

Title	Convergence towards an elastica in a Riemannian manifold			
Author(s)	Koiso, Norihito			
Citation	Osaka Journal of Mathematics. 2000, 37(2), p. 467-487			
Version Type	VoR			
URL	https://doi.org/10.18910/7240			
rights				
Note				

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

CONVERGENCE TOWARDS AN ELASTICA IN A RIEMANNIAN MANIFOLD

Norihito KOISO

(Received May 27, 1998)

0. Introduction

Consider a springly circle wire in a riemannian manifold M. We describe it as a closed curve γ with unit line element and fixed length. For such a curve, its elastic energy is given by

$$E(\gamma) = \oint |D_x \gamma'|^2 dx.$$

Solutions of the corresponding Euler-Lagrange equation are called *elastic curves*. We discuss a corresponding parabolic equation in this paper. We will see that the equation becomes an initial value problem:

(EP)
$$\begin{cases} \partial_t \gamma = -D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma' + D_x(w \gamma'), \\ -w'' + |D_x \gamma'|^2 w = 2\{|D_x \gamma'|^2\}'' - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma') \gamma', D_x \gamma'), \\ \gamma(x, 0) = \gamma_0(x), \end{cases}$$

where w = w(x, t) is an unknown real valued function.

In [3], we treated the case of euclidean spaces and saw that the above equation has a unique long time solution and that the solution converges to an elastica. In this paper, we treat general riemannian manifolds, and get the following

Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let $\gamma_0(x)$ be a closed curve with unit line element and length L. Suppose that there are no closed geodesics of length L in M. Then (EP) has a unique solution $\gamma(x,t)$ for all time, and the solution $\gamma(*,t)$ converges to an elastica when $t \to \infty$.

REMARK 0.1. Even if the metric of M is not real analytic, there is a solution of (EP) which has a subsequence converging to an elastica (Theorem 4.1, 5.5). This proves the existence of an elastica. Existence of an elastica has been originally shown in [4] by using Palais-Smale's condition (C). Another proof has been given in [1] by using a direct method.

REMARK 0.2. The equation (EP) is *not* the so-called curve shortening equation. The principal part of (EP) is $(\partial/\partial t + \partial^4/\partial x^4)\gamma$ and $(\partial^2/\partial x^2)w$. Main difficulty of our equation comes from being coupled.

1. Preliminaries

By scaling, we may assume that the length of the initial curve γ_0 is 1. From now on, a closed curve means a map from $S^1 \equiv \mathbf{R}/\mathbf{Z}$ into a riemannian manifold M. The variable in S^1 is denoted by x, and differentiation with respect to x is denoted by x' or $x^{(n)}$. The covariant differentiation on M is denoted by D.

For tensors on M, we use pointwise inner product (*,*) and norm |*|. For functions on S^1 and vector fields along a closed curve γ , we use L_2 inner product $\langle *,*\rangle$ and L_2 norm $\|*\|$. Sobolev H^s norm is denoted by $\|*\|_s$. For a tensor field ξ along a closed curve γ , H^s norm $\|\xi\|_s$ is defined by $\|\xi\|_s^2 = \sum_{i=0}^s \|D_x^i \xi\|^2$.

We recall basic lemmas from [3]. Some of them are extended to the case of tensor fields. We frequently use them to get estimation, but always makes no mention of them.

Lemma 1.1 ([3, Lemma 3.1]). For a tensor field ξ along a closed curve γ ,

$$\max |\xi|^2 \le 2\|\xi\| \cdot \{\|\xi\| + \|D_x\xi\|\}.$$

Lemma 1.2 ([3, Lemma 3.2]). For integers $0 \le p \le q \le r$,

$$||D_x^q \xi|| \le ||D_x^p \xi||^{(r-q)/(r-p)} \cdot ||D_x^r \xi||^{(q-p)/(r-p)}.$$

Lemma 1.3 ([3, Lemma 4.1]). Let a and b be L_1 functions on S^1 such that $a \ge 0$ and $||a||_{L_1} > 0$. Then, the ODE for a function v on S^1 :

$$-v'' + av = b$$

has a unique solution, and the solution is estimated as

$$\max |v| \le 2\{1 + ||a||_{L_1}^{-1}\} \cdot ||b||_{L_1},$$

$$\max |v'| \le 2\{1 + ||a||_{L_1}\} \cdot ||b||_{L_1}.$$

We need also Hölder norms. The usual Hölder space for functions on S^1 is denoted by $C_x^{n+4\mu}$. The weighted Hölder space (time derivative is counted 4 times) for functions on $S^1 \times [0, T)$ is denoted by $C^{n+4\mu}$. See [3] for the detailed definition.

Lemma 1.4 ([3, Proposition 5.6]). Set $D = S^1 \times [0, T)$. Let $a: D \to \mathbb{R}$; $b_i, d_i, f: D \to \mathbb{R}^N$; $c_i: D \to \mathbb{R}^{N \times N}$ be $C^{4\mu}$ functions and $\phi: S^1 \to \mathbb{R}^N$ a $C_x^{4+4\mu}$ function. Suppose that a is non-negative and $\|a\|_{L_1} \geq C > 0$. Then, the linear PDE for a \mathbb{R}^N

valued function u and a function v:

$$\begin{cases} \partial_t u + u^{(4)} + \sum_{i=0}^3 c_i u^{(i)} + \sum_{i=0}^1 d_i v^{(i)} = f, \\ -v'' + av = \sum_{i=0}^3 b_i u^{(i)}, \\ u(x,0) = \phi(x) \end{cases}$$

has a unique $C^{4+4\mu}$ solution on D, and the $C^{4+4\mu}$ norm of the solution is bounded by a constant depending on the $C^{4\mu}$ norms of f, a, b_i, c_i, d_i, the $C_x^{4+4\mu}$ norm of ϕ , and C^{-1} .

2. The equation

To derive the equation of motion governed by an energy, we perturb the curve $\gamma = \gamma(x)$ with a time parameter t: $\gamma = \gamma(x, t)$. Then the elastic energy changes at t = 0 as

$$\frac{d}{dt}E(\gamma) = 2\langle D_x \gamma', D_t D_x \gamma' \rangle
= 2\langle D_x \gamma', R(\partial_t \gamma, \gamma') \gamma' + D_x^2 \partial_t \gamma \rangle
= -2\langle \partial_t \gamma, R(\gamma', D_x \gamma') \gamma' \rangle + 2\langle \partial_t \gamma, D_x^3 \gamma' \rangle
= 2\langle \partial_t \gamma, D_x^3 \gamma' - R(\gamma', D_x \gamma') \gamma' \rangle,$$

where $\gamma(x,0) = \gamma(x)$. Therefore, $-D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma'$ would be the most efficient direction to minimize the elastic energy. However, this direction does not preserve the condition $|\gamma'| \equiv 1$. To force to preserve the condition we have to add certain term. Let V be the space of all directions satisfying the condition in the sense of first derivative. Namely,

$$V = \{\alpha \mid (\gamma', D_x \alpha) = 0\}.$$

We can check that a direction is L_2 orthogonal to V if and only if it has a form $D_x(w\gamma')$ with some function w(x). Therefore, the "true direction" should be

$$\partial_t \gamma = -D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma' + D_x(w \gamma'),$$

where the function w has to satisfy the condition

$$(\gamma', D_r \partial_t \gamma) = 0.$$

To simplify this relation, we use the following

Lemma 2.1. For a curve γ with $|\gamma'| \equiv 1$, we have the following identities.

$$(\gamma', D_x \gamma') = 0,$$

$$(\gamma', D_x^2 \gamma') = -|D_x \gamma'|^2,$$

$$(\gamma', D_x^3 \gamma') = -\frac{3}{2} \{|D_x \gamma'|^2\}',$$

$$(\gamma', D_x^4 \gamma') = -2\{|D_x \gamma'|^2\}'' + |D_x^2 \gamma'|^2.$$

Proof. We can get these by a simple calculation.

