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0. Introduction

Consider a springy circle wire in a riemannian manifold M. We describe it as a
closed curve y with unit line element and fixed length. For such a curve, its elastic
energy is given by

E(y) = f Dy dx.

Solutions of the corresponding Euler-Lagrange equation are called elastic curves. We
discuss a corresponding parabolic equation in this paper. We will see that the equation
becomes an initial value problem:

&y =—D3y' + Ry, Dy )y + Di(wy'),
(EP) —w” + | Dy’ Pw =2{|Dy'1?Y" — ID?y')* — (R(Y', Dy")Y', Dey'),
y(x, 0) = yo(x),

where w = w(x, t) is an unknown real valued function.

In [3], we treated the case of euclidean spaces and saw that the above equation
has a unique long time solution and that the solution converges to an elastica. In this
paper, we treat general riemannian manifolds, and get the following

Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let
o(x) be a closed curve with unit line element and length L. Suppose that there are
no closed geodesics of length L in M. Then (EP) has a unique solution y(x,t) for all
time, and the solution y(x,t) converges to an elastica when t — 00.

ReMArk 0.1. Even if the metric of M is not real analytic, there is a solution
of (EP) which has a subsequence converging to an elastica (Theorem 4.1, 5.5). This
proves the existence of an elastica. Existence of an elastica has been originally shown
in [4] by using Palais-Smale’s condition (C). Another proof has been given in [1] by
using a direct method.
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RemArk 0.2. The equation (EP) is not the so-called curve shortening equation.
The principal part of (EP) is (3/8 + 8%/3x*)y and (3%/9x%)w. Main difficulty of our
equation comes from being coupled.

1. Preliminaries

By scaling, we may assume that the length of the initial curve yp is 1. From now
on, a closed curve means a map from § 1= R/Z into a riemannian manifold M. The
variable in S' is denoted by x, and differentiation with respect to x is denoted by '
or x™_ The covariant differentiation on M is denoted by D.

For tensors on M, we use pointwise inner product (x, *) and norm | * |. For func-
tions on S' and vector fields along a closed curve y, we use L, inner product (%, *)
and L, norm || * ||. Sobolev H* norm is denoted by || * ||;. For a tensor field £ along
a closed curve y, H® norm |||, is defined by [&]|2 = >_7_, I Di&|%.

We recall basic lemmas from [3]. Some of them are extended to the case of ten-
sor fields. We frequently use them to get estimation, but always makes no mention of

them.
Lemma 1.1 ([3, Lemma 3.1]). For a tensor field & along a closed curve vy,
max [£]* < 2[|&]| - {I§]] + I D:£l).

Lemma 1.2 ([3, Lemma 3.2]). For integers 0 <p <q <r,

”D;’é'” < ”DXPE ”(r—ll)/(r—P) . ”Dxrgn(q—li)/(r—m.

Lemma 1.3 ([3, Lemma 4.1]). Let a and b be L, functions on S' such that a >
0 and ||a||L, > O. Then, the ODE for a function v on S':

-V +av=>b
has a unique solution, and the solution is estimated as

max [v| < 2{1 +llall;'} - 5],

max [v'| < 2{1+llallz,} - 1Bz,

We need also Holder norms. The usual Holder space for functions on S! is de-
noted by C;'M" . The weighted Holder space (time derivative is counted 4 times) for
functions on S! x [0, T) is denoted by C"***. See [3] for the detailed definition.

Lemma 1.4 ([3, Proposition 5.6]). Set D = S'x[0,T). Leta: D — R; b;, d;, [ :
D — RM; ¢; : D - R"*N be C* functions and ¢ : S' — RY a C&™ function.
Suppose that a is non-negative and ||la||., > C > 0. Then, the linear PDE for a RV
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valued function u and a function v:

3 1
Au+u? + Z ciu® + Z div® = f,
i=0 i=0

3
—v" +av = Z biu?,
i=0
u(x,0) = ¢(x)
has a unique C*** solution on D, and the C**** norm of the solution is bounded by

a constant depending on the C** norms of f, a, bi, c;, d;, the CH*™ norm of ¢, and
cl

2. The equation

To derive the equation of motion governed by an energy, we perturb the curve
y = y(x) with a time parameter t: ¥y = y(x,t). Then the elastic energy changes at
t=0 as

d ! !
—E(y) = 2{Dyy’, D;D,y’)

dt

2Dy’ R@By, vy + D)
—~2(3,¥, R(Y', Diy)y') +2(8,y, D}y")
2(dy, D}y’ — R, Doy,

1]

where y(x,0) = y(x). Therefore, —D?y’ + R(y’, D.y')y’ would be the most efficient
direction to minimize the elastic energy. However, this direction does not preserve the
condition |y’| = 1. To force to preserve the condition we have to add certain term. Let
V be the space of all directions satisfying the condition in the sense of first derivative.
Namely,

V={a|(, Da)=0}.

