|

) <

The University of Osaka
Institutional Knowledge Archive

Title KM SEBER=Z v T IEESENI-23Cr-WD SRS
MEICEE T DTS

Author(s) |Br0O, &

Citation |KFRKZ, 2019, HIHwX

Version Type|VoR

URL https://doi.org/10.18910/72396

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



L2 (i

A TEE = v 7 L HEE4 Ni-23Cr-7TW D
SRR S R B 3 A HFSE

20194 1 H

RER R TAbE 7t



1.1.3 RA TEEH= v 7 VHEAE NI-23Cr-TW
12 B TR
121 A-USC %ERA 7~ Ni-23Cr-TW 54 HOFE ...
1.2.2 Ni-23Cr-TW &4 0OEE 5 HFMAIOME
1.3 ARBFEO BB
LB DB B MR ot

H2E  Ni-23Cr-TW 64D 7 U — 7R TRIEORE, .
2 S
2.2 b
23 7 U =R T
2.4 Ni-23Cr-TW &4 & Alloy 617 D7 U —TJET5TFFM oo
25 7V —EEHMEIN OB

251 7 U= O DB
252 7 U= WHMEEICRE
2.8 e
2 B D B R

3 F  Ni-23Cr-TW e ORUE TFRHEDTRT
I =
32 P
3.3 B rikBR, SRR R E X O Bithermal fatigue iRBR 775 ... L.
3.4 B T7ER, SR 7 RRBR R KO8 Bithermal fatigue BABRAE S ... L

343 ST OTHIEE
35 BEITIAFMIC KT 7 V=T OTHOREORE
=

© o0 oo A N P =

e
oaN



W6 T A LIRS B OB OB

B DB R

FATE Ni-23Cr-TW 540 7 ) — 7RI RIE TR o2 ...
A S
4.2 BEE b

m

44 7V — TR R
441 7 V) — TR RIE TR OEE
442 WHETEREIC AT TR DA o
443 BR USH — O T BERIC KT IR OZE o

4.5 JERFEIAT & BERA OMER U ARTRIR OFMBREIZE

=

AEEDBE TR o

H5E BUESEMIMIEDRE
T 3=
5.2 BUE ARt D s V=7 OFHIMEE

.20 R

522 AAFFEDIRETIE o
5.3 O iy ENEA AW BE S Fmat s
5.4 ERIEIC K 2BV FameHio FIRE LB 27— o
3T =1
B DB MR o

8.l S
6.2 TERIEIC BN 95 FE A T 4B 72 Ni-23Cr-TW &4 D5 — 2 Fifs:

B ORI BT D FEFME O AP & T DOBIFRA

6.3 K LB HMTMEOMERIE ...
6.4 {RAIE L ARBEOBESHMIMIEOLE ...
6.4.1 FERIETHAT BHEVEROWE .o
6.42 FERIEIC L BHMBEMRR  oooeeeeeiiieeeeeeeeee
6.5 2O HHHIELIED O T HAIHAFIEC & 2 HAFMMEORTE .

iy

57 EOTHOE AT U A
6.2.2 BT AR O EIREICBIT 28R LIS — O3 Al ...

N

%

60

62
62
62
65
66
66
69
70
74
76
76

78
78
78
78
81
82
83
84
85

86
86
86
86
90
92
96
97
97
99



B.5.1 FFM RIS o 101

6.5.2 Fe i AT DM BN EELDIRIE 102
B.5.3 FFMT MG B 104

6.6 kAR EZ BO-BYR AR ~ORZEOBAMERST 105
6.7 7 U —TWITRMEDIZ O DX BB L BIE M 107
B.8 T i 108
B DB E IR oot 109

F R - 110
ADPENAIX o e 113
ALl O B B 113
A2. BROTHHPHEEDO O T BB ENE 117
APPENdiX DB TLHR oottt e e e e e e 118
3 119
W 3D s R A = T 120



1.1 WFFE
1.1.1 HIBRIERRALEE IR 0D 72 8 DI BRI D HL Y FHA

HERIRBEAL T B9 5 AR 225875 1985 T H)D TRAME S U TH G 30 4ELL EsfRal L7z, Z4LLh
B, 1994 AT AT S AL T- A B R SR, 1997 4R D5 3 15 (i A Bh i SRR [l 23 5% (COP3)
TERIR S N7 U E S, 2015 4E 05 21 MIKEA BN AAIMTRIE 2 (COP21) (281 53
WMEREZBEL T, RKRFOIRBELRT A DRELEMIZHT TEERNRE NN RIS TE
LrL7ennt, FETHL2 OB BRI THHICHEL LT, HROEREDNR T AP &I
MUFETTWD D2 ERiRBR LA e &, WERIARNMLO L5, AR OUUHE R, B R
YUE DOFAFPRILR, WEYL - Yok - @il EORFE RS L, Fx OATEITHERREEL 5 2
590 o, S%Ec OREDEN AOPEHBEBASLETHY, AAENICENTHR
RIRIRENR AT A To D CO, D ED & 572 HHIFIZANT 722 < DIV MA D S TN D.

H AREN ORI CO B &IX Fig. 1-L IR T LI, FEREDZ XA F—EENRH L,
PACHGESE R Ot 3, i L i< ¥ . CO HEH BBV REE B IZ B\ T Z OHEH R OB
(RN A TEY, BlxiE, B, KBt NA A4~ EOHFAEMRTRLF—DTE
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Fig. 1-1 Trends of CO, emissions in each sector in Japan.



IR ZIRBES ETRET DA RKNFEEIL, WACKIRT R 2 PRBE S| D RIKHT ZAFEBIZHA~T
BEDNRTADPHENRREVWE WO RN HLHO0, ARITERNEE THY, FEHED
HIBCFR) U 27 PMEABREI O T TR bK<, BAVENS 720 OB (LAt OF TR LW &2

, BEMRTECRFIE BN 2 EEARBRE L TEA S TS 99 2018 45 7 AICH@E
X7 5 kT L R —HARHE Y TIE, 2030 4EDO TR F— I w7 R ZHOWTIE3E+FS OJEHI,
T bzt (Safety) Zaite s L7 BT, =X —DZEME (Energy Security), #iEzh=
Motk (Economic Efficiency), BREi~DiE#A (Environment) %XV, S L72E = R /L¥—,
FBAERTRET XL X — DR KRIROEA, KNFEEO SR, IR D ATREZR IR D DR & v
DEATGTHEZRR T 5 Z LRSI, ARKNFEEIZOWTL, @Rk - ki zHEES 5
7o OHANBAFE A S HICHED D Z &R E T,

FIRKFEEO @R » Wb DTz DAl & LT, #—Er ARIZBIT 2 7KURE
ZRERN B KIEICE D D A-USC (Advanced Ultra Super Critical : JeiEiE < FERUE) 3E, ARz Y
AL L TCHAZ—E o &B L, ZOPEETHSK X — ¥ %07 IGCC (Integrated Coal Gasification
Combined Cycle : 7 A {LEA) HEORFENED S TS & 1012 - g EcHt s nr-
CO, Z 43, AU L # FIchFE9 % CCS (Carbon dioxide Capture and Storage) #ifDBHFE & i#Ed &
nTung B9

1.1.2  A-USC #&E D BA%E

FIRKNFEBORKIRE L ARKENDOEED % Fig. 1-2 1257, ARKDIFEETIIREDRD
M R BRI, WERHFICE > TERKORE L ESHom BIZRYHEENTEY, Bliko USC
(Ultra Super Critical : # % i tT) 88 CIIASKIEE O E 2 620C, Z O HJ175% 25MPa & TE
WHNTE O Z OGRS, JE/% KIS 700°C, 35MPa £ T 5 A-USC #FE Dl
BB AATED N TVS P HRANFEBOEDNRILE CO PEHEEIBIL, ARORE
EIEND EFIZ X o THEB S, 700°CHk A-USC FEAFEALT UL, FEMFILEEFD SC (B
5 FUE) FEE ORI 39%, USC FEFEDK) 42%I25% LT, 46~48%I2% T ETx % 2 . A-USC
FEEITFUNT USC 37BN S IEBRNHRA 4% £+ 5 &, CO PEHEITH 100 S5 1 . st
TH A-USC HEBEORFITHED HILTH Y, BN TIXFEAK T 7 > M X - T 700°CHOAES & ARk
LizEmRBn £ Sz 2 & nH 0 P, fEICBOTH 700CHEO A-USC FEORF 3 HE
BTG F7-, KETIIAKIRE 760°C, £/ 35MPa ~0 @2 RAL B BIR B RaT ST
B, EHITIUIKEOEHER 22 SC RBEITILT, CO, & ie i DY 20~25%HIJH S 115 A
B TH % B
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Fig. 1-2 Transition of steam condition in coal-fired power boiler.

A-USCRET T v bOEHHESEHR L LT, Fig 183 10T X ) ICRA 7 ERERZ—E VN
HD. A-USC HETIIRA 7 THREREE S OMROIREVENZ i 5 7K % % 700°C, 35MPa
FTEASERLE, KBROFAKEZBL CAREBRIES —E U~V RETH. KIZ, BE
JEX—E bR RAEHALEEY — B TRELEE, SO0, @EX—E bR
RELI) ERALUKES—C U TRETSH. Z0XHIT, kD USC B\ TIdfKE 620C,
25MPa DR E W T 1 Bs BV 5 DITxt LT, A-USC Tl 2 Be VT 5 Z Lic k- TREME
A ESH TS, AUSC FE L EBLT 572912, 7000COIRE T 2 558K — B 2% 2
RA Z 30 DRSNS LN TEY, FRICHBWFEOBRN T OEEE-> TV, RA TRE
FAMERE LI, BRI e OBLR N HIER D USC BB CHA SN TE727 =74 bR
ML A— AT F A FRAT LV AHICEDY, =y 7 VESEOEAPRET STV S,

= T NEBEBIIT AL — A7 7 FOMEL, WESMICER I TE ), Zhb
(TR TN S M Th D720, AUSCHET 7 v b OFEBOT-OIITIRA 7 O FAKE
DEIBRERATREREMICOEHTE 2=y FVEGENLETH D, BifE, A-USC HEDR
A TEEH = v VIS SO EFE LTiE, Alloy 617 (Ni-22Cr-12Co-9Mo-Ti-Al &4:) *°
Ni-23Cr-7W &4 (HR6W : ASTM B167 (UNS N06674), ASME SB-167 CC2684) 73 K321 F b
W2 40 Alloy 617 AT HIRIL RO TR A4 & L CHIR S NIMETH Y, T 0BT AL
— B OBRBER BB ORE R i e EICE S CE MBI CH D, T ha R A TRE
~iE T 5 7o o s, INLEAR OB ED ST D, —J7, Ni-23Cr-TW A4&13AR A 7 Bl
IR SNZ=y rVERETHDH. AUSCHER EDORIROENREBEORA 7 ELE A
Bt LT, ZOEMADIZDIZEFIHEED H TS, LUFTiE, Ni-23Cr-7TW &4 DR 7 %
FHROARA TRE OB D7D ZHE TITHRFT STV D NEIZ DWW CEEMICER A 2.
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Fig. 1-3  Schematic diagrams of power generation plant configuration'®.
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Ni-23Cr-7W 54134 — 27 F A R AT v L AAOERR ECTRIE S L-METH 5 Y . Alloy
617 7e EO\EEE = v F VA ATy (Nig(ALT) OFTHEEEZIEA L TWb 0okt L,
Ni-23Cr-7W &4 X 1ER DI EGR O 5RAIZIE F ST & 72 MpsCo RALALRC Laves 0 (FeW,) DT H
XL LTS D . Ni-23Cr-7TW A4 OffiIE 0.08C-45Ni-23Cr-7W-0.1Ti-0.2Nb-B TH Y, 7%
HRD 20 $%H Fe TH 5. Alloy 617 72 & D = v 7 VIEA 42T, Ni-23Cr-7TW 54137221 72 Fe
LG OMEIa A N THERNTHS. £, Alloy 617 72 E D= v 7 VLA 4T 2 RInfR%Z
VLT HOIZH LT, REEIF~7 afmirnE L 2 WAMNARETH L0, BiEax b
HCHOAMTHLEVWIFRENRDS.

(@) Ni-23Cr-7W &4 Dk 5y

(Cr &)

MM Z R T HBR T, Cr EFEZEDTIEIDNEATH L. £, R4 ZEERMET
(X TR ORI TH D, 0.08C-45Ni-7W-0.1Ti-0.2Nb 54128\ T, 700°CIZR1T 2 Ffitr
HARZ3HET 5 &, Cr & 23%1 T T Laves Kl & MysCe DHTHHEN T RIZ/A2 S D% | 26 ol
sRAIC & 2 mIRSREE ) | & B O A N T 5728, Cr &I 23%ICIE SN TN 5.

(W &)

ERsE EFs L O Laves FHOATHIFRILIZ LV @iREEE 2 W EI®550# & LT, Mo & W OiE A
NEZHID. Mo & W ZHET 5 &, Mo ORINEEIRIEE R LA TEdH 0D, Cr &
73 20%LL ECIIMEALAE T o B tHOFT HANBET Hhvan* . —J7, W OFINE Cr & 20%LL Tl
Laves flZZE S, M OBMED Ni M T L2a< 225 %) =7, Cr-Ni-Fe-Mo
HKTIL700~750CT 1 TR A 2 2 R 27 U —7 A A 522 &, ot Z&EICHTHLTZ U
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<, BMEBEND. 2072w, Ni-23Cr-TW G4 O A FiZiE Mo TiXZR< WATEH STV 5.

Ni-23Cr-7W &4 Tlk, W I3#9 3%23 BV L, 780 25 Laves FHR° MyCe DT HHIC 545 2. =
D=, WEEZ 3% L 1% THEET 5L, T%DIE5 BEm2 V—7RERGLND O . £, Wi
) 3~THTLEAL S HI2 & =D 700C, 10 FHEH O 7V — 7 RWHS ) 2 bl d 2 &, W 75 6.0%
LI R DIEHRE 7 v—7 L 2Ll Lo @ 7 v— 712500 2, W B% 6.0% L35 4T
44372 Laves FHOAT (L3 G LD . E 51T, W E55%E 7.2%0D 44 % 700°C TR HEH R4
Bl 12%84a01F )0 Laves HOMTHIEN LN 2 . 26 OBRFHEENS, W BT 7%I2HkiE
INTWVD.

(Z DD L)

A —ATFA MEIZND & N 22U 25 &, NbCrN O (L & N OEEEic LY 7 U —7
SRIENE BT D L LG, @mNEEATHA—ATIA MIICW ZEMLTERS
U—7HEDN EE2H-TYH, HICERHZ U —7MEMETT 5. 2k, WITBLIRENRY (o
) AT A RE U, RFFR 7 VU — 7 WrR L E I 2K T S 57290 Th H. Z D72, Ni-23Cr-TW
BN ZRINET, NIk TAH—AT A MLEIZK->TND D,

Ni-23Cr-7W &4&12iX, Ti, Nb, B 6D EBIM D, T4 D DILHEIT MpsCe D — 43 TN R
Nbo. Tikhbb, 7 ) —=7EROYMBREICIKWT, TiC, NbC OE T S T-HA128,
H72 MsCs DI — 72255 Hihr i 230 % D% | BT Laves DI HIC A KIZ L, B ORI &
Y Laves FHOMTHIEFIN RE 2 0 | O BIRMIC LV Laves FH A4 BRI H &, B EC
I —THRERLESELLNTEL Y.

DX H I U TH G S 4172 Ni-23Cr-TW 442D ASME %8x8 (ASME SB-167 CC2684) ik
5y % Table 1-1 (27”7

Table 1-1 Chemical compositions of Ni-23Cr-7W alloy in ASME standard.

(mass%)
C Si Mn Cr Fe w Ti Nb B N Ni
21.5- 20.0 - 6.0 - 0.05 - 0.10 - 0.0005 -
< < < < i
=0.10 =10 =1.50 245 270 8.0 0.20 0.35 0.006 =0.02 | Remainder

(b) Ni-23Cr-7TW &4 DT HIFE, k2 & 1

FHR CRIFHEER S DR A TEE TIF, RIFMEA%L OHESKELS LT EZ L0k
T, MEOMBRZ EVEZRT D MERDH D, £, MERLERIIBET5 2 ) —THte b
BEHAZBRT D, Ni-23Cr-TW 5421% MpsCs & Laves FHOHTHITRIL ZTEH L TV A 728, Zhb O
HriH @O EENHEIZ R 5.



Ni-23Cr-7TW 6@ 7 U =7 afia 52 5 &, fli72 MpCe 2327 U —7 HIIHL, 7 U —7 il
I FIC%m 545 %) . 700°CTIE, MgCe DATHIE 10h TR THERR SN D DIZ%E LT, Laves #HD
BT HI 25 HERR & 41 5 1% 3000h 2 T 0, Laves HOHTHIE MaCo DHTHI & 0 25V * | Laves
FRIIHTHBHAR DS B V2T Tid e <, RFFMICE - THENZHT M LT 2729, ERFFICE > T
Laves AHOHT HSRIL DR E B 5 O

F72, 7 U —F %I Fo-Cr MBI SN D L OWMERH 5 0% L Ni-23Cr-TW & 4a ORIk T,
AFKoa-Cr FAHIFATH L7220 28, Laves FHINO Cr &8 17%FREE & FAH L DKW 7=, BEFE L Laves #H
ORI Cr BHEH S TREN I L, A ClXa-Cr WLEEICR T B2z TWE. £, 7
U — 7 HITIE, 96%W-4%Cr DL T D a-W ORI OR bR SN TV AR 9. 2 b
H 723 Ni-23Cr-TW A& OFEFEIC LIE T HBIL E EH LT,

(c) 7V —75aE

HR - BIEOERRERESE, BT HRA TEEITIINEIC L 0 RET DIGH N EIR TRRE
AR SND720, 7V —TReVEIARA TEE A EHCER SN D RO TR b HER H DT
5. 7V —TRENGOVMEHIEDODRELZ /NS TH5ZENTE L0, #iix /M Tz
O, WHENEGIZRoT0, BUS MR S AV T AR B S L7 0 T HREDNAET D.
Ni-23Cr-7TW &40 7 ) — 75 TR MR TRMITR T 5 L 9/ 2 &i3an® . Zhug, B
IO & & HITH T 2807 Laves Fi23 2 U — 7 REDREICHEET D720 ThHD 2.
Ni-23Cr-7TW &4l%, KRBEERNORA FEEICHETN SN LBH LA —ATF A FRAT LA
8 316H 2T o U — T BREER KR Em 2% 0 Alloy 617 &b % &, 700~750°C Tl
Ni-23Cr-7TW && D E 5 B2 U — 7 B\ENRW A, 800 CTIkZDEN /ML b, i,
Ni-23Cr-7W &4 D3R LI Td % Laves FHiE 800°C THHT T2 * dizxt L, Alloy 617 DiffLiHT
B BYFITIRE O EFICEOTHHEAZR L, 9 800°C TIRIFT N TAEAT -0 ThHD 2.
T2, BB EBVLERERE 2 1190°C & 1230°C & L7= Ni-23Cr-7W 44 TlX, 1230CHDIEH 7 U —
TN 725 %)

RA TREORERIZIX, A TERENSHHBTN TSN 5508H 5720, BN LAZ Y
— BRI RIFTRELFHI SN TWD . BRI T TEMIEAIND Z LI X072 R
UL, 27 U —TmEN ) By 5 5%

(d) AnTE

RA TR % BES 5 72 OIS B 2R BN T D FFAT & 520 S 41TV % %2 L Ni-23Cr-7TW &40
BRI T Alloy 617 X 9 #41, 900~1200°C DIRFERE TIL 316H L R Th 5. MBS EM: % 2
9B w FEMEIRFE 1% Ni-23Cr-TW A4 D1% 9 3 316H L 0 K\ 7=, 316H L 0 IXEIIN TS 5
DD, Ni-23Cr-TW A3 R A TEE FMEE LTHA AR THEEZ A L TEY 2, fEkOR A
THRMERRRICZ ANV R« Ty v a XUFIEIZ L DT L A & A CRBRIERE ORED AT
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TH5% . Fig 1-4121F, TANL D« Ty a XU FEIC LY 8% Sz Ni-23C-TW &40
BRIEWEZRT. £i2, BA TREORERFIZ LI L 72 20BN T2V TS, Ni-23Cr-7W
BaOE BT I TRFOM M S, WERBDFEILE ITWHERORA T HA—AT A MEE & [FA%
ThHY, RATEEE LTHORBEEZE LTS ™.
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Fig. 1-4  Appearance of thick-wall pipe of Ni-23Cr-7W alloy (Outside diameter=635 mm,
Wall thickness=72 mm).

(e) VEHEME

RA THEMORIEITB W TIEHEIIAR AR TH Y, o, AT T U RAOBRNG bIEEMEN
VBT T8, Ni-23Cr-TW A& OEEHED B, WHAKFOVERFEEAEm ST s O
Ni-23Cr-7TW &40 Alloy 617 72 E D= v r VEEG & T, SR b=y 7V AR LR 5. Th
D OEE T, RO Al Ti OBLIHREIC L 2B E@BRO 7 ) —7RER TR THEINS O,
WE, TIGVEHENSA SND. £z, KRB TIG ¥EHEC X 5 Ni-23Cr-TW A& R A OFEEFIEN
fexrEnTung 9,

Ni-23Cr-7W & 41, Alloy 617 MiE#E4SEE AW T TIG AT 25 Z & T, KA 72U kT2 R
T, REITTORBIEME, 7V —TRELHETE S . ki, BRERTOREY U —F
HER O B L OWEZ U — 738 P Ti, BT < B ST 5.

EIRE = v VRS EIE, SR OISR IS M T 5 TAELT S SR Fin
(Stress Relaxation Cracking) 2MEIZZ2 53E 03 H 5. SR FIFUESZ MR, IS JIFEFIE L % &k
TOMEIOIENE & FHACEHE L T 5. SREIND X 5 RBWOT HEE O IRE A HRT 5
72 DRIR O ZIHFE (1.0X10°s) 5[3EER T, 650~750°C D FZ MR A kI35 T, Ni-23Cr-7TW
BETH RN T B T b i\ OEITIENE 279 % L ZAUSkt L, Alloy 617 iy A O Hiskk:
IZRVRINITIZ E A EERET, OFTHEMZ D ERIRDEI D 7o ORNEM: % 7] L, Ni-23Cr-7TW
BADIE SN Alloy 617 L 0 @& SR Bk HT 2534 ) . F7-, Ni-23Cr-7W 4412+ % SR
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JLERIR 1L 900~950C T ¥, Z D SRAERE ThHiE, SR LBRME OVEHEMFILY U — 7 3Bk
IZFB W TR Tl /e < RIS Chlibr9-% %) .

Ni-23Cr-7W &4 DIE#24 812 Alloy 617 VARG R 2 W TR ZEHI 3 20, IsBEaE T 4L
BISIERENZ LT 5 20 RIEHEERBR ORI LD DT s O™ | R oR
X, B - R, BRY, ZOMEEHOREE T D720 ITIEE 272V D)8, Ni-23Cr-7TW
BETIERDORA FHWERKDO T 0 ATHEEST L2 ENTEOMEITHY, BWIERT 1mE AE
HICE VRS TERE & LT HoRm#a A+ %, £, Ni-23Cr-TW &l d @i R 2hig Ot
4 Alloy 617 L v EN D ™ .

1.2 Heffrafe
121 A-USC FERA 7 ~D Ni-23Cr-TW &4t i O Ff
AR D &IV, Ni-23Cr-TW G40 A-USC FEE~DE M) TR~ OFHl A ED b, Fi

Ev I T v TOEELITPN TS Y . L LAns, R4 TEREICERSNIEED —>ThH

BIEF ROV TIEREIRD —EIRE T TEAME P RolREE2 Mz 2aRER P~ oo
THEAMTHRBDMENATONTNDEDHTH D, RS TEE T, ZFEOES) - £ 1RO
T ASEN A D BRI S R S5 2 21T K o TR LBUS I A S5 28, Ni-23Cr-TW
BEORELD FORFRME, TRObLBVETRIECET smFHI Tbh Tl b T, £z, KA
ZHE & L CRBIMGEA L7z & & OB FRIECBT 2MEt bIThbitTnigu.

Ni-23Cr-7TW &40 L 9 7o = v F VA SIL T = 7 A FRIEH L 0 SIZSRENm W2, fEk
7T A MAMEH SN TE L FRRE R EORBRERNE L=y IV EGeLZEHAT L L, WE
FHOREZATER U TRET 80T, BOTHRKEL ALY, TOREER, BULT - BOT 4
DR LN L DBE T HREPIER LV REL D Z BB EENDH. 2D X 51T, Ni-23Cr-TW &
BORA FERE~OHEPIZ DT> TE, HER RICBYE 7R EOFHM A EEIZ 2 5.

FE, JASIRRE R EOFAERRE XL X —OIFANGEITHEML TWER, Zhbo
TN —IRRRMOEEEZ T, HWOBRELEHT L. ZOHNEBHIST D70, Z
NETREZMbTEGE L CRB ST _—20— RERE L TERA S CE=aRANFEEIC
BT HAMMEBERED? KO B, WEORE)  AF IR E RN EN LB -7, &
FENE DA REFT 25 L S5 252 0RIUZR 57 LTnE O - Zo k)i,
HKEBEOFEEEL L TCOARKNBEOKEN I NETU RICEEL L7, FHEEDOE
g - AF 1L ThR, Ao FEEIIIZEORELER) & Ut BUS IR AR S ND K9 ICkko
TEY, ShiEx RA TGO RERHR N BRI 5 %

PLEOBRHIZ XY, A-USCHEDRA 7B IZ Ni-23Cr-TW &4 %3 2 720121, @Rz
Héfﬁ%ﬁ%ﬁﬁb/Ww&]@k@@@AUKﬁE@ﬁ%7ﬁ£m@%ﬁk®%%%%%ﬁ
THZENHETHD. £z, Ni-23Cr-TW B4 O BT 77 FEOFHN & FmitiiE & i 5 2 &
HLHEHETHD.



1.2.2 Ni-23Cr-7W &4 D EE 55 75t sl O F e

A ZEEAMEICIE, ®iRO—ERE CER LAWZZ 0 58 ORFRHEICIZ T, 3#E
77 FOREHE) - A IR D IRELE) T CMUR UAN &2 T2 A OBE 57 R O MR S BT
B 5. BT REIXE OREEBFEIPHO T X COMREICBIT DM ELZ T 5720,
ZNE, IS EhEDH N IS M LIRS 7 & %R J7 e AL S D IR7- 23 $ 5 5 A I3 BV 5 F
PMMETT 5. 2078, UiZiREOMEHEED DR EEZ T 5 —EIRE T OWEFFHFMIHT
B LA - TRIAEE LW L RIS, IR THEE LAM 2T BIC Y U — T O
M2 L FFMITIRT T 503, RE, IG5/, O T HPEERNC 2 LT 5 8% 57 54 T CTlast et
WCAMEINT 7 V=7 OTHEEENIIROD ZERHE LN &Y, YRS FHaoitm - 7il%
HELS LTWAERKTHS.