Therefore we have

$$0 = (D_{x}\{-D_{x}^{3}\gamma' + R(\gamma', D_{x}\gamma')\gamma' + D_{x}(w\gamma')\}, \gamma')$$

$$= -(\gamma', D_{x}^{4}\gamma') + (\gamma', D_{x}\{R(\gamma', D_{x}\gamma')\gamma'\}) + (\gamma', D_{x}^{2}(w\gamma'))$$

$$= 2\{|D_{x}\gamma'|^{2}\}'' - |D_{x}^{2}\gamma'|^{2} + (R(\gamma', D_{x}\gamma')D_{x}\gamma', \gamma')$$

$$+ (\gamma', w''\gamma' + 2w'D_{x}\gamma' + wD_{x}^{2}\gamma')$$

$$= 2\{|D_{x}\gamma'|^{2}\}'' - |D_{x}^{2}\gamma'|^{2} - (R(\gamma', D_{x}\gamma')\gamma', D_{x}\gamma') + w'' - |D_{x}\gamma'|^{2}w.$$

Thus the equation for the function w(x) becomes

$$-w'' + |D_x \gamma'|^2 w = 2\{|D_x \gamma'|^2\}'' - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma')\gamma', D_x \gamma').$$

If we put

$$v = w + 2|D_x\gamma'|^2,$$

then we have

$$-v'' + |D_x \gamma'|^2 v = -|D_x^2 \gamma'|^2 + 2|D_x \gamma'|^4 - (R(\gamma', D_x \gamma')\gamma', D_x \gamma').$$

Therefore our equation becomes

(EP)
$$\begin{cases} \partial_t \gamma = -D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma' + D_x(w \gamma'), \\ -w'' + |D_x \gamma'|^2 w = 2\{|D_x \gamma'|^2\}'' - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma') \gamma', D_x \gamma'), \\ \gamma(x, 0) = \gamma_0(x). \end{cases}$$

Or, equivalently,

(EP_v)
$$\begin{cases} \partial_t \gamma = -D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma' + D_x \{ (v - 2|D_x \gamma'|^2) \gamma' \}, \\ -v'' + |D_x \gamma'|^2 v = -|D_x^2 \gamma'|^2 + 2|D_x \gamma'|^4 - (R(\gamma', D_x \gamma') \gamma', D_x \gamma'), \\ \gamma(x, 0) = \gamma_0(x). \end{cases}$$

Note that both γ and w (or v) are unknown functions on $S^1 \times \mathbf{R}_+$.

3. Short time existence

In this section, we consider a modified equation for an \mathbb{R}^N valued function γ and a function v:

(ST)
$$\begin{cases} \partial_t \gamma = -\gamma^{(4)} + F(x, \gamma, \gamma', \gamma'', \gamma''^{(3)}, v, v'), \\ -v'' + G(x, \gamma, \gamma', \gamma'', \gamma''^{(3)}) \cdot v = H(x, \gamma, \gamma', \gamma'', \gamma''^{(3)}), \end{cases}$$

where F, G and H are given C^{∞} functions on $S^1 \times (\mathbf{R}^N)^6$, $S^1 \times (\mathbf{R}^N)^4$ and $S^1 \times (\mathbf{R}^N)^4$, respectively, and the function G is non-negative. For functions γ and v, we take their jets and use abbreviated notations such as $F(x, j_3\gamma, j_1v)$, $G(x, j_3\gamma)$ and $H(x, j_3\gamma)$.

Theorem 3.1. For any C^{∞} initial data γ_0 with $G(x, j_3\gamma_0) > 0$ at some point $x \in S^1$, there is a positive time T so that (ST) has a unique C^{∞} solution on the time interval [0, T).

To prove this, we need "cut off" functions for F, G and H. Let $\rho_a(y)$ be a C^{∞} function of y such that $\rho_a(y)=1$ for $|y|\leq a$, $\rho_a(y)=0$ for $|y|\geq 2a$, and $0\leq \rho_a(y)\leq 1$ for all y. Let v_0 be the solution of the ODE: $-v''+G(x,j_3\gamma_0)\cdot v=H(x,j_3\gamma_0)$ and put $A=\max(|j_3\gamma_0|^2+|j_1v_0|^2)$. Set

$$\tilde{F}(x, j_3 \gamma, j_1 v) = \rho_{2A} (|j_3 \gamma|^2 + |j_1 v|^2) \cdot F(x, j_3 \gamma, j_1 v),
\tilde{H}(x, j_3 \gamma) = \rho_{2A} (|j_3 \gamma|^2) \cdot H(x, j_3 \gamma).$$

For the function G, we take a point $x_0 \in S^1$ and positive numbers $B \le 1$ and C so that $G(x, j_3 \gamma) \ge C$ for all 3-jets $\{x, \gamma\}$ with $|x - x_0|$, $|j_3(\gamma - \gamma_0)|^2 \le B$. Set

$$\tilde{G}(x,\,j_3\gamma) = \rho_{B/2}(|j_3(\gamma-\gamma_0)|^2) \cdot G(x,\,j_3\gamma) + 1 - \rho_{B/2}(|j_3(\gamma-\gamma_0)|^2).$$

Take any point x with $|x - x_0| \le B$. If $|j_3(\gamma - \gamma_0)|^2 \le B$, then $\tilde{G}(x, j_3\gamma) \ge \min\{G(x, j_3\gamma), 1\} \ge C$. If $|j_3(\gamma - \gamma_0)|^2 \ge B$, then $\tilde{G}(x, j_3\gamma) = 1$. In particular, for any function γ , we have

$$\oint \tilde{G}(x,j_3\gamma)\,dx \geq BC.$$

Note that if γ is sufficiently close to γ_0 in C^3 topology, then $\tilde{G}(x,j_3\gamma)=G(x,j_3\gamma)$ and $\tilde{H}(x,j_3\gamma)=H(x,j_3\gamma)$. It also implies that the solution \tilde{v} of the ODE: $-\tilde{v}''+\tilde{G}(x,j_3\gamma)\cdot\tilde{v}=\tilde{H}(x,j_3\gamma)$ coincides with v. Therefore, if we have a solution for the equation

(ST)
$$\begin{cases} \partial_t \gamma = -\gamma^{(4)} + \tilde{F}(x, j_3 \gamma, j_1 v), \\ -v'' + \tilde{G}(x, j_3 \gamma) \cdot v = \tilde{H}(x, j_3 \gamma), \end{cases}$$

then it is a solution for the original equation for some short time. Now we consider the equation

$$\begin{cases} \partial_t \gamma = -\gamma^{(4)} + \lambda \tilde{F}(x, j_3 \gamma, j_1 v), \\ -v'' + \tilde{G}(x, j_3 \gamma) \cdot v = \tilde{H}(x, j_3 \gamma), \end{cases}$$

where λ is a constant in [0, 1].

Lemma 3.2. Let $\gamma = \gamma(t, x)$ be a $C^{4+4\mu}$ solution of $(\widetilde{ST}_{\lambda})$ with a C^{∞} initial data $\gamma_0(x)$. Then γ is C^{∞} .

Proof. If γ belongs in the class $C^{n+4+4\mu}$, then the functions $\tilde{G}(x, j_3\gamma)$ and $\tilde{H}(x, j_3\gamma)$ belong to the class $C^{n+1+4\mu}$. Hence Lemma 1.4 implies that v and v' belong to $C^{n+1+4\mu}$, therefore also $\tilde{F}(x, j_3\gamma, j_1v)$ belongs to $C^{n+1+4\mu}$. Thus we see that γ belongs to $C^{n+5+4\mu}$. By induction, we see the smoothness of the solution γ .

Lemma 3.3. Consider the ODE: $-v'' + \tilde{G}(x, j_3\gamma) \cdot v = \tilde{H}(x, j_3\gamma)$. For any nonnegative integer n and a positive number C, there is a positive number K with the following property:

If
$$\|\gamma\|_n \leq C$$
, then $\|v\|_n \leq K \cdot \{1 + \|\gamma^{(n+1)}\|\}$.