We can check that a direction is L, orthogonal to V if and only if it has a form
D, (wy’) with some function w(x). Therefore, the “true direction” should be

&y = =D}y’ + R, Doy )" + De(wy),
where the function w has to satisfy the condition
(', Dedry) = 0.

To simplify this relation, we use the following
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Lemma 2.1. For a curve y with |y'| = 1, we have the following identities.

&' . Dy') =0,
', Dy = ~IDy' 1%,
/ ’ 3 ’
', Dy = =S DY Y,
', Dfy) = 2Dy Y + D}y,
Proof. We can get these by a simple calculation.

Therefore we have

0

]

(DA=D]y' + R(Y', D,y")y' + De(wy")}, ")
—('. Diy")+ (', DARY', Doy W'D + (v, DR (wy"))
2Dy 1Y — ID}Y' 1P+ (R(Y', Dey')Dey', v')
+ @, W'y +2w' Dy’ + way’)
=2{|Dy' 1Y — D2y — (R(Y', Diy")y, Doy') + w" — Dy |w.

Thus the equation for the function w(x) becomes
~w"+[Dey'Pw = 21Dy} — [DZy'? = (RG', Dy, Dey').
If we put
v=w+2|Dy' P,
then we have
—v"+|D:y'Pv = =ID}y'* +2ID:y'I* = (R(Y', Diy)Y', Dey).
Therefore our equation becomes

dy = =D}y + Ry, Dy + D(wy"),
(EP) —w” +|Dy'Pw = 2{|Dey'?Y — IDZY'* = (R(Y', Dey")Y', Do),
Or, equivalently,
dy ==D3y'+R(y', Dy + Del(v = 2|Dey' Py},
(EP,) —v"+|D;y'Pv = =Dy P +2IDy'|* = (R(Y', Doy)y', Dey)),
y(x, 0) = yo(x).

Note that both ¥ and w (or v) are unknown functions on S! x R,.
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3. Short time existence

In this section, we consider a modified equation for an RV valued function y and
a function v:

qy=—yD+FCx,y, v,y v®,v,0v),

ST

D) -+ G, v, v,y ¥y - v=Hx, v,y v, v®),

where F, G and H are given C*® functions on S! x (R¥)%, §1x (RV)* and S' x (RV)*,
respectively, and the function G is non-negative. For functions y and v, we take their
jets and use abbreviated notations such as F(x, j3y, jiv), G(x, jsy) and H(x, j3).

Theorem 3.1. For any C® initial data yy with G(x, j3y9) > 0 at some point
x € 8\, there is a positive time T so that (ST) has a unique C® solution on the time
interval [0, T).

To prove this, we need “cut off” functions for F, G and H. Let p,(y) be a C*®
function of y such that p,(y) =1 for |y| < a, p,(y) =0 for |y| > 2a, and 0 < p,(y) <
1 for all y. Let vy be the solution of the ODE: —v” + G(x, jayy) - v = H(x, j3yp) and
put A = max(|j3yol* + | jivol?). Set

F(x, j3y, 1v) = paaljzy > + 1j1vl®) - F(x, jsy, jiv),
Hx, j3v) = p2alljsy P - H(x, j3y).

For the function G, we take a point xo € S! and positive numbers B < 1 and C
so that G(x, jay) = C for all 3-jets {x, y} with |x — xo|, |j3(¥ — y0)|> < B. Set

G(x, j3y) = pe(lj3(¥y — vo)I?) - G(x, jay) + 1 — p2(lj3(y — yo)l?).

Take any point x with [x — xo| < B. If |js(y — w)|> < B, then G(x, jz3y) >

min{G(x, jsy), 1} > C. If |js(y — w)I* > B, then G(x, j3y) = 1. In particular, for
any function y, we have

ygé(x, jay)dx > BC.

