NESW, bbb

HEO/NSWIEFRIZEHEERIIBEN NS, JRFESHAREW (BEEOKRE W) T

ES

R EEERIRBIIRELS R 2MHMICH L. £, A—KHZTHHERT 5 XD
BEEPREWZEEERIRBIIREVEAICSH S Z &R b75. FFIZ P () 13 X ##
DA L LTRSS TN S,

Table 2.1 Mass absorption coefficients for each element and wave length*®,

(B fi: cm¥g)

HE BT 2wske  DETFES
m H C N 0 Al Fe Cu Ag Sn Pt Au Pb
1 6 7 8 13 26 29 47 50 78 79 82
0.030 0348 0208 0.230 0260 0.552 335 451 16.5 19.0 11.1 11.5 12.8
0.040 0.359 0.258 0311 0.382 1.08 7.54 102 35.0 395 246 255 28.1
0.050 0.367 0.336 0.438 0.577 1.93 142 19.1 9.45 11.5 452 46.6 50.6
0.060 0374 0449 0625 0865 3.20 239 319 159 192 733 752 801
0.070 0379 0605 0.884 1.26 4.95 369 489 247 298 109 111 116
0.080 0384 0811 1.23 1.79 7.25 536 704 360 434 151 153 148
0.090 0389 1.07 1.66 247 10.2 742 966 502 603 179 183 141
0.100 0.394 1.40 221 331 13.8 99.1 128 67.3 80.7 158 165 74.2
0.110  0.400 1.80 2.87 4.33 18.2 128 163 87.6 105 82.1 854 96.0
0.120 0407 2.28 3.67 5.55 235 162 204 111 132 104 108 121
0.130 0.414 2.84 4.60 6.99 29.6 199 248 138 164 129 134 150
0.140 0422 3.50 5.69 8.66 36.8 242 400 169 199 156 162 181
0.150 0431 4.25 6.95 10.6 44.9 288 489 203 239 187 194 216
0.160 0.441 5.12 8.38 12.8 54.1 338 58.9 240 282 220 228 254
0.170 0452 6.09 9.99 153 64.5 392 703 281 328 257 266 295
0.180 0.465 7.19 11.8 18.0 76.0 53.7 829 325 378 295 3006 338
0.190 0.478 841 13.8 21.1 88.8 62.8 97.0 372 431 337 348 384
0200  0.493 9.76 16.1 24.6 103 72.9 112 423 487 380 393 432
0210 0510 113 185 284 118 83.9 129 476 545 426 439 482
0.220 0.527 129 213 325 135 96.0 148 532 606 473 487 532
0230  0.547 14.7 24.2 37.0 154 109 168 591 668 521 537 584
0.240 0.568 16.6 275 42.0 173 123 190 652 732 571 587 636
0.250 0.592 18.8 31.0 473 195 139 213 714 796 621 637 687
0260  0.617 21.1 34.7 53.1 217 155 239 778 861 671 687 738
0270  0.643 235 38.8 593 242 173 266 843 926 720 737 787
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Fig. 2.2 Schematic illustration of image intensifier®?.

.27_



23 RREEB L UERREH
23X BBEBBRUVATLELUEBESEE

Fig. 23 IZAFEBR TH W X B BBIEIEE D2 md. ZoBREEIT4I RO R Y
N7 —LDEWIZ2XDA Ty T7 7 AT EROMATIo@EEET AN AT L XK
BERAROAMHToNTHD., RIFETIIZDOI S, LD XHBREAS T 77478
FOBEEECT A AT EHOTIRE Lz, Fig. 2.4 [ZEBRZROBEKKEZ 7T, FEBRA
TEEERS O N —F, XRBERBEE, BEGE, VAV, E7I v R%E
WO T/, 79 v 7R, T—Fali—, 77T A—=%, XA <R AAL v F,
ERZEEREHANTHER L., BEN—FIXEESNTEBY, M ZRE LB
BEMEERECEHT D 2 LIk o THEEZITo 7. REBTIE, WHEMRICK L THE
EHWCA Ty 77 AT EROMTEEGEELT AT AT E X BIREERY 25
LT, 7Ty ANIMTAL 2EH#EBIGZ “IRotEf L L TR 272, X HIEOE EE
12 125kv & L, BEITIZ6mMA & L.

Fio, WEBERE T —VEBEIXT—Fua—IlXoTH o7V 7 L— 1 50pus Cid
FeL7z. TNODOWEBLERIFFICHEEEE T AN ATICADL NI T —EELENT L&
T, BREBEEE LMY LB ERM S, hl, BEECT AN AT OREHE
1% 3000 fps, FEH:HFMIIL 331 us & L, WHEENLE LIZE#E% 15 D%, SIE 2 AL
7o, VEBESAFIT Table 22 IZ/RT LBV THDH. UA YIXERE 4 mm D US-521S % i ]
L, REFFIZIZ 400 mm X 50 mm X 20 mmt @ 2.25Cr-1Mo 8 2 vy, FEUI L/ehotz. 7
T I AFIRRT T w7 AO—FETdH 5H PF-200 (10x48 mesh) & L, i a2 1% 320°C
TH 1 BFMEE R S 7. 2 LT, WHERNICEAM L2 30 mm BRE D& &2/ 5 £ Tzl
L7777y 7 A&, ZobE, BMOBRHFRNG 2ot 7 Iy 7IRCTHM%EZ
Bl Z LICE o TN 7 T v 7 ARRM EN SRS DD EBWE.
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Fig. 2.3 Appearance of X-ray observation system.

Welding power source

Synchronous
switch

Powe%‘
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Computer mage n}_ ensifier

High speed video camera

source

Base metal

Fig. 2.4 Schematic illustration of experimental arrangement
to observe inside of the weld part in SAW.
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Table 2.2 Welding conditions for X-ray observations.

Welding current 400, 600, 800 A
Arc voltage 33V
Welding speed 5 mm/s
Contact tip to work distance (CTWD) 30 mm
Polarity of welding current Direct current electrode positive (DCEP),

Direct current electrode negative (DCEN)

232 FPURIVEDEBEEL SIURBREH

Fig. 2512 b R MIEDERH R OEA K 2 /R T EBFCRITIFHEER L L O ~—7F,
BEMER, MEECTANRAT, BEER, UAY, ©7 I v Z7IRERD 57284,
T7IwI AR, T=Eaf—, 7T A4, FAMEMAL v T, EiREZEER
EFRAOCTHR L. XBREBBRERETIERALRY, ZOERTIEIHMBLOHEREE SN
THEY, BENFTEHEE BB A ENEEEE CBEIT5 2 L ClREXITo72. £
o, M EDT7Z v 7 A RFT 570, RMOETm»bEMERT L5220k
TIvIWMEREBE L. BEAOBEIZIZOR T I v 7RO —#HE2< WEL Z & TR
TR A L. BIEHOBEITEEREND 10 BEZICT A YRR ORI Z @il L
B L KO ITRE L.

Fig. 2.6 [ICHIER A DB E DR KXIX 27~ L, Fig. 2.7 [ZIEBEELD O YLK K % 7~T.
AT 7 ORAER T-DICRMERICKT LT 17 BEEIT 2. AEBRCIXLITH%RE L
[FERIZ, FY T A NEHOENEZRSOZEZBENE L, BIZHOIBEND CO, A X E
AL, GEECTAIATICERNE T ANVEZERVT DT I ATBEIWY, 975
nm O RANZAT7 4V EERVATEE ), 7 AT %8 L7, Table 2.3 (2% DOy
DEBREM %R L, Table 2.4 ([CIEHE &M 2R T
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Fig. 2.5 Schematic illustration of experimental setup for tunnel method.
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—_

Fig. 2.6 Schematic illustration of jig for tunnel method.

Welding torch Jig
Welding
direction@

Fig. 2.7 Magnified figure around weld part.

Gas inlet
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Table 2.3 Experimental conditions for tunnel method.

Camera Color Monochrome
Frame rate 3000 fps 3000 fps
Exposure time 5 us 30 us
Filter ND-8X2 975 nm band pass
Diaphragm 32 32

Table 2.4 Welding conditions for tunnel method.

Welding current 600 A
Arc voltage 33V
Polarity of welding current DCEP, DCEN
Welding speed 5 mm/s

CTWD 30 mm

24 XBEBBRICLDIRATTELUVBHMLORSLE BHBRITHROBER
24173V APDBEOREL RS TDFRE

Fig. 2.8 |2/ T DL, ¥ #2E i DCEP (: Direct Current Electrode Positive) 600 A, 7 — 7
BIE 33V, IWHEE smm/s LRRELTBEO X MBRBEFBRETHL. 00L&, B
O T A ¥ EREE X 1.26 m/min Th o7z, B4, b—F, VA YIIE&RE THEEKS
NHETEZD, XWHAREIKWRELESRZS., 797 v 7 RAFBERS 20N, ERSIX
CaO R EDH EER, MnO 72 EDIEGER/IC L > TREK SN 2 BRBRAI D20, RS
TAVICHRTEENNS V. MZXT, 777 RAIHETHDL72D, ZOZEMEZED
X BIIWIELEZEEZB®D. LN TCIDT Ty 7 AZEREZED X BITRMU A ¥
B XBUENWEET, KAICARZD. ZLTIOT7 T v 7 ANRER LA T 73
BETHDID, ZORAT 7 H@D X BRITEMICHENKE LT 7 v 7 A EiED X
FUCHARTRELSHMET 2. TO/RKE, AT TOFLETHEMITT T v 7 ADHPIFLE
THEMEY BEWIKATRE SIS, FARFERTHRE SN2BmBITH A > TR X T
WD ZHUE X BIENDBRE SN X BBA A=A T T 7 AT OANTJHE

_32.



PR T 52 &L THESNDEBHRICL > TRAETHETN, WIS THRAET
DWW O BEYZ THEHET LI ENTERWVWEOTHD. AR CDOIEANIHE > TERD
MEWCELSsTHETIHGORME N EDST2H, DCEP & DCEN (: Direct Current
Electrode Negative) CIXEGE DRI A Y 370 5.

Fig. 2.8 oMb L o2, BIEMRNOEETIL, ()77 v 7 ADEBIZLDHF ¥
BT 4 DR EN L8, (VAT 7O E, 7T X~ OB % T -8 72 228 8 &
b L, ()N GEEI, AT 70REBINEHE D WO RWEEEL (iv)iREIR 7+ 5
T, A7 7FEELTWD EEb DD 4 SIC Kl Sz, Fig. 2.9 ICEIREE
BLOBEBEEEO —MEZrRT. wgblla o 20 s MOFEERIT 598.1 A, FHEEIL
333V Th o7, Fig. 210 ICHEWMBIT —EAMICE T 5, FIEZ O X #HiE i8R 2w
9. Fig.2.10 X Fig. 2.9 FIT/R L7ZIRT a~f ORZNICE T DAL OYE KK %27~ LT
W5, UA Y CAUTEMESRBIZY A YE FIZEE Y, W42 L7z (Fig. 2.10(a)
~ Fig. 2.10(c)). TERR S T2 VaM 1L — 72 CO, W AERET OEMBATO X 512 E~
709 2 L7, U4 XY FEBTHRE Lz (Fig. 2.10(d) . 03 TIEMIZBF 5 < Otk
B, TA¥iu SR L7 (Fig. 2.10(e) ~ Fig. 2.10(h)) . Z OIEPESA: TOERBIT D
SR JE L 25.6 Hz Th o7, Fiz, WRIMICERSE S D E RO O 2 B0+
DL T OEEZRDIZ L 25, 20 B4 OEHEBATOFEHE L 2.2mls Th -7z,
Fig. 2.10(e)7e E B b2 d K 912, AKBRTH O R TTHE G ITIRR & R A BEfik L
TWBEIICRZDN, EBEIZFig 29 1R LEERBERFENSEKE L TRV L
WoND., ZHULOEND, UAVE T CIXERITERbICEM L 59, Fath
X7 =27 ENCE>TH MM BERL TTF o TWeZ EnfRETE 5.

.33_



Welding direction

5 mm
| —

800

mnn

600 M
1l
mnn

400

200

Welding current I [A]

0.00 0.01 0.02 0.0
Time 7 [s]

50

.
=
T

Arc voltage V' [V]
=
T

—
=]
T

L L 1 L 1 n L
0.00 0.01 0.02 0.03 0.04 0.05

Time 7 [s]

Fig. 2.9 Current waveform (up) and voltage waveform (down) (Welding current: DCEP 600 A).
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(a) t=0.0310's (b) t = 0.0370 s (c) t = 0.0400 s (d) t = 0.0427 s

(e) t = 0.0430 s (f) t = 0.0433 s (g) t=0.0440 s (h) t = 0.0443 s

Fig. 2.10 X-ray observation results in a droplet transfer.

Fig. 211 IZX ¥ BT 4 IFICHEET D AT Z O 233, PO EGOMBRITAT
ORI DN ZRL, RAIZHE L THLILBITZDA T 7 OB T mMERr L TWD.
AR D X 912, EEHIEERE FT7 =2 ENICL->oTHL T TS, —F, #
DT TIIERBITICE ) WA O G BN K-> C, W%y Ens. 2ok
)RR O SR X AT M OBERNCH - T, AZ 71394 FiZms-o> THE L
Fo&T5H. LinLans, A7 7E3BRMTICH#ET DL, AT 7I3HBFITHLES
N5 ko 72iEi 2R Lz (Fig. 2.11(a) ~ Fig. 2.11(c)) . VA YAFT XA L 0 & A% 89
WCENR G, @ROT =7 T AINFLET D, ZDOT =7 T IFTASDENRAT T
DEFIZHED BN ER 2 ERBEN 1 & 700, AT T EBEBZ T~ LR LIZEE XD
No., MURSNEZAT 733G EEICHFET D, SEVRBLARNAT ZIZHmELE
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%, MBS M AR L THRY A VIZm» 2 KT HO X 5 28 2 r Lz (Fig. 2.11(c),
Fig.2.11(d)). 2D & &, AT ZIEFORMRIN TV F ¥ BT  ZEHEHEZ )7 THD T
VL EEBET, AT 703 BERLo KO A lRBE T a7 (SR EY § S W & IRBEE 1 5~ L
LERSNDHMEZMD IR LR 6iE L7z (Fig. 2.11(e) ~ Fig. 2.11(h)) . BARZ 71058 &
NIZAZ 7T ORI OBE) & LI/ NS <720, REICER Lz, F723)<0(v)
DFIIZBNT, A7 70 EHFICAK RA D2 ZH L. ZHIXZOHDN AT 7IZX
STHESTELT, Y ET A NEICHEET AT AZNA LICEERT ZAERE L7
O TH5D. Fig. 212 \ZA 7 7 OWm O —flZ/R3. X RBEBLE D55 &
AR, AT 70 EHFICERABHRTEZ. UEORRNL, A7 70 EHICER SR
HREBRIENNIA T THEBOKIEP R T ELFTICHE LD TIERLS, FYET 4 A
HOAZ ZPNHHA SN RN OMET HWMETx v E7 ¢ WEZ D S F1ICEEE L7272
WIZAELTEZ EDRHLNE RS T

242 BEERMVBABTHERCRASTORBIRIETEE

Fig. 2.13 ICR#4 8 i &4 DCEP400A L R E L7260 X B wEB LS L2 RT. Z 0
EHESRMTICRE L E X, WHETOFEHT A PEHKHEEIX 0.81 m/min THh-o7=. F£72,
R BHAE YD 20 s O R EIE & P EIT X 395.2 A, 332V TH Y, WERHENLO
VTR RBAT 10 AW O T BT EN L 6.4 Hz Th o712, M ERE VA YD
HEECER T 5L, BEEHRE DCEPBO0A LR ELLEELRETH-Z. MAT,
T BEBIFEEAEFRETHDZEEER/TDHET — 7 7T A NR@MMEH LT
\F'% &% DCEP 400 A & DCEP 600 A (X[AIf2E TH 5 L HEM T X 5. Fig. 2.13(a) ~ Fig.
2.13(c) I LI BENLEL 1% 2 D IR DT S BENL T2 ETEZ R LTV D, WLV A v Ol
THEMLT 22 &%, TOERIZITVAYRELD B/NEWRTL—BITO L ) RETHE
fTeEZE R LTz, AT 7WCEHB T35 &, DCEP 400 AIZRRET 5 & X ¥ B 7 4 NI
ENERT I E S TEBY, TAPFET DLEMIIVA YEDICEE-T2. ZORTF
T OEEBIRFTHO XD ICEEF R OMZRICE KR 0TIERL, 7T—ZEHNPLR
T DEFIZL > TFig. 213D L H 1268 mmFLEIND Z Lixbd b0, %
YET ANENAT T THESTWDHDIT Fig. 211 THERINTZX IR AT 7 EH

_36.



DEFT SO X O RImENI A DR -T2,

Fig. 2.14 |[C{R#%%E it & DCEP800A LR E L= L T 0 X MBBBEHER L R~T. 20
BHELRMICRE LI L&, BEPOEY Y A PERBEIL 1.79m/min Tho7-. REE
JEIZZNETO2HK M LR LTHIIZE DL T, VA YHEmBHMOFETAST
B, WHBITPER TE Aoz, ZHILIEBEER OB ABBEORINC L -
TRMMBESE@ML, 7T—2ZENC L > THEBILAIH L T bhiziewThd. b,
WsHeE i 2s DCEP 800 A D & XXV A YOFEBENTIZL A LB TE RnoTloiod, B
BATEER A RO D ZENTERNPoTL. AT 7ICERT L E, AL AZ DT AHEEN
BHEHMICH LB ETER > TS, ZHIERABENOHEMI L >~TT7—7 77 X~
MHOBFABEIML, FAEORAT 7 ORFEENEMLIZIZDOTHD. ZOEN>72F ¥
BT ANEZRE L TWD AT VN FET 28K (i) oar 7 A ME, AT 7 OIRE
PMETLTIZE A CE AW aEER (i) ORE L7ZEK (v) o b7 X MR T
WL pole, ZhIXT7 7 v 7 ZADEMEOHIMNCZE D AT 7 OEBEHENEY &, KMk
LDATTORBBDRF v BT 4 ORBEEIMC L > TRAIZ I B Yy ET 12 EHD D
BEENBO LIcloThD. ZOEEORDITEMLOTE OEELZIT TN LB X
S5, RPEEEH DCEP 400 A <° DCEP 600 A @ & & [ XiAAM B H OB/~ & <,
AT TIIEBIO AR L > T A VICESE, T—JENRAT TOEFIZLDIES
FAICE o THMMBE T ~EMLEINDZETRATIZTOEITLNRAELD EE X BN
%. —77 DCEP 800 A ® & X%, AEBHOBMITEE D 7 — 2 JE ) OIS vR 4 8 O
HEBINC X > TR 2 Ml 2 W4 B SIS ER T IS L 2N L iiE L
(Fig. 2.14(a) ~ Fig. 2.14(d)) . @M BICFTET D A 7 703 Z Ofi#h & LI HE R O Ri#
I BT B REI 2T H 24 Uls. 2 OB OB IT H IS0k 5 Ml 2w &
STAZZIFgI &M s ool b b, ZOFKICTFEET D2 AT 70, mEh L2
7o - fEI (i) OWEE L7-fEIE (IV) ICH_Tar PR MIERELE—HTH
LHEBEZOLND.

Fig. 2.15 |Z VA% E i % DCEP800 A L X E LA OB IE R L OB K E 2~ 7.
KBRS 20 s IO ¥ ERE & FHEE X 7614 A, 332V Thoiz. IWEERN
DCEP 800 A DA T ATR D K 512V A ¥REmNB R AR RDIFEHLHATVDITH 2
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b LY, &AL TWARNoTZ. L7eBo T, BRGNS EBLEFMECTHY, 7T—2 8
JEXF CEICREL TWD Z L E2BET 5 L, BElMFEE L DCEP 600 A IZFE Lz L
FWCANPTOT =7 RLELTRATWEZERMZ S BT L TN TN EHELETE
L. ZhUE, BEEERNSENT S LICE o T Lorentz HIZHER I ND 7T X< KRN
b L, WEWMEICBIT AT =27 ENNE K LD TH D, Fig. 2.16 KR #EE
MICB T Wi~ 27 mnZrd. Irbbnd ko, WTFoEREICSNTS, A
AINT =BT LITLIEROND 7 4 VT —BIROEAHNEO N, 2k Bk
O LD ICEAMIAH L T o, EHHEORIWERIRMXEINTZZOTHDH. BWHE
TICAETHEMERPAMLOT O THE 2D 2 LT, BRI E CT3EE % S
N5, TORER, WREAFFHOBEICL > TEMIESSE#MT 22 L TE— FoP.on
JEPH &bl LTRSS BT, 740 v T —BIROBEAADGELNTEFE 2 BiLD. Table 2.5
1L, Fig. 216 IR LW~ 27 a0 oG Nam KIFIARES, B — NiE, RRRE
S, REMERT. 2O OMEITEGHENT Y 7 N ImagedB N X > THIE S . 72
B, REAIITFIQ2.16 DFNETNOWHI~ 7 0 THR T DLEADREAOELHHETH
5. #X 0, ©— FiEiX DCEP400 A 7> 5 DCEP 600 A (2 T 9mm f2E LK< 22> 72D
[Z%f L, DCEP600 A & DCEP800A TiX 0.5mm FEEMR< 72 o7, — H A S 1L DCEP
400 A & DCEP600A Tl 04mmEEEE < 2o72diZxf L, DCEP600A %5 DCEP 800
Z27F T 0.7 mmAEE ES L7, Zhik, DCEP600A & DCEP 800 A TiEN AKX
KB LEEDTHSD. RETRLEBRIINVTN LV YRBEMRERDHMEDOTD
P2A5Cd D R R CIEE T IS ) BLIROBRE (7 ) —=v 7T 7 g v %) i
AT, BIEEDFRE S 72, Yamaguchi &%, WREERITI M R OBILENRE SN T
WD EENAITNEL D2 b aBR LS. Lo T, BALERRE I N0 130E
WEN LS 725D, L Lann, WHEEN%Z DCEP 800 A Ei%E L7 & &, Fig. 2.14
RLTEE I, WHEBROWMIE > TUA VE FOREMBERGSIFL FNFohdZ &
T, T =TT A IR MNBTHEFF SN, T— 27 77 XA~ PREMNHICE N D &,
7= IR ENLRMBEROEREARLS 20, 7V == T T 7 arildio
TR EZRESN DM BRROBER LK /2D, ZORR, BMERHEROHRNNEL
D, MUEOE—RiZosleBFZExbNDb.
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PLEICRLIZE SIS, Y7 ~—V7 =7 WERICEB T 2 REER OB IMEHB1T 5]
SRR DO TERR T2 Tlde <, 7T v 7 ADE@ML T v BT 4 ORI ML &

T LTV,

10 mm
—_

(e) t = 0.0933 s (f) t = 0.1303 s

(g) t=0.1513s (h)t=0.1717s

Fig. 2.11 Slag behaviors in region (ii) with time evolution.
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L5 mm
Fig. 2.12 Example of cross-section of slag.

(b) t = 0.0410 s

(c) t=0.050 s (d) t = 0.0930 s

Fig. 2.13 X-ray observation results (Welding current: DCEP 400 A).

(c)t=0.0413s (d) t=0.0913 s

Fig. 2.14 X-ray observation results (Welding current: DCEP 800 A).
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Fig. 2.15 Current waveform (up) and voltage waveform (down)
(Welding current: DCEP 800 A).

(a) 400 A (b) 600 A (c) 800 A

Fig. 2.16 Cross-section for each welding current.
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Table 2.5 Measurement results of bead cross-section for each welding current.

Welding current 400 A 600 A 800 A

Maximum penetration depth  3.34 mm 4.82 mm 8.95 mm
Bead width 17.1 mm 26.3 mm 25.9 mm
Maximum bead height 2.36 mm 2.73 mm 3.48 mm
Toe angle 23.1 deg. 27.4 deg. 48.2 deg.