7 V) =T EIEFOEBIZLD 7 V) —TEIRIE T OFmMIEE LTE, AMOBR LED S

WG Z, ARMERNL 27 U —TFHREZZNEARY, MEEZELADETY U —7E51RE

FRHE 2 AR O WA AR GRS L A SN T 5. BIBRERTIXSIES V—7
LB LIEM S VT I X DBEOEEZFMT 5 Z LIETE R0, JlEY U —FIC L 548
EDIE D BIEMEZ V=7 I L BB LV REVHEINE N | Z05EEERD 7 U —T O %
L BHBEOEEEB/T L LN TE D2 )= WHHMHEEE LT, ORIy Sk 2 2
MRINTWD. OFTHHHSENEITRE EMEO 7 V=T OT R L 2BEOELZBET L Z
EINTE BHEMMBETH Y, o, BN HMMICLEMATETHS 2 . 0P hmbsEE
IIRFEOMEL, HWas, &Y, BEERTRED 7 U —TEsHFEmaMEICEH S, FER< Hm
A TE B Z L ARESR TG %)

OT HHEHDENETIHBEEOT AL 7 U —FOFTHRGEM & EMFER TR KIS & X, o
BHZ 0 ik LETéﬂé#%ﬁUTﬁ@ﬁﬁAb@iF@15_r¢4ﬁﬁfﬁb FEREOT B
HiHAg 1 2 D 4 FEOIEFIEOT 2G0T Ay (ij = pp, op, pc, ¢C) ICRBITED B XD, T
ﬁb%,A%&Aq®%%iuT®KT§?_&#T%6.

ﬁ

A&y = Agpp + Agep + Agpe + A (1-1)

TIT, ey EBIEBIEOT I L ERIBEOT RO E L, Mgy 23R U —FOF 7 & JERIB
PEOFAROMOIEL, Age 231 BEWHOTH LIERE 2 U —FOFHROEVIEL, Ase 2532 U —
FOPHLIENEZ ) —FOFTHOM 0 E LI L HIEREOT AR ThHS. 2 LT, Zhb 4
SOIERIEOT BRI KIS L7 ARHE A DR % Ny (6] = pp, op, pe, co) WEIET 5 &5
%, MR OF G N2 EUF O BRI TRHET 5.

1

1 4 1 1
Ny Npp  Nep Ny

+ (1-2)

1
NCC



Stress

Stress
Strain - Strain
Agyp
Plastic
(a) PP type. (b) CP type.
Stress
Plastic Stress
! Creep
Strain EA_S Strain
Creep Creep
(c) PC type. (d) CC type.

Fig. 1-5 Inelastic strain range components of strain range partitioning.

O BN ENEZ O, Z2< OMEREERD 7 U — 75 Hm A RER I+ 5 2 &
WHRETH D03, BIETHMi~OEAIITIREN S 5. L, WRE, 1571, O3 Zp
N T HBYE AR PIZAEL D7 V=0T hEERMNIKRDD 2L THD. miR—EIRE
TIZBWT, EHAMTDZ ) —FOFhEE RS FERTFELS LTE, Manson 5 * 7% Rapid
loading 5% #2222 L C\%. Rapid loading £ CIE, AR FIZEBROTHREMAL, AR T
ERBHEOTHIFAREDOIES) — O T RIEEDOENS 7 ) —TOTHhEEZRD L. 0 BRIk
% Fig. 1-6 (& HWTLLFIZHIAT 5. 5 AM R OIS — O 2Btk % P dhi# ABCDE & ¥ %.
SIEAR SIS 0 12> 720 (KF D B &) T2 U—T7OTHORELTHETE D EVH
ETOTHEHAL, 71U —7OTHOEENGEINROIGH — O 2t BF 21525, #hi#t BF
FieBWT, EHRBRFR ORKOTHEARK (D K) ORARRAETLHE D ET5. KAk
Iz 7 V=7 OF B E LTS — O T EfRIZH#E BD &> T eb DR, 71—
OFTHPECTZ L THfRBCD 1272572t BX D5 ENTE D70, DAE DROOTHDEE
) =T OTHELERT D, Fig. 1-6 @ITLIROEHRNNT B2 HA L TERFAMT OG5 ) —7F
OFTHERODLEITHDN, Ffg7 ) —T7OT HZ2RD DGEIIEMAR IS 012782 E
B BIEMEDOBEOT HEFFAL, AR T & EMHEEOT 2FARF OGS — OF BB D7
MBIEMGEZ V=T O0THEEZRDD.
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4 Stress hold
[%2] —
n F . /I/ °
e .
R Low strain rate
S ) 5 D ~ J
High strain rate  ,%
N/ v/
1

Strain

[ .. | H /" Strain

&///f |

Stress interval

L~
A Stabilized hysteresis loop

(a) Rapid loading (half-cycle rapid

load-unload) method. (b) Step stress method.

Fig. 1-6 Inelastic strain range components of strain range partitioning.

Z O X 91T, Rapid loading 4 HWAUT—EIRE T CREFAMPIZEL L7 )V —T0UOT H%ERD
HIENHRTHD. ZOFELRELOTHRRERICET 28U AR T D7 U —7 O3 7
FHiCEA L LD & T 2L, MEOTHREMAT LR, FRFICEE S I TE L S 2 HER
boH. LinLiens, BBANOIREZ —HKICkoToEE, 7V —TOTHhOBELEHTES
EE ORI CIRELB ST S Z L IIREERZ E 8%, £, RICEECIRELB S TR0
OFTHEfHATEIE LT, BEITAM TR KROTHAME (D K) OIRE L @l AR DG
71— O B ECRROTHARMEOEN BN HEAET 548 (D) OIRENRRERLZLITR5.
BENR D LB O] — OF Al I T 5720, B DREDIRT)—OFTHIEEDZED
57 ) —7OFThERDDZLITTERV. 20Xk 912, Rapid loading 4 By Jr AR o 7 U —
TOPTHHmICE T 5 Z LT TE R0,

—77, AL < Manson & % 2355 AR D27 ) — 7 OF B3 & L THE LTV % Step stress
BRITEE AR ~OEA b ARETH D, Fig. 1-6 (b)IZ"9" X 912, Step stress i TIHIE I AR I
SRR LT V=T HEEZRDD AT v T E2EEDIS L~V THAL, EHART OIS &
7V —THEORRERDD. WIC, ZohE s ) —THEORKREZHWT, EHARH O
NPOERERO 7 V) —THEZRD, TRERHTHES L OETAaMN 1 A 7 ficETs27 Y
— 7 OTHEEMT 5. Step stress 15 TIIIE AR HOKRERIZIIT 5 7V — 7 423 5Tk
L1280, PEIAMPIIRENEB L CHEREAD 7 U —TEELZH{LIENTEDH. 20D,
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Step stress IEIZEE AT O 7 )V —T OFTHFRIC b #EHTE 5.

Z DX 9T, Stepstress IHIFEE AR T D7 U —7 OT HAHIC#E A AT RETH DA%, BRSHE
HTHD O 2, BEEOISHERPVNETHD-OEZRKARREMEZET S, £72, WiE TR
T 25 2 LI L DB BHEBELREERICAE U D ARKRITAR SNRWT U — T OF B T Fm I
HEERITTEEZONDIZD, ERANRTIEE TS 272\, Step stress TEIZIZZ D L 5 78>0
ORERN S D 0N, —CIRE T CHEHM S 7= 316SS #i oD ik 775 BR 12 381 T Step stress 1:12 LV
WHRRF OIS EEH Y — T HEOBMRERDI-L 25, BligFER L7 ) —TH BRTRD
IR EERE 7 ) —THEOMGELERE ThH-T-Z ENRESN TS . ZoEEZITT,
ZIAS P 137 )V —FRROROEIES &7 ) —THEOMFRE AT, BUES AT OS5
7V =T OTHERD DM TIEERE L, SUS304 SO EE T Haatliici@A L Tnb., ZoF
BIZ XY, KR (e 550°C) OBYE I &t CIXmSEICHEMIME T 2 Z EAVRSh T, L
INUZRN D, @ik (R 600°C) OEVE IS TITpd L bilie T& 23k E TIZRn 2 & AVR
INTHEY, Fiz SUS304 HHLIAN~DH IS & B H T,

ZOXHZ, BIEFAMFOZ ) —TOTHBEEEENIRDLZENHELNLEHY, M
BB 57 A 2 A - TR 2 2 L3 LV 23, Ni-23Cr-7W &4 % A-USC X ED R A FBlE I
AT 5 72 DICIZR A EOBIE FREZH S hIc L, BYgs HFamihik 2N+ 5 2 ERANET
bbb, TOEHITIE, BIETARTD s ) —FOPTHEHbEZ S L, BYE 5 76 Ok E %
FOLZENHETHD.

1.3 AHF7ED B &K

AIFFEOFETZ D BHNTLLTFD 2 2 THS. 1 2HIF Ni-23Cr-TW 54 O @RI 55 Rk 2 55 L,
A-USC FEH A A TEE ~Ol A ERFT 52 & ThbH. AUSC FETIXARA ZEEIL 700C
OIRFEIZHE SN D 72, Ni-23Cr-TW 44212 700°C THER LA S 5 2 D25 O 5 RE, 3
KO, BET T2 bORE) - 2RI D SR 700°C OB 1 7 Vs bz BT 56 O EE 5
PEZFHIT 5. 51, BET 7 MIGIERTRYBEN SN D720, 700CIZRFF#G S 7ok
ORI I R & T 5

2 S H® B Ni-23Cr-TW 542 DBV 57 Ftn s ATE DFENL Tdo 5. AR B9 2 BV 57 A far
F D7 ) —TOF HeHMEZ R L, B9 F e ORI E R &K 5.

AFwSLORERL % Fig. 1-7 1R L, SEOFEMEZ LLFIZih %,

552 B TIE, Ni-23Cr-7TW &4 D AR 22 @RI 77 Rtk 2 B 5 2MZ T 5 72912, A-USC FEETD
AN SN TN D 700CO—EIRE T TEE L r UV —TRITRBROERE £ Loz, AW
T LI F o O BR OFEH-CHEEE R OB Z T, 7 U —TOTHBEHFEMICKIETE
AR L2, & 512, Ni-23Cr-7W &4 & [AREIC A-USC S EDO R A T ELE A CTH 5 Alloy 617
DUV —TITRHEZFHE LT Ni-23Cr-TW &4 & il s 2 2 & C, IR OBLE 25 A-USC
FEDORA TRAFIHET DM EHZ OV TRFT L 72
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55 3 B CIE, Ni-23Cr-7TW & DIREEZE) T ORI Rt &2 B 5T 2 72012, femnii % 700°C
& LTBR TR ORE KA £ LT, BYRITRIET OFMCBEREAPI LT L, BYEI
DXFLOT I ONWTHRF Lz, & HIZ, BEI73 B R 4 700°C— & OSHRNE 57 Bt e & ik
L, Ni-23Cr-7W &40 BV 55 F-fin & I 77 F5 i O BIfRIZ DWW TR L7z,

5 4 FCIE, Ni-23Cr-TW &2 @i RIFFFIE S NI & S O TRMEEZBH LT T 57201
700°C Chigk 5000h Wh L7=#4 82 FHWT 7 U — 7 57 3lBh A Falli L 7o/ 32 £ & iz, miRFERh
25 Ni-23Cr-TW & D P 57 FF - PRI B AT 32, B RO, 6 — O T ZUGEI KIF T 5%
ZiRET L7z,

F5ETIE, BYEHHEMMELZRE L. §4FE TORFHTENT, Ni-23Cr-TW 440 &

BF T FMILT V=T OTHORELRESZITHIENHALNITRST2D, BYEITTART I
MEHCAL B2 V=0T HEFMT 50 LOWTEEZBRL, TOTikEOTHEMHE Y EEE
W B T R R AR Lz, & LT, $RRIEIC K D Ha el TIE & B 57 77 S 120 B
T —A % FE LD

6 mTIE, 5 B TRE LBV Iy Fama s O MY A BET L7z, Ni-23Cr-TW &4 D B
57 FF A A AR BE & MR 5 7o D, FEAMIC B AR B 57 A O fe s IR IS 1T D MR LIS ) — O
AR, BRO, RO RGP & FHam ORI Z RO 721, BUE 73R & kG F el 2
Tole. MBBCIVBERS BT HMETMTELI L, BRY, 1ERIEZVEENEND
xR L. EBIC, BADIRESRN T OB FMiHi~ORZEOWAME L, 7V —TH%
FEE DI 6 2 & BB [ L 7o BYE 77 FFma iz s SV TR L7z,

BTETIHE, KX THONIHEREE LD, SBOBEE R~
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RA TEE H = 7 LA 4 Ni-23Cr-TW O & IR0 55 B 2 B4 A AF 48

WHoEt s, PR,

1

ARBFFED B, HERL

i i

2% Ni-23Cr-TW 54D 7 V) — 755
ek o R et

+ Ni-23Cr-7TW &40 7 Y — 7 57 F54n O FEA
* Alloy 617 £ D 7 VU — 798 55 Rk D b

¥4 Ni-23Cr-TW 540 7 ) — 7457
B2 R T h o B 2

- Ni-23Cr-TW &0 7 J — 7Y 57 554,
R U ) — OF B BIFR I RAF T 15%h
DR D VAN

3% Ni-23Cr-7W & 4 D 2z 55 i
DFgEt

* Ni-23Cr-7TW &4 DO ENE 55 Fam,  B% 57 51
T DI — O 2 BLR O FFAM

o B 55 7 O SR IR - O R

- By Fn & IR T Fm OBRICEIT 5
B

6% HL% LI5S AR O OB

Ni-23Cr-7TW & 4 D BV 55 F5 fin e Al 1 D et

____________________________________________________________________________________

HEE

B 5 A D 1R R

s BIRGT AT O 7 U —T O BEHE & O B EIH 0 FITE 2 O T B 5 A Al R D IR R

Vv

EE

- PRFEIT KD Ni-23Cr-Tw 58 DB 55 F7 i aTAl & K L ARGIE
+ B L 2 i 00 T2 BV U~ OFRZRIE O3
- 7 ) = TRITRHEDIX B O & 2B L I B T AR A

W7 e

Gh2A
NG A

Fig. 1-7 Structure and flow of this work.
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2% Ni-23Cr-7TW 540 7 VU — 7 55 etk o da st

21 H5

KIVFEET T b ORA T EEITE OWNHME O ZECIRENIC X 5 BRI - IUE O 72
ko T, 7V —=TERNAEL D KD RERE TGS, BROTHBEYELARIND. &
D=, A TEEIIT7 V=T L PNEE L7 ) — IR T OREBFHENERINS.
T 2 TARETIE, AA TERE OV Z BETT 2 7290 0 Ni-23Cr-TW 54 D B A 7295 55 R 11 %2
R 572, A-USC FETOMANMRTT SN TS 700°CIZRIT 5 7 U — T H 504 T O
BtE 2795, 72, Hlht & LT Ni-23Cr-7TW A4 & & 612 A-USC EEDRA 7 FLE Alits
Thd=vr/VEG4e Alloy 617 O 7 U — 757 B2 £ L, WtrkEto 7 U — 757564045 T 0
AT 5 2 & T Ni-23Cr-TW &40 7 U — 7R EORFR & 7 U — 7Y% 57 756 O SRR 1
IZOWTHRETT 5.

2.2 fEEA

AREBED 7 ) — 755 BRIV 2 Ni-23Cr-TW A4 & Ll Alloy 617 Dfb22# AL % Table 2-1 (2
797, Ni-23Cr-7TW 54213 Table 2-1 1278 L2y OFET & LT 20%58 D Fe 2 G H T 5. Z D78,
Ni-23Cr-7TW 54136k = 2 N T Alloy 617 K 0 HFRIE WO KRR & 5. ik kL& © B2 R4,
EAHISEE, EMEIELE TR S 20mm O & L7, 1220°CC 1 W PRFr %K O EEE L BVLER %
i U7z, A D Ni-23Cr-7W B4 13 B M T, R ZERIE 2B L= C/ER L TF
D, BIRFEM L 2RIV TEME RS0 2 Y —FMEL2ATH 2 L 2HRLTVD DD it
A O T E A Fig. 2-1 1237, fEdmRLERE 513 Ni-23Cr-7TW 54278 2.0, Alloy 617 28 1.7 TH
%. Table 2-2 121, SIHERBRCTROI-EIR L 700°CIZHB T DMBAFHEZ R, 7258, SIiEHBR
(ZIREALE 6mm, SEATHNE & 40mm O SUEERER 2 U, A EERE T 30mm & L7z, 0.2%iffif /),
S15EIR S 1% Alloy 617 DI 9 3EWOIZHR LT, &Y X Ni-23Cr-7TW 54 D1E 5 AR E L,

Table 2-1  Chemical compositions of Ni-23Cr-7W alloy and Alloy 617 tested. (mass%o)

C Si Mn Ni Cr Mo W Co Ti Nb | Sol. Al | Fe

Ni-23Cr-7W | 0.08 | 0.20 | 1.02 | 45.0 | 23.6 - 7.1 - 0.10 | 0.21 | 0.033 | bal.

Alloy 617 | 0.07 | 0.48 | 0.52 | bal. | 22.1 | 9.0 - 12.7 | 0.32 - 119 | 1.52
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e il e 5o S
100pum
(@) Ni-23Cr-7W alloy. (b) Alloy 617.
Fig. 2-1 Optical microstructure of alloys tested.
Table 2-2  Mechanical properties of Ni-23Cr-7W alloy and Alloy 617 tested.
0.2% proof . . Reduction of
. Temperature Tensile strength Elongation
Material C) stress (MPa) %) area
0
(MPa) (%)
25 270 666 57 66
Ni-23Cr-7W
700 167 459 57 49
25 355 760 72 64
Alloy 617
700 226 494 49 39

23 7 U =TT ik

7 ) — 7R RER L, B 10mm, ATEE S 30mm OREERBR T Z AT, @ EE T E N
B ) & BB AUIE Y — R R B T L7z, BT AT o & s T AT EE L, AR
M TR O REAZIC X 5 8 J5 10 O TIE 2 B2 U7 B IC R BRICHE U 72, 3BT DR I3 R B BVEE
O Fr T A BEEE 25mm O OV CRAAN L 7=, BB IR, 700°C—EDEE T T, O Al
TENE L7z, O3 ABEIBIE Fig. 2-2 1IR3 XL 918, ZBRMIRY =MIEIFO PP (fast-fast) ¥,
CC (slow-slow) #jZd KON CP (slow-fast) ez & L7z, U9 ZdE I Tm® (P) BAfifZ 0.8%fs,
s (C) FaMi& 0.01%/s & Li=. 22T, 7 U—7ESRBIEOHK TH 5 ASTM E2714Y (213,
RE O E & HICRAERNPKE D7 ) —TOTHOEEL 72 372512 0.1%/s DO il
BEREEMEND ERBENTV D, £z, AAMEEA ORI 7 V57 A BRiEmEYE 9 1
BWTH, FEATOTHEE 0.1%/s DHEES N TN D, 0.8%/s 1L LY+ @V ONT Al
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EThHoHld, mEAMTIAELL 7 ) =T OTHIIEHTELIRETHD. > T, Fig.2-2H
WZRLTZE 91T, PP TIIRIE, ML IC7 U —7OFT HITAM ST, Afr S5 IEmE
OTHRITBHEOTHOHREBZZ D ENTE S, —J, CCHITIIRIE, EfEE bBHEOTHRIZ
MAZTZ YV —=7OFHBRAG S 4, CPEJE TIESIRITBEHOT L 7 U —TOF 7, JERMEITENE
OTHOBZPEATTEND.

EREDRA 7 BUAE (TIXE O O IR 220 SRR NS K 2 BVEIE - IR O R 722 £12 K> TE
JSIMFAET D, ZOBIEINIE ORESAALIFF L, EOMITIIRZR LI L > ThIRIG T &
72 B & & RIS N2 B EEHTNA LS. @R THIRIG ) & e A EFTIZIXBIE S U —7 O3 A,
R CIEMEIG /1 & 72 DEFTCIZERME 7 U — 7 OFT HBRAELC D720, B, JEfOm G027 ) —7
O BNE T FMIC T T HEEZRFNTILERDD. L LARNL, I —ATF A MO
BECIEBIEZ UV —7OFHnMb 5 L, JEMEZ V—7O0FTHBMbL5GE LD RKE JEHFFmD
EFT2ZenMbNTND >0 207w, KETIE Ni-23Cr-TW &&0 27 U — 75 Fik &
LT, 5liRZ V=0T HRPAM SN EICERL, CCIERIERX IV CPEELZHWT Y ) —7
W% 7 IR A 2kt L7z

CC W+ LU CP Iz 3B i, Rapid loading 7 (Half-cycle rapid load-unload method) ”%
WTC, REOTHRAMFICEAINTZY V=7 OTHhEZRD. Fig. 2-3 (@)l21E, CPEEOR
Bk 4 f11Z Rapid loading VA2 L% 7 ) — 7 OT H&EDREELZ T, OTHZ#EVIRLER, K7
—OFTHIEENLE LIz A 7 2B T, SIIRBROKEOT AR RIS IR EriZR o7
i (o 0 45) TOTHMEASHICE ) B x, SHOTHAERAHRAT LS. KEORRT
X, OFHEE 0.8%/s DEHOTHREHEIFA LD, ZIUTRRRDO L BY 7 U —TOFHDFHE
AEBEHTEL0THRETHD. mEOTHEEEFHFATDAIOE A7 U & Z—TDRKO
THARRE AR, TOROIEN % op & L, miEOTHIEEFEAREOIR ) — O3 H it - Tt
Mopllle B RE BRETDH. 7V —TOTHBELRWGRETIEToa AT 5 &, Hifk OB ©
ST —OT BifRIZ 22 503, RO T AAMHIZ 7 U —FOFT HPA U7 Hhi#E OA DIt/
—OT AR ST B XD, ZLT, ARE BROUOTAEZIKEOTAAMPICAE TS
V=T OPREEFRTSH. CPIIE T TIHSIES UV —FOFTHOLBBIET D20, @O
FATBIEH I OAHZFFA LA, CCER T TIEBIEZ V—703FHRIMA T, EfgZ V—""1
THEIET H7280, Fig. 2-3 (DR L2k 912, 5IEG A & LM S MO H I @O T & & ff A
LCREBRPICEAINTZY Y —TOTHhERDT.

R CIE—EMRE CEEOT AEE AL TAMEN TN 7 ) —TOFTHzERD, FHi N
D 12 ZERBENTA T NVTRDIZ 7 Y =T OTHEREMEE LT, TORRTARSNTZT Y
—TOTRE L. F72, RBRTIIEYA 7B DRAGIEGETREL, 1 YA 7o
e RBIIRIG 3 7 P IO & 25%IK T L 72 Mkl LS & 6 Ne & B35 L 72,
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Strain rate (%/s) Applied strain
Strain waveform
Tension Compression Tension Compression
PP (fast-fast)
+
Elastic Elastic
pp |- [UIAAMER AR R M 08 08
& T ime + Plastic + Plastic
i 0.8 %/s
CC (slow-slow)
+ / Elastic Elastic
cc | & A 0.01 0.01 +Plastic | -+ Plastic
n Time
+ Creep + Creep
0.01 %f/s
CP (slow-fast)
+ Elastic
ANANL Flastic
CP |g 0.01 0.8 + Plastic
Z l/ V Time + Plastic
+ Creep
0.01 %/s 0.8 %/s

Rapid straining o
(high strain rate) \ &
Plastic strain &
3
Elastic strain <
o /P Az, Stralin
Ag |

Fig. 2-2  Strain waveforms and applied strain in creep-fatigue test.

Creep strain

S Stress

Elastic strain

(a) Under CP type of strain waveform.

Stress

Rapid straining

(high strain rate) |

Plastic strain

Elastic strain

Creep strain

- Elastic strain

in

S /<
™~ Rapid straining

Creep strain

(high strain rate)

(b) Under CC type of strain waveform.

Fig. 2-3  Creep strain defined by rapid loading method.
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2.4 Ni-23Cr-7W &4: & Alloy 617 D 7 U — 7§55 Ffiy

7 ) — 79 57 R TR O 72 Ni-23Cr-7TW &4 & Alloy 617 @ 700°CIZ BT B2 O0T A #ilHAg & #F
it Nf DBIR % Fig. 2-4 (277, Fig. 2-3 1R L7 K 918, AglIilBr A I AfT L7z O RO L BhiE
ThbH. AaBFELTHDHYA, Ni-23Cr-TW /54 Tlix PP Il FToFmMk bR, CPEE TO
FNRbE. CCHIE FTOHEMIPPIILFE CPIEE TOMTHY, Aga P KEWEMTILPP
W T DOFEMIZEL, AaP /NS WERMETIE CP I FOFEmIZIV. Alloy 617 [IZB W T, FHm
MEWIND PPIEET, CCHET, CPEETOIETH Y, Z DAL Ni-23Cr-TW &4 L [F ©
Th2H, PPIEIE FDOFHfm & CCH LV CPIIE FOHFMmDAENKE V. T7b5H, Alloy617 T
327 V=T OFTHRBARENRNEL L 7 V=T OFRNARENDFEOFMENRKRE L, 7
U =T OFTRICE > THEMBPRKE AL FT 5. Ni-23Cr-TW 54137 UV —7 O TR L D HME T
23 Alloy 617 L 0 /h &0,

Fig. 2-5 (Z1%, Ni-23Cr-7W &4: & Alloy 617 @ PP, CC, CPJE F D Ffm %z ki L TR
1. 7V —=TOPTHPIAM SN2V PP IE T TIE, miMtkEtoHEMIFA%ETHD. —F, 70—
OTHNAREND CCHIET, CPIIE T TIE, Ni-23Cr-7W &4 D1E 5 78 Alloy 617 L 0 EF
THY, OTHEESLOT A B D28 Ni-23Cr-TW B4 DI1E 9 N 2~5 [ERFMTHDH. =
D&, Ni-23Cr-TW 4137 U =7 OF Al S LD a0 I Fn, bbb U —7
JrFmAs Alloy 617 L W N5,

T IIIIIII' T IIIIIII' T IIIIIII' T IIIIIII' T T TTTTIT
\ CcC 700°C
< e
& 1 CP
< C
[} -
{@))
= i
o 05 -
[
£ i
=
m —
s
o
|_ ; -
Ni-23Cr-7W
Ol 1 llllllll 1 llllllll 1 llllllll 1 llllllll | N
10* 102 108 10* 10° 108

Number of cycles to failure N¢, cycle

(a) Ni-23Cr-7W alloy.