Note that if y is sufficiently close to y in C3 topology, then G(x, j3y) =
G(x, j3y) and H(x, jzy) = H(x, jzy). It also implies that the solution ¥ of the ODE:
—9" +G(x, jay) - = H(x, jay) coincides with v. Therefore, if we have a solution for
the equation

(S'T’T) 3,)/=—V(4)+F(x;j3y’ jlv)9
—v" +G(x, j3y)- v =H(x, j3y),
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then it is a solution for the original equation for some short time.
Now we consider the equation

—_ vy = —yP +AF(x, j3v, j1v),
&t { iy =—¥ (x, j3¥. jiv)

v+ G(x7 13)’) V= f{(x’ j3y)y
where A is a constant in [0, 1].

Lemma 3.2. Let y = y(t, x) be a C** solution of (Sﬁ' y) with a C® initial data
yo(x). Then y is C™.

Proof. If y belongs in the class C™****, then the functions G(x, jzy) and
H(x, j3y) belong to the class C"™*!*** Hence Lemma 1.4 implies that v and v’ be-
long to C™*4  therefore also F(x, jyy, jiv) belongs to C™1*** Thus we see that y
belongs to C"*3**, By induction, we see the smoothness of the solution y. a

Lemma 3.3. Consider the ODE: —v" + G(x, j3y) - v = H(x, j3y). For any non-
negative integer n and a positive number C, there is a positive number K with the
following property:

Iyl < C, then ||vlln < K - {1+ [ly™*P]).

Proof. Since |v| and |v’| are bounded by Lemma 1.3, the claim holds for n =
0, 1. Suppose that the claim holds for an integer n (> 1) and that ||y |[,+;1 < C. Then,
by Lemmas 1.1 and 1.2, we have

Vllasr < N0lln + 0"
< C+IG(x, j3¥) - Vllne1 + 1H(x, j3¥)lIn-1
< C+Cy-1G(x, j3¥)lnt + 1Hx, j3¥)lIn-1-

The last expression involves the derivatives of ¥ up to y™*?. Counting the fact that
ly™]| is bounded, we see

A

Iollner < Co- {1+ 1y ™20+ 1y ™1 [y @l gs))

Cy - {1+ ly ™2 + ly™*V] - max |y @ |4s)}
Cs - {1+ 1yl + max |y "*V|4))

Ca- {1+ ly™2|},

IAIA

IA

where (#3) means that the indicated term appears only if n > 3. O

Lemma 3.4. Let y be a solution of (§T 1) on a finite time interval [0, T). For
any non-negative integer n, the norm ||y™| is uniformly bounded with respect to A €
[0, 1].
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Proof. First of all, for n < 2, we have

@12 = 2(y®, 8,y™)

d I
ar"’
2y®, —y ™ L AF(x, j3y, iv)™)

= 2|y ™2 £ 240y, F(x, j3y, jiv))

< =20ly™2|2 + 21 F(x, jsy, sl - Iy @)

Thus for n =0, we have

d
EII)’II2 <2C -y,

hence (d/dt)|ly]| is bounded. Also, for n = 2, we have
d. 2 @2 @
EIIV 1” < =2[ly™° +2Clly™ | < Cs.

Therefore, the norm ||y ||, increases at most linear order.
"Suppose that we know estimation of ||y |[,+; for an integer n (> 1). By Lemma
3.3, we have

lvll, < Cq,
lvllasr < Cs - {1+ [ly™2}.

IA

A

Now,

d -
YT RIE = 2y, —y ™9 L AF (x, jay, j10)"?)

IA

=2y + 20y DN N Ex, oy, o)™l
—ly ™I + 1 Fx, jay, 1o)™)2.

IA

Here, the term F(x, jiy, jiv)™ contains the derivatives of ¥ and v up to y™*+»
and vV, and |y™| and |v"~D| are bounded. Therefore we have to estimate the fol-
lowing terms:

Iy ™20 1y ™21 1y @, Ny i,
Iy D1 L 1y 1y @1 @,
Ny ™D " 1 1y @01 @) - ")
™1, 1@ 1y @1, ™) - "1

Iy @01 @,

Note that terms with multiple factors appear only if n > (their number of factors).
By Lemma 1.2, we can estimate each factor as:

3 +4)12/3
ly™| < Cs - Ily™)1*3,
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max |y ™?| < Cp- {1+ [ly ™22 [y )2
< Cg- {1+ [ly™)'/23),
max |y ™| < Co - {1+ [ly™?)'2) < Cio - {1+ [y ™)/},
™D < Cpy - {1+ [ly ™21} < Cra - {1+ [y ™)'},
max [v™| < Cy3 - {1 + [0™*D)1/%}
< Cua- {1+ ly™2)'2) < Cis - {1+ ly™ )16},

