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CHAPTER 1 INTRODUCTION 

1.1 Introduction 

Supported by the continuous development of the global economy, the maritime trade volume grew 

from 2010 through 2017 and occupied more than 80% of the global trade volume in 2017 (United 

Nations Conference on Trade and Development, 2018). Hence, a ship still has a key role on the 

global economy. A ship is a vehicle that transports cargos and passengers by running on water 

surface. Hence, in case that a ship sinks, lives of crews and passengers may be lost. Although the 

number of ship losses is in decreasing trend in these years, 94 ships were still lost in 2017. 65% of 

the losses were due to sinking, and the rest 35% consists of grounding, fire, machinery damage, 

collision, and hull damage (Lloyd’s Register, 2018). Since sinking of a ship is often driven by a 

water ingress or cargo shifting, large roll can be a trigger of sinking. No need to sink, large roll leads 

to damage or loss of cargos, so that large roll should be also prevented from the view point of 

economy and ecology. Then, the author focused on ship intact stability, especially on parametric roll, 

in this dissertation. This is because accidents related to parametric roll of merchant ships are still 

reported even in recent years (France et al., 2003; Hua et al., 2006; Danish Maritime Accident 

Investigation Board, 2014). 

Ship intact stability treats large roll motion of intact ships. Metacentric height (GM), which is a 

basic index of ship stability, is mainly considered in the early design stage. GM is a linear slope of 

restoring moment against heel, so that it represents ship stability in her upright condition. GM can 

provide sufficient stability assessment when ship roll motion can be regarded as small, and the ship 

roll motion is enough small under usual weather conditions. However, ship stability inspection 

requires accurate estimation of heavy roll even if it hardly occurs because it must be based on 

probability or risk of casualty. In this case, nonlinear effects on ship motion are no longer negligible. 

There are various critical roll motions of intact ships in waves. They can be categorized into four 

groups by a wave encounter frequency and wave direction. Well-known critical roll motions are 

categorized into the four groups as Tab. 1.1.1. The roll motions are briefly explained as an 

introduction to this dissertation of nonlinear roll motion. First, synchronous roll is a roll with the 

same frequency as the wave encounter one. Forcing with a frequency near the ship natural roll one 

excites heavy roll motion. Second, parametric roll is excited by periodic variation of restoring 

coefficients due to incident waves and ship vertical motions. Parametric roll with a frequency that is 

half the wave encounter one is likely to occur in longitudinal waves. Third, pure-loss of stability is a 

large roll caused by a small restoring moment at wave crests. Last, broaching-to is a large roll caused 

by abrupt yawing due to loss of manoeuvability after surf-riding. Third and last one happen only 

when a ship runs at high speed in following waves whose length is comparable to the ship length. 

Most critical roll motions in longitudinal waves were considered to happen only to small ships such 

as a fishing vessel. However, such accidents on larger ships were recently reported, and the threat of 

longitudinal waves are getting revealed (France et al., 2003; Hua et al., 2006; Danish Maritime 

Accident Investigation Board, 2014). This study mainly focuses on parametric roll in longitudinal 
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and quartering waves due to periodic variation of restoring coefficients. 

Table 1.1.1 Categories of well-known roll modes. 
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1.2 Social Background 

Parametric roll has long been known, and pioneering studies of parametric roll can be found in the 

literature (Watanabe, 1934; Kerwin, 1955). Watanabe (1934) showed that parametric roll is an 

unstable phenomenon in the Mathieu equation caused by GM variation due to incident longitudinal 

waves. Kerwin (1955) showed that the Mathieu equation with nonlinear damping can explain a finite 

amplitude of parametric roll. Moreover, He experimentally presumed that parametric roll rarely 

occurs in actual seas by using a fishing vessel. So, researchers of ship stability had regarded 

parametric roll as just a theoretical phenomenon. In the latter half of the 20th century, new-type of 

cargo ships were invented for more superior economy. This led to specialization and increasing size 

of cargo ships. In 1970s, Japanese researchers started focusing on intact stability problem under 

operational condition. Kan (1990) conducted free running model experiments with a container ship 

in following and quartering waves and pointed out that dangerous roll in following waves were 

mainly caused by pure loss of stability. Umeda et al. (1995a) also conducted free running model 

experiment and confirmed that the modern container ship could suffer parametric roll in short-

crested irregular waves even when she complied with the Intact Stability Code of the International 

Maritime Organization (IMO). In 1998, a C11-class post-Panamax container ship suffered heavy roll 

with amplitude of over 40° under heave-to condition in actual sea. France et al. concluded that the 

accident was caused by parametric roll at the Society of Naval Architects and Marine Engineers 

(SNAME) annual meeting in 2001 (France et al., 2003). After the accident was revealed, accidents 

due to parametric roll started being reported for container ships and car careers. For example, Hua et 

al. (2006) reported that a pure truck and car career suffered parametric roll of about 50° in 2003, and 

Danish Maritime Accident Investigation Board (2014) reported that a 346.98 m-long container ship 

suffered parametric roll of 41° in 2014. Ikeda et al. (2013, p.133) supposed that no one simply had 

not been able to judge as parametric roll before the first report and there had been many accidents 

due to parametric roll. 

Accidents due to parametric roll on recently-investigated ships forced the IMO to start developing 

the second generation intact stability criteria for critical roll motions including parametric roll in 

2002. The existing intact stability criteria is based on statistical information of old ships that were 

built before 1950s. This means that the existing criteria might not always assess stability of recently-
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investigated ships. Hence, in order to properly assess any ships, the new criteria should be based on 

physics. Since too complicated criteria shall hinder development of shipbuilding, the new criteria 

consists of three levels. The lower levels are simple but require enough safety margin. In contrast, 

the higher levels have lower safety margin but require more complicated procedure. 

1.3 Preceding Researches 

Parametric roll has long been discussed in the context of ship stability. There are pioneering 

studies of parametric roll in the literature (Watanabe, 1934; Grim, 1952; Kerwin, 1955; Paulling 

1959; Ogawara & Miura, 1960). Watanabe (1934) focused on the fact that GM decreases due to trim 

or variation of relative wave elevation in longitudinal waves and a ship sometimes loses her stability. 

He proved that the instability is not a statistic one due to decrease of GM but a dynamical one due to 

periodic variation of GM by using stability criterion of the Mathieu equation with various parameters. 

Grim (1952) experimentally investigated a roll instability in regular longitudinal waves. Kerwin 

(1955) treated parametric roll as a phenomenon that appears in unstable region of the Mathieu 

equation as well. He showed that the Mathieu equation with nonlinear damping can estimate 

parametric roll with its finite amplitude. Furthermore, he conducted model experiment with a fishing 

vessel and confirmed that she easily suffers from parametric roll with an amplitude of 30° or more in 

regular waves. However, he finally presumed that parametric roll is not real threat in actual seas 

because the unstable region was very narrow and the growth of parametric roll required longer time. 

Paulling (1959) focused on GM variation due to heave and conducted forced-heave model 

experiment in calm water. He confirmed that the parametric roll due to heave can be qualitatively 

explained as an unstable phenomenon in an unstable region of the Mathieu equation. Ogawara and 

Miura (1960) also conducted model experiment with constant heel and observed parametric roll 

when the natural roll frequency divided by half the wave encounter frequency is near n (2:n 

parametric roll, where n = 1, 2, 3,…). Moreover, they confirmed that parametric roll amplitude in the 

experiment is well estimated by the nonlinear Mathieu equation proposed by Kerwin (1955) with 

experimentally obtained GM variation.  

In 1970s, researchers focused on physics-based intact stability criteria. Kobylinski (1975) and 

Krappinger (1975) stated that the stability criteria have to separately manage various capsizing 

scenarios based on physics. Paulling et al. (1972) conducted model experiment in severe irregular 

waves in San Francisco bay and observed capsizing of the ship model. They grouped the capsizing 

scenarios into three modes: parametric roll, pure-loss of stability, and broaching-to. Moreover, they 

concluded that the vulnerability should be examined by the occurrence probability of critical waves. 

Based on these concepts, the second generation intact stability criteria are divided into five major 

scenarios of ship accidents (parametric roll, pure loss of stability, broaching-to, dead ship, and 

excessive acceleration) and the vulnerability in the level 2 of the new intact stability criteria is 

judged by using wave occurrence probability. In order to deal with probability of capsizing due to 

parametric roll, dynamic instability of ship roll motion started being investigated with more realistic 

approaches. Abicht (1975) addressed parametric roll in irregular longitudinal waves, proposed a way 

to convert irregular longitudinal waves to regular waves, and showed that the stability in irregular 

longitudinal waves can be estimated by the Mathieu equation. The reason why the conversion was 
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used was because general statistical method, in other words superposition of waves, cannot be 

applied to GM variation in longitudinal waves, although it can be applied to roll in irregular beam 

waves. Blocki (1980) estimated probability of capsizing due to parametric roll in irregular waves 

based on Y. Goda’s wave group model. He conducted model experiment with cylindrical model in 

regular beam waves and observed capsizing due to parametric roll. The time series of capsizing due 

to parametric roll were well estimated by using the nonlinear Mathieu equation with cubic damping 

and restoring moment. In the calculation, the GM variation was induced by heave that was estimated 

based on a linear theory independently of roll.  

Although nonlinear terms had been taken into account to estimate parametric roll amplitude in 

aforementioned studies and simple nonlinearities, such as fold bifurcation or jump phenomenon, had 

been already known (e.g. Bhattacharyya, 1978), nonlinear-dynamical ideas and approaches were 

introduced to the field of ship stability by Cardo et al. (1980; 1981; 1984) and Nayfeh and Khdeir 

(1986a; 1986b). Cardo et al. (1980; 1981; 1984) investigated damping effect on the steady-state 

nonlinear roll response in regular beam waves, such as subharmonics and superharmonics (or 

ultraharmonics), by applying approximately-analytical methods called a harmonic-balance method, 

averaging method, and multiple-scales method. Nayfeh and Khdeir (1986a; 1986b) intensively 

investigated nonlinear dynamical structure of roll motion in regular beam waves and found the 

nonlinear behaviors, such as jumps, subharmonics, superharmonics (ultraharmonics), loss of 

symmetry, period doubling, and chaos. Further, they applied a multiple-scales method to estimate 

approximate steady-state roll response. These ideas and approaches are also employed to estimate 

parametric roll. Sanchez and Nayfeh (1990a) used the nonlinear Mathieu equation with cubic 

damping and quintic restoring and applied second-order multiple scales method to the nonlinear 

ordinary differential equation in order to obtain approximate analytical periodic orbits. The response 

of the roll equation was well investigated by using nonlinear dynamical approaches and found many 

nonlinear behaviors, such as jump, loss of symmetry, period-doubling, chaos, and capsizing. They 

showed that when chaotic response that comes after infinite times of period-doubling loses its 

stability, the ship capsizes if her upright is unstable and the ship settles to upright if her upright is 

stable. Soliman and Thompson (1992) investigated the indeterminate subcritical bifurcations. Here, 

indeterminate means that the steady state to which the ship settles after subcritical pitchfork 

bifurcation cannot be determined because of fractal boundaries in the Poincare map of the phase 

plane. They revealed that the fractal boundaries is associated with a heteroclinic bifurcation in the 

phase plane between a saddle type unstable parametric roll and vanishing stability point of the GZ 

curve. Umeda et al. (2004) applied these nonlinear dynamical approaches to the uncoupled roll 

model with a more realistic restoring moment in waves. They found the similar nonlinear behaviors, 

such as jump, loss of symmetry, period-doubling, chaos, and capsizing. 

The contributions related to the nonlinear dynamics suggested that very complex behaviors 

appears even in a simple single-degree-of-freedom (1-dof) model. The complexity shall confuse 

users of the new physics-based stability criteria because almost all of them are not familiar with 

nonlinear dynamics. The approximate analytical methods provides results according to the assumed 

form of solutions and the magnitudes of results are expressed as algebraic equations. Hence, all 

possible solutions can be obtained by solving the algebraic equations and the solution includes only 
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what are expected. This characteristic is very useful for the new stability criteria because only 

desired solutions are obtained without knowledge of nonlinear dynamics. For this reason, realistic 

roll models and their approximate analytical solutions are proposed (Umeda et al., 2004; Bulian, 

2004). The method of Umeda et al. is used in the draft second check of the second generation intact 

stability criteria for parametric roll. In the draft, the ship vulnerability is judged based on dangerous 

wave occurrence probability and irregular waves are converted to a regular wave based on Grim’s 

effective wave (Grim, 1961). Further, Maki et al. (2011) combined the approximate analytical 

solutions and wave stochastic theories, thereby estimating parametric roll in irregular waves.  

Whereas researches based on uncoupled roll models are introduced in the above paragraphs, the 

researches aiming to investigate more precise response of parametric roll with multi-dof models are 

introduced in this paragraph. Hamamoto and Akiyoshi (1988) compared a 6-dof model based on the 

Froude Krylov assumption and a slender body theory and free running model experiment in regular 

following waves. Even though their calculation did not consider a diffraction effect, the calculated 

results showed good agreement with the experiment. de Kat and Paulling (1989) took diffraction 

forces into account and also showed good agreement with experimentally obtained roll motion. They 

focused on not only parametric roll but also pure loss of stability and broaching-to. Since parametric 

roll is caused by variation of restoring coefficients, estimation of the variation is much important to 

obtain accurate results. Boroday (1990) showed that the restoring variation can be precisely 

estimated by adding added mass terms based on a strip theory to the Froude Krylov forces by 

comparing calculation with a captive model experiment. Nowadays, almost all advanced simulation 

models for parametric roll take into account radiation and diffraction effects based on seakeeping 

theory. de Kat and Paulling (2001) proposed the 6-dof model FREDYN that estimates ship motion 

under wind and waves. For, the Froude Krylov force, the pressure is integrated over an instantaneous 

wetted surface. The radiation and diffraction forces are calculated based on a linear strip theory. 

Further, manoueuvring forces, rudder forces, propeller thrust, hull resistance, and wind forces are 

nonlinearly considered. Shin et al. (2003) described development and applications of the 6-dof 

model called LAMP (Large Amplitude Motion Program). In the model, the hydrodynamic forces 

related to waves are calculated based on a panel method, and the panel-based potential flow is solved 

over an instantaneous wetted hull surface. FREDYN and LAMP were developed to investigate ship 

dynamics on the ocean. On the other hand, Hashimoto and Umeda (2010) focused on only 

parametric roll in longitudinal waves and proposed a heave-roll-pitch coupled 3-dof model. The 3-

dof model took radiation and diffraction effects as a function of an instantaneous heel angle into 

account. The results showed good agreement with towing model experiments. As a further 

improvement, Sadat-Hosseini et al. (2010) used CFD to estimate parametric roll and showed good 

agreement with free running model experiment. However, benchmark studies of parametric roll 

(Spanos & Papanikolaou, 2009; Reed, 2011) indicated that no simulation models could estimate 

parametric roll amplitude enough accurately under any situation. 

Parametric roll can occur when a natural roll frequency  is almost equal to an integer multiple 

of half the encounter frequency e, hence e: ≈ 2:n (n is an integer.). This is estimated by using 

the Mathieu equation. In this dissertation, parametric roll in the Mathieu’s unstable region of e: ≈ 

2:n is called 2:n parametric roll. Only the 2:1 parametric roll is often focused on mainly because the 
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Mathieu’s unstable region decreases as n increases. Sanchez and Nayfeh (1990a) closely 

investigated the 2:1 and 2:2 parametric roll by using nonlinear dynamical approaches based on 1-dof 

roll model. Vilensky (1995) revealed that the 2:2 parametric roll is not so dangerous relative to the 

2:1 parametric roll in purely following waves; however, the 2:2 parametric roll in stern quartering 

waves can cause a large roll motion due to the combination of the periodic GZ variation and direct 

exciting moment. Unfortunately, his study is not sufficiently accessible to the public. The 2:n 

parametric roll (n > 2), in other words, the higher advance speed region does not appear to have been 

investigated enough. Spyrou (2000) investigated the 2:1 and 2:2 parametric roll with different wave 

encounter frequencies by using the Mathieu-type nonlinear differential equation with a nonlinear roll 

damping. He defined very quick capsize events that occurred around a wave crest as a pure loss of 

stability. However, he mentioned that there was no practical reason to divide parametric roll and 

pure loss of stability. Moreover, Spyrou (2005) estimated that when n is greater than 2, 2:n 

parametric roll rarely happens mainly because the ship should run at high speed to achieve such a 

small encounter frequency and then the roll damping becomes too large to cause parametric roll. 