Fig. 2-4 Total strain range — life (A& — Ny) relations of Ni-23Cr-7W alloy and Alloy 617.
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I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII T TTTTI
- A 700°C |
i YA ccC
> \'\ A‘/
o 1 N —
Sk YK\ ]
s [ =& y
8 051 Ava i
= - i
S
= L -
S
o -
= Alloy 617
01 | IIIIIIII | IIIIIIII | IIIIIIII | IIIIIIII 1 1 1111l
10! 10° 10° 10* 10° 10°
Number of cycles to failure N¢, cycle
(b) Alloy 617.
Fig. 2-4 Continued.
I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII T TTTT
i 700°C,PP |
X
Z 1 —
(-Q - -
< - -
g i ]
8 05 —
= - i
8
= L -
g
I _ O Ni-23Cr-7W .
A Alloy 617
01 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 11 11111
10! 10? 10° 10* 10° 10°

Number of cycles to failure N¢, cycle

(a) PP type of strain waveform.

Fig. 2-5 Comparison of Ag — N; relations between Ni-23Cr-7W alloy and Alloy 617.
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I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII T T TTTTH
- A 700°C. CC
< A
G 1B A -
< - ]
3, - A ]
8 05l |
s A
s i ]
2 i ]
<
o
- | O Ni-23Cr-7W .
A Alloy 617
01 | IIIIIIII | IIIIIIII | IIIIIIII | IIIIIIII 1 11111l
10t 10° 10° 10* 10° 108

Number of cycles to failure N¢, cycle

(b) CC type of strain waveform.

I IIIIIIII I IIIIIIII I IIIIIIII I IIIIIIII T T TTTTI
i 700°C,CP |
A 700°C, CP
N
g 1F A =
< L _|
® L A ]
gJ | .
S 05 A _
= - ]
5]
z i ]
= i O Ni-23Cr-7W .
A Alloy 617
01 | IIIIIIII | IIIIIIII | IIIIIIII | IIIIIIII 111111l
10* 102 10° 10* 10° 108

Number of cycles to failure N¢, cycle

(c) CP type of strain waveform.

Fig. 2-5 Continued.
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Ni-23Cr-7TW &40 700°CIZ61T % 7 U — 7 IRt 2 BRI 3 5 720, ROT ZfilHAg & F
Nt DRER A ERUL LTz, Ag IXBMEOT HEiPHAs & MO T A& HAg, ORI TH L7280, £
A& & N, Agn & Ni DBIREZ Z L EIRDT=. Fig. 2-6 121%, HMTHIOKRILEOTHOE 2T
T AN—T B3R TZ Ni-23Cr-TW /4D 700°CICEB T HAs B L UAg, & NeDBIREZRT. As,
Agn & N DBRAZ LU FORTRL, 7 — & i/ IS 5 2 L1280 K O EHER Ae, Ain,
Me, Mip ZR7E L7z,

Ag = AgN; ™e (2-1)

Agin = ANy ™0 (2-2)

TE LT MBHE S % Table 2-3 127”97, 7238, Fig. 2-6 (8), ()T DOEHRIE, As & Ni, Agy & Nf DR
%% Table 2-3 D EHES Z VTR (2-1), R@E-2)TENENEL LT TH 5.
AGITAE EAey DFITHDHT-8, Ag & N OBRIZLLFORXTET Z LN TE S,

Agp = Ag, + Agyy

= ANy e + Ajp Ny e (2-3)

Fig. 2-4 () O Mi#RIE(2-3) TAg & Ny DBURZTLI L 72# Td 5.
ZD X 91z, Ni-23Cr-TW 54 ® 700°CIlz8iF 5 PP, CC, CP {EZ}FZT@A&’ Ae B L DA, & Ny
OEIRIE, Table 2-3 DM EHERZ N THEQR-D)~(2-3) THKT Z LN TE 5.

I I IIIIIII I IIIIIIII I I IIIIIII I I TTTTIT
1 0 =
- PP 700°C -
L C ]
s Y AAR .
g I \4 ;}t_wl _— ]
S I cC ]
8 cp
= 01_— —
© C .
5 - .
L B .
Z N ]
8 i ]
001 | | IIIIIII | | IIIIIII | | IIIIIII | 1 1111l
102 10° 10* 10° 108

Number of cycles to failure N¢, cycle
() A& — Nt relation.

Fig. 2-6 Elastic strain range — life (A& — N¢) and inelastic strain range — life (A& — Ny) relations.
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! IIIIIIII ! IIIIIIII ! IIIIIIII T TTTTT

700°C
A

IIIIIII

IIIIIII |

Inelastic strain range Agi,, %
o
|_\

001 | | IIIIIII | | IIIIIII | | IIIIIII | 1 11111
10° 10° 10 10° 10°
Number of cycles to failure N¢, cycle

(b) A&, — Ng relation.

Fig. 2-6  Continued.

Table 2-3 Material constants in Egs. (2-1) and (2-2) of Ni-23Cr-7W alloy tested at 700°C.

Strain waveform A Me A Min
PP 0.00790 0.0762 0.365 0.630
CcC 0.00773 0.0939 0.871 0.760
CP 0.01032 0.1462 0.281 0.643
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2.5 7V — TN 55 FF i SRR - O R
251 7 V=T OTHOFE

7 ) —=TWHFMIIRET 7 V) =T OTHORBEERTT 5720, 7V — I FHmamET
» B OPTHHPHYENE O 2O CHEBEOTHEZBEOTHE S L7 ) —TOTHRRICHEIL,
A OT H e 7 U =T 0T A, BEY, ZN60FEEEHOMAE DOEDNE T FEMILITTE
BATHE L=, 723, O A& ENEOFEMIX Appendix (ZFLE L TV 5. OF A&iPH S EIVE %
M9 % 7212 Rapid loading 512 L 0 7 U — 757 HPIZAE L TnD 7 U =7 O T A a R,
FEFMEOT B HiFHAGn T Aspp, Ao, Ay DIFHPEOT BEFARITITHEIL, FAgp Abee, Aépll
%f i3 % 7 Nop, Neo, Nep & DBIFR & R 6D 7= 5 % Fig. 2-7 127797, Ni-23Cr-7W &4 CTl, Ag; (ij=pp,
cc, cp)3 Al Uy, Slik, EME BHEOTHOBR L Th DAg, FOFEMPRBEL, 5l Y
— T OT B EJEMFREOTHOMIK L TH HAgp FOFMBIBEN. Age FOFMIT, Agp F &
Ay TOFFMDETH S, Alloy 617 TiE, Agy FOFMMAIK GRS, Agp I, Age FONRIZ A
WL D. Agp N EAgy FOFEMEITIRKEND, Agp F, Age FOFMAEIT/NE .

Ni-23Cr-7TW &4z & Alloy 617 D Ag; & Ny D BILR 2 Fbigs L T Fig. 2-8127R77. Agj & Ny D FIfR T,
pp, cc, cp DV DIEWME O ZF IV TH, Ni-23Cr-7TW A4 DO FaiE Alloy 617 X
D EW. Manson 5 2 1%, Ag & Ny OERIZABIOIENE L AHBEN 5 0, IEVE S VM EIOIE 5 B E
FMICI D EME LTS, 2072, Ni-23Cr-7TW &41% Alloy 617 K W IEVEICEINL D729, Ag;
&Ny OBERREHFEMTH D EEZHND. MEIORBHENE (BEEiE OB O A) 130 6% A
T, -In(1-¢) TRD HALH. Table 2-2 1275 L7= Ni-23Cr-7TW &4 & Alloy 617 @ 700°CIZ351F 5 513k
WL D 49%, 39%7> 5 5 IRIEMIIEME 2R H &, Z£4 0.67, 049 TH Y, Ni-23Cr-7TW &4
DIE D PEIEBWTELEN E . £72, 700CD 7 U — FREEEEIC OV TH LS 2 n
Ni-23Cr-7W 54 D15 73 Alloy 617 LV @B Z & A E L TV 5.

PPIIE FOFMICEH T 5 &, Fig. 2-51278 LTzAg & Fan O BEFRIE Ni-23Cr-7W 44 & Alloy 617
THR%TH DD L, Fig. 2-8 |28 LTz Agy & F ORI TIE Ni-23Cr-TW &4&:D1E 5 3 EFifin
ThbH. ZhUE, Ni-23Cr-TW G&DIE 5 Bt AMENTZD, Ag 23[F) UiBR CTIIFEAET 28O
T, TRDHAG NREL 2D B DD, Ni-23Cr-TW &8 IXIENENE < Agyp 15195 FH M As Alloy
617 LV RWzw, fERE L THMBIOHFMPFAFICR-ToLBZZ b5, CCHEIE T L CPIEE
THZoOW T, Ni-23Cr-TW 54 D1E 9 728 Alloy 617 L0 7 U —F3RENMENTZ 0, FEAETH 7V
— T OTHIEIRELLRDD, Ao, Mgy \ZHKFT D FF A Ni-23Cr-TW S48 DI 9 D3N RV 20,
Ag & FEMOBMRIZE N TH Ni-23Cr-TW AN EHMmIC o= E 2 bhb.

ZD X DI, Ni-23Cr-TW &4 & Alloy 617 13 & HI127 UV —TOFT HDOAMIZ L > TRG FMM
KF4+2HD0, Ni-23Cr-TW &4:1% Alloy 617 LV 7 U — 7 RMHEMEICEN D 7280, 7 ) —71
TR L DFME TR NS OB E N2 D,
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I I IIIIIII I I IIIIIII I I IIIIIII I T TTTTIT
1N\ ]
E QA 700°C 3
o\o - v . \\ . -
g - VA I =cc Ni-23Cr-7W ]
s 01k \V ij = pp B
s N\, E
c C \ .
.§ | ~ -
3 i N i
2 001k % —~
2 F N E
E - ij=cp Vo .
0001 | | IIIIIII | | IIIIIII | | IIIIIII | 1 11111
10° 10° 10* 10° 10°
Life N;, cycle
() Ni-23Cr-7W alloy.
k IIIIIIII T IIIIIIII T IIIIIIII T IIIIIIII T TTTTT
\
LE AN ii=cp 700°C 3
2 - \\V\W/ ]
Z - WA Alloy 617
Y L o _
< Y
% 0.1 \\ A —
S = \\ -\ -
= - vV 7
é | \\ \ -
2 " ‘
e 001f oo =
8 = /A \ -
= - . 3
S N .. i
a¥ i ij=cc i
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(b) Alloy 617.

Fig. 2-7 Partitioned strain range — life (Ag; — Nj; (ij=pp, cc, cp)) relations of Ni-23Cr-7W alloy and
Alloy 617.
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(a) PP type of strain waveform.
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(b) CC type of strain waveform.

Fig. 2-8 Comparison of partitioned strain range — life (Ag; — N;; (ij=pp, cc, cp)) relations determined
by strain range partitioning method between Ni-23Cr-7W alloy and Alloy 617.
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(c) CP type of strain waveform.

Fig. 2-8 Continued.

Manson 51t 710 | MIMEZSTE T CIEAESRRIN O TRV, 7 ) — B T TSk R o4
BLOERANEL, 7V =795 T RN HAIEHT 2 LB L TW\Wa. Fig. 2-9 12
T L ST, WD TROME L Th HAg, FOFIHERE L EHBRTIL, THERERHIAIC
BINTRYBAET, 7Y =T OTHOBIKL Th DHAs FOSIRRE & EMERE T, ThEth
R H IR RO BET S, 20X 51T, Agp F & Ase FOIEZHZIVEIN, KR HETY
WELD. —H, Age FCEBIEBRICBOTRNT Y, EFBRICBOTRRTD, Ay
T TR HRERRIZB TR TR0, EMERIZBWTRNT XY W) KO, BRD50N
BT HTDIEHER LD, OTHOBIR LAMIZE Y ENENOERNERET H. FFZ,
Agp FTIHFIHRIERE TA L DR RO RLEFOEZRHIC LY, BRI TRANAN LS 2D
T FHMREL R0 RF . KA W 1L, SUS304 SHORBRFE A b 21T, Ay Age D X D I2HIHE
LIERME NS RIFRIRETE LV b, Aggy D X DI EE 2 5 2 720X 9 2%, 5lakITm & E
M 7 NS E TR B D AR E NS L CRENCEHPBAET L2 LE2MEL TWD.
F72, PIS Y 1L SUS304 8, SUS32L SHORBRE R E b £ 1T, Agp FCILEMGBIRIC I 2 Bk
BN THIMRENL DRI A 2 Z LI K VRIS L2V S 1, SIRBFRIZ IV TRIFZEH L
IR 2R TR S LD T2, Agy T ORIFZERD LA RN L 2 HELTND. Agpy FO

31



FP bR, Bt TAge FOFFA, Agy T OFFMONEIZ 72 28 71%, EFLo> SUS304 i, SUS321
BRI % T, Type 316 81 2 oA FHPFIC LA SN D 4THE ™D R DA —ATF A FRAT
VLAEHTH AR LS. Ni-23Cr-TW G418\ TH, FMBEWIEICAg, T, Age F, Agpy FO
HiZ72>TEY, ZOMANLIINEDOF—ATF A FRAT VLA THLND LD LR LT TH
%. Ni-23Cr-7TW A& B W T H REROEH T, Agy FOFMBRBEL R0l BEZ HND.

Ni-23Cr-7TW &4 D Ag; (ij=pp, cc, cp) & Nij DR Z T TER L7 & & OMEES Ay, mjj % Table
2-4 (2R,

Ag;j = AyN; ™™ (2-4)

Fig. 2-7 ()DE#RIE, Table 2-4 DR EFEEE VT (2-4) T Ni-23Cr-7TW &4 D Ag;—N; BIfR %30
L= THD.

A& Ag

Plastic PP ; Plastic pe Creep
strain l SPtI%sitr:c strain strain
crystal crystal
S“);) crystal slip

slip /
74
=

grain boundary

4N

Slip plane sliding
/N/
é\ A‘90(: c A‘c"(:p
boundar Cree Cree reep .
Y strairrl) ! straim strain ! stlr{?asitr%C
crystal

slip

7z 7

Fig. 2-9 Schematic illustration of cyclic deformation model under Ag; (ij = pp, cc, pc, cp) 8,

grain boundary
sliding

N\

Z

grain boundary
sliding

f

sliding

|
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Table 2-4 Material constants in Eq. (2-4) of tested Ni-23Cr-7W alloy at 700°C.

App Mpp Acc Mee Acp Mep

0.365 0.630 0.369 0.681 4.968 1.198

252 7V —T7 G E

Ni-23Cr-7W &4x & Alloy 617 D 7 U — 7k 573880 #% OBk il il 2 SEM (GEAAE 1 PAMED)
B LR R %A Fig. 2-10 IO 7. EHFMBR B EN-T- PPIEIEOMER, BLW, HFmi&b
Finolz CP EIEORBRBEOME 2R L, WTNLBERERE GRAROBEHRELRL TS, &
BT, EERICOW T, BB R & Rmmd o NEBICK 2mm A S 7T E OBIERE R 2R L
TW5. PPIEIE T OfHEI X Ni-23Cr-7W &4x, Alloy 617 & & LLEHIEHCTH Y, Ak o —EBIC]
FEERINZ X WPER L ZEEZTRT AN IA = a v B LN OMIROERRPBEINS.
—7J5, CPIEIE F OB X EAM A K& <, Ni-23Cr-7TW A4, Alloy 617 & HRIAE L 724
SIMBIEE S LD, Ni-23Cr-TW &4 TlX, KRR EIN L7oE TNz ThiNZ S /R ER L7 L& 2
ONHEFTHBEIND DXL, Alloy 617 CIIMHIOIZIEEE SR AENEZEL TN D.

THOFEAETT R L OERREZ L0 MICT 5720, PP T & CPIRIE T ORIt
RER A AHER D IC L, ZOEWEICFE LRI X2 BIE LR % Fig. 2-11 12777, Fig. 2-11

ZIERIE HOREG & & RIRAHE OYLRBIERE R A~ LT 5. Fig. 2-11 ()12~ L7 PP E T
OB TIE, Ni-23Cr-7TW &4, Alloy 617 & &, BB R ICIEAE L7 RS, KidhiN 408 -
THNERICHERE LT 5. Fig. 2-11 (b)IZ7r L7z CP B T @ Ni-23Cr-7TW A4 TlE, ADRIN & kL
ROW 2> THEICER L TWD., £/, BB LA TIE, SRfhTlichiftzERL v
DML BIERSND. EAPNRIR R L7255 T, BIRICI > TERENSIE LT 2 Hh
(CHERR L7ot%, —HITBRHh CHERAIEED, b9 — MRS ETHEHE L TV HEanElgans.
Fig. 2-10 (0)IZ/R L2 B EICRB W C, ki BIZBN BRI DL, o X ) cplL-&
WNFET DD EEZBND. CPIE T Alloy 617 Tif, ZZUTKIFITH - TRE JEML
NHHERLTWA. £7, BARENOED - XAV aiFICRi BB BE S
5. ZOX T, CPIEE T Alloy 617 TITRI R EIN Loy Ziit 4 5 K o Ic &P HERT S
e, EEERNR, 7 ) —TRFFEMPELRDLIbDOEEZI NS, £, Alloy 617 13y’ (NisTi,
NizAl) OHTHIZ L VRN Z 58 L L 72 B Ch D728, FEXTAICRIR ORENME S, 7V —7 07
HEAM LT ZITRAFN LGN bDLEZBND.
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Ni-23Cr-7W alloy

near specimen surface

Alloy 617

(a) PP type of strain waveform.

Fig. 2-10 Fracture surface of specimens after creep-fatigue test with total strain range, Ag = 0.7%.
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Ni-23Cr-7W alloy

near specimen surface

Alloy 617

2mm inside from specimen surface
T 2

(b) CP type of strain waveform.

Fig. 2-10 Continued.
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Ni-23Cr-7W alloy

near crack tip

(a) PP type of strain waveform.

Ni-23Cr-7W alloy

near crack tip

Alloy 617

200pum

near crack tip

(b) CP type of strain waveform.

Fig. 2-11  Cross section of specimens after creep-fatigue test with total strain range, Ag = 0.7%.
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2.6 KEE
ARFETIE, RA TEHEH= v 7 VA4S Ni-23Cr-TW O AR 705% 57 Rtk 2 08295 72 0,

A-USC RECTOMANRFT SN TN D 7T00CICEBWT Y U —7 5Bz L L7-. X5,

Ni-23Cr-7TW &4 & & H 12 A-USC FED R A 7R EBAM T 5 Alloy 617 D7 U — 7R 57 R %

Fhi L, WHFMCBEERELZ LR L. KAECTHONZEREREZUTICE LD 5.

(1) Ni-23Cr-7TW && 02O A #ifHAg, WMEOT B #iAg, FEHPEOT HEliFHAg, & T FHam D
BfRZH NI Lz, 612, OTHHEHIESENELZHNT, BHEOTAE T V=0T H, B
L, ZNb o5k EEMOMAGDE DR BELZE L, FHEHMEOT KT Asp, A,
Aggy & F767 Npp, Neg, Nop DR E Z IR0 T-.

(2) Ni-23Cr-TW G&0EsFmiX, 7V —7OTHAOAMIIEI > TR TT 5. 7V —7O0F R
Lo TEBHEMMETTHD1L, 347TH Sl L ORA FE L LTHHEAShTWEE—AT
FA FRAT LA E R CHBETHD.

(3) Ni-23Cr-7TW &4 0¥ F7 i, 7 U — 7 OF BB AM SR WS TIE Alloy 617 & RS TH
L0, 7V —TOTHNAMNINDFEMHTIE Alloy 617 LY EW. BIIEZ U —7OF B E fof
D CPHEIE FIZHB\W\ T, Ni-23Cr-TW A4 CIERLREE U 7= ST in 2 ChiPNikEE U 7= T
HAFELToDITKRE L, Alloy 617 TIidAm Ak FUaiE L7z, Ni-23Cr-7TW 5413, Alloy 617 Ttk
RCT V=T OT HAMEFICRTEE LN =D, 7V —T7OT R L DEFFEMRTR/NE
AN

F72, Ni-23Cr-TW A&l e T AR RO T Fm oy Alloy 617 LD R, Ziug,
Ni-23Cr-7TW &40 5 [SEIEMIE M35 L OV U — ZIEETEME DS Alloy 617 K D BN TS Z & L xf
JELTW5D.

(4) Ni-23Cr-7W &41% Alloy 617 L0 7 V=7 583K\ DD, 7 U — 75 Fam OBLA TIX

Alloy 617 X W BENT-METH 5.
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3% Ni-23Cr-7TW &4 O EE 57 itk o ¥ast

31 HE

KNFEBET 7 MBI HRA TEE TIE, BNERNDEKOBELCICHE, RA TEE
DOIRENEET L. FiC, 77 2 b OREFRFIEIERHZIIRE REZET 2720, EOWNSE
(IREZENELT, TORRE, PWAEOBIZRAEICER LTS BET D, 2ok, KA 7
A& CIXIRELE o 2 I7RE, ThbbLEYEIREOHRALETH L. F 2 BT
Ni-23Cr-7TW &4 O i —EiRE T D 7 U — 75 R 2 3 L7223, FER8 00 iR B 28 Bh i e N 2 e
{LIRBEI 70 EAPEL O 5 Rtk 2 AL S W D RT3 B o T35 E, —EBIRE FTORBRO AR TIEZ DR
Bh G VTEREZ T 5 2 L IXTERY. Z 2T, AKETIHIEELE T OB FE 2 50
52 HHMET D, TDOHIT, AUSC RETOEMANKRG S T\D 700°C % fim i
ETDIRETA 7V, B, OFTHIA 7 V& FRHCAN T 5 BYE 77 R BR 2 EiiT 5. S5,
ek & LT 700°C—E DIRE TR 9 5 FEME BRI LT, BRI R & [FARIZIR 2
BEEL 00, OF R miRE & BRI o & CTHAMT % Bithermal fatigue 3B ¥ % 92 L
Ni-23Cr-7TW & 4 D BV 5 F3i O SRR 1 2 37 5.

3.2 fEAS

AREORBUZ I T2 Ni-23Cr-TW S41E, H2ERRE, T b b« 7y 2 a RUFIEIZ L0 B
fifiE L7=, 1190°CT 1 WefiifRFFi& K O EE L BVLEE 2 Ji L 7244% 335.6mm, PIJE 37.5mm
DREETHSD. OB E Table 3-1 12, MMEFE% Fig. 3-1 1277, B 6mm, FTHE
& 40mm, 25 B EEEE 30mm O LR A A IV T 9ERER TR 72 SRIE A B 750°C O FERRAD
% Fig. 3-2 12, =i, 100°CH L O700°CIZH1T 5 0.2%I0i 71, BIRE S, Y, &Y OFE% Table
3-2 12T, 0.2%iit 7] & BRI S IXIRE EFIEVME T T2 600, Y, &0 IXERNS 750°C
FTRE BT H LR,

Table 3-1 Chemical compositions of Ni-23Cr-7W alloy tested. (mass%)

C Si Mn Ni Cr W Ti Nb Fe

Ni-23Cr-7W | 0.09 | 0.29 | 0.92 | 446 | 2238 6.9 0.09 | 0.18 bal.
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Fig. 3-1

_»-H/f-‘.“

100pum

Optical microstructure of Ni-23Cr-7W alloy tested.

Tensile strength

0.2% proof stress i

| I | I | I |

600
[ L
o
=
(7]
S= 400
w2
52
S w -
o
N
NG 200
o
0
0

200 400 600 800
Temperature, °C

(a) 0.2% proof stress, tensile strength.

Fig. 3-2 Mechanical properties of Ni-23Cr-7W alloy tested.
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Elongation, Reduction of area, %

100

80

60

40

20

T T T T T T T
[ Reduction of area N
—  Elongation .
| | | | | | |
0 200 400 600

Temperature, °C

(b) Elongation, reduction of area.

Fig. 3-2 Continued.

800

Table 3-2 Mechanical properties of Ni-23Cr-7W alloy tested.

0.2% proof . . Reduction of
Temperature Tensile strength Elongation
C) stress (MPa) %) area
(MPa) (%)
25 280 670 46 64
100 234 625 44 63
700 190 440 48 52

3.3 Bk

£z 97  (TMF: Thermo-mechanical fatigue)
%, Bithermal fatigue (BTF)
DR H 1Y% Table 3-3 12779, TMF
il & U CIREEAE) FCEHA S D Ni-23Cr-TW &4 DBV 57 Rtk 2 59~ % 72

BRI

SrakBR, SRR S5 RBR RS X O° Bithermal fatigue FABR 5 14
R & iR O FIRE ST (ITF: Isothermal fatigue)
B DWE - OFHt A 7 VAfT & ARBFSEIC

BFsZho

BRI L O B2 ARFICEBI SE LR THY, BA 7
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H

ITF HBRITEER - ERE T TRELOTAZ 522 B THY, TMF &R & O HERIZ LD
Ni-23Cr-7TW &4 DY 55 RIS KT JIRE R B O 8 2 T 5 72 012, TMF 3RBR O gl 2 12 36
WO SR A M L7, BTF 3RBR T TMF B0 L 5 ICIREABI ST 2 L 00, OF RITIRELE
B S e mii & RARIEEE ISR L7IREE COARART 2R TH 0, IEELAE S 72 b
B OTHEART 2 TMF RER & ORIz L 0, OFHEART 2IRED Ni-23Cr-TW &40
W TR RAE T B A AT 5 72D I FE i L7z,

TMF &R, ITF s £ OV BTF SUBRIE, WAL bAME 12mm,  AIJE 1.45mm o P RIRRER 1 2 ff
M U7z, BB TR Th 2 REEE ORI 5, B Ol 728 KRS R F M &
—HT D XD L7z, F T ORERIE & A B a5 SN B A & 7B A B — a8 AU 55 Al R
VT, R CTFEM L7z, 3B OREIL R BEGEX, HEAMOOT IR OGFH TRl L 72,
ZZC, EIRE TEM T S ITF 3B CIEEATHNR & 30mm OB T 2 AV TR s i R 2 25mm
E LR, REE(LE S 25 TMF 3R, BTF R T, REZ(LREOE R OREENRKE < 7
HRNEIICT HDIT, FATHE S 25mm OFRER & AV CREERREEREZ ITF 3B X v Eun
12mm & L= FRBRCAM LIZIEEY A 7L & O HW A 7 )L % Fig. 3-3 IR B9ITR”T. 72,
Table 3-4~Table 3-6 (ZIXFRER LT OFEM A R~ .

Table 3-3 Temperature and strain cycle applied in TMF, ITF and BTF test and purpose of those tests.