243 BHNBEABITRECRASTORBICRIZTTEER

Fig. 217 IZHMEZ U A P~ A T AICEE L, wHEEN A DCEN600A L& E L6
D X WEBBBERRERT. ZOLEDOFHY A PRiGHET 1.70 m/min TH - 7.
241 THRBRARIZ LI, BHEEROMEICL > THEOME L LD LD, ZNETO
AER TV MICEBERM B> TWD I ERbnsd. £77, TNETRLTEEMRE
TR, R ORI ISR RS LEY X T o723 8 S vz (Fig.
2.17(a)) . i B AR D> & DI THAT 10 J8 5 79 O R B AT R BT 105 Hz TH » 7-.
COWEEMETIE, WA UVAYRIV bRERD I/ n 2T —BITLRDLILNVE
2o 7z (Fig. 2.17(b). AT ZIWCHEB T2 &, VAY T 7 A0 L &XAL AR DRMEK
MERBTEN, VAT~ AT 2D L ZITKUEBEBABA L, F¥ BT s NEHIZIZE A
AT THESTVDS., TOEDATZIEF Y T A Wiz K& < HEE$, PR
BRIZIXHIC AT 7N FLE L T i= (Fig. 2.17(a) ~ Fig. 2.17(d)) . Fig.2.18 (2= D & & D&
TR L OEEER 2 nd. REMGE G 20 s MO FEHERIL 576.7 A, FHELIT
3BE5V Thole. TNHLDORERNLLND LI, BABNINIZIER L THDHITH 00
DO, UAVYOWMMEEER D T L THREBIRIZENELC. ZniE, Btz Y A v~
AFTALERETDHZETIAYEREENRELS RSO TH D, RIEROEPRFFE
TWTN G EBLEFETH D20, VA VEBEEOHINLT A Y OREESEINT 5
ZETCRLS ol 7=V RZELILEIELELEDIZAELTLEBZZOND. T72bD,
TAXYIATADELZITEFBRBICLS>TIVATYRENPDZ R LT —RNEDNLTND
WZHEPhb o, VAXY T TADLELV TS VYORMENEZL holcb Wz d. Z
OFLFHIZ DOV TR E TR R & D TRT N, U A Y i CRfa A RHANIC
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BEIL, 779 XA~ ZORMBAOBENZEWEIC 2 & TRERTV A P77 A LERE LT
LEXIVBIEHHOUVALAYREN T T A~ L OBYREICL > TS N0 TH D
EEZDBND.

Fig. 219 | & — N ELZ /R L, Fig.2.20 IZWii~ 72 v &9, UA Y77 AORTR
BRI > TESTSRE—-RREBRENTNDDIKL, VA ¥~ AT AD L EIXHE
fTLIeE— R SNz, ZHUERTE DRBSEOBENIIE S 7 — 27 77 X~ DA HiHI
AL ST, WP R CTHESNEZEO THDLEBEZXLND. ZORMEOR- 1=
sk e — FAMBLZS 1 TidZe <, Fig.2.20 IR Lz~ 27 i b BN 5. Ko HIRiA
HDT 4T —EHBREOLEMIH> TND I ERNbnDd. D7 42— bEHOFR
DI F VK —PNIERME R~ E S S D 2 & TR E S E T CTAE T D720, IETHE
Wik DB A% T 5. Table2.6 1T~ 7 vl O FMORER K2R . 2 O R
5, E—FORBANIA YT TADELEZITHANTREL R>TWVWELI EBbMS. =
NIETA Y ~A T ATIERMBBBOTD, EFHRHICHES 7 ) —=2 T T 7 v a VR
AUV, 2070, BMERREOBAENE 2o THEMAMIZIFNVAD LT, B—Fn
HRRIZ 2o T2 B2 BND.

(@t=0s (b) t=0.0170s

(c) t=0.0613 s (d) t=0.0790 s

Fig. 2.17 X-ray observation results (Welding current: DCEN 600 A).
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Fig. 2.18 Current waveform (up) and voltage waveform (down)
(Welding current: DCEN 600 A).

(b) DCEN 600 A

Fig. 2.19 Bead appearances for each polarity.
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Fig. 2.20 Cross-section (Welding current: DCEN 600 A).

Table 2.6 Measurement results of bead cross-section for each polarity.

Welding current DCEP 600 A DCEN 600 A
Maximum penetration depth 4.82 mm 4.09 mm
Bead width 26.3 mm 23.0 mm
Maximum bead height 2.73 mm 4.23 mm
Toe angle 27.4 deg. 40.9 deg.

25 FURIWVEICEDBT7T—IVNBOBRELUVEMNT -V TS XATDEREN
TER5EE

Fig.22L I 9 — A ATICLD b xWiETHLoN, VY T~—U 7 =2 EHEPOT
— 7 WL A RTERBAT — A4 "9, Fig. 2.21() TR A DOERRITZ Y A ¥ DAVER 2R
LTW5. ZOFEEEMTO 10 85 O BEAT OFL) B BIE 22.9H TH - 7= A
PR TR LTe X BBl gd th o BAT R EE 25.6 HZ TH Y, TDZEITK 9%
ThDHZ LN, ZNOLDEBRP TR TERBITEHLIIRE THDH L VWE 5. £/ Fig. 2.22
B EB X OEEREERT. t=0sB I ATO N T—RAZRrLTEY, UA
YRR EAT @i Lo - REZNCE L. N U T —BA LV 20 s O ) EEIL571.6
ATHY, FHEEIZ 382V Thote. MLV, COHARBRICEsTxrYET AN
DEFENENT D b V@ihicBnCh, s BT b @i e Zbb i
WZ L AR LT,

Fig. 221 DWW FHROKIZEBNT Y, W FEICHFETL2FHWT —7 77X~ L, £
O EPFICAFTET DA ORI AR CE 2. Wil FICFELZEANnT —2 77
RNZDWTIE, M7 CO, WA TR LN LT — 74L& L ITW 5. JedTif
FIZEDE, ZOFXYET A NOFFEARIL COMDRL COITHL Z ERRBINTND
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AREBRTIEF Yy ET A NHOENEZRDTZD, v BT 4 WEOH ZHARKIZ TV CO,
HAZEANLTZN, i Chbnr L X912, Mendez & ™WIZ L - TEIZRZ AN AR
EANTEHATT T AL Lo EBRBRENTWS., LER->T, Z0OHFAL
KT DHTTAVITEANLIZ CO,NANT T A< Lizb O Tixal, ¥v T 1 NI
TAAFAE LTz CO, X CO &, WM WA kO SBARDRGM THDL EE 2 BN
. ZOTTAwORENEPE LT, 777.3 nm TH TS O Ji 1-<° 430.8 nm <° 440.5 nm
THNT D Fe i1, 458.4nm THENT L LMD Fe A A REBBTOND. 0B, =
WO DALEFDFEN AT MAIENIST OF —F RX—=2 hbRDZ. ZLTHEAWNT
— 7 T A DOEMICFEELTEBEDORIIT T v 7 ARA T THROLDTHD &
EABND. ZiuE, — MR CO, N ABHEIZBWTT — 27 77 XA~ 3B A DK T
IR B LW TH 5. Fig. 2.23 |2 Methong & B HIE L 7= CO, H AT — 7 D&
R 2 ARG 277 58, BRFR R 28 E A T 777.3 nm D YEIT IR, 590~640
nm OREIZ R Z 5 DDA E TR, LN -> T, —KH7ZR CO, B A TS @
DHIFRZT, ORIV T ~—V T IV BEBFATHLIEEZOND 2 0D, T
NOEDHRFTERFELIET T v 7 ARAT THRODELIPHELEZLDTHDL VWA D.

FT =7 LW ONBERRIZERT 2L, BEOTEHNOT —7 77 X~R¥EAELT
WHLZENDLND., ZOXORT =7 LIWMOMERRIZ I n 2 7 —BITHREICE <,
T IR EKRICHRENDIEN) EAPRFO T TR 720, IWHITHER LI <75,
LWL RRS, 3 7~—U7 =7 EETORBIIICHROH T OERITY A YA L FH
BETHDIHOD (Fig. 2.21(a)), %2 Lorentz 7712 & » THILK 72 v (Fig. 2.21(b) ~ Fig.
2.21(d), A YEEID /IS WIENR & 7o THERL L 7= (Fig. 2.21(d) ~ Fig. 2.21(i)). LA
FDOEANCH T I ATERHNE N RXNVETIE, 7T— 7 77 A~DONLIRHE T &
ZORHETRRDMED T T A BNEET D ERNRB IR, LLeBRs, 7—7
TITRAZIZHEDLE TR LIERER, 77— 77X~ bBinT-F v © 7 1 OBEHR ORE T
ARADZEMTETWRY., ZZTIHBRHNDN Y RANZAT 4V Z 2 B0 AT 7o &
ETANATICESTCT =7 T I X~HEOHEZWH L TxF Y BT  NESORE 217
57z, Fig. 2.24 I[ZFVAELAE S BT DIETHBAT — AW S O 7 — 7 5 8l & "9, ERINT
X7 =2 7T AHROIEBRTH WD, 77 v 7 ARRT 7, Hle RS MBStz
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HAONDIWMESRUHTRETE, Sy T o NERAHEMLINT. 28, ZhbDER
X Fig. 221 L3RR CTH DL Z LICHERBE IV, Fig.224 LV, ¥y 7 4 NTIE”
T ALIBMEWRTED. WElER & AT 7132 OBEKE» SIS Z &X
TERWA, ZOBESFEEZMVE X RABBE CIIEmMeRIZIx vy 7 0 L ET
HFELTWENST2®, 20Xy BT 4 EHICHERTE DIRIBIZEMAT 7 Thd L
ZEZohb. LER->THFY ET A NERICIZ T T v 7 A, &, W, WA o 75
FELTEBY, ¥y ET AN TEMLEZ 2D DR T 7o RN EE %~ L b
KEINDHZELETRATIIIRE—REZBELTWDHEEZOND.

WIZ, Fig.2.25 |[ZiA#BEE 2 DCENBGOOA LR E L, WIRNAD NN RARAT 4V H %
BT TEmEECTANATICE s TRESNTEXF Y ET A N O 2733, RV
A —BtE 5 10s MO B IL 644.0 A, FHEEIL 322V Thoto. £, FUA
—BRAG LARE 10 [B153 DE T BAT O BATE B EUT 38.6 HZ Th o 7. X fif i 5ny
DETERATEEE & T 2 &, bR AEDIZ D BT OBATIT) )2 RER ALV
THEVA YA FTACHET DI ETY A YREFMEEAHMNL, RECHEp O E &
MBI ULT=720Th D, TDId, WEIAAT CO, B ADFKEE T, WRHHNF < B
TLZ L THMBATHEEE NG 2ol BEX 6D, Fig.2.25 1V, R D2k
T 52 LT, MPIZRATRT LS ICETERE L CRBEANBEIT 5 X 5 22823
Wl ZnE VA YRREBTH Y, HFEBREERCBIE I LEFR BRSNS
HDTHDH. BFHREIAED 7 ) == 7R SN X o TEALIRITER, AET 2720
BAIIROBAEN BRSNS, 20X RE\EFHRHE, TNUITHEI 7V —= 71
FIC L DBALIEDOREN R 2 L2 5 Z LT, BSITE#ORR L2881+ 5 ko1
Rz % (Fig. 2.25(a) ~ Fig. 2.25(c)). 2.4.3 Tl 7z {HFEEMABEE BV TY A ¥
AT AERELLEBICTUA YREMEENEMT28AIE, 20T oREBSOBEIC
bHEEZLND. Fig.225 bbb L )12, BMEOBEIE LT —27 7T X
~HLBELTWD., ZORREVA VYT T AD L XITHA, JKWHIHO U A Y RENT —
T TR Lo TSNS Z ETUAYRELEML, EEE ~EIROTEHT A
YEREENHENM L EZEZOND.
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(a) t = 3.0203 s (b) t = 3.0293 s (c) t = 3.0367 s

(d) t=3.0387 s (e) t = 3.0420 s (f) t = 3.0427 s

(g) t = 3.0437 s (h) t = 3.0443 s (i) t = 3.0450 s

Fig. 2.21 Observation results of arc appearance in SAW by color high speed video camera.
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Fig. 2.22 Current wave form (up) and voltage wave form (down).
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Fig. 2.23 Relationship between wave length and relative intensity in CO, gas welding5®.
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Wire
Slag

E 3
Molten metal

Base metal

Welding direction

(a)t=0.0s (b) t=0.0087 s (c)t=0.0147 s

(d) t=0.0193 s (e) t = 0.0223 s (f) t=0.0253 s

(g) t = 0.0360 s (h) t=0.0387 s (i) t=0.0410s

Fig. 2.24 Observation results of arc appearance in SAW by high speed video camera
with bandpass filter (Welding current: DCEP 600 A).

Welding direction

(a) t=3.0827 s (b) t = 3.0837 s (c) t=3.0843 s

Fig. 2.25 Cathode spot behaviors during SAW.
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26 YITX—OF7—VBEDPOBRBBITDOAN=_X LA

KETRLUIEWHERY A Y 77 ZDOEHESFMETIE, BRIZVAYEIDV b/ EE
BEBLT 5 A7 L—BATO X O REERBATIEREZ R Lic. —J, —fK7R CO I AE#HEC
B DEMBITHEL, BREOBEBRB VA YREIV BREI KD n a7 —BITHE
Y. ZOXIICEBOFEHANFRETHLIIZ bbb LTI T ~v—U T — 7 EHEH
DIRTEBATIVEN A T L —BIT 2 R LI-HEB & LT, IWHEERE, VA YEOED
LD T A YORBEBOZEDZFET OIS, CO, T AEHE CITRESRIIC L » TR D2,
T A Y EAG L 13 m/min fii#E TH 5 0. AEIO T A VEIREE L T 5 L, 7T~16
BREOHETENELD. ZNIFXTAFYNICAELD YV a— MBS ENE LD T
Do, COLHTABHELY T~ =7 =V EEOV A Y &EEZZ L 1.2 mm, 40 mm &
L, W% 300.0 A, 600.0 A LIRET DL, VA YHNOEGEEILZTL LI 265.3
Almm?, 47.7AImm2 L3RELH. 22 TUA YOEXLBEENFE Lo ANV-mm)E 35 L,
TA¥YANTELDY 2 — VINEEIL, CO W AREEN 70.4/c KW/mm?, 7 ~— 7 —
7D 2.3lc KWImmB 272 0, BNRFEDH 720 OINEAEIZ 306 fFDZENAEL D, A
DRLICZAXNANX =T A BNEDNE LI, Va— VBT Y A ¥ OIEEICK
L HETHHERNTHD. VA YOWHERE EHBHEND U A YORBEEEZRD D &,
CO2 W AEHEIZBWTERE 1.2 mm O U A ¥ 73 13.2 m/min®® TEAG S 5 & £ OB il
FEIX 248.8mm¥s L RAE L 52 L8 T&E 5. —J, DCEP600A DIRESRMFICKIT LV T
Y=V T =7 EHETE, ER40mm DU A YR 1.26 m/min TG S D L ZE OB REIH
FEIX263.9mmis 20, UAXYEL2mMm DU A Y E 6%WEIELNEDLL ARV, LR
ST, BT~ =V T =V EHETIET A Y ORBOEE L CO, WAL RREL D L
T, RHEOBERNY A YL RFEICRET D E TORM COr H ABEHTH N TEL 72
5.

VT OBERLE % 2 DI HREE L B2 5 &, WM OBEDIt, WRlE R IXH ORI Z Ak L
WBD., ZOLEETALAYORBUEEDRKE W E, BERTICY A ¥ HROEREE D
W~ S, BEHARETSD. Lo LARRD U A PEICKH L CTHEBUERER/NS W
T~ —=UT7 — 7 RETIE, MHEOBERD T A VREFFIIKET S E TORFMNELS 72
5. WRIEORENE WD S EIIXIEEERICHEE SN D Lorentz Ik - TTHIHRT L
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RO, WO N TN OB 2MeE S D, T 0 Lorentz /1 D% % i
~pHtz, K22 TERESND Ampere DIEHI 590 BBEREEBE R, LE23)NH T A
YU OWRAE DO F WL 5 < R I7H O Lorentz Sy ELorentz 2 HE 9~ % . 7235 Fig. 2.21
R LT =8B bbb L9, T—7 77 A< FRBOBE FTRAEL Tz
b, RERITEENZE TN TWD ERET S.

ol

f

-di::uof - i,dA (2.2)
AL

FrLorentz — szB (2_3)

AMTHAE DO WTIE, X7 QWi OBER, dlIZMRTENT ML, polIEZEF OB, f, 1L
[ D HENLIERRAR T v, IXERBEE ST MV, j L7 R OB L, BelJ& Ji M O 1%
WEETHDL. WHFEOBERZICK L, RIS biv7e Lorentz /)% Fig. 2.26 127 . XXV,
WAL DN EEAE T DIC O THIRAER I 1L 72 5 < Lorentz NIFHEHEMICKEL b &nb
225, Ogino b OFEFER CTIX, I Z7EEFROFEHROMEEIZIZZ S < Lorentz /I3
TNER THROK 1.2x107 N/m® TH V), BT AR 150 Hz O 2 7' L —BATERE &2 7R
L. ZhonZ ehs, 37—V T7 =7 REFOEHIIIA T L —BITREL =
T2 TR OER L FERENENLLED Lorentz ABER L TWD Enz 5.

—0, T I AT IATYELIDBRELENR->TEY, ZOBEBREEITIHIZ
INEL D EEZOND. T— 07 T T XAvHNENDLEREL S EWE TH—CTho &
RET S L, Fig. 2.26 DFEENS 7T X< 12id= 5 < Lorentz N7 —27 75 XA~ DI
MO LTER s THREMINELS Y, 77 XARMICHFERSINDIEN EFERMZ 6N
HZENLMND.

IOXHICY T =T =7 EETIEHEOT A RIS LTCHEREE N/ ~E WD &I
LoERMAEOME, OQWBHMICIENT2AT LV —BITHED I 7 IEHE L FAREED
Lorentz /7, @i FDOJES EH-OIE D 3 > DBERIC L » TEREABEN L3 20,
AT V—BATHREO L IIC T A YR G/NSRERPBEN L2t Ex b 5.
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Fig. 2.26 Relationship between liquid column diameter and Lorentz force
acting on droplet surface.

2.7 $¥8

ARKETEV T~V 7 =V EEPTOWHBITST 7 v 7 A, A7 70FEIE LT —
T TATDFEFERALNCTDHZEAHNE L, XBERBIEB LN ks A
WEBETHBATRR OB R ZIT o7, ZTOMR, WHEN VA YRLV /NI RhAT L —
BAT I HE DB Ok PV S M O iR T ~OEITE DO X 5 R AT 7 O E), HiEE
TTCHFFSND 22BN — 0 77 A= Enaffbaniz. £, EHEERO
FRICE S TRATZDERBERLF Y ET A ORESINERY, AT 7 OFEEENNE
ULz, 61T, WHEETZ DCEP 800 A ICRET 2 L@ OEIN K& <720, JHHT
HLO XS RIRENIC K o TA T VMBI IREI T 28k 1 23 fs8 © & 7o R7p 5 k& 3%
ET D& T A VERBBEEDOHI > CHERLEE BN L, FEi o [T T #hiih 23
Y ERDREFRERTEZ. 20 L EOEMBATIIERED VA YRLD b REL R
Lo —BITIELE ST, ZOUA VEREEOHEINZE, BRICEREINTY
A Y REOBEMMEDBENZ L > TT —2 7T APEH LT, KOREHEDO T A Y&
HRIBEN DT TH DL EE R L.

IR EIZIL 72 5 < Lorentz HOWENG, BT ~—V 7 =7 HEHTIIOY A

RO E OIR T X 2% TR o, QBWHICIENT 2 A7V —B1THED I 7K
e L [RIFEEE D Lorentz /11, @ T OES) EH-OIMEH O 3 DD BRI K - THRE 23 B
LT RY, AT V—BITEREOLIICTAYRIV G/NSRERPHEM L5
L.
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FI3IFE FREOHER

3.1 ®E

AR CIE, EBRBLEZ TSNS T 2 T & A3 R 8 e i3 R P9 o i i Bl 5 & i 35
WX THLNZT A2 2R AL, TOEDIZFERTCHLIT—7 T X~, VAT
ISV L TR, I EM B TH D M, BMERRERICHEL T 7 v 7 AT T v 7 AR
B LTeAZ T 2T MET HRERDHDH. ZOR, ERBIEER DN D Loy
T =7 =V EHETRERE - FROX T IR 2RISR SN D20, BUEERIC
BWTHESM e T HEEER S 2 REET, ZRocitRICE>TyrIab—
T2 EREELW. LOLARRLUEROE LI L A2 HEFRE CIX, Mo BH
FKifi & KD DB VOF R ED XD ITBIMD FRAREZ M LED D, WK KRE
oAl 2« DR DZEE ZFB T2 Z ENKNETH D, £ 2 TARUZETIERM, &iE, &
Fhth & kL 75O —FECoh D IEJEM M SPH (ISPH: Incompressible Smoothed Particle
Hydrodynamics)ik TiE < Z & THHERE Z - H BRI KD, iEDORETELAMHZE L O B
BNEREZIZTD. £, 77 v 7 RTHEZIRO D Z L3 TE HEEHCEEEL (DEM:
Discrete Element Method) % FlIWCH#E< Z & TR~ O kO %8 % > I 2L — T 5. —
75, BIRTHLT — 7 77 A= 3 HEMERE TH DT 00b b T EAMO KR ZEM &

BHEEDRES VD, 20 OZER 2 EMME SPHIETIRY #9 Z LIZREETH 5.

Z 2 CARMIIE TIEERJE 2 o Z2 ] D F R g P 1R PR AR SR diloeh 71 &2 fRCE L, Euler JE D
B L Tk T H 2 A BRI (FVM: Finite Volume Method) CEf#{k L, SIMPLE (: Semi-
Implicit Method for Pressure-Linked Equation) f#iEC#E< Z & &35, AETIL LBD 3
DOFHEAFEORE L ZOMHIL FIEIC O W TR T 5. 7ods, AR CIEAREREE
BROBEBERIEIZOWTII LR OB ICEBET LV A2EE L.

_54_



32 FR@®E

3.2.1 [RE & BEBIE F i

RN TT — 2 77 A~ &G LB OBMEF R I W 5 A RIEFTEIE, Euler AT
IR EN DR TIETH L. ZOFETEXETERHEEZ 2 o — LAY 2—40
KRETHEZT 2720, EHELCEEORFUZMIZLLT VWLV STZ/RENRH D, Fig.
3L S RoiHh IR R R ICB T D2 ar br— AR ) 2 —2A 1 DORAMEZRL,
Fig. 3.2 |Z Fig. 3.1 (/KA T/ L 72 Vi O FE M 2R (LB BR 2 o 3. A& 1L F MR ICALE S
NTHEY, BOFEFIIADT 7 —BEZEMNT 27270, BOMBRIEIEET 22 e
— AR 2 — AL ORI ZRL TS, KT ORTIZEERIEOX G b a L K
B—R Y 2—APICHETSIEa bu— LR Y 2a—2&2RLTWA. 22, [iIX]]
DA WTZEFITC DR 0 j ISR T 2H-CHEEZRLTWDS. Z0oarbr—b
Ry a—L PNOYHEIZZRT-LE, MiREILBAEZER L Z OMEREORE T~
KXIFKRATEES.

0 19 9 19, a¢p\ d/ d¢
- (p9) + = (rpi,d) + = (o) = (T =)+ — (1 2E) 4.5 (3.1)

(Y

ZZTUH op, oz, U U, I, SIIREH, BEE, PR MPEEE. S5 B, BT
DR Sy, W5 OHRER Sy, YREERE, EREEZ R L TWD. KIFZERIZEBWTHR
RFEIE 2 F D T R O BB G T, R IC - T E R B L 2V EF IR iE %
WETSH. LEBN-T, Har b — LR o2— A TIHHEEORL L ERTORZ TIIE
fes/ha<, K@UNOLEDFE L HIZR LZIFEFHITIEA TS, ZoXrar br—
NARY 2 =L TR L, REEZRAEEICELODREUTORICEMET 5.

AP¢p = ANy + ASps + AE P + AW vy + SPpp + SU (3.2)
AP, AN, AS, AE, AW [Z&MEF D88 TH Y, SP, SUITAERIEON, KK

BT 2 E EHIEEZ R L TS, UBRIZR L TWS AR HES Lok, &k
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K T RIS DRI E AR S LI E L DDH LT, YUN—THETESL L1
i-Siiae a

TEFRRBIZ I 1T D AR o EE) SRR 0wt O TN (BL) DI EF HZ2 A L, Wils
ELTHER Y, u,ZRALZY, ¢=1 ZRALTEDVTHZELTUTOLIITEHEZ
bihd.

16

10
— (rpupy) + o (puzu» =2 (2mm

10 d du,\ 10 du, du,\ OJp
9 19 _o% 3.4
rad (rpuruz) + (puzuz) 0z (Z,u 0z ) + ror (Tﬂ 0z tr or ) 0z F (3-4)
10 0
;_ (Tp r) + (puz) (35)

WEIEERE L L THASHTMERETH Y, pldET, F, EIIEEIO¥ETT MK
Gy, WM CThn. £, MfaBE LEREDO =2 v ¥ —fmik Rixo 21
E—hZz W TKRAD LS ICFRRETE 5.