Proof. Since |v| and |v'| are bounded by Lemma 1.3, the claim holds for n=0,1. Suppose that the claim holds for an integer $n \geq 1$ and that $\|\gamma\|_{n+1} \leq C$. Then, by Lemmas 1.1 and 1.2, we have

$$||v||_{n+1} \le ||v||_n + ||v^{(n+1)}||$$

$$\le C + ||\tilde{G}(x, j_3\gamma) \cdot v||_{n-1} + ||\tilde{H}(x, j_3\gamma)||_{n-1}$$

$$\le C + C_1 \cdot ||\tilde{G}(x, j_3\gamma)||_{n-1} + ||\tilde{H}(x, j_3\gamma)||_{n-1}.$$

The last expression involves the derivatives of γ up to $\gamma^{(n+2)}$. Counting the fact that $|\gamma^{(n)}|$ is bounded, we see

$$||v||_{n+1} \leq C_2 \cdot \{1 + ||\gamma^{(n+2)}|| + |||\gamma^{(n+1)}|| \cdot ||\gamma^{(4)}||_{(\#3)}\}$$

$$\leq C_2 \cdot \{1 + ||\gamma^{(n+2)}|| + ||\gamma^{(n+1)}|| \cdot \max ||\gamma^{(4)}||_{(\#3)}\}$$

$$\leq C_3 \cdot \{1 + ||\gamma^{(n+2)}|| + \max ||\gamma^{(n+1)}||_{(\#3)}\}$$

$$\leq C_4 \cdot \{1 + ||\gamma^{(n+2)}||\},$$

where (#3) means that the indicated term appears only if $n \ge 3$.

Lemma 3.4. Let γ be a solution of $(\widetilde{ST}_{\lambda})$ on a finite time interval [0, T). For any non-negative integer n, the norm $\|\gamma^{(n)}\|$ is uniformly bounded with respect to $\lambda \in [0, 1]$.

Proof. First of all, for $n \le 2$, we have

$$\begin{split} \frac{d}{dt} \| \gamma^{(n)} \|^2 &= 2 \langle \gamma^{(n)}, \partial_t \gamma^{(n)} \rangle \\ &= 2 \langle \gamma^{(n)}, -\gamma^{(n+4)} + \lambda \tilde{F}(x, j_3 \gamma, j_1 v)^{(n)} \rangle \\ &= -2 \| \gamma^{(n+2)} \|^2 \pm 2 \lambda \langle \gamma^{(2n)}, \tilde{F}(x, j_3 \gamma, j_1 v) \rangle \\ &\leq -2 \| \gamma^{(n+2)} \|^2 + 2 \| \tilde{F}(x, j_3 \gamma, j_1 v) \| \cdot \| \gamma^{(2n)} \|. \end{split}$$

Thus for n = 0, we have

$$\frac{d}{dt}\|\gamma\|^2 \le 2C_1 \cdot \|\gamma\|,$$

hence $(d/dt)\|\gamma\|$ is bounded. Also, for n=2, we have

$$\frac{d}{dt}\|\gamma''\|^2 \le -2\|\gamma^{(4)}\|^2 + 2C_2\|\gamma^{(4)}\| \le C_3.$$

Therefore, the norm $\|\gamma\|_2$ increases at most linear order.

Suppose that we know estimation of $\|\gamma\|_{n+1}$ for an integer $n \geq 1$. By Lemma 3.3, we have

$$||v||_n \le C_4,$$

 $||v||_{n+1} \le C_5 \cdot \{1 + ||\gamma^{(n+2)}||\}.$

Now,

$$\frac{d}{dt} \| \gamma^{(n+2)} \|^2 = 2 \langle \gamma^{(n+2)}, -\gamma^{(n+6)} + \lambda \tilde{F}(x, j_3 \gamma, j_1 v)^{(n+2)} \rangle
\leq -2 \| \gamma^{(n+4)} \|^2 + 2 \| \gamma^{(n+4)} \| \cdot \| \tilde{F}(x, j_3 \gamma, j_1 v)^{(n)} \|
\leq -\| \gamma^{(n+4)} \|^2 + \| \tilde{F}(x, j_3 \gamma, j_1 v)^{(n)} \|^2.$$

Here, the term $\tilde{F}(x, j_3\gamma, j_1v)^{(n)}$ contains the derivatives of γ and v up to $\gamma^{(n+3)}$ and $v^{(n+1)}$, and $|\gamma^{(n)}|$ and $|v^{(n-1)}|$ are bounded. Therefore we have to estimate the following terms:

$$\begin{split} &\| \boldsymbol{\gamma}^{(n+3)} \|, \ \, \| |\boldsymbol{\gamma}^{(n+2)}| \cdot |\boldsymbol{\gamma}^{(4)}| \|, \ \, \| |\boldsymbol{\gamma}^{(n+2)}| \cdot |\boldsymbol{v}''| \|, \\ &\| |\boldsymbol{\gamma}^{(n+1)}| \cdot |\boldsymbol{\gamma}^{(5)}| \|, \ \, \| |\boldsymbol{\gamma}^{(n+1)}| \cdot |\boldsymbol{\gamma}^{(4)}| \cdot |\boldsymbol{\gamma}^{(4)}| \|, \ \, \| |\boldsymbol{\gamma}^{(n+1)}| \cdot |\boldsymbol{v}''|, \ \, \| |\boldsymbol{\gamma}^{(n+1)}| \cdot |\boldsymbol{v}''| \cdot |\boldsymbol{v}''| \\ &\| |\boldsymbol{\gamma}^{(n+1)}|, \ \, \| |\boldsymbol{v}''| \cdot |\boldsymbol{\gamma}''|, \ \, \| |\boldsymbol{\gamma}^{(n+1)}| \cdot |\boldsymbol{v}^{(4)}| \cdot |\boldsymbol{v}''| \|. \end{split}$$

Note that terms with multiple factors appear only if $n \ge$ (their number of factors). By Lemma 1.2, we can estimate each factor as:

$$\|\gamma^{(n+3)}\| \leq C_6 \cdot \|\gamma^{(n+4)}\|^{2/3},$$

$$\begin{split} \max |\gamma^{(n+2)}| &\leq C_7 \cdot \{1 + \|\gamma^{(n+2)}\|^{1/2} \cdot \|\gamma^{(n+3)}\|^{1/2} \} \\ &\leq C_8 \cdot \{1 + \|\gamma^{(n+4)}\|^{1/2} \}, \\ \max |\gamma^{(n+1)}| &\leq C_9 \cdot \{1 + \|\gamma^{(n+2)}\|^{1/2} \} \leq C_{10} \cdot \{1 + \|\gamma^{(n+4)}\|^{1/6} \}, \\ \|v^{(n+1)}\| &\leq C_{11} \cdot \{1 + \|\gamma^{(n+2)}\| \} \leq C_{12} \cdot \{1 + \|\gamma^{(n+4)}\|^{1/3} \}, \\ \max |v^{(n)}| &\leq C_{13} \cdot \{1 + \|v^{(n+1)}\|^{1/2} \} \\ &\leq C_{14} \cdot \{1 + \|\gamma^{(n+2)}\|^{1/2} \} \leq C_{15} \cdot \{1 + \|\gamma^{(n+4)}\|^{1/6} \}. \end{split}$$

When $n \ge 2$, we have

$$\begin{split} & \| \gamma^{(4)} \| \le C_{16} \cdot \{ 1 + \| \gamma^{(n+2)} \| \} \le C_{17} \cdot \{ 1 + \| \gamma^{(n+4)} \|^{1/3} \}, \\ & \| v'' \| \le C_{18} \cdot \{ 1 + \| v^{(n)} \| \} \le C_{19}, \\ & \| \gamma^{(5)} \| \le C_{20} \cdot \{ 1 + \| \gamma^{(n+3)} \| \} \le C_{21} \cdot \{ 1 + \| \gamma^{(n+4)} \|^{2/3} \}, \\ & \| v^{(3)} \| \le C_{22} \cdot \{ 1 + \| v^{(n+1)} \| \} \le C_{23} \cdot \{ 1 + \| \gamma^{(n+4)} \|^{1/3} \}. \end{split}$$