TMF test ITF test BTF test
Constant | 700 .
%{ o 700 onstan g) 70
(&) o -
Temperature| 2 g E
(<5 14 —
cycle g g g
S E 8 100f----emmecddeoo A
'_
Time Time
Strain £ = T/\ /\ / J I
cycle @ & ‘ \/ \/Time & Time
Time

To investigate the effect of | To investigate the effect of
Test To evaluate the TMF life of |temperature change on the strain applying temperature

purpose |the Ni-23Cr-7W alloy. fatigue life of Ni-23Cr-7W | on the fatigue life of

alloy. Ni-23Cr-7W alloy.
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) ) Temperature, °C
Mechanical strain

Mechanical strain

1
I !
B e ____:____1..____.___

85 190 300 | | Time,s
: lln-phase (1P) '

Out-of-phasé (OP)

(a) TMF test.

\l
o
o

Temperature, °C

Strain Strain

Strain

Time
PP (fast-fast)

AN

1.0%/s

CC (slow-slow)

VARV

0.01 %fs

PC (fast-slow)

ANEANEANEANE

N NN

1.0 %l/s 0.01 %s
CP (slow-fast)

ANAWAWA
SV

0.01 %f/s 1.0 %/s

(b) ITF test.

Fig. 3-3 Schematic diagram of temperature and strain loading of TMF , ITF and BTF tests.



Temperature, °C

Stress

Mechanical strain

Holding 30 s Straining + Unloading

Hea‘lcin:g
120 S!

Temperature, °C

Stress

Mechanical strain

Holding 30 s  Straining + Unloading

Holdlng 30s Stralnlng + Unloadlng

l;nloadmg I L

Unloadlng |

Strammg (fast)

Straining (fast)

(c-1) BTF test, PP strain waveform.

Holding 30 s Straining + Unloading

Hea'tmig

Temperature, °C

< Time S Time

Holdlng 30 S Stralnlng + Unloadlng

Holdlng 30s Stralnlng + Unloadlng

+ /\/Unloadlngé/\ + Pnloadmg h
0 0 — —

Stralnlng (slow)

'\Unloadlng '

_ | Straining (fast)

(c-2) BTF test, CP strain waveform.

R

g 1 | —
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- i c
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[— ) S N o S
— = ' 4 ' :
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Straining (slow)
(c-3) BTF test, PC strain waveform.
Fig. 3-3 Continued.
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Table 3-4 Thermo-mechanical fatigue (TMF) test conditions.

Temperature Heating time Cooling time Mechanical
Phase C) (s) (s) strain range, Ag
Min. | Max. | 100-700°C | 700-250 °C | 250-100 °C (%)
In-phase (IP) 05,0.7,1
100 700 85 105 110
Out-of-phase (OP) 05,071

Table 3-5 Isothermal fatigue (ITF) test conditions.

Strain Temperature | Total strain range, A« Strain rate  (%/s)
waveform (cC) (%) Tension Compression
PP 04,05,07,10,15 1.0 1.0
CcC 0.5,0.7,1.0,15 0.01 0.01

700
CP 04,05,07,1.0,15 0.01 1.0
PC 04,05,07,1.0,15 1.0 0.01

Table 3-6  Bithermal fatigue (BTF) test conditions.

Strain Total strain Straining
Phase range, A& At 100 °C At 700 °C
waveform — —
(%) Direction Rate (%/s) Direction Rate (%/s)
In-phase PP 05,10 Compression 1.0 Tension 1.0
In-phase CP 0.5,1.0 Compression 1.0 Tension 0.01
Out-of-phase PC 05,1.0 Tension 1.0 Compression 0.01

TMF B 1L, B EBBOTHOm G Z2HE L CE/LZ. 22T, BROTH IO T
FHA L7238 A D B EOOTHNG, BUERICE 20T A LW bDTH L. HBRATIZ,
i 2B 2 ICERFF LTRIE TV o1 7 L %2 B 2 TRl fr Oz 2 kD, BRI EE X T
HIE UToIREE LB REN OB 0T A2 R M L, Gl L7 RNT EO O R bEW RO
B BIN TR O 2 2 R ab 7.

1MF%%@%%ﬁEﬂmm7m@,%ﬁﬁETmﬁlm%&bt.mwi%%ﬂ D BT
% T00°C#% A-USC JEFE~?D Ni-23Cr-7TW A& DO HYE A2 G 2729, £ O7EKIRE TH 5 700C
ICRRE LTz, KIFEBRA 7 TIREM SR & TEE LZBICRIEE CREME T 55, AR
BRCIE Tin 2 100CIZERE L7z, 700°CD K 5 72 @i Tl Fig. 3-2 ()27 L7z & D 1@ QIR E &
ATHEEMINRKEARTLEZY, 72V —TERHENKRELS GEESTVTH20, REEL
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IR CTdH D DITH L, ER~100COMEE TIIMELIIRE 2L, o7 ) —TFERME
EANEETRWRER CTH D720, Thin Z=IRIZLTH 100°CIZ LT H Ni-23Cr-7TW &4 DO EVE 77
Kt 23T % 5 2 TIERRICEIZ 2. F72, RBRA OGHEBEIZIH VT, &R LRI
EChHRIRL DEREENKEWCDRBRAIIASITHE SN D DKL, 3ERAARIRICIT <
RBIZONTHEMAR E DBEZEN NS RET-0RHSNEL 2 5. Z0n, BB OmHEIKE
Mz L, BRZRIIED 5 B TS Tyin 2 RIE T2 < 100°CICHE L=, £72, Fig. 3-3
(@ BELO Table 3-4 IR L72 L 91T, 250 CEEICEmIRM & ARRM CHAEE L Z(LIE-D D,
250°CLA N ClE, BTN Z BRI IR - 72REE T 250°C L ¥ @ WRE & [AZEOHE THAEITE
RSl ThD. 12721, 250CU FIx 7 U —7OFHB™UEE A EE T RWRERTH D720,
OFTHHEEDELS o Te BT LA ERNWEEZ BILD.

TMF REBRIZIRFE YA 7 L LB OF 2o 7 )V OAARDEE LW EIRZAR (IP @ In-phase) $eft: & A7
FADSCRF O ARIAH (OP @ Out-of-phase) SeffCTHME L7z, RINAHSME CTIXMIR ISR, {KIE CHEM
DO OT B AT 4L, WS Tl IR CEME, KR TR0 O T ABNAR Sh 5.
- T, SR THROTHBIAMN SN D FMAHRETIEEIRY V=709 B8 EL, miE CHEfE
OTHNAM I NDWNABFETITEMZ V—7OTHNELD. EERT T NafET D &,
W5 D 2 & )R S VT B CIRIRE B F- RS B R DM R S IV CTIERE O Al S 4L, TR
B TR BRI R SV CEBROT RN AR SN D7, WREEE 25, —J, Mol
TR STz UFAROE T, £ UFEMOSMANTITIRE FARHCSE, IREER: TRHICEME D
OPTHBPAMEN, RMHEEE 2% 2. 20X 51T, RA TRE TIER SN DAL ISE
TR Ko CRNAIEE DA 22T 720, WNAHEEORAREZ T 7570, R’ ZEEH
MBI FOEFRFEEZHA O N L CBLRERDHDH. O, AFETIEFEAM, W07
FDOENENDOERMETHER L7, SBRIZMHNIEEZ 1000CE L, [RMAESEMTIRRE AL &b
(ZBIRME O 2, WACAE SR CIXIRE ER & & HICEMSMO T 2% 5 2 7. OF A2k R, (=
B/ IO B bmin TR O Prtima)  VXRNAHSRECTE v, WIS C-oTH D, FHn Nelk 1 31
7 VDI KGRI T) Omax 235700 T O TE FARREIZ IS T 2 Omax 775 25%IK T L 72k L & E#
L.

ITF &I, TMF BBRD Tmax & A1 L 700°C—E O TOT A FCTHM L=, O R
X PP (fast-fast), CC (slow-slow), PC (fast-slow) 3L ONCP (slow-fast) JEH# & L, OF LR,
13-1 & L7z, OFRsETmE (P) Afifz 1.0%/s, {K# (C) Afifz 0.01%/s & Lz, $H2ET
Bk R72L B0, 1.0%/s L7 ) —FOTHOBELZBEHTCEL20THHETHDH. £z, H2®E
DRI FMIK ISR E R BE LTI RIEY V=7 O HREE AT 5 CC Y & CPIE
AW, TMF BB O ARG TIIEME 2 V=7 OFTHBRELDHZ LoD, TMF#RBRE Ot
% BN L2 AED ITF R CIIERE 2 V — 70 R % 5.2 % PC I ORER b ki L7-.
7 U =T OTHOAM E VI BENDIE, 5IIEZ V—7 O B% 52 5 TMF 3 BRO RN ARG &
ITF #RBRD CP I BRE L, JEMZ UV —TOF Bk 525 TMF RERO NS & ITF B0
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PC %I T 5.

CC, PC 5 L UNCP IEJE F o> ITF SRBRCIE, 4 2 B akBk & AL Rapid loading 1 ¥ % AT,
REOTHAMPICEASNT 7 V=T O T hEERD . R TIEE A 7 VD omax 2 JE L,
Omax PN FFAN TP 0D TE HORBEIZ 35 1) DD & 25%IK T L 72 Mk L& 5 Ne & B L 7=,

ITF BRERL— EIRE T COTHORZHIET 2720, HE & OT Az R S THIET 2 TMF
RBRLVEBRDAEHTHD. 20D, N TEREAMEEZED, ZNETICREGEINTWDE
RO TR T — 2 13 TMF 3 BR L 0 ITF RBRD b OB EFIIZZ . £ LT, 1T RBROFE R
5 TMF HMEHET RN L RSN TE2 D TMF H&z ITFRBEENSHEL LD
LT 556, ITFRETIT LIREDOATLNRBR TE RN, TMF 3RER O i 6 iR A
TITFRBRA FEMT D2 LN Z. Lo LA b, TMF A ol B 28 Bh e P iR B ek A3 5
EFNTVW LA EIRE & BARIRE THEIORMERRE S B2 256572 81F, b0 E%E
BRTE WAL, ITF REFERNS TMF Faa#iE T 23R A R H 5. BTF #BrIX, TMF
AEROERE L OTAZFRH ST THET 28 L S & ITFRBRO LIREORE L FHITEune
WO ENEND R A D T2 DITHRE SN BYE I Rt 2 3l T 2 72 0 ORBRIE TH H. BTF i
BRCIX, Fig. 3-3 1R L7z L 9 ICRBA DIREAZEB S E 5 b O D, OF TR BRI T & K
TREE Toin IR FF LTRIETARTT 5. OTHEAMN LI, IS Er ETRATL, IEHErOR
RBCRELAHIES. 2ok, RELOTHAELIIMELZFY SETEIIE L Z LIFAEC
Y, —HERFFLICIRETY 5 —HOAhZEB S ULV, BEY A 7L E 0T hi A 71
RS TEB S E D TMFRBRCIE, WHEOMMHERI 2720, IREEE IR OFER RO
2 LRI o720 T 50BN H 5 7o ERBRIEE OMRSEE L3S, BTF BBt
PICRFF L E FIREEBI S 5720, IREETHTIERMICZDOREERECTHOT A%
AT D Troax & Tomin CRERT DIREN I > TOIUTR W2 &, BB LR O 1 ORI
5. BTFRBATIE, TMFREBROFNAISMD X 9 1CEIETHIE, KB TEMROOTHREANR L
720, WAARSAE D X O 12 E TEME, IR TR OT AL AR LT T 52 L NHETH Y,
72, ITFRERO CP D & 912, @ik TIRHEGIROTHzAm LTHEY V=703 HhaEA
L720, PCEED & 5 IZ@miR CIREEMOT A2 A L CEMZ UV —7OFTHEEALZY T2
ZELAERETHDH. ARETIE, TMFRER, ITFRBRICMA TBTF R FEM L, 3 >OiRBRAER
o L7z

BTF BRI TIRE, i i, O A 2 il U CIE0E L 7. Thax & Tomin v TMF 588% & [7] U 700°C & 100°C
L7 F72, Tmax & Toin CAMTT 2 O BT ITF 38R & RSB S AR 2 1.0%/s, {KEA
iz 0.01%/s & L, IRELEE, T £720F Tmin T 308 -FF LZBICHERO T A2 AR L. T
THIBE, Tmin CIEMEOMONT 2% 52 5 TMF BBRO RINARSIFIZF Y T 258088 & Toin THIE,
Trmax CHEAME OB O 7% 52 5 TMF 3R O WA ARSI AR Y & 2 58 & 920 L 7=, [RAZFR Sef
T, Tmao Tmin CE BICEEOOTHE G2 5 ITF RERO PP I Y T 538 &, T CIK
AR, Tmin CEBEMEOOT A% 5 % % ITF RERO CP Y 3~ 5 3Bk 2 £l L7=. Wit
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FMETIE, Toax CICEEERNE, Toin CEESIEOOTHE 5 225 ITF B D PC I/ Y 3 5 Bk
Z3FEh L7=. CP I, PC OB TIX, Rapid loading 5% AW T, MEHCARTEZZ U —
TOTHBAERDI. Fifn Neld TMF RBR, ITF 3B & FIERIS, omex 237 PHIO EHIRIEIZ IS 1T
HAEND 25%fK T LMok Uik & e L.

3.4 Bk ralER, SRR 97 BR S L O Bithermal fatigue FUBRAS 5
341 T FHm

TMF 38, ITF 3k, BTF 3B TR O 7= 2O 2 &iPHAg & F i N DBIfR % Fig. 3-4 12~ TMF
ARERCIX, RN (IP) DI S 2304 (OP) 25 &L 0 FEamBE . [F—DAg D F T, [A
ARG DO F TN GO HFMD U3 BRETHDH. A —ATF A MifkE L OAT v L A
K=y I NS L OBYESFEMIM LTI, Taira b 9 23 SUS304 #ilo> 300~700°C D TMF A,
Guth & & 73 Alloy 617 ? 100~850°C » TMF 3Bk % 520 L, Ni-23Cr-7W &4 & [RIEE (C RIALFE Sk
DHFMPPRAEIEOFM L VAN L E2RE L TWD. —F, [ Alloy617 TH#EH ? 12300
~700°C D TMF 3Bk 2 Fhii L, Ag 2 1.0%D & ZILFEAHSAEDIFE 5 BEFMTH DD, Ag ) 0.5%
D & FFFRMAREAEDIE S DEPICHEGBEVEHE LTS, £72, Hollander 5 9 13=v 4
JVEEE 4 INT38L O 770~850°C @ TMF 3B CIEIRINAHSRIE O FM BN SRR OFm IV R e
HELTWD., 20X, NS &AL OFMORBIIME, BE, OFHEHED
FNHDOMBEDEOEELZT 5. FHE WL, MERCHRBREMIC X - TRINHISA: & AT H
KMEOHFEGMORBIIIEL DX A TRH Y, KOTHRUTRMAEREOHEGRE NS A7 (1),
EOF B THRA GO FFMBEL D4 A 7 (0), FHIFISME & AR O FH M ANFITE
LWH A7 (B), @OTHUTILFENARSRM: & ARG OFMICER D 503, IKOTHMTIE
FEEELWE AT (B) O 4 ZATICHEIND ERELT0D. KEORBREPEN TIT,
Ni-23Cr-7TW A& X [FHEFEOFEMBEIZHES, ThbD 4 X4 TONTHIZHE L T,
72720, SHICEOTHAAERITROTAMOT —ZZEBMTHE, | XA T EBXA 725D
AIREMEIL S D .

ITF B CIL, %2 ZRORBRIER LRI, PPIE TOHEMPR L EL, CPIE FOHFMI K
HELV. CCIJE T & PC IE T DOF AL PP Y FDFf & CP I FOHFmOM ThHo. BTF
ARBRIZBWT S, PPIIE TOHFmr kbR, CPEIE FOHFmM Kk bE . PCHE FOFmiL
PPIE T & CPIE TOHFEMDMTH S0, PP T OFHFMITIETL .

TMF, ITF, BTF D& RBRIZIW T, RIS KON CP IR T OFMNE L b EVR,
ISV TNREEEZ V=T OFRBEARSNDIE&ETH D, —F, Bz V—TO0THIA
fif D WNARSRAE R L OVPC I F o, FNMMEER L O CPE FToHEmE v v,
bbb, WTHORBRIZEWNTY, BIEZ U —7OFT HBAMN SNIZREDIT D BIEME S V—7
OT HDAM SIS L0 Fmos v,
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Total strain range Aey, %

Total strain range As;, %
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| | 1 1111 Il | | 1 1 111 Il | | 1 1 1111
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Number of cycles to failure N¢, cycle
(@) TMF test.
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10° 10° 10* 10°
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(b) ITF test.

Fig. 3-4 Total strain range — life (Ag — Ny) relations.
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(c) BTF test.
Fig. 3-4 Continued.

34.2 fRERRE

TMF, ITF, BTF iRBR#% (23 BR i ORI 2 SEM #1522 L 7= #5 % Fig. 3-5 (/3. TMF RBR T,
[FRZFR (IP) SR O IR AEIN L2 Bz s nsd. —F, WhitH (OP) ZfFofkiic
ITFERINE S HPER L2 L2 RT AR TIA T = a v EBZ DN LRI BIE SN S.
ITF 38, BTF &BRTIX, CP I F ORRImICITRI A EIL L7 23@lg2 Sh, PC IEIE T O
WIFA R T A == a v EBX LNHMRERRDBE SN D.

Fig. 3-6 (21%, RBRZRICHRERBR ZHEH 0 L, ZOFIWEICFAE Lol W28 LR %
Y. TMFRBRO NS CTIE, EERORRENPBlEIND . FINOR S I3HEE R K A
TNDHZ NG, RIFICHRAELEENAKREL, TNORAER LN S S AN IR A2 HEE L
TeLBZBND. —, WA TIRERDRED S RERINZ 8-> T, WEHICER L TV 5.
ITF 3Bk, BTF#BRD CP I FClE, ERAPKALEREL CHDIEaNBlIEIND. RPN
AR L TWDOLEDBBESINDD, KR CERHOERTMERELSEZXRNL, VI7F
TICEHPER L TWDHEaNZ . —7F, PCIIE T TiE, CPIEE T &R~ TEMARNIC,
FICHINZ SR NERL TV 5D,

PLEofms L OWm B ERE R0 5, 5187 U —7OF AT S 4v7z TMF 538k O [RIALFE 514
BIOITF B, BTF#BRO CP I T TIE, WInbEIChife S R/NERL, EfFs Y —7
O T BN ST TMF SRR O AR S 4 L OVITF 38k, BTF 5o PCIE T T, Wih
bEICKANZZHNER L. 20X, ABROMENRLR->TH, 5l V=707 H1A
il STt EJEMG 2 U — T O HBAR SR T, ThZER AR CTH > 72

50



TMF ITF BTF

50pum
Fig.3-5 Fracture surface of specimen after TMF, ITF and BTF test with total strain range,
Aé't:].%.

TMF ITF BTF

Y | e e |
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=y g
B 5
= Z
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. :
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sy 7
S fF
AT
'l
!

50pm

Fig.3-6 Fatigue crack path observed on cross section of specimen after TMF, ITF and BTF test

with the total strain range, Ag=1%.
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343 BN —OTHISE

TMF B8R TIHREOZBIC A DE THMOT A2 AR T 5720, ZORELE L THEHZE 23
AT 5. TMF R CHEHCRA LB E A LM T 5720, AT LB O 74 LI OB
fREFHII L7z, Fig. 3-7 121%, TMF&RBRD 1 1 7V H & FHamF I T D057 LB OT A0
E AT YT AN—TEoRT. £, MEBOZOICERK L ITF RBROEHEOTAHOE AT U
AN—T% Fig. 3-8 IR T. WTNOIZEBNTYH, X1 A 7 VEBDOAL—TTHY, FEi
FahHONL—TThdH. TMFRBRONL—T 52K 5L, 1% A4 7 /VH LD FE@TPHOIZD B
W<, B UL L2 2 03005, Bk LT 2013 ITF BB CTHRICTH L. ITF &R
TN —T DR KIGES) & B/ NG OHERHMEDZERN/ NS VDK L, TMF RER Tl KIs ) & /b
RS DREFHEIZZE NI SIS . RIS TUE Tiex ([CBT D BRI INCH AT, T I2BT BIE
HERS ST DIE D DIHERHER KR E VY. ZAUE, Toin D 100°C £V Trax @ 700°C DIE D D3BFEF D 58 EE DM
T2, 7V —TOTHNECTUSNO L7 NSNS Z ENFEKTH D, WALHE T
A CELH T, T (Z8T D EMEIS THART, Toin ICBIT 2 515RIE S DIE D 3 HEHED K E U,

TMF &R & ITF RBROIE T & e % &, TMFRBROIE S IS mE. 5liRZ ) =705
DA D TMF S BR D RN AFESRIFICI 1T D Thax (700°C) Tog[HRIGIE, RIULGEY U —
TOFBIBEALT SIS T00°C O ITFABRO CP Y TIZH T D KFIHRIES LV @, 7[RRI,
TMF EROWALA RIS T D Tax (T00°C) TOEME L, R UL EHMGEZ V=T 0T HBE
i S35 700°C O ITF RERD PC R TICH T DI/ ME) £V EHEA R E V. 2D X912, TMF
ABR T ITE BB L Y SV EIR TREM S TN D 2 EBPHNIT 572, TMF BB Tl

I £ 0 M EBREE DS MEIROREED B O T BB AR S, @R A L7RRE CTRiRic /e
L7, MR TOISHPITFRBRIV G R bDEEZLND.

Fig. 3-9 (21F, TMF ik & ITF SBR DMK LI & B RIET) Omaxs B/ Omin DBISR 2R,
WD EBY, WTNORBRITIN T bR LI DEEINAE Onax & Omin DHEXMER K E < 720,
@LL@%*@%TLTW%.%LL@MLﬁ&,%w&%mﬁﬁ@*ﬁ@@ﬁ@@,%@%,
TRPFEL USRI, BEICED. FER TR L TMF BB O ona,  omin DIE 9 23T
R LTZNTF RBRD Onax,  Omin & D HEXHMEN K E <, ROTHHEPAIC & 5 TMF BB TIE&E WIS
DRAEL TN ERGD.

1y
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L TMF-IP |
Aé‘t:]. %
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o

-
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-00 B Broken: 1st cycle ]
i Solid: steady state cycle |
1 | 1 1 1 1 | 1 1 1 1 | 1
0 05 1
Strain &, %
(a) IP condition.
! | ! ! ! ! ! ! ! ! !
500 — —
B L 4
o I~ -
= - 4
g 0
[%2] - -
4
ZE ]
- Ae=05% -
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-1 -0.5 0
Strain ¢, %

(b) OP condition.

Fig.3-7 Hysteresis loops of stress and strain at 1st cycle and steady state cycle in TMF tests with
total strain range, Ag=0.5 and 1%.
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500
- _ i
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[72)
@ - -
E _ i
-500 Broken: 1st cycle
B Solid: steady state cycle T
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(a) CP strain waveform.
T | T T T T T T T T | T
500 —

Stress o, MPa
o

-500 - Broken: 1st cycle
i Solid: steady state cycle

-0.5 0 0.5
Strain &, %

(b) PC strain waveform.

Fig.3-8 Hysteresis loops of stress and strain at 1st cycle and steady state cycle in ITF test with total
strain range, A&=0.5 and 1%.
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Peak stress omax, Omin, MPa

Peak stress omax, Omin, MPa

Fig.3-9 Cyclic hardening curves on TMF and ITF tests with total strain range, A5=0.5 and 1%.
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500

-500

! IIIIIIII ! IIIIIIII ! IIIIIIII ! !

TMF-IP-1 %

TMF-IP-0.5 %

IIIIIIII ] IIIIIIII ] ]

] IIIIIIII ]

102 10°
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(a) IP condition in TMF test and CP strain waveform in ITF test.

! IIIIIIII ! IIIIIIII ! IIIIIIII ! !

ITF-PC-0.5%

[

ITF-PC-1%

TMF-OP-0.5%
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] IIIIIIII ] IIIIIIII ] IIIIIIII ] ]

10° 10°
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(b) OP condition in TMF test and PC strain waveform in ITF test.
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3.5 BUE S HEMICKIET 7 ) —TOTHOEEORHG

TMF, ITF, BTF Hf&iZ7 ) —7OFTRICE > THEL 2528, BIWY, EfE7 V—7 0T A X
VEIEY V=0T HDIE ) BHEMETICREREELRITTZENWALMNTR T, £ T,
OB EE D 2 DT, MBHCAR SN IERIEO T A2 BTy L 7 ) =70
BB EIL, 7V —TOPTHNEHFHMCLETHELERMICHRF L. 22T, —ER
ETFTTOTHREZAR L ITFRBR L BTF RABR T, Rapid loading %% W CIERER O AR O
7Y =T OTHEEZRDDHZENTEEN, IRE, OF A2l 2 I E7 TMF B TlT#a
MO 7 ) =T OTHEERDODLZENTE R, 22T, £37 IV —70O0TAhEZEELT
7 ITF B & BTF S BROFE R 2 bl Uiz, O BP0 ENEZ 6 A L RO 72 I O3 44
PHE > Ag; (ij=pp, cp, pc) & FHfir Ny OBIfR % Fig. 3-10 12779, 700°C—& COT A& AL L= ITF
BRDAg—N; Btk L, 100°C L 700°CD 2 IRE TR AIZOT & A L7z BTF #BRDAg—N; B
RlE, OFHr Bk LEEEISENRH D HDD, pp, cp, pc DEFEMMEOT Lk 2y & FHén
ORIR, T7b b ITF R & BTF R BRDAg,— Ny, Agp—Nep, Agpe—Npe DBRITZNENEL —
HLTWD., ZiuE, RESOTAOARGIEN R >TH, OTHHFHSEILCL>T7 U —
TOTHOEEEZET UL, Ag—NjBItRZ HV T Ni-23Cr-TW G805 FHm i c& 5 =
LR LTINS,

RIT, ITF &R, BTF Bk E TMF RBRORS R A i Lc. I H 72 - T, ITF Bk, BTF
RBRITOTHRHEH S EEE M L CRO A5 — Ny BRIV 22, TMF RBRCIXaR o 2 Y
—TOTHEEZRDD ZENTE RN, IEHIEOT AfiHAg, — Far Np BIfR % 7.
Fig. 3-11 (ZZ D ilhE B4 ~9. TMF Bk & ITF B %2 b L 7= Fig. 3-11 ()& 45 &, TMF ik
BRDFNABSME & ITF 3B CPEE FTORBRN R —H L TEB Y, TMF REBR O FSM L ITF
RBRD PCIE T OBMRA R —E L TW5. TMF 3Bk & BTF kB 4tk L 7= Fig. 3-11 (b)i23 0
Th, TMFRBROFAAESAM: L BTF #BRO CPITE TORRA R —E L TH Y, TMF BRI
PrAESEM: & BTF #BRD PC I FORBA R —H L TWaD. £ 2T, TMF R ERO[FINIFHSEFIC
BT DAs—NeBIFR L ITF 3R, BTF sRBRDAg,—Ngp BIFR, BLY, TMF REROSAAIEIEICE
T2 Aan—NeBFR & ITF 3R, BTF SBRODAg—Npe BIFR A LLl L7265 % Fig. 3-12 123, [AIfL
FAGAT D Agin—Ne BIER & Agep—Nep BIFR, 38 L%, WATHE AT D Agn—Ne BIER & Age— Npe BIFRIT & <
—HLTW5.