1( h)+( L0 (KoY 0 (K on) e
ot puzh) = o \"ear ) Yaz\ca2) T @ (36)

KIIBVRER, C TR, QEBAVEREE THL. ZNo0HRAFON, FlE LT
K(3.3)Z MW THEERAL OB 21T 5. Fig. 3.3 ICHifb &R TH L ar b —LRY o
— L PEBORKKEZ T, BOEFIZIAN T —BEEZENT D F 2R L, BOMMHIX
X7 MVOr ARG EZENT 72 R L TEY, 2D ORFIXERBICEE I
TWo., BFEOIIFANT —EEENT DR FOERELRL, FFO I Mo r
T AT 28 T OMEEZ R LTS, ZOKNICIIBERIL T 2BEOME SR &
DFFEF LTS, Fig. 3.2 HO MK 7 Ik L, Fig. 3.3 MR 151378 (W) Mlic
Ay b= R Y 2= AOYRIZHE T BT T ATV, A S v T — g

_56.



FEMEEN D RABEICEVESTER2 I FEZHNTWDS O THSH. —J, Fig. 3.2
WRLER D BB RICIEENRZ AN =R ED AN T —BERRAFINTVD.
il 7 10 O EE KAy U, AR D ERIE, Fig. 3.4 X HICE (S) FcFhniz~s bk
SROKTEERT . BOERIEIAN T —BEZEMNT 2B 2R, BOBERITY
MVD 2 FARD ZREMNT O F 2R L TWD, BEOJIZAD T —BERMAT KT
DEEZRL, BFOJIERT MOz FRRG % ENT 28 - OREZ R LT .

Fig. 3.1 Schematic illustration of a control volume.
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Fig. 3.2 Schematic illustration of grids around control volume P to calculate scholars.

e

Fig. 3.3 Schematic illustration of grids around control volume P to calculate vector
components in r direction.
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: : T ¢ NPT
..... ]].Woﬂioll.,f vZ

: e A isnsv[j]4

: : - 2ll]y

R ] dzPSVj]

@ 2l Yoo
......... il :

sew|i]

drPWLi) |, drEP[i]

Fig. 3.4 Schematic illustration of grids around control volume P to calculate vector

components

in z direction.

HMETHHNEBI)DLNE 1 Hrary buw—nAR) a—LATHEST L ERADO X

NZEHTX 5.

10 0
ff ror (rpuyu,)rdrdz = [z]g f a_r(rpurur)dr = Az[(rpurur)e — (rpuruy)wl

=sns[j] * { [i] * pe *

w [[] + |

*

urli + 1151 + u, [i1]

2

i — 1101

2

. urw}

“tpg = rli = 1] = pyy

= sns[j] * {GE * (u,[i + 11[j] + w [(GD/2 = GW * (u [1][j] + u,[i — 11[D/2}

= 0.5 CE * (u,[i + 11 + w, [iI[D = 0.5« CW * (u, [i1[]T + [ = 11D

GE =

GW = r[i — 1] * py, *

urli + 101 + u [11]

r[i] * pe *

2

ur [0 + up i — 11151

2
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(3.8)
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w i + ][] + w, [i][j] (3.10)
2 .

CE = r[i] * sns[j] * pe *

w [i[j] + ur[i — 111 (3.11)

CW = rli — 1] * sns[j] * py, * >

GE, GW I M THD LIZBoMmICET 252 Lo~ THY, CE, CW
iTe, WH P~OEEMRAETHD. FEEIC, MBETHLIEDLFE2EHLUTO LD
ICHEE S A

jfa( )dd—[lz]efa( )d—Afa( )d
5, (Puzuy)rdrdz = |57 e puzty)dz = rir [ o (pusu,)dz

= rAr[(puyu,), — (puu, )]

u [ + 11 + u,[i — 1] + 1]
2

=ruli] * sewuli] * {pn * * Uy

u[i[j] + u,[i — 1][j] }
—Ps * * urs

2

= ruli] » sewu[i] * {GN * (u, [i][j + 1] + u, [{]/D/2

—GS * (u, [1][j] + w,[i]j — 11)/2}

= 0.5 % CN * (u [i][j + 1] + w [{][]) — 0.5 * S * (u, [i][j] + wr [{][j — 11) (3.12)
o = 00+ 0 41 619

g5 = A 00— 11 614

CN = ruli] = sewu[i] # py » AU T L+ ;Z[i — i+ (3.15)

CS = ruli] = sewuli] = p, » AU 12‘2[" — 1] (3.16)
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GN, GS (Z#h 5 TR LIZEROXRICET 22z £ L HbDTH Y, CN, CS T
n, sM™H P ~ODEERAETHD. py Pss Per PwldBRICBITLEETHY, RS
FHUCAFIET D pe, pwll2WNTIE, fie, weAD T —BEKMWT LK1 E, WREN
FNERDIZD, ZOKFITEMSNIMEEZFIHT 5. —HHMICHFEET Dpp, pslc
DNTUE, BEET 2 AN T —EE2 KM T 2 T OFRFOEEORINEHEL 52 5. HW
T, MiEETHLH0H 1 HITRO X S5 I m L, BHT 5.

i+ 1007 - w [

-t -~ 00
. w[i[j] = u [0 = 1][j]

BCA U A drPWU[I] }

= DE = (u,[i + 1][J] — w, [{]/D — DW = (u, [i][j] — . [i — 11[/D (3.17)

2w r[i] xsns[f] * pe
DE = drEPU[i] (3.18)
DI = 2 xr[i — 1] * sns[j] * uw (3.19)

drPWUTi]

DE, DWide, Wb P ~DILE AL H T XU ATHD. p, iy e pl3HRICHT
DRMERETH Y, ERFMICHFET Du, p 220 TE, Rifie, wEAHT—EE
BT 2T E, WRZNERERDLD, TORTICKEMESNEEAATS. —F
WG NS AFAET Dy, udlOWTIE, BEET 2 A0 7 — BT 24 FITRM S
KPER B O ER M E 52 5. FERICHMEE CTH D405 2 HH L FO L 5 (TS
5.
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0 ( 6ur+ 6uz> drdy = 0ur+ 6uz)d
ﬂ&“az W) TOT0% = [z]faz “or )
du, Ju, ou, du,
=7rA — -
rarl(w), + 05, - (05), - (05

w [l + 1] — w, [{[] s u i + 1] —u,[i — 1][j + 1]
dzNP[j] Fn sewul[i]

= ruli] * sewul[i] {un

* l][/ _ur [/ 1] *uz[i][j]_uz[i_l][i]
Hs dzPS[j] ~Hs sewul[i]

= DN = (u [t1[J + 11 — w, [AGD + rulil gy * ([l + 1] =, [i = 116 + 1D

—DS * (up[1][J] — wr [l — 11D — rufi] * ps * (u L[] — u.li — 11D (3.20)
ruli] = sewul[i] * up

DN = NPT (3.21)
_ ruli] » sewul[i] * pg

DS = 25T (3.22)

DN, DSiZn, s?H P ~D¥ika s F 7 2 AThb. MHETHHIAUE 3 HIZL
TOXIHIIZEHTX .

U, a1 Te
ﬂ. —Zur—zrdrdz = —2up[z]? f;dr = —2upAzu,log (r_>

w

= —2* pp * sns[j] * u, [{][j] * log(r[il/r[i — 1] (3.23)

pp IR PICHIT DR TH Y, BT 2 A0 T — B2 RMNT D8 7 I S L7k
PERE DR EEME A 52 5. ENARETH 54105 4 HITRO K O IZEHT 5.
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d - d
ﬂ- —a—irdrdz = [z]? (— Pe Arpwfrdr—rpfa—l:dr)

e

— 1 —
= Az [pW Pe [—TZ] - Tp(pe - pw)] = ZTPAZ (pw pE)
w

Ar 2 2
= ru[i] » sns[j] * (pli — 1[j] — p[AUD (3.24)
I, ALFESHIZRTHNHIZTUTO LI ITHEST 5.
jf E.rdrdz = Erz] [z]2F. = rArAzF,. = ruli] * sewul[i] * sns[j] * E.[i][/] (3.25)

BLEDORET)~R (BT LA H s RGBT EL DD L, KARO LS ICEBTE 5.

APu,, = ANu, + ASu, g + AEu, + AWu,., + SPu,, + SU (3.26)
AN = —0.5CN + DN (3.27)

AS = 0.5CS + DS (3.28)

AE = —0.5CE + DE (3.29)

AW = 0.5CW + DW (3.30)

SP = —2 % up * sns[j] = log(r[i]/r[i — 1]) (3.31)

SU = ruli]  pn * (up[i + 1] + 1] = u, [i][j + 1) — rufi] * g
* (ug[i + 1] = u, [
+ruli] « sns[j] * (p[i = 111 = pEAUD + ruli] « sewuli] * sns[j] * E.[{][/] (3.32)
AP = 0.5CN + DN — 0.5CS + DS + 0.5CE + DE — 0.5CW + DW

= AN + AS + AE + AW + CN — CS + CE — CW (3.33)

RO b OB E M THREZ RO 200, WHTHR~NDEEBIEAF— A2 L,
ARORELZR ESED.
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3.2.2 MAEHEDEE L

ABFZE TIXAHEHE & L EE 2 & TR 5 AN, AS, AE, AW (2% 3 D BERb A F— 24 L
LT, "M 7 Uy RIEOEZHND. ATy FIEZ RN E R L ESEE — R B
EEDEERABEDETHBIEAF—LTHL. TR0 RBEEPLENEE K
WER EEMEOZTRZRICONTIRAS . fliH{LD 7=, Fig. 3.5 [ZRT —KITOHR

Ax Ax
=

Fig. 3.5 Schematic illustration of 1-D computational domain.

TEZD.

—RIEOEET BRI T, dE u, IEBRETrE —EL 35, KAB/LND.

dp  d2¢
pu—— =

=r—= 3.34
dx Fdxz ( )

ZoHFRERITERN M (¢=¢w atx= xw, ¢ = ¢g atx= Xg) Z AW TR 2 2R 6D %
&, WAD LT D,

¢ _ ¢W e[Pe(x—xW)/Ax] -1
bE— dw e?re —1

(3.35)

ZZTAxIZ EP o e & PW BOH A w EFESIERECH D, Pe IX6HR & Yaf o N
T AT R T (Peclet %) THY, WA TEESIND.

_ pubx
T

Pe

(3.36)
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G T R(3.34) I U UL S A L CHEE T 5. — oy hr—b
RY 2— A THEAT 5L, (B3I RD L I ICEATE 5,

f dé d 2(I)dx

puadxz FW

pu(pe — pw) =T [(i—f)e - (i_f)w]

05 » puldy — du) = T [(d’EA—foP) 3 (¢1> - ¢w)]

Ax
r
0.5 * pu(¢g — dw) = E(‘PE —2¢p + dw) (3.37)
2r
AP = v (3.39)
_r _r pAxuy T
AE—Z;—&&W—Z;@—OS - )—ZEG—OEHO (3.40)
_r _r pAxuy L
AW_Z;+a&m_Z;@+05 F)_Axu+05%) (3.41)
X(3.38) & A (3.39) ThrT 5 Z & Top kD 5.
¢p = 0.5(1 — 0.5Pe)ppg + 0.5(1 + 0.5Pe) pw (3.42)

RN R T & 5 X (3.35) L Fiffig TH 5 X (3.42) = =N E N D Pe 12K D 5 & Fig. 3.6, Fig.
37T DEHITH D, MATIZIER T2 L, Pe DM, T2bbiitOBEBERRKEL 2D
FE TR THDHMCHBEBESRIE SN TNDLZ ERNDND. —J, PLESICTEY
ROTMFILTPe N2 2R D EAICRY, MITEBRLRLMERT ZENDND.
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Fig. 3.6 Analytical solution for each Peclet number.

1.0

0.5

0.0

-0.5
W P E

Fig. 3.7 Numerical results for each Peclet number using central differencing scheme.

ZOMBEE RIS D2, YRS E R _EFESETIERHREICR L, RO XS Akl
TO. mMwOHEZu, L L, u,>0D& &, =odw, u,<0DEX¢p,=0¢pl il T %.
ORI ERMOMEZE D Z &b R EAESIELMEIND. 0B, ow, dprmwdD
B C Taylor JRBH L ¢y, = s P = Pp BRI LT E, B2 HLBEN 012785 2 &b,
ZOREFESEOREIL R E D T E TS O3 R A2 RA D K 5 ICRET
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Py = Pw max(piiy, 0) — dpp max(—pu, 0) (3.43)

Puede = ¢pp max(pue, 0) — g max(—pue, 0) (3.44)

max(IFEIMN DO R KMEZ 52 2R LTS, a2y ba—nARY = — A THEY
L7 2(3.34) 10 %(3.43), KBANEIRAL, ppisk® 5.

fpui—('bdx—f dzf dx

e =on =1 (), - (3,

[¢p max(pue, 0) — g max(—pue, 0)] — [pw max(puy, 0) — pp max(—puy, 0)]

= (B 20) - (22| = £ 0~ 260 + 0w (3.45)

2r r
AP = o + max(pue, 0) + max(—pu,,, 0) = " [2 + max(Peg, 0) + max(—Pe,, 0)] (3.46)

r

AE = A max(pue, 0) (3.47)
r

AW = A_x + max(puw, 0) (348)

AEZEZTVDLHRTIHEuy=u=u>0CTH D15, Pe,=Pe,=Pek/a?. LIino>TK
(3.43), K(B.44) LY py =dw, Pe=PpL D05, R(3.45)L Y

I
pu(dp — dw) = E((pE —2¢p + dw) (3.49)

1 1+ Pe

= 3.50
e 2+Pe¢E+2+Pe¢W (3.50)
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7%, (BHO)EK PelC DWW THIMT 5 L& Fig.3.8 DX 52D, Ped2 %A TH
RPOWHEENFiQ3TICR LR LESEZHWZEEO LD ICAILR D Z LT,

KWFFETHW D ANA T Uy RIEIE, 3 & IR o T o 2 2779 4(3.36) D Peclet 4
Pe lZ KXo THEHL AF — L 28IV B 2 5. BARBIICIE, Pe 2% 2 Rl OGA X RIS
ThHHHLEMNEEZRHAT S, —7 Pe 1Y 2 22 556 TIEH L2251 TIXA IR 72
REZBNTLE I O, BEIZ—RIZEDL Db OO EMEL EET 2R EESIEL B
MT 2. Bz, 2 b= ARY 2a—APIZKL, BHRICERSALTWS 3 e
—AARY 2a—A W LEOREICHKT D HEMEMH Y OIEROFTFITZRD X 5 IZHED
FTE5.

2 2

G = PU [0.5 (1 + —) bw + 0.5 (1 - —) ¢P] 2<Pe<2 DA (3.51)
Pe Pe

Gw = pupw Pe=2 OiGH (3.52)

qw = pudp Pe=-2 D5 (3.53)

(3.51)~3(3.53) X |Pe|=2 DGA ITILBH &2 M U, PRI xf U C— Rk R 755
LML, |Pel<2 DO%EITRTE & ILHUEAZ B E Lz G E P LESEZ B+
L5 EWRLTND.

Blé LTl REITR LA 70w RiEER(B.27)~X(B30) AT 5 &, Emicxt
Tl & R EE & & TR EkAP, AN, AS, AE, AWIZRX o X o cBiib Tx 5.

AN = max(—(pu,dA),, (udA/Az ), — 0.5(pu,dA)y, 0) (3.54)
AS = max((pu,dA)s, (udA/Az )s + 0.5(pu,dA)s, 0) (3.55)
AE = max(—(pu,dA)e, (udA/Ar ) — 0.5(pu,dA)e, 0) (3.56)
AW = max((pu,dA), (udA/AT )y + 0.5(pu,dA)y, 0) (3.57)

dAZZFDORICB T 2ary ra—LAR Y a—ADOHEME, AriZEPEoF S e & PW D
HwEMASEHECTHY, AZIZINPRIOHF S n & PSHIOH S s #fiSHEBETHD.
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Fig. 3.8 Numerical results for each Peclet number using upwind differencing scheme.

3.2.3 YVILiIN—

ARBFFETIEW S K D FHHE O & #EZ X 5 7-%, Red-Black SOR (Successive Over
Relaxation) 512 & » TXEL A RO Z K 5. Z D Red-Black SOR 41X Even-Odd SOR
HEBMFIENDHEMETHY, UTFICEOFIELZDRRS. £9, —#M7 SOR IS
DWTIkR2%. Fig. 3.2 [ZR LA P O &, XGB2)ZEFLTUTOLIIZKRD
HTENTES.

¢"p=(AN@'y + ASP"'s + AEQP 'y + AW D"\ + SP@'p + SU) /AP (3.58)

ZITOEEHBOMEEL RL, JIFEFHIOYEETHLZLERL TS, 20O
RZ2IOHIZLLTFO XD ITHEE L=, IR KyzEANTD.

¢'"'p=¢'p+ (ANQP'y + ASP"'s + AEQP'y + AW D"\ + SPP'p + SU) /AP — ¢'p (3.59)

¢"p=¢'p+y[(ANQ' + ASP" s + AED' + AW "\, + SP@', + SU) /AP — ¢'] (3.60)

ZoOXB60)EHNTYHEL FH LIRS T2 TIEMN SORIETH Y, @ O SOR i
TIHWIME ORI EET 2 R 2B 22 ALy RORFEBICESFLTCLE BEAR
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H5.

FZTZD SOREZWHIFHEMD VL "—TH % Red-Black SOR 1~ L HLIET 5.
BETOFROIEIENS, TREND Ny T affi{ZzRDD. Ny ¥ 2 lUIRATER
SNDHETHD.

{=ixNJ+j (3.61)

NJZz RO RETHDL. 20Ny ¥ 2 lERFERNMEENC K> T/ N—T0310%
1T9. WHOKTEEZRT, BEROKTAEZETRET L L, FEBEROK 7 RIX Fig.
390 X 91272 %. Red-Black SOR IE T, ZOR LRI NV—T T SN EOY
HEXZHIZEFRTLI L THERDL. T72bb, BOWHEELTHT 2BRITROK
FTROYHEEITEFETICERE LTI, ROMEELZHHT 5B TR0 T-ROY
HEZEHETICERE L THY. bOWEEIOTHITKRAUE > TIToD.

¢".% = ¢ .° +y[(ANg' R+ ASp' N+ AE¢' S+ awg' R (3.62)

+SPp'," + SU)/AP — ¢'p°]
¢ N =o' N+ y[(ANg' B+ ASe' P+ AE¢' P + awg' P (3.63)

+SPP' N + SU) /AP — ¢'p"]

mF B, RZFBEADK FRBIOREADK FRZRLTEBY, AP BRELRLA(3.62)%,
R HAEBENZHNVTYHELE TR T LI LEERT L. 20X ICWHEED L
HE LT 2 4 DK FROERLNSM LRV, BOKF R LROBKT RE L
AIZHEFTLILTHATHZERWIMET 2 EDRAREICRD.
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Fig. 3.9 Schematic illustration of Red-Black SOR method.

3.24 BtEF7NLTY XL

AHETIIHET LT Xa e LT, X(38.3), X@B4IxL-ER HEA L X (3.5)I
RLUTEERTFAEZHCTIES p Z:kH D SIMPLE (Semi-Implicit Method for Pressure
Linked Equations) 7 /b 3 U XA ZEH L7z, UL FIZZOHETIELZ RS, F3X(3.3),
XEAHZHEBIL L THBRETELDD L, ThENLAEB2DOBATRRT 2 &N TE
5. LT, TN60XERADEHICEZET. ok, UTFZEHETmoREL LT
Roe, n Ot LB 2R LT <.

AEu, = zAEE + A+ rAz(pp — pg) (3.64)

ANu, = ZAE{ + A+ rAr(pp — pN) (3.65)

ZZTAE, SN PICE#ET IR AOBELBREB LOWEETHY, ZOMIHERD
K(3.3), K@BAHTBWTITHEE U, U, THD. MIEKELZE LD LOTHD. JEp
WZxt L Cill (ERHEEME p* 2B 25 L, BEOHEMEU,., v, ZRXDEHITkDDHZ &
MTED.
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AEuy, = ZAE{* + A+ rAz(pp — PE) (3.66)

ANuy = ZAEE* + A+ rAr(pp — pN) (3.67)

ZIZITIELWWEE U, U, p, HEERY, u, pt, WLERu, u, pOBRERAD L

INCEERTD.

U, = uy + uy (3.68)
u, =u, +u, (3.69)
p=p*+ p' (3.70)

Zh bR A (3.64), K (3.65)ITfRA L7k, (3.66), (3.67)%5I< = & THMIE &
ERODHRANGONS.

AEv',, = Z AEE +rAz(p'p —p'E) (3.71)

ANv', = Z AZE +rAr(p'p — p'N) (3.72)

Bee 3 o4 RO ZIT D EN NIV EREL, R(3.71), REB72)OLHLE 1 HEA
B3 2. MEPAINRT D EMEREITETOICRDLIIEND, ZOEBIINRMEZELZ &
AR THZ L TROONDIEHENREIKICRD. AI0FL1EALEKL, BELEZKX
(3.71), KB.72)HEEMIEREY,, W, IR0 X HicE£END.

Ure = du,(p'p = p'g) = dur[i + 1] * ('[IU] - p' [ + 110D (3.73)
du, = 1,Az/AE = ruli] * sns[j] JAE (3.74)
Uy, = duy(p'p — p'y) = dug [l + 1] * (@'[i][] — p' [0 + 11) (3.75)
du, = 1,Ar/AN = r[i] * sew[i]/AN (3.76)

BB RO FIE T, u, %R0, MEEORE =2 b m— LR ) 2— L TR L
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KEINTRAT L2 LT, HEWREDMEREPICET 5EB.78)1HLND.

[(rpur)e — (rpur)wlrdz + [(rpug)n — (rpug)slrAr = 0 (3.77)
APp', = ANp' + ASp'g + AEp'; + AWp',,, + SU (3.78)
AP = AN + AS + AE + AW (3.79)

AN = (rpdu,Ar), = r[i] * py * du,[i][j + 1] * sew[i] (3.80)

AS = (rpdu,Ar)g = r[i] * ps * du,[i][j] * sew]i] (3.81)

AE = (rpdu,Az). = ruli + 1] * p * du,.[i + 1][j] * sns[j] (3.82)

AW = (rpdu,Az),, = ruli] * py * du,[i][j] * sns[j] (3.83)

SU = [(rpu”)w — (rpu)e]Az + [(pu”)s — (pu")n]rar
= (ruli] * pw * wp [i][j] = ruli + 1] * pe * up [i + 1][j]) * sns[j]

+(ps * uy[i][j] — pn * u [i][j + 1]) = 7[i] * sew[i] (3.84)
R(3.78) Z HIE TR R 7= VY LN —THE< = & THE S OMIE &p %k, Ri(3.70), 2£(3.73),

K@) ENHMEHZD P, U, UNKEDH. ZOSIMPLET VT Y X LDT7 0 —F %
— k% Fig. 3.10 (Z/~" 7.
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(  Start )

Initial settings

Calculate coefficients in Eq. (3.2) by discretized Eq. (3.3)

Update u, using red-black SOR

Calculate coefficients in Eq. (3.2) by discretized Eq. (3.4)

Update u, using red-black SOR

Calculate coefficients in Eq. (3.2) by discretized Eq. (3.5)

Update p using red-black SOR

Adjust velocities by Eq. (3.73) and Eq. (3.75)

Evaluate residual error

onverged

Fig. 3.10 Flowchart of SIMPLE algorithm.
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3.3 JEEHMEME SPH &
331 [REELHBIEFE
ARBFFETRAS, B, e — FeMIGHHEFELE LTRY 5 SPH (Smoothed
Particle Hydrodynamics)i% i3, F=H MBI 31T 2 KUK 8 ) F I BE O BUEFH R A2 B &
LT, LueyNC Ko TR SNFIRFIETH D, SPHIETIE, RFRERESLT XX
—REDOWEBELES. b ORFalMFET DML, = (x,,2)ICB1T 2WHEEP_z )T
FEORLFbE DM EEREZZER L TRA TR TE S.

Pa=iy) = Z my —Wgp (3.85)

Fa bITRL T FFERL, miITRL T OEE, plXhi OB, Wy XHEEE £, & B 1-blE] D
BEEE| Ly | &R FIEARACE LV — R AR EMIL > THRED I —F AR THS. Zh
X Fig. 311 ICRT L 51, JBEE X, 20 & T 5 2hOFMHAANORL 0036, B —
R - TR 2 Wi gy OERADEIT L > T, JBEE 20O MR Pgog ) HSB
FH2LETRLTNSD.