However, it is no more than a presumption based on the Mathieu-type equation. 

As mentioned above, parametric roll has been investigated from various viewpoints. Simplified 

estimation models were sufficiently investigated by Umeda et al. (2004) and Bulian (2004). 

However, the estimation accuracy of intensive roll by the averaging method is sometimes 

insufficient due to absence of higher order effects in the model and averaging method. The method 

of Umeda et al. is used to estimate parametric roll amplitude in the draft second check of the second 

generation intact stability criteria for parametric roll. Since an averaging method yields an algebraic 

equation of amplitude, the algebraic equation may provide more useful information for the criteria 

than just an amplitude.  

1.4 Aim and Composition of This Dissertation 

This dissertation aims to: 1) estimate nonlinear response of parametric roll in regular waves by 

using averaging methods; 2) utilize simplified methods for the physics-based stability criteria against 

parametric roll; 3) estimate ship motions with low advance speed in regular oblique waves; 4) 

investigate qualitative transition of roll response in following waves.  

In chapter 2, averaging methods are used to estimate nonlinear response of parametric roll with 

additional treatment of superharmonic components, actual GZ curve, and vertical motions. Moreover, 

the design criteria is considered by using the averaged equations (Umeda et al., 2004) and Grim’s 

effective wave concept (Grim, 1961). 

In chapter 3, a 5-dof model is proposed to estimate parametric roll in oblique waves. Since the 

C11-class post-Panamax container ship suffered parametric roll under a heave-to condition (France 

et al., 2003), the maoeuvrability when the ship speed is low is taken into account. 

In chapter 4, effect of a wave encounter frequency on the roll response is investigated. Although 

parametric roll is known as a phenomenon that occurs in unstable regions of the Mathieu equation. 

The unstable regions cover a wide range of a wave encounter frequency because parametric roll 

might happen when e: ≈ 2:n. Here, e is a wave encounter frequency,  is a ship natural roll 
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frequency, and n is a natural number. However, in the region of small wave encounter frequency, i.e. 

when a ship runs at high speed in following waves, pure loss of stability or broaching-to might 

happen. 

In chapter 5, this dissertation is concluded with remarks.  
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CHAPTER 2 AVERAGING METHOD 

2.1 Introduction 

An averaging method is one of analytical approaches to estimate periodic orbits of nonlinear 

mechanics and is based on perturbation concept. It provides differential equations of parameters of 

the periodic orbits by assuming the parameters change slowly enough in time relative to the period 

of the solution. It is known as a strong method to obtain approximate periodic orbits of a weakly 

nonlinear system because it is widely applicable and the stability can be straightforwardly judged. 

The detailed procedures of an averaging method are available in sections 2.2. Averaging methods 

were proposed by researchers of celestial mechanics and Krylov and Bogoliubov established a 

general application of a first-order averaging method (Krylov & Bogoliubov, 1947). So, the first-

order averaging method is sometimes called Krylov-Bogoliubov averaging method. Although there 

are other analytical approaches, such as a harmonic balance method and multiple scales method, the 

first-order solutions appear to be the same. On the other hand, the second- or higher-order solutions 

do not so. A harmonic balance method is based on a rather simple idea that the solutions can be 

expanded in Fourier series, so that higher-order approximate solutions can be easily obtained by the 

Galerkin-Urabe method (Urabe, 1965). However, this method does not provide differential equations 

of parameters, so that a variational equation should be derived to judge the stability of solutions. A 

multiple scales method provides the differential equations of parameters but the procedure is a little 

more complicated than an averaging method. By contrast, the higher-order solutions of multiple-

scales method can be obtained a little more easily than that of an averaging method. These analytical 

approaches can provide all solutions as a set of algebraic equations. On the other hand, nonlinear 

differential equation can be solved nowadays by a numerical integration method, such as the Runge-

Kutta method; however, it is known that a nonlinear differential system has various coexisting 

steady states, and a derived solution depends on initial values of numerical integration. Hence, 

theoretically speaking, obtaining all solutions by numerical integration requires to calculate for all 

possible initial values. This does not deny the efficiency of the numerical integration methods 

because they easily provide an accurate solution indeed. Similarly, an analytical approach has a 

drawback that they can provide only solutions having an assumed form of solutions. This means that 

analytical investigation requires rough knowledge of the global structure beforehand. These indicate 

the necessity of recognizing both the analytical and numerical approaches and combining them 

efficiently in order to know the nonlinear mechanics. 

As shown in chapter 1, parametric roll is caused by a GM variation in waves and the GM varies 

due to variation of water plane area that is fluctuated by incident waves and vertical motions of a 

ship. Parametric roll has been known as an unstable phenomenon which occurs in an unstable region 

of the Mathieu equation since Watanabe (1934) was published. The steady state can be estimated by 

the Mathieu equation with nonlinear terms (Kerwin, 1955). Hence, nonlinear effects have to be taken 

into account in order to estimate parametric roll amplitude. However, since an exact solution of even 

single-degree-of-freedom (1-dof) ordinary differential equation has not been found yet, an 

approximate analytical approach or numerical integration method should be used. Moreover, since 
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multiple-dof model is too complicated to investigate a global response of parametric roll, 1-dof 

models have been widely used in field of ship stability. 

Francescutto (2001) proposed to apply an averaging method to simple 1-dof parametric roll model. 

Umeda et al. (2004) applied an averaging method to a 1-dof parametric roll model with more 

realistic restoring moment in waves. Bulian (2004) introduced more complicated restoring variation 

into 1-dof model and applied an averaging method to the model. In this chapter, the equation 

proposed by Umeda et al. (2004) is mainly used because the equation was well validated by 

comparing with model experiments.  

In section 2.2, a general application of an averaging method is introduced including stability of the 

solutions. In section 2.3, a 1-dof model for parametric roll is introduced. In section 2.4, parametric 

roll in regular longitudinal waves are discussed. In subsection 2.4.1, the method of Umeda et al. 

(2004) is introduced, which is based on a GM variation due to longitudinal waves, assuming that 

heave and pitch trace their static equilibria in the waves. In subsection 2.4.2, the necessity of 

superharmonic components to obtain more accurate solutions is shown. In subsection 2.4.3, how to 

reflect actual GZ curve in calm water is shown. In the previous methods (Francescutto, 2001; Umeda 

et al., 2004; Bulian, 2004), the calm-water GZ was approximated by polynomials to obtain algebraic 

equations of parametric roll amplitude, so that some information was lost at the process of 

polynomial fitting. In subsection 2.4.4, effect of vertical motions are taken into account and apply an 

averaging method because GM varies due to heave and pitch as well and, actually, heave and pitch 

change dynamically when a ship runs at low speed in longitudinal waves whose length is 

comparable to the ship length. In section 2.5, design criteria for parametric roll is discussed. Since 

the vulnerability have to treat parametric roll in irregular waves, Grim’s effective wave concept 

(Grim, 1961), which is adopted in the draft second check of the second generation intact stability 

criteria (IMO, 2016), is introduced. In subsection 2.5.2, how to find the peak of parametric roll 

resonance by using the averaged equations (Umeda et al., 2004) is proposed. In subsection 2.5.3, the 

simplification on the wave encounter frequency in the draft second check is verified by using the 

mean encounter frequency of Grim’s effective wave spectrum. Finally, the remarks o this chapter is 

concluded in section 2.6. 

2.2 General Application of Averaging Method 

The procedures of an averaging method are as follows (e.g. Sato, 1977). The averaging method is 

applied to a nonlinear differential equation that has a periodic solution and is expressed as Eq. 2.2.1: 

   , , 0 1x x f x x t    . (2.2.1) 

Here, the function f in the right hand is periodic in time with a period 2. Based on a general solution 

of Eq. 2.2.1 when  is zero, the solution is assumed as following form in Eq. 2.2.2:  

 cosx A t   ,  sinx A t    . (2.2.2) 

This is introduced by van der Pol (van der Pol, 1926) and is called “Van der Pol rotation 

transformation.” This converts a problem of obtaining a periodic steady state of differential 
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equations into that of solving algebraic equations of the amplitude and phase of the assumed 

sinusoidal function. Applying the relationship of trigonometric functions to Eq. 2.2.2, we obtain 

222 xxA  ,  tan
x

t
x

   . (2.2.3) 

Differentiating Eq. 2.2.3 with respect to t, we obtain 

 xx
A

x
A  

 ,  2

x
x x

A
   . (2.2.4) 

Substituting Eq. 2.2.1 and 2.2.2 in Eq. 2.2.4, we obtain 

      sin cos , sin , )A t f A t A t t         , (2.2.5) 

      cos cos , sin ,t f A t A t t
A


        . (2.2-6) 

Assuming A and  change slowly with time and averaging Eq. 2.2.5 and 2.2.6 over one period, we 

obtain 

      
2

0

1
sin cos , sin , )

2
A t f A t A t t dt



   


       

 

 

 ,A   , 

 

(2.2.7) 

      
2

0
cos cos , sin ,

2
t f A t A t t dt

A


   


      

 

 

 ,A  . 

 

(2.2.8) 

Here, Eq. 2.2.7 and 2.2.8 are no longer nonautonomous dynamical system but autonomous 

dynamical system, which does not explicitly depend on time. They are called averaged equations. A 

steady state periodic solution is expressed as just an equilibrium point on A, -plane. The 

averaging method is very useful because we can easily check the stability of the steady state by 

using the Taylor expansion of the averaged equations around the equilibrium point. The procedure 

can be available in subsection 2.2.1.  

2.2.1 Stability of Solutions 

Stability of solution means an asymptotic behavior of a perturbation around the solution. The 

definition of Lyapunov stable (Hayashi, 1985), which means stable equilibrium of an autonomous 

dynamical system, is as follows: if for every  > 0, there exists a  > 0 such that the orbit that starts 

form a point within a distance  from the equilibrium point at t = 0 stays within a distance  from the 

equilibrium point for every positive t. A Lyapunov stable point which tends to the equilibrium point 

when t  is defined as asymptotically stable. Setting an equilibrium point of Eq. 2.2.7 and 2.2.8 

as (A0, ), we obtain 
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 0 0, 0A A    , (2.2.1.1) 

 0 0, 0A    . (2.2.1.2) 

Giving a small enough perturbations (, ) as Eq. 2.2.1.3: 

   0 0, ,A A      , (2.2.1.3) 

we obtain variational equations as Eq. 2.2.1.4 and 2.2.1.5: 

   0 0 0 0, ,A A

A

 
    



 
 

 
, (2.2.1.4) 

   0 0 0 0, ,A A

A

 
    



 
 

 
. (2.2.1.5) 

Using a matrix form, we obtain 

   

   

0 0 0 0

0 0 0 0

, ,

, ,

A A

A

A A

A

 




  



  
 

         
     
 

  

. (2.2.1.6) 

This is called the Jacobian matrix. The equilibrium point (A0, ) is asymptotically stable only when 

all eigenvalues of the matrix have a negative real part. 

2.3 Governing Equation of Parametric Roll in Regular Waves 

Since parametric roll is excited by a periodic variation of restoring coefficients, it is governed by 

nonautonomous dynamical system, which has terms that explicitly depends on the time. A 1-dof 

parametric roll model is expressed as Eq. 2.3.1: 

 
 2

,
2 ,

variGM t

GM



         

 

 

 2 2 sin sin
calm

a e

GZ
r k t

GM
 


      . 

 

(2.3.1) 

Here,  is roll, is a roll damping coefficient, and  and e are a natural roll frequency and wave 

encounter frequency, respectively. The term GM is a metacentric height, GMvari and GZcalm are a GM 

variation in waves and a calm-water GZ curve, respectively, and the frequency of GM variation is 

equal to e. The restoring moment is calculated by assuming that heave and pitch always stay in 

their equilibrium points under the concerned ship and wave condition. The right-hand side is an 

external moment due to incident oblique waves, a is the amplitude, r is the effective wave slope 

coefficient, k is the wave number, and  is the ship course from the wave propagating direction ( = 

0 means that the ship runs in following waves). Here, assuming that the ship runs at a constant speed 

U towards the direction  and she does not drift at all, the wave encounter frequency is expressed as 
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Eq. 2.3.2 by using the wave frequency  and the gravitational acceleration g, based on the deep-

water linear wave theory: 

2

cose U
g


    . (2.3.2) 

2.4 Parametric Roll in Regular Longitudinal Waves 

Parametric roll amplitude can be estimated by taking into account nonlinearities of GZ and/or roll 

damping. Kerwin (1955) modeled roll damping as nonlinear which increases with parametric roll 

amplitude and this equation was often used in the early stage of the research of parametric roll 

(Ogawara & Miura, 1960; Abicht, 1975). Sanchez and Nayfeh (1990a) intensively investigated 

parametric roll by applying nonlinear dynamical approaches to a 1-dof roll model with nonlinear GZ 

and roll damping. 

Francescutto (2001) applied an averaging method to a 1-dof parametric roll model. He assumed 

that the roll damping and calm-water GZ curve could be approximated by cubic curves and the GM 

variation decreased proportionally with the square of roll. However, a calm-water GZ of a ship 

increases proportionally with the heel (the ratio is called GM) when the heel is small, after that the 

increasing ratio becomes larger than the GM, and starts to decrease after a weather deck submerges 

or a bottom emerges. In addition, the GM variation does not always decrease proportionally with the 

square of the roll even within a small wave steepness because it depends on the ship flare. This 

indicates that at least quintic approximation is necessary to approximate the nature of GZ. Umeda et 

al. (2004) applied an averaging method to roll equation with quintic GZ and nonlinear GM variation 

in waves. Further, they confirmed that this model showed good agreement with model experiment, 

so that parametric roll amplitude and characteristics are investigated based on this model in this 

study. 

As further improvement about parametric roll estimation by an averaging method, Bulian (2004) 

applied it to a nonlinear Mathieu equation with cubic damping, nonic restoring moment, and higher 

order effect of GM variation. 

2.4.1 Estimation Method proposed by Umeda et al. 

Umeda et al. used following coefficients (Umeda et al., 2004): 

  22 , 2       , (2.4.1.1) 

  2

2

, 1
cos 1

ampvari mean
e

GMGM t GM
t

GM GM GM


 



   
     

  
, (2.4.1.2) 

  3 5

3 5

calmGZ
l l

GM


     , (2.4.1.3) 

3 2 3

2

1
2 cos

ampmean
e

GMGM
t

GM GM
       



  
      

  
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 2 3 5

3 5 0l l       . 

 

(2.4.1.4) 

Here, the roll damping and calm-water GZ curve are approximated by cubic and quintic polynomials, 

respectively. The GM variation is modeled to take account of the upside-down condition so that the 

GM variation becomes zero when  = . The form of solutions is as Eq. 2.4.1.5: 

 ˆcosA t    ,  ˆ ˆsinA t      . (2.4.1.5) 

Here, A is the roll amplitude, ̂  is the parametric roll frequency and is equal to half the wave 

encounter frequency, and  is the phase lag. The time derivatives of A and  are expressed as Eq. 

2.4.1.6: 

 2

2
ˆ

ˆ
A

A


  


  ,  2

2
ˆ

ˆ A


   


  . (2.4.1.6) 

Substituting Eq. 2.4.1.4 and 2.4.1.5 into Eq. 2.4.1.6, the averaged equations are obtained as Eq. 