When $n \geq 3$, we have

$$\begin{aligned} \max |v''| &\leq C_{24} \cdot \{1 + \max |v^{(n-1)}|\} \leq C_{25}, \\ \max |\gamma^{(4)}| &\leq C_{26} \cdot \{1 + \max |\gamma^{(n+1)}|\} \leq C_{27} \cdot \{1 + \|\gamma^{(n+2)}\|^{1/2}\} \\ &\leq C_{28} \cdot \{1 + \|\gamma^{(n+4)}\|^{1/6}\}. \end{aligned}$$

Combining all, we conclude

$$\|\tilde{F}(x, j_3\gamma, j_1v)^{(n)}\| \le C_{29} \cdot \{1 + \|\gamma^{(n+4)}\|^{5/6}\},$$

and

$$\frac{d}{dt}\|\gamma^{(n+2)}\|^2 \le C_{30}.$$

Proof (of Theorem 3.1). We use the so-called open closed method. Take any positive time T. By the implicit function theorem with Lemma 1.4, the set Λ of λ which has a solution γ of $(\widetilde{ST}_{\lambda})$ on [0, T) is open in the interval [0, 1]. On the other hand, by Lemma 3.4, Λ is closed in [0, 1]. Since Λ contains 0, it should coincide with [0, 1]. By definition, the solution of $(\widetilde{ST}_{\lambda})$ with $\lambda = 1$ is a solution of (\widetilde{ST}) , which gives a short time solution of (ST). For detailed discussion, see [3, Proof of Theorem 6.5].

Theorem 3.5. The equation (EP) with non-geodesic initial data of unit line element has a unique short time solution $\gamma(x,t)$. Moreover, every closed curve $\gamma(*,t)$ has unit line element.

Proof. We may assume that the induced tangent bundle of the initial data γ_0 is orientable, taking a double cover if necessary. Then, using a tubular neighbourhood of γ_0 , (EP_v) is expressed as (ST), hence has a short time solution. Let $\{\gamma, v\}$ be a solution. Since $\partial_t |\gamma'|^2 = 2(\gamma', D_t \gamma') = 2(\gamma', D_x \partial_t \gamma) = 0$, we have $|\gamma'|^2 \equiv 1$. Let $\{\gamma + \zeta, v + u\}$ be another solution of (ST) in the tubular neighbourhood of γ_0 . Then $\{\zeta, u\}$ satisfies the equation:

$$\begin{cases} \partial_t \zeta = -\zeta^{(4)} + f(x, t, \zeta, \zeta', \zeta'', \zeta^{(3)}, u, u'), \\ -u'' + G(x, \gamma, \gamma', \gamma'', \gamma^{(3)}) \cdot u = h(x, t, \zeta, \zeta', \zeta'', \zeta^{(3)}, u). \end{cases}$$

Here, |f| and |h| are bounded by $C\{\sum_{i=0}^{3} |\zeta^{(i)}| + |u| + |u'|\}$, because $\{\gamma + \zeta, v + u\}$ is bounded. Therefore, we have $\|u\|_1 \le C_1 \|\zeta\|_3$, and

$$\begin{split} \frac{1}{2} \frac{d}{dt} \| \xi \|_{1}^{2} &= \langle \zeta, \partial_{t} \zeta \rangle + \langle \zeta', \partial_{t} \zeta' \rangle = \langle \zeta - \zeta'', -\zeta^{(4)} + f \rangle \\ &= - \| \xi'' \|^{2} - \| \zeta^{(3)} \|^{2} + \langle \zeta, f \rangle \\ &\leq - \| \xi'' \|^{2} - \| \xi^{(3)} \|^{2} + C_{2} \cdot \| \xi \| \cdot (\| \xi \|_{3} + \| u \|_{1}) \\ &\leq C_{3} \cdot \| \xi \|_{1}^{2}. \end{split}$$

Since $\zeta = 0$ at t = 0, we have $\zeta \equiv 0$. Replacing t = 0 to arbitrary $t = t_0$, we see that the set of all t such that two solutions coincide is open. Hence the solutions coincide for all time.

4. Long time existence

In this section, we consider the original equation:

(EP)
$$\begin{cases} \partial_t \gamma = -D_x^3 \gamma' + R(\gamma', D_x \gamma') \gamma' + D_x(w \gamma'), \\ -w'' + |D_x \gamma'|^2 w = 2\{|D_x \gamma'|^2\}'' - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma') \gamma', D_x \gamma'), \\ \gamma(x, 0) = \gamma_0(x), \end{cases}$$

where y_0 is a closed curve of unit line element.

Theorem 4.1. Let M be a compact riemannian manifold and γ_0 a closed curve of unit line element. Then (EP) has a unique solution for a time interval [0, T) and one of the followings holds.

- 1) There is a sequence of times $t_i \to T$ such that $\gamma(*, t_i)$ converges to a closed geodesic in C^1 topology.
- 2) $T=\infty$.

To prove this, we need some preparation. For a closed curve γ , let v and w be solutions of the ODE:

$$-v'' + |D_x \gamma'|^2 v = -|D_x^2 \gamma'|^2 + 2|D_x \gamma'|^4 - (R(\gamma', D_x \gamma')\gamma', D_x \gamma'),$$

$$-w'' + |D_x \gamma'|^2 w = 2\{|D_x \gamma'|^2\}'' - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma')\gamma', D_x \gamma'),$$

and put

$$\delta = -D_{\mathbf{r}}^{3} \gamma' + R(\gamma', D_{\mathbf{r}} \gamma') \gamma' + D_{\mathbf{r}}(w \gamma').$$

In Lemmas 4.2–4.6, we consider this ODE and estimate v, w and δ by γ' . They will be applied to the PDE (EP) later.

Lemma 4.2. For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If
$$||D_x \gamma'|| \ge C^{-1}$$
, $||\gamma'||_1 \le C$ and $||\gamma'||_n \le C$, then

$$||w||_{n+1} \leq K \cdot \{1 + ||D_{\mathbf{r}}^2 \gamma'|| \cdot ||D_{\mathbf{r}}^{n+2} \gamma'||\}.$$

Proof. The assumption and Lemma 1.3 imply that

$$||v||_{C^1} \le ||D_x^2 \gamma'||^2 + 2||D_x \gamma'|^2||^2 + ||D_x \gamma'||^2.$$

But we know that $\max |D_x \gamma'| \le C_1 \cdot \{1 + \|D_x^2 \gamma'\|^{1/2}\}$. Therefore,

$$||v||_{C^1} \leq C_2 \cdot \{1 + ||D_x^2 \gamma'||^2\}.$$

Moreover.

$$|||D_x \gamma'|^2|| \le C_3 \cdot \{1 + ||D_x^2 \gamma'||^{1/2}\},$$

$$||\{|D_x \gamma'|^2\}'|| \le 2|||D_x \gamma'| \cdot |D_x^2 \gamma'|| \le C_4 \cdot \{1 + ||D_x^2 \gamma'||^{3/2}\}.$$