COMBEEDOGAT IS D I — VS E LT, AT SR ZER TO M4 R
T4 VK THHK(3.86)F HVE. THILFig. 312 IR T L O RIEL AR TH Y,
JEFE X, 005 F2E 2 hE COFPICEIE X, OWBENTAH L TNDHILERLTND.

( -
1.0 — 15(| “bl) +075<| “”') (0 < |lap| < h)
h h
1
Wap = —39 7 N\ 5 3.86
b= 7h3 L, 30|2b|+15<|2b|> 025<l |> (h<|iy| <2m) 389
\ 0 (2h < |l )
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I
P
| kernel radius

(=2h)

Fig. 3.11 Superposition of physical properties of neighboring particles.

Kernel function W

0.0 05 10 15 2.0
L, |/h

Fig. 3.12 Distribution of the kernel function.
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S 01T, MRz D DBV Pz, )X A(3.85) D — X L BIR A BT 5 = L THRLA,

mp
Ppmsy = ), L boFaWa (3.87)

b

ERLIRTE D, VW ZX(3.86) TR LI — VBB O~y a2 R L THY, kAT
xKIhsd.

( -
l 30|;‘l”|+225 Ll | (0 < [lap| < h)
ab
1
VaWap = —7 9 ; N (3.88)
mh 30+30|‘;lb| |l | (h < |lu| < 2h)
ab
( 0 (2h < |])

RBRLAICEB N TVODO XN ML & 72 D55, ¢(f=fa)@/gﬁaV¢(f=fa)LiF£% X
LKL T D3y — By D TAADE Th 5 RATH 2 BB

mp
V=2, = Z ’n (@p — P=12,))VaWan (3.89)

b

3.3.2 Navier-Stokes AR IC & 2 RA BB D 2k
TR OESR) 2 F 9 Navier-Stokes FRERIT, B2 LN A T & 5 IEEME MK 2 B
V%O BEA, X(3.90)D kL H I Lagrange IER THEN 5.

—

Du S
pPpr= P+ (V-u")i +F (3.90)

ZIC, @ FRERNEREESRS L, AR FAERLTNS. O Ep TR
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THILE TR TFORELEZRDDLZENTED., ZOR D pIFEA(3.85)ICHB VT =
pETHZELETRDDZENTE,

Pb
Px=%y) = E my, — Wap© = E mpWap® (3.91)
b Pb b

L. T TWHNE, R OALENRY ML < JERE X2, OF MM O TR L
XWeERWCTROIZA—F VBB TH L. JEIE 2, ORI OELX 7 R ARYOIIRAT
EFRSN, FENETITRLTOMERZ MLEBBEE 8L, FRAERE CIIHEENE
w2 . ZoX(3.92)IF— AR ELMEDR M HEE SPH IEICEA L2XNTHY,
HEELPHRHEORDVICH = VEBOEZ TS, FE N O&E LT Lz v
FEARENT M, RARE TITRENT LD MM NICEET DR FER D7
WD B MV ERWTEEZRHNT 2 LB/NFHENTLEI NETHD.

Yb X Wap
e, === (3.92)
F=Xa) = 3 Wy,

R(B.90)D AN LEP OVplE, 77 7 OBOEHNZE SN TRO XS ITEBMTE 5.
v
P V(B) + 2y, (3.93)

L7 o CThFadE ) ABEIZ A (3.87) L R(B.9)EZHNTRAD L H It EXRES.

Vp) Pa\ , Pa mp Pp mp Pa
M =V(—>+—Vp =Z——|7W +Z——p AT
(p Gty Wal 2 T Lapypy T Lapy p2

Pa Pb)
= E my, (=% + 2| 7,W,
4 b<pa2 ,Dbz a'Vab (394)
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FXEYOAELF 2 HTHHRMMEAHIT, K0 —fTHZS MPS (Moving
Particle Semi-implicit)i: D EE#L FiEZ Y A%, MPS {ETIIMELRY DT T T2 T
FWATRITE THEBIL S5 3689,

26
AaNapa

Z (d)b - ¢a)W(|iab

b#a

V2h=z,) = Te) (3.95)

SIZZEMW e ER L TEBY, RFEIZ=ZRILERTOYIa2b—va rE2{TH720,

NN

§ =3 ThD. wik MPSIEIZH T 2 EABE, nldk
BB T HNTA—2%, NIZR FEBEEZRLTERY, KPS CldE 4B %% X (3.86)
R LT —VBERICEE 2D 2 & TSPHE~ @A L7, ko(3.96), & (3.97)
AW

AR TH D, 20RO AL MPS

Q

52
1 _ Yollap| Wap (3.96)
T N Wa
b ¥"“ab
%=§]%b (3.97)
b

ZDTTITIT e ECHIRBANGFIET 256, MEEY, 0T 7T VT IR

(IEe 6 <HEH, RIEMZEE L TR THEERES .

2 5 o = a —_
(AV ¢)(X=Xa) AaNa.Da E 2 (¢b ¢a)W(|lab|rre) (3.98)

b+a

L2 TR faD k5 DIEIE, I — VB A E S # 2 7-X3.98) % b Z & Tk
DX HICEERIEES D,
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- Hp + 1
(V- ua VUl =2, = ZNop ZS P2 (U — Ug) Wap (3.99)
ara

IEOBEXY, KivaOlEIER(3.90)% Ik TRDDZ ENTES.

-

Dﬁa Pa pb) .ua+.ub — Fa
= — —+— V. W w el
Dt émﬂ%ﬁﬁf aw+1%%g uﬁaﬂﬁa (3.100)

333 EBMFHERRTILIIVAL

INETRUZBERIED D, FIFETIES 2 RO EL RO DB, I — VBN
DR DOV EZRE L AEDLEAIVERNHLDLZ AR L. L Ll s, FHAHEK
D o EHORFIZxF LT oEOHEZEITO & BEIOFHFENLEIZ/R D, F - (3.86)0
D X =B 2R BRENTRLF & DO — 2 VBT AT 0 IZ D 2 &
D, RTORAIZK L THEERIT ) 2 LI ERAHEa R M2 RIcELSEL L

I72%. T CARME TIHLL FIZRT IR FHEBE T LT Y XA X » CHE RSO
MizAT 9. UTIC RO EHEEZf & L THAT 5.

9, Fig. 3.13 12§ K 5 ICRLFHEDAFIET 2 FH AU IE 2ho R+ (V' — ) &%
ET D, 2OV —IFAREKEIETHWOND &5 REFEEFTIT R, £V —UI2F
ETDHDRFOBHENNFESEZTXBL B EDETOLDOTHD. 4, FHREERIC
NZXXNZY OV —r R E LT ETDHE, &Y =Dy v =2 fHIEH(3.61) & RIERIZ K
KXTRBIND. o, &£ —VIF4 200K FRICE > TR SN TWDEN, b5V —
YONY YA BIZIND D 4 DDTED DY, &I AN O B ERE A RO TR
FELW.

{=iXNZY +j (3.101)

— 07, KA DEEN S bR A DNy V2 fleRODHZENTE L. HHHRL, = (%)
(CALE S DRLFaD Ny ¥ 2 iy 1X, FEEEL Y — 2 OfF 2hTHRYT 5 2 & THL A,
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{, = floor (i) X NZY + floor (l) (3.102)

2h 2h
floor()IZFEIMAN O/NERLL T OEAZ G 0 #5C, BEMCERT 5 L2 BHKLTWD.
INHDOUEEETOR IR LTITHY 2 & T, & TOR FIXFFHEERNOWTA»D
V=TS, &Y - VIXBE RIS E NIRRT OB R TR B AT D,

Z L ThDRTOEBRFIREBEEZITOBRIL, TORFREMETnD Y — st L
BIMEL D50 =AM SR ioxt L Th— 3 V% T dh 5 X(3.86) & 7t A
T4, ZOWBT LAY XALATIEFIQ3M4ITRT LI, BHEDOY —U 2842950
V= VI FET DR EHEEIT) T T XNV ERANOETOR T E3HET L 2
EINTE, FHAEEBZRIBIEBT 22 ENARETHS.

J 4
3
2 .
_~ SPH particle
| L, Z0one
2h
0

0 1 2 3 41'

Fig. 3.13 Schematic illustration of zones in computational domain.
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|_—Evaluation circle

LRelative distance

Zones to be calculated

L

Fig. 3.14 Schematic illustration of zones to be calculated in computational domain.

3.3.4 FEEMIEELTFE

ABFFETHV D SPH BT IE R, JEMEMER A IS ) L CHBE SN2 BE A FETH .
L72M 5T SPH E&FEEMMEVEARICK LTl L7ess, A2 & Th/ha L
RITNWTEBELZY IR TCEFEHEZTHENTET, HRRHAE X FAMEIC
5.

ZORBEICK L, P O IXIE MR FE 4 OZBE L, REREMAHLDEET
TR DB 2 ¥ — TR B D BIFEMIRA A FH R T2 2 LTk L, SPH % JEJEEME
WIS L7ZBREOFE a2 M2 RIBICEB L. ZOFEETPH - BEEBEICESIK
WIREIC L > TEELGORY M L 2N 0 HELZ BT 23 B FIETH L.

Fig. 3.15 [ZFEJEMEME T Bl FE O AK 278 L, Fig. 3.16 12 Z O I EMMT I Tk % &
e SPH ko7 v —F v — hE5R3T. ZOFIETHE, ETEMORERAT v 7T
EREME N N5 R F D HE T I uk S HE > TRRAKL 2 B8 S & 5 (Fig. 3.15(a)). 21k
DEELZITZ OBEIC L > TR — L7 5. wIiZ, R(3.100)DA40 5 1 HIZHE
STEBELGNE IR LI THTFEEEL, BEINT TRl X > TaiAk
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T % B8 & 5 (Fig. 3.15(b)). = OB @I WV 5 R(3.100) D 40 5 1 1133 (3.94) 7 b 3K
EV,RFHOENARZ RTHTHD. ENplIEHENTHZ L Trp=c?rpLEL
ENTED. LoT, ZOHITKFHOBEARZ RTHE 0D, Z0(3.100)D 4
W LHDIINZE > TRMRL -2 B2 TR 2 EEERR YIRS Z LT, BELORY
REMT D, 2ok E, NEBINNLELNDMEEIZRXUZE > TAL—T » F LR
T 58T, EEBEHS T RN XD BENC o TA U 2 BRI 72 5 0 B0
Ko TREDBEET 22 L 2T 5.

2o PeWap
2o Wap

df’ressa =1- Aex)d)Pressa + Aex (3.103)

Apress| T A L—37 0 LB DN E Z 7R U, dpress | F2N(3.94) BB LN MEEZ R L
TWND. AlI AV T VONEE LM EREDOREZRTERTHY, KRBHFIETIL 0.48
ET D B, R TEEBNTRMAT v A, HE TR ufNSHE > TRRIR - &
L7 & ZICHWERR AT v ZAUZ e, 0/ S WK A TH 5.
ZLTEESORY ZEMT HBRBEZEKITHORKEKMNE L, BRTOKE AT v 7T
@%,h%ﬂ%ﬁﬁ%ﬂﬁmﬁ%EML,:hm%ﬁﬁmiéﬁﬁﬁm&%ﬁﬂ%*ié
WEuEEIMA T DN, ZORMAT v 7B 5 HE Uk & 72 % (Fig. 3.15(c)).
FEEMEME SPH {EIX ERLO X5 I FHFOEE, BEIZHEVELRNL, 2EOKE
DY) — LD 2 LA BB FNELZEEST S & THEEMRBNE KRBT 2FIETH
% .
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(b) Adjust particles along pressure gradient

¢

~

\

-
Ve
| %
4
-

ze

UR = UR + Uyis + U

(c) Calculate velocity, viscosity and some external forces for each particle

Fig. 3.15 Schematic illustration of the density homogenizing algorithm.
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(  Start )

Initial settings

[

Ll

Move particles along their speed

Adjust particles along
pressure gradient term of Eq. (3.103)

Is the density
homogenizing
tep finished ?

Calculate the velocity of particles

Evaluate external forces

Evaluate viscosity

t = Time end

Fig. 3.16 Flowchart of the density homogenizing algorithm.
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3.4 MERRERZE
3.4.1 REELBRBIEFE

A1 Ko TR D28 2 iR 813 5 B 23215 (DEM: Discrete Element Method) 6T
&, HEiR L TW A RLFRICIER, FuoN, BEA T A X TR IND Voigt T T VIS
S>THfM N % 5 2 5. Fig. 3.17 IZARMZE THW D Wigt TETF VORI %2 7R~9. ZDF
TV T L TV DR O LR L 2R SR A ER TN & ER L, TICTEER G
EEERMEERT D, T LTERTAIC—HoiERE ZooX, ERGmIC—xoiEn
EHE N, BEAT A X EERT S, LLTIZ, Fig.3.17 IR L2k Fa, bREIICIEZ 5L
Befil ) 2 BN T 5 .

b
Friction slider
A
Damper Spring
a

Fig. 3.17 Schematic illustration of Voigt model.

a, bRIZIE7 & < IE# 7 0 O HEfih 7 ESr i, Newton 0 ES) 52 AU fEV KL THHL S
ns.

Egn = —kAZy, + Niin g, (3.104)
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TITHKERER, nld R EER TH S, AL 1L Hooke DEANC IS < K
FKHTHY, HDE 2 FIHMENTHD. ARy, B &L Oy, 13K F-a, b ORI O
W0 IAHRERTEMAY PR EOHREERY bV ThHY, KA TERSND.

Afnab =(d- |Zab|)ﬁnab (3.105)
Ungp = [ — Up) * fingy lTing, (3.106)
Ty (TR F-a, BEOHAIERNY AL THY, KANDHRDDLZLNVTED.
L E-%
S P (3.107)
REPEWRE E X K R e e O TR TER SN D.
mk (3.108)

=—2ne |——
1 ne 2 + (Ine)?

YR\ HERR T 17 OB ) B 9. B 5 T OB Ak 1R RIS 0 AE L B E D Hlic
Ko THED TN,

(|FC| < v|Fe|)  (3.109)

(|JFC| > vF%)  (3.110)

VIFEERETH D, KX(3.109) DAL E 1 HIX Hooke DIERNIZESS KB ITHY, A
52 EUTHKEMES T 2. W 0 2 E T n(3.109)I28 W) T, Ak, 8 K Wi, 13K a,
b DTN DN T DOV AL & E KT BT FLIs OB T 7] O AH k5 B~

I RNVTHD. HERFHOD Y IAREEZFRTEMNT PLVIFRKATEEIND.
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Ay, = A% [Fiey, + Uy, A (3.111)

tab
AR!
M— (tp=0)
mw=<ﬁ? (3.112)
a
k |ﬁab| (uabi())

Ry A%, (THTa, OB bV L ERTORHE AT v 7 OERIT IO W v
ABBERTEMNT ML THY, A, gl IR AT v 7 EHXPHES Y L Th 5.
B EMNT, BRI MOEENY FLVFRATEREND.

Uy, = Uap — (Uap * ingy )ingy + 0-5d(@g + @p) X iy, (3.113)
BIXAHESY ML ThHD. B0 RELLHHEREU0)EH VLM, OBk Fa, b

MO TR OO VAL EEXZTEMITIEL LY. LRS- T, 2O LEXOEMNY
MR D XD ICHEHTIND.

(3.114)

Aftab =

ZOFTRBLU0)DOEAEH AT 5. LL TR E 2R TR OB 7 181 OBl 170 &R T
I B < LT RS MAT B RS BRD .

Tray = ) Fss x 05(d = i) (3.115)
b

R R AT E R D &5 ITHL T OAIEE O EHICAN LR D.

ddq _Tra, (3.116)



w
@y = @l + —2At (3.117)

NEEME— A FTHY, GUIEMOEMAT v 7OA[MEERT MLTHD.

PL TR UTaiEM 7 1 o B fih ) & a7 1 OB fih ) & H2fil L TV 5 2RI 1-IC%F L C
R, xyzD SN L CRL OB Z 5. & DR Ok 1 OB E X RATHE
ahs.

1
iy s 2oty Tof, 1 _gae? (3.118)
m m

UNXERTOFFM AT v 7 OHRERYZ L THY, gixENIMEHEETH D.

342 BtAEFZNLTY XL

Fig. 3.18 ICHf i ERIED 7 v —F v — M &7 . ETIXEATORER AT » 7 TRk 7z
B EANT L - T, K2 EETBEISE S, KIZ 3.3.3 L RAERO FIE TR+
REATV, 2R FRIOEHENZ O 2 ki OO L0 &R 1A L& Bt LT
HEHETDH. ZOB, EATORR AT » 7 CH il LTV k713 OB flE R 2 5|
X, B L T RWRL I oOWTIEZEOEMEBERE Y By N ET 5. RIS, B
DFRZAT O . #HMTEFTERGTRN R LIk, BT mE RO 5. R -HEHH
HE OB HIE, RFIZIFEb M RRED. ZhboEf e MLy 22T
DEARL TWDRFIZK L TRD, BLAEDLEDLZ L TEDORHAT v 2B 5 KL
F DM & AAERE 2RO D . BRI, ROTIEE & ANEEIZ K > ThF D HE
EARELZEHL, ROKMAT v 7 ~LH#ITT 5.
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| Initial settings |

"

‘ Move particles along their speed |

Calculate contact forces in normal direction
along Eq. (3.104)

T |FCt| < u|FCn|

Calculate contact forces in tangential direction Calculate contact forces in tangential direction
along Eq. (3.110) along Eq. (3.109)

‘ Evaluate external forces |

| Calculate the angular velocity of particles |
|

‘ Calculate the velocity of particles |

35 &5

Fig. 3.18 Flowchart of DEM.

RETET —7 77 XA~OFHEZ1T 5 HREEE, W X OER4 B O iE 2 LY
o FEEMETE SPH 1%, MK E R T V7 ogE i B ERIEOZNENIZHONT, £
N OFEMELEEHAL FIEICOWTRLE., ZTOETCRLEDIIAFETFEORBETHY,

ThThzHnTEiLo

EBBETHD. T bl

HENSEDY I 2 L—3 3 &7 9 BILBIEREEE T L0

COVWTIEHFEIEBIVESETUDO TRT I L LT D,
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BAE HRAZNWNT—IBEROBRME LUV
E—FERSa2L—P3 Y

4.1 ¥#E

B2 ETITole X MBEBBBESL M A VEICL DXy BT A ABIEICE T, E—
RETELD AT 7 LEMMBOBBCEREBITIRR Z /4L, 25 OB B
TEGNERMESCT A Y OMMEIEKFET D2 EE2WALMC L. Lo LS, EiEo
FEEFWTR L ERFE LEOHKIC LY, BRI Z TgETE Ty, Liedio
THHHBE I L 2BROFAGIREHTHD B2 NN, ETIEMEE bR E
M7 R CEMF R ATV, R TRET HBEMEHAEETALOZ LR 22 &M
ZE L.

ZZTARETIE, i Ar TRAZHNTEH AR ZAVT — 7 IWHEPICIER S5 R AN
ORI LR L O — RO % IEEMME SPH EIC L > TET L, HEY
2b—varEITH. LT, BE— FBREZERER KT 52 & CRITIEE VW
BRI BORROBME Y I 2 b — a VOREMERIET 2 & I, 1B ZB%E
T5ZLT, WMPERMBNEZ EDO X ITRMESNTVDINIZOWNWTELRT H. &&IZ,
HETE I 72 R AR & Te o T VR RIS B LT v U TV R R i 2 & T, kL TIERR
OHMHFAZEEZ T BRI 2R e, Bl ORI E SN 2 FEt o OBr

AL OWNWTELET 5.

42 BRMORRETIVICETE2XEAER
421 BRMICEIo CBENDETIVE

ARFHETIE, BEEMNIZIEZ 6L 4 DOBEEN ) (Lorentz 71, %77, Marangoni %h %,
KR K HEAW ) L FRER)ER(B.L100)0 NI E LTEE L, WRlihZ R T 5
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WIEERICERE )% 5 2 5. REEICEIT 5X(3.100)D 4 IR, SEATHFZ ik
WTIRATEREND.

L, Oy dAg(iy, X VT, x 1 dA
F——y a( Ng a na)+_[a a

- T, — T q
@ oar AV, AV, —(Ta —To)Bpag (4.1)

FIOE 1 X W NIRIZ, Marangoni Zh%, &t & oW AW/, Lorentz /i, ERR T A7
b RMmMES, BHERLTWD. RFHE CIIRMEE D 2 BT a5y & IERT7 B
ZOrBEL, $ERR MRS X Marangoni R & L C, BRI RNT O EHERE ) &
LCEBMNCEEL TS, R@.DICBWT, dy/oTIXEEE OREAR, dAITB+ O
Wrim f, A X BALIERZ v, AVIZKRL OB THY, VT, v, T, Ty, B, giEZTh*
AR EE AR, Rk DA%, R, FEERE, REMEER, EHhMEEEZRLTND.
E7o, fATACHIR 1RO BB, IC K > TRESEALABEBEOTHY, KA THEINS.

( |la] i, |
h (0 < h < 1)
(ﬁjttract = (4.2)
,_ la| (1< ool _ 2)
\“ T T h

s OEREN oW, Marangoni ZhR, Kk & O AW ORI T, AR R O KT
DHHEHENIRE L TWD. KR TIHERATRT LI, B FaD BT Mz, &,
K(3.92) T/ L 7= KL FadD FEAfi FH O B L XWC & DZENKL T ERD 10%% B 2 DR 1% £ M
CAFET BRI T (FSMRce=1) LHELTWVS.

1 (|1, — 2| > 0.1d)

Surface _ 4.3
fa {0 (1%, — X¥¢| < 0.1d) (4.3)
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R@D)DOEHIZHOWT, ETIEALFE 1 IO Marangoni Zh R OFEMIZ DWW Tk 5.
Marangoni #h R ITEARRE OREEIC I D REENOEIHFESNLIWME ) THD. =
DB WT, EFL S NI BALER T bAAgE, 17 —BECOZ kTR
LTWa.

VfCOllar

771)1'1a |VfaCollar | (4'4)
Collar
Vfcmhrzzzzrnbll———vamgb (4.5)
> Pb
Collar _ my
—W,
a o ab (4.6)

b

Woldki+a, bEIOA—3 VB THY, midhi+oERE, fCOlagh 7 —BETH 5.
ZOH T —BABITIRENTH TIIREREE D0, MAEREICESIZo2N T/haL Ak
LETHD. T7bb, 17 —BEITMAEREN D OEBENE L WA THUEICRS -
W, ZONT7—HEEOAR THLHXA5)ERDDH LT, FREALTFOIERT i
RDDHZIENTE D, RFHETIEIR@A) TR LUIZERZ bLvEHAWT, IREARVT L
DHEE R > TV D. ZhiE, »HERMEEICIS W LR O F I Z < Ik E A R
R RING, ZOERFERSERYDEL TG Z & ERT.

K@ DDOHLE 2 HITKRE DA N EZRLTEY, RitRICEWTHERER fa
E7E B EAMIE N IZRATRD L Z N TES.

HGasHa (ur(;as - ura)

MGast + .uadZ’ (4.7)

Tqg =
aesurface

Up gos | T FRERLF DE LIZEB T 2 HAD v HIEOEERST TH Y, Fig. 4.1 (2R RA
K5 0.03mm OALEIZIIT 2 EDAM 2 WD . wup (3K Fad r J518 O RSy
HY, KFad x 7 OEER T u,, &y 77 DR fﬁnwmmﬁﬁﬁfhé.um%ﬁ%
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W, dz, dz\3TFNFIRL RS, AR R 2 5 Fig. 4.1 O E 54 £ TOREEE (0.03
mm) Td 5. REHE TIREmthoRimIRImAL O PO TIER<, Rk o ME E
ERELTWD. &2 CTARBFZETIX Fig. 4.2 12073 X 912, KFDFEE &R0 F 5
EDRNTIFT 6 EARIE ), BEOK FRE L TALDOMIZITTE L EAWIET %
Newton O k5L 897 5 A B K D TV 5. Fig. 4.2 IXIARNM %2 F VR & & W EEEE T
AL, TAEREZRVEIKCRLTWD., £72, FREANZZORTO r I O E %R~
LTW5., £0%, ZO2O00FAMAONREFELWVWEWVWIRED T, 2 XL HELSED D
ETRUNESD. ZoOFAM I ORI LE R Ar T A O RMEFREIT Fig. 4.3 12RT &
BYTHY, A B. Murphy Kot a7 —% 2 H T35,

120
100,
80

60

Velocity u, [m/s]

40

20

! 1 ] 1 . 1 ;
0.000 0.005 0010 0015 0020 0.025
r[m]

Fig. 4.1 Velocity distribution at 0.03 mm from a weld pool surface®®.