AR OMMY, TMFRER CIXAMPICEAINDG 7 V=T OTHEEZRD DL Z LN TE R o7
72, Fig. 3-11, Fig. 3-12 TILONT A H0PH 3 FIE DAg; 2 T ITF 5B BTF 5B OS5 R & ELiik
THZLIETE o7z, L LN, Fig. 3-9 (2R Lz & 912, TMF i8R Ti ITF iBx<° BTF
AR LD BWVISTIBAR SNTWETeD, RERIZ U —TOTHARIBEL TV LD EEZ B
%. TMF iR TRAT S NI HEHIEOT RO RIS 7 V=T OTHThH o7z LET D L, TMF
RROAG 1L FNAR SN TlEAgy, WA CTlEAg: L AE L 20, BIIEY U —FOP B AR
7z TMF RER D RINAHSRE & ITF 3R, BTFRBRD CP I T, BLW, JEMi7 U —7 03 %
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AT ST TMF RBROMNAHSRE & ITF 38k, BTF s8R PC IE T DAg—N; B R3 T h 2
NEL —FH+ 52 L5, £/, Fig. 3-5, Fig. 3-6 II/R L= K 912, TMF iBRo R AHSAE &
ITF 38, BTF 3B CP I T ClaWn 9 b RITRI S, TMF 3 BR O WA & ITF 35,
BTF #BRD PC I T CTIXWT LB RINAEE L, S8R U — 7 OF BN AR STz 56l & R 2
U =T OPHPAR ST 5l TRRFIEN B2 o THRBER IR TH o 7=, M ™ 1 3his
TERBIZZEN 22T L, TMF FHaldZ O EiiEIC T 5 ITF FHan HELWERRTWS, =
D ENG, TMFREBROFENASM L ITFRER, BTFRERO CPIE T, B, TMF RO
NEAESRAE & ITF 38R, BTF 3R PC IIE NI REN R U CTh o 72721, Agi—N;j BIFRS B
K—HLIZLEbWVRD. ZNDHDRERIE, TMF AR O T (21T 5 ITF SRR TMF A7 & Trax
Tmin 3% LW BTF 3R CoRO72Ag— N Btk A & L1, OF AHFASENEE VT TMF Ff a7
MTELHEENRHDZ L ERLTND.

T IIIIIII' T T 11 pp O T'T'T"
ITF | pc |
1 Y|
L - ] 3
- - P A
8 i v
o i ]
(@))
g - -
=
g 0.1 —
wn - -
L] C ]
(«5)
o C ]
8 - .
g - -
(al - .
001 1 llllllll 1 llllllll 1 L1111l
102 10° 10* 10°

Life N, cycle

Fig.3-10 Relationships between partitioned strain range — life (Ag; — N;j; (ij = pp, cc, cp, pc)) in ITF
and BTF tests determined by strain range partitioning method.
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X
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(@) TMF test vs. ITF test.
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001 | | IIIIIII | | IIIIIII | 1 11111
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(b) TMF test vs. BTF test.

Fig.3-11 Relationships between inelastic strain range — life (A&, — Ny) relation in TMF test and
partitioned strain range — life (As; — N;; (ij = pp, cp, pc)) in ITF and BTF test.
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Fig. 3-12 Comparison of inelastic strain range — life (A& — N¢) relation in TMF test and partitioned
strain range — life (A&, — Nep, Agyc — Npe) relations in ITF and BTF test.

O B PH - ENECBI LT, SUS304 $il oD 9 72 @ et D a1 A %0 Td % 23, IN738,
IN939 D k. 5 R@EHE D = v F NV EAEIITHEA TE A2V 2 EARESA TV S . Ni-23Cr-TW
BEIT= v rVEEAE A TIEH D08, INT38 2 IN939 @ X 5 1Zy'HH (Nig(Al, Ti)) O Tiifk L7-
AT <, THEE & [T MuCe IRALSC Laves FHOMNTHIZ L 0 sk L7eM B CTH D, Z D
7=, SUS304 #i7e EDIERDA— AT F A M & FIBRIZ, Ni-23Cr-TW &4 O S 77 Fam & B4
W T FF M ORI O AEiHH o ENENEH T AFREENS L LB X HND.

YL EOfERIE, Ni-23Cr-TW & 2 IREZAH) [ Tl L2 TMF FHdZ2 TMF &R L 0 353
R ITFRBROMERNO TR TEL L ZRET LD THS. TMFREBET D7 U —F 0T %
BOHEE 5L TMF HaaliiEIc oW TIES 5 3= CHElICRETT 5.
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3.6 fE
ARETIE, Ni-23Cr-TW A4 OEE 7R Z I H 2N T 572912, A-USC F8E TOME A MG &

T D B R Tmax 25 T00°C DS TEYE ST (TMF) 3R 2 %0 L, 700°C—EiREE T DR

5 (ITF) BRI XL O Tha=700°C & L 7= Bithermal fatigue (BTF) RBRDFER & il L=, AETHEH

DN EREREZLUTICELD .

(1) Ni-23Cr-7W &40 TMF Fan i, FNAFISEOIE 9 SRS L 0 -7z, KRB THEfE L
72 Tmax=7100C, Tpin=100°C DRI TREOT HHiH (B O 2 dilH) Ag 2% 0.5~1.0%DK
BRCIE, AglZ X BT RMFHOFMITSAAHDOFMD USTRETH -7,

TMF RERTIEBIRYZ VU — 7 OFT BB AM SN D RN OFEMBEM 7 U — T OF HM
AR SN DN OFMmE v EL, £/, ITFRBRE BTFRBRICBWTHEESZ U —70
FTHNARSND CP WIEDIE ) BEMZ ) —7OFTHBRAM SN S PC IE L Y FadkE)
STz €0 T, IRE L OTHOARFIEIUKS T, SIELEMHD 7 ) —T 0T HOAT 1A &
K& SPEHFMIRE e BE KITT.

(2 Bl3EZ V=0T HEAM LT-&MTIL, TMF, ITF, BTF OW T ORBRIZBWTH
Ni-23Cr-7TW &3 R IChi fUiliE 2~ 2 L7z, —F, EM27 U —7 0T Rz Aan L&, »
FTHRORBRICENTH EICRNEES 2 L2, BESOTROAMGTIEIK LS, JIE & T
D7V —TOF HOAR T D IE TR B % KIFET.

() 0T HRHPANENEEZANTEMESIED 7 V=0T RO F M ERE S EPBEEE L CFH
Rl 9L, TMF SREROF & ITF ABROME R b FRITE D WREMEN H 5. TMF AfifH
D7) =7 OFHEERD D T LTS T255, TMF SBRO Ag,—Ne BIR & 1ITF BB DAg
—Nj BISRIZR < —E L TH Y, TMF RBUCHB W TRl CRM S A7 RO 0 5 728
7 ) =7 OFTHTHIUETARBROAG—N; RN EL —&H T 52 Lickhsb. £, TMFRERT
RIS B AR SN TVZle®, A SN IEREOT RO KRB ON 7 V=T OTHTH -
T REMED B 5.
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HAFE  Ni-23Cr-7TW 540 7 U — 7 7R R IE 9 RERh o 2 288

4.1 S

RA TEFIXKRNFEET T MCBOWTHRB TRMEEER Sh 5720, RA 7EEAMEHCE
W IR RRF IR SN % O IR b L ETh D, £ 2 C, AECTHEEIRICBES
%D Ni-23Cr-TW A& DOWETFRHEZ I LT 5 2 L2 HIIZ, A-USC EV 7 M TOMEMAMN
BEtEnCnd 700°C TORIRMZIM 2 ERLL T2 U — 7 97alBh e J2hi L, 97 Fa-Cffulk L
Ji ] — OF B BRI RAE TR D SR 2 3§ 5 .

F—=ATFA ML= T VG B ORE TR RE T @ IR O IOV TIEE < OFFFE
FlRd 0, FlxE, )5 Y 1% 650°C TS L 7= Type 304 5, 700°C TR L7- Type 321 AL
YA 7 VIR, bbb ) =T OFT BB AR SR WG CTOR TR G L, Rt

DWEFFFMILIERIM OFME VRV EAWMEL TS, SHIENGIE, 7 V=755
T CIEBIRIRFFRE I AN & Rpzhbt O B3R L0 R <, BIRIRFIRFII AN R < 72 D L %
B DOFMITIEREZIS L 0 FL S LTS, F 72, BEH S 2 13600°C & 650°C THEZ) L 7= Type 316
WD r U — T FFMITIERZIM LV RV L2 @RE L T0D. =y 7 VEAEIZEI LTI, Ren
& 3 73 Alloy 617 0 538°C 75 871°CITI5 1T HARY A 27 AT BT DL b £ 0 21T R0
EHELTND. ZOX ST, WD @RS 7RI A T BT RO St A SRS
KoTHERL. ZD7d, KREFETIEL700°C Th R 5000h Ff%h L7z Ni-23Cr-7W A4 % T, 7V
— 7 OTHBNAR SN DKM LA SRS TR IR Z RN 5.

4.2 fEAs

KED 7 ) — 7G5 BRIZH T2 Ni-23Cr-TW GO b P % Table 4-1 1277, BRBRICIE
B RGS, EAIEE, BAEEREIC L W JEE 50mm & L7tk 1220°CC 1 BRREIRERL KA o EE
(LB A i U 7o bt 2 U 7. Bk O B2 % Fig. 4-11C7~ 3. Z O RS % 700°C T 1000h,
3000h, 5000h 4 L7 kBl 2 ERL L, FERNE & & bIcBRICt L=, mE S 9 13, Ni-23Cr-7wW
AT B 28122 L, 700°C CliEdksE L2 1000h T MyuCe AL ONTHMRE T T 5 Z & ZH 5
ML TS, ZD7zh, Ni-23Cr-TW G40 E72 HHTHI T D MasCe ALY DRFEHIZ K 2 BT H
D3RI AT T B A W] 50T 5 BRYTIX, 700°CIZ361) 5 REzhigfi] % 1000~5000h ¢4
ThdeEZLND.

P O ¥ L E— RN =R X —ORERE R % Fig. 4-2 1277, ¥y /L B —HEHERIL IS Z
2242% |ZHEHL L, W 10mm X & & 10mmX & 50mm DV /v FRER A VT 0°C THEM L7-.
Ni-23Cr-7TW A4 D ¥ ¢ L B — RN = R L F— | ZRNC K VAR R 3 5. FRlS, Reshief] t=0h (FERE
FF) 725 1000h DR T 23Kk <, 1000h 7> 5 5000h O OIK FIZ/hS V. FRFRIEH T 3 A3
SRE LTz v b B — RN T )L ¥ — DA, t=0h T 262J, 1000h T 161J, 5000h T 113] T
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bsb. ZOEIT, VIR F —OE T O GBI BV CHE TH 5.

Fig. 4-3 (213, 51 9RFABR TR D 72 IEFhES & bt OBEA A RF: 27~ 9. 51 aRAERIZ 1L IEAE 6mm,
PATHER S 40mm O FARBR A A U, ALAHEREET 30mm & L7z, Ni-23Cr-7W &4 30T
L oT02%fM /), Sl SIE EA-L, MY, &VIHMETT5. 2hEhoZiX, Fig. 4-2 IR
U723 v L B — UL R L B — D2 & [FREI, NIRRT t=0h £> 5 1000h TR X <, 1000h 25
5000h DR TlE/hE .

2D X DT, FERhFHAY 1000h 7> 5 5000h D Tl v /L B —WRIN T L3 — L BRI RAPE LS
REBRBMIIHONRINST2Z &M D, LT O GRBRITIERFRIA 2N 2 T 1000h 35 & U 5000h
IRFAIAE % b R FE i L7z

Table 4-1 Chemical compositions of Ni-23Cr-7W alloy tested. (mass%o)

C Si Mn Ni Cr w Ti Nb Fe

0.07 0.15 1.02 45.2 23.4 7.5 0.09 0.18 bal.

Fig. 4-1 Optical microstructure of Ni-23Cr-7W alloy.
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0.2% proof stress, MPa

Fig. 4-2 Relationship between aging time and Charpy absorbed energy of Ni-23Cr-7W alloy tested.
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(a) 0.2% proof stress.
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Fig. 4-3 Mechanical properties of non-aged and aged Ni-23Cr-7W alloys tested.
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L Aging time, t
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Fig. 4-3 Continued

43 7V — 7GR BR Tk

WTFRBR O 7L, B 3 W CHEME L7- PP (fast-fast) LY CP (slow-fast) I D SR 7758
BREF U CTh L. RERTER 10mm, FATHE S 30mm OAEERER A %2 W, & ERGHE Mz
B & AT Y — R AP B T I L7z, RBR TATI o R s S TS L, B
JOM TR OFEAZIC X 5 J8 57 10 O TIR 2 BR 2 U7 I BRI i U7, 3BT OIS 13 R BB X,
O Fr LA A ) BEEE 25mm O OV CRAIN L 7=, BB IR, 700°C—E DIEE T T, U9 Al
TN L7z, OFHREIRIL Fig. 4-4 19 K912, BRMIRY =MAHEoO PP (fast-fast) i+
FONCP (slow-fast) Iz & L, OT AR, CER/DAOT Haninl x KOT Hrgna) (-1 & L7z, O
FIREIT I (P) A 1.0%/s, Ki# (C) Afif4 0.01%/s & L7z, B3I ETHIRR7zL B,
1.0%/s 1327 V=7 OTHORAEZER TEL0THEETH L2, PPIRIETIZYZ V=0T 4
AW ST, CPEETIIBIEY V—7OFHRNamans.

CP JJF DBk TI3 Rapid loading 1% ® # AW C, KEOTHAMTICEASHEY UV —FOF
FEAE RO BB TIEEY A 7 VO KIET) Onax ZHE L, omax D3F P HIOEF RIS
DAEDN D 25%(K T L 72 #ul LSk & F6n Ny & EFE LTz,
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PP (fast-fast) CP (slow-fast)

+ ||HHHH1‘1HH|||[IH|IH‘HH1||||H||{HHllHl | .+ / / / /
Time ( / / /,/Tlme

) 1.0 %ls ) 0.01 %ls 1.0 %ls

Strain
Strain

Fig. 4-4 Strain waveforms used in fatigue test for non-aged and aged Ni-23Cr-7W alloys.

4.4 7 U — 7% 57 el R
441 7 U — WG FmIT KINE TR D 8

7 ) =7 W GrRBR TR DI AT i Ag & Fn Ne D BAR A Fig. 4-5 127777, Fig. 4-5 (Q)I2R
L7z PP IE T ORGSR E 7D &, WM O FFanIIERERA D54 K 0 25TV, £72, 1000h
IREZhbt & 5000h REhis O RFIZIZBIR 72 2213 H eV, Fig. 4-5 (b)I27= L7z CP I T RS 5
hHDHE, RETEM LR TR bAg BPRE WV Ag =1%D 5 TITREZIM O1% 5 23 IERZI X
WREFMTHD DD, L& VIRV Ag TR & IERFRhA D F A LR de L ARERIE 1%
IMEHFMTHD.

Fig. 4-6 (21, FMHHICBIT 25 E OTHOE AT U ¥ 20— O OED 53R 7= FEfHE
O BE#PHAg, & Fm Ne OBHRZRT. PPIIE T, CP I FTOWT UKW T HAg, /NS UVVGE
I CIRIERE IR D FE MR L 0 ETFEWEHAIN A DD b DD, FEREIM & R DAg, &

Nt DBIFRICK X A 21T A By, F£72, 1000h FEZhEF & 50000 REZhES CTlE, Agn & Ne DRIFRIZ
BHIR 7R 2213 HALZR V.
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(a) PP type of strain waveform.
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(b) CP type of strain waveform.

Fig. 4-5 Total strain range — life (Ag — N¢) relations of non-aged and aged Ni-23Cr-7W alloys.
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(a) PP type of strain waveform.
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(b) CP type of strain waveform.

Fig. 4-6 Inelastic strain range — life (A&, — Ny) relations of non-aged and aged Ni-23Cr-7W alloys.
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W

4.4.2 FEEETEREIC RIT 9 IERh oD B 28k

7V — 7% 5y kB OB Tk 2 SEM GE ARV T BAMER) Blg2 Lo KR % Fig. 4-7 IR T
WIS AR AU O RS REE LB A 55 2mm R NENC A - T EET O RS RS
BERLTWA. FERIM, BEbt & b, 27 U — 7 OF RN AM SR PP IR T O E I3
RN A EWNER LT Z L2 RTARNIA T —va r EBEZ LN OMIROERPBIEZE I ND.
—77, RIS, Wb L b, BIRZ V —7 O RN AR Sz CP B T O (2 (TR E
Lo nBleEsng.

Znkoie, 7V —FOFTHRAROHEEICL > THERENZELT S DD, PP HE T, CP
B FONTIUCTBNT G, FERFZI & RERhA O N ITAE T RE D 22 B3 A B AL 72\,

Strain Lo . ~ B
waveform Aging time t=0 (non-aging) t=1000 h t=5000 h
imm
PP
“50um T 50um
1mm
Cp imm imm
100pum —100Hm —
pm_-

Fig. 4-7 Fracture surface of specimens after creep-fatigue test with total strain range, Ag = 0.5%.
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4.4.3 MR LIS — O B BAFRIC BAZ T RERh D e 4

3 IR LI K 91T, Ni-23Cr-7TW &4 i3iduk Uik E 2~ £ 2T, R & Re2hbs
DR UL SR 540 L 7=, SEERBRAED 20T, FRBROF6M N D 1/2 Ok LIITH
FHRROTHERRNIES], BIY, B/NOTHREENET) (BEOTHOE AT Y v A —
T OFEMIB L OEMFR O 27 1 v b L TR IZHER LIS — O 2 BE% % Fig. 4-8 (277
Fiz, HPITITE O 7= DI 5 R TR OIS — OF it 2 on 7. 7eds, JEMEAI O
F— IS FTOT 2L, BRI & BRI OIS — OFTAISEIEZFR L TH D O EREL T, 5l
R TR O TGS — OF B il & S & 0 IC 180° R S B2 b D TH 5.

FERFEIRA, WEshhA & b, FRAOIRT) — O bR L 0 ol LIS ) — O BB DI1E 9 @i /) T
HY, DT bR LEZEE 2R L0 D, G — O 2 i IERE 2L 3 e b AR SREE T
D DKL, MR UG — OF BBRITIERZIM D i b SR E T 5. U 74-0.5%~0.5% D i
P CIE, FERFEIA DR LIS — O B BIRIEEAIE ) — O P A iR L 0 2~3 RIS Td 5.
T XIS, IR K 20T HOMIK LARRNE, FERFZIA XL 0 KA 01 5 2N & RE Th
HIZHED LT, Mok LARRITIIERZIM OI1F 5 SEisEE s i 5 72,

Ml U AR AT CIERERIA & RERIA OTRE DNEF RS AN b o 72728, #iK LA OME D
M B 2 50 L7z, Fig. 4-9 1213, 20T HH#PHR R REWRIEE R B/NIWEME, T72bb
PP I/ Tl 1% & 0.5%, CP I Cid 1% & 0.4%DRBRICH T D 1 YA 7 VO KIGT) Onax & 2
KU OBRERT. ARO L B0, RGO, FERhb & B UL EN 278 L, omax 134K
LS OBIMC NI L2 BRIEE—EOME L0, TO%, SRBFEAET L EARL CHkIcE
% . IR IATIN D Omax 1 6F LT 2~3 5 £ TH L <k L7z DIZxE L, Rt Off{bld/h S v,
ZOFER, FIHNIIERERIA DIF 9 73 Omax PMRVDITKE L, 0K L AFFEIZIEREZIE DIF 5 7 O
< 72 5. ERFZIE & WD O Omax DR/PBIRS AR D 2 DIL, FERERIM O Ffn D 10%FEEE
DM LEE TORBRYITH Y, 3BT DK 5r O WIRNIZIEREZI D1F 5 D3 @EIREEIZ 22 > TV
%.

MR U A% DI T DIFERERIA DIF 5 DRI L 0 i < 72 D DIE, 2OT R4t 0.4%, 0.5%
TH 1% THRILTHY, £/, PPEIZTTH CPIEI T THIFIL THSH. 1000h KFhts & 5000h
Rp2hbf % el 9% &, 1000h BEzhpd 1% 5 3R LBE S RE WH DD, REREITIALN
7200,
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(a) PP type of strain waveform.
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Fig. 4-8 Static stress-strain curves and cyclic stress-strain responses of non-aged and aged

Ni-23Cr-7W alloys.

(b) CP type of strain waveform.
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(a) PP type of strain waveform, Ag=1%.
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(b) CP type of strain waveform, Ag=1%.

Fig. 4-9 Relations between maximum stress, omax and number of cycles in creep-fatigue test of
non-aged and aged Ni-23Cr-7W alloys.
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(c) PP type of strain waveform, A5=0.5%.
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(d) CP type of strain waveform, Ag=0.4%.

Fig. 4-9 Continued.
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4.5 FERFZIEE & RIS DGR U AT T OFA kB

Fig. 4-8, Fig. 4-91Zm L7k 91T, FERFRIAS & IRpZt Tl LR (LR ENC R E 22 E Uz,
ZOFRNERRT D720, K LA E 5 2 TORWHE 55 R BR% OB &2 TEM (B iR
EEMEE) BIEL, MuK LAMATROMMAEBIZE L. Fig. 4-10 (21, FEWEhRr & 1000h RE4)
M OO LARTZ 5 2 TOZRWT o 7L LIRS OB A OFATHN ORI L2 7 v o
PREAE 2 . FEREIAT X ETR L BAERA T 5 7, 555 RBRAT O U1K BE CIIH w2313
EAEBEINARVOIIK L, T RBREIITEBR P AR SR ISR oI 28
DOHFHPIABLER SN D . Ni-23Cr-TW A4 D 700°CI2 3515 5 E7= D HT HIE MosCe RAL T 5 ¥ 7=
W, THBIE MuCe I TH D EEZBND. —J7, Kb TIEREZhHICHIK e MysCs SRALD
DPHTHIT D728, JE 57 BRET BRI IR 2T R SMEAE U, R 57 3k BR 1% (13T R O NI E 2 &
R, FH S D RS LTV X 51T, Ni-23Cr-TW A4:0 MyCe RALBIOFTHIE, 700°C Tl
FBIFLZ 10000 THRETT 5728, 10000 REAM IZREZNEEIZ K0 MaaCo IRALIANIEIZ T THT
L, #EITRBRT 7T00CORIRIZ S IR SN THHT278 MyuCe AL DHTHINT & A Do T2
bOEEZLND.

(a) Non-aged alloy before fatigue test. (b) Non-aged alloy after fatigue test.
(PP strain waveform, A&=0.5%)

o

(c) Alloy aged for 1000 h before fatigue test. (d) Alloy aged for 1000 h after fatigue test.
(PP strain waveform, Ag=0.5%)

Fig. 4-10 Bright field TEM images of Ni-23Cr-7W alloy before and after fatigue test.
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Fig. 4-11, Fig. 4-12 (213, FEIFRIAF & IRt DY 57 3R BRAT % D MosCe AL DA HIMKRE 2 8152 L
7= TEM KRB 2 7R3, FEREIM X E AL BVAERM T H 0, 3297 R AT O IR RE Tl P 23
EEA LR, FEREZIR T DWW T J7 kBt O Bl LTz, FEREhA O3 57 iR 1% 1213
Ma3Cs [RALI IS DH)—IZHTHH L TV D Z E SR S D . F iz, WM IR K- THY
U 72K 72 MasCo IRAEMD 39 57 RAINICAFAE L, F75lBR1% & MaCe IRAL OFITHENETH
K72 MosCe IR D3RR S 4L D .

I B0 TEM BIESR RN D, FERFRIM T O 473D 720 Te O ATHIREE TR & D D,
I TR T MosCo IRAL SIS —ITHT L, £ B MR OB B DFEEE L 7> TFH L <
b L7722 &, BET, BT 700°C TORZNZ K o THR7ZR MpCe IRALMIHTHIL, Z D%
DOFE T AR H T I N 2 o T272D, 1FE AL Lo 22 ERH LN o T2 %
DGR, TR BRAI% CTIERFRINE & R OBRENR L= L B2 b d.

Fig. 4-11 Dark field TEM image showing precipitated M,3Cg carbides in non-aged alloy after
fatigue test under PP type of strain waveform with total strain range, A& = 0.5%.

(a) Before fatigue test. (b) After fatigue test.
(PP strain waveform, A&=0.5%)

Fig. 4-12 Dark field TEM images showing precipitated M,3Cg carbides in alloy aged for 1000 h.
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4.6 His
ARETIE, Ni-23Cr-7TW G403 SR R R HGE S 72 ORI RMEZ I 6 NCT 2 2 L & BRI,

KEBDETZ DN T D MygCo AL DNNE T FEIC RIT T B L it T 5729, 700°C Tz

5000h K§E%h L7=# Kt 7 V) — 79 555k & 32 L, FEREI OB R & ik L7-. RETHD

NI ERRREZLUTICE LD D.

(1) FERHITAOR U] — O A BMRIC R X 2B % 5.2 5. R X o THRALS ST L C i
22 D728, MR LA %25 % 5 RNEEERA O1F 5 S IERER L 0 iR Th 58, JEREMT
IR LA TR LI E SR E W, Ml LA & 52 T2 % I3FEREIM 1% 5 03w
272 % . ARETHRER L2 O 7-0.5~05%DHiPH TIx, FERFIA MR L A% OIS ) — O3
I B AR LETERT O 2~3 585 22~ 1.