2.4.1.7 and 2.4.1.8: 

2

2 3 2

2

3 1 1
ˆ 1 sin 2

ˆ8 4 2
A A A MA A


  

 

 
     

 
, (2.4.1.7) 

2

2 2 4

3 52

1 1 3 3 5
ˆ 1 1

ˆ2 2 4 4 8
F A l A l A


 

 

  
       

  
 

 

 

2

2

2

1 1
     1 cos 2

ˆ4
M A




 

 
  

 
, 

 

(2.4.1.8) 

where 

meanGM
F

GM
 , 

ampGM
M

GM
 . (2.4.1.9) 

Setting the time derivatives are zero and eliminating the term with provide 

12

0

0k

k

k

a A


 , (2.4.1.10) 

where 

 
4

4 2 2 2

0 2 4

5

64
ˆ ˆ4 8 2 1

25
a F

l





   


        

 

 

  24 24 1F M    
 

, 

 

(2.4.1.11) 

 
2

4 2

2 2 4

5

64
ˆ4 3 1

25
a

l 


   


    
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 2 2 2 2

3
ˆ2 7 4 3 16F l       
 

 
 

    4 2 2

36 1 3 2 1 5 2l F M F F         
, 

 

(2.4.1.12) 

  4 2 6 4 2

4 2 4

5

16
ˆ ˆ9 4 24 1

25
a

l 

      


     

 2 2 2 4 2

3 5
ˆ4 6 5 8 2 16l l F         
 

 

 4 4 2 2

3 39 6 7 4l l F      
 

 

    4 2

520 1 13 37 32 4l F M F F        , 

 

(2.4.1.13) 

 4 2 6 2 4

6 2 2 4

5

16
ˆ ˆ18 48

25
a

l 

      
 

    

 2 2 2 4 4 4 2

3 5 3
ˆ2 3 10 3 9l l F l             

   2 4 4 2

3 5 53 5 8 2 5 7 4 6l l F l F M         
 

 

  3 5 2F F   , 

 

(2.4.1.14) 

 4 2 6 4 2 2

8 54 2 4

5

4
ˆ ˆ36 20

25
a l

l




     
 

   

 4 8 2 4 2

5 5 325 20 3 4 1l l l F      


 
 

 

  2
2 2

39 4F l M   


, 

 

(2.4.1.15) 

 2 4

10 3 52

5

4
3 5 3

5
a l l F

l
 


   , (2.4.1.16) 

12 1a  , (2.4.1.17) 

0 for 1, 3, ..., 11ka k  . (2.4.1.18) 

This algebraic equation of A can be found in Maki et al. (2011).  

2.4.2 Effect of Superharmonics 

In the method of Umeda et al. (2004) as shown in subsection 2.4.1, the existence of 

superharmonics is not assumed, thereby being neglected in the averaging processes. Actually, there 

should be a certain effect of superharmonics at least due to the nonlinearity of the differential 

equation. Based on the method of Umeda et al., the effect of superharmonics are considered in this 

subsection. Firstly, in order to confirm the error of the method of Umeda et al., a comparison 

between the method of Umeda et al. and numerically integrated solution of Eq. 2.4.1.4 is shown in 

Fig. 2.4.2.1 by using the C11-class post-Panamax container ship (used data are listed in appendix 

subject ships for detailed data), which suffered heavy parametric roll in 1998 (France et al., 2003). In 

the calculation, the roll damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012) 
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with the lift component of Ikeda’s original method (Ikeda, 2004), the natural roll frequency and roll 

inertia moment are estimated from roll decay test by using a ship model of the C11-class post-

Panamax container ship, and the restoring moment is estimated hydrostatically based on the Froude 

Krylov assumption by assuming that heave and pitch change quasi-statically. The experiment was 

conducted at the towing tank of Osaka University (Hashimoto & Umeda, 2010). The horizontal axis 

shows a ship speed in Froude number, and the vertical axis does a parametric roll amplitude in 

degrees. Figure 2.4.2.1 shows good agreement except around Fn of 0.00 to 0.05. Assuming that the 

discrepancy is derived from the absence of superharmonic components, the numerically integrated 

solution at Fn of 0.015 is expanded in Fourier series in Fig. 2.4.2.2. It shows that the second largest 

superharmonic component is three times as frequent as parametric roll. The discrepancy in Fig. 

2.4.2.1 appears regardless of parametric roll amplitude; therefore, this can be said that the 

superharmonic effect is derived not only from the nonlinearity of the differential equation but also 

from characteristics of the Mathieu equation.  

 

Figure 2.4.2.1 Parametric roll amplitude with /Lpp of 1.0 and H/ of 0.03. 



CHAPTER 2 AVERAGING METHOD 

 

-16- 

 

 

Figure 2.4.2.2 Amplitude ratio of each frequency component with Froude number of 0.015, /L of 1.0, and H/ of 

0.03. 

Here, using the same coefficients as the method of Umeda et al. as shown in subsection 2.4.1 as 

follow: 

3 2 3

2

1
2 cos

ampmean
e

GMGM
t

GM GM
       



  
      

  
 

 

 

 2 3 5

3 5 0l l       . 

 

(2.4.2.1) 

The form of solutions with the third superharmonic components is as Eq. 2.4.2.2: 

1 3    ,  1 1 1
ˆcosA t    ,  1 1 1

ˆ ˆsinA t      ,  

 3 3 3
ˆcos 3A t    ,  3 3 3

ˆ ˆ3 sin 3A t      . (2.4.2.2) 

Here, A1 and A3 are the roll amplitudes, ̂  is the parametric roll frequency and is equal to half the 

wave encounter frequency, and  and  are phase lags. The two components are defined as 1 and 

3, respectively. The time derivatives of A1, A3,  and  are expressed as Eq. 2.4.2.3 and 2.4.2.4: 

 21
1 1 12

1

ˆ
ˆ

A
A


  


  ,  21

1 1 12

1

ˆ
ˆ A


   


  , (2.4.2.3) 

 23
3 3 32

3

ˆ9
ˆ9

A
A


  


  ,  23

3 3 32

3

ˆ9
ˆ9 A


   


  . (2.4.2.4) 

eeeee
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Here, Eq. 2.4.2.1 can be rewritten as Eq. 2.4.2.5: 

 2 , ,g t      , (2.4.2.5) 

where 

2 2 1 meanGM

GM
 
 

  
 

. (2.4.2.6) 

Substituting  = 1 + 3 into Eq. 2.4.4.5 provides: 

   2 2

1 1 3 3
ˆ ˆ9         

 

 

     2 2 2 2

1 3 1 3 1 3
ˆ ˆ9 , ,g t                . 

 

(2.4.2.7) 

The assumed solutions of 1 and 3 are determined as following the left-hand side of Eq. 2.4.2.7 by 

assuming the right-hand side of Eq. 2.4.2.7 as negligibly small. We need an additional assumption 

that the first and second parentheses on the left-hand side of Eq. 2.4.2.7 are sinusoidal functions with 

frequency of ̂  and ˆ3 , respectively. This is an assumption related to the second derivatives 

with time. Then, while averaging with one of the frequencies, the second derivative with another 

frequency can be zero. In order to apply the averaging method by using the assumed solution as Eq. 

2.4.2.2, the first and second term of the right-hand side of Eq. 2.4.2.7 should be negligibly small; 

however, the second term is not small and the value is almost equal to ˆ8  when the first term can 

be regarded as small. This does not agree with the fact that the solution is expressed as a sum of 

sinusoidal functions with frequency of ̂  and ˆ3  as shown in Fig. 2.4.2.2. Hence, the third term 

of the right-hand side should have the term that is proportional to 3 and the sum of them can be 

regarded as small. Using above assumptions and substituting Eq. 2.4.2.1 and 2.4.2.2 into Eq. 2.4.2.3 

and 2.4.2.4, the averaged equations are obtained as Eq. 2.4.2.8 to 2.4.2.11: 

2 3 2 2

1 1 1 1 3

3 27
ˆ ˆ

8 4
A A A A A         

 
2

3 2

1 1 1 3 12 2

1 3 1
sin 2

ˆ 8 8 4
M A A A A




  

  
     

  

 

 
2

2 3

1 3 1 3 3 32 2

3 3 1
sin

ˆ 16 16 4
M A A A A


 

  

  
      

  

 

 
2

2 4 2 3

1 3 3 1 3 5 1 3 5 1 3

3 15 15
sin 3

ˆ 8 32 16
l A A l A A l A A


 



  
         

 

 

 

  2 2

1 3 1 3

9
ˆcos 3
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(2.4.2.11) 

where 

meanGM
F

GM
 , 

ampGM
M

GM
  (2.4.2.12) 

Next, sample calculations of the averaged equations are shown for the C11-class post-Panamax 

container ship (used data are listed in appendix subject ships). Figures 2.4.2.3, 2.4.2.4, and 2.4.2.5 

show that comparisons between the newly-proposed method, the method of Umeda et al. and 

numerically integrated solution of Eq. 2.4.2.1. The results of the newly-proposed method are 

obtained by using the Newton method with appropriate initial conditions. This is because the 

averaged equations are nonlinear simultaneous equations with four independent variables A1, A3,  

and , so that it is very difficult to obtain equations which includes only one variable like the 

method of Umeda et al.  

Figure 2.4.2.3 shows the results of the same condition as Fig. 2.4.2.1 and the newly-proposed 

method clearly shows much better agreement with the numerically integrated solution than the 

method of Umeda et al. Figure 2.4.2.4 shows that the method of Umeda et al. disagrees with the 

numerically integrated solution but the newly-proposed method agrees well with the numerically 

integrated solution. Since a difference between the two is just the wave heights, it can be said that 

parametric roll is much more affected by superhrmonics in the case of larger GM variation. In 

addition, experimental results are plotted in this figure. The 1-dof roll model conservatively predict 

the results of the experiments. This is because heave and pitch effects on a roll restoring moment are 

neglected, and because the restoring variation is represented only by the GM variation based on the 

Froude Krylov assumption. The effect of heave and pitch is investigated in subsection 2.4.4, and the 

effect of GZ variation was investigated by Hashimoto and Umeda (2004) and Hashimoto et al. 

(2008) based on model experiment and calculation. Figure 2.4.2.5 shows that the time series of 

parametric roll estimated by the three methods under the same condition as Fig. 2.4.2.3, in which the 

method of Umeda et al. does not show good agreement. The importance of the third superharmonic 

components can be clearly understood in Fig. 2.4.2.5. 
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Figure 2.4.2.3 Parametric roll amplitude with /L of 1.0 and H/ of 0.03. 

 

Figure 2.4.2.4 Parametric roll amplitude with /L of 1.0 and H/ of 0.04. 
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Figure 2.4.2.5 Time series with Froude number of 0.015, /L of 1.0 and H/ of 0.03. 

2.4.3 Effect of Approximation of Calm-Water GZ Curve 

The calm-water GZ curve is approximated by a quintic polynomial in subsection 2.4.1 and 2.4.2 

in order to obtain polynomial expression of averaged equations with amplitudes. However, a quintic 

polynomial is sometimes insufficient to approximate a calm-water GZ curve. In this subsection, an 

averaging method is applied to a 1-dof parametric roll model without calm-water GZ approximation. 

Further, the effect of accuracy of calm-water GZ approximation is investigated by using the obtained 

averaged equations. 

The coefficients of the damping and GM variation are the same as the method of Umeda et al. 

(2004) as shown in section 2.4.1. By contrast, the calm-water GZ curve is not approximated by a 

quintic polynomial, so that the roll equation is as Eq. 2.4.3.1.: 
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(2.4.3.1) 

Following the same procedure as the method of Umeda et al., averaged equations are derived as Eq. 

2.4.3.2 and 2.4.3.3: 
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(2.4.3.3) 

where 

meanGM
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 , 

ampGM
M

GM
 . (2.4.3.4) 

The integration term in Eq. 2.4.3.2 is calculated as Eq. 2.4.3.5: 
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(2.4.3.5) 

Here, Pcalm is an indefinite integral of GZcalm. However, there is still an integration term left in 

2.4.3.3, so that it is impossible to obtain analytical solutions of the amplitude and phase difference. 

In this study, the Newton method is used to obtain solutions from initial values that are obtained 

from the existing averaged equations proposed by Umeda et al. (2004) according to Eq. 2.4.1.7 to 

2.4.1.18. 

Figure 2.4.3.1 shows validation of the averaged equations by using the ONR Flare topside vessel, 

C11-class post-Panamax container ship, and ITTC A-1 container ship. In the calculation, the roll 

damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012) with the lift component 

of Ikeda’s original method (Ikeda, 2004), the natural roll frequency and roll inertia moment are 

estimated from roll decay tests by using the ship models, and the restoring moment is hydrostatically 

estimated in longitudinal waves based on the Froude Krylov assumption by assuming that heave and 

pitch change quasi-statically. (See appendix subject ships about the ships, coefficients, and 

experiments.) The averaging method without the polynomial approximation of the calm-water GZ 

curve (ave_GZ) is compared with the averaging method with the polynomial approximation 

proposed by Umeda et al. (the existing averaging method, ave_exg), numerical solutions of the 

uncoupled roll equation without the polynomial approximation (sim_1), and experiments (exp) as 

shown in Fig. 2.4.3.1. Positive and negative Froude numbers indicate that the ship runs in following 
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and heading waves, respectively. All methods here conservatively predict the results of the 

experiments. This is because heave and pitch effects on a roll restoring moment are neglected, and 

because the GZ variation is represented only by the GM variation based on the Froude Krylov 

assumption. The effect of heave and pitch is investigated in subsection 2.4.4, and the effect of GZ 

variation was investigated by Hashimoto and Umeda (2004) and Hashimoto et al. (2008) based on 

model experiment and calculation. The ave_GZ gives almost the same results as those of both 

ave_exg and sim_1 for the ONR Flare topside vessel and the C11-class post-Panamax container ship. 

However, this is not so for the ITTC A-1 container ship; the ave_GZ well agree only with sim_1 in 

that case. This is because the accuracy of the fitted GZ curves is unsatisfactory only for the ITTC A-

1 container ship, as shown in Fig. 2.4.3.2. Hence, the method using the original GZ curves can be 

recommended only if the fitted GZ is not satisfactory. 

Figure 2.4.3.1 (e) shows that the parametric roll amplitude estimated by the method of Umeda et 

al. (ave_exg) shifts towards the right relative to the averaging method with actual GZ curve. In order 

to investigate how the discrepancy of calm-water GZ curve affects the estimated amplitude, an 

equation of steady state parametric roll amplitude is derived from Eq. 2.4.3.2-3. Although the 

integration term in Eq. 2.4.3.3 appears to be a function of , it is independent of  and just a function 

of A because the interval of the integration is over one period. Setting the time derivatives of Eq. 

2.4.3.2-3 to zero and eliminating the term with  from them provides: 
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(2.4.3.6) 

Setting ˆ t  , the left-hand side of Eq. 2.4.3.6 is rewritten as: 
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(2.4.3.7) 

Here, since the integration interval is the same as the period of the integrand ˆ2  , shifting the 

phase of integrand does not change the result. Thus, the left-hand side depends only on parametric 

roll amplitude and GZ in calm water. When GZcalm is fitted by a quintic curve, Eq. 2.4.3.7 is 

expressed as Eq. 2.4.3.8: 
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(2.4.3.8) 

Here, the linear coefficient is GM in calm water. Of course, substituting Eq. 2.4.3.7-8 into Eq. 

2.4.3.6 yields an equivalent equation to Eq. 2.4.1.10. The solutions of Eq. 2.4.3.6 are expressed as 

crossing points when the curves of the both sides are drawn as functions of parametric roll amplitude. 

For the ITTC A-1 container ship, the left and right-hand side of Eq. 2.4.3.6 are plotted on Fig. 

2.4.3.3 in case of Fn of -0.117 and -0.170. The left-hand sides of ave_GZ and ave_exg are calculated 

as following Eq. 2.4.3.7 and Eq. 2.4.3.8, respectively, and represented by the black and gray solid 

lines, respectively. The dashed lines are the value of the right-hand side. Since the left-hand side is 

calculated only with the calm-water GZ curve, the difference between ave_GZ and ave_exg is purely 

derived from the accuracy of calm-water GZ approximation. On the other hand, the right-hand side 

are not affected by the nonlinear calm-water GZ component because the natural roll frequency is 

directly depends on GM in calm-water, and GM variations are nondimensionalized by GM in calm-

water. The value of horizontal axis of the crossing point between the solid and dashed lines 

represents steady state parametric roll amplitude. According to Eq. 2.4.3.6, when the ship speed 

increases, the right hand side move to the downward in case that A is not so large. That can be 

clearly confirmed in Fig. 2.4.3.3. From the above, for the ITTC ship A-1 container ship, the cubic 

coefficient of her approximated calm-water GZ curve is underestimated, so that the left-hand side of 

Eq. 2.4.3.6 becomes smaller, and the parametric roll amplitude shifts towards the right. 
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(a) 

 

(b) 

 
  

(c) 

 

(d) 

 
  

(e) 

 

 

Figure 2.4.3.1 

Comparison of parametric roll amplitudes from the 

averaging methods with and without the polynomial 

approximation of the calm-water GZ curves in 

longitudinal waves: 

(a) ONR flare topside vessel with a wave steepness of 

0.04; 

(b) C11-class post-Panamax container ship with a wave 

steepness of 0.01; 

(c) C11-class post-Panamax container ship with a wave 

steepness of 0.02; 

(d) C11-class post-Panamax container ship with a wave 

steepness of 0.03; 

(e) ITTC A-1 container ship with a wave steepness of 

0.03. 
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(a) 

 

(b) 

 

(c) 

 

 

 

Figure 2.4.3.2 

Hydrostatically calculated calm-water GZ curves and their 

quintic approximations: 

(a) ONR Flare topside vessel; 

(b) C11-class post-Panamax container ship; 

(c) ITTC A-1 container ship. 