Fig. 4.2 Schematic illustration of shearing force effecting on a weld pool surface.
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o
w
a1

Ar

Ar+1%Fe
Ar+10%Fe
Ar+20%Fe
Ar+30%Fe
Fe

© o o ©

= N N w

ol o ol o
I

Viscosity p [x10° kg/m/s]
o
o

0.05

0.00

| ! | !
5000 10000 15000
Temperature T [K]

Fig. 4.3 Relationship between temperature and viscosity of argon gas for each mixture rate.

e, NN DAL F 3Tt 5 < Lorentz J &7~ L CTW\W5. Z® Lorentz
NOREEITER OFH R R W2 AT 5. Fig. 4.4 [ZKRFHE THM L7z Lorentz 7)
Oy A A oRd. MR R O SEYINLE D O z F O EREEZ R LTS 2O
XFERBEIX, Lorentz /) & RO 7o \VRLf-i% ol & L7 PR 2RO A AFIET D R kL 7 O
SO z WhEEREZ L, R iD 2 JEREDFEIZ L > TRDT=. T2, BT —27 77 X~
OFRLNLOHBECHD. P OR7 VITEH TS EICEiT 5, Lorentz 1) % #K 4 o
BEETBRLUIMEENE -0 FME R L TRY, GIMEEOREIEZRLTND.
ZOFMAEHWT, BRI LTS U =T HfEZITH 28T, T Ok E
28T % Lorentz HEHHT 5.

K@D OEDE 4 BITR 1 OERF AT 6L REBENEZRTEHTH S, AFHHE T
IO DR AN TR FHEBEET VAW CIERFMORE R OFREEZITH . =
DR FHEER T T VITRFIC AN TR REE N 252, REEHEZRBT LS. LLi
WH, BAMICSI N EE2 D Z LITRARLENE DEMFINLZEBHZI SR L, §HE
REAZBRTIED Z L 20T TRE L TV D, AR TIE 2 OR 7 HEEEE T L O H
& D, N@D)DOLEDFE 4 HOFEREEOR T E2EBT 5720, — B -FREE ) %K
DI, FHIMNANORFZ AW TRAUCTR T I —F VB2 ZER YIRS Z LIk - T
BRI 2 i L, RORLZEMEZBINT .
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o = 2 XoWap
YW

(4.8)
Y FEHDOd R THY, ZZTIER@LDDOHFENE 4 HHTH 5. X(4.8)1F@H O HEiTF
VL8720, fifazdbE T 5 HANOEER 255 & Lic, I—x VI
LoTEHAMTTEINEEMESFEHTHLZLEZRLTND.

K(4.1) DAL 5 THIX Boussinesq UKD FEHHETH H. KAWL TIESCHEAE 49
VTR OMIZEREZRD, D 350D 554x10° [UK]ZKHEFEEL T 5.
Fo, FEMERETIIZ OFREREREOWE L 705 18050K &9 5.

o
o
S
S

ZZZ
Zsz 2

[a“] [m/s]

0.002

OHN(}J#U‘IO’\I@QOB

0.004

Relative distance in z direction [m]

0.000 0.002 0.004 0.008

r[m]

0.006

Fig. 4.4 Lorentz force distribution effecting on a weld pool during a GMA welding?®.

422 ITRILF—HEFBXBLUMHEEL
W L O — R Z B Y 95 RFHE TRk OEEZLL, ZhicfE-T
ECLLH2MEAEEBETIOILERNSD. Mo x X —tk FEXIIRkAXTEIND.
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0
5;(pCT)+— (pCuxT)+- (pCuyT)i- (pCuZT)

_6(6T>+6(6T>+6<6T)+ 4.9
= ox \“ox oy Kay 9z \" 9z ¢ (4.9)

TR F OB, tERZE R L, uy uy, ulEZNZh Xy, 2 HFIO®EETH S . p, C, K
IR, B, BMRERAIRLTEY, QEIAAREETHDL. ZnEX(3.95)TRLE
MPS JEDBEBAL FIEIZ X - THERL L, 7 — 7 EEBGIIB W THE U DBV E %
WY ANDZ ET, AHRIZBT 2= F -k iBIkXo L Hriciitasns.

DT, 26 Kq + Kp
= T, — T )W,
Dt AaNapaCaZ 2 ( b a) ab

dAa KArKa(TAr - Ta)
Comg | Kprdz + k,dZ

— ea(T,* —300.0%) — |je, |0c + |i,[Vig (4.10)

2T, SIFZEMkTEk (6=3) THDH. A, NiFZFhFhHX(3.96), X (3.97)TRLT,
MPS IEICEBIT DT A =2 ThDH. Fi=, dAIXK FOBEMZ R L, miThi10H &,
e, al3fitht® & Stefan-Boltzmann B TH Y, jo, ji» @ BIZFENENE TEBIREE,
A A BIRBE, BHBOMERLE, 79X~ T AOBRELTHSH. RiHHE CTIXE 7K
X2 CTRME L OVERIE T OBALIE» DEEMICAE T DD & Ltz (HEEK
IXEE L8k 3.85 eV ZfEH L T\ 5. R(4.10)D 40 % 1 HEHIX Fourier O¥EANC £ < ki
FHOBREZ R L, 52 HIARITEMMEREICS T 2BEREEZERL TS, KiF
FETIXZ OBVEREEE & LT, A0 2 B LIEICRE L OxiEVEE, MAHEK, &
FHRHICEDEA, A FBEAICI2MBAZIRY ANTWNDS

N(4.10)DFAE 1 HTh DR E DX IMBUREZ KD DT OITHER Ar T A DR
EATX, Fig. 4.5 IR TR FEE 2 S 0.09 mm ONLE CORESMEH D, £z,
Ar A DEYREZRIT Fig. 4.6 12777 A, B. Murphy K6t S =7 —% 2 H T
5.7k, TOHEITFig4.2 ERERIC, B DR ORMEITW Do THLAL D B R & kL
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Fig. 4.5 Temperature distribution at 0.09 mm from a weld pool surface?®.
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Fig. 4.6 Relationship between temperature and thermal conductivity of argon gas
for each mixture rate.
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S b, ARHRTIIRERL T a2 b Sh % E 7B H £ j, (3 Richardson-Dushman
OEEFHHERBEEXDICESSKRANLHLNS.

i ::ARTzexp(— ¥ ) (4.11)
ea a kBTa .

&, kgld Boltzmann E¥CTH 5. —F, A4
B EHIIER T OBREENOEBTFEREE 2o WEE L, FREHFOEREE
JEVIE, FEMFERE 25 0.09mm O E TOERAKKIRE Z TR OFERS R Wbk, £
DOIRRFEIZIE T T Ar OFEREEE 1568 V LSO EBEELE 7.90 V 2B ELE+ 5 2 & T,
TR OBAELIEE COBRMELZETT 5.

W, BLFDOFEZEICOWNWTI RS, K58 TIXEER AL B E L, Fig. 4.7 O X 5 IZH
AR ZDHD LT 5. b OMZLITEBEMH O PHAICE N TAELLZ D E LT
BY, BHEALEBICOVWTIEBEL WAV, AHErLE XL —RE2 515 &
&, M EMERT DR FIERRENOMRAICIRE EA L, PR TRMAICETS. 22T
FEVREE EAIXIEEY, BRSO Z XL —Z NI LEIED D, = RLF—BEED Y451

ETHE TR FIEEERETCHD & LTENT, WA LSOZ I NX —%2Z o7z
i 5 TR 1T TH D & Z 72 L, Navier-Stokes 2RIt » CHEBN A BB T H. T D
%, WA OZ X NVFX — % BRI T Mo A CIREERLZ I T5. W
HOBRZ T Lo o@fe CHEEZ1T 5.
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#
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Fig. 4.7 Relationship between internal energy and temperature.
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<

Fig. 4.8 Computational domain of GMA model.

| Center of arc plasma |

Fig. 4.9 Schematic illustration of molten metal droplet.

REFHETIE, Table 41 IZRT AT L —BAT 2 NE LI TIT o ek i 0 FH 5 &
[FIAE O HREH O W PEAE % 2R 7125 2 5 19, Table 4.2 |Cki 1-I2 5 2 7=k & & Tert B4
Y. WIS, HEOBEICOWTIRANS . SPH & TITRLFE 0N D 7p s & ik & R 5
TERWV. LR > T, RFFFEICEBW TR FMIREIREEIZ 2 > TH 3 IZIEE3 720
bOETH., FLT, 120 R+ RAEIRIBIC e o 72 BIARFHR A BT 5. £708
T ORI S iR I BE T 5 F CIREIIZ(E L2V D E T 5.
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Table 4.1 Computational conditions for axisymmetric GMA model*®.

Arc voltage
Welding current
Shielding gas
Gas flow rate
Arc length

Welding speed

315 V

300 A

Pure Ar

20.0 L/min

5.0 mm

5.0 mm/s

Table 4.2 Computational conditions of GMA model.

Diameter of particle

Time step

Acceleration of gravity
Density

Surface tension coefficient™®
Temperature gradient of surface tension™
Viscosity coefficient

Work function

Melting point

Thermal conductivity
Specific heat

Latent heat

¢ 0.5 mm

0.1 ms

-9.8 m/s?

7850 kg/m?®

1.0 N/m

1.0x10* N/(m-K)
4.0x107 Pa-s

3.85 eV

1750 K

30.0 ~ 73.0 W/(m-K)
0.44 ~ 1.04 ki/(kg-K)

250 kJ/kg

W, BEREMEIZHOWTIRRSE ., KBTI,
EET 2D TIERL, UFICRTERSLEOT, MAEZIZHASHD b0 LT 5. Fig.

410 \Z/RT X & A WTEEM A

G AR

REAF O 36 K OVE H OB 1T =R IS

X TCEHfBEED=D, ZIRTZEMTEZD.

TRUVVRLFITBEE R ORL F 2R L, BORFIZRM 2T 2R F2R LTS, B0
(TRLF iDL ETH Y, FORFITBEE T ORI F 7 & Bt A FHR Ik T 5
BRICKHE L RO T TH L. HLRMAT v 7B DR TFiOBREZE 2 5. %
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TEEDIZ, FHEXG L 72 DRI ji~js D DRLUZ DD XY ML ERD D . RIT, DN
7 MVERFEREDIERT D, 20L&, R LAY b LO el FERE D G E fE N
I FE D56, X@10)OFADFHE 1 HICH > TAVREHAZFHE T 5. P T, ki 1j,
JANTHICEENS T B, — 07, B ORI Ty, Ji, JslFIER L7227 boL o S o R 3 E
BRSNS, Leno T, Ri b RFEEBIMNCIR T 2 BUR KA RO 5 LER H
L. 22T, Rifizdhid LThifj,, i, js D FRONEAARERRL s, jo j1%
BliE 9 5. Z OARAERL IR 1y, ja, sk D DEYRDDEWZ D, IRE BRI 1), Js,
Js X WIEL< 2D, Fz, BIRORED L DI, RFiEEEOEBR 1) OREZEX, K
FERL 7 IR T 2 A BB I W AR Fj R i e OIS L. BbEoz bk
0, fEEORBR - ORENKRNICLVKRES.

T, =T; + (T — T}) (4.12)

Fig. 4.10 Schematic illustration of boundary condition.

Z OIRE 2 W TRARRL 7 D BVRE R 2 RO T2, KL T p, Js, jsd6 K OMRARRL '3,
J'20 J1ERF DR OBYRE 2 K (4.10) DA LH 1 HIZHE> TRO L. B E R (TE K
FPEZ R OT2, KT jp, Jji, JsP D OFFHRIT A TRFEFE BN HIT T, BVzERO
DGR FUTMBE A SN D.
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441 BERABTL2BFMEBLIVE— FEBRK

Fig. 4.11 3 X O'Fig. 4.12 ICIE @B T OV — RIER OB 2L % 74, Fig. 4.11 %5
R AR EZ AR TH Y, Fig. 4.12 (B HF s LA T o 6 /7= 4l X
Th D, REMER(1750 K)Z# 2 TV 2R WEARRL 13K TR L, @iz 2 i1k &
RoOTRFIZZEDREICEL > TOEHITLTWS. HEMNMO RS IE Fig. 4.11(a)8 L O
Fig. 412@D X 5 ICEHEINTE Y, FRAIHIT 5 F OMBITEJE O F.OE Z =~ L
TW5. stEFERZ RS &, WAL S VA D B % ORI EEORICE S AT
< A3 (Fig. 4.11(b), Fig. 4.12(b)), FFR D&M & HICBJEABE L, ZhICtE- THath X
W70~ & RO T U < (Fig. 4.11(c), Fig. 4.12(c), Fig. 4.11 (d), Fig. 4.12(d)). Z » & X,
VAT D $% 5 TUIANHE 2> & £ &2 ISR R4 R 23 T [ L 4R o (Fig. 4.11(e), Fig. 4.12(e)), &
R UG DS < 72 D 2 & b o 1= (Fig. 4.11(F), Fig. 4.12(F)). = OFFEAE RN D, W
DORRIIT AL 5 BIR OB E) & TR ST RL S 4L, & 0% )7 CILBml &8 23 kR L <

REETRETHEND, BEEOTARAINT =V EETRONIBEN I 2L — T
/2. FFig 412 bbb 5 K91, HHORBICE- T, BEmMEREICER Iz
B— NiX, WRME T OB E 2 B IR 2 ICERE LT <L RIS, Btk
S B% A EHITT T, Ko O BER M2 BB S 7 (Fig. 4.11(f), Fig. 4.12(f)). i
IERBEOTARAZNVNT — 7 EFEICRB VT O AL AR TH Y, WA O VA it £
IZ3B D R IL EBR G LR TR DM Z R L TWVND.
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Fig. 4.11 Temperature distributions of the weld pool surface (bird’s eye view).
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Fig. 4.12 Temperature distributions of the weld pool surface (side view).

-106-



—Ji, EBEOHTARAZ LT — 7 EETIET — 7 O LEGEFEORRMMERILZ T 7 X
VRIS Lo TRMANCH S, BMEmREIVED ERDZ 83T R0, K
HETIET — 7 FLEEFIIRE<EY EXA>TWD. Zo#ME LT, KHHETHE
AR EIC G X 72—V KT ADDOENNERELD b/ Sholo v ) ARZET 6
5. REHETCIIEMER? S 0.03 mm OALEIZIT 28 E A ICxt L, BEFmIC
FBEN T E TIENEIRREL Y — L RHZADOFHEIZ 0Om/s 1T/ 5 &) &fED
T, Bernoulli D% W5 Z & TR EESAR 2> B JE T 434 % R & TR R R iff O kL 112
HZTWa., LMPLARRL, ZOY—/V RTADWRENOREDENR, FEEOR
ICEDENL Y /S VDI EMMEREREZ M S 227 T, AJEE T CEmeR
DY Lozt EZB2oN5.

WIZ, Fig. 413 2R LR A L TOLIROEHEN AT 5 £ TORERHZE O
8%~ ¥, Fig. 4.13 1% x = 10.0+0.5 mm O#PH O Z#il L TR0, BOMRITE
PR %, Fig. 4.13@) 1T A3 4E LB (t=8.0008)Z /R L TW5. Z OHE NI
FALICER S SN D Z S0 Lk o C, ik SN AT CIREmmh R w2 AT S, S
T TALE OREA RIS L T o TRk L mm BEEM A&, 34T H 234 U 5 (Fig.
4.13(b), 4.13(c)). T D%, MACERMEE 2 L7~V KOG % S 5
(YRR IR 23 eI K D (Fig. 4.13(d), Fig. 4.13(e)). AFFHE CIX EFEDO X 512, WD
T L o TR O R H AT O T BB I N, L Lans, EEOEET
Aonb X%, WRMO®BRT X TEET L LS 2REBIIBEINRroT. Th
VLR S 1 DR R T~ & R MERE T SRR T, RmEaR) &M I
STHEITHLRMET 5720 T/, 3HE EAUZHEREIC L > THRET 20
ThdEBEAXAOLND.
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Fig. 4.13 Transformation of the weld pool surface by molten droplet impact (from t = 8.000 s).
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(b) Top views of weld beads (down: simulation, up: experiment)

Fig. 4.14 Comparison between simulation and experiment after GMA welding.
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Fig. 4.15 Dynamic behavior of the droplet in a weld pool from t = 8.000 s to 10.000 s.
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Fig. 4.15 Continued.
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IXE BN T 28Rt /TR CTHR - DOHFIET HDMEILR D70, TDOF £ TiE
B PP RS 2 ENTERY. ZOMBEE RIS 5720, K5 T8 E) R

(TR EARICSE LV HIRR A Fr ok T2 ERL L, &REZI O TR ilc BT 5 IR & A8 %t
WEZRDDZ LT, FEAMICKTLREZ, FMEOVEEHEZRD Z L2 llT 5.
Fig. 4.16 I27 > v 7 VRSB O X 4 7797, Fig. 4.16 TIEfE D=0, —K
TR TOBAXEZRLTWS. 4, Fig.416(@)D L 5> Rk +HENH DL ET5H. b
ORLFFEDFET DEHEMEK LIC, 1IOR ISP FERIZELWIESEE S ZERT
% (Fig. 4.16(b)). WITEBE DT MIlZB W T, ZEEERONMICH DR Fbé kT miL
DOFEXTEEBEAZ R D, K@) TR LI =RV FEHIZL > THRFREDIRT A —F y %5
H9 5 (Fig. 4.16(c)). W — RV EEJELTITRLFDFFDO/RT A—F y& LT, BYRET LI
9 DIRMARL T ORI HE, TR T OREEH WD, Z ORI N EE ok
FHAEE O] t = X.000 s 7°5 Y.000 s £ TOHKEL TR, BpZlt /T3 % LT[R
TR Z1T S 2 LT, SN ESD 2 & A TE D (Fig. 4.16(d)).
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h

(a) Particle positions (b) Make grid in the computational domain

AN
\

——

Smoothing circle

- Relative distance

(c) Calculate kernel function for each grid

Fig. 4.16 Schematic illustration of ensemble average processing.

-114-



Average Average Average Average Average

1= X.0000s t=X.0001 s 1=X.0098 s t=X.0099 s 1=X.0100s
=X.0100s t=X.0101s 1=X.0198s 1=X.0199s t=X.0200s

i i i i i

1 1 1 ] [}

1 1 1 1 ]
1=X.9900 s 1=X.9901s 1=X.9998 s 1=X.9999 s t=Y.0000s

VN N N N

te/T.  0.00 0.01 0.98 0.99 1.00

(d) Average data for each t./T,

Fig. 4.16 Continued.

T, WRMEE ORIk L, 7o T AERME AT 5 . Fig. 4.17 2SR
ERY. TV T NEHEORERD 5L, R OIBEN 1750 K XV @& A IR
BB LA L, zHFMOEERDZEER W0 xy FRAIOHEORKEZ IS T TaffiTL
TWo. ek, 1750 K LT OFEBIEEIR & 78 L CTIRETRLTE Y, KoL F RN E
B, (x,2) = (0,03 BIEO FLLEBLF, BJEPL)THD.

Fig. 4.17 7226, AR S5 BELATZ AR FOAHE L0 & 2P .02 5 % 3 mm
FREBEALTZALE DI D D WRITH D Z &5 (Fig. 4.17(a)). £7o, ErbhEmm
TILRATEIIC A A &2 TV 5 (x,2) = (£7.0 mm,-4.5 mm) Ut O i A b &, 2KAI
BJE A AN D WA E L TWD . Z 3T Fig. 4.18 (28 3 IR Bl 3% 1l O IR E 0 A 0> B
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DD E oD, WEHIEER T LI o TEIRICR 2729, IEORE AR % FF>
Marangoni XfitiZ & > TEIBMI~DO DR AE T D720 Th D, 728, ZORFTHIICI X
AT W FIRIC DWW TR TREL KRR D Z &5, 20k, WRAER M~ L
NI 252 L TH RO/ SR IMIA~IT LIRS &4, BIEH O ED B~ &
7 9 WAL A U 5 (Fig. 4.17(b)). 2 OEJEH LD B M~ & [ 5 5 3RV iR & 7R
TR AL FRICER 2 RS D, e R CHR 2.5 mm 2 O sk & 72 5 (Fig. 4.17(c)).
D%, AR L TR 4R O E R/ S < 72 D (Fig. 4.17(d), Fig. 4.17 (e)). Z Ui,
VTR C & o CIARA B 23 LIBT S0 TN A T 7o BAJE DA 0 VA il it 2 18 23
TIWCRA D &y FMIZHEND D TH D, N CTEFE AT S I 2.5 mm
FREEHEN 7= & 2 A CIREIZHENEINT 5 & 2, 2 OME R K E WL RO RIS
B M~ BE L, comsE~L KD 2 L nbins(Fig. 4.17(f) ~ Fig. 4.17(h)).
WIZZ O— AL OWHEBATER S % x = 0 mm (2351 5 yzWrim TEAML L, Hiim
WCPED y HIHOMEL OB 2 5. Fig. 4.19 (¥ bt 0K FE 45 AR & <. Fig. 4.17
EFRU L, WA TR @ 2 S B3 5 AT Fig. 4.19() TH 0, I #% OIRE A 1750
K XV EWEIRITREESR & A7 LT, xFROREERD ZEE RV yzimOEEDOKR
TS TAaZIT LTS, 1750 K A T OEBUIEEK & 270 L TIRKETRLTHED,
oA GBS EEE W, (¥, 2) =0, 003 BT LMIETH D, FHIOBEIZIX, x=0+05
mm OEBICEET DR F a2 xt g & L TEHT 5. &I Fig. 4.17 OS5 REZNIT xR L
THY, Fig.4.19 % Fig.4.17 & R Eb_5 Z & T, @HESA DO =R ITTHI 72 Z 28N AT RE & 72
% . Fig. 4.19 O KL BT D AR O NEIZE R 35 &, Wil A3k S L7z Fig. 4.19(b)
T, BUFHLAHTICR T, WA EE 2 S8 2mm T TOFEBNA K& RHETT
NEMMNOTWND Z ERDND. Z OB K E WFEIRITATR O X 5 2237 T R
(HEOERGE AL T 208 LM~ EAT 272D TH Y, LIRS bz
TRELA BT T H s 0 & S IR IR BN~ L FiF 50T < (Fig. 4.19(c)). L L
3D, 1ms bR LRV D HICIEEYE FHUSE FOBMERO FRE 0EENS K
JUIE IR EEE] 0 IS B LER ® 5 (Fig. 4.19(d)). o T Ll ~\W 2l E 7 kLA IS
ZTOREZEMSE, BLZL 1 ms BICITBEPOPEOHEMMERATCIZRES S & L
ThEH~Em»)BORNANEL D, ZORRE, WRM R TG CIXBET L TAEL D
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EH~mr i e, TOEMETAEL D T~ DRV GFIIC 5 D3 D (Fig.
4.19(e)). ZOEJRFLTHEL D EHF~m» 5 BV miviZEpimmEm s B~ R DI
O TH %295 £ - TV & (Fig. 4.19(F), Fig. 4.19 (9)), Yk DA 25 @ik &+ 5 (Fig. 4.19(h)).
ZOXHIT, x=0mmIZBITD yz WriE T, B O TIZ L - TERH N o FE 5y A
PEL TV, K& BT 2 Ei3Eaith 2o —MIE £ 0, F512 2=-10.0mm
LT OB CITHEREA @A SN THOEESMITIZEAEEML LN ERHALNE R
Sl T, W OB TICL > TR RE Z M L T 27 micidzs EED DR
BRGERMER E TASLD S, MAREBERMMEERTICRA D LT 5HEILH0IEH 2
WD ThdHEBZILND.

BRI, BAEHLDIC D ) AL KELR) T o 72 Fig. 4.17 (2B W T, RATIZHm &

ICPAL T Wik Z G T, z=-45mm Oxylrim OZFE 25 L <<%, Fig. 420127~
Yo TN RER AT, 2 OWE Tl z = -4.520.5 mm OFEICIELE T DR & %t 5
ELTEBEIT->TEY, Fig. 420 b Fig. 4.19 & REEIC, %KX Fig. 4.17 O KB4
ML TS, MEV, PORICENTH x=£7.0 mm OFRBMER T, LR phi
DI E <, T & OFRWIEANFICE LT TWD Z &b o - 7= (Fig. 4.20(a) ~ Fig.
4.20(h)).