When n > 2, we have

ly@l < Cie- {1+ ly™2} < Ci - {1+ [y™)'),
vl < Cis - {1+ v} < Cpo,

ly®l < Cao- {1+ 1y™P} < Co - {1 + 1y},

WPl < Caa - {1+ 1™ PN} < Coa - {1+ Iy ™17,

When n > 3, we have

max [v”| < Cy - {1 +max [v"7V]} < Cys,
max [y®| < Cpe - {1 + max [y™V|} < Cpy - (1 + |y™?'/2)
< Cog - {1+ |ly™9)1/8).

Combining all, we conclude
1Fx, jay, iv)™) < Cao - {1+ [y ™17/},
and

d
Elly‘"”)llz < Cy. O

Proof (of Theorem 3.1). We use the so-called open closed method. Take any pos-
itive time 7. By the implicit function theorem with Lemma 1.4, the set A of A which
has a solution y of (§i‘ ») on [0, T) is open in the interval [0, 1]. On the other hand,
by Lemma 3.4, A is closed in [0, 1]. Since A contains 0, it should coincide with
[0, 1]. By definition, the solution of (§'f ») with A = 1 is a solution of (ﬁ' ), which
gives a short time solution of (ST). For detailed discussion, see [3, Proof of Theorem
6.5]. O

Theorem 3.5. The equation (EP) with non-geodesic initial data of unit line el-
ement has a unique short time solution y(x,t). Moreover, every closed curve y(x,t)
has unit line element.
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Proof. We may assume that the induced tangent bundle of the initial data yp is
orientable, taking a double cover if necessary. Then, using a tubular neighbourhood of
0, (EP,) is expressed as (ST), hence has a short time solution. Let {y, v} be a solu-
tion. Since 3|y’|> =2(v', D,y’) = 2(y', D,3,¥) =0, we have |y’|> = 1. Let {y+, v+u}
be another solution of (ST) in the tubular neighbourhood of yp. Then {¢, u} satisfies
the equation:

8¢ =—¢W+ fx, 10,887, ¢, u,u),
—u" + GG,y v Yy u=hx, 1,8, 8", 89,0,

Here, |f| and |h| are bounded by C{Z?=0 [€D| + |u| + |u'|}, because {y + ¢, v +u} is
bounded. Therefore, we have |ju|l; < C1||¢ i3, and

1d

510 = @80+ 8 =it =" (@4 f)
= —I"I1> = 1PN+ (g, f)
< —12"12 = UeDU> + Ca- 1N - UL la + Nelly)
< C3- I3

Since { =0 at t =0, we have ¢ = 0. Replacing ¢t = 0 to arbitrary ¢ = #,, we see that
the set of all 7 such that two solutions coincide is open. Hence the solutions coincide
for all time. O

4. Long time existence

In this section, we consider the original equation:

&y =—D3y' + R(y', D;y")y' + D(wy"),
(EP) —w” +|Dyy'IPw = 2{| Dy’ 1?Y — ID}Y'|? — (R(Y', D:y")y', DiY'),
y(x, 0) = yo(x),

where ¥y is a closed curve of unit line element.

Theorem 4.1. Let M be a compact riemannian manifold and y, a closed curve
of unit line element. Then (EP) has a unique solution for a time interval [0, T) and
one of the followings holds.

1)  There is a sequence of times t; — T such that y(x, ;) converges to a closed
geodesic in C! topology.
2) T = oo.

To prove this, we need some preparation. For a closed curve y, let v and w be
solutions of the ODE:



476 N. Koiso

—v" + Dy v = —|DXY'1* +2|D.y'[* — (R(Y/, Dyy')Y, DoY),
2Dy’ 1*Y = IDXY'* = (R(Y', Dy )Y, Dey'),

—w” +|Dey'w
and put
8=-DY' +R(Y, D,y)y' + Di(wy").

In Lemmas 4.2-4.6, we consider this ODE and estimate v, w and § by y’. They
will be applied to the PDE (EP) later.