Thus we proved the claim for n = 0:

$$||w||_1 \le C_5 \cdot \{1 + ||D_x^2 \gamma'||^2\}.$$

Suppose that the claim holds for a non-negative integer n and that $\|\gamma'\|_{n+1} \leq C$. Then, we know $\|w\|_{n+1} \leq C_6 \cdot \{1 + \|D_x^2 \gamma'\| \cdot \|D_x^{n+2} \gamma'\| \}$. Therefore,

$$||w^{(n+2)}|| \leq ||\{|D_{x}\gamma'|^{2} \cdot w\}^{(n)}|| + 2||\{|D_{x}\gamma'|^{2}\}^{(n+2)}|| + ||\{|D_{x}^{2}\gamma'|^{2}\}^{(n)}|| + ||(R(\gamma', D_{x}\gamma')\gamma', D_{x}\gamma')^{(n)}||$$

$$\leq C_{7} \cdot \{1 + |||D_{x}^{n+1}\gamma'| \cdot |D_{x}\gamma'| \cdot |w||| + ||w||_{n}\} + C_{8} \cdot \{1 + |||D_{x}^{n+3}\gamma'| \cdot |D_{x}\gamma'||| + |||D_{x}^{n+2}\gamma'| \cdot |D_{x}^{2}\gamma'||| + |||D_{x}^{n+1}\gamma'| \cdot |D_{x}^{3}\gamma'||_{(\#2)}\} + C_{9} \cdot \{1 + |||D_{x}^{n+1}\gamma'| \cdot |D_{x}\gamma'|||\},$$

where (#2) means that the indicated term appears only when $n \ge 2$. Here, we know that

$$\begin{split} \max |D_x^{n+1}\gamma'| &\leq C_{10} \cdot \{1 + \|D_x^{n+2}\gamma'\|^{1/2}\} \leq C_{11} \cdot \{1 + \|D_x^{n+3}\gamma'\|^{1/4}\}, \\ \max |w| &\leq \|w\|_1 \leq C_{12} \cdot \{1 + \|D_x^2\gamma'\|^2\} \\ &\leq C_{13} \cdot \{1 + \|D_x^2\gamma'\| \cdot \|D_x^{n+3}\gamma'\|^{1/2}\}, \\ \max |D_x\gamma'| &\leq C_{14} \cdot \{1 + \|D_x^2\gamma'\|\}, \\ \max |D_x^{n+2}\gamma'| &\leq C_{15} \cdot \{1 + \|D_x^{n+2}\gamma'\|^{1/2} \cdot \|D_x^{n+3}\gamma'\|^{1/2}\} \\ &\leq C_{16} \cdot \{1 + \|D_x^{n+3}\gamma'\|^{3/4}\}, \\ \|D_x^3\gamma'\|_{(\#2)} &\leq C_{17}. \end{split}$$

Thus we have

$$||w||_{n+2} \le C_{18} \cdot \{1 + ||D_r^2 \gamma'|| \cdot ||D_r^{n+3} \gamma'||\},$$

and the induction completes the proof.

Lemma 4.3. Set

$$\phi = R(\gamma', D_x \gamma') \gamma' + D_x(w \gamma').$$

For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If
$$||D_x \gamma'|| \ge C^{-1}$$
, $||\gamma'||_1 \le C$ and $||\gamma'||_n \le C$, then

$$\|\phi\|_n \leq K \cdot \{1 + \|D_{\nu}^2 \gamma'\| \cdot \|D_{\nu}^{n+2} \gamma'\|\}.$$

Proof. The assumption and Lemma 4.2 imply that

$$\|\phi\| \le C_1 \cdot \{1 + \|w'\| + \max |w|\}$$

$$\le C_2 \cdot \{1 + \|w\|_1\} \le C_3 \cdot \{1 + \|D_x^2 \gamma'\|^2\}.$$

Thus the claim holds for n = 0.

Suppose that the claim holds for a non-negative integer n and that $\|\gamma'\|_{n+1} \leq C$. Then, we know $\|\phi\|_n \leq C_4 \cdot \{1 + \|D_x^2 \gamma'\| \cdot \|D_x^{n+2} \gamma'\| \}$. Therefore,

$$\begin{aligned} \|\phi^{(n+1)}\| &\leq \|D_x^{n+1}(R(\gamma', D_x \gamma') \gamma')\| + \|D_x^{n+2}(w \gamma')\| \\ &\leq C_5 \cdot \{1 + \|D_x^{n+2} \gamma'\| + \||D_x^{n+1} \gamma'| \cdot |D_x \gamma'|\| \\ &+ \||w| \cdot |D_x^{n+2} \gamma'\| + \||w'| \cdot |D_x^{n+1} \gamma'|\| + \|w\|_{n+2} \}. \end{aligned}$$

Here, by Lemma 4.2, the terms except 4th and 5th are estimated linearly by $||D_x^2 \gamma'|| \cdot ||D_x^{n+3} \gamma'||$. For the excepted terms, Lemma 4.2 also implies that

$$\begin{aligned} |||w| \cdot |D_{x}^{n+2} \gamma'|| &\leq C_{6} \cdot \{1 + ||D_{x}^{2} \gamma'||^{2} \cdot ||D_{x}^{n+2} \gamma'||\} \\ &\leq C_{7} \cdot \{1 + ||D_{x}^{2} \gamma'||^{2} \cdot ||D_{x}^{n+3} \gamma'||^{1/2}\} \\ &\leq C_{8} \cdot \{1 + ||D_{x}^{2} \gamma'|| \cdot ||D_{x}^{n+2} \gamma'|| \cdot ||D_{x}^{n+3} \gamma'||^{1/2}\} \\ &\leq C_{9} \cdot \{1 + ||D_{x}^{2} \gamma'|| \cdot ||D_{x}^{n+3} \gamma'||\}, \\ |||w'| \cdot |D_{x}^{n+1} \gamma'|| &\leq C_{10} \cdot \{1 + ||D_{x}^{2} \gamma'||^{2} \cdot \max |D_{x}^{n+1} \gamma'|\} \\ &\leq C_{11} \cdot \{1 + ||D_{x}^{2} \gamma'|| \cdot ||D_{x}^{n+3} \gamma'||\}. \end{aligned}$$

Lemma 4.4. For any non-negative integer n and any positive real number C, there is a positive number K with the following property:

If
$$||D_x \gamma'|| \ge C^{-1}$$
 and $||\gamma'||_{n+1} \le C$, then

$$||D_x^n \delta|| \le K \cdot \{1 + ||D_x^{n+3} \gamma'||\},$$

where δ is defined below Theorem 4.1.

Proof. Lemma 4.3 implies that

$$||D_x^n \delta|| \le ||D_x^{n+3} \gamma'|| + ||D_x^n \phi||$$

$$\le C_1 \cdot \{1 + ||D_x^{n+3} \gamma'|| + ||D_x^2 \gamma'|| \cdot ||D_x^{n+2} \gamma'||\}.$$

Here, we know

$$||D_x^2 \gamma'|| \le C_2 \cdot ||D_x^3 \gamma'||^{1/2} \le C_3 \cdot \{1 + ||D_x^{n+3} \gamma'||^{1/2}\},$$

$$||D_x^{n+2} \gamma'|| \le C_4 \cdot ||D_x^{n+3} \gamma'||^{1/2},$$

which completes the proof.