  

 

Figure 2.4.3.3 Values of the left- and right-hand side of Eq. 2.4.3.6. 
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2.4.4 Effect of Vertical Motions 

In subsections 2.4.1, 2.4.2, and 2.4.3, the GM variation is caused by change of water-area due to 

longitudinal waves, and heave and pitch are assumed to quasi-statically trace their equilibria in 

waves. Since the GM can be changed by ship vertical motions, i.e. heave and pitch, heave and pitch 

should be estimated more accurately. Neves and Rodriguez (2006) showed that their third-order 

nonlinear heave-roll-pitch coupled model agreed well with model experiment in regular heading 

waves. Taguchi et al. (2006) added the GM variation due to linearly estimated heave and pitch to a 

1-dof roll model and confirmed that the 1-dof roll model could estimate the property of parametric 

roll by comparing the estimated amplitudes with those of free running model experiment. In this 

subsection, the effect of vertical motions on the GM variation is considered apart from the effect of 

an incident wave profile and how the heave and pitch affect parametric roll is investigated.  

The roll equation here is also based on the method of Umeda et al. (2004) in subsection 2.4.1 but 

restoring moment is calculated without changing sinkage and trim. Comparing estimated parametric 

roll amplitude with and without the vertical motions with free running model experiment shows the 

importance of GM variation due to the vertical motions. Since roll-heave-pitch coupled motion 

equations are too complicated to apply an averaging method, linearly-estimated heave and pitch 

motion are used to estimate the GM variation due to vertical motion. The linear heave-pitch coupled 

equations are as Eq. 2.4.4.1 and 2.4.4.2: 

   33 33 33wm A z B z g A C z     

 35 35 35w CBA B g A L C        
 

 

   3 3 3 3cos cosFK FK D D

e eF t F t       , 

 

(2.4.4.1) 

   55 55 55yy LI A B gW GM C        

 53 53 53w CBA z B z g A L C z     
 

 

   5 5 5 5cos cosFK FK D D

e eF t F t       . 

 

(2.4.4.2) 

Here, z and  are heave and pitch displacement, m and Iyy are a ship mass and pitch inertia,  is 

density of fluid, and g is gravitational acceleration. The term Aw is water-plane area in calm water, 

LCB is a longitudinal position of centre of buoyancy from ship gravitational centre, and W is ship 

displacement. The terms Aij, Bij and Cij are the added mass, wave damping coefficient and restoring 

coefficient, respectively, and subscripts 3 and 5 indicate heave and pitch, respectively. The absolute 

values of F are amplitudes of external forces,  is a phase lag of the external force, and the 

superscripts FK and D indicate the Froude Krylov force and diffraction force, respectively. The 

derived heave and pitch are expressed as Eq. 2.4.4.3 and 2.4.4.4: 

 sinam e zz z t   , (2.4.4.3) 

 sinam e t      . (2.4.4.4) 

GM is a function of heave, pitch, wave amplitude a, and relative position between the ship and 
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wave G as Eq. 2.4.4.5: 

 , , ,a GGM GM z    . (2.4.4.5) 

Then, GM variation due to heave GMz and pitch GM are defined as Eq. 2.4.4.6 and 2.4.4.7: 
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(2.4.4.6) 
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(2.4.4.7) 

Since the GM variations are calculated in calm water, the relative position does not affect the result. 

The roll equation is as Eq. 2.4.4.8: 
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(2.4.4.8) 

Here, restoring moment in calm water and waves are calculated without changing sinkage and trim. 

Applying an averaging method as the same procedure of subsection 2.4.1 provides following 

averaged equations and an algebraic equation of parametric roll amplitude: 
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(2.4.4.9) 
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(2.4.4.10) 
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(2.4.4.12) 
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0 for 1, 3, ..., 11kb k  , (2.4.4.19) 
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  . (2.4.4.20) 

The terms ak are available in Eq. 2.4.1.11 to 2.4.1.18, which are the coefficients of parametric roll 

amplitude in longitudinal waves estimated by an averaging method without taking the effect of 

vertical motion into account. Figure 2.4.4.1 shows a comparison between the 1-dof averaging 

method proposed by Umeda et al., 3-dof averaging method, and experiment. In the calculation, the 

added mass, wave damping coefficient, restoring coefficient, and diffraction force of heave and pitch 

are derived by a linear ordinary strip method (OSM), which is introduced in subsection 3.3.2. The 

roll damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012) with the lift 
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component of Ikeda’s original method (Ikeda, 2004), the natural roll frequency and roll inertia 

moment are estimated from roll decay test by using a ship model of the C11-class post-Panamax 

container ship, and the restoring moment is estimated hydrostatically based on the Froude Krylov 

assumption by assuming that heave and pitch change quasi-statically. (See appendix subject ships 

about the ships, coefficients, and experiments.) The experimental results in regular heading waves 

are obtained from free running model experiment at the national research institute of fisheries 

engineering (NRIFE) (Morimoto, 2012). The 1-dof averaging method overestimates the experiment 

especially around Fn of zero. On the other hand, the 3-dof averaging method can explain the 

decrease of amplitude.  

In order to analyze the reason why the estimation of the parametric roll amplitude is improved, the 

GM variations in the calculations are shown in Fig. 2.4.3.2-3. Figure 2.4.3.2 shows that the GM 

variation in the 3-dof averaging method is smaller than that of the 1-dof averaging method. This 

decrease of GM variation is the reason of the good agreement around Fn of 0.0. Figure 2.4.3.3 shows 

the GM variation of each component used in the 3-dof averaging method. The GM variation due to 

pitch clearly decreases the GM variation in total. The heave and pitch motions in both calculations 

are shown in Fig. 2.4.3.4-5. They clearly show the difference of the vertical motions taken into 

account in each model. In the 1-dof averaging method, which is based on the quasi-static vertical 

motions, the heave motion is heavy but the pitch motion is not so. On the other hand, in the 3-dof 

averaging method, which is based on the dynamic vertical motions, no significant heave motion can 

be seen but the pitch motion is relatively large. Furthermore, the phase of the pitch motions are 

almost opposite in the two cases. These differences are the reason of the GM variation. 

Figure 2.4.4.1 also shows that the amplitude estimated by the 3-dof averaging method 

asymptotically approaches that of the 1-dof averaging method in higher speed cases. Firstly, 

comparisons of the GM variation, heave, and pitch in the case of Fn of –0.15 are shown in Fig. 

2.4.4.6-8. They show almost the same quantities with those of Fn of 0.0 as shown in Fig. 2.4.4.2, 4-5. 

The total GM variations considered in both models are shown with Fn in Fig. 2.4.4.9. The GMamp of 

the 3-dof averaging method is calculated as a sum of wave, heave, and pitch components with taking 

the phases into account. Although it clearly shows that the amplitude of the GM variation in the 3-

dof averaging method decreases in higher speed as shown in Fig. 2.4.4.9, the response curve of the 

3-dof approaches to the 1-dof as shown in Fig. 2.4.4.1. This can be explained by the nonlinearity of 

parametric roll responses. Figure 2.4.4.10 shows parametric roll amplitude calculated with changing 

GMamp and Fn based on the method of Umeda et al. Here, the value of GMmean is the same as that of 

the 3-dof averaging method with /L of 1.0 and H/ of 0.04 and GMamp is changed from 2.3 to 3.0 

[m], in which the GMamp in the 3-dof shown in Fig. 2.4.4.9 is included. This figure shows that the 

parametric roll amplitude strongly depends on the GMamp around Fn of 0.0. This is because the peak 

of parametric roll shifts towards the right as shown in Fig. 2.4.4.10 due to a hard-type GZ curve of 

the C11-class post-Panamax containership as shown in appendix subject ships. In this sense, it is 

very difficult to estimate parametric roll around the right part of unstable region (or a left part of an 

unstable region for a ship with a soft-type GZ curve). 
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Figure 2.4.4.1 Parametric roll amplitude with /L of 1.0 and H/ of 0.04 in heading waves. 

 

Figure 2.4.4.2 Comparison of the GM variation in the two calculations with /L of 1.0, H/ of 0.04, and Fn of 0.0. 

G/
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Figure 2.4.4.3 GM variation of each component with /L of 1.0, H/ of 0.04, and Fn of 0.0. 

 

Figure 2.4.4.4 Comparison of the heave in the two calculations with /L of 1.0, H/ of 0.04, and Fn of 0.0. 

G/

G/
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Figure 2.4.4.5 Comparison of the pitch in the two calculations with /L of 1.0, H/ of 0.04, and Fn of 0.0. 

 

Figure 2.4.4.6 Comparison of the GM variation in the two calculations with /L of 1.0, H/ of 0.04, and Fn of –0.15. 

G/

G/
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Figure 2.4.4.7 Comparison of the heave in the two calculations with /L of 1.0, H/ of 0.04, and Fn of –0.15. 

 

Figure 2.4.4.8 Comparison of the pitch in the two calculations with /L of 1.0, H/ of 0.04, and Fn of –0.15. 

G/

G/
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Figure 2.4.4.9 Comparison of the GM variations in the two calculations with /L of 1.0 and H/ of 0.04. 

 

Figure 2.4.4.10 Parametric roll amplitude with various GMamp and Fn. 
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2.5 Application to Design Criteria 

As Paulling (1972) stated, the vulnerability for parametric roll is examined by the occurrence 

probability of critical waves in the draft second check of the second generation intact stability 

criteria (IMO, 2015). The draft second check adopted the Grim’s effective wave (1961) to convert 

irregular incident waves to regular longitudinal waves. 

2.5.1 Parametric Roll in Irregular Waves 

In order to deal with parametric roll in irregular waves, Grim’s effective wave concept is useful. 

Generally speaking, since parametric roll is a resonance, three or more waves are required to grow 

the parametric roll amplitude and the required number of waves depends on the roll damping and 

magnitude of restoring variation. Hence, the important point is to estimate how high and frequent 

“continuous” waves can be expected in the irregular waves. In other words, a “single” steep wave is 

not so dangerous for parametric roll. In the draft second check, the Grim’s wave height is determined 

as a significant wave height of Grim’s effective wave spectrum as shown in subsection 2.5.1.1. Once 

the height of incident waves is determined, the parametric roll amplitude is obtained according to the 

roll model in regular waves. 

2.5.1.1 Grim’s Effective Wave Concept 

In the section 2.3, the governing equation of parametric roll in regular waves are introduced. In 

this section, how to convert short-crested irregular waves into an equivalent regular longitudinal 

wave is introduced based on the extended Grim’s effective wave concept (Umeda & Yamakoshi, 

1992). Grim proposed that how to convert long-crested irregular waves into an equivalent regular 

longitudinal wave (Grim, 1961), and Umeda and Yamakoshi (1992) expanded the concept to short-

crested irregular waves. 

The length of the equivalent regular longitudinal wave is equal to the ship length between 

perpendiculars Lpp. The effective wave amplitude ζae is calculated by the least squares method as Eq. 

2.5.1.1.1: 

 , ,ae pp aG L     , (2.5.1.1.1) 
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, (2.5.1.1.2) 

where λ is the wavelength and ζa is the wave amplitude. Then, a spectrum of irregular waves is 

converted to Grim’s effective wave spectrum as Eq. 2.5.1.1.3: 

     
2

, , , , ,eff pp pp wS L G L S       
 

, (2.5.1.1.3) 

where  is a wave propagating direction for each individual wave and Sw(, ) and Seff(, Lpp, ) 

are an incident wave spectrum and Grim’s effective wave spectrum, respectively. Here, the 
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significant effective wave height based on the ITTC spectrum is derives as Eq. 2.5.1.1.4 (IMO, 

2016): 

04.0043effH m ,  
2

2 0
, ,n

n eff ppm S L d d
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01 01173 exp 691w sS H T T       , 01 1.086 zT T , (2.5.1.1.4) 

where Heff is the Grim’s effective wave height, mn is n-th moment of Grim’s effective wave spectrum, 

Hs is a significant wave height [m] and Tz is a zero-crossing mean wave period [s]. The terms Hs and 

Tz are given from a wave scatter diagram in the North Atlantic Ocean in the draft second check. The 

zero-upcrossing mean wave encounter frequency, e , is defined as a zero-upcrossing mean 

frequency as Eq. 2.5.1.1.5: 
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(2.5.1.1.5) 

where u is the ship speed. On the other hand, the current draft uses Eq. 2.5.1.1.6 instead of Eq. 

2.5.1.1.5: 
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    , (2.5.1.1.6) 

where 
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
  . (2.5.1.1.7) 

Equation 2.5.1.1.7 is the dispersion relationship of deep water wave whose length is equal to the ship 

length. 

2.5.2 Estimation of Critical Ship Speed 

In above sections, averaging methods are treated as a tool to calculate parametric roll amplitude 

under a certain condition. However, the averaged equations can be regarded as equations that include 

all the solutions of parametric roll under all conditions, so that the averaged equations can provide 

more useful information than just an amplitude under a certain condition. In this section, critical ship 

speed is estimated by using the method of Umeda et al. (2004), Eq. 2.4.1.10 to 2.4.1.18. Here, the 

critical ship speed is defined as the ship speed with which parametric roll amplitude is maximized in 

a certain wave. The maximum parametric roll can appear when a partial derivative of parametric roll 

amplitude with a ship speed is zero. Then, the critical speed is obtained by solving the averaged 

equations under the condition that the partial derivative is zero. Let the equation of the amplitude, eq. 

2.4.1.10, be rewritten as Eq. 2.5.2.1: 
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Differentiating Eq. 2.5.2.1 with respect to a ship speed U yields: 

12 12
1

0 0

0k kk
k

k k

a A
A a k A

U U



 

 
 

 
  . (2.5.2.2) 

Applying a condition of stationary (i.e., that the partial derivative of A with respect to the ship speed 

is zero) yields: 
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0kk
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a
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U





 . (2.5.2.3) 

The only coefficients included in Eq. 2.5.2.1 that depend on the ship speed are the linear damping 

coefficient and the wave-encounter frequency. The partial derivatives of ak with respect to the ship 

speed are given in subsection 2.5.2.1. Solving Eq. 2.5.2.1 and 2.5.2.3 simultaneously gives the 

critical ship speed.  