IR 1 X2 T LK 72 MgsCo AL T HI L, 2 DR T AT & 5 2 T b Hio 72z
EHOFTHITIE E A EedroTe, ZHISK L, FERSIM IZEELEVAERM T b 2 72 % J7 AT
BERAC OB INE & A L7 L, I AT E 5 2 D EERAL_FIT MasCe IRALI DS A1) —
(AT L7z, 2 ORI — 72 MasCe AL OB B OIREEE & 72 1, FERFRIAIT R & < fuk
LaEfk L7z,

(2) 7 V=7 OT Hafafi L7 PPIEIE N CIIIERFIM T TR O FFmAa TR 7o 7z
LOD, FOEFREL ol Fiz, 5k V=0T HhZAM LT CP T TIIRD
FHHPHAG 23K E WEIE TR O1F 5 MIERZI L 0 M3 TS, Ag AV S WK
TIXRERIM & FERERIb D F 1L RS 2 T L AREZIM D13 5 03 Fam AR < 22 2R A bz,

(3) FEMFRIAS & g2t D PP I T & CP IIE T OMIEIZREIZEIL A bR D> T, WL, PP
W T CITRINAEZ 2 L, CP B I CIXRIMEE 2 23 2 E T il S i,

(4) LED X ST, RERNIMER U LSBT K X 2 8% KIZT b O D, I FFmIC KIE T T
INEWZ ERHALIC IR o T FORA TEENL, 7V —TOFTHNAE L DL THEMA SN,
Fo, WEICRERERLOTHRBELRNL IR ENDG. 7 —TEITAMTH D
CP IJE N OAROT Ak TlE, Ni-23Cr-7W && IR D1F 9 DRI L 0 Han k<72 %
Band 57280, ™A Z7EEEHREOW T FMIZ KT TRRIOREBI T/ NI NnWEZ 2 b b.
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55 F  BYRITFEmRHnEORSE

51 =
B 57 B AL OMESLIY, IRELE FCTHEA SN RA TEEAMENC L > CTEHEARRET
H5D. B3 FTHENM LB IR & SRR 5 RO LB I BT, BV S5 B O iR RS

3
2 IR IR R A b LT, OF &P EIE &2 FV T Ni-23Cr-TW &4 D BV 55 77 A 1 11l
TEDLREMNR D D Z LB LN o7, BYETRBITIRE, O3 %0l %3 53Rk T
HY, —ERE T TOTHOLLHIET 2 EFRE TR LV RBRPEHTHI E WD, &
TR R ORER 2 AW TEYE T FHdd THICE L, A T CIRELAS T SIS HIE
oD 21T ECHIRTH S, L LAaRD, 8§ 3 3 CITSIRE Il BG 1.0 & Bk 5 H
ZPRITCEDAREMEIIH O SR o7 b OO, R, 671, O AL T 5 8% J7
BRPICAEL D7 Y =TT HEEERMICHEM CE 2o 7272018, O T AHEANENEC L 25 FHm
B A FEE T X Ao Te.

F I TARETIIBESARMT DY ) =T OFTHIMEICONT, BESN TV LEHEE L 2D
Rk, MBERZHONI LR, ILWVIMIEZRET 5. 2 LT, FBIEICIV RO TEYE YT
AR O 7 U —TFOF I & OF BB Z O 2 B 55 5 a5 O FIER X Ol i 24 2
T — B H R,

5.2 BVEIr AR D 7 U — 7O Bk

5.2.1 TERFIE

PEH AT, BYEy (TMF) Ao s ) —7 033kt & L Ti(a) Rapid loading #: Y, (b)
Stepstress 152, (¢) 7 U —7RERCTRDI-ER 7 UV — T HWEA T2 HEY BRERIATNS.
LITIZ, @~C)DOFEZOWTHAT 5.

(a) Rapid loading 7%

SRR ST RRBR Tl 2 B, 5 3 3 Cu A L 7= Rapid loading % W TS AR O 7 U —7 O
T A RO D TFENHEY. SN TW5 . Rapid loading 75 TlE, Fig. 5-1 12/ K 9 1255 akBR T IC
IR OT B EFA L T, KEOT AR E DI — O BRISE D 72270 DAKEHE O S A T
WAELTWS 7 Y =7 OThEERDS. ZOFELZ TMFREICEHNLEL S &35 &, BBk
P CEIROOT AR AFFAT BRI, RRFICRE bR TEIEDILERDH D, LaLen
5, MBANDIREZ —HRIZIR>TeE E, 7V —7OTHORELELTE 513 & ORERH Tl
EEEBIELZ 3LV, £, RICEEH TREZB S SRR OO TAZHATELLELTY,
RO 7 gmax BARFRFDIRSE & SR AT OIS — OF B iR L T onax (BT DG oa DNFEAET D
MR D Z 212705 (Fig.5-1 D AE BROIBENERD). RENRRDLE, MEO
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JE T — OT i BT E T B 726, Bl HIRFE DS — O B BR % ok LT TMF 3Bk OfKE O
PTLHAMBICAL TS 7 ) —FOTRhERDLLIFTTERY. 2D XS5, TMFAFRTRO 7
U —7OF Za# il Rapid loading {£ &5 42 Z L IXTE 7220,

Creep strain

Rapid straining
(high strain rate) \

S Stress

Plastic strain

Elastic strain

)
/3
—V Hysteresis loop of the CP test

Fig. 5-1 Determination of creep strain by rapid loading method.

(b) Step stress ¥

Manson & 2 (%, @RS A 27 VEFRBRLBEFRR TAM SN2 ) —FOThERD S
T L LT Step stress {E& 2 LTV 5. Fig. 5-2 (2787 X 912, Step stress {ETITIG I & OTHD
EAT Y AN—TNEET HETHIR LA A G272, RE, IShE—ETRET AT v
TEBAL, REPICAECTEZ V=T OTHRNLZORE, ISHTOs ) —THELZRDD. &
BRI Z OBEE BB OIS L, FIZIE—EOOTABRETE A7 U v A—T DX
BHZ T, SXETAMINDIGOFEEETHEYIEL, FREOY UV —THELZRD, Tt
KT T2 LI s TL A 7 AHICARm SN 7 V=7 O a2 H T 5. Step stress 14
Wi, TMFARHTICAELD 7 V=0T hiaRODHZ LITTETH LN, RERPEMETH
59z, 7V —THEEZRDD-OICRRHE OIS I IREF LR BT 72 D 7o 0 2 R 72 iR BRI ]
AET L. Fio, @BIRTREFT 2 2 LI X 2B IREFICAE U 2 AR OFER CIT AR
ENBZNT ) —=TOTHMNETEMIRETRENEEIND. B 4 ETRLELDIS,
Ni-23Cr-7TW &3 @il TRIFERF 5 &, SRR K o THRIR LIS — O ZBIRAK
LT D72, IRIMRFEORIE CE AT VU AN—TORRBENT D2 LB 615,
0L, TMF Ao 7 UV —78E %R 5 72O @R TR ORFFRMLETH S Step
stress 71 Ni-23Cr-7W &4 ORI 1308 S 720,
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Hﬁzw
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Stabilized hysteresis loop

Fig. 5-2 Schematic illustration of step stress method for determination of creep strain applied

in fatigue loading® .

() EHWZV—THRELZMEHT 5 5L
FRED X 91T, Step stress % TMF BfafH D 7 U — 7 OF Bl i@ A7 2 72 DIiZidv < ooy
DA B % 7%, Manson 5 2 |3 Step stress 5 TR 7= 316SS #H 0 & IR 7 955 A BR T DI
NERE 2V —THREORRIZY V-7 B CROLISN EER 7 ) —THEDORHKRLFA%ETH
HZEEFRLTVWD., ZOMBEEZTT, ZFEO D13 SUS304 fil 2 %412, 7 U — 7 B £
OROT=7 U —7HEIZ TMF BBRIZE T D0 AM R 23 CC TMF BBt 27 U —7
OFTHhERDOTND. Z LT, TOMEE S EIZOTHHPAENEZ AV T TMF Ham AR L <
WETELHZLAERLTWVD., EHLIE, 2 BREOER 7V —7HELEEE L CTHERED
— 7 HEEHHHNRE L TODED, 7 ) —TOFTHIHIEDE % J5713 Fig. 5-3 [Z/R T30 TH
%. Fig. 5-3 1@ CTHIRIG I3l S D FNLAR (In-phase) SeiE&2GFIZ 7 VU — 7 O DR
EEEAICR LEKTE S, 7V —FRBRTRDIEFREDINT1 &7 ) —THEORRE AW
T, TMF AffOFIRIERE THIRIG DA SN2 XKEIZHEWT, FREEOIRE, IS hnhb 7 U —
HEAZRD, TNEMTHEI T2 EICE>TTMFAMT D7 V=709 H %KD 5 FIET
H5.
ARFEZZ ) =T BERZNE LT 5700, FmiHlonEE 7 — % 2 G5 2 DI RFFH
EETLHEVWIRENRHDH. LonLaenn, @R CTRIFRER INDRA 7 EE M EHT I E
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AT DICERE O 7 ) —7F—2OBENMEATH Y, Ni-23Cr-TW 548D 7 J —7FF — 2 1
RSN TWDEZ NG, A FEERAMEBCIZZOXREITEH TX L. 22 TREICBWT,
ARTFIEIZ L D Ni-23Cr-TW &40 TMF HaiEli 21TV, T ORKE 2 EET 5.

Calculation of creep strain

A by using steady-state creep
+| rate equation
Heatin ’
. . 9 S Tmax
@ period /1 ,
S0 s >
= /
N // ,/  Strain
/ 7
4 Vs
/ /
7 /’
% _-7 Aooling
/ - .
— | e--" period
Tmin

Fig. 5-3 Determination method of creep strain during TMF loading by using steady-state creep rate
in creep test.

5.2.2 KWFFRDOREEFIE

AWFFETIE, TMF A O @R E Tmax (23T DK UG — OF A2 LT, TMF &
D7) =T O HAERDDHFIEZRET DH. AFEILTMF ARTHICA T 2 8EOT A% I
Kb, BB SNIZIEREOT BN LBHEOTHERNWTI ) =T OFTHERDD LN FIETH
%. Fig. 5-4 121%, @R CHBRISDNAR S D RMMAEEEZFIC, RFIEICED TMF AR O
7 ) =7 OF BRI ORI 2777, TMF 3RBR D Trax 12381 DK LIS T) — O it 4 2 O
SN FERBRICSIEIS AN 01225 2T U v 2 —7 LD SAICERAS DY, TMF B o &S ik
(BT DI BAM STz & IR L BMNEOT g 2R LIS — O T HMliN SRES 5.
TMF 3R TR ST IEHPE DT Zrgn (G ST 0IZBIT D B AT U S ZL—T7 OB HIEE L TR,
an D& EHINT, TMFAMHP D7 ) =T O g ZRDD.

Fig. 5-1 |Z75 L 7= Rapid loading £ Tl, R RKOT P g BRTFEOIRE & @il AR OIS I — O H
HIHR _E Canax (BT DIGTIRRAET DR OEEN R D L) RS - 7208, RF1E T gna
A SAIVD T (ZH 1T DMK LIS ) — O T Bl 2 A3 2720, ZOREZEOMEITA L2
W ETZ, BHAREIZBWT, Ni-23Cr-TW &3 L <k LI L% Z & 2R L7ens, IRk
TR E DHHIES] —OFT HEFR TIEA <, MR USH — O P AR Z2 AT 5 2 & Tuk Lk
D EEEE LTl A iR TH 5.

81



Cyclic stress-strain curve

+ A at Tax \

Stress at T, 2
&
/
4 Tmax
(92}
(%] /
£0 Y £ >
/ 7 .
n ¢ le— & ,7| Strain
// & ’
/
/ P ,/
/
’ ’,’
/ - g
— | &-- in
Tmin

Fig. 5-4 Determination method of creep strain during TMF loading by using cyclic stress-strain
curve at maximum temperature, Tax-

5.3 ONT F il 3 15 2 O 72 B0 55 77 6 A v

TMF & D 7 ) —=FOFHERDT-#%, ZORRE b L ICOTHHPEENE Y 20T TMF
FmaiHli T 5. 22T, 7 U —7EGFMHIED —D>Th 2O HHASENE A Lz
LT ORMIZE D, £, Ni-23Cr-TW SO @i 57 FmiL 7 U —7OFTHOARMIC L - TR
T4 5729, TMF HMiHliEE 2 @D 57-0120%, 7 V=70 THOEEEEE L iHMiiEN A
HEBZONLZEThHD. £, 0T HHIFHSENET TMF HFaeki~O@EM b e TH Y, 5
3 E(ZIUT Ni-23Cr-7TW 54D TMF FEmalfli~D i H O FIREVEN ] H 2> T . O A
FAPH A3 EEI W T Appendix ([ZEEAIIC R LTV D720, LA TSI il = & fifi IR 9.

O B EEPHENETIE, JEHPEOT Bl Ag, & 4 DO IEFIE O B3P RS Agy (ij=pp, cc, cp,
PONZHEIL, FAg & AglZxtiind D5 Ny & ORfRZ T TR

Agj; = ANy~ ™ (5-1)
Z :VG; Aij: mij 6i$ﬁ*/”ﬁ§ﬁf?§)é % L/T, %’éﬁ Nf @i% Nij %Hﬂb‘fu?@fﬁf;}f&bé

1—1+1+1+1 (5-2)
Ne N, Nee  Nep Npe

pp
TMF Ao 7 ) =708 %, BIEOTHZ2RO L5 ENTEIE, A S IERIEOT 240
FAGy 2 3B OT R T A I EIT 2 Z LA TE, OT H#iPASENEIC L D TMF Fdnak

N FIREIZ 72 5.
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TMF BRI I W TRl THIRIG I 3BT S D RIAAR SR TR AT 2 IR 0T 221F, 513ES
FNZIFBEMOT L 7 U =T OFF, ERGTAIITBEOT HDOR LR 5720, MHEHCAR S

% IEHMEOT G E 7 1FAGp & Agp 12725, Z D72, R(5-2)DAITIE 4 DD Ny W EENT

WA, AR T FRITRT £ 910, Nop & Nep DA% FIVNTHifr Ny &35 .

1 1 1

= (5-2")

ﬁf Npp NCP
—75, R CIEMIG A0S AT S D WA S TR T B IR OV AL, BIBRSF IS IX IO
PTHOL, JEEFNTBEOTHRE 7 V=T O R E R D120, MEHCAR S DRt
HRIFHR T T Ay E A 1725, Z DT, WNARSAETIZT FRUTTRT L D1, Npp & Ny 20

THm Ne 27l 3%
1
(5-27)

Npp ' Npe

5.4 $RFIEIC X 28 J7 F ikl o FIE & M BT —#
TERIEIT L 2 8% 57 et Fig. 5-5 1IR3 K 51
OFfnZ il 42 TMF | H OIS L OFTHDO e 2TV U Z—TZ2 5L, J57) 012
AT A= DB AED B EHZAST S VIO A #i A, Z KD 5.

2B 2R LI —OF Rtz sRed 5. 22, T iZBT D

@ BT 3F%¥'F$U?“%L$BE§Z§7‘A&,- L # i
B BHEE LRSS — O3 2l

, UTOO~ODOFNATEMEY 5.
BiFste

@TMF AT O R R Tona |
PP I T DOFRIR T iR N L BT H 578, ik
N DBIREE KD 5 72D OiBR & FEhi 3 4UE, [FIREIS Tax |

Bohs.

OTmax (ZBIT DMK LIS T — O3 A a TMF Bk A7 U v A )L—
AR EHC AR SN D BEOT R E 7 ) —FOFT iR 5.

@OF B FE 2 O THEHZ AT S DT FRFPE O 2P A s, 2 I OV A BEIH R SY A
SEIL, TMF B2 il 5. Famabfiic v 25 Ag; & Ny o BRI

FINLAR SR> TMF #6233 2 561213 PP i E
ZIX PP &

\CERADYE, TMF

(ij=pp, cc, cp, pc)ic
BT HHEREFRECTRD D (@).
KR METH Y, WSRO TMF Fa 2 iHh 3 5 5%

Tmax
& CP IR IE DS IRE 57
PC KT DSEIRIE BRI CTH 5.

:mu

RRIEIT LD TMF FaEHilC L2 7 — X T T D 35 ThH S.

Q) TMF AfiR DI )1, OFTHADE AT U A
BT MR LIS T — O3 A i

BT 2 IEWMEOT B G 47 Ag; (ij=pp, cc, cp, pc) & Fdn Ny DBIFR=
(2) (3) iTmax T%)%‘F{ﬂ]l ﬁuﬁ%f?%%ﬂ

(2) TMF A faf D e

(3) TMF Aff D Tpax I
ERQ)IE TMF BRSNS EL LD TH Y,
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HT—HThDH. ZOH, TMF AWSE: &2 ORMET ORI — OFTBIGE R & nIs i,
RRIEZEHT 5 2 LIk 0 SR THRBROKE RS TMF Hi g T2 2 LN TE 5.

@ Acquisition of the stress—strain
hysteresis data in the TMF test
+ Hysteresis loop in the TMF test @ Life prediction by the strain
- range partitioning method.
e h) L. .
- (@ Obtaining plastic and creep Aew = AN~
2 0 N strain in the TMF test by &j = Aijlij
72} , 7 Strai,n superimposing the cyclic 1 1 1 1 1
’ ’ stress—strain curve onto the vovo Yttt
/ ’ . f pp cc cp pc
, _ hysteresis loop.
|- T
Cyclic stress-strain curve iy TrTmmmmmmmememmooog
A atTo, 5@_ Agi~N;; relat_lons determined by
N + isothermal fatigue tests at T,
(@ Measurement of the cyclic 2 <
stress—strain curve by isothermal =0 g
fatigue tests with PP type of ’ s Ag,
strain waveform at T, )/ E
_| £ 4 Ae
Cyclic stress-strain curve — Tonin £ A P
at Trax \ Hysteresis loop b= “op A&y,
% E Il Il - L Il ]
£ e Life, N;
w |\ & | e
0
Strain

Fig. 5-5 Procedures for TMF life evaluation by proposed method using strain range partitioning
method.

5.5 ftS

ARETIL, AA TEEH = v 7 VA4 Ni-23Cr-TW O 2V 55 T aliyE O fesr & kg m % H
B, B LWEYETAM T D7 U — T OT HGHlE & & OFE2 AW T2 B 55 5 a Al ik 2 12 42
L7, BFETE, BYETAMTOIS N EOTHOEZAT Y U AZEGL, 2O AT YL
B 57 B O BRI 30T 2 M UGS /) — S O Al 2 LT, BV 7 ARz A Uk
WHOFTHE V=T OTHERDD. ZLT, TO7 ) —TFOFT LGl FR & O At o %
% F TRV 7 Fm & R 92

REBEEAHHT L &, BIEFAMICR DI —OFT RIRERH ST 20uUE, SiRE T R_BRO
FER DEE S F A T 2 2 EMNATREIC e 5. B 57 5B X 0 SRBR AN B 7 SRR 57 R o
MEREAWTRYE S FaE TRITE 2 80E, AA 770 EORELE T Tl Sh 2 miEsEoR
FEITH) ETHIETHD EB 2D, REEERIED Ni-23Cr-TW &4a~OiH & OFEIZ D\ T
X, WETHRHT 5.

s

k=i
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56T fRE LRIy Faatilik o m AL O BET

ANA T BLE BT & o TEE 57 F etk O ffe s & SRS EE O ) HIZEHEERFRE TH 5728
BECIIH LWBVE AR 0 7 U —7 O Balliis & = OFEE AW BE 75 F et iis &
L7z, ARETIELZEDORLEIED Ni-23Cr-TW &4 O EE 57 77t e b~ O 1 & i 5.
EZEO M Z R 21072V, £ 3B Y el C 4272 Ni-23Cr-TW 80T — & %
G925, BAEMICIE, HaEMORETHEYEHAMP OIS —OTHOE AT ) VA L
I F7 BT O Fe i LIS F 1 Dl LIS — OF el  FESIE O3 B PR ST Ag; (ij=pp, cc, cp,
pc) & FHfn Ny DBIRATH 5. Ni-23Cr-7W G421 A-USC E 7 o MIIBWThgi 700°C TOfE
AR SN TWE Z Enb, KEREE 700°C & LBYE A FoHFmilhz EZiids. &
I, TERIEIC K D HEMaMN A M L, $REEOFEMPMRER & T 5. ek LTiE, 2V
— 7R TRDTN S EEE 7V —THEORFEXEHWT, BYyErAambo s ) =703 %
FHET 5 FiEE WD, Eo, BERETIIIEHMEOT BEH IR EO O A o BNEZEH L T
WDHN, ROTHEFHEED OFT HEH D ENEZ LR L2856 O F Mg E 4 e T 5.
EHIZ, Ni-23Cr-TW &4h b 72 2 R A 7 Bl/E OEE 57 bl ~ D4 2215 O FAEMGHE LT,
i % 750°CIZ m D 7= B 7 A~ O HME, B XY, Ni-23Cr-TW G40 7 Y — 7 57 ket
DIEH DX ZEE LI FmaiiEa it 5.

6.2 $EZIEIT X 2 BRI M RFANIZ X E 7 Ni-23Cr-TW G407 — # Fift
6.2.1 BT AMT OIS E OTHOE ZT U A
¥ 57 (TMF) FHaaFliOxI 5 & 32 Ni-23Cr-7W &40 TMF 3Bk %2 £l L, FHavabic i A
TOIENEOTHOE AT U AN—=T"% G Lz, TMF BB I 72 3R Db S/ Rk &
Table 6-1 (2779, B A5 3 EOBRE R OMFAM TH D, AFETIE, FPEIFETEML
B iEELEE 700°C DA BF A DFRERAE % VT TMF F5a MRS B 4 BREE L 7=, A8 B I3AZE TFF
(2% NE L7z TMF SRBR O TH Y, iR % 750°C & L 72 B 57 A ff ~ D FF i a Al 15 O
FAVERGHZfE R Uiz, BPBF A 1240 355.6mm, AR 37.5mm, #4%F B (Z44M% 350mm, PYJE 75mm
OEAMEEE TH Y, EFECBVLERIRE IR A 28 1190°C, KB 2% 1220°CThH 5. kb o
i (25C) B L 700°CITI T D HEM AR 2 Table 6-2 (C/R™.  [EVA(LEVILERIR FE 23 i O bk
B DX 9 2% 0.2%IM 7], 515E5R S 233 R,
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Table 6-1 Chemical compositions of Ni-23Cr-7W alloys tested. (mass%)

Material C Si Mn Ni Cr W Ti Nb Fe
A 0.09 | 029 | 092 | 446 | 228 | 6.9 | 0.09 | 0.18 | bal.
B 0.07 | 015 | 1.02 | 452 | 234 | 75 | 0.09 | 0.18 | bal.

Table 6-2 Mechanical properties of Ni-23Cr-7W alloys tested.

0.2% proof . . Reduction of
. Temperature Tensile strength Elongation
Material C) stress (MPa) %) area
(MPa) i (%)
25 280 670 46 64
A
700 190 440 48 52
25 254 625 61 57
B
700 166 428 65 55

||

93 # L ARTED TMF RBRICIE, W b4ME 12mm, NE 9.1mm O FERBR A 26 H L=, &
BRIE, AR AT OWTIZRJE 37.5mm O RER S, £4EE B IZOWTIZRIE 75mm o 1/4 JE &
BELO 34 BEErENS, RO FmnEoREFHmME —BT 5L IR LE. R
B LTCIRES A 7 v e OFTHY A 7 V% Fig. 6-1 127, @QISHMEA ZRRICHE I ETEML
TRRBRAAE, (D)IIAEL B 25t Gc AR B CHEMi L - RBRAAFTH D, MELA, B & B IRAKIRE Thin
% 100°C, fmiEE To 2 700C & L72alBR 2 i L, S OICHEB TIE Toax & 750°CIZH D 723K
B b S0 L7, TMF 3RBR1E, IREY A1 7 0 & OF Bt A 7 VORI LW EAZAE (IP @ in-phase)
Sttt ENLFADS R DO ATAR (OP : out-of-phase) ST i L7-.
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(a) Conditions for material A. (b) Conditions for material B.

Fig. 6-1 Temperature and strain loadings of TMF test.

TMF#RBR T 5 N7 R OT B #FHAe B OT O L B)iR) & FHan Ne DBILR % Fig. 6-2 12”7,
Fm NelX 1LV A 7 VRO E KGRI ) D3R LR 1% D FnH OED & 25% K T L 7o #uk LKL
LEF LTz, B3 EITR LB A OFER & FERIC, B BIZBWTHIEMZ U —7 0T B A
if SNAWNABEMEL Y, BIIEY U — 7 OFHBAM S5 RS OIX S BEMBED.
BHA, B &bl 5 &, WS CIImM B OFMICKRE AT LNRVDIIK L, RN

DEFIZAG DN S WM TIIAME B D1F 9 BEMBEV. BB B IZB W T T & 750°CIC L7254

OFMmIE, [ 7000COFMm L EL, FHIFENMFHTOHFME TR RE V. BEEZAVTIRD

OO TMF Fn 27 fi L, Fig. 6-2 OfER & T 5 2 & CHma g E 4 MEEd 2.

Fig. 6-3 121, TMF S BROFM T T 261 £ OTHDOE A7 Y v A)—T %777, Fig. 6-3
(TR LT B B ORNHEFICE T2 AT U AL—T 2T 25 &, # TR L7z 750C
DIE D MFERE TR LT 700°C & 0 e KIS AMEV. 72, Fig. 6-3 (AR L= AB SR IT 31T %
AT U AN—TFTlE, 750CDIE D 700°C & Y /NS OMERHEA /N S, 2, 700°C
XU T50CDIE ) BMEIOTHNIDMELS 25 2 &R0 V=T OTHNHEELG L 0D Z L ITERK L
TWo. E£72, N 0IZBIT 20— OB AL 7000C XLV 750 CDI1E 5 B RE L, AgHF Uik
BRCd o Th 750 CDIE D MNRE ZIERMEOT ZiiiAg, DA SN TV D, LUFD TMF sk
ilciZ, Fig.6-3 DRLIZt 27U L A —F %M+ 5.
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Fig. 6-2 Total strain range-life (Ag—Ns) relations in TMF tests.

T T T T T T T T T | T T | T T T T | T T T T
I ] [ Material A - OP
Ae=1.1 % 500 .
— AsF0T% -\ ] — 700°C
i ] - i
i i a i
- - 2 -
S
a
i ] 2 i ,
- - 3 r 7 A
B -1 B / \ i Agt=0.5%
B i -500 B - \ Ae=0.7 %
- Material A - IP - - Ae=l%
I N N I B
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(a) Material A, in-phase (b) Material A, out-of-phase

Fig. 6-3 Hysteresis loops of stress and mechanical strain at mid-life in TMF tests.
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(c) Material B, in-phase (d) Material B, out-of-phase

Fig. 6-3 Continued.

6.2.2 BV 5 BT O B w3 1T DR LI ) — O3 2l i
TMF BB O miR IS I 1T 2 PP (fast-fast) B T O SR J7 3R a4 VT, ZEGER A
D TR MR LIS — O F i g Fig. 6-4 1R, MO u y MIRR DAV
DR THLN=FMPINCEBIT DRROTHRERENICHOBGETHY, HE LEEEOE 2T
UL AN—T DR ER LD THS. MFOEBRIIIGE ok OTHheDBIfRE TN TEL, &

THRIEIZROMBIERERE L CGELEL LR TH 5.
E=¢etgp (6-1)
o= Ee, (6-2)
o =K+ Le,™ (6-3)
ZIT, & IHHEOT A, 3BT A, K, L, mIIMEERTH L. R/ FRELUZ L0k

ELZK, L, miZzhEn, #EA O 700°C T 90.1, 836, 0.184, #4k+ B @ 700°C T 197, 1496,
0.309, 750°C T 100, 2440, 0.373 TH 5.