Lemma 4.5. Let γ be the solution of (EP). For any non-negative integer n and any positive real number C, there is a positive number K with the following property: If $||D_{\chi}\gamma'|| \ge C^{-1}$ and $||\gamma'||_{n+1} \le C$, then

$$\frac{d}{dt} \|D_x^{n+2} \gamma'\|^2 \le K \cdot \{1 + \|D_x^2 \gamma'\|^2 \cdot \|D_x^{n+3} \gamma'\|^2\} - \|D_x^{n+4} \gamma'\|^2.$$

Proof.

$$\frac{d}{dt} \|D_x^{n+2} \gamma'\|^2 = 2 \langle D_x^{n+2} \gamma', D_t D_x^{n+2} \gamma' \rangle
= 2 \left\langle D_x^{n+2} \gamma', \sum_{i=0}^{n+1} D_x^i (R(\delta, \gamma') D_x^{n+1-i} \gamma') + D_x^{n+3} \delta \right\rangle
= 2 \langle D_x^{n+2} \gamma', R(\delta, \gamma') D_x^{n+1} \gamma' \rangle$$

$$\begin{split} &-2\langle D_{x}^{n+3}\gamma',\,R(\delta,\gamma')D_{x}^{n}\gamma'\rangle\\ &+2\sum_{i=2}^{n+1}\langle D_{x}^{n+4}\gamma',\,D_{x}^{i-2}(R(\delta,\gamma')D_{x}^{n+1-i}\gamma')\rangle\\ &+2\langle D_{x}^{n+4}\gamma',\,D_{x}^{n+1}\{-D_{x}^{3}\gamma'+\phi\}\rangle\\ &\leq C_{1}\cdot\{\|D_{x}^{n+2}\gamma'\|\cdot\|\|\delta\|\cdot|D_{x}^{n+1}\gamma'\|\|+\|D_{x}^{n+3}\gamma'\|\cdot\|\delta\|\\ &+\|D_{x}^{n+4}\gamma'\|\cdot\{\|\delta\|+\|D_{x}^{n-1}\delta\|\}_{(\#1)}\}\\ &-2\|D_{x}^{n+4}\gamma'\|^{2}+2\|D_{x}^{n+4}\gamma'\|\cdot\|D_{x}^{n+1}\phi\|, \end{split}$$

where (#1) means that the indicated term appears only when $n \ge 1$. Here, we know that

$$\begin{split} \|D_x^{n+2}\gamma'\| &\leq C_2 \cdot \|D_x^{n+4}\gamma'\|^{1/3}, \\ \max |D_x^{n+1}\gamma'| &\leq C_3 \cdot \{1 + \|D_x^{n+2}\gamma'\|^{1/2}\} \leq C_4 \cdot \{1 + \|D_x^{n+4}\gamma'\|^{1/6}\}, \\ \|D_x^{n+3}\gamma'\| &\leq C_5 \cdot \|D_x^{n+4}\gamma'\|^{2/3}. \end{split}$$

Moreover, by Lemma 4.4,

$$\begin{split} \|\delta\| &\leq C_6 \cdot \{1 + \|D_x^3 \gamma'\|\} \\ &\leq C_7 \cdot \{1 + \|D_x^{n+3} \gamma'\|\} \leq C_8 \cdot \{1 + \|D_x^{n+4} \gamma'\|^{2/3}\}, \\ \|D_x^{n-1} \delta\| &\leq C_9 \cdot \{1 + \|D_x^{n+2} \gamma'\|\} \quad \text{(when } n \geq 1\text{)}, \end{split}$$

and by Lemma 4.3,

$$||D_x^{n+1}\phi|| \le C_{10} \cdot \{1 + ||D_x^2\gamma'|| \cdot ||D_x^{n+3}\gamma'||\}.$$

Combining all gives the result.

Lemma 4.6. For any positive real number C and a C^1 neighbourhood U of the set of all closed geodesics of unit line element, there is a positive number K with the following property:

If γ is a closed curve of unit line element not in the set U and if $||D_x\gamma'|| \leq C$, then

$$||D_x^3 \gamma'|| \le K \cdot \{1 + ||\delta||\}.$$

Proof. Since

$$(\gamma', \delta) = -(\gamma', D_x^3 \gamma') + (\gamma', w' \gamma' + w D_x \gamma') = \frac{3}{2} \{ |D_x \gamma'|^2 \}' + w',$$

we see

$$||w'|| \le ||\delta|| + 3||(D_x \gamma', D_x^2 \gamma')||$$

480

$$\leq C_{1} \cdot \{ \|\delta\| + \max |D_{x}\gamma'| \cdot \|D_{x}^{2}\gamma'\| \}$$

$$\leq C_{2} \cdot \{ 1 + \|\delta\| + \|D_{x}\gamma'\|^{1/2} \cdot \|D_{x}^{2}\gamma'\|^{3/2} \}$$

$$\leq C_{3} \cdot \{ 1 + \|\delta\| + \|D_{x}^{3}\gamma'\|^{3/4} \}.$$

Put

$$\varphi = -D_r^2 \gamma' + w \gamma'.$$

Then we have

$$(\gamma',\varphi)=-(\gamma',\,D_x^2\gamma')+w=|D_x\gamma'|^2+w.$$

Therefore,

$$\oint w \, dx = \langle \gamma', \varphi \rangle - \| D_x \gamma' \|^2.$$

Let α be a vector field along γ such that $D_x \alpha = \gamma'$ on $0 \le x \le 1$ and $\alpha(0) = 0$. Then,

$$\langle \gamma', \varphi \rangle = \langle D_x \alpha, \varphi \rangle = \int_0^1 (D_x \alpha, \varphi) \, dx$$

$$= [(\alpha, \varphi)]_0^1 - \int_0^1 (\alpha, D_x \varphi) \, dx$$

$$= (\alpha(1), \varphi(0)) - \int_0^1 (\alpha, \delta - R(\gamma', D_x \gamma') \gamma') \, dx$$

$$= -(\alpha(1), D_x^2 \gamma'(0)) + w(0) \cdot (\alpha(1), \gamma'(0))$$

$$- \int_0^1 (\alpha, \delta) \, dx + \int_0^1 (\alpha, R(\gamma', D_x \gamma') \gamma') \, dx.$$

Therefore,

$$\oint w \, dx - (\alpha(1), \gamma'(0)) \cdot w(0)
= -(\alpha(1), D_x^2 \gamma'(0)) - \int_0^1 (\alpha, \delta) \, dx
+ \int_0^1 (\alpha, R(\gamma', D_x \gamma') \gamma') \, dx - ||D_x \gamma'||^2.$$

Here,

$$\{|\alpha|^2\}'=2(\alpha,\,D_x\alpha)=2(\alpha,\,\gamma')\leq 2|\alpha|,$$

and so

$$|\alpha|' \le 1$$
 and $|\alpha| \le 1$ on $0 \le x \le 1$.

Thus,

$$\left| \oint w \, dx - (\alpha(1), \gamma'(0)) \cdot w(0) \right|$$

$$\leq C_4 \cdot \{1 + \max |D_x^2 \gamma'| + \|\delta\| + \|D_x \gamma'\| + \|D_x \gamma'\|^2\}$$

$$\leq C_5 \cdot \{1 + \|\delta\| + \|D_x^2 \gamma'\|^{1/2} \cdot \|D_x^3 \gamma'\|^{1/2}\}$$

$$\leq C_6 \cdot \{1 + \|\delta\| + \|D_x^3 \gamma'\|^{3/4}\}.$$

We know that $(\alpha(1), \gamma'(0)) \leq 1$ and the equality holds if and only if the curve γ is a closed geodesic. If there is a sequence γ_i of closed curves such that $(\alpha_i(1), \gamma_i'(0)) \to 1$ for the corresponding vector field α_i , then the sequence has a C^1 convergent subsequence, because the curves are H^2 bounded. Since the limiting curve is a closed geodesic, this contradicts the assumption. Therefore we have a positive number $C_0 < 1$ such that

$$(\alpha(1), \gamma'(0)) \le 1 - C_0$$

for all closed curves satisfying the condition.