Figure 2.5.2.1 shows validation of the critical speed for parametric roll by using ONR Flare 

topside vessel, a C11-class post-Panamax container ship, and ITTC A-1 container ship (used data are 

listed in appendix subject ships). In the calculation, the roll damping is estimated by Ikeda’s 

simplified method (Kawahara et al., 2012) with the lift component of Ikeda’s original method (Ikeda, 

2004), the natural roll frequency and roll inertia moment are estimated from roll decay test by using 

ship models, and the restoring moment is hydrostatically estimated in longitudinal waves based on 

Froude Krylov assumption by assuming that heave and pitch change quasi-statically. (See appendix 

subject ships about the ships, coefficients, and experiments.) Each calculated critical speed is the 

relevant peak value of the existing averaging method, so that the critical speed is not overlooked by 

using this method. 
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(a) 

 

(b) 

 
  

(c) 

 

(d) 

 
  

(e) 

 

 

Figure 2.5.2.1 

Comparison of parametric roll amplitudes and the critical 

ship speed in longitudinal waves: 

(a) ONR flare topside vessel with a wave steepness of 

0.04; 

(b) C11-class post-Panamax container ship with a wave 

steepness of 0.01; 

(c) C11-class post-Panamax container ship with a wave 

steepness of 0.02; 

(d) C11-class post-Panamax container ship with a wave 

steepness of 0.03; 

(e) ITTC A-1 container ship with a wave steepness of 

0.03. 
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2.5.2.1 Derivatives of Coefficients 

The coefficients that depend on the ship speed are the parametric roll frequency and the linear 

damping coefficient. Their derivatives with respect to the ship speed are as Eq. 2.5.2.1.1-2:  
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Here, k is the wave frequency. The roll damping consists of a term that is proportional to the ship 

speed C1 U and ship-speed-independent term C2. Then, the partial derivatives of ak with respect to 

the ship speed are as Eq. 2.5.2.1.3 to 2.5.2.1.10: 
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2.5.3 Effect of Wave Encounter Frequency 

The amplitude of the wave-induced GM variation in irregular waves cannot be expressed as a 

superposition of GM variation due to each individual wave, so that Grim’s effective wave (Grim, 

1961) was introduced to the current draft second check of the second generation intact stability 

criteria for parametric roll. GM variation in irregular waves is converted to that in equivalent regular 

waves. By using this concept, the vulnerability for parametric roll is estimated in regular 

longitudinal waves with changing her speed. For a simple criterion, the GM variation frequency is 

assumed to be equal to a wave encounter frequency that is estimated by using ship speed and wave 

frequency as Eq. 2.5.1.1.6 and 2.5.1.1.7. Since Grim’s effective wave has the same length as the ship 

length, the wave frequency is calculated by the dispersion relationship of deep water waves whose 

length is equal to the ship length. However, the Grim’s effective wave is not propagating waves. It is 

just a variation of wave surface whose profile is always along a cosine function. Thus, theoretically, 

the dispersion relationship cannot be applied to Grim’s effective wave and a mean value of wave-

encounter frequency should be calculated by using Grim’s effective wave spectrum. In order to 

examine the frequency effect, parametric roll amplitude is estimated by using the mean frequencies 

of Grim’s effective waves and the vulnerabilities derived by using the mean frequency and the 

current draft are compared. Finally, the results show good agreement, therefore it is shown that the 

assumption of the wave frequency is appropriate. In addition, it is shown that number of samples of 

operational conditions for ship courses should be at least 24. The above calculations are conducted 

based on the method of Umeda et al. (2004) as shown in section 2.4.1. 

The current draft criteria of the second check of the level 2 of the second generation intact 

stability criteria for parametric roll adopts the 1-dof roll model as Eq. 2.4.1.4. Parametric roll is one 

of the roll resonance, so that the wave encounter frequency governs the amplitude, which depends on 

the ship speed and course. For simple criteria, the IMO adopted calculation only in irregular-

longitudinal waves with several ship speeds uk as Eq. 2.5.3.1: 

 cos 0,1,2,...,k max

k
u u k n

n


 
  

 
. (2.5.3.1) 

Here, umax is the ship service speed and a positive and negative uk indicates that the ship runs in 

following and heading waves, respectively. The ship speeds in the current draft are estimated as 

component speeds of her service speed in the wave propagating direction based on the assumption 

that a ship runs with her service speed in different directions and each course is chosen with the 

same probability. The reason why only a longitudinal wave is considered is that GM variation due to 
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waves has almost its maximum value in longitudinal waves. The wave properties are estimated by 

Grim’s effective wave concept as shown in subsection 2.5.1.1. Therefore, vulnerability for 

parametric roll is examined in regular longitudinal waves by systematically changing her speed as 

Eq. 2.5.3.1 (IMO, 2015): 

 
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k k
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k k i i k
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C u W C u
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 . (2.5.3.3) 

Here, C2 is an occurrence probability of irregular wave case that is judged as dangerous and is to be 

used an index of the vulnerability criteria. The term n is a number of samples of operational 

conditions. The term Wi is the occurrence probability of i-th wave case and N is the number of wave 

cases. The term Ci(uk) is one when the parametric roll amplitude exceeds 25° in i-th case of waves 

with ship speed uk and otherwise is zero. 

The subject ship is the C11-class post-Panamax which suffered parametric roll in actual seas 

(France et al., 2003) and the ship data and calculation conditions are shown in appendix subject ships. 

Figures 2.5.3.1 and 2.5.3.2 show the comparison of C2 in Eq. 2.5.3.2 and C2k(uk) in Eq. 2.5.3.3 

derived by using the mean frequency of Grim’s effective wave and wave frequency used in the draft 

second check. Here, the circles indicate results derived by using the mean frequency of Grim’s 

effective wave and the x-marks do those derived by using the current draft second check. Figure 

2.5.3.1 shows good agreement between the two for larger n. It clarifies that n = 6, which was 

tentatively adopted by the IMO (IMO, 2015), is not sufficient because the C2 value is clearly larger 

than the C2 values of more larger n, which can be more reliable. For n = 12 and 18, the discrepancy 

appears large, so that it is finally concluded that n should be at least 24 and the index of 0.06 for C2 

should be reduced since this ship has to fail to pass the level 2. Figure 2.5.3.2 shows a slight shift of 

the peak of the current draft second check towards lower speed but it can be said that the difference 

between the two is not significant.  

In order to investigate the reason why the simple assumption provides satisfactory approximations 

shown in Fig. 2.5.3.1 and 2.5.3.2, the mean frequencies of Grim’s effective waves and the frequency 

assumed in the draft second check are compared in Fig. 2.5.3.3-5. Here, the significant wave heights 

and mean wave frequencies of Grim’s effective waves are calculated for all sea states appearing in 

the North Atlantic. Calculated conditions in Fig. 2.5.3.3-5 are zero forward speed, the service speed 

in heading waves and the service speed in following waves. The horizontal axis indicates the 

nondimensionalized frequency with the encounter frequency assumed in the draft second check for 

each calculated condition. So, the gray vertical line, which is located at one in the horizontal axis, 

indicates the frequency assumed in the draft second check. For more than 2.0 [m] height effective 

waves in Fig. 2.5.3.3-5, the mean frequency is distributed only near that of the draft second check. 

This guarantees that the simple assumption that the wave frequency of /Lpp = 1 can represent the 

GM variation frequency. The reason of the agreement of encounter frequency shown in Fig. 2.5.3.3-
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5 can be explained by Fig. 2.5.3.6. It indicates that the transfer function, [G(, Lpp, ]2, has the 

largest peak around the wave frequency of /Lpp = 1 and can also explain the groups around 

nondimensionalized wave encounter frequencies of 1.5, 2.0, and 2.5 in Fig. 2.5.3.3-5. 

 

Figure 2.5.3.1 Comparison of C2 with number of samples of operational condition. 
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Figure 2.5.3.2 Comparison of C2k(uk) when n = 48. 

 

Figure 2.5.3.3 Relationship between the mean wave frequency and wave height of Grim’s effective wave with zero 

forward speed. 
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Figure 2.5.3.4 Relationship between the mean wave frequency and wave height of Grim’s effective wave with 

service speed in heading waves. 

 

Figure 2.5.3.5 Relationship between the mean wave frequency and wave height of Grim’s effective wave with 

service speed in following waves. 
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Figure 2.5.3.6 Transfer function of Grim’s effective wave spectrum. 

2.6 Conclusions 

In this chapter, parametric roll is investigated by using an averaging method. The conclusions are: 

1. Adding superharmonic components to the assumed form of solution in the averaging method 

improves the estimation accuracy; 

2. Averaged equations is derived by using the actual GZ curve in calm water, and the effect of 

calm-water GZ on parametric roll response is revealed; 

3. Taking account of linearly-estimated vertical motions resolves overestimation of the model 

experiment especially around low speed region; 

4. The critical ship speed for parametric roll is estimated by using averaging method; 

5. The wave encounter frequency used in the draft second check of the second generation intact 

stability criteria (IMO, 2015) is verified by using the mean encounter frequency of Grim’s 

effective wave spectrum. 

Wave Frequency / Wave Frequency of/Lpp = 1
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CHAPTER 3 LOW SPEED MODEL 

3.1 Introduction 

In chapter 2, a simplified 1-dof parametric roll model is used. To investigate more precise 

response of parametric roll, multi-degree-of-freedom models is proposed in this chapter. For 

example, Hamamoto and Akiyoshi (1988) proposed the 6-dof model based on Froude Krylov 

assumption and slender body theory, De Kat and Paulling (1989) took diffraction forces into account. 

They focused on not only parametric roll but also pure loss of stability and broaching-to, so that their 

models were not specialized ones to estimate parametric roll.  

Since parametric roll is caused by the variation of restoring coefficients, estimation of the 

variation is essential to obtain accurate results. Boroday (1990) showed that the restoring variation 

could be estimated by adding added mass terms based on a strip theory to the Froude Krylov forces 

by comparing with a captive model experiment. From this point of view, Hashimoto and Umeda 

(2010) proposed a heave-roll-pitch coupled 3-dof to estimate parametric roll in longitudinal waves. 

The 3-dof model took radiation and diffraction effects as a function of an instantaneous heel angle 

into account. The results showed good agreement with towing model experiments. 

However, a ship encounters waves from various directions in actual seas, so that coupling with 

sway and yaw motions should not be neglected. Thus, parametric roll in oblique waves have to be 

investigated. Based on the well validated 3-dof model (Hashimoto & Umeda, 2010), a sway-heave-

roll-pitch-yaw coupled 5-dof model is proposed in this chapter. For oblique waves, validation efforts 

for existing numerical models (Sanchez & Nayfeh, 1990b; Neves & Valerio, 2000) have not been 

sufficient so far, partly because a model experiment requires a seakeeping and manoeuvring basin 

and partly because coupling with manoeuvring motion including rudder actions are unavoidable. 

Further, the C11-class post-Panamax container ship suffered parametric roll under heave-to 

condition (France et al., 2003), so that manoeuvring with low speed should be considered. 

Based on these understandings, in this study, the 5-dof model is proposed based on a low-speed 

manoeuvring model in oblique waves and is validated with newly executed model experiment in the 

seakeeping and manoeuvring basin of National Research Institute of Fisheries Engineering (NRIFE). 

The comparison between the 5-dof model and experiment in regular oblique waves is performed in 

section 3.5, while validation with experiment in irregular oblique waves will be a subject of future 

work. 

3.2 Mathematical Model 

The coordinate systems are shown in Fig. 3.2.1. The space-fixed coordinate system is denoted by 

O1- the coordinate system moving with a constant speed of U and course of  is denoted by O2-

XYZ and the body-fixed coordinate system is denoted by G-xyz. Here, we assume that a wave 

propagates in the direction of the O1axis and the ship oscillates around O2-XYZ. The point G 

indicates the centre of ship mass and O1G0 indicates the initial depth of the centre of ship mass. The 

ship’s motions around O2-XYZ are denoted by xi: surge (i = 1), sway (i = 2), heave (i = 3), roll (i = 4), 
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pitch (i = 5) and yaw (i = 6). The coupled sway-heave-roll-pitch-yaw motions are modelled as Eq. 

3.2.1:  
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, (3.2.1) 

where m: ship mass, Ixx: moment of inertia of ship mass in roll, Iyy: moment of inertia of ship mass in 

pitch, Izz: moment of inertia of ship mass in yaw, t: time and Fj: force or moment in the j direction. A 

dot denotes differentiation with time. Here, to avoid the estimation of added resistance due to waves, 

we assume that the surge motion x1 is zero, i.e. the ship runs with a constant velocity U. The forces 

are modelled according to 

B FK EG R D MLS DEL

j j j j j j j jF F F F F F F F       , (3.2.2) 

where the superscript B indicates the component due to hydrostatic pressure, FK the component due 

to incident wave pressure, EG the component due to gravity, R the radiation component, D the 

diffraction component, MLS the hull force due to manoeuvring motion and DEL the force due to 

rudder action. 

 

Figure 3.2.1 Coordinate systems 

3.3 Modeling of External Forces 

The external forces are divided into the seven components, which are explained following 

subsections, as Eq. 3.2.2. The buoyancy, Froude-Krylov, and gravitational forces are shown in 

subsection 3.3.1. The radiation and diffraction forces are shown in subsection 3.3.2 based on a 
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seakeeping theory. However, since the roll damping moment is dominated by the viscous effect, the 

roll damping and inertia coefficients are estimated by roll decay test as shown in subsection 3.3.3. 

The manoeuvring hull and rudder forces are shown in subsection 3.3.4. 

3.3.1 Buoyancy and Froude Krylov Forces 

Assuming that the incident waves are sinusoidal, their elevation, w, and wave pressure, p, are 

given by 

2

cos k
w a kt

g


   

 
  

 
, (3.3.1.1) 

 
2 2

exp cosk k
a w kp g t

g g

 
     

   
      

   
, (3.3.1.2) 

where : water density, a: wave amplitude, g: gravitational acceleration, ωk: wave circular 

frequency and t: time. Here, water pressure is adjusted to be zero at the wave surface, although this 

is a higher-order correction under the assumption of small wave steepness.  

The sectional submerged hull contour, SH, can then be determined by 

1 2 3 4 5 6( , , , , , , ; )H H wS S x x x x x x x . (3.3.1.3) 

By integrating the water pressure on the sectional submerged hull contour, the buoyancy, Fj
B, and 

Froude Krylov forces, Fj
FK, can be calculated as Eq. 3.3.1.4 and 3.3.1.5: 

H

B

j j
L S

F g dx n ds    , (3.3.1.4) 

H

FK

j j
L S

F pn dsdx   , (3.3.1.5) 

where L indicates the range of the hull in the x direction and nj is the vector normal to the hull 

surface. The gravitational force, F3
EG, in the vertical direction is given by 

3
EGF mg . (3.3.1.6) 

3.3.2 Radiation and Diffraction Forces 

When parametric roll occurs, the frequency of roll is definitely smaller than the wave encounter 

frequency. Thus the hydrodynamic coefficients could depend on not only the frequency but also the 

instantaneous roll angle.  Thus, the radiation and diffraction coefficients are calculated at each roll 

angle based on the strip theory. The radiation force, Fi
R, can be calculated as Eq. 3.3.2.1: 

     
6

4 4 4

2

R

i ij j ij j ij j

j

F A x x B x x C x x


      , (3.3.2.1) 

where Aij, Bij and Cij are the added mass, wave damping coefficient and restoring coefficient, 

respectively. If the ship motions are harmonic, the terms in Cij in analytical formulae for determining 
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the ship motions are equivalent to the terms in Aij divided by e
2. If we do not replace the parts of Aij 

with Cij, we could face difficulty in accurate calculation when e
2 tends to zero. Actually, Lee and 

Kim (1982) did not use the Cij to estimate motion of a ship who had an asymmetric submerged hull. 

This was because they considered a damaged ship, so that the encounter frequency was not so small. 

By extending the equations without coupling between vertical and horizontal motions (Takaishi & 

Kuroi, 1977) to those with coupling, the following equations are obtained: 

22 22H
L

A A dx  , 23 23H
L

A A dx  , 24 24H
L

A A dx  , 25 23H
L

A xA dx  , 

26 22H
L

A xA dx  , 32 32H
L

A A dx  , 33 33H
L

A A dx  , 34 34H
L

A A dx  , 

35 33H
L

A xA dx  , 36 32H
L

A xA dx  , 42 42H
L

A A dx  , 

43 43H
L

A A dx  , 45 43H
L

A xA dx  , 46 42H
L

A xA dx  , 

52 32H
L

A xA dx  , 53 33H
L

A xA dx  , 54 34H
L

A xA dx  , 

2

55 33H
L

A x A dx  , 
2

56 32H
L

A x A dx  , 62 22H
L

A xA dx  , 

63 23H
L

A xA dx  , 64 24H
L

A xA dx  , 
2

65 23H
L

A x A dx  , 

 

2

66 22H
L

A x A dx  , (3.3.2.2) 
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H H xL
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H H xL
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f
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f
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H H H xL L
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f
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H H H xL L
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 32 32 32

f
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H H xL
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f
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 34 34 34

f

a

x

H H xL
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B B dx U A  ,  43 43 43

f
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B B dx U A  , 
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2 2

56 32 32 32
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H H H xL L
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66 22 22
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f
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x

H H H xL L
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where 

H

Hij

Hij j i
S

B
A i n ds 


    . (3.3.2.5) 

Here,j is the velocity potential of the two-dimensional flow under hull and linear free surface 

conditions. These coefficients are calculated as  is  for j = 2, 4 and 6 and as e is e for j = 3 and 

5 This is because upon the occurrence of parametric roll, the frequency of lateral motion is 

approximately  rather than e. The added mass and damping in roll are estimated by using roll 

decay test as shown in subsection 3.3.3 because the viscous effect is dominant in roll motion. The 

diffraction force, Fj
D, can be calculated as Eq. 3.3.2-5 (Salvesen et al., 1970): 

    4 4cosD D D

j a kj e kjF F x t x     , (3.3.2.6) 

where 

D D

kj kjF E , (3.3.2.7) 

argD D

kj kjE  , (3.3.2.8) 

( )
H

D a
kj k D j

L S

g
E dx i U n ds

i x

 
 




 

  , (3.3.2.9) 

2

cosk
e k U

g


    . (3.3.2.10) 

Here, D is the diffraction potential of two-dimensional flow under the hull and linear free surface 

conditions in incident waves. All the above radiation and diffraction forces are calculated for the hull 
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with the instantaneous heel angle at every time step of the numerical simulation in time domain. 