Lemma 4.2. For any non-negative integer n and any positive real number C,
there is a positive number K with the following property:
IFIDy'Il=C7, 1Y <C and |¥'lln < C, then

lwlast < K - {1+ D7Vl - 172y 1)
Proof. The assumption and Lemma 1.3 imply that
lvller < IDZY' 1% + 201Dy P1I% + 1 Doy 112
But we know that max |D,y’| < C, - {1 + || D?y’||'/?}. Therefore,
vl < C2- {1+ 1DZY"I1%).

Moreover,

A

1Dy 12l < C3- {1+ ID2y'II'},
Dy’ Yl < 211D:y'| - ID2Y'Il < Ca - {1+ D2y 1P%).

Thus we proved the claim for n = 0:
lwlly < Cs - {1+ 1 DFy'I).

Suppose that the claim holds for a non-negative integer n and that ||y'||,+1 < C.
Then, we know ||[w|ne1 < Ce - {1 + || szy’ll . ||D;'+2y’||}. Therefore,

+I{IDZY' YN + IR, Doy )y, Doy )™l

Cr- {1+ 1IDI*'Y'| - 1Dy - [wlll + llwlla}

+Cs - {1+ ||DF*2y/| - Dyl + 11D2Y'| - 1DV
+ 1Dy 1D3Y )

+Co - (L+ID*'y'| - 1Dyl

lw™ ) < 1Dy’ P - wY™ | + 2II{| Dy 32

IA
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where (#2) means that the indicated term appears only when n > 2.
Here, we know that

max |D*'y'] < Cyo - {1+ Df*2y'I'?} < Cuy - {1+ 1DF3y)114),
max |w| < |lwll; < C12- {1+ ID}Y'II*}
< Ci3- {1+ D2y'Il - 1Dy},
max | D;y'| < Cia-{1+ID2Y'II},
max | D{*?y'| < Cis- {1+ IDM*2y'|'2 - | DF3y'|1V%)
< Cis- {1+1ID/Py'1P4),
I1D3y Iy < Ci7.

Thus we have
lwlleez < Cis - {1+ ID2Y'Il - IDFPY/11},

and the induction completes the proof. O

Lemma 4.3. Set
¢ =R, DY)y’ + D(wy").

For any non-negative integer n and any positive real number C, there is a positive
number K with the following property:
KDy | =C7 Iyl < C and ||y'|ln < C, then

Il < K - {1+ D2y - ID7*2y 1.
Proof. The assumption and Lemma 4.2 imply that

¢l < Ci- {1+ ||w|| + max |w|}
< C-{1+|lwlh} < C3- {1+ IDX'I?).

Thus the claim holds for n = 0.
Suppose that the claim holds for a non-negative integer n and that ||y’|,+1 < C.
Then, we know ||¢]l, < Cs- {1+ IIDXZy’n -l D;‘*zy’ll}. Therefore,

6™V < DY (R, Dey))y)ll + | D (wy ")l
< Cs- {1+ D2yl + 1D2*'y'| - 1Dy |
+l|wl - DIy |+ Iw'| - 1D Y1+ lwllesa)-

Here, by Lemma 4.2, the terms except 4th and Sth are estimated linearly by
D2yl - | D**3y’||. For the excepted terms, Lemma 4.2 also implies that
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llwl - IDF*2Y'IIl < Co- {1+ IDZY'I1? - 1D/ 11}
Cy - {1+ D212 - 1 D3y |12
Cs - {1+|D2y'Il - IDX?y'|l - | DIy 112
Co - {1+ DX/l - 1 DI/ 11},
Illw'| - IDF*'yY/IIl < Cio - {1+ | DZy'||* - max |DI*'y'|)
< Cu - {1+ DY ID{2y'11). O

IA

A

IA

Lemma 4.4. For any non-negative integer n and any positive real number C,
there is a positive number K with the following property:
If 1Dy’ =2 C™" and ||y llns1 < C, then

IDP3Il < K - {1+ 1ID"y'll},
where § is defined below Theorem 4.1.
Proof. Lemma 4.3 implies that

D78l < 1Dyl + IDr I
< C - {1+ DY+ ID2Y'I - IDF2Y |1}

Here, we know

ID2y'Il < C2- DY/ I < Cs - {1+ | D3y V%),
IDI*2y'|| < Ca- |IDI3y|2,

which completes the proof. O
Lemma 4.5. Let y be the solution of (EP). For any non-negative integer n and
any positive real number C, there is a positive number K with the following property:
Dyl = C™" and ||y'llne1 < C, then
an+2/2<K 1 D2/2 Dn+3/2 Dn+4/2
EII Y = K -1+ IDgy 1" - DSy 7 = DSV
Proof.