We choose the origin 0 so that $\oint w \, dx = w(0)$. Then

$$\left| \oint w \, dx - (\alpha(1), \gamma'(0)) \cdot w(0) \right|$$

$$= \left| \left\{ 1 - (\alpha(1), \gamma'(0)) \right\} \cdot w(0) \right|$$

$$\geq C_0 |w(0)|.$$

Thus, we see

$$|w(0)| \le C_8 \cdot \{1 + ||\delta|| + ||D_x^3 \gamma'||^{3/4}\},$$

hence

$$\max |w| \le |w(0)| + ||w'|| \le C_9 \cdot \{1 + ||\delta|| + ||D_x^3 \gamma'||^{3/4}\}.$$

Therefore, we have

$$||D_{x}^{3}\gamma'|| = ||\delta - R(\gamma', D_{x}\gamma')\gamma' - D_{x}(w\gamma')||$$

$$\leq C_{10} \cdot \{||\delta|| + ||D_{x}\gamma'|| + \max|w| \cdot ||D_{x}\gamma'|| + ||w'||\}$$

$$\leq C_{11} \cdot \{1 + ||\delta|| + ||D_{x}^{3}\gamma'||^{3/4}\},$$

and

$$||D_{\nu}^{3}\gamma'|| \leq C_{12} \cdot \{1 + ||\delta||\}.$$

Let γ be a solution of (EP). Since $|\gamma'| \equiv 1$, we have

$$\frac{d}{dt} \|D_x \gamma'\|^2 = 2\langle \delta, -\delta + D_x(w\gamma') \rangle = -2\|\delta\|^2 - 2\langle D_x \delta, w\gamma' \rangle$$
$$= -2\|\delta\|^2 - 2\langle D_t \gamma', w\gamma' \rangle = -2\|\delta\|^2.$$

Thus we have the following

Lemma 4.7. For a solution γ of (EP), $||D_x\gamma'||^2$ is non-increasing.

Lemma 4.8. For any positive real numbers C, T and any non-negative integer n, there is a positive number K with the following property:

If γ is a solution of (EP) on [0, T) and if $||D_x^3 \gamma'|| \le C \cdot \{1 + ||\delta||\}$, then $||\gamma||_n' \le K$.

Proof. We know that $||D_x \gamma'|| \le C_1$. From Lemma 4.5, we have

$$\frac{d}{dt} \|D_x^2 \gamma'\|^2 \le C_2 \cdot \{1 + \|D_x^2 \gamma'\|^2 \cdot \|D_x^3 \gamma'\|^2\} - \|D_x^4 \gamma'\|^2.$$

It implies that

$$\frac{d}{dt}\log \|D_x^2\gamma'\|^2 \le C_3 \cdot \{1 + \|D_x^3\gamma'\|^2\}.$$

Combining it with inequality

$$\frac{d}{dt} \|D_x \gamma'\|^2 = -2\|\delta\|^2 \le -C_4 \|D_x^3 \gamma'\|^2 + C_5$$

which follows from the assumption, we have

$$\frac{d}{dt}(\log \|D_x^2 \gamma'\|^2 + C_6 \cdot \|D_x \gamma'\|^2) \le C_7.$$

Hence,

$$||D_x^2\gamma'|| \leq C_8.$$

Suppose that $\|\gamma'\|_{n+1} \leq C$ for an integer $n \geq 1$. Then, Lemma 4.5 implies that

$$\frac{d}{dt} \|D_x^{n+2} \gamma'\|^2 \le C_9 \cdot \{1 + \|D_x^{n+3} \gamma'\|^2\} - \|D_x^{n+4} \gamma'\|^2 \le C_{10}.$$

Thus the induction completes the proof.

Proof (of Theorem 4.1). Suppose that no sequences $\gamma(*, t_i)$ converge to closed geodesics. By Lemmas 4.7 and 4.6, the assumption of Lemma 4.8 is satisfied. Therefore, for any finite time interval [0, T), the solution γ is bounded in C^{∞} norm. Thus the solution in Theorem 3.1 can be continued onto $[0, \infty)$.

5. Convergence

In this section, we assume that the solution γ of (EP) does not have the property (1) of Theorem 4.1. In particular, $||D_x\gamma'|| \ge C^{-1}$ and the solution is defined for all time interval $[0, \infty)$. To show the convergence of the solution γ , we need some preparation.

Lemma 5.1. For any non-negative integer n and a positive real number C, there is a positive number K with the following property:

If
$$\|\delta\|_n \leq C$$
, then $\|\gamma'\|_{n+3} \leq K$.

Proof. For n = 0, the claim holds by Lemma 4.6. Suppose that the claim holds for n and that $\|\delta\|_{n+1} \le C$. Then we know that $\|\gamma'\|_{n+3} \le C_1$. Thus, from Lemma 4.3, we have

$$||D_x^{n+4}\gamma'|| \le C_2 \cdot \{||D_x^{n+1}\delta|| + ||D_x^{n+1}\phi||\}$$

$$\le C_3 \cdot \{1 + ||D_x^2\gamma'|| \cdot ||D_x^{n+3}\gamma'||\}.$$

Proposition 5.2. For any non-negative integer n and any positive number C, there is a positive number K with the following property:

If γ is a solution of (EP) and if $\|\delta\|_n \leq C$, then

$$\|\partial_t w\|_{n+1} \leq K \cdot \{\|\delta\| + \|D_{\nu}^{n+3}\delta\|\}.$$

Proof. From the defining equation of v:

$$-v'' + |D_x \gamma'|^2 \cdot v = 2|D_x \gamma'|^4 - |D_x^2 \gamma'|^2 - (R(\gamma', D_x \gamma')\gamma', D_x \gamma'),$$

we have

$$\begin{aligned}
&-\partial_{t}v'' + |D_{x}\gamma'|^{2} \cdot \partial_{t}v \\
&= -\partial_{t}\{|D_{x}\gamma'|^{2}\} \cdot v + \partial_{t}\{2|D_{x}\gamma'|^{4} - |D_{x}^{2}\gamma'|^{2} - (R(\gamma', D_{x}\gamma')\gamma', D_{x}\gamma')\} \\
&= -2(D_{x}\gamma', R(\delta, \gamma')\gamma' + D_{x}^{2}\delta) \cdot v \\
&+ 8(D_{x}\gamma', R(\delta, \gamma')\gamma' + D_{x}^{2}\delta) \cdot |D_{x}\gamma'|^{2} \\
&- 2(D_{x}^{2}\gamma', R(\delta, \gamma')D_{x}\gamma' + D_{x}\{R(\delta, \gamma')\gamma'\} + D_{x}^{3}\delta) \\
&- ((D_{\delta}R)(\gamma', D_{x}\gamma')\gamma', D_{x}\gamma') - 2(R(D_{x}\delta, D_{x}\gamma')\gamma', D_{x}\gamma') \\
&- 2(R(\gamma', R(\delta, \gamma')\gamma' + D_{x}^{2}\delta)\gamma', D_{x}\gamma').
\end{aligned}$$

By Lemma 5.1, the assumption implies that $\|\gamma'\|_{n+3} \leq C_1$. Hence,

(the H^n norm of the last expression) $\leq C_2 \cdot \{\|\delta\| + \|D_x^{n+3}\delta\|\}$.

Therefore, Lemma 1.3 implies that

$$\|\partial_t v\|_1 \le C_3 \cdot \{\|\delta\| + \|D_x^3 \delta\|\},$$

$$\|\partial_t v\|_{n+1} \le C_4 \cdot \{\|\delta\| + \|D_x^{n+2} \delta\|\} \quad \text{(when } n > 1\text{)}.$$

Moreover, from

$$\partial_t \{ |D_x \gamma'|^2 \} = 2(D_x \gamma', R(\delta, \gamma') \gamma' + D_x^2 \delta),$$

we have

$$\|\partial_t \{|D_x \gamma'|^2\}\|_{n+1} \le C_5 \cdot \{\|\delta\| + \|D_x^{n+3} \delta\|\}.$$

Thus the claim holds for any non-negative integer n.

Lemma 5.3. The norm $\|\delta\|$ tends to 0 when $t \to \infty$. The integrals

$$\int_0^\infty \|\delta\|^2 dt, \quad \int_0^\infty \|D_x^2 \delta\|^2 dt$$

are finite.