R LIS — O F iR OB E O 72 012 FhE L 7= PP IR ORBRTIL, SIHEM, JEMERN L & O
FEE R 1.0%/s & Liz. HIETHRARZEHY, 1.0%s L7 UV —TOT HORBEL T LGS &
WO BRIHETH D72, Fig. 6-4 O UG /1 — O Bihiftld 7 ) — 7 O B0 8% 517 T
IRV E EZ D T LNTE S, Fig. 6-4 (b) T ORGHRIZ IS G 05672 (2 YERL L 7= 51 i ER TR oo 7=
700°COFHHIIET) — OT B IR TH 5. 4K LIS S — OF B i BRI ) — O3 A i e~ T
e 5 AL T 5. T00CIZHT 288 A, B D 0.2%ifif /J1LZ4LZ 4 190MPa, 166MPa T %

A
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DI LT, AY(6-1) TRD 7z LG T) — O3 Al oD 0.2%I0M /713 % 1124 357MPa, 416MPa
THY, MR UIEH — O T HEROIE ) 2 1.9~25 [FEis 1 Th D, £z, 5liERER TRD 7= 0.2%
MR A DIF D BEOOIZK LT, ok LIELE O 0.2%f /11T 8 B DIE 5 @y, 2o
E 20T, R LIS — O3 2t 2 iV 5 Z & C, Ni-23Cr-7TW A4 O#uk Lig{k % % & L C TMF
BRHICAEL D27 V=T OFREeROTND Z LR RRIEORERDO > TH 5.

500 T T T T T
400~  Cyclic, 700°C —
& 300 _
=
£ 200 —
()]
100 —
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0 0.002 0.004 0.006 0.008 0.01
Strain
(a) Material A
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- Cyclic, 700°C 1
400 —
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o 300 —
=
“ L i
£ o0k Static, 700°C
wn x _______
100 /” -
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0
0 0.002 0.004 0.006 0.008 0.01
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(b) Material B

Fig. 6-4 Cyclic stress—strain curves of Ni-23Cr-7W alloy determined by isothermal fatigue tests.

91



6.2.3 E 57 BT O Fe i TR IS B 1 B JEME O 9 Bt & F i o0 BIARC

BN 57 TR E R 97 5 Ni-23Cr-7TW A4 D FEME O A ik 4 Ag; (ij=pp, cc, cp, pc) &
i Ny DBIFRAUT, % 2~4 T2V T 700°C THEME L 72 Ni-23Cr-TW &40 7 U — 79 577 B O ff
Ra2b EIZPRE L. PP (fast-fast), CC (slow-slow), CP (slow-fast) 35K N PC (fast-slow) %
TE O BRI 5Bk T DL 20T A &iFHAg & i N OBIfR % Fig. 6-5 12~ 9. 22T, O A
AT M L7256 2~4 BORBRIZIB W T, REAMOOTHHE TV T 0.01%/s TR TH
ST, EHEAROOTHEEILH 2 A 0.8%/s, % 3L 4550 1.0%/s TH Y, OF HfE
DEWRDH ST LNLRRD, §2~4 BTHRR7ZEEB0, 0.8%/s & 1.0%/s (T, 7 U —
TOTHOREZEHTELZEGVOTHEETH LD, ZITIEENENRDOOT HEET
o R XSS, FEOLDE L TH T, AR TIE, MR RO A & 7
57 V—=TOFTHPAR SR PPIEEORER, LT, @l 7 & REOTHOMAE D0
THERL S 415 PP, CC, PC, CP @ 4 SDUT HEIEDOH Tl b A3 < 725 CP IIE Dk 4
UL FE M L7272, CCHIE & PCIIEORERGE RITD R VD, BOENTNDLT—F %&b LIlH
A R L7z

Fig. 6-5 1278 L= iifti3Ag & N DORRZ TR TR LB TH 5.

Agp = Ago + Agyy

= ANy ™ + Aj Ny i (6-4)

ZIT, Ag [FHVEOT HEH, Agn (ZIIEFIEOS HHIR, Ao, Ain, mMe, min BMEEKTH 2.
MEMEBUTRBR T — & Zdg/ D IS5 Z L2 LY Table 6-3 (R TfEZ RO, Ko iiH &
AR RIT L <HIE L TR Y, Table 6-3 D EFEH & A(6-4)I2 L > T, Ni-23Cr-7W &40 700C
\ZH172 PP, CC, CPIBLUPCIIE T DA & NsDRREERT Z LN TED.
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Fig. 6-5 Total strain range—life (A&—Ns) relations of Ni-23Cr-7W alloy at 700°C.



Table 6-3 Material constants in Eq. (6-4) of Ni-23Cr-7W alloy at 700°C.

Strain waveform A me Ain Min
PP 0.00942 0.0977 1.014 0.755
CC 0.00775 0.0946 0.895 0.767
CcpP 0.00783 0.1046 0.352 0.677
PC 0.00938 0.1210 2.742 0.967

B 5 A R EAM A T 2 FEBRIE O T i PH A 2y Ag; (if=pp, cc, cp, pe) & i Ny D BIFRAIT
Fig. 6-51Z7~ L7iBRAG SR A2 b &2, OT i B o FIVE 2 -V T L 72, Ni-23Cr-7TW 54200 700°C
28T D Ag—N;; BItR & Fig. 6-6 12, Agj— Nij BIfR A (5-1) TH L7z & & DM EHEL A, mjj & Table
6-4 |Z7~7". Fig. 6-6 FOEMRIE, Table 6-4 O EHEE 2 HIV N TH(5-1) TAg—N;; BIFR 2 Bl L 72
Tho. FEEHITRBERO 77 v P RIS LTS, 2D Z &5, Ni-23Cr-TW 540 7
U — 7 H i O T AFHH Y EE 2 VD Z L IEZ S THD E VR D, O AP EIE
(B LTI, SUS304 #ll X 5 722 msEEAs D FE e a S IT A2 T S A3, IN738, IN939 D X 5 72
ERED = FVERESIITEATE ARV ERHESLTWS YL Ni-23Cr-TW A4id= v 7L
B TIEH D05, INT38 0 IN939 D L 512y #H (Nig(Al, Ti)) Tiffb SN 7= GeIT N THEED
O, 1EROA—AT A % L FRRIZOT HHEIESFNENEH TEL2b D EEZ LI

BEObm I

o

Fig.6-6 4% &, 5lIE7 UV —7"0OF B L EMBIEOT B O L TdH D Aggy— Nep BIFRIZ, 215
FMmAERTIEEIR S 12 BECEGMDE TS 27— 2B FELTEY, WHOTHOMEK LT
& B Agop—Npp BIRRICH AR TIE LD EBREV. ARD V1T T7 2T 4 MEL Y A—2TF A MED
ES M7 V) — TP HFMRIET 2 U — T WHIEVEDRTIEVEDR TR, Agp—Ne RO F— % 71
v FOBENRKELARYF N LML TS, 72, FIEFBEICHETYZ U — TRk
EIBELOENKRE N Y 72D, A—2TF A ML THD Ni-23Cr-TW A4&ICB 0 TH, Agy
—Npp BIFR L D Agep—Nep BIFRDIE D ME LD ENKEL ool b D EEZ HNLD. Fig. 6-6 ()07
2y MIAHT T2 2~4 OFE, TR ENE 2~ 4 BORBRERTHL 2R L TND. F2~4
BEORBRICITE — ORISR D Ni-23Cr-TW A4 % AW 7203, B E OM Bt O F a3 ) FEa L
DEVRTIZARNZ ED b, Agy—Nep BUROIE S X IZ EFRHBICL D2 bDEEZHND. Age
—Nee BAFR, Agye—Npe BIFRIZ DWW T, 7 — 2 DD 220 e OIE 5D & OFEEE I 603 Tl 72\ a3,
7 ) =T OPHPNAMEN DG THDT20, Agp—Np BIR L D IZH 0 RKX VAR B 5.

P bo X oz, 700°C—EMHRE Iz 5 Ni-23Cr-TW 540 7 U — 75 L, O3 i
Gy ENEZ VT Table 6-4 O EHESL & Xi(5-1), R(5-2) Talflid 5 Z L NAIRETH D . BRI FHm
AL T 5 Agj (ij=pp, cc, cp, pc)& Ny DBIRAEL LT, H(5-1)& Table 6-4 O EFE %% 5 H
L7z
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Fig. 6-6 Relationships between partitioned strain range and life (Ag;—Nj; (ij = pp, cc, cp, pc)) of
Ni-23Cr-7W alloy at 700°C.
Table 6-4 Material constants in Eq. (5-1) of Ni-23Cr-7W alloy at 700°C.
Agp Mpp Acc Mec Acp Mep Apc Mpc
1.014 0.755 0.369 0.681 1.546 1.043 4.305 1.045
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6.3 T2 L 7= B J5 A e AmvE OO s EERRRE

55 3 5 CHEM L 7AEEA O TMF iRBR 2 651, R RIE CTMRF AR O 7 U — T O h %z R,
ZOFERE S LICOTHFHSENET TMF FEma ikl L7-. 7ed, TMF Affho 2 ) —70F
KMl TIE, FRERETRAET D27V —70O0THOHLE RO, FIRBEFETHRET L7 U =70
PTHEER L2 OXLL T OEMBIC X 5. Fig. 6-3 @R LEZRNMARSRGOIEH E O F RO AT
AN—TEHNCT D L, FEBRIIAL—T O Sy, BIRERIIL— T O TSRS, e
T, OTHDBFEUCED & ZIBETDI00, TR0BE CIRE CTRAET 2ISFFRBREDIZ
MAIREE L VIRV, E72, —RIZZ )V —TRHEIZISIORERIZHAIL, BT 2L
Ni-23Cr-7TW &4 CITER 7 V — 7 EE IR D 9.85 FIZIAFIT 5. Z D7, IE MR R E
BCRAETSH IV —TOT HIIFIRERICHE_RTIEFITNE L e d. BAHEEFICENTE, 7
TRIBFR I AR CRRIRIBFR IS AT 2 M S OMEHE T/ N S < 72 D72, FFRIRIEFEDIZ 5 D354
T57V—TOTHIINEL D, 2T, Tox POORERIBIETHRAET D7 UV —T 0T KL
L, FHRBRETRET L7 V=T OTHhOLZ RO, WAFHFMEOLGEIEL, ARRFIZEMS
NDBAM SND T, EMARHO 7 V=T OFTHhEBHEOTHZRODLERH L. Z 2T,
JERED 7 ) — 7 LGS — O T B ihfiE, SlRD 7 U —T 8 E L5 — O Bl O 755 % K
HRSH7obDIZHE LW EUE LTz,

TMF B 7 ) —7OF Bl R & Z OfER % & LIZOT B E L7255 % Table 6-5
\ORT. 22T, RO HHAAg &IOS Bl Ag, X E 2T U L A L— T DA LR
0IZBITHRNME L L TENENRD, HIEOTHHIHAL TAa D Ag 251 < T &IT X - TRDZ.
RO L D1, BRRIEBRCTEL L7 ) =T OTHEEGE Lz, FRMHZEME (P) THEU 5FEH
PEOT AT, SIRGINIFBEOT AL 7 U —TOF R, JEMRF B OTHROLTH L. 1t
ST, ARSI TSRO 7 V=7 OFH LRI UKRE EDAgy, BED, Aan 0> DAsgy 2317k
X XDAgy WA END. —JF, WS (OP) THE U AIEMEOT AL, SIIEH MISITBMEO
T HDI, JERET NI OTHE T V=T OTAHATH LD, RO V—TOTHERLK
E I DAge, BEY, Aan1BAG 5T RE S DAg PMEHZ AR SN D.

Table 6-5 DA IV TOE i oy BE THEfnal il L 725 R 2 TMF 3RBRIZ IS 1T 5 RERDHn &
bR UC Fig. 6-7 12”3, FMAMERERIZ TR TEBEOFHFM D 12 f5~2 5 ORRZEGMPFANIT 5312
FoTHEY, ERBEICHMHITE TV,

ZDEOIT, TMFARMTDY V—7OF Bl fliis & U TAMRTRE L-FIEL Y, ZOR
Fa b LICOT B#FH O ENE T Ni-23Cr-TW 540 TMF i 2 F5 L L <G c& 72, gk X9
(2, FFMRA AT L 7ol LIS J) — O AR & Agy— Ny BIFRIZ R CTHIRE B TR bz
LOTHY, BELEZAVIUE TMF 38R X 0 3B B 72 5 IR 57 B O R D TMF Hina
TRTDZ ENAHETH D,
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Table 6-5 Results of creep strain evaluation and strain range partitioning by proposed method. (%)

Phase A& A& Aé&in ;:Z?ﬁ Agyp Aggp A&y
1.111 0.601 0.510 0.433 0.077 0.433 0
IP 0.725 0.466 0.259 0.206 0.053 0.206 0
0.533 0.395 0.138 0.131 0.007 0.131 0
1.016 0.597 0.419 0.189 0.230 0 0.189
OP 0.718 0.480 0.238 0.179 0.059 0 0.179
0.525 0.396 0.129 0.112 0.017 0 0.112
105 T T IIIIII' T T IIIIII' T T T,TTTT
- /7 -
C 7 7
N o P Factor of 2 i
- Y /7 -
. R ® OP y - 7
© 2 g
S 10*|  Proposed K , —
; c  method ’ ,7 =
K C e , ]
—_ - 7/ 4 —
s B e .’ 1
< L / Jid |
[«5} /
.§ 3 /7 /O 7 g
—_ | 4 ]
Y E
x - ) V -
L - , / ]
- // , / -
L/ 7 Material A ]
, Ml A
/7
102 I//I IIIIIII | | IIIIIII | 1 1 1111
10? 10° 10* 10°

Predicted life, cycle

Fig. 6-7 Comparison between experimental lives and predicted lives by proposed life prediction
method using strain range partitioning method in TMF tests.

6.4 HRZIE L HENIE DB 5 F A ATATRE FE O b
6.4.1 TERETHEMT DM EIER DR E

ZJ 5 0 73 SUS304 #il> TMF Halilc R Lz, 7 UV —7RBR RO EEW 7 YV —7
WEORRNS TMF AR D7 U —7OF Bz K D0Ek1ELE W T, Ni-23Cr-TW 540 TMF
R CAM SNTBIEOT A, 7 ) =T OFT Rz RD, EORRE b & IOT BHEFH S HINE T TMF
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Fmail Lz, FEOIE 2 BEOER 7 ) — 7 HE G L CTHRIRED Y Y — 78 E 2Rk
ET 55 FiEE RN, AR TIEZ V—FRRCTROIEE 7 U — T WEEEE, 50
B CRElL, SIREOEH 7 ) —THELEERIKROLND LI LT,

7 ) — 73 ER TR D72 Ni-23Cr-TW 540 650°C~800°CIZ351F DIt Sl & /o U — 7 i D3
%% Fig. 6-8 \I~d. f/h7 U —THEIIEFIKD 7 V—THEEZNRETHbDEL, EFZ Y —
THEE, LIRE T, I oDBfRE TR TR L.

E=A (%)n exp <%) (6-5)

ZIZT, ElFYrUE, QI U —T7oiEM b= ¥ —, RITRIKEH (=8.314 Jmol/K), A,
NIIMELESR TH D, ¥ o 7 EIZIT Fig. 6-9 IR THKIBREDEAMH L=, F£72, Ni-23Cr-TW &
D QIIRMTHAHT-D, A, n L EHITEHE LT, X(BBTREDINSEZ ) —THE DR
& Fig. 6-8 OFRERT — ¥ OFRZENR/MNI7e D L0 I/ N RIEEZHWTIRE L. WELZ QX
343 kd/mol T& v, Shingledecker & " A& L TU 5 428 kilmol & 0 IRVMEIZ 72 o 7=, €, DHAL %
Uh, TOHRZ K, ok EDHAIZ MPa & L7 & ED A, niZZh 21 9.90x10™%, 9.85 L 72 o7-.
HE L=l % 2 (6-5) IS A L, 650°C~800°CDIGH & 7 U — 73D RR % R 7= fEH N
Fig.6-8 IZ/RLTZEMTH . H(6-5)TRD=7 V—THEIXERT — & L k< —HLTW5D.

10-3_ T I T T T T 3
| O 650°C .
- | A 700°C =
S = | @ 800°C E
g F i
©
oy -5_ |
5 F . E
£ C ]
> - -
£ - =
= -6
= E
10'7 1 l 1 1 1 1 l 1
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Stress o, MPa

Fig. 6-8 Relationships between applied stress and minimum creep rate of Ni-23Cr-7W alloy.

98



200000 T I T I T I T I T

180000 — —

160000 — —

140000 |- —

Young's modulus, MPa
T
1

120000 |~ —

100000 ! | ! | ! | ! | !
0 200 400 600 800 1000

Temperature, °C

Fig. 6-9 Young’s modulus of Ni-23Cr-7W alloy.

6.4.2 HERIENT X D F i ATAfhfs SR

MEFA @ TMF 382 % % R1Z Fig. 6-3 1IZ/R Lzt AT U A—T %W T, ERIET TMF Afif
T D7 ) =T OF B dtli L7 fE R & 2 ORER %2 & LA B g5 L 725 R % Table 6-6 (2777
Table 6-6 D% AV TOT R FIE CHamalll L2/ 4 TMF 5B 2 FBEDFH4m L I
2 L C Fig. 6-10 (T~ 7. FHamailiss RITXEEROFa LV R R OEMDA RS0, FrZRINARZEFD
FHliFF MmN R, WA SR CITFEBEOF MR L TRKRK 2 [(FORETHMIME TE T D DI
xt L, FRRCAA SR Tl KK 5 EORREREL TN D.

FHlF MR oo e Bl & LT, ERIETKRDZ TMF AffHRO 7 UV —7OF BAVERR LD /)N
SN ENRBZOND. ISIOARTGIANSIE & EME CREET 25651, 72 & AR ER 7 Y
— REBICE > TOT B IERITIE Y V) — AR RN 2 © . fEkiE TIRRBR TS
PR LTZBED 7 ) — T OFREEFE 7 V) —THEOHRTRDTEY, BN ZEE DS N
TOHWEEEBEL TRV, 207, 7 —TO0Thua/ NS FHELIZmEER S 5. TR
WD 7 ) —F ORI OB A T 5 LR H 5 2 L 13 Manson 5 9 HIEHI L TV 578,
IREENEET 5 TMF A R OIS I EERF D 7 ) — R A L <SR D 2 L id#E L.

Fig. 6-7 |2/~ L7 RIEIC X 2 FaiHli OFE I, Fig. 6-10 (28 L7 REkRIEDOFF MM O E X v
mWZ & aER LT
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Table 6-6 Results of creep strain evaluation and strain range partitioning by conventional method using

stress—minimum creep rate relation. (%)

Cree
Phase A& A& Aé&in strairﬁ) Agyp Aggp A&y
1.111 0.601 0.510 0.0189 0.491 0.0189 0
IP 0.725 0.466 0.259 0.0102 0.249 0.0102 0
0.533 0.395 0.138 0.0010 0.137 0.0010 0
1.016 0.597 0.419 0.1879 0.231 0 0.1879
OP 0.718 0.480 0.238 0.0234 0.215 0 0.0234
0.525 0.396 0.129 0.0100 0.119 0 0.0100
105_ T T IIIIIII T T IIIIIII T T IIIII_
- Factor of 5 7
L O IP 7
° B ® op Factor of 2 Pid 7
S 104l Conventional A
o = method using A
K<) C  min. creep rate R ]
- B / . 7]
= i . ]
é 3 i ’/ ’ . / |
= 10° o0 —
g - A ]
n - L9 ]
C /O - i
i S M aterial A
Y
102 I//I II/fIIII | | IIIIIII | 1 11111
10° 10° 10* 10°

Predicted life, cycle

Fig. 6-10 Comparison between experimental lives and predicted lives by conventional method using
stress—minimum creep rate relation and strain range partitioning method.
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6.5 Y i PH AL HE O ONT B 3 HITE LS K 2 5 A e AT RS B D Rk
6.5.1 FHnalli=t

TERIE T O T 2 EEO OF A ENEZ T L TV D 2, 20T AL b &
(2 A el S 2 20T B RO OF i/ FVE  (TS-SRP i @ Total strain range version of
strain range partitioning) '™ HIEREN TS, F77, FERPEOTLEE L 2O HEIE & K
WL LT, SRR F & BE  FE a2 A BT 72 1E O M RAF e Bl R3S S D & o
B BT, TS-SRPIEIC K Bl Z FME L, € DORE % ik L=, LUFICE, TS-SRPED
Faah D B & w42y, SO ML Appendix ([ZFEHE L TV 5.

TS-SRP LD FHAna iU L (6-6)~(6-8) TR SN L. T2 b b, ML HfilHAg & Fam Ny,
BELY, FEHPEOT G Ag, & Ne DBIRZ 2 nX(6-6), R(6-7)TET &, RUT Al
FHAG 1TAs & Agy DFITH L7, Ag & Ny DRI (6-8) THEEIND.

Ag, = BN (6-6)
Ag;, = C'Ne° (6-7)
Agp = Aeo + Agyy
= BN® + C'Nf (6-8)
ZZ T, b, clE PP I T DI IT#ERTRD LM EESE, CiT 10 (13=PP, CC, CP, PC) JiZ DI 5

ARERCRM SITZAg, & FF Ny OBIfRZ R(6-9) T L7z & & OMEER Cy &, MEHZ A Sz
Agn & Agy DI Fy & AV TE(6-10), HX(6-11) TR S 5.

A&y = CyjNy© (6-9)
_ As 6-10
i Agin ( i )
' = (TF;Cy ) (6-11)

#(6-6) B 1% 1 (1J=PP, CC, CP, PC) %I T D J7iklR CHRM STz Ag & FFam Ny DEAFR & LU I
RTR(6-12) THELIZ L EOMENER Bj 2 b LICIRESN A THSH. ABFFETIE, FIEZ Y —
TOPHBNAM SN DB RSO FMGEmICIE, R 57 V—70FHREf S5 CP
I DR TRD T Bep, JEMEZ VU — 7 OF BDVA S 0D NG O F bz L, [ <JE
M2 V=T OF BMNAR S D PCIEFEORER TR D72 By DAl L7z

Ag, = BN (6-12)
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6.5.2 Fana LA A3 2 M BHER DR E
TS-SRP LAl 3 2 MEHESUTE 2~4 5T L 7= 700°CIZ 81T 5 S i 77 3B G E L 7.

Fig. 6-11 [ZIFRBR TR D72 Ag & Ne DBIfR %, Fig. 6-12 (Tidan & Ny OBIfRZ <9, F 72, Fig. 6-11,

Fig. 6-12 D BtR 2 (6-6), Hi(6-9) TENETNFEK L7z & X DM ELEL A Table 6-7 12777
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Fig. 6-11 Elastic strain rang—fatigue life (A&—Ns) relations of Ni-23Cr-7W alloy at 700°C.
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Fig. 6-12 Inelastic strain range—fatigue life (A&,—N;) relations of Ni-23Cr-7W alloy at 700°C.
Table 6-7 Material constants of Ni-23Cr-7W alloy for TS-SRP method.
-0.1005 0.00975 0.00769 0.00785 -0.755 1.014 0.609 0.867
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6.5.3 FFfna EATAS R

Table 6-5 (2R L7-#RRIETRD - TMF Al 027 U —7 OF Bl f & 2 0fER %2 120
FHEFANE LTERE AWT, 20T HHPEEED TS-SRP 1L THMAMIE L 72#5 L2 FEEEOFHh
&l LT Fig. 6-13 (2. ARSI LR CRINAR G O PRI M E < 72 DA B,
EBEOFMITR LT TRFMPERKTH 25 (FR 2ol 20X, RO HEFAEEDF M
FHMEZ VT b, Fig. 6-7 ISR R A7 L 72 FEHE OV Bt R E O B el ORI IG5 T
W, ZOEE E LTE, FHMERS S Lz TMF RBROFm A 10°~10° B4 —4—ThH Y, K
ZRIERMEOT B EL DR A 7 VIETFER CTH D720, BHEOT AT ORELBE L 2D
THEPALEEOFMFTMEL AN THRBEM EL o2 tRZExbND. 2D XS,
Ni-23Cr-7W &40 TMF FaaHiliiciE, $REEO & 9 (SO B gt e O i P 45 57k
R LIIE) DSRBENEN & 2R L.

105 T T IIIIII' T IIIIIII' T T T, TTTT
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- O Ip Factorof/Z/ o
[ |® op y i
@ . i
S 10°L TSSRP .7 , -
© = method .’ Ry 3
<5 C d a 7
= - s d /\ -
—_— - / ‘ -
8 .7 ®,” / Factor of 3
c = , ’ -
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T 10°E 2 ,Q7 —
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Fig. 6-13 Comparison between experimental lives and predicted lives by proposed creep strain
determination method and TS-SRP method.
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6.6 fix il A A ) o0 7o B 5 BT~ O H2 ZRTE D 36 AR

A-USC FEFEITARKIRE 700°C TOEiEE HfF LTV 5725, FERANCIZ 700C L 0 & 94 LEWiE
ETHERINDZEbEXbND. £2 T, il Thx & 700°C & L7z TMF Fan &G X <
TED L HER LA IEOIREIEE Tma=750CO TMF FHaiHiis@E M L, TMF Haakiiio
WA RGE L7, 0P, b— b, BVLERGIER R 5RE B 2 VT, Tna=700COD TMF
FHEA BN L, ZOFEZMEE LT,

Fig. 6-3 (¢), ()T RL7=t AT U Z/L—7F & Fig. 6-4 (D)1 L 7= MR LIt — 09 2t 2
WT, MEFB O TMF R 2 M RITREIE TR T O 7 ) =T O Bz il Lok & £ OfE R %
 EAZOT HEFR > L7245 R % Table 6-8 [Z7~k9°. F£72, Fig. 6-14 |21 Table 6-8 DfE L, 700°CIC
F5UF B SERE VR R (Fig. 6-6) 2>V LTmAg— Ny BIMR % T, FEBEOT 2 fapR R 8D
OF B ENE T TMF Fa &k li L 72 R A 777, 22T, Tma=750CD TMF iR O FH Al
IZ%, 700°CTROT=Ag—N; BFRZE -,

FT, Trax=700C DB} B DFEMmHlifE R Z 55 &, TRIFMITEROFHMmE RIS L THY,
MEEA & RERICHEL B O TMF i b 3T 12 f5~2 5 ORRZERIFAN TR cE T . 2o &
G, FRFIEIT XV Ni-23Cr-TW S DB 77 77t 2 K5 B RHli T& 5 2 & MR T & 72, I,
Tax=750°C DFEMAHIEE G 72D &, Tra=750°CD TMF HM BN T H T 12 f5~2 iz
HPHNTTPHTE TS, BIROLEEBY, Twm=750°CH TMF AfiH D7 U —7OFHGHIC I,
750°C T L 7= PP I ORI 57 BR TR DO 726K UG/ — O P4 2 6 L, Faekiicix
700°C CHEH L 7= SR F7 3B TR O TcAg— Ny BfR 2 L7-. 2o X 51, 700CTRDO7-Ag—
Njj B % Trnax=750"C D TMF Ffnaf il i@ 42 2 & A TE 72,

Manson™ (3O 2 5 B TR 32 Agy— Ny BISRIZFRFOIENE L FRBIN B 0, SEPEIC 7Y
RITAVTIRENZEM L THAg—Nj BEROZEIT/NS NI LZRLTWD. 5§ 3 EIZRLE
Ni-23Cr-7TW &4 D 5| 3RS R CIEEE~750°C OEERICIB VT, 8§ 4 IR L2 5| R Bk
R TITEIR~800CDIREBICIWT, EMEMETT 2 L0 RREHIIA BN hoTe. ZDZ
7265, Fig. 6-14 (2B T, Tpex=750°C D TMF #fiy & 700°C D Ag;— Ny BIR 2 IV TR & < PHIlT
X7-DIX, Ni-23Cr-7TW &4 DIEMER 700°C E 750°C TR E 22BN LIZEFA LTS L0k
EZoiLD.