PLEICAR L7 L9102, WHOBEIC L > TR O G IERE 2 4 2 & 8L L T <

, TOEAITHERMAEIC LSS O TIE R <, WHEH I X ORI O BE 7 1712 1T

PR O ES mm R, F LTI RIS 3 mm f2EORPHOEKIC Lo E L 20
ZEnbhol.

-117-



15

/Te =0

(b) ¢

=0.00

(@) tc/Tc

0.005

0.000

005

0.
z[m]

-0.010

1 n
-0.010_0.015

0.005

0.000

-0.005
z[m]

-0.010

1 n
-0.010_0.015

34

/T =0.

(d) t

./T. =0.25

() t

0.005

0.000

0.005
z[m]
(f) t/Tc =0

52

T, =0.45

(€) tc/

|ﬁ| [m/S] 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

surface

ields of the weld pool

4.17 Velocity f

ig.

F

-118-



-0.010

0015

-0.010

~0.005 0015 0,005

0010 -0.005 0,000 0010 -0.005 0,000
z[m] z[m]
(9) t./T. = 0.66 (h) t./T. = 1.00
B [ T e
|U| [m/S] 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
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Fig. 4.18 Temperature distribution of the weld pool surface at t./T. = 0.
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Fig. 4.19 Velocity fields of the yz cross section at x = 0.0 mm.
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Fig. 4.20 Velocity fields of the xy cross section at z = -4.5 mm.

-121-



0.015f 0.015f
E0.0lO- E0.0lO-
> L > |
0.0051 0.0051
-0.010 ‘ -O.(I)05 0.600 0.(;05 0.010 -0.010 ‘ -0.(|)05 O.OIOO 0.605 0.010
x [m] x [m]
(c) t./T. =0.25 (d) t./T, =0.34
0.015 0.015
E0.0lO- E0.0lO-
> L > L
0.005F 0.005F
L 1 1 1 1 L 1 1
-0.010 -0.005 0.000 0.005 0.010 -0.010 -0.005 0.000 0.005 0.010
x [m] x [m]
(e) t,/T. =0.45 (f) t,/T, =0.52
0.015F 0.015F
—=0.010F —=0.010F
.g, YrrivevEvyy é
> L > L
0.005F 0.005F
1 1 1 L 1 L 1 1
-0.010 -0.005 0.000 0.005 0.010 -0.010 -0.005 0.000 0.005 0.010
x [m] x [m]
(9) t./T. =0.66 (h) t./T, =1.00
B [ T 77 [ e
|U| [m/S] 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Fig. 4.20 Continued.
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46 #&E

ARETIIH Ar HRAEZR N T ARAZNLNT — 7 EHERICIERRK S 5 EE RN o 3t i Bl
HH IO — RO Z IEIEMME SPH IkICX > TEFTAMEL, KB I 2L —v
a v E(Tol. TLTC, EBRERL MY 52 & TRk & A 72 ISR sl 2 o 2%
A2l —va O YMERAE L. ZO/E, RMOREIZHE S BIROBE) &3t
I, WEHMASTERR S, OB TR B HER L CREZER T &V, FE
BEOTARABNT — I EETRONIBHGEN Y I 2 L— N T& 7. £, KFHHERIT
WEeREIDPREL, BWESBVPIMNIFZNILEN>TWDL DD, ERER L FRED
WiABERDZENTE, AETHELEHAETVOZYEN RSN, &5, 1
OO EBIEZ BT 5 2 & C, Rt~ SN @ RO ZH LT 5 &
MTET.

WIS, RFEFRERICT o T EHLE A S 2 & T, M S T A & K
Wiz, TLTCZOT U H o TAEIZ L » TE LN EE DAL, AR OfE%
it O E S DAL &2 IR CINICERT D5 Z LA TH D Z L 2R LT,

i H 5 W
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] 5E DEM-ISPHERMGEETILZRAL:
B I —CTF7—VBEPOBERMME LY

RATUVHBRBEOHEZaL—23 Y

51 #8

AR TIIATE CHE LBt i e 7 V2R L, 7~ — U7 — 7 EEBR A~ b
WHT 5. ZOOIITEMMIMAIRELG 72 Tl l, 37 ~—Y 7 — 7 EHEOFM T
D77y I ADEMOAT IO, BIRTHLT —2 77 X~ ORJF %2 5 BT
HREND L. AETITET R HE BRI HREREL TUA YiEEOT —27 7
TAZDHMY I ab—vare, ARIERMIES SIMPLEEZHWTITS . IRICZ DK
A REZBIEE L, 27 7 OFkERE & EMOBRBROKEY I 2 —va v
AT O AR TIEMEOKMAHETIETH B FRE (DEM) & EaH T £ 7 v
(2 U 72 IEEMEME SPH ¥E (ISPH) Z /A GOl R FIEEZHE T L. £ L T,
COEKFHAEFEZMNTRA T VBB L OEMtER 2 12— 3528 T, 2
OO D A D= AL EZW NI TH LRI, 7T v 7 AR T 7 BRI E

ABHBIEOWTERT 5. REIC, WHEENAT 7 OFMRICT 25 REIZON T
BT 5.

52F7—9 TS5 AROBEVSaL—Yay

521 XEAERX

ABFFETIE, SR H R 2 E L, EFREBE AR LY T ~—U 7 —
RN DT T X~ ORI A2 A TRIERTE S KO SIMPLE 5 TR 5. ABFZE TIE
TFUE O OWME NEKESE, Fr T A NHOT AT CO & Fe d R EWET S.
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HEEBNOERIZIAREGE)ICR L ERRFNCRESNS. AFRTIEY A YIEET
FAE LT A ST MR SN bo e LTREBE)DAELE 0 L LTV,
% 5 1) O E B B 1 VR O B B R AERI THE S B

10 d 10 du d r du Ju u, Jdp
- 2 —_ =_ r — LIS z Ty 5.1
ror (rpw,”) + 0z (puruz) ror (27‘/1 r ) + z (,u ) 2u r2  or j:Bo (5:1)

1 d d 0 Ju 10 Ju Ju d
— () + o (pu?) = (S 2) 4 (S TS =SP4 By +pg (52)

I TpXEE, uITHETH L. BRTPrBL Oz R MBI M a2 R L T\ 5.
pILET], JIXEIEE, BITBAEE, WAL, gixENINEE CH 5. BARE
X Ampére OIERIN /A 54, A TR IS,

10 _
;a—r(TBe) = WoJz (5.3)

WFOLE T M E R L, pldEREROEMELZRLTWD. KIZ, EBEEFANST
WhR-7" 7 X~ FLi O BRI DWW TR A S - R 2 A 5 WK 23 B EEIZ#2 L 722 23
LA TV DG, EAREER ETOMMKDOEEIZO THY, BEmNDIESNDHITHONT
WERSHEMT 52 EBRMHIATND . Z OO L, Ji & B oMz
AR N MER T D BB E PN 2 BIR PN A LS. Z OEBEEITIREO RN E
FENELFEDNT K o THRBN AR D R TIEF v B 7 0 WE O TV T % 50E L
TNDh, ¥ ET A NBOHARLT T XA~ &, BERER TH DT A VoM %DM
(21 Newton @ REPEVER 8912 K5 < o & A WS D ABMER T 5.

du,

Tr = HgGas dz (5.4)
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du,

Tz = .uGasW (5.5)

T, TATFRETTAI L O G M7 b < EAWIIE T, pgasl TXEORMELRE, du,/dz
VBT 18 00 W B 4w, 0 i T ) A, dw / dir VB 5 1) O B B 45w, 00 B 1 A T
5. ZhbEREBLOOERESE LT]Y AND. RE2ITRLE L DT, ERESIE
Fe A4 % TSP & SEEESUIC A B D . T AUTHELY, Newton ks MEIERI T d % 3X(5.4),
RES)ICHAT S &, B S 28 AWE RS, gSheargm o & ) Iciik T&
%.

U —u rAr rAr
h T Twall
Frs ¢ = 1,.dA; = ligas Az = rAr = HGas 7~ AZ — HGas 5 Az Urwall = SPu, + SU (5.6)
U, — Uy, r’Az r'Az
h z 11 .
FZS U — v dA, = ligas — Zwall j1p 7 = UGas —— Ar - MGas?uzwall
= SPu, +SU (5.7)

Uryarr Uzywan VS BETE DL ST 0 D HMEERL Sy, $T M OEER S ThH D . dA,, dA LT
B LOEEFmOary he—L R 2—LOWHEBETHH. Ar, Azid= > b —/LAR
U a—2O¥EHFMOEL XLO#MGmOETHY, Fl2IXFig. 3.3 ForFmiZiER, 2
FENZjFER O A5 P (rulil,z[j])® = > b7 — VR U = — A Tldsewuli] & sns[j]n

T5. riFarbe— AR 2a—2OrFRmOERETHY, B2 I1XFig.3.3 DR PIC
BWTIEr[i]RA% ST 5. ZOTAMISHZAERESE L TR ANDHLE, TOREL
HFELTEET DI LaRET D70, TORBEMES M OLEE (AN, AS, AE, AW O\ T
) X0 ERELRITNE ROV LICEES V.

FRE A B DOREIIRA D= XL X —fak TR THREIND.

10 ( h)+ ( B = 19 rkc')h_l_(') Kk Oh U+|]|2+ N N (5.8)
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=72 L

h=f%ﬂ (5.9)

FEDES 1 RIS KOV 2 BT ARG I0B KO M O iR EH A2 R L, A0 1S KOS

HITEET B XS moitBE TH S, # 3 HURITAEREEZRL TR,
B, ¥ 2 — VM, Bifids X OBEME T4 U 28R, W m~0BUak, 77
v I ASDBIICEDABETRLTWD. RET U ZLE—, CITERELE, I

2

B, UL 27" LT 5. ], 0, qar qcr qs» qr, ATIXZNZENEREE X7 b, H
BE, BwKE-7 7 A~vBOBWRK, RBRBER-7 7 X~ HOBGR, BEEFnICkD
NOHBGHK, 7T v 7 ARAT ZIWZELLBGURHK, BUNRETH 5. B OB T8
B aryrbe— AR 2a—2OREOEELBT, BET LA T —EZHKNT S
B ORFOEELB L ORI EREE 52 5. —HFary ba—RY 22— D5 o
CERL, BETL2AD T —BEBRANT 2R FOROBURERORIFEYEEZ 52 5.
BREFIRANSHOND.

av

__ 5.10
ov

=___ 5.11

BT ROBWMBEENT SV] = j )T ERERFR] & Ohm OERNZ X > TRkHDH Z &
NTE, WATRIND.

10 d

Z  (ri —(j.) = 5.12

S ) () = 0 (512
Jjr = 0E, (5.13)
Jz = 0E, (5.14)
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ABFZETIE 2 5 X(5.10), X(G.A)EMRALAEX(B.13)EX(5.14) %, BEHREAUTH D
KGADICRAL=X(G.A5) 2 HE LT 5. T L TEDOHFEXOMTHDHENMVERD,
ZOVERWCHENICEREEZRHHETS.

10 av i) av
- _ 5.15
ror (ra ) az( 62) 0 ( )

BREBBREBEORNCHEILOBRE CHLEICKRS Ay ba— R a— A0 REDE
BRIT, REE AN T —BEBMNT I TNER> TV HHAIXZT OB T ICTHEM S
HEFAL, ERo TRWEAIIBET 2 A0 7 —RE2BINT 28 T OFRFOEE LD
P8z 52 % .

PN -7 7 A~ S O B R O 8 - 51T h 2 5 A 1T A U D BIR R qalT ks
ThExbh5%.

qArc + |j| PAnode — SMetalaTMetal4 - CIVap (P € interface N P € electrode)
qa = —qarc (P € interface N P € arc) (5.16)
0 (others)
H

WE LHEN S BmEE-7 7 X~ M ORRBURE, BFIRAIC X 2ME, ®wEHTHEL, #k
R[ROFBEZEDWHAERL TS, KFDqare, Panoder Emetals X Twetal L P58 [
-7 T A M OBGRK, o FEE, R (M ELIXV A Y) O, Stefan-
Boltzmann E%k, BMOIEE 2R L TV D, qare®? B HITIZRA TR SN 5 R E Tem &
BHS 2™,

7K

Triim = 0-S(TMetal + TArc) (5-17)

Tarcld 7 7 A~ DIRETHDH. AL TILZ OFIREZ AT 5 EBHEE N EM-7 7 X~
MICTFEET D EIRET D, 20L&, BM-7 T X~ OBFEHqarclT
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Triim — T,
qArc = KFilm = mAl Are (5.18)

ERIND. I 2 Crpiim IR E Ty P T ADBYRELRTH D, AL T T X~ & EMmE
mOEHCTHY, I AMOKELEEMRRDOE R EDHBEOY-73 EIRET D
—J5, RPHEMmEE-7 T X~ ORI O R Th D554 U 5 EGR Rqeldik

XTH2ZLND.
qdc =
qarc — leloc + 1jilVi — SMetalaTMetal4 + Uarc — Qvap (P € interface N P € electrode)
—qArc (P € interface N P € arc) (5.19)
0 (others)

AL 1 HP O RREE-T7 7 A~ RO MEVsE, |\ FRHICEDmA, 4 B
BIC XM, EHER, 7—7 77 XD OB L 2IME, SAKOREAEIZLD
WHEZRLTND. Joo @c Jiv Vi, UnpTTNENEFEREE, BWmoOAEREE, A
FUEMBE, TAOEMEE, 77— 77 AN b0ERLTWD. EFERES
£ j 13 ¥k = Richardson-Dushman O #\VE 1t H B EE X O 55 5,

ePc )
5.20
kBTMetall ( )

je = ARTMetalzeXp (_
ARrlZ Richardson ¥, eldEXER, kgld Boltzmann ©HTHDH. —F, A 4V EBIRE

EjilIk AN TERIND.

il = il = ljel (5.21)
EHEEE VISR KIEEYIZIS U T, CO DEREERE 1244 V & Fe OEHMEE 7.90 VO
WMEERIC > TIRESNS.
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WIS, REEICB T DEHEHEDORF IOV TIRAL . B RICHE b
7Ty I ARAT T OIRESGAIIE R E R KGFET D, ZORBERTT L7201
IASRIT =W AN MLEL S DN, K TITEHROEKIL D20, BUROFHIC
DNWTIXEERE I L 2 BMNOB AR E BB LB =KkcET V& H\\W5. Fig.
5.1 IZZ U =RcET VOBGK ZRY. 2T, WG ORIRERD =
Yha— AR a— A LT ETFTOREHEEOZ e —L AR 2— A ¢ DEEHE
MHZOERLF—HEEL LD 5. BJEOBII WM Eiciidoni”
Ty IARAZ IOy br— AR ) 2 — A TEKRANTREND, BALKERH 2D H
ML) O N F—qadTHBEIND EE XD,

_ psCsAVp (Ts B TD) + psAVpHy

= 5.22
ds AVey ( )

ZIT, ps, Cs TUERMRT T v 7 ARRT FOBE, W, HETHD. AVpITFE
HEOWEFEdADF 2> b — LR Y o2 — ANHEMRM & 720 ORBIEHDZ BE) L
=& X O, TolZEBEDRT T Toay ba—R U 2 — DR E, Hy [ TUEEE, AV,
Far ba— LR 2a—2OERETHDH. ZOWHETFILT —qa (5D L HIc=x
X —g ik FRRAOBEREE L LTIRY ANDZ &Ik T, BHREEEZ T A—X
LLTEETHIZLEAAREE Lm0,

Control volume

Fig. 5.1 Schematic illustration of quasi-3D model.
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AWFFETIE, VA VYREDNOFHET DHARROWEE BB T 5. K& IO EE
B LSRR OWMEFIRATEIND.

19 10 Y\ @ Yy .
;_ (rpurY) + (puZY) - _a (rpFMetal E) + E (prMetal E) +V- (]Vapnn) (5.23)

YIZERAR OB EDHE, Neral\ TIEHBAREL, A TXHALEMR <2 R, & L TJVaPIE Hertz-
Knudsen-Langmuir 5 6RO LN L BAKOEERIKK TH Y, RATERIND.
JVap — < pMetal> Myetal (5.24)

vV TMetal \/TGas ZnR

Dol Fe DAIFIZA KL, Tuetals PMetalldV A Y REDOERAKDOIRE L LT TH DH. Teasld
U A X RE DT A DR EE, Mpyetall3 Fe D1 &, RIZTAEHTH S. LRI Netal
IR OREMERAFXE W CTHERET 5.

Zﬁ(l/MMetal + l/MGaS)

2
4 4
{\/pl%/letal/ﬁl%/[etal/ﬂl%/letal + \/péas/Béas/”éas}

IMetal =

(5.25)

BMetal» Poas!TZ < DEBRICHESfEL LT 1385 &% @1 5. Lol hEts M

WEAKHEET LD 70 —F ¥ — k% Fig. 5.2 I,
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| Initial settings ‘

1

| Calculate coefficients in Eq. (3.2) by discretized Eq. (5.15) ‘

| Update V using red-black SOR ‘

Calculate current density,
magnetic flux density, Lorentz force

| Calculate coefficients in Eq. (3.2) by discretized Eq. (5.1) ‘

| Update u, using red-black SOR ‘

| Calculate coefficients in Eq. (3.2) by discretized Eq. (5.2) ‘

| Update u, using red-black SOR ‘

| Calculate coefficients in Eq. (3.2) by discretized Eq. (3.5) ‘

| Update p using red-black SOR ‘

| Adjust velocities by Eq. (3.73) and Eq. (3.75) |

| Calculate coefficients in Eq. (3.2) by discretized Eq. (5.23) ‘

| Update Y using red-black SOR ‘

| Calculate coefficients in Eq. (3.2) by discretized Eq. (5.8) ‘

| Update h using red-black SOR ‘

| Update material properties ‘

| Evaluate residual error ‘

Converged

Fig. 5.2 Flowchart of heat source model.
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522 FHEMEB L BREH

Fig. 5.3 (¥ 7 ~—Y 7 — 7 B\ OF R Z R . B HIXEHEEK - TH Y, 0.1 mm
X0.1mm EFET DH. FEBEHROEETMOKR SIE25mm & L, @ AIERMES (5
mm) ERpF-a %7 Ty ZEEEEE (CTWD: Contact Tip to Work Distance) (ZFH34 3 %
REE B0mm) OMTHD 3B mMmICHETDH. Lo Tt ah BiaER S D, B
E Iwera T 20(5.15) Z BERL L7-B%, #tah D 1 @ FICHFEMET S o —LR Y = — A

SRR OR(5.26)10 7 XD ER A ERIAD ERIASUE LT]RY AL = b THRE
T 5.

SU=——rAr (5.26)

TwirelX VA Y OF¥EETH Y, UAVEITERSE REIC 4.0 mm IZ&RET 5. Table 5.1 1
Fig. 5.3 ODERGEMHZ T, M ad BxHEiCThd 5. M de WEHEEK THwHTHY, Z o0
Mo Et (7 —X) &35, £z, BFEDhsg, hegolTEALEH T=300K, 600K
YT Do L E—ThD. VA YEEIITR(.27)127~ T Halmoy @D 2 bR o
TUAYEREEL G2 D.

qAAV+L—dA

1 || )
Ugirrin = (5.27)
“Wire T[TVZVirepWire hTip (

Pwire» hTipkiU%%@%Eﬁ;@ﬁ%%%ﬁ%@zy%vea LIV A YOEHLES
Thsd. 7—r7BETIEEROBER (R a) LHEME (Rd OBECM, BE
B FEELZBET D, KFREE TV TIEEITHR B, TRAF =T 2 2O
PO ZDORRMRE TEELZ RO TND., KIFFRTIE, 77— 27 EEVoAJTIRATRD 5.

Vare = Vol + Vion (5-28)
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Vm:w (5.29)
Iweld

VeollZhe A (a) CHHMiE (Ad OBETHY, Ve ldEmEr LICFEET D v —
AEE LT — 2 a7 ARICHFIET 28008 E um OBRREH CTAECHIEETH D.
COBEZETFEBROARESZMOA A EREMTTH-OICELIBEBELREL,
BRI ThH D of RIITA L DA A4 FiEE MBI % FE4E BT e THR L 72 fE
ThrETH. B, VATRETHIELEIZIND DEEITHARFH/AE N, K

WFFE TITER T 5.

35 mm

»
=l

Fig. 5.3 Computational domain for FVM calculation of SAW.
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Table 5.1 Boundary conditions for FVM.

Line Boundary conditions

ou, oh av ac

ad =0, —=0, — =0, — =0, — =0
R e T
oh
de wzuZ=Q5;=QV=QC=O
1%
Ef ur=u2=0,h=h300,a=0,c=
f r _oh=n. YV o=
g or T 600 5 e T
gh m&—Oh—h aV—oc—o
0z T B0 5, T T
1%
ha uT:O’uzzuZWire’h=h300' EZO,CZO

PLEICHR ARG EER EERA R 2 T~ —U 7 — 8 EZ T I 2L — R L
TV, LWL BLZOHEETATIET 7 v 7 ANTEZHRNLD T TORIMESBE L
TNRWTZDIZ, WREHIER ¥ ¥ 7 0 ORI D bIA< 25 L MK E I TR L O
AR L BH T2 2 L c2 Y, RELD bIEEmABREICHEAISND Z Ltk 5.
Z TR T, ATHFRDOIZ L > TERMICBEIENRFRETH DL Z EBRRENTE
DD, FEFTREIC L > CTHZ 0PN EEHMICHE SN TWD DR XX LT — 7§
BOBERMEEZY I 2— 15, 2LT, ZOBRZHAVTEMBB I ORI 70
R EZBHHRT AL T, FY ET 4MIBNWT T T v 7 X ZRN DRI D EEE
BT 5.

HARX BT — 27 OEJER ML Fig. 5.4 1R THEEKAH N Ty I2L—va %
IT9. HARAZNVT — VB TIEY — NV RHABERE N —F oMo T D
ZETRRANOEHEREG 2 R[N ORET HHREZRIZLTWD. AFAETIIZIOY
— )V R T A& FHHE T 5729, Fig. 5.4 O hi 55 > — )b KA ATHY T 5 H A% it
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AT S, iy, ghzHADFHOE L TEET S, Fig. 5.4 DR SFAF % Table 5.2
CRT . Uyl T =V FHADTETH Y, & —/b BT AW B vgas & WA L ih OWFiE

BTHRLEZRATEAOND.

VGas

UzShield = 2 2
O'zsn(dNozzle - dWire)

(5.30)

22 TCdnogggel XY —/V RHTADHRAATH D ) ANVDEETHS.

QGas

35 mm

Arc plasma

»l
™~ il

Fig. 5.4 Computational domain for FVM calculation of GMAW.

-136-



Table 5.2 Boundary conditions for FVM calculation of GMAW.

Line Boundary conditions

ou, oh v ac

ad =0, —=0, — =0, — =0, — =0

tr " or " or " or " or
oh
de urzuZ=O,£=0,V=O,C=O
1%
ef ur=u2=0,h=h300,a=0,c=
f r _on=n. Vo=
g or T 600 5 T e T
gh auz—o h=h aV—oc—o
0z T B0 5y T T
1%

gl U, = O,uz = uZShie]d’ h = h300, E = O,C =0

. ov
1a u=0,u, = Uzwire’ h = h300, E =0,=0

5.2.3 FHE&EH L MitE

AKHFFETIX, R F77 v 27 2O—FTH 2 PF-200 DMMEEEL 7 T v 7 AFEBIZ S
A, 2.25Cr-1Mo SO B2 U A ¥ EMIZ 52 5. S61T, Har bue—LRY =2
— L DFEARKIEEE IS U T CO-Fe BA N A DM A H AFEBICE 2 5. KEHEITE
HEtH TH Y, 521 T E S FRAREILH 3 mTib~7z SIMPLE 7/ U X AT
Lo TEHEEIND.