Proof. We have

$$\int_0^\infty \|\delta\|^2 \, dt = \int_0^\infty -\frac{1}{2} \frac{d}{dt} \|D_x \gamma'\|^2 \, dt = -\frac{1}{2} \big[\|D_x \gamma'\|^2 \big]_0^\infty < \infty.$$

Moreover,

$$\begin{aligned} \frac{d}{dt} \|\delta\|^2 &= 2\langle \delta, D_t \delta \rangle \\ &= 2\langle \delta, -D_t D_x^3 \gamma' + D_t (R(\gamma', D_x \gamma') \gamma') + D_t D_x (w \gamma') \rangle \\ &= 2\langle \delta, -R(\delta, \gamma') D_x^2 \gamma' - D_x (R(\delta, \gamma') D_x \gamma') \\ &- D_x^2 (R(\delta, \gamma') \gamma') - D_x^4 \delta \\ &+ (D_\delta R)(\gamma', D_x \gamma') \gamma' - R(D_x \delta, D_x \gamma') \gamma' \\ &+ R(\gamma', R(\delta, \gamma') \gamma' + D_x^2 \delta) \gamma' \\ &+ R(\gamma', D_x \gamma') D_x \delta \\ &+ R(\delta, \gamma') (w \gamma') + D_x \{ -\partial_t w \cdot \gamma' + w \cdot D_x \delta \} \rangle. \end{aligned}$$

Here, from Lemmas 4.6 and 4.2, we know

$$||D_x^3 \gamma'|| \le C_1 \cdot \{1 + ||\delta||\},$$

$$||w||_1 \le C_2 \cdot \{1 + ||D_x^2 \gamma'||^2\} \le C_3 \cdot \{1 + ||D_x^3 \gamma'||\} \le C_4 \cdot \{1 + ||\delta||\}.$$

Thus, using equation: $(D_x \delta, \gamma') = 0$,

$$\frac{d}{dt} \|\delta\|^{2} \leq -2\|D_{x}^{2}\delta\|^{2} - 2\langle D_{x}\delta, \partial_{t}w \cdot \gamma' \rangle
+ C_{5} \cdot \|\delta\| \cdot \{1 + \|\delta\|^{N}\} \cdot \{\|\delta\| + \|D_{x}^{2}\delta\|\}
\leq -\|D_{x}^{2}\delta\|^{2} + C_{6} \cdot \|\delta\|^{2} \cdot \{1 + \|\delta\|^{N}\},$$

where N is an absolute constant.

Thus $\|\delta\|$ tends to 0. In particular,

$$\frac{d}{dt} \|\delta\|^2 \le -\|D_x^2 \delta\|^2 + C_7 \cdot \|\delta\|^2.$$

Therefore,

$$\int_0^\infty \|D_x^2 \delta\|^2 dt \le C_7 \int_0^\infty \|\delta\|^2 dt - \int_0^\infty \frac{d}{dt} \|\delta\|^2 dt$$

$$< \infty.$$

Lemma 5.4. For any non-negative even integer n, $||D_x^n \delta||$ tends to 0 when $t \to \infty$.

Proof. Suppose

$$||D_x^n\delta|| \to 0, \quad \int_0^\infty ||D_x^{n+2}\delta||^2 dt < \infty$$

for a non-negative even integer n. This holds for n = 0 by Lemma 5.3. As in the proof of Lemma 5.3, we have

$$\begin{split} \frac{d}{dt} \|D_x^{n+2}\delta\|^2 &= 2\langle D_x^{n+2}\delta, \, D_t D_x^{n+2}\delta\rangle \\ &= 2\left\langle D_x^{n+2}\delta, \, \sum_{i=0}^{n+1} D_x^i (R(\delta,\gamma')D_x^{n+1-i}\delta) + D_x^{n+2}D_t\delta\right\rangle \\ &= 2\langle D_x^{n+2}\delta, \, R(\delta,\gamma')D_x^{n+1}\delta\rangle - 2\langle D_x^{n+3}\delta, \, R(\delta,\gamma')D_x^n\delta\rangle \\ &+ 2\sum_{i=2}^{n+1} \langle D_x^{n+4}\delta, \, D_x^{i-2} (R(\delta,\gamma')D_x^{n+1-i}\delta)\rangle_{(\#2)} + 2\langle D_x^{n+4}\delta, \, D_x^n\delta\rangle, \end{split}$$

and $D_x^n \delta$ in the last term is expanded as

$$D_x^n \{ -R(\delta, \gamma') D_x^2 \gamma' - D_x (R(\delta, \gamma') D_x \gamma') - D_x^2 (R(\delta, \gamma') \gamma') - D_x^4 \delta + (D_\delta R)(\gamma', D_x \gamma') \gamma' + R(D_x \delta, D_x \gamma') \gamma' + R(\gamma', R(\delta, \gamma') \gamma' + D_x^2 \delta) \gamma' + R(\gamma', D_x \gamma') D_x \delta + R(\delta, \gamma') (w \gamma') + D_x \{\partial_t w \cdot \gamma' + w D_x \delta\} \}.$$

Form the assumption, Lemma 5.1 implies that $\|\gamma'\|_{n+3} \le C_1$. Therefore, Lemma 4.2 implies that $\|w\|_{n+2} \le C_2$, and Lemma 5.2 implies that $\|\partial_t w\|_{n+1} \le C_3 \cdot \{\|D_x^{n+3}\delta\| + \|\delta\|\}$. Moreover, we know that $\max |\delta| \le C_4 \cdot \{1 + \|D_x\delta\|^{1/2}\}$ and $\|D_x^{n+1}\delta\| \le C_5 \cdot \{1 + \|D_x^{n+2}\delta\|^{1/2}\}$. Thus all terms in the last expression except the term

$$2\langle D_{r}^{n+4}\delta, -D_{r}^{n}D_{r}^{4}\delta\rangle = -2\|D_{r}^{n+4}\delta\|^{2}$$

are bounded by the form $C_6 \cdot \|D_x^{n+4}\delta\| \cdot \{\|\delta\| + \|D_x^{n+3}\delta\|\}$. Therefore,

$$\frac{d}{dt} \|D_x^{n+2}\delta\|^2 \le -\|D_x^{n+4}\delta\|^2 + C_7 \cdot \{\|\delta\|^2 + \|D_x^{n+3}\delta\|^2\}
\le -\frac{1}{2} \|D_x^{n+4}\delta\|^2 + C_8 \cdot \|\delta\|^2.$$

Thus we have $||D_x^{n+2}\delta|| \to 0$ and $\int_0^\infty ||D_x^{n+4}\delta||^2 dt$ is finite.

Note that Lemma 5.4 holds on any compact C^{∞} riemannian manifold satisfying the assumption of this section. In particular, δ converges to 0 in C^{∞} topology when t tends to ∞ . Combining it with Lemma 5.1, we have the boundedness of the solution γ .

Theorem 5.5. Let M be a compact riemannian manifold, and let $\gamma_0(x)$ be a closed curve with unit line element and length L. If there are no closed geodesics of length L in the manifold M, then (EP) has a unique solution $\gamma(x,t)$ for all time, and the solution has a subsequence converging to an elastica.

If the metric is real analytic, we have the main result.

Theorem 5.6. Let M be a compact real analytic riemannian manifold, and let $\gamma_0(x)$ be a closed curve with $|\gamma_0'| = 1$ and length L. If there are no geodesics of length L in the manifold M, then (EP) has a unique solution $\gamma(x,t)$ for all time, and the solution converges to an elastica when $t \to \infty$.

Proof. The proof of Theorem 8.6 of [3] remains valid. We use Simon's real analytic implicit function theorem. For detail, see [3].

Remark 5.7. We have an example of almost oscillate solution on a C^{∞} riemannian manifold. See [2].

References

- [1] N. Koiso: Elasticae in a riemannian submanifold, Osaka J. Math. 29 (1992), 539-543.
- [2] N. Koiso: Convergence to a geodesic, Osaka J. Math. 30 (1993), 559-565.
- [3] N. Koiso: On the motion of a curve towards elastica. Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger (Collection SMF Séminaires & Congrès no 1, ed. A. L. Besse). (1996), 403-436.
- [4] J. Langer and D. A. Singer: Curve straightening and a minimax argument for closed elastic curves, Topology, 24 (1985), 75–88.

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka, 560-0043 Japan