d n !/ !’ /
Enuﬂy I = 2(D*?y’, D,D?y’)

n+l

2 <Dx"”y’, > DiRG, y)DI*'7y)+ D:*38>
i=0

2Dy, R, YDy
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—2(D:+3 /s R(sv V/)D;)’l)
n+1

+2) (DY, DIT2(R(S, v)DI 'y
i=2

+2(D*y’, DI*' =D}y’ + ¢})

Ci-{IDI*2y/ || - 18] - IDF*' Y/ + 1 DFy )| - 18]l
+H1DFHy' |- {181+ 11 DF " 811 Yoy}

=2\ Dy 12 + 21 DfyY || - 1 DF

IA

where (#1) means that the indicated term appears only when n > 1.
Here, we know that

1Dyl < Co - IDI*HY' 11,

max |DI*y'| < C3- {1+IDM2y/ |2} < Cq - (1 + | DIy|11/6),
IDM3y/|| < Cs - | DIy ||*3.

Moreover, by Lemma 4.4,

I8 < Cs- {1+ ID3y'II}
< G- {1+ D3y |1} < Gy - {1+ |DI4y/ 1123,
IDF'8]l < Co - {1+IDM?Y'|l} (when n > 1),

and by Lemma 4.3,
IDM* ¢l < Cro - {1+ I1D2Y'Il - I D3y 11}.

Combining all gives the result. |

Lemma 4.6. For any positive real number C and a C' neighbourhood U of the
set of all closed geodesics of unit line element, there is a positive number K with the
Jollowing property:

If vy is a closed curve of unit line element not in the set U and if |D,y’| < C,
then

ID3Y'Il < K - {1+ 811}
Proof. Since
&8 == D}y + (', w'y +wDy') = %{IDXV’IZ}' +w,
we see

'l < 1811+ 31(Dey’, D2
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< Ci - {l18] +max [D,y'| - | D}y' I}
< G- {1+ 181+ 1Dy I* - 1 D2 1P}
< G- {1+ ]8I+ 1D}y IP%).

Put
¢=-D} +wy'.
Then we have
' 9) ==, DIy +w= Dy’ +w.
Therefore,
fwdx = (v, 9) = IDY'II*.

Let a be a vector field along y such that D, =y’ on 0 < x < 1 and «(0) = 0.
Then, A

1

(v, @) = (D, ¢) =/0 (Dea, p)dx
1

= [ @)1} - /0 (@, Dip) dx

1
= (a(1), p(0)) — fo (@, 8 — R(Y', D,y')y')dx
= —(a(1), D2y'(0)) + w(0) - (x(1), y'(0))

1 1
_/ (a,s)dx+f (a, R(Y', D,y")y')dx.
0 0

Therefore,
j{ wdx — (ee(1), y'(0)) - w(0)
= —(a(1), D}y'(0)) — fo @ 8)dx
+/01(a, R, Doy )y)dx — I Dy'|I2.
Here,

{lef?}Y = 2(et, D) = 2(et, ') < 2|,
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and so
' <1 and |a|<1 on 0<x<I1.

Thus,

] f wdx — (@(1), y'(0)) - w(0)

< Cq- {1 +max |DZy'| + I8l + 1Dy Il + 1 Dy’ I}
< Cs-{L+ 18]l + IDX'I'* - |1 D2y'|I'/?}

Cs - {1+ 1181l + D3y 114}

IA

We know that (a(1),y’(0)) < 1 and the equality holds if and only if the

curve y is a closed geodesic. If there is a sequence y; of closed curves such that
(@i(1), y/(0)) — 1 for the corresponding vector field «;, then the sequence has a c!
convergent subsequence, because the curves are H? bounded. Since the limiting curve
is a closed geodesic, this contradicts the assumption. Therefore we have a positive
number Cy < 1 such that

(a(1), ¥'(0) = 1-Co

for all closed curves satisfying the condition.
We choose the origin 0 so that § wdx = w(0). Then

’f wdx — (e(1), ¥'(0)) - w(0)

= {1 = ((1), ¥'(0))} - w(0)|
= Colw(0)l.

Thus, we see
lw()] < Cs - {1+118]| + | D}y 114},
hence
max |w| < [w(0)| + [[w'|| < Co- {1 +I8]| + |D}y"II>*}.