PLED X 912, Ni-23Cr-TW 40> 700°C DR NE 777808k TR O 72 pEHRrE  (Agj— Ny BIfR) %
FWIUE, Trax=750°C D PP T T DA IRE F7 5Bk 2 BN CHEMT 5 Z LI XV, Tha=750"C D TMF
FmrRERTHMT 22 ERNMETH L. 2F 0, SREFHRBROK FEOH T TMF FHi OFFfi
MARETH S, E£7o, BINTEMT D Tnx (21T 5 PP IEIEOEIRFE T HERZ, ®EOT HAn
LD AR OMA G DE THEK S5 PP, CC, CP, PCIBOH Tk b MR THEMi T
LR THL. ZOX DI, REED TMF ARTO 7 U — 7 OF Bkl & FEHE O3 Zi fH L 1
DOOTHEPAENEEZRAND Z EI2XY, Tu=700CLSL O TMF i Th - T b, #Ffid 5 TMF
BT D Tmax (21T D PP I O 73R & Flid™ 2 DA TRIER S HFMiMETE 5 Z LA LN
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27 o7z,

Table 6-8 Results of creep strain evaluation and strain range partitioning by proposed method for
material B. (%)

Phase 2;”8; A& A& A&n F;![?::]C Aépp Aégp Aépe
1.007 0.654 0.353 0.050 0.050 0.303 0
700 0.705 0.584 0.121 0.019 0.019 0.103 0
IP 0.499 0.444 0.055 0.004 0.004 0.051 0
0.998 0.583 0.415 0.069 0.069 0.346 0
70 0.707 0.448 0.259 0.031 0.031 0.228 0
1.008 0.689 0.318 0.118 0.118 0 0.200
700 0.708 0.542 0.165 0.024 0.024 0 0.141
OP 0.501 0.456 0.045 0.005 0.005 0 0.041
0.993 0.608 0.385 0.087 0.087 0 0.298
o0 0.702 0.481 0.221 0.028 0.028 0 0.193

105_ I I IIIIIII I I IIIIIII I I I/IIII_
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C Factor of 2 /7 2
- Proposed L7 A
L method y R
[«B} Ve
o 4 // 7
,3\ 10 E— - 7 —E
£ S :
— L /7 y .
% B /// ’/ ]
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£ 0L ol
a8 = e 2 700°C 750°C
x C ’ 4 iP O
[ C L5 /,’ Mat. A|5p Z -
_// 7 1P
102 I//I IIIIIII | | IIIIIII | | IIIIlJ_l
10? 10° 10* 10°

Predicted life, cycle

Fig. 6-14 Comparison between experimental lives and predicted lives by proposed method using
strain range partitioning method in all TMF tests.
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6.7 7V —FIHEMEDIE D 0 X & EE U BYE I H Al

6.23 TR 7= L 912, 7 UV —TOTHIRAM I DRI TIIAR SNRWEIFITHT,
BHEMDIELDENREL DM H 5. Fig. 6-6 (2~ L7z Ni-23Cr-7TW &40 700°CIZHiT 5
Aeep—Nep BIFRTIL, FHIMRO 12 FEICHEMPEL 72D T — X BFELTZ. ZIVETO TMF FHi
M T, Agp— Ncha'e'ﬁ%@J?Wﬁ%rﬁ“Tablee4@Mﬂmaﬁﬁzkﬁ(5 1), X (5-2)& AW THamaK
DI, FHEORA TEE OFmAE THT 225G, 7V —TEFTHFEGOIXLOEZEEEL T
BEMOFMEITSTZIE I NEV. 22T, 7V —=FOFHNAMSND AT, FEREOS
HEPRIC KT 2 Fm BB 12 127256 D EGE L, TMF FHaZ il L7, FfZES KO
WNLFRSRME D TMF FEmat ol L7e & LR IR d. 728, MERESL Aj, mijiL Table 6-4 D
DEAFH LT,

Agpp = AppNpp ™ (6-13)

Aty = Ay (2Ngp) (6-14)
cp = fAcp cp

Aepe = Ape(2Nye) ™ (6-15)
£pc = Apc(2Npc)

ZITC, Ay N EAge FTIEEMPDELMEND L2127 5 b DL LI, Agp—Np BRIZIEH D&
BNENZ EMs, FEMERTREEH L. 72, Age— Ny BRICBT 2 HMDITH X
TSN TRVD, T2 TiEAgy—Nep BIR ERRRICZ V — T O B OB CEEMED 12 5105
MR Db D ERE LTz,

FERVE TR D 7= Table 6-5, Table 6-8 DEA & & 12, (6-13)~(6-15) & Xi(5-2) % AV T TMF Ff

Z ekl L 72 /5 5R & Fig. 6-15 12”3, 7 U =R HMDILS DT ZZE L TV Fig. 6-14 (2L
NTFRFFMITIBENICELS 20, TN TORFITBNTTRIF R LD EEOFEMDIE > R,
F el OFAFET Fig. 6-14 DIE 9 23/ NE WS, Fig. 6-14 T FillFFa L 0 EHMOIF 5 NEWE
AbMR IS, BREMOFMAEIT S LEN S HEEIIETRFHM LY EHEMREL
Fig. 6-15 OFHIFE R DIZ ) DIFE LWV &V R D.

ZOEIIZ, Agi—NjBROIEH DX EB[ET 5 2 L T Ni-23Cr-7TW &40 Fh & 2 N FFHAT
THZLENITETHY, Ay F & Age FCIEHMIEHMEL SRR T U2 1K TFT 2 60 L TET
%2 & T, AFFETINE L7z Ni-23Cr-7TW A4 TMF Ffy & 22 2N 5l ¢ & 72,
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Fig. 6-15 Comparison between experimental lives and predicted lives by Eqgs. (6-13)-(6-15).

6.8 s
ARETIE, 55 W CRE LB HFmiHiEoMAEZ RETT 2720, BEBELZEHT L7

WIZHE R Ni-23Cr-TW 40T — X Z BifF Liz1%, Ni-23Cr-TW &4a0EE ik 4 x5 & LTz

Fmabli a2 FEhe L7z, E£72, RA TEE OBIE G FamHl~OwE A A BET 2720, ReiiE

B D T BE T AR~ ORBIEOWEANE L 7 ) — TR I M OIE D > 2 B8 LI BT et

MEERF L7z, AECHONZERBREUTICE LD 5.

(1) BVIEHAMEOIS L OTHROE AT Y ¥ Z—TF & B AR OB T (23515 2 #
W USRS —OF Az A L CRYESAMT 07 V=70 FhzRd, TOBRED LIk
BRI O BB Y O O B i o BNE TR HEM A ST 5 IR BIEEA VWL 2 itk -
T, Ni-23Cr-7TW &4 D EVE 57 Fm 4 12 fi5~2 {5 ORAERPHN TR 2 Z L A T&E 72,

PREEIE T 2 FHaHli=R &R LS ) — O3 2, Wi b SiRE R TE L
LD ThD. ZOD, RELE T CHMEHIAR SILDINT, OTHBH LN, 12
RUEHERT 5 2 & CEYE R L 0 2 SRE T RBROBRN S FHME THT 52 L
FHETH 5.
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(2) $RZEEIT L D Ni-23Cr-TW & OB 77 FH it Rs B X, 27 U — 7D B 77 A fif
DIV —=TOFT HA&RDDUERIEL Y @

(3) BFEEIT, HEIRE%Z 700°C & L7z Ni-23Cr-7TW A& DO EE 5 FH el O 72 59, i miiE
7 750°C & LB G745t U2 f5~2 fEORRERN T T2 2 &N TE. 2oL, 7
fAHIIC V72 Ag) & Ny OBREIE 700°CORBRFE RN DIRE LTz b DEEH L7272, Ag
& N OBIRIE 7T00°CICER &, F ORI OREICHE W THLHEHATE 2 HmiHiTh 5 &
EZobD.

(4) Ni-23Cr-TW &4@2 8N T, 587 UV — 7O B L EREEEIEOT B DR L T D Ay N DFFfi
I515E, Efi L BEPEOTHOMIR L Th HAg, FOFMEIVITEDOENRKEL, Agp—Nep B
BRTITFEFEMD 12 BREIZHEMPELS RDGENH T, 207 ) —=TRIGHFMDIEHHOX
EEEL, 7V —TOTHNAMESNDEE T TIEEMN V2 KT 560 L E LT
VL CRIE T B AT T 5 2 & T, EBRX Y Haam ARED 2 220 Fmarliss L3
oY ("
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AL TIE, A-USC 5 &7 EORIAIEEH R A 7 BHE OB o—>Th 5 Ni-23Cr-TW &
xR0 BT, Féaasd A-USC REIZEH T 2BROME CTh 5 mIRIZIS T 29 I7 Rtk O FFA & 24
W& I3 FRMR A DWW TRET Lz, @iRIc B 29 57 R ORIl DV T, A-USC J8%E Tl
MPBREEF STV D 700°C TORHMEZ B H 2N 5728, Ni-23Cr-TW &40 700°C—ERE T
BUIFD7 U —TWREIFREZFE L, Ni-23Cr-TW &4 & [FIERIC A-USC FEED R A 7 Bls FEAis
Th D Alloy 617 DFEE I LT, S 51T, FET T FOEE) - (FILIC X DRELE 2 EE L
Tl E % 700°C & L2 A 7 VR T 2BVE S RMEDORME S, BET 7 2 MIBIRTE
WA S5 2 & 2B LT 700°C ORI R RERHIIGE S 70725 0% 57 R O A 2 Fki L 7-.
B 57 A et mEIC OV, BVE S EMOFHMIEE 2 M BT 2 oIl BE AT O s ) —T
OFTHERODH LOFIEZRE L, Ni-23Cr-TW &40 EE J7 F i@ H Lz, = 0k
EBENTENT K DB I A iR R A i U, RREE AW EMRHIOREZ RGIET o2& L b
Iz, BV ML E BB L. U T EORMNAELHREZE LD 5.

B 2 FETIE, AUSC BETOMEHMRGI STV T00°CHOIREIZBWT, —ERE F CHEii
L7z2 V=7 BR O R % £ L 72, Ni-23Cr-TW &0 AROT A L EHHMOEREZH L
L, 7V —TOTHOAMIE > TEFHFMPMKR T L2 &R L7z, £/, Ni-23Cr-TW &
4 L [AEARIC A-USC B EDORA 7 B E MM TH 5 AIon 617 ORI L LR L, 7V —T7OF
BN SID 7 U — 57 5 TIE Ni-23Cr-TW A4 D1E 5 28 Alloy 617 L W HEMmNEWI &%
LM LTz, 7 U —7 5T, Ni-23Cr-TW A& TR A EE & ki NAREE 23 IRAE L 72 D126t
L, Alloy 617 IXIZIT2mE AR L= 2 & 205, Ni-23Cr-7W A4x1% Alloy 617 X 0 R Uk L
HNTeo 7 ) =T TFERMPRELS 2D EEZLND. 7 ) — 7 BE OB TIX Ni-23Cr-TW 54 &
D Alloy 617 DIZ 5 BMEINLTWD H OO, I FHEDBLA TIEL Ni-23Cr-TW &4 D1 9 23 Alloy 617
FOEBNATHWDLZ EEZH LN LT

% 3 BT TIE, Ni-23Cr-TW A& OIRELEE) F O J7 Rt 2 a5 72 o i L 7= i@ i E %
700°C & L7 BE 7B OfE R 2 £ L iz, S 51T, Ni-23Cr-TW &4 OEME 77 Fitk 2 it 5 729
OHEGEABR L LT, 700°C—EWRE T OSRNE T HER, 700C & {XE (100C) @ 2RETOTH%
HAffd 5 Bithermal fatigue (BTF) #BRA Fkin L, 2 57alBRORE R & i L 7=

Ni-23Cr-7TW &4 OEE 55l Clx, BEY A 7 v & OFT Bt A 7 VO LW RN SRE

DIED N, NAIDEK TH DHHGMAE L0 FGAFEL 2oz, BlEYZ V=T OFTHBARM S
DR SRIEDIE D WERME 7 U — 7 OF B WNAR S D WNARSRAE L D Fm L &0 9 R I
SR TR & BTF RBRICK W T, BIEZ U —70F A%z AW L= CP (slow-fast) % T D57
FmNEME 7 )V —7OFHha A Lz PC (fast-slow) JHIE TS FHEMEVELS IpotoZ & L%t
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JaLiz. E£7z, BlIRZ V=7 OF i A LIRS L CP I IE O3B ClE RIhL i,
JEAG 7 U — 7 OF Bk AR LTI et & PC B OARBR CIXEICRINELZ £ L, IRESD
FTLROAMBEMLDS T, BIELEMD 7 J—TOFTHOAFR S & K& S D5 Ham-CmiEr

WCHEBZMIFTZEEZHLNIT L. 208918, BRI & SR 77 3Bk O R Rk
HONTZ &0 s, B G7EER X0 SRR E D) 7R SR 57 R O R R & TRV 97 & T
TEDLARMENRSH DL & ER LT,

55 4 FCIX, Ni-23Cr-7TW &3 @I R Sz & & O TR 2 a7 2 72013 E L
7= 700°C THeF 5000h M) L7=# D 7 U — 7 5B OfE R % £ & w7-. 700°C TORIE
Ni-23Cr-7TW &@ O Ui /) — O T HERICREREEZ 52 5 b 00, JEIHTHFmMICRIETHE
FhENZ EZBLNT L. EHANE G2 DL, FERFRIMIEEE L <R LIk L7 DIkt L
T, WM IR LR LA/ NS o 7o, £ ORER, JITAM 2 5 2 72V IREE TIERZIAM D1F 9 23
FERFZIS L 0 @IREECTh o o DIt L, S AMRITRERIA D13 5 PMEREIC o7z, Zhi
FREZIA I REZ TP LR 72 MsCe ERALIDSHTHE L, D% EIR TR ST AN E 5 2 TH 7= k{Iew)
OHFHITIZ E A ERRWDIZRE L, FERI I3 T AT &2 52 5 L AL RIT MpsCe IRAL DD
DI L, TG — 72 MosCe IRALM DAL DR B D FERE & 72 ) K& <k LI L 5 72
ThdZ rR L.

95 BT, BIETHFMIMELZRE L. FI3EIIBWNT, 7 U —7OF AN Ni-23Cr-TW &
BOEEFFMICRKEREEBERITTZERHLNI RS2, BE L O A EGERICZE
THEEHAMT D7 V=T OTHMIEEBRL, TOFEL 7 Y —TEGHEMHMETH D
O i PH oy BT 22 DT B 97 Fma s 2 1R 2 Lic. 58E1E, BYETAmP o) & 0T
FHDOE ATV A & BT O R R BT DR UG — IS 1O A i 2 A LT, 24
WHAMTD 2 ) —FOPFhERDDLFEEZANTND. 6 4 BETORFCEY, Ni-23Cr-7TW
BT U L8 2R3 2 E R DR o7, O U282 5 8 L CEVE 7
BRFD7 ) —TOFTHRERDDLICLEZ ELHEO 2> THD. BEEEZERATD L, B
AW L DI — OF BB BT A i, iR 57 58RO F s & BV 57 56 & Tl

m

=

\

% iy

A

L. Fio, BB X D2BYE S FaTHITIE & GBI LT R T — X IZONWTE L DT,

%56 B CIE, 5 W TS LI BRI FmakimiE om M2 ME L7z, Ni-23Cr-TW &4 D5 i

IRE % 700°C & L7220 55 F el 43 72 700°C—EIE TIZB T 2 AMOT & &5 FHan DR
&

I

e

&4l
)
55
&
%

=

REEAEL, S5, B LIS — O3 Al 2 Bfs L. 2h o 07— % VT, Ni-23Cr-TW
BRDOBNE TR O T 2 R ZIETHME L, 12 f5~2 fFOREGHMAN CTEkEEICHFmah T 5
Tl ERLE. Fio, BEEBEIREIRELZ 750°CICEm OBV S AN OFMAEHIIZB L Th, 12
E~2 (EORERFANTHE LSFMETE2 2 2R L. SIS, 7 U —THITRMEDITH DX
% E 8 L7= Ni-23Cr-7W &4 D B 55 F e FAfiE 2 7~ L7z,
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LIbED X 512, A Tid A-USC FER & DRMRIEBEH AR A T BE OFEMM O—>ThH S
Ni-23Cr-7W &4 O i 57 FetE 2 B S 22 U, JE 97 FrE OB Tl A-USC AR A Z B 120 L 7244
B CHDHZEER L. EHIT, Ni-23Cr-TW &4 O EHRE 57 7 b iis 5 L OB 77 4 af Al ik
iR LTz, BRI, BIEGAMT O ) —TFOT i i T o2 FIEZREL, ERFIEL
DB HEMOESEERD Z LR TE. ZHUTAS%R, RHIREER A 5 OREE N
MizAT > ECHERMAIL D bDEEZLND.

Ni-23Cr-7TW &4:% A-USC HEDORA ZEEICHEM T2 9 2 TORFHFIEICET 545 % DS
& LT, BHEROWRE TR ST O D, RA TEE IR L CEM S5 729 Ni-23Cr-TW
BRI LOBEERCT = 74 FRAA TR, —AT7F A FRAA T & OBRMEEEET O
TR LI TH D, FRIZ, 7= T A MECA—AT A ML ITRIERRICEN D L7120
BMVEBEH N IREA BT 2 & T ORI LTS - BNOTHBRRAET D720, FRIME
BRI R THEFHRENRRE S R D ARREND 5. IRBEH OR 57 RIS DV i, IR
wWESL LTotk, SBBHDPLETHD.

F7-, %4 ETIE Ni-23Cr-TW A4 DY 578 RUE T MosCe AL DT HH D 548 2 34l 4 2 7=
¥, 700°C Thelz 5000 FEZh L 7= MRk D% 5 Rtk 2 3l L 7. & ISR IFFRIZN 35 &, Laves fH
DHTHIT 5723, Laves HANEFRHEICRIETRBIIE WO T, RA TEE & LTS
L7 DREZ B BT 5720121, Laves FHOME I KIFTRHE S 5% B 5 2T 2 MBS
H5D.

K L TRE LB T AT O 7 ) — 7 OT BFHliEIC DWW T, Z 0w 2 Ni-23Cr-TW &
BIZREIND HOTERWED, 5%, MMEB~O@EARNFEND. £, FAHERMELH
PEARSRIED KD ICIREET) & A S ECHRCEMAN A 5 2 28U T R F0 A7 63, Lol
MEZRIRE « OT B oA 7V F OFa e~ 1 HIEDKREFHZ DWW T H A5 % OB BT BRI 5.

AWFFEH A-USC 5870 EOIRIRFEE T 7 > FOBRF O —8) & 72 0 HERIRBZ(LES (LT E#RC &
HZ &, BRY, BYEGFmMiEORER L BREO—IITRD 2 EEMFT S,
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Appendix

AL OF il syl DY

O A i 5 ENEIL Manson HIZ K> TIREINTZZ U — T FHFmiHiiE Tod 5. 5lk7 U —
TOTHRIZEDBE L EM 7 V=T OT R L DBEEOEZZE TE HHEmiHIiETH Y, FiR
W97 FF e DR D 72 53, BVE G FEm ORI HE A R FIETH D.

EHRIZ B W THEHIFE AT 5 O IO 2 L IEFRME O T T E, S BITIEHMED
THRFTBEHEOTHE 7V =T OTRIZHEHETE L. BHEOTHRITHERO T ITERK S 5 R
EKELBRVWOTHTHY, 7V =0T HRIIRREILF DT R0 LPLHUTE R S 2 R AF T 5
OTHTHD. OT HEHEHSENETIIMEHIA U D EFRICIKT L2 WO A2 BEOT 4, R
WEFT 20T HAE 7 )V —TOTHhEERTS.

O HHEFA D ENETIE, SRICBTDEHEOTHE 7 UV —TOFT B35 5RM & R TRt v
IND & &, MBHIHE Y IR LAR SN DFEHMEOT HOMAEDOEIIH A-LITRT 4 TH Y,
FEHMEONT B A, 13 2 D 4 TR OIEFRMEOT B3P 7 Ag; () = pp, cp, pc, co) (IZHEITE S
LEZD. ThDb, AaykAs OBURIIL FORTES Z LB TE 5.

Agin = Agpp + Agep + Agpe + Aeec (A-1)

TIT, Agy (FBIRIMPEOS A L FERFIMEO T H OBV R L, Agey 1F5I5RY U —TOF L TR
PEOFHOBY IR L, Age lIFITRIBVEOS B LIEM 7 U —TOFTHOBY IR L, Agcld5IRZ7 U —
TOPHLIERY V=T OF HOMD IR LIS & D IEWIEOTHHIR Th 5.
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Fig. A-1 Inelastic strain range components of strain range partitioning® .
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Agy FIZBUWTHEHO BRI MM 72 5 720, % Aay \CKHIE U724 RHELR O % 5@ Ny (i =
pp, Cp, PC, CC) WIFIET D EE %, %Ag & Ny ORICIZLL FOXBEIT b0 LT 5.

Asyj = AN ™™ (A-2)
T, Ay mlIMENESCTH S, K A-3 1E Type 316 £HIZ-DOUT Manson B 23572 Ag—N;; BIfR T
HDDY, FAG TR L THEHEAR OFFm Ny A ET 5 2 &, B, Type 316 #l TldAgy & 1 7D
FEFHEOT RHFDPMBHI R b RERBEL 525 Z LR ERIND. £, Ag & Ny Ofic
(A-2)DBIRA NN T D Z & 1EZ < OMEI TR SN TN D,

) Aé‘pp . A‘c"pc
Plastic Plastic Plastic Creep
strain l strain strain l strain
crystal crystal
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-
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_.‘ \\‘\

Slip plane sliding
/\/
61 A‘C"cc c Agcp
boundar Creeg) Creg) reep .
Y Strain t | straim strain 1 | Etlr%asitr:c
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sliding sliding
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Fig. A-2  Schematic illustration of cyclic deformation model under Ag;; (ij = pp, cc, pc, cp) ),
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Fig. A-3 Example of Agj— Njj (ij = pp, cc, pc, cp) relations for Type 316 stainless steel 3.

PRI N ZU T ORBRITEZ b 5.

1 _ 1 1 1 1
ﬁf—N—pp+N—Cp+N—pC+N—CC (A-3)

KA T KAg FIZBIT 2 HEZHIFICE LEDE THEIO#EEEZ KD S DT, Linear damage
rule (LDR) &ME(EH%. Manson 1% LDR (2 X 2 F MM A 2R L2, %Ag FOBEOMH
HAEF %% & L7- Interaction damage rule (IDR) Z#£Z2 L T\ 5. IDR TIXLL FOXTHENO FH

Ne &R 5.

_ 25 A-4
)= 5 (A4)
1 F F F F
_=ﬂ+ﬂ+ﬁ+ﬂ (A_S)

Nf Npp Ncp Npc Ncc

LDR & IDR (T X VRO 7=HMmITZ < OHEITEBNTRERETAEC R, HL, FAg—N;BR
2D IR (Agp—Npp BIFR, Agsy—Nep BIFR, Agye—Npe BIFR, Agee—Nee BIFROZER/ NS WIS
i, — %M LDR IZAZITIdR .

A-4 120, 3B TIE L7 Ni-23Cr-7TW &4 DR 73 BR G 72 5, LDR & IDR T €
WTAg— N BIfRZ SR D IAER Z 77T, W DAg— N BIfRIZIHEWTSH LDR & IDR OFERA 1
AROEM EIZAIE L TEHY, LDR & IDR TRD7Ag—Nj BRICZEITA LW, 165 T,
Ni-23Cr-7TW &4& D FHakiiiC LDR & IDR D EH 5 2 AW THREIXF%E TH DY, Age— Ny B
RE k<R E, Z<ENTIEH S0 LDR TROZHMDIEZ D BILLOE /NI WD, Kia
TIFH(A-3)IZR L2 LDR Z AWV CTHf Ne 25l L T 5.
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Fig. A-4 Comparison of Ag;j— N;j (ij = cc, pc, cp) relations of Ni-23Cr-7W alloy at 700 °C
determined by LDR and IDR.
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TS-SRP £ TIE A5 ITRT L D ICOT H#PH & Fram O 7 7 FIZBWT, 7 U =75
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T HHFHAL & F A Np, 38 KO, PO T B il Ag, & Fm N OBIREZ ZNZNLL TOR TR,

Ag, = BN;® (A-6)
Ag;, = C'Ne© (A-7)
ZZ T, b, ClXPPIEIETOREFRERCRDLMEHES, CIEITFATRDODLERTHD.

' = (BF;C; ) (ij = pp, cc, pe, pe) (A-8)

Log (Strain range)

Log (Nj)

Fig. A-5 Relation between total strain range and fatigue life® .
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L (A-8)IX O A PH /3 YL O Interaction damage rule (IDR) 22 5E 5 TH Y, Fyj L F O
TERIND.

(A-9)
F72, K(A-8)F D Cijix 13 (U=PP, CC, CP, PC) JJE D 573kl CTAf S L7z Ag, & FFfn Ny DBIfR
TR TRLEZEZOMEERTHD.

Agip, = CyNy© (A-10)

RIZ, 7V =T BRI TN AR SN O P Z i Ag & IFBPEO T B R Ag,
DREIRE L FORA1) TET L, (A6), X(AT), KAL) LY TFORAL)BELND.

Age = Kjj(Agi)" (A-11)
B = K;;(C)" (A-12)
ZZT, n=blc THS.

BOT R Ag 1TAs & A DRITH D720, Ag & NeOBIRITA(A-6), X(A-T)ZHNTFAT
REINs.

Agy = Aeo + Agyy

= BN® + C'Nf (A-13)

TS-SRP £ TiE, X (A-13)Z W THEHZ AR SN2 0T AfiFHAg > B Fi N 22K 5.
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