ARFFHEIZHWD CO H 2D E % Fig. 5.5 ~ Fig. 5.11 1273, Z b OWMEMEIE A
B. Murphy Kbt E N2 b D THD. b OWMIEILT — 27 7T X~ 0 m T EVE
#F(LTE)IRBE TdH D = L {RE L, Chapman-Enskog ¥l 3@ 4 % = & THE5E
TROELDTHDL ™. ZobDHERLE, COFIZFe NIRATHI LT, TNEN

OYMEENEE 2 Z T TCWDZ ENbnb. 2F0, 77— 77 X<~ EIXIERETS
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TR BEXDREICHEFEL TS, LR >T, RET/LVTIHEAKORAEN
0mol%, 1mol%, 10mol%, 20 mol%, 30 mol%, 100 mol%d5H oWk % iz, HRIF
R E#EAT 52 & THRBEOREICBIT AT 7 A~OMEEEENT 589, 77 v 2
TEIk DO, BUREER, WBUIEROT 7 v 7 ADEER W, L Lans, EEO
R S RITIE T 2RMEOMRFIRE LY b &<, METE ol £ TTZ T v 7
ADFEERBSD 1 OTHD Ca0 OWRE@A VET T v 7 AOFAELOAT 7D
RELTHEHATS. 77 v 7 ABILRTVA YOWMEE% Table5.3 12779, £ 7= Table5.4
(Rab?23 77 USSR

ARFREICBT HREEZ L FICRT. ETRMIIERET, 7—7 KiTA CHl#ERC
FoT—ETHDLLARLTND. HAHEBO T A @R TH Y, EF L B A (T,
AF) BT ITAHTHSERT LI L TEFRE BN FRENFELWET D /AT
BOEMT (LTE: Local Thermodynamic Equilibrium) Z{RET 5. * 7= AT BT 13 E@G 2%
HEEBL, HEMXEICOVWTEEBELTWARYL., 77 v 7 2OHEBICB W TIE, Bk
D7 Ty I AORENBSEZBELZD L, TOEBITERKTHDL AT 7ol & il
T. LOLBRROARFREBNTATZ ZORAVITBEL TWRWed, 77 v 7 ZAB LV
AT THEBOREILZO THDH. 2T, ATZTHEBOBBRERE T T v 7 AD 3% L&
ETHIETATZHNOMIMIC L HDBWEEZRT D%, 2 LT, A7 7 OMREBL
eI b LT L A7 L, SARIREIZS U7z CO-Fe BB A DM EZ 52 5.
WAZ, B OBARNNZONWTIRRD. T—27 7T X2 nbRET LML T 7 X~
TOHCRIEIZEEET, BRIV —0 55 RWAMICRINEND b O ERE
T2 8, ZOLEIHEMNMEMOTZ VIR SID TR F—Up & R(5.19) DAL 5 H
ELTEETS. £/, BOOKKET R LE—0D5 5 80 WARELA T /il LV~
T v 7 AEWICE I ARSI, TR0 8% EPHZE KT D EIET D, ZOREID
FOVT =0T TR ERET IR ZINANT—DIRELTCERM, 77 v 7 A~DA
LI DL TH T =07 — 7 EEERA O P22~ B KR 3D 200 iR e
B4 2.

®BIZ, B EmI HEBLKMBEEORPNCONWTIHERD., SRAREGZL 7 X
T TCTEBHC LD =X VF—HRICLS>TREMIET T 52BN TWVD 8. Z0
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£ 9 RARIRSEI A M RIENCAFAET D &, MR TIET 7 AVIREDERTITHEVESR
CHEMET L THEBRIEN RS T2 LD RRBERVFEOHT L0 5. ZORNT O
ML BT O > — A M ZFEMICERE T DL TSI LN TELEERALND
D, Bopum O Y — AR A R T DI R R 2 XA P ARKEICR D, E I TR

TEMMEROT T XA~ L, TRIVEILFIC1)E EOEEO 7T A~ 3E LVWETR
EZFFO LARET 5. Fig. 5.12 I T DX, HHEFEEKICE T 2 M iEF oK TH 5.
BOEBRNPOERINDEFRIFTAT T —BEEZENT O FE2 LTS, flL LT,
FODBOBLEEELZEZD. AR TIIIORE, ZOEOHE LICFET L HEOK
FTROBTFEENELY (ngy=ne) ERETDH. ZLT, ZOEBFEELRDOTEDIC
VBN ERAREE & Fig. 5.6 I8 L7z CO-Fe ZDIRA N AOMMEN SR 5. BiK
MIZIE, Fig. 5.9 205 (Y, ne) D & & OIRE ZMIEMIIZ L - THRE L, T OREE & 8%
TEY,D & X DBLIREE % Fig. 5.6 2 HMEMMEIC Lo TH TS, ZOFREHE
NIEERCEELZRADR T AOBXEEEE LTHWD Z & T, 3R EEAET Dk
JEDIEA & kL TV 5.

10°
B CcO
CO+1%Fe
CO+10%Fe
CO+20%Fe
CO+30%Fe
Fe

Density p [kg/m’]

5000 10000 15000
Temperature T [K]

Fig. 5.5 Relationship between plasma temperature and density of plasma.
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Fig. 5.6 Relationship between plasma temperature and electrical conductivity of plasma.
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Fig. 5.7 Relationship between plasma temperature and thermal conductivity of plasma.
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Fig. 5.8 Relationship between plasma temperature and specific heat of plasma.
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Fig. 5.9 Relationship between plasma temperature and number density of electron in plasma.
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Fig. 5.10 Relationship between plasma temperature and viscosity of plasma.
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Fig. 5.11 Relationship between plasma temperature and radiation of plasma.
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T1, Y1, neq

T3, Ys,ne;

Fig. 5.12 Schematic illustration of base metal surface.

Table 5.3 Material properties of flux, wire and base metal.

Density
Thermal conductivity

Specific heat

Flux
[kg/m?] 3230.0
[W/(m-K)] 1.5x101~ 1.5

[J/(kg-K)]  830.0 ~ 1690.0

Melting point [K] 2572.0
Boiling point [K] 2850.0
Electrical conductivity [V/(A-m)] Insulated

Wire and base metal
7750.0
26.7 ~37.7
448.0 ~ 1030.0
1750.0
3100.0

8.0x10° ~ 7.7x10°

Table 5.4 Welding conditions.

Welding current  [A] 600.0
CTWD [mm] 30.0
Welding speed [mm/s] 5.0
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524 $ 72— 77— OBREE

Fig. 5.13 |ZiA#%8&E it DCEP G600 A L% E L7 & EDRE S E T . KFOELOMHE
IV A Y&, WKAOERIIBMZRLTEY, ZOMOEAIFREEZRL TS, X
L0, BIEEENEMBOIMNCFEL TND I ENboDd. 2 Fig. 5.14 12878
KBEDSANPDODOND LI, T—7 77 A OHRLCHRAKBENBEML, BHEK
WL THLHORENMET T 52720 THD. TOREE, Fig.5.15 17T X 5 ICERE
FEIIARIR D A Z V7T X< A3 L, @il o CO 77 X~ 238N+ % . % 7= Fig. 5.13
IZBWT T T v 7 A0/ 257T2K b A F 7 Ol i 2850 K D DSBS @ A 7 7 D
K THY, BTN A4Tmm E7xo7c. —HFERTILFiQ. 212 127 LI AT 7 O Wi
MHDLNDLEIE, AT TORROERITHK 54 mm THY, KFENPLHELNZAT
TORIIFEREFAETH-T.
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Fig. 5.13 Temperature distribution of submerged arc.
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Fig. 5.14 Iron vapor concentration distribution of submerged arc.
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Fig. 5.15 Current density distribution of submerged arc.
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Fig. 5.16, Fig. 5.17 (2R T DI T A Y NER Ol 7 [0 O BB IEE FE oA & R Mo
Lorentz 71534 T % . Fig.5.16 DA ADO# I L OFig. 5.17 D BAOKBITENZENT A
YOAEMRERL TS, TATYRNIZIFEALH -RBREETHLOICKL, VA
YSeumIT 0 2=0.001 m NS U A ¥ HLOBERE LN L, VA FYATIEVA
YOHOBEBREEN R KMEEZ T, ZIIXHTRO X5 ICSERDOHFEICL - T, 77
A DHLORENE T T 25720 THDL. 77 X~FHOEREELITT — 7 FLIEFED
ABNT T A2 TIER CO 77 A~MTHWMTHZET, VLAY hEMmTHT I X
~ NI o THLE O BIE LA L COMREICERBE I ER T 5. F 2 BCIE
TJAYNERNDEBEMBEL LOCER RO Lorentz /1% ZLZE 1 4.8x107 A/m?,
29x10°N/m3 & RS o 7. ZhICH LAGTEIIFRFEOEARL TEY, H2EHTIT-
THEITIZLY ThoT V2D,

il [A/m’]

- 6.0E+07
5.5E+07
5.0E+07
4.5E+07

0.015F 4.0E+07
3.5E+07

3.0E+07
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Fig. 5.16 Current density distribution in wire.
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Fig. 5.17 Lorentz force distribution in wire.

WICEREBEHRE I Lo TH LN, FBRELRBT TOU A VEHEE L Table
55107, WINOEEEMFIZEWTY, YIalb—varilkoTHohizv Ay
BEREE T ERPOFEEE LY b00KELL o TD. LOLERLERNLHES
T2 T A R EE (TR R P ORKME & R/MEDOHHHANTEB L2 Z L 2ZE
T5E, KEAENOHOLNTZT A YIEREETEROBRZOHEAICINE>TEY,
FEBRTATEREENGONLEBEZOND. ELAFENRT R, BEER
DI &> TU A ¥ EGHER M 2 me, FUEEER TS DCEP LV b
DCEN DIZ 5 N U A VIEMEENRKREL RL2MMEZHFBELTWD

Table 5.5 Comparison results of wire feed rate for each welding conditions.

Experiment [m/min]
Simulation [m/min]

Mean Min. Max.
DCEP 400 A 0.81 0.67 1.39 0.98
DCEP 600 A 1.26 1.13 1.56 1.38
DCEN 600 A 1.70 1.24 2.14 1.94
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AREHE THEOLNT-BM ~D ABOFEM % Table 5.6 123 T. M ~DOABDE k22
BERWEET 7 T ITRAPEOBGREB X OREREDTEY, Y O¥pidA 4
FREAICEDIMBR HEDOTNDZ ERb0D. REDRTESEIT 626%THY, FE
BRAE (80%~90%) LV HIRWEIRAZR LI ™. 2Ok 5 ICAHE THE LB E
L7 T T ARRZ TIMbDABMNEEN TV RNWZ LZFELTH, ERTHEOLNLL
ExRKRE< TR .

EHEONPAKHETHOWEHREET L EZ AW TITo A 9TIX, 7 ~—2 7 —
JRBEOBNRITREDEBELIETY I a2 b — N LETRARAZ LT — 7 BB OER) %R
CIEERLCTh oo, ZOMMTETIE D TITONEEREFAKE THLI OO, Zh
B OB RITFERIE &2 KIFIZ TEl> Tz, LR -> T, KitE OB RN ERE LY
HESKAEAHINDIDEFY T ~v—V T =V BEHEIZEZLE L ETMETETVRNDT
372, HAAZINT =7 EHELBOBLREZIELS BETE TV RWVWEDTH D LHE
Wb, T20LBBOIFNTHY, BEMICR SR Fe RONMTHY 21356
Btz e LzX(B.20)2 VT a7, bAREOEENRERIZIEGEOND L O
DEBMNRBDHEOFMICITIE > T RNEEZBEND. Leh > CTHFEBmK O REH:
TR AOBNROERNRY I 2 L— a3 VI, BEREZE LW OKET T

IWNMETHD.

525 HRAAZNLT7—V ORBRRFEN

Fig. 5.18 |, Fig. 5.4 TR L= H A A X )T — 7 O ELGEE 2 H W CEIEE E 217 -
TZBRDIRE A& o~k L, Fig. 5.19 & Fig. 5.20 [C8kARRIRE /54 & BB 54 & R T,
AWFFETIE 5.2.2 THRANZZHM NS, T LARE O BB G (TIT A TR LI B8R A0 &
V2. Table5.7 12 Z OERE AT 5 RMEHR~DANBOFEMERT. Z0Ov =
L=y a VIZBWTHDERE YA YORERICHEEERICHY T 2EMAR LY 527 &
A, BIETRLEY T =7 =7 BR & OBZNED 2T 27% & 720, FATHENR
LT ERAER AR E IR T o 72 R O ORUEEE S L FE MM AR LT
W5,
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Table 5.6 Heat input to base metal in submerged arc (Welding current: DCEP 600 A).

Welding current 600 A
Arc voltage 22.2 V
Power supply 13306.7 W
Droplet transfer 2469.7 W
Heat transfer 759.1 W
Radiation from arc plasma 9759 W
Joule heating 20.0 W
Electron emission -533.0 W
lon recombination 4739.0 W
Emission loss -102.9 W

Total heat input to base metal 8327.8 W

Heat efficiency 62.6%

0.020

0.015

0.010

z[m]

0.005 =

0.000 0005 0010 0015 0.020
r[m]

Fig. 5.18 Temperature distribution of gas metal arc.
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Fig. 5.19 Iron vapor concentration distribution of gas metal arc.
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Fig. 5.20 Current density distribution of gas metal arc.
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Table 5.7 Heat input to base metal in gas metal arc (Welding current: DCEP 600 A).

Welding current 600 A
Arc voltage 249 V
Power supply 14943.1 W
Droplet transfer 2102.3 W
Heat transfer 1890.1 W
Radiation from arc plasma 1212.2 W
Joule heating 214 W
Electron emission -566.0 W
lon recombination 4486.9 W
Emission loss -196.6 W
Total heat input to base metal 8950.3 W
Heat efficiency 59.9%

5.3DEM-ISPHERHEFEICLKIRATIERE LUV ERBYBRBEDORESHH

53.1 XWAERX

AKEHEET NV TIEEEADOTZD, MK T7 T v 7 A7 T, KA 7 78 X0H

BE L7 AT ZOREVITEEEREHEE (DEM) Z W TEE T 5. Newton OIEH) H 2

RICESE, KHfaDEEIZKRO LI ICRESIND.

di, 1 (ac. . =2c, . zcavit
- n t y =
dt_n%(a + B+ B 4 g

(5.31)

I, WK OMEE NS Fv, dEMA, miz T Ty 7 AOWE R, FORE IR IT R OB

it /3, FCuzssmbmosEm s, FFY 3% v er 4 o2 AENTHS.

5,

L7z & @bl faDH Eu,ld, % 3 % Tik-X7= Navier-Stokes 5212 X(4.1) & YLk L 724+

HEZRY AR K-> TRESND.
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di, Da Pp 26 2pallp -
= v,W, Z — U)W,
dt Z e <pa2 " pb2> alVap ¥ A alNaPa D Ua + Up (ub ua) ab

Arc

T,dA, X B 1 2yh
7+ a ]a 14 ZfAttract_l_ dAar]a
PaVa Pa

N Ay dAg(Ty, X VT, X 7y

5.32
aT PaVa 5-32)

Z 2 T30 AL DA HITIE AR, RS, BT, Kt & O KT, Lorentz 77,
B oFRmIR), 7T— 7 )ET), Wle R ORE AR X > TH U 5 Marangoni %) &
ERLTWD. T — 7 EEATHE TR OB E» D5 b M E ) & 5 % 72
R DIREZITIR O = L F—fa kX TRIE SN,

Mo __1 Z (He + Hy)(Ty — Ty) + 20 Z 2K“Kb(T TOW,
dt — paVaCq ¢ g/Mb e AaNgpaCq Kq + Kp b tallab

a,beFlux aUbéFlux

dA, [KCOKa(TCO -Ty)

o | eeodz + e~ £4(Ta" =3000%) = liegfoc + liialVig | (5:33)

TIZIEEE, CITHE, kIBMaER, HIFEMIC L2 27 20 A, HlI T AT X %=
VEIEABETHL B L b ar F A AHB IO Ry 2
AHFSEATHIFE B NZHEAS S LT O L S IER SN D, £, Fig. 5.21 (TR O 1Ll
LTS 2HKFORAKNTH L. FMOPIL DEM KL FB3 0T OEEN 5 =KL DO H
iz hr—AARY 2a—AThHD. BERERETRTRIOET OO VAR EZFET L0

HPETHDHTD, L T2k 7RI IR M R O W mE N AE T D, O
R RII R AL VRO DZENTE B,

= J12 = (05|’ (5.34)
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TR F- DY TH Y, ||k RO EEEECH 5. L EOEfEREZ VT, #
T U D BMRE A R Hf o L 27 Z U AHJIRA TR SN D.

H.=2 KaKp
e =2 (5.35)

A PEfih 81T Hertz OBEMPEGR L WV RO DB RETH H, 77 v 7 AD Poisson =
Yang AR Th 5 720ICR(B3NEHNTWD . —J, HTRIUH T X AH T8
ER O D O AT AREIE A U7 BVRE AR LTV D . Fig. 5.22 (28l iR &0 0 U & 7
T. KPP OAOEIRPRAZ27m L TEBY, KEDEBDBMIKBICAAIET 50 A fEk % R~
LTW5. DEM KL F3 0 AT STV D RIEFHAG L, Fig. 5.22 HFHZHE A DM TR L
T2 2 KB OB RO EERE L, % VT, TRAaL X7 2 AHJIWATReik &
ns.

41r,? 2 {1_1(E>}
p 2 s T, — T
oo Ag_ 5~ T B 2\n, (p C)
g = Mg THKeg™ T = Kg T (5.36)
8 p (1_1) T4
T — T
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Particle b

Particle a :

Fig. 5.21 Schematic illustration of contacted particles.

A
A 4

N

Fig. 5.22 Schematic illustration of cross-section of gas region near particle.
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532 HMEEBERAFH

Fig. 5.23 ARG HE OFREEIKEZ RT. 4 HOBEL 1 MORM THRSIL TS5 (t
33x35x50mm) DOHIZIZT 7 v 7 ARLFAFRE IR TWD. £, FHRERNICIIY A

AT B ZEM (T A YZEM) 2T TWD. ZOEMOBERITV A YRIZELL,
Z OHLENIEE O LT E L. U A Y 22X Fig. 5.23 O KEIO T IS B E T
<. ZOEMICHET DR FIZEFOREL YA YEREELOHREZEIZIEET, X
(3.109) DA E 2 HIZRT, MmO AW NITHYET 512517 5. Fig.5.24 |ZR
TORY A PEMICHEST S DEM R FOHKKTH L. P OMMRITD 1 ¥ 2EHOSME
MERLTHBY, —RERIIZOVA VYEROTLERT. ©VALBEITRFOFE L

DA X RO xy FHEICE T DR AT A X 0O BB O — %are)2 — Oa — Yarc)?
ZAELBIWEHRBEIC e 5. Z OWBEIZIS UToz = 21238100 2 xy Fif = K% )1 % Hoocke
OERIN BRSO T DEM R ICHE 2 5. IXTREBITR F-HICIZZ O E LR CITRE L
TN5.

35 mm

Fig. 5.23 Computational domain for the simulation of slag and weld pool formation processes.
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Fig. 5.24 Schematic illustration of collision with wire space.

A X i fFIC i3 v B 7 1Y T 5 EMEFA L TWD. Fig.5.25 122D X v
T A RO 2 RS, v BT 0 OFRITKRATEST LS R EEHERET S,

(xa - xArc)Z (ya - :VArc)Z (Za - ZArc)z
L2 L’ 1,?

=1 (5.37)

Zq2ZArc

X VY, Z)IEF Y ET A WONEEETH Y, (Xare Yare Zare) VEER O FOLIETH D .

Yarc TR DIE D512 L <, Zarc IRM O & SITHE L. L, L, LIZFEHER O S0 K
STHD. FHhOR SIXFig. 513 PO T AFHMD RKE S b 1,=l,=47mm, [, =4.8mm
LBET D, ZOF ¥ BT 4 OBERO DEM K FITIEE v EF 4 2 b B EHFEY

& LTRREND ORI 3000 Pa 2 52 T 5.

Fig. 5.25 Schematic illustration of a cavity shape near the heat source.

-156-



ARFHECIREH A2 BJR oL THER L, —EOEY TEmth it d 228, B
ERXERFOFMNALETH D . Wi LD ABhog & AIRIKFIE & SIMPLE 5 0 FH 5 i
RPO/[L2LT, WRORAT L2 Z AV E—IZRANLRDDL LN TE .

_ Qd
paVa¥a

(5.38)

hgl TR DT Z N E—=TH Y, oqld AMRAEFEIE & SIMPLE JAIC XV RO IC L D
M A~OANBTHD. pg, Vg, PelIZNENEHOBE, BHEOKE, 1 BEICHZE
NDEROMEH AR L TWD. REFRTITEME ORI 3000 K &% E L, X fHidiae
BIPDBEWMBILITVA YRV /NS hoTclod, 25mm EEET 5.

WIS, FHROBEIZON TS, KR THH 4 7 & [FERIZ, 120 ff 0> SPH R 123
WARIEIC 22 5 L iR R 2B 5. £, AR CIIBEALO DR T 7 v 7 A
DB G EEMERLEEZ AW TEHET 272012, WRElA F 7 NEO X2 EfEICi = &
WTERV. T ZTRMMAT 7 OBMRERIIHFEOFBEEE L, ARIEHEE L R%C
AT TR OBMRE R E 7 T > 7 2RO IfEICHET D 8. kT OME{ OB WIC
DWNTIE 422 TRRZZEBY THD. FEREFEMHFITONTSH 43 THRNTZHKMEZ RAIC
KHLTHEAL TS, 2720, 77 v 7 AZERFL TV DRERIIWESGME L 75, BT

EFRORETY A PREBANIZAER S, XBREBBEZED O/ DI O®E 2.2
m/s g E L CEE TMXIZEZ25. ZOEMITINGINNLHELNDIPNLRD T
ETHBAT A % (12.8Hz) THEIMZAKT 2. ZOWRAERMICHX I 2 ET, ¥
AT R FOIREERITZE L2V D LT 5. £ LT, ZOEWMITENAERS
KitES, B, REEOEBEEZ TR0 LERMIC 2> THRXEND.

533 FHEFHG L WtEfE

Table 5.8 ICAGIRICHIT 2 ESMELTT. R TORTOEZIZ0S5mm &L, AR
RFEER KO SIMPLE B5IC K28R DR A L [FIRRIZ, 7T v 7 A&l T % DEM KL ¥
R RT7 Ty 7 ADO—FTH % PF-200 DA% 5 2, 2.25Cr-1Mo i O ¥ M4l % B
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WERME#ERTDSPHAL FIZE5E22. 207 T v 7 AR i3+ osdEi-s LT,

DEM ki 7O PR IX 600 K &3 2. 7ods, ARMARNE L TR0 BBERETIEn
KLRL LR AR T2, WL MBI OBIRERNNEL 2D, L LN 6, Bk
BRETHONIHEROBRELRTIIMEMOBRE L ZEN 2720, X(5.33)TITEL
WEVEEB S 2 N TERY. T TARFEICBOTH FICE 2 5 BUsE R (1T

PF-200 ® L% %4y TdH 5 CaO & MgO D EURE R D FHFI L & 5 5.

Table 5.8 Other computational conditions.

Diameter of particle [mm] $ 0.5
Evaluate radius of kernel function [mm] 1.0
Time step [s] 1.0x10*
Density [kg/m3] Flux: 3230.0

Base metal: 7750.0

Spring constant [N/m] 7.5x10!
Coefficient of restitution [-] 7.5 x10?
Viscosity [Pa-s] Flux: 1.2x101

Base metal: 1.5x10° ~ 1.2x10%

Thermal conductivity [W/(m-K)] Flux: 20.2
Base metal™®): 26.7 ~ 36.9

Specific heat [J/(kg-K)] Flux: 720.1 ~ 1827.0
Base metal’®:444.8 ~ 2108.6

Melting point [K] Flux: 2572.0
Base metal: 1750.0

Emission coefficient [-] Flux: 0.8
Base metal: 0.4

Welding speed [mm/s] 2.5,5.0,10.0
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534 HEIEBICHS RS THEE K UVBERIMTRBIE

Fig. 5.26 ([C & WL DR JES 2R L, Fig. 527 122D & & Oki{DIRRES &2 RT. 2
O ORITEER IR Tt 2~ L THY, VA4 VYOEBIIETRL TS, Fig.
5.26 IZHBWT, RESOKAOR XM OfE X0 BIRENMEWR 2R LT 5.
HBOLLRICEAS T ONTRFOREFZRBMO@MAL ETHLIZLEZRLTEY, 20
FEIZIR U TR SR TWaA. Fig. 5.27 ISR TR TIREED A ISR\ Cik, REM & BEIL
JRCRENTEY, WMEREIZE, VA4 YOBEBIZETRL TS, BE7 7 v 7 X,
BRLA T 7, BEERA 7 7132 nENE, K, ATRLTWD. 77 v 7 ADIRENA
FOMBEBEZDET7 Ty 7 ARLFIZAT TRiFIZb & L.