Therefore, we have

I8 — R(y', Dey")y' — De(wy)l
Cio - {181l + 1Dy Il + max |w| - | Dy’ Il + llw'|I}
< Cu - {1+ 181 + 1Dy 1P/},

1D}y

IA
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and

I1D3y'|| < Cra - {1+ 11811} O

Let y be a solution of (EP). Since |y’| = 1, we have

2(8, —8 + Dy (wy")) = =2||81I* — 2(D;8, wy’)

d
— || D, M2
dtll vl

=2[181° = 2(Dyy’, wy') = =21I8]1%.
Thus we have the following
Lemma 4.7. For a solution y of (EP), ||D;y’||? is non-increasing.
Lemma 4.8. For any positive real numbers C, T and any non-negative integer
n, there is a positive number K with the following property:
If v is a solution of (EP) on [0, T) and if |D3y’|| < C-{1+|8|)}, then ||yI, < K.
Proof. We know that ||D,y’|| < Cy. From Lemma 4.5, we have
d ,
DY IP < Co- (14D I - ID2Y' 1%} = 1Dy I
It implies that
d / !
S 108 ID2y'I2 < Cs - {1+ D}y "I}
Combining it with inequality
d ’ !
E”Dx}’ I = =2[1811> < —C4llD}y'I* + Cs
which follows from the assumption, we have

d !
d—;(log 1Dy + Cs - |1 Dey'II?) < C3.
Hence,
ID?y'll < Cs.
Suppose that ||y’||ln+1 < C for an integer n (> 1). Then, Lemma 4.5 implies that
d ’ ’ ’
TIDI2Y' I < Co - {1+ IDPY I} = 1DIY'IP < Coo.

Thus the induction completes the proof. O
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Proof (of Theorem 4.1). Suppose that no sequences y(x,t;) converge to closed
geodesics. By Lemmas 4.7 and 4.6, the assumption of Lemma 4.8 is satisfied. There-
fore, for any finite time interval [0, T), the solution y is bounded in C* norm. Thus
the solution in Theorem 3.1 can be continued onto [0, c0). O

5. Convergence

In this section, we assume that the solution y of (EP) does not have the prop-
erty (1) of Theorem 4.1. In particular, |D,y’|| > C~! and the solution is defined for
all time interval [0, 00). To show the convergence of the solution y, we need some
preparation.

Lemma 5.1. For any non-negative integer n and a positive real number C, there
is a positive number K with the following property:
If |8lln < C, then ||y'|ln+3 < K.

Proof. For n = 0, the claim holds by Lemma 4.6. Suppose that the claim holds
for n and that ||8]|,+1 < C. Then we know that ||y’||,+3 < C;. Thus, from Lemma 4.3,
we have

1Dyl

A

Cy - (ID'8)| + ID' 911}
Cs- {1+ DIl - 1Dy 11} O

IA

Proposition 5.2. For any non-negative integer n and any positive number C,
there is a positive number K with the following property:
If vy is a solution of (EP) and if ||8]l, < C, then

3 wllne1 < K - {118]| + | DI38]1}.

Proof. From the defining equation of v:
="+ Dy v =210y I = IDY'1P = (RGY', Dey'W', Doy,
we have

—0,v" +|Dyy'|* - Qv
= =3{IDey' I’} - v+ 8, 2|Dy'|* — ID}Y'I* — (R(Y', Dy')y', Dey')}
= 2Dy, RG,y)y +D28)-v

+8(D;y’, R, ")y’ + D28) - |Dyy'|?

—2(D2y', RG, v)Dy' + DR, y')y'} + D36)

—((DsR)(Y', Dey")y', Dey") — 2(R(D8, Dy")y', Dey')

—2(R(Y', R@, v + D8)y', D).
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By Lemma 5.1, the assumption implies that ||y’||,+3 < C;. Hence,
(the H" norm of the last expression) < C; - {||8] + ”D;’”B”}.
Therefore, Lemma 1.3 implies that

I3,vlli < Cs- (I8l + D381},
I8;Vllns1 < Ca-{lI8]| + |D***8]} (when n > 1).

Moreover, from
3{IDy'P) = 2D:v', RG, ')y’ + D}9),
we have
1841 Dy} lnsr < Cs - {1811 + | Df 811}
Thus the claim holds for any non-negative integer n.