3.3.3 Estimation of Roll Damping 

The roll damping coefficients and inertia are estimated as Eq. 3.3.3.1 and 3.3.3.2: 

2

44
2

corr

xx

T T
I A W GM





 
    

 
, (3.3.3.1) 

3

44 4 4 4B x x x   , (3.3.3.2) 

where Tcorr is the correction factor of the roll inertia due to the nonlinearity of the added inertia. A 

roll decay test without advance speed is conducted to obtain the roll damping coefficient and roll 

inertia for the 5-dof numerical simulation.  

3.3.4 Manoeuvring Hull and Rudder Forces 

Since parametric roll occurs at low speeds, it is desirable to estimate manoeuvring forces with a 

mathematical model suitable for a situation where the ship’s forward velocity is comparable to its 

lateral velocity (Umeda & Yamakoshi, 1989). The hull manoeuvring force, Fi
MLS, can be estimated 

as the sum of linear lift components YL and NL and non-linear cross-flow drag components YC and 

NC: 

2

MLS

C LF Y Y  , (3.3.4.1) 

6

MLS

C LF N N  , (3.3.4.2) 

where 

 
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/2
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L

C D

L
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

    ,  (3.3.4.3) 

 
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L

C D

L

N d C v rx v rx xdx


    ,  (3.3.4.4) 

L v rY Y v Y r  ,  (3.3.4.5) 

L v rN N v N r  ,  (3.3.4.6) 

6 2 6cos sinu U x x x  , 6 2 6sin  cosv U x x x   , 6r x ,  (3.3.4.7) 

1
'

2
v pp vY L d u Y

 
   
 

,  (3.3.4.8) 
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 
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 

, (3.3.4.9) 
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21
'

2
r pp rY L d u Y

 
   
 

, (3.3.4.10) 

31
'

2
r pp rN L d u N

 
   
 

. (3.3.4.11) 

Here, d is the mean draft of the ship, and u and v are the surge and sway velocity defined in the 

body-fixed coordinate system G-xyz, respectively. CD is the cross-flow drag coefficient when the 

ship is laterally towed.  

The rudder-induced force, Fi
DEL, is calculated as Eq. 3.3.4.12 and 3.3.4.13: 

  2

2

1
1

2

DEL

H R RF a A u f    , (3.3.4.12) 

  2

6

1

2

DEL

R H H R RF x a x A u f    , (3.3.4.13) 

where 

6PK x   ,  (3.3.4.14) 
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8
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K
u u
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


  ,  (3.3.4.15) 

(1 )p pu w U   (3.3.4.16) 

p

p p

u
J

n D
 ,  (3.3.4.17) 

2

TK aJ bJ c   , (3.3.4.18) 

Here, : rudder angle, aH: the interaction factor for rudder force between hull and rudder, xH: the 

longitudinal position of rudder force due to interaction between hull and rudder, xR: the longitudinal 

rudder position, AR: the rudder area, f: the hydrodynamic rudder lift slope, KP: the rudder gain, up: 

the propeller inflow velocity, uR: the rudder inflow velocity, np: the propeller revolution number, DP: 

the propeller diameter, KT: the thrust coefficient, and w: the wake fraction ratio between propeller 

and rudder positions. From Eq. 3.3.4.15 and 3.3.4.17-18, the rudder inflow velocity can be rewritten 

as Eq. 3.3.4.19: 

2

8
1R w p

b c
u u a

J J




 
    

 
 

2 2

2

8
1

p p p p

w p

p p

b n D c n D
u a

u u




 
     

 

 

 

 



CHAPTER 3 LOW SPEED MODEL 

 

-56- 

 

 2 2 2 28
w p p p p p p pu au bn D u c n D


    . 

 

(3.3.4.19) 

 

The flow straightening effect is ignored because captive model experiment related to rudder forces 

has not been conducted for a subject ship shown in section 3.4. 

3.4 Model Experiment 

To validate the numerical model for parametric roll in oblique waves, experiments using a 1/48.8 

scaled model of the 154 m-long ONR flare topside vessel were performed at the seakeeping and 

manoeuvring basin of the NRIFE. The technique of free running model experiment is shown in 

appendix subject ships. The principal particulars and body plan of the vessel are presented also in 

appendix subject ships. 

The coefficients of roll damping and inertia are shown in Tab. 3.4.1. The comparison of roll decay 

between experiment and numerical simulation by the 5-dof model is shown in Fig. 3.4.1. The chain 

line indicate the roll decay in the model experiment. The time series of roll decay shows good 

agreement when the roll amplitude is relatively large. 

The system parameters for manoeuvring forces, such as CD and Yv, can be estimated by captive 

model experiment of a ship. In this study, the coefficients measured in the circular motion tests of a 

C11-class post-Panamax container ship, whose hull form is similar to the ONR flare topside vessel, 

are used. Linear coefficients could be estimated by using the ship aspect ratio k, the block coefficient 

Cb and Lpp/B (Yoshimura et al., 2009). The cross-flow drag coefficient CD is strongly dependent on 

Lpp/d (Yoshimura et al., 2009). As shown in Tab. 3.4.2, the differences between these parameters for 

the ONR flare topside vessel and C11 class post Panamax container ship are not large. The values of 

hydrodynamic coefficients for roll manoeuvring forces are shown in Tab. 3.4.3 (Kubo, 2012). 

The free running experiment was performed for regular stern quartering waves. The wavelength to 

ship length ratio was 1.25 and the wave steepness was 0.03. As shown in Fig. 3.4.2, under these 

wave conditions, the GZ curve of the ONR flare topside vessel clearly changes due to the 

longitudinal waves. The auto pilot course ranged from 0° in the wave direction to –70° but no 

parametric roll occurred for the auto pilot course of –70°. The propeller rotated at 143 rpm in the 

model scale, which corresponds to Fn of 0.05 in calm water.  

Table 3.4.1 Experimentally estimated roll damping coefficient of the ONR flare topside vessel in full scale. 

Item ONR flare topside vessel unit 

Natural roll period: T 21.32 s 

Correction factor of roll inertia: Tcorr 1.0 s 

Linear damping:  2.509 × 10-2 s-1 

Cubic damping:  10.39 s 
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Figure 3.4.1 Comprison of roll decay of the ONR flare topside vessel in model scale. 

Table 3.4.2 Comparison of the geometrical parameters for the ONR flare topside vessel and C11-class post-Panamax 

container ship. 

Item C11-class post-Panamax container ship ONR flare topside vessel 

k 0.0374 0.0439 

Cb 0.536 0.559 

Lpp/B 7.84 6.55 

Lpp/d 26.8 22.8 
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Table 3.4.3 Experimentally estimated manoeuvring coefficients of the C11-class post-Panamax container ship. 

Item 
C11-class post-Panamax 

container ship 
unit 

Yvʹ −0.207  

Yrʹ 0.0419  

Nvʹ −0.110  

Nrʹ −0.0238  

CD 0.788  

aH 0.25  

xH -66.2 m 

xR -71.49 m 

AR 28.64 m2 

f 2.521  

w 1.0  

1-wP 1.0  

DP 4.97 m 

KT(J) 0.6336 -0.2693 J -0.09617 J2  

    

 

Figure 3.4-2 GZ variations of the ONR flare topside vessel in longitudinal waves with wavelength to ship length 

ratio of 1.25 and wave steepness of 0.03 in full scale. 
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3.5 Validation 

The comparison between the numerical and experimental results for the steady amplitude for each 

condition is shown in Fig. 3.5.1. The numerical calculations are performed under the following 

conditions: the Froude number is 0.0365, which is the mean value of the ship speed observed in the 

free running experiments. The time series results of roll, pitch and heading angle with the auto pilot 

course of −30° of the experiment and calculation are shown in Fig. 3.5.2 and 3.5.3, respectively. In 

these figures, the roll period is twice the pitch period, which is equal to the wave encounter period, 

and the roll period is nearly equal to the ship natural roll period. Thus, this can be characterized as a 

typical parametric roll. The discrepancy between the auto pilot course and the heading angle in the 

experiment suggests the possible existence of a wave drift yaw moment. 

As shown in Fig. 3.5.1, both in experiment and calculation, the largest roll amplitude occurs at the 

ship heading different from the wave direction. However, when the heading angle increases further, 

the roll amplitude decreases. This is because of the shift of encounter frequency together with the 

reduction in the roll restoring variation. Comparison of Fig. 3.5.2 and 3.5.3 shows that there are 

discrepancies between the experimental and calculated results. One reason for this is that the heading 

angles that determine the amplitude of restoring variation are not estimated well. Here, the ‘heading 

angle’ means the mean value of the sum of χ and x6. Therefore, the parametric roll amplitudes are 

plotted as a function of the heading angle in Fig. 3.5.4. The results indicate a better agreement 

between the experiment and calculation than that the results in Fig. 3.5.1 do. However, the calculated 

values still overestimate the measured values.  

The overestimation of the experimental values observed in Fig. 3.5.4 reveals that the difference in 

the heading angle is just one of the reasons for the overestimation of the parametric roll amplitudes. 

As shown in Fig. 3.5.5, ξ-η motions in experiment and calculation are then compared in order to find 

the origin of the discrepancy between the experimental and calculated roll values. The horizontal and 

vertical axes in Fig. 3.5.5 represent the longitudinal and lateral directions of the model basin, 

respectively, if the real scale length is used. The incident waves propagate from left to right. The 

trajectory in calculation is shifted in the direction opposite to wave propagation. This discrepancy 

could result in the inaccuracy of the calculated roll moment coupled with sway motion. There may 

be several reasons why the sway motion is not estimated well, with wave drift force and numerical 

drift being the most probable ones. Therefore, the wave drift force, which acts in the direction of 

wave propagation, is not considered in our model. However, since there is no restoring force in the 

sway direction, numerically obtained sway motion can occasionally diverge even in regular waves. 

This is not based on the physics of the problem but is rather a purely numerical issue (Fukasawa, 

1990). However, as shown in Fig. 3.5.5, in our model, the sway motion does not diverge because the 

manoeuvring force is taken into account. 

To further investigate this issue, numerical simulation using the measured surge, sway, and yaw 

motions is performed. The results with the auto pilot course of –30° are shown in Fig. 3.5.6. Here, 

the initial values used in the simulation are set to be the measured values. The agreement in the roll 

amplitude with the experimental results is slightly better than those obtained by the 5-dof simulation, 

while the pitch motion is in good agreement with the experimental result. This means that while an 
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improvement of the prediction accuracy of sway and yaw motions in waves under parametric roll 

conditions will enable a more accurate estimation of parametric roll, the amplitude will still be larger 

than experimental results. Resolving this issue could be one of the future tasks. 

In addition to comparisons on time history, the Fourier series expansions of the time series of the 

roll in the numerical and experimental results in order to identify the dominant harmonics of roll 

motion as shown in Fig. 3.5.7. In the calculation, the amplitude at the frequency of half the wave 

encounter frequency is dominant and those at the other frequencies are negligibly small. The same 

conclusion can be applied also for the experiment but only with smaller auto pilot course. For larger 

auto pilot course, the harmonic element is dominant in the experiment. This could suggest that the 

experiment for large heading was not realised in steady condition assumed in the calculation. This 

could be a clue for the further study to validate a numerical model for oblique waves. 

 

Figure 3.5.1 Steady amplitude of parametric roll in oblique waves as a function of auto pilot angle. 
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Figure 3.5.2 Time series of roll, pitch and heading angle in experiment with the auto pilot course of −30° in full scale. 

 

Figure 3.5.3 Time series of roll, pitch and heading angle in calculation with the auto pilot course of −30° in full scale. 
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Figure 3.5.4 Steady amplitude of parametric roll in oblique waves as a function of heading angle. 

 

Figure 3.5.5 Ship trajectories with the auto pilot course of −30° in full scale. 




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Figure 3.5.6 Roll and pitch motion comparisons in full scale. 
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Figure 3.5.7 Roll amplitde components, which are normalized with that of the frequency of 0.5e, for various 

frequencies as a result of the Fourier sries expansion of the time histories in the calculation and 

experiment. 

3.6 Conclusions 

Parametric roll in regular oblique waves was realized in free running model experiments of the 

ONR flare topside vessel, and its maximum amplitude was about 20°. The 5-dof numerical model 

captures some qualitative tendencies in the experiment but the estimated amplitudes are larger than 

the experiment by about seven degrees. The numerical model used here includes the nonlinear 

Froude Krylov components, radiation and diffraction components as functions of roll angle, and 

eeeee
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manoeuvring forces. The roll amplitude decreases with increasing heading angle but the largest roll 

occurs for non-longitudinal waves in both experiment and calculation. Following this preliminary 

validation attempt, wider validation studies of parametric roll in oblique waves will be performed 

with different ships and different heading waves in the near future. 
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CHAPTER 4 EFFECT OF ENCOUNTER FREQUENCY 

4.1 Introduction 

Parametric roll is known as a ship roll motion that is excited by a periodic variation of coefficients 

of a roll restoring moment and occurs in an unstable region of the Mathieu equation. As for a ship 

roll motion in longitudinal waves, the unstable regions appear when a natural roll frequency, , is 

almost equal to an integer multiple of half the encounter frequency, e, hence e: ≈ 2:n. In this 

dissertation, parametric roll in the unstable region of e: ≈ 2:n is called 2:n parametric roll. The 

widely-known parametric roll is expressed as 2:1 parametric roll in this rule. 

There are few researches about the 2:2 parametric roll in the literature, so that our recognition 

about ship motion in this region is not enough from the view point of actual ship motion. Ogawara 

and Miura (1960) conducted captive model experiment and showed that 2:n parametric roll occurred 

in regular following waves. Sanchez and Nayfeh (1990a) closely investigated 2:1 and 2:2 parametric 

roll by using nonlinear dynamical approaches based on 1-dof roll model. Vilensky (1995) revealed 

that the 2:2 parametric roll is not so dangerous relative to the 2:1 parametric roll in purely following 

waves; however, the 2:2 parametric roll in stern quartering waves can cause a large roll motion due 

to the combination of the periodic GZ variation and direct exciting moment. Unfortunately, his study 

is not sufficiently accessible to the public. The 2:n parametric roll (n > 2), in other words, the higher 

advance speed region does not appear to have been investigated enough. Spyrou (2000) investigated 

the 2:1 and 2:2 parametric roll with different wave encounter frequencies by using the Mathieu-type 

nonlinear differential equation with a nonlinear roll damping. He defined very quick capsize events 

that occurred around a wave crest as a pure loss of stability. However, he mentioned that there was 

no practical reason to divide parametric roll and pure loss of stability. Moreover, Spyrou (2005) 

estimated that when n is greater than 2, 2:n parametric roll rarely happens mainly because the ship 

should run at high speed to achieve such a small encounter frequency and then the roll damping 

becomes too large to cause parametric roll. However, it is no more than a presumption based on the 

Mathieu-type equation.  

In order to identify the 2:n parametric roll regions, the Mathieu-type 1-dof model for parametric 

roll, which is introduced in section 2.3, was used, and the 2:n parametric roll was of course 

confirmed. Then, actual ship roll motions in wide encounter frequency region were investigated with 

free running model experiments while increasing the ship advance speed. The 2:2 parametric roll 

was observed in the experiment; however, 2:3 and 2:4 parametric rolls were not observed as Spyrou 

(2005) presumed. Instead, a phenomenon which can be regarded as pure loss of stability was 

observed in the experiment with high ship advance speed. This indicates that the ship roll motion is 

not governed by the Mathieu-type equation when she runs with high speed in following waves. This 

might be because the coupling effect of surge motion is essential under such a condition. To explain 

experimentally observed roll motion, the nonlinear Mathieu equation proposed by Umeda et al. 