FHRBHAA L RS, B E 7T v 7 2T T A VERMICHFEET 27 —7 77 X< Lo
T IND., 7T AP ODOBFICE > THXXY ET A RED T T v 7 ADIRENIAT
LTESL, 006sIFETHALTAT 7 &7 5 (Fig.5.26(a), Fig. 5.27(a)) . #EIL THRAHS
FENEH L, WS BR FI13t=011s ZAICRD L FOICIRm LRHE 216D 5
(Fig. 5.26(b), Fig. 5.27(b)) . 23 THRAM Z A L T D Rl B R+ 7> & AR 2 ¥ il o
BB, WRBITIC X > TN % (Fig. 5.26(c), Fig. 5.27(c) ~ Fig. 5.26(g), Fig. 5.27(g)) .
PR @iE LRI A O mW AT 70 b FEERE LIZC®  (Fig. 5.26(d), Fig. 5.27(d)),
T CHA A 2 WSR2 VSRl B A FEEEE 9 % (Fig. 5.26(e), Fig. 5.27(e)) . FE i &
SRR N O RS IXEE AR L 22 0, EEEH N TIX Fig. 5.26(h)d A o &
T, BIRO% T ICEIBT AR S NS, Z OBR% 5 O SR &2 /R L- £ 3
WXk T 5  (Fig. 5.26(h), Fig. 5.27(h) ~ Fig. 5.26(j), Fig. 5.27(j)). Z 115 O
REWRT DI, RUFFECREE L2l HR T 7 VITER & X Z 7 DGR % [RIRFIZ &
a2 b —RFT&EL.
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Fig. 5.26 Temperature distribution with time evolution.
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Fig. 5.26 Continued.
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Fig. 5.27 Particle state distribution with time evolution.
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Fig. 5.27 Continued.

535 IS VIARRPRSITNBHEADOARICEZIEE
UEDHERERNT, 37—V 7 =V EEORETH L7 T v 7 AR T TR
~NEZ DN iE T S, Fig.5.28 IR T DX, 77 v 7 A-REFH OB A 53 A1
AT T RMEOBGRR M TH L. FHAIBNT, EOKIXT T v 7 AR O
B SMAE T~ L TR, HFORIETATZ Z-RMBEOBRK S ME R L TWD., Bl 7
I ARRT IO RMEB~OBRKZ R L TEHY, REAIR DT ERMITMEA S,
HEIZRDIFEBAIND Z LERLTWD. FRERBBRATIEY 7 v 7 AL TSN
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TWDd, MR 77 v 7 2k o TMEAE 2 (Fig. 5.28(a)) . Wil & 32 BVR
RO BE VMO —HORER 7T v 7 ZOEES LRV, WEMOENTIE7 5 v s
AN DN D A4 U D (Fig.5.28(b). L2xL7anns, BURO@EBEIC Z O fEk
OIS, BMEmICEAEL TWDE 7 7 v 7 AR EZEDLN DT =1 A&
A& 72 % (Fig.5.28(c). 2O =HHRO AR LIz E, AR BEH L T —F
DI ST < (Fig. 5.28(d)). Fig. 5.29 (2R T DX x=25mm, y =175 mm (25T
5777 AMLRMERR~DBRKOBETH L. ZORNL L, —EEGRKEBAIZ
RORMNE T T v 7 ANEBREDNT %, AT T v 7 ADPLBRMIZABERT
WHER TR0 D . RGN D 2.7 s BIZIET 7 v 7 AL M ~O ABVEITIZIE—
E LR, ZOFEERIRIE 5.33x105W/m? TH % .

—J, AZ 7 EOBREBIZEHT DL, FORAIBWNTHEEE — FRIEOBGER
FNEL, IEEAEMBRCHHITEN TV RN NS, ZHIEFig.526 6 b b
MBHEICAT 7 LRI RE OREEN NS NEDTHD. ZORAT T HEOEFER
IARKY =V KT R Lo TRBRHENOBEDNLIAN, B b LRI T
WHZEERLTWD., 20X, BAELOEREOBILT T v 7 AL >T—
IRFA I RN S 4L, B\ E 7Ty AMBAREZTHZENRHLNERoT. F
AT T NEMMERE S Z LI KXo TR Vgl OB O "iMx 6T,
27 7 DRI R DAL S Tz,

-163-



-0.03 -0.03
B —0.02 — I 0.02 —
E E
= ’ =,
& —0.01 I 0.01
m = 0.00 E = 0.00
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
x [m] x [m]
(@)t=0.1s
-0.03 -0.03
H —0.02 — I 0.02 —
E E
iy ] -
& —0.01 I 0.01
m = 0.00 = 0.00
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
x [m] x [m]
(b)t=05s
-0.03 —40.03
H —0.02 — H —0.02 —
E E
= =
i —0.01 I —0.01
m —0.00 m —0.00
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
x [m] x [m]
(c)t=3.0s
-0.03 —0.03
H —0.02 = H 0,02 ==
E E
S =
H —0.01 H —0.01
= = 0.00 = — 0.00
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
x [m] x [m]
(d)t=5.0s

o I [ [ .

-1.0E+09 -1.0E+07 -1.0E+05 -1.0E+03 -1.0E+01 -5.0E-16 5.0E-16 1.0E+01 1.0E+03 1.0E+05 1.0E+07 1.0E+09

Fig. 5.28 Heat input distributions of heat conduction from powder flux (left)
and heat conduction from slag (right).

-164-



2.0E+06

£ 1.0e+08]
2,
O
x
>
& 0.0E+00F
o
©
[«B}
I

-1.0E+06 |

L L L L L L L L L
0 1 2 3 4 5
Timet[s]

Fig. 5.29 Time history of heat flux from flux powders to base metal surface
(x=2.5mm,y=17.5mm).

53.6 REREDLEE

Fig. 5.30 ICFEBR & D HEGRER 2R3, FHEMBRIT 1=5.005 (12817 5 x =20 mm DT
HzRLTWD, KH T, WAL TOWDR I3 FE, FER L2k HIZBRWKT, RiE
R D BEARL I3V IR TR LTV D . EERGER T, Wil T3 1 2 &R S i 2 7R O
TRLTWD., o bnd L oIl, RREAHRRIOETIBLZEN - 1ESTHY,
EREFSEOEALRNGE LN LN XD, ZHITIET O RO BE 8 T ML 5 £ Tk
SNTWVWAHZEEZRLTWD., L2LAanb, E—REIZIE 5 mmIiZEDENETT.
ZOXIICEREARHETRAEDOEALBHE LN TVDIZ LD LT, BESBT Y
WZENE LT RRITEHEBATEB O@ENTH 5. AU CTIEXATHE TR L7 BUR S0 6
Bohd, WRBITICK D RMERE~O AL X (5.38)% WV THEEBATE M &2 KD T
W5, AFETIEZOBHEBITEMIZ 128 HZz TH Y, FE#EFRETOERNLE LN
TRTBATEAM (25.6Hz) 0¥ Thod. ZOXIICEBMBITAMNMNERLY B EL
L2 LICET, BM~DWEEENPDVRSRY, REOWIZENELZLEEZALND.
LLEo &5 22 RIS X 0 SR BT L b oo, W O RS = 3L X — LR
M~CHEEINTWDD, EREFAFEOEIALBFELNTEY, A THRE LMK
By a2lb—yarvETNEY T~V T7 — R BEORAARES YT 2 ETHA
ThHhHEWVRD. ZO®RIT, ZORWVEIALR %155 YR & 72 o T HER 7 10 O #iE W i o
RN HONWTEET 5D,
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(a) Experiment (b) Simulation

Fig. 5.30 Comparison result of bead cross-section (Welding current: DCEP 600 A).

537 PUvHUITLEHBEOEEBICLSBFRENBHROEE

Mz BT 5720, t=4.0s 226 12 A 5 O@WHRBATZH N TT o T
WHEZAT > 7. Fig. 5.31 &7 U 7% OB O w G273 . 2 OMILE
PERRICIR o T2 MW 278 LTV 5D, Fig. 5.31 1B W TAIT T DOHEICHBIT HHED A H
T—HRLTEY, ZOANT—8IEX, 2 FiAOHRDERER I LRO LTINS, T
TR BITORMY (718ms) THY, tfTc=0~1IFEWMBIT LAY ZRL TS, £
72x=00mm FAFEOFLERLTND.

B D3R S A2 AT ORI X BIR 0% FIC K& R FET % (Fig. 5.31(a)) . =
AUTIREI R B W CTHRIBHMABBIEO T L LY bR GFICHEET IO THDL. 0O
IR 2> CTJE PO E EH OB D Z LT, @ IR O 7 Al 8 13 5w N
IZM 2o T D . & OFEE, BJE% T O @SR OE T TIHEMA L i iind L,
KD O BAVIA A 72 8 R O FR i 8 Vs il vt S & I %

WIS SND &, WA E B IZIREIC L > T L TP o i, W% FALE Ol
BB O WL RIS S (Fig. 5.31(b)) . Z O D ¥ FIT & - T 2 1 k9~ 2 W b
BILEE T ISR L, iR GRS LB B b 2 & CRmmFEm IR E < MEe (Fig.
5.31(c)). D TEWRMIEIZ Lo CRE S MALFER TITEE A M I ER2N S, B
BATHE W 0 10%1% & D Wi T @l & m PRk 25 e 2 R % (Fig. 5.31(d), Fig. 5.31(e)) .
FEAICIX Fig. 5.31(F) D L 5 Rl EG AR D, ROWHEPBAITT H. T O X 5 TR
DEMEBITEROBITICE T, TOERENEMT 2. ELEWEBITICED S T EIR
Dt J7 TV Rt 2 16 2> B ST A1 2> 5 N O WIS FTE L, Z Ot ok )7 Tk
ERASMMEEORE SOMMNEICHELELTWND Z ERRB IR, 2 OIXEHEBIT
ICHE DRI DOET L > TR ENTZ b DO TH D, WM ERBITIC L > TRE M
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ATZIRRE T, BRSO x = -3.0 mm 130 TIREERMER L 0 & R OHE DT 5 AN
K&V (Fig.5.31(c)). £ DR, MAREERMMBEMORMEENSMLRESND LD bR
fal L % 1] D VR AR 2 B 28 SRAVTE D D 0F D DN T2 6D, B AP [ 1 L 3R T 0D T Rk 4 8
MAVAA TIPS ECTEEZX NS, £ LT, ZOMPNIERT D AT IR O S V% fHh i
ICEE SN D Z & T, BRO%Z T TIEEIZZOMMBIFEIEL TW\Wie. FoEahzm <
B SNl e R S S MR ICm o Tk SN D 2 & THEamERSITmeEi s, 2
DFADATIT TRM BRI T D5 Z LB bhro .

0.020Welding direction: 0.020f
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Fig. 5.31 Ensemble averaged velocity field on a weld line.
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Fig. 5.31 Continued.

53.8 BEEENRSTHBRICEZAIEE

WEDOREZEB LEARKHEETVEHWT, BEEEN R T VTRRICEZ D0 B
ET L. EHEREELY 2 E TOFE & FERIZ 5mm/s &8 E L72%A 1Tl x, 2.5 mm/s,
100mm/s ERELTY I ab—hLEBEO XTI 7O % Fig. 5.32 12577, 25
OWIEITAIR OB L2 10 mm % THEOLNL. 2B, y=17.5 mm BEJE O FLALE T
Ho. BEY, ATV OREMIEEEE ORI & HLICHEL > TRY, FICAT FR
THL > TW5, Abe LIRS 7T~—V T —27 TiEH Db DD, EWHEE O L
AT 7L D Z L2 EBRMOITRLIZ . 2O X D ITARFHEET WVITER & A
DEMZRLTEBY, KFENRT AT VORBKBRIIEROY 7~ —7 — 7 FHEh
DAT TR L EHRIC =T LHbDTHDLZ L ERERLTWVND.

0.015 0.015 0.015
j€
0.010 ° 0.010 g 0.010
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(a) 2.5 mm/s (b) 5.0 mm/s (c) 10.0 mm/s

Fig. 5.32 Cross-section of slag for each welding speed.
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AT TN OXICEERE ORI E & BT 20, BRI IR M7 R % B &
PDIZT B0, KEBEEEICB T L7 7 v 7 A ERAT TORELZMAET 5. Fig. 5.33
WCRTOIXEEEENSEMMIS DEXDT T v I AELRATTORELTHD. XILEEE
MBI S T-MEWTE 2 R L C\WD ., ZOHEFITRO FIRTCH L. £7 Fig.5.31 L[
FRICIERE R %, 7 2 o TV RUER & RARIC B D & JEHE & U 7o AH e PR AR R (T B &
B3, RIZ Fig. 4.16(b) D L o IZFHAEBEIENICHE TR EZRET 5. 2 OB 7S ORIk
TRIZE LV, 2O TRETLE LTORR 2d ORBLERNICHFETH 7T v A%
TIE AT TR OEE & (@48 > TH— RNV CEAMT L TR TS. 2o
W Z T XRTCOEFETITIZ LT, bORAOERIIBIT L7 7 v 7 AELRT TR
EENRROOND. £ LTEOHEY 1.0 s 0% HV 72 B FH LIS X - TRER 72

HWELSNMEOND.
MHPIZIET7 T v IV AL R INGFETLHHEIBOALZRLTEY, BIIZORICBT 5
HWEOHEZ RL TS, Son-#HESYoXy U7 o JHLICERT D E, VA Y

BHRX Y ET A BRFINMET D7 T v 7 ARATTOHRELV X v BT ¢ lHEHIC
FETDHT7 T I ARATZ ZOHREDIT I NRE . ZEF Y7 o MEm Tk, VA
YERBICL o TRAET D2 VT HROEAR NI 2% 57210 T, BJEoBEHIZ L > T
AT TWBFT~ERLOTONDIZDTHD. EVAVYHESFTIEIT 7 v 7 AFVAY
RICE o TAHELD FAHMOT AW /1257 THFHMIZERNT 2 OISk L, ¥R
EORT ZIIEEOE BN TEF~EHL EIFons. REOBESMNET
D7 Ty 7 ZADOTHEOEH LY G, Rl OEBEEINC X v 7 4 lH2 560
LIEBIDAZ I Lo TAZ T H# WML LIF5ZETHELUD AT 7O L& O#ES) 2P
D, AZTEFEEFA~EBETLH. ZALO/KRNE, THEICHELEZ DT A YiEHER
TAXYOBIICL > TAELDLZEREMED S 7200 Fi & OER) &, FHME RIS EE S A
TIUBHLETOoNDNEDNT U RACK S TATZ THEHOMBNEL D00E 5
DRESNDEBZDBND.

Fig. 5.34 |2 T OITIEEHEEN 25 mm/ls DL XD T T v 7 ABLORT 7 OEEY
THD. Fig.5.33 [T X THEEHE MK T L7z Fig. 5.34 054, IR OB E)E AN <
ROLIEDRIKNCT T v 7 ARAT VT OMEEMET T 5. TO—H7T, VA YHES
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R OE BT D7 7 v 7 AFT A YERITE o TEL ZEAWIN T OFEN
REL, 77 v 7 ZAOEBEIFEJRNGHENT A TOT7 7 vy 7 ZAOHEIZEIRTL TV
W, DT T I ADTINMETHAT N, v T Al CTHREENTZAT 7R T
A YBTBETHZETHLEFOND. ZOXT7BHLEFOND N, VAT
ERICE T TFHAIZEETONTVD 7T v 7 AL TN LD HREN
ZET, RTFTIEEFRMANEBRIND. EOMKER, 2O XD RIREOEESMETIEA
F7OHRLEMETICEARORAT IREHRSND.

—7J5, Fig. 5.35 IZ/ R T DIXAEEEEN 100 mm/s EHELTZHEDT7 T v 7 AB LY
AT TDOEESTHD. IWEERENFIQ.533 DLV LIINTHILT, IFEALED
B CEJEIC e DA E S L TV A Z &R b. IS Y IO 7 7 v

DHRERREIEMLTBY, ZOT7T7 v 7 AL TIAYERGTDT T v 7 A3
BT ~EMLBToND. EBHOBBHENES DI LICL-T, VA¥H
LOF Y ET A HIBOBR T TIIINEDOHEIRICEST 277 v 7 AL DORICTE % ZEH
PARNCIELS 220, VA YR IT ORI TT T v 7 AR TALYBI RS ¥ BT 1 OBH)
Ko T TELEMZHD LD ETMEICBET LR IICRD. EEEEEOHEMNC
Lo CTHNEHEEH -0 ICHE SN D2WEMOBMBE L, ©— FOm S XM <
5. LEER-T, AZ7BNEMBICHL EFons bbb 45, Z0R, 277
THEVEY LD 2 LR BICER S, BER ETIIAT ZIREE» S A
TR TMEDONEZT D20, AT 7ORLESNMALBRICRS.

Fig. 5.36, Fig. 5.37, Fig. 5.38 [ZZ 1<% Fig. 5.33, Fig. 5.34, Fig. 5.35 ® U A Y ¥ %
DIERKZ R L TWD., FROBITHED 2z SRS ERLTEBY, X7 MLVOE XX

HWED xyz FRKDDAD T —BE2RLTWS., £REZLKT D E, 2T 7 OH RN
M FE 72 WEIPH CH SR EZ M IETh z FMOEEHICKERETRONT, ¥y b
T A DHRFTAZZIE EMEICEB L TV ERbnd. —HTRZ 7 OHRIERM
ATEVRBEREE 10.0mm/s D& XX, VA YDH T TT T v 7 A0 F I OHRENEEIN L
TBY, AT 7 bEES%E T > THRET S, £ORR, Fig. 5.36, Fig. 5.37 ® X
AT 7N EmEiCmho CEET R FIZR T, BER ETIEIAZ 7013 EA
EVEACEF MICEB T 5.
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LLEDFERNS, A Y5 OEERINT 2z FIAKSOZEENEERNTH Y, W
ENRREVNIETASYOBENEBEDO 7 7 v 7 ADFBICHEZ DB ITIRE N LM
PAohbieole., FEBRELD T 7 v 7 ARLA T VT OFTIIEEHEIZL > TR D
ZENIRSNI. XD T, RKFHREEIF Y ET AR TOHADHFEEZEEL TELT,
AT T DOFEIEROBWHEBIR LR DM HAET D, L LBRBOLREREDXT 7T
Fig. 212 IR L2 k912, F¥ ET A NEZRE L TWEIRIKGE AT 7 DiN%Z, ¥ b
TAERBLTWELEEZLONDIAWVEROAT IR E->TnD. T LTIO RF—4R
DAZTNET — 7 JERRIRAD AT WL EFbhnb e, 27 70 EIChEET S
7w A LTI ONRRLRREND Z &N, KR THLNZ AT ORI &
B2ETRLE X BABBEHRNOHRTE D, LN o TREEIRTHRHRITE
BEORA T FEGRRICBW T, TOHALML EFbn T I8z 35627 7L,
T A ¥ DOEAGPWETH~OBIIHE> T TFTRESICEZ S ET57 7 v 7 AOEH&E
DRNBRINR AT T ORRERET HER LD L E2RBLTND.
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Fig. 5.33 Time averaged velocity field of flux and slag (Welding speed: 5.0 mm/s).
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Fig. 5.34 Time averaged velocity field of flux and slag (Welding speed: 2.5 mm/s).
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Fig. 5.35 Time averaged velocity field of flux and slag (Welding speed: 10.0 mm/s).
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Fig. 5.36 Magnified view of time averaged velocity field near cavity
(Welding speed: 5.0 mm/s).

7
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Fig. 5.37 Magnified view of time averaged velocity field near cavity
(Welding speed: 2.5 mm/s).
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Fig. 5.38 Magnified view of time averaged velocity field near cavity
(Welding speed: 10.0 mm/s).
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FO6E I

AT CIXEREEMARELEO —HE Thr V7T~ — VT — IV REERR L L, S
TERERIMSC AT T OBRIZGEZDHBLELZTOA N =R L EMAT L EHNE L
o, 20D, ETEEEEET A AT 2RV XBGERBIZEL IO R LEI
EoT, W=V T =7 REFORT S OFE, BEEEITRE, T— 7 B0k
EITV, ¥ ET AN TELDZY T~ =T —JEFEBRO A N = A NZONTELR
Liz. WIZ, BMEDOFHEFIETH HBEBEREICER L, HFEME SPHIEZ MG DE
HZET, MR REAEROXEZEBE LI HEHET T VEBRE L. 2 LT, 20
HEET NV EZY T~ —U 7 — 7 EBICEA L, A7 VKRR &R RGRRE O >
2L —3a rETY, TNENDOERIBRO A=A LEBL L.

1 E fEm T, P T7—IREBIUORERBITHG OMEIC OV TN
L, ERICED2EHEBGOFHEAL OB 2k <7 F2HERRICB W TIIMOEESE
AL D AT B S FE T L, £ OB L BRI W TR~ Tz, S HIZFHEK T
AWK FIEORBECFHEAIC OV TH R L, RFEO B EZ R~

H2®E Y- UT I BRETOBEESORAGRIBE TEAA-VA T VT
TATEROMATe@mEEET A AT E X BIREH W X fE RS2k L OV
BT A NATEZHWTZEBEBEO FIECOWTHRRT, 2L T, 26O FELZHNT
FToleY T~—UT — 7R ORI O WL O RE R L. 0, WESRER T
Ty I ANEDOAT TREMOFENIRFETHBIIONTER L. F2ETHLNL
FRZLLUFIORT.
(1) WRENT A VYRELY /NS R AT L —BATIERE OB O s R0v 2 5 17 O /it 5
FMA~OWITHD X SR AT 7 ORE), WHE T TS 2 BICo»rNT—7
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(2) WHEERDO LA > TATZ 7 OERERLF Yy ET A DR SHERY, XT 70
FEITENNELTZ. EHIC, EHEEIR4A DCEP 800 A ICRET 5 & il o it B
MREL Y, WHHO XS RIRENC X o> TA T 7 03I RE T 2 81 23 iR
TE .

() B bk ZFRET H & U A Y IERHE QM - TR EN/EMML, i
MRS CHRBMA KD LN DT RHRETE. 20L& OBEMBITIIEEEN
TAXYRLIDbRELS D7 a7 —BITREL T, ZOUA YIERBEHED
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ZET, ROWREBOVAYRENINAZINDLG O THLEBZZ N

(4) WiFEEIZIZ7= 5 < Lorentz IDOEHE NS, VT ~—VT7 =7 BEETIIOU A Y £
2 U T B DS /D S W 2 8 L DT R o], OWIC/ERT 227 1 —
BATIERE D X VR4 L AR E O Lorentz /1, QW FOES) R O#lo 3 S0
FINC &> THERABED LT <20, AT L—BITRBEOLIICTA VPRI b/
SREHPEER Lo Z 2 oz,

FI3® FHEOHG T, ETERTHLIT I T IRAvDOTIalb—rva VAN
DA BRAEBEEOFIIZE S TR FRAFAHBL, SHHET7 AL ITY XL Y L /R—
DFEMIZONTIE R, WIZ, M EBEHOZETHO L I 2L —ra ZHWD SPH ik
D JFREIZ EE-S T Navier-Stokes HHEA & Bi#fk L7=. £7, SPH {EZ IEEMMETRIAIC
BT 2 72O W IEEMMEL P FEOFEMIZ OV T bR~ o, &&IZ, 77 v 7 X
DB I 2 L— T 5 DEM OFEICHK S X, Newton OiEE) X4 BEfL L7z,
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Ko THEBMERIBREDO Y I 2L —a v E2{Tole. Z0%, W ZMERT DRL1-HEO
B Z BN L, R~k SN BROBEHOFHIC OV THELE L. £/, 79
YTV @ T S 2 L TR ORASGE AP SN L, WA EE ST

-177-



ROV D % S D E TORBM AN ORE M OB R EIC O N TEL L. 4

BTHONIAZ L TICRT.

(1) W ORBITLE D BIROBE) & 32, WA R S, 0% )7 CILER4)E»
FREE L CREZERT D20 ), BEOTARAZALT — 7 EETR LN BI%RN
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(3) 1 W DR DIEFE A BN 5 2 & T, WRIM~H%E S O %8 A2 0 52N
HZENTET.

(4) KHETHONERET =27 o TAERRE 2 i+ - & T, EHksh-
HWES A ZRD D Z LN TE, VORI D ERl oOEE S 02 b &2 =Kot
WCERTHZENARETHDLZ L EZRLT.

# 5% DEM-ISPHEKGHHEET LV EZ A WY 7~ — U7 — 7 PO ERME X OtA
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ySULZIE8l D S N N i
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B OWIC K > TU A v REfE 3 E 2T @M<, [F C¥ 28 © % DCEP X
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N OFKBERESY, BMIZT7 7 v 7 XX THEL, HBHIN, AT 728> TR
RSN TV LIRS,
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