Lemma 5.3. The norm |8 tends to O when t — oo. The integrals

00 o0
/ 18112 dt, f I D28 |1* dt
0 0

are finite.
Proof. We have

foonanzdt /oo L Doyt = ~ 1Dy 1P < o0
= ——— = —=|| Dy < 00.
A s 2di" Y 25V o

Moreover,

(8, D,8)

d
Zsn?
dt” I

2
2(8, =D, D}y’ + D,(R(y', Dy")y') + D: D:(wy"))
2(8, —R(8, y")D?y' — Dc(R(3, v")Dcy")
—DX(R(,y")y') — Dis
+DsR)(y', D.y')y' — R(D:8, D)y’
+R(Y', R@, vy + D)y’
+R(Y', D.y")Dy8
+R(@, Y)Y wy') + D{—0,w - y' + w - DS}).
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Here, from Lemmas 4.6 and 4.2, we know

ID3y'I| < Cy - {1+ 11811},
lwlih < C2-{1+ID2Y')?} < C3- {1+ 1Dy} < Ca - {1 +11811}.

Thus, using equation: (D4, y’) =0,

d ,
E;IIBIIZ < —2|D28||> — 2(D8, 3w - y')

+Cs - 11811 - {1+ 1811V} - {1811 + I D811}
< —ID281* + Ce - 181> - {1 + 181V},

where N is an absolute constant.
Thus [|6]| tends to 0. In particular,

d
71817 = —IDsI + Co - 1811,
t
Therefore,
00 (e 9] o0 d
f IDZ8I7 dt < C / 181 de - f 1817 dr
0 0 o dt
< oo. ad

Lemma 5.4. For any non-negative even integer n, |D}§| tends to O when t —
0.

Proof. Suppose
o0
D&l — O, / | D282 dt < oo
0

for a non-negative even integer n. This holds for n =0 by Lemma 5.3.
As in the proof of Lemma 5.3, we have

d
E” D*28|1* = 2(D*?s, D, D"*?5)

n+l1
=2 <D;'+25, > " Di(R(, y)D*'~'8) + D;'+2D,5>
i=0
= 2(D*28, R(8, y")DI*'8) — 2(D"*38, R(8, y')D!'8)
n+l
+2) (D5, DITA(R(S, ') DI*' = 8)) oy + 2( D8, D),
i=2
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and D['$ in the last term is expanded as

DM{—R(3, y")D?y' — D(R(S, y")Dyy') — DXR(S, ")) — D}8
+(DsR)(Y', Dey)y' + R(D,8, D,y')y' + R(y', R, y")y' + D28)y’
+R(y', Diy')D:8 + R(3, y')wy') + Dy (8w - y' + wD;8}}.

Form the assumption, Lemma 5.1 implies that ||y’||l,.+3 < C;. Therefore, Lemma
4.2 implies that ||w||p+2 < C2, and Lemma 5.2 implies that [|3,w||,+1 < C3- {||D;”36||+
I1811}. Moreover, we know that max |8] < Cy4 - {1 + || D,8|'/?} and |Dr*18|| < Cs - {1+
| DP+28]|"/2}. Thus all terms in the last expression except the term

2(Dr*4s, — DI D) = —2|| D5

are bounded by the form Ce - || D**5]| - {[|8]| + || D*35]|}. Therefore,

d
Zub:”suz < —IDM*8)1% + C7 - {I811* + | D**81%)

IA

1
—5 D781 + Cy - 1811*.
Thus we have ||D*25|| — 0 and [;° | D'**5||? dt is finite. O

Note that Lemma 5.4 holds on any compact C* riemannian manifold satisfying
the assumption of this section. In particular, § converges to 0 in C* topology when ¢
tends to co. Combining it with Lemma 5.1, we have the boundedness of the solution

Y-

Theorem 5.5. Let M be a compact riemannian manifold, and let yy(x) be a
closed curve with unit line element and length L. If there are no closed geodesics of
length L in the manifold M, then (EP) has a unique solution y(x,t) for all time, and
the solution has a subsequence converging to an elastica.

If the metric is real analytic, we have the main result.

Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let
Yo(x) be a closed curve with |yy| = 1 and length L. If there are no geodesics of length
L in the manifold M, then (EP) has a unique solution y(x,t) for all time, and the
solution converges to an elastica when t — 00.

Proof. The proof of Theorem 8.6 of [3] remains valid. We use Simon’s real an-
alytic implicit function theorem. For detail, see [3]. O
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REMARK 5.7. We have an example of almost oscillate solution on a C*™ rieman-
nian manifold. See [2].
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