(2004) and a manoeuvring-force-based model were used. The nonlinear Mathieu equation can 

predict parametric roll well as shown in chapter 2; however, it could not estimate the roll motion 
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with higher advance speed. Then, the manoeuvring-force-based 4-dof model proposed by Kubo et al. 

(2012) was used to estimate ship motion with higher speed. This model was well validated by model 

experiment of pure loss of stability. Finally, it is experimentally and numerically revealed that 

parametric roll and pure loss of stability can be distinguished and there is a difference on their 

mechanism. 

4.2 2:n Parametric Roll Region 

Parametric roll in regular longitudinal waves has been estimated by the Mathieu-type models as 

introduced in section 2.3. In this section, the 1-dof model, Eq. 2.3.1, is also used to estimate 2:n 

parametric roll and is rearranged into Eq. 4.2.1: 

 
 2

,
2 , 0

waveGZ t

GM



         . (4.2.1) 

Here, GZwave is the sum of the GM variation in waves, GMvari, and GZ in calm water, GZcalm and is 

estimated based on the Froude Krylov assumption. The roll damping coefficients are estimated based 

on the Ikeda’s simplified method (Kawahara et al., 2012) with the lift component of Ikeda’s original 

method (Ikeda, 2004) as shown in section 5.1. Equation 4.2.1 is numerically solved by the Runge-

Kutta method with an initial condition is as follows: roll angle is –1.0 [deg], roll angular velocity is 

0.0 [deg s-1], and ship gravitational centre locates at a wave trough when t = 0. The incident wave is 

a following regular longitudinal wave whose length is equal to the ship length and steepness is 0.07. 

The calculated maximum and minimum roll angle under steady states are shown in Fig. 4.2.1. The 

2:1, 2:2, 2:3, and 2:4 parametric rolls are obtained by the calculation. The examples of time series of 

2:n parametric roll responses when the ship meets two waves are shown in Fig. 4.2.2. It shows that 

the ship rolls n times in two waves. Here, the 2:1 and 2:3 parametric rolls have twice the period of 

the wave encounter one and show the same magnitude of roll in port and starboard side. In contrast, 

the 2:2 and 2:4 parametric rolls have the same period as the wave encounter one and show a certain 

shift in roll. This shift is derived from the term whose coefficient periodically varies. For example, 

substituting roll whose period is the same as the wave encounter one,  cos eA t  , into the 

term that causes parametric roll,  cos eM t  , a constant term is derived as Eq. 4.2.2: T = Te 

     cos cos 1 cos 2
2

e e e

M A
M t A t t       . (4.2.2) 

This constant term yields the shift in the 2:2 and 2:4 parametric rolls. In contrast, if roll whose 

period is twice as the wave encounter one is substituted into the term, no constant term can be 

obtained, so that the 2:1 and 2:3 parametric rolls are symmetrical. 
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Figure 4.2.1 Maximum and minimum roll angle estimated by the Mathieu-type model. 
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Figure 4.2.2 Examples of 2:n parametric roll responses in time series. 
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4.3 Mathematical Model 

Ship motions in following waves are estimated by using the surge-sway-yaw-roll coupled 4-dof 

model proposed by Kubo et al. (2012). The coordinate systems are shown in Fig. 4.3.1. The 4-dof 

model is based on a ship maneuvering model as Eq. 4.3.1: 

       ; , , ,x p corr W G G Hm m u T u n R u X t X        , 

     , , , , ;y x W G G p H Rm m v m m u r Y t u n Y Y         , 

   , , , , ;zz zz W G G p H RI J r N t u n N N      , 

   , , , , ;xx xx x H W G G p H RI J p m z u r K t u n K K        
 

 

    
4 3

, , , ,
4

xx xx eff G G

a b
I J W GZ t

T
       

 
     

 

. 

 

(4.3.1) 

Here, a space-fixed coordinate system is denoted by O–, and a body-fixed coordinate system is 

denoted by G–xyz with setting the downward direction as positive in  and z. The terms u, v, r, and p 

are surge, sway, yaw, and roll velocities, respectively. The terms m, Ixx, and Izz are a ship mass and 

inertia moments in roll and yaw, respectively, and mx, my, Jxx, and Jzz are added masses in surge and 

sway and added inertia moments in roll and yaw, respectively. The term T(u; np) is an effective 

propeller thrust, np is a propeller revolution number, R(u) is a ship resistance, and corr is an 

empirical correction factor of a diffraction effect proposed by Ito et al. (2014). The terms a and b are 

linear and quadratic roll extinction coefficients, W is a ship displacement, GZ is a ship roll restoring 

arm estimated based on Grim’s effective wave concept (Grim, 1961), and eff is the effective wave 

elevation. The coefficients with subscripts G, W, H, and R represent the forces concerned with 

gravity, wave, hull reaction, and rudder, respectively. 

 

Figure 4.3.1 Coordinate systems 

4.4 Modelling of External Forces 

The gravity component, i.e. the roll restoring moment, is estimated by using Grim’s effective 

wave concept (Grim, 1961) as shown in subsection 2.5.1.1. The GZ in waves for Grim’s effective 

wave is estimated by changing heave and pitch quasi-statically, i.e. heave and pitch always comply 

equilibrium in waves for each wave amplitude and heel angle. 

The wave induced forces are estimated by the slender body theory with low encounter frequency 
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assumption (Umeda et al., 1995b) except surge force, which is estimated by Froude Krylov forces 

with its empirical correction (Ito et al., 2014). 

The added masses except that of roll are estimated by using Motora’s charts (1959; 1960a; 1960b) 

and the roll inertia and extinction coefficients are estimated from free roll experiments as shown in 

section 4.5.1. Yoshimura’s experimental values (Yoshimura, 1986) are used as the maneuvering, 

rudder, and propeller thrust coefficients. The manoeuvring hull, rudder, and propeller thrust 

coefficients are shown in appendix subject ships. 

The ship resistance is estimated to reproduce the free running speed trial tests. When the ship runs 

at constant speed with a constant propeller revolution number in calm water, the thrust and resistance 

balance as: 

   ; pR u T u n . (4.4.1) 

Since the thrust is estimated by using the constant ship speed and propeller revolution number 

observed in the speed trial test, the ship resistance at speed u is estimated to comply with Eq. 4.4.1. 

However, since the ship resistance should be estimated by captive model experiment basically, the 

estimation of the ship resistance is one of the future tasks in this chapter. 

4.4.1 Wave Induced Forces 

The wave induced forces are estimated based on the slender body theory with low encounter 

frequency assumption (Umeda et al., 1995b) and assumed to be proportional to the wave amplitude 

as Eq. 4.4.1.1-4: 

      , , , , cos ,W G G a X G XX t H t k             , (4.4.1.1) 

 , , , , ;W G G pY t u n    

    , cos ,a YF G YFH t k           

    2 2, cos ,YD G YDH t k          
 

 

    , cos ,YR G YRH t k           , 

 

(4.4.1.2) 

 , , , , ;W G G pN t u n    

    , cos ,a NF G NFH t k           

    2 2, cos ,ND G NDH t k          

    3 3, cos ,ND G NDH t k          
 

 

    , cos ,NR G NRH t k           , 

 

(4.4.1.3) 

 , , , , ;W G G pK t u n    

 , , , , ;W G GOGY t u n    
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    1 1, cos ,a KF G KFH t k           

    2 2, cos ,KF G KFH t k          

    2 2, cos ,KD G KDH t k          
 

    , cos ,KR G KRH t k           , 

 

(4.4.1.4) 

where the wave elevation at the ship centre of gravity w is: 

  cos ,w a G Xt k         . (4.4.1.5) 

Here, H and  with subscripts are the transfer functions and phase differences, respectively: the 

subscripts F indicates Froude Krylov components, D does diffraction components, and R does 

rudder components. The term a, k, and  are the wave amplitude, number, and frequency, 

respectively. The above mentioned transfer functions are calculated as follows: 

     , , ,X X C X SH H i H       , 
 

 

         

         

/2

1

/2

1

, cos sin cos

, cos cos cos

FE k d x

X C
AE

FE k d x

X S
AE

H g k C x S x e k x dx

H g k C x S x e k x dx

    

    





  


 





, 

 

(4.4.1.6) 

     , , ,YF YFC YFSH H i H       , 
 

 

         

         

/2

1

/2

1

, sin sin cos

, sin cos cos

FE k d x

YFC
AE

FE k d x

YFS
AE

H g k C x S x e k x dx

H g k C x S x e k x dx

    

    





 


  





, 

 

(4.4.1.7) 

     2 2 2, , ,YD YD C YD SH H i H       , 
 

 

       

       

/2

2

/2

2

, sin cos cos

, sin sin cos

FE
k d x

YD C y
AE

FE
k d x

YD S y
AE

H u S x e k x

H u S x e k x

     

     





   
 


   
 

, 

 

(4.4.1.8) 

     , , ,YR YRC YRSH H i H       , 
 

 

     

   

     

   

2

2

8
, 1 1 1

2

sin exp cos cos

8
, 1 1 1

2

sin exp sin cos

T
YRC H R w p P

R R

T
YRS H R w p P

R R

K
H a A f w u

J

k z k x

K
H a A f w u

J

k z k x






   



  


   



  


   


  



   


  

, 

 

(4.4.1.9) 

     , , ,NF NFC YFSH H i H       , 
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         

         

/2

1

/2

1

, sin sin cos

, sin cos cos

FE k d x

NFC
AE

FE k d x

NFS
AE

H g k C x S x e x k x dx

H g k C x S x e x k x dx
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



 


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




, 

 

(4.4.1.10) 

     2 2 2, , ,ND ND C YD SH H i H       , 
 

 

       

       

/2

2

/2

2

, sin cos cos

, sin sin cos

FE k d x

ND C y
AE

FE k d x

ND S y
AE

H u S x e k x dx

H u S x e k x dx

     

     





 


 





, 

 

(4.4.1.11) 

     3 3 3, , ,ND ND C YD SH H i H       , 
 

 

       
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
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
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     , , ,NR NRC NRSH H i H       , 
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     1 1 1, , ,KF KF C KF SH H i H       , 
 

 

   
 

 

   

   
 

 

   

2

1 1

/2

2

1 1

/2

, sin
2

sin cos

, sin
2

cos cos

FE

KF C
AE

k d x

FE

KF S
AE

k d x

B x
H g k C x d x

e k x dx

B x
H g k C x d x

e k x dx

   



   








   


 

     








, 

 

(4.4.1.14) 

     2 2 2, , ,KF KF C KF SH H i H       , 
 

 



CHAPTER 4 EFFECT OF ENCOUNTER FREQUENCY 

 

-74- 

 

   
 

 

   

   
 

 

   

3

2

2 4

/2

3

2

2 4

/2

, sin
2

sin cos

, sin
2

cos cos

FE

KF C
AE

k d x

FE

KF S
AE

k d x

B x
H g k C x d x

e k x dx

B x
H g k C x d x

e k x dx

   



   







  
   
  





 
   

 








, 

 

(4.4.1.15) 

     2 2 2, , ,KD KD C KD SH H i H       , 
 

 

         

         

/2

2

/2

2

, sin cos cos

, sin sin cos

FE
k d x

KD C y
AE

FE
k d x

KD S y
AE

H u S x l x e k x

H u S x l x e k x





     

     





   
 


   
 

, 

 

(4.4.1.16) 

     , , ,KR KRC KRSH H i H       , 
 

 

     

   

     

   

2

2

8
, 1 1 1

2

sin exp cos cos

8
, 1 1 1

2

sin exp sin cos

T
KRC H HR R w p P

R R

T
KRS H HR R w p P

R R

K
H a z A f w u

J

k z k x

K
H a z A f w u

J

k z k x






   



  


   



  


    


  



    


  

, 

 

(4.4.1.17) 
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. (4.4.1.20) 

Here, B(x), d(x), S(x), l(x), and Sy(x) are the breadth, depth, sectional area, lever of added mass, and 

added mass in sway direction which are defined on each cross section located at a position by x away 

from midship in longitudinal direction of the ship, respectively. The term aH: the interaction factor 
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for rudder force between hull and rudder, xH: the longitudinal position of rudder force due to 

interaction between hull and rudder, xR: the longitudinal rudder position, AR: the rudder area, f: the 

hydrodynamic rudder lift slope, DP: the propeller diameter, KT: the thrust coefficient, wP: the wake 

ratio between hull and propeller, and w: the wake fraction ratio between propeller and rudder 

positions. The phase differences  are calculated by using real and imaginary part of the transfer 

functions as Eq. 4.4.1.21: 

 
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Im
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H H

H H
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   
       

  
. (4.4.1.21) 

4.4.2 Manoeuvring Hull and Rudder Forces 

Yoshimura’s experimental values (Yoshimura, 1986) is used as the hull reaction, rudder, and 

propeller thrust coefficients. The nondimensionalized values are shown in appendix subject ships. 

He used the similar ship with the subject ship in this chapter. The manoeuvring hull and rudder 

forces are modelled as Eq. 4.4.2.1-8: 
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Here, L is a ship length,  is rudder angle, zH is a vertical position of the centre of the lateral 

manoeuvring force and zHR is vertical position of the rudder. The flow straightening effect is 

included as linear effects on the rudder forces. 

4.4.3 Thrust and Ship Resistance 

Yoshimura’s experimental values (Yoshimura, 1986) is used as the propeller thrust coefficients 

and the values are available in section 5.4. However, since the ship resistance is not available in his 

paper, speed trial data in the experiment are used to estimate the ship resistance. Generally, the ship 

resistance is estimated by a captive model experiment, so that it is a future task. First, the effective 

thrust T is estimated as Eq. 4.3.3-1: 

     2 4; 1p p p p TT u n t n D K J  . (4.4.3.1) 

Here, tp: thrust reduction coefficient. When the ship runs with constant speed in calm water, the 

thrust and ship resistance balance as Eq. 4.4.1. The thrust coefficient is approximated by quadratic 

equation as Eq. 4.4.3.2: 

  2

0 1 2TK J J J      
 

 

   
22

0 1 2 2

1 1P P

P p P p

w wu u

D n D n
  

  
     

 

. 

 

(4.4.3.2) 

Substituting Eq. 4.4.3.2 into Eq. 4.4.3.1, the thrust is expressed as Eq. 4.3.3.3: 
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(4.4.3.3) 

Approximating the propeller revolution number np as a quadratic function of the ship speed u from 

the speed trial test, the calm-water resistance is expressed as a quartic function of the ship speed u. 

4.5 Model Experiment 

To investigate the 2:n parametric roll in following waves, experiments using a 1/53.471 scaled 

model of the 180 m-long pure car carrier were performed at the seakeeping and manoeuvring basin 

of the National Research Institute of Fisheries Engineering. The technique of free running model 

experiment is shown in appendix subject ships. The principal particulars of the vessel are listed also 

in appendix subject ships. 

4.5.1 Roll Decay with Advance Speed 

To treat nonlinear roll motions in a wide frequency range i.e. wide speed range, the speed effect 

on the roll damping should be considered. Thus, roll decay tests with several advance speeds are 

conducted by rotating a propeller installed on the model with propeller revolution speed of 0, 300, 
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450, 600, 900, and 1200 rpm. The observed ship speeds are 0.0, 0.067, 0.078, 0.13, 0.20, and 0.26 in 

Froude number, respectively. The obtained linear roll extinction coefficients are shown in Fig. 4.3-1. 

Here, speed effect on quadratic roll extinction coefficient is neglected because enough large initial 

heel cannot be given in running roll decay tests.  

Roll damping can be divided in friction, eddy, lift, wave making, and bilge keel components. It is 

known that the eddy one decreases linearly with advance speed, the lift one increases linearly with 

advance speed, and the others excepting the wave making one are almost constant against variance 

of advance speed (Ikeda et al., 1978). The wave making component is actually affected by the ship 

advance speed and the qualitative change appears at Hanaoka’s parameter of 0.25. The point 

indicates the change of wave pattern induced by the advancing ship. Hanaoka’s parameter  is 

calculated as Eq. 4.5.1.1: 

eU

g


  . (4.5.1.1) 

Here, the encounter frequency e indicates the frequency of ship motion in waves, so that the natural 

roll frequency is used instead to estimate  of the roll decay test with advance speed. The Froude 

number that complies  = 0.25 is 0.217 for this ship. Thus, although the wave making component is 

affected with advance speed around Fn of 0.217, the effect cannot be clearly seen in the 

experimental results (Fig. 4.5.1.1). Then, the qualitative change around  = 0.25 is neglected and the 

wave making component is assumed to be constant with a ship speed in this study. Finally, the roll 

extinction coefficients are approximated as Eq. 4.5.1.2: 
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0.0110b  . 

 

(4.5.1.2) 

The linear extinction coefficient (Fn is smaller than 0.0696) is approximated by using three points 

from lower speed in Fig. 4.3-1 and the linear extinction coefficient (Fn is greater than or equal to 

0.0696) is approximated by using five points from higher speed in Fig. 4.5.1.1. The natural roll 

period is determined to express the large amplitude of roll decay without advance speed in Fig. 

4.5.1.2. The time series of roll decay with advance speed shows good agreement for each advance 

speed but the estimated roll period is a little longer than that of the experiment. An example of roll 

decay comparison with advance speed, Fn of 0.128, is shown can be seen in Fig. 4.5.1.3.  
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Figure 4.5.1.1 Linear roll extinction coeficients with several advance speeds. 

 

Figure 4.5.1.2 Roll decay witohut advance speed. 
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Figure 4.5.1.3 Example of roll decay with advance speed, Fn of 0.128. 

4.5.2 Speed Trial Test 

The ship resistance is estimated by speed trial test. Figure 4.5.2.1 shows the relationship between 

propeller revolution number and ship speed in the speed trial tests in the full scale. The propeller 

revolution number is approximated by a quadratic equation that passes the point (u, np) = (0, 0). The 

quadratic equation is as Eq. 4.5.2.1: 

20.2361 0.003212pn u u  . (4.5.2.1) 

Following Eq. 4.4.1, 4.4.3.3, and 4.5.2.1, the ship resistance are estimated as Eq. 4.5.2.2: 

  2 3 41058 42.11 0.3475R u u u u   . (4.5.2.2) 

The ship resistance estimated from speed trial tests with and without polynomial fitting as Eq. 

4.5.2.2 are compared in Fig. 4.5.2.2.  
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Figure 4.5.2.1 Relationship between propeller revolution number and ship speed in the speed trial test. 

 

 

Figure 4.5.2.2 Ship resistance in calm water in real ship scale. 
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4.5.3 Free Running Experiment 

The free running experiment was performed for regular following waves. The wavelength to ship 

length ratio was 1.00, and the wave steepness was 0.07. The auto pilot course was set to –10° in the 

wave direction because the ship course cannot be estimated in pure-following waves due to the 

asymmetric roll of 2:2 parametric roll. The rudder angle was controlled according to proportional 

and differential control with the proportional gain of 3.0 and differential gain of 38.35 [s] in the 

model scale. The propeller revolution number ranged from 550 to 1700 [rpm] with an interval of 100 

[rpm] in the model scale. Here, 1750 [rpm] could not be achieved due to the limitation of the motor, 

so that the maximum propeller revolution was set to 1700 [rpm].  

The observed maximum and minimum roll angle are shown in Fig. 4.5.3.1 without the result of 

1650 [rpm]. This is because the observed motion in the case of 1650 [rpm] showed very large 

heading less than –40°, although the auto pilot course was set to –10° and the observed heading 

angles in other cases were more than –20°. This may be because the too large heading was given in 

this case when the ship model was launched. In spite of the small interval of the propeller revolution 

number change, the observed ship speed changed discontinuously as shown in Fig. 4.5.3.1. To show 

the discontinuity more clearly, the relationship between the propeller revolution number and ship 

speed is plotted in Fig. 4.5.3.2. This figure clarifies the discontinuous change of the ship speed 

around propeller revolution number of 1250 and 1350 [rpm].  

The time series of roll, pitch, yaw, and wave elevation at the centre of gravity in some cases are 

shown in Fig. 4.5.3.3-7. These figures show the observed ship model motions while the ship model 

meets three waves so that steady state of motions can be seen. Figure 4.5.3.3 (Fn of 0.135) and 

4.5.3.4 (Fn of 0.177) show that the maximum peaks of roll and pitch have almost the same phase of 

–90° from a wave trough. By contrast, Fig. 4.5.3.5 (Fn of 0.217) shows that the phase difference 

between roll and pitch is 90° and that the maximum peaks of roll has the phase of –180° from a 

wave trough. These differences in the phases indicate that the roll motion of Fn < 0.2 is different 

from that of Fn > 0.2 in Fig. 4.5.3.1. In Fig. 4.5.3.6-7, no significant roll motion cannot be seen, and 

pitch and wave elevation indicate that the ship model stays longer time around a down slope of a 

wave. This motion is close to surf-riding, and the ship model may suffer surf-riding after a while or 

with a little larger propeller revolution number. However, surf-riding is not observed due to the 

limitation of the length of the basin and motor of the propeller. In this chapter, only the large roll 

motions of Fn < 0.25 in Fig. 4.5.3.1 are discussed. This is because the experimental result shows that 

the roll motions of Fn > 0.25 is not so significant.  

Parametric roll is excited by a periodic variation of a roll restoring coefficient: the restoring 

coefficient is small when the roll increases, and it is large when the roll decreases. Since it varies 

depending on the water area, it is small when the wave crest locates amidship, and it is large when a 

wave trough locates amidship for general ships. Thus, a maximal roll due to parametric roll appears 

after a wave crest passes through the ship gravitational center. From this point of view, the 

phenomenon in Fig. 4.5.3.3-4 is parametric roll; however, the phenomenon in Fig. 4.5.3.5 is not 

parametric roll because the maximal roll appears when the wave crest locates around the ship 

gravitational center. On the other hand, pure loss of stability is a large heel caused by a long time 
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decrease of stability. This mechanism indicates that the maximum heel due to pure loss of stability 

appears when the wave crest locates around the ship gravitational center. Thus, the phenomenon in 

Fig. 4.5.3.5 can be judged as pure loss of stability. 

 

Figure 4.5.3.1 Maximum and minimum roll angle observed in the free running model experiment. 
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Figure 4.5.3.2 Relationship between propeler revolution number and ship speed under free running condition in 

waves. 

 

Figure 4.5.3.3 Time series of roll, pitch, yaw, and wave elevation in the case of 650 [rpm] (Fn of 0.135). 
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Figure 4.5.3.4 Time series of roll, pitch, yaw, and wave elevation in the case of 1050 [rpm] (Fn of 0.177). 

 

Figure 4.5.3.5 Time series of roll, pitch, yaw, and wave elevation in the case of 1250 [rpm] (Fn of 0.217). 
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Figure 4.5.3.6 Time series of roll, pitch, yaw, and wave elevation in the case of 1450 [rpm] (Fn of 0.262). 

 

Figure 4.5.3.7 Time series of roll, pitch, yaw, and wave elevation in the case of 1700 [rpm] (Fn of 0.306). 
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4.6 Ship Roll Response in Following Waves 

In this section, experimental results are investigated by using the nonlinear Mathieu equation as 

shown in section 4.2 and 4-dof model as shown in section 4.3 and 4.4. The experimentally obtained 

ship roll responses in regular following waves as shown in section 4.5.3 show that two kinds of roll 

responses appear when the propeller rotational number is changed little by little.  

4.6.1 Parametric Roll Region by the Nonlinear Mathieu Equation 

The maximum and minimum roll angle in the experiment and nonlinear Mathieu equation are 

compared in Fig. 4.6.1.1. As section 4.5.3, roll response of Fn < 0.2 can be judged as 2:2 parametric 

roll from the viewpoint of the phase between roll and wave elevation. Moreover, the nonlinear 

Mathieu equation estimates the 2:2 parametric roll around Fn of 0.15 to 0.2. Thus, the 

experimentally obtained roll response of Fn < 0.2 can be also judged as 2:2 parametric roll from this 

point of view. However, the amplitude is not estimated well. For the roll response of Fn > 0.2, the 

nonlinear Mathieu equation cannot explain the experimental result at all. This is because pure loss of 

stability can be estimated by taking into account manoeuvring motions but they are not included in 

the nonlinear Mathieu equation. 

 

Figure 4.6.1.1 Maximum and minimum roll angle in the nonlinear Mathieu equation and experiment. 

4.6.2 Pure Loss of Stability Region by 4-degree-of-freedom Model 

Numerically simulated and experimentally observed maximum and minimum roll angles are 

compared in Fig. 4.6.2.1. The 4-dof model shows good agreement with experimental results of Fn > 
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0.2. This indicates that the 4-dof model, which is based on maneuvering model by assuming long-

period motions, can accurately estimate the ship roll motion with higher advance speed. From the 

contraposition of this, the ship roll motion is not based on manoeuvring model but frequency-based 

model where the 4-dof model cannot provide good estimation. This also suggests that the two kinds 

of observed roll motions are based on the other mechanism. Further, the phase difference of 

maximum and minimum roll from the trough of the wave elevation at the ship gravitational centre 

are shown in Fig. 4.6.2.2-3. Since the phase differences show good agreement in whole range, it can 

be said that the 4-dof model can also explain 2:2 parametric roll qualitatively but not quantitatively.  

Although the propeller revolution number is changed little by little, the experimental data around 

Froude number of 0.2 was not obtained. On the other hand, the result of 4-dof model shows very 

smooth transition of roll motion from the 2:2 parametric roll to pure loss of stability. This conflict 

should be examined by using a numerical simulation which can estimate both frequency-based 

motion and manoeuvring-based motion in the future. 

 

Figure 4.6.2.1 Maximum and minimum roll angle in the 4-dof model and experiment. 
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Figure 4.6.2.2 Phase difference of maximum roll angle from a trough of the incident wave. 

 

Figure 4.6.2.3 Phase difference of minimum roll angle from a trough of the incident wave. 
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4.7 Conclusions 

The 2:n parametric roll is investigated by model experiment and numerical simulation. The 2:n 

parametric roll (n > 2) does not occur in the experiment; instead, pure loss of stability is observed in 

Mathieu’s unstable regions for 2:n parametric roll (n >2). This indicates that the ship roll motion 

with relatively high ship speed is governed by manoeuvring equation instead of Mathieu’s equation. 

Then, 4-dof model proposed by Kubo et al. (2012) is used to reproduce the experiment, and it can 

estimate roll motion in a higher speed case. This supports that the parametric roll and pure loss of 

stability have different mechanism. However, the 4-dof model, which is based on manoeuvring 

model, cannot explain the 2:2 parametric roll observed in the experiment due to lack of frequency-

based hydrodynamic forces. To more precisely investigate roll responses in following waves, a 

numerical simulation that takes frequency-based and manoeuvring-based forces into account should 

be used in the future. Further, the danger of 2:2 parametric roll in quartering waves that is mentioned 

Vilensky (1995) is also remaining stability problem. 
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CHAPTER 5 CONCLUSIONS 

In this dissertation, parametric roll, which is one of the dynamic ship instability problems, is 

discussed from following three viewpoints: approximate analytical estimation by using an averaging 

method; parametric roll estimation at low speed in oblique waves; effect of variation frequency in 

wide encounter frequency region in following waves. These results could contribute to discussion on 

the new second generation intact stability criteria, which is almost ready for their trial period from 

2021.  

In chapter 2, averaging methods are applied to the 1-dof parametric roll model proposed by 

Umeda et al. (2004), and the usefulness of the approximate analytical approaches on a design stage 

is shown. There are two aspects of utilization of averaging methods: improvement of accuracy and 

design criteria. For the first aspect, averaging methods are applied by considering following three 

effects: 1) superharmonic components; 2) actual GZ curve in calm water; 3) vertical motions. Then, 

following remarks are concluded: 

1) Adding superharmonic components to the assumed form of solution in the averaging method 

improves the estimation accuracy; 

2) The effect of calm-water GZ on parametric roll response is revealed; 

3) Taking account of linearly-estimated vertical motions resolves overestimation of the model 

experiment especially around low speed region. 

For the second aspect, 4) the way to estimate the critical ship speed for parametric roll is proposed 

by using the averaged equation proposed by Umeda et al. (2004) and its partial derivative with a ship 

speed; 5) the simplification related to the wave encounter frequency in the second check of the level 

2 of the second generation intact stability criteria for parametric roll is compared with more rigorous 

method, which is based on the mean encounter frequency obtained from Grim’s effective wave 

spectrum. Then, following remarks are concluded: 

4) The critical ship speed for parametric roll can be estimated by using averaging method; 

5) The wave encounter frequency used in the draft second check is verified, and the number of 

samples of operational conditions should be at least 24. 

In chapter 3, for more precise estimation for parametric roll in oblique waves, the heave-roll-pitch 

coupled 3-dof model (Hashimoto & Umeda, 2010) is expanded to the 5-dof model by adding sway 

and yaw. Thus, the frequency-based model is combined to the low-speed manoeuvring model. 

Further, the 5-dof model is validated with the model experiment. As a result, following remarks are 

concluded: 

6) the 5-dof model can reproduce the free running model experiment qualitatively but there are 

still some quantitative discrepancies. The main reason of the discrepancy may be the estimation 

of the low-speed manoeuvring motion in waves.; 
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7) While substituting experimentally observed manoeunvring motions into the 5-dof model a little 

improves the accuracy of the estimated roll amplitude, the model still overestimates the 

experiment. 

As a result of the validation, it can be said that the new suggestion for the future works are clearly 

shown although there appears to be more difficulties to be resolved especially related to 

manoeuvring motion at low speed.  

In chapter 4, the 2:n parametric roll is experimentally and numerically investigated. Here, the free 

running model experiment was conducted by increasing the propeller revolution number in regular 

following waves. Further, the experimental results are compared with numerically estimated roll 

motion based on the nonlinear Mathieu equation and 4-dof manoeunvring based model (Kubo et al., 

2012). As a result, following remarks are concluded: 

8) 2:2 parametric roll was observed in the model experiment but 2:n parametric roll (n > 2) was 

not observed; 

9) Pure loss of stability occurred in high speed region instead of 2:n parametric roll (n > 2); 

10) The 2:2 parametric roll and pure loss of stability can be distinguished by the phase differences 

between roll, pitch, and wave elevation at the centre of gravity; 

11) The nonlinear Mathieu equation can estimate the roll response in lower speed cases but not in 

higher speed cases. By contrast, the 4-dof manoeuvring-based model shows opposite results. 

This fact supports that the roll responses in lower speed cases are 2:2 parametric roll, and that 

of higher speed cased are pure loss of stability. 

However, the transitions between 2:2 parametric roll and pure loss of stability is still our future task. 

This is because parametric roll is mainly governed frequency-based forces but pure loss of stability 

is by manoeuvring-based forces. Hence, a numerical model that takes both frequency-based and 

manoeuvring-based forces into account should be used.
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APPENDIX SUBJECT SHIPS 

A.1 Introduction 

For the sake of validation study, captive and free-running experiment with several ship models are 

introduced in this dissertation. The experiments were conducted at the towing tank of Osaka 

University or seakeeping and manoeuvring basin of National Research Institute of Fisheries 

Engineering (NRIFE) based on the ITTC recommended procedure for intact stability model tests 

(ITTC, 2008). Roll, pitch, and yaw motions were observed by using a fiber optical gyroscope. In free 

running experiment, the ship position was observed by using a total station system. The ships were 

propelled with an electric motor, the propeller RPM were controlled to be constant, and the auto-

pilot course keeping was used with a certain rudder gain.  

In this appendix, principal particulars, damping coefficients, and restoring coefficients of subject 

ships are shown. The subject ships were following four ships: a C11-class post Panamax container 

ship, ITTC A-1 container ship, ONR flare topside vessel, and pure car career. The linear roll 

damping coefficient is derived by using Ikeda’s simplified method (Kawahara et al., 2012) with the 

lift component of Ikeda’s original method (Ikeda, 2004). Its linear component ais divided into the 

two components; one is ship-speed-independent and another is proportional to the ship speed U as 

Eq. A.1.1: 

 44 0 11ama B a a U    , (A.1.1) 

where B44(am) is the Ikeda’s roll damping with an amplitude of am and natural roll frequency. The 

roll damping is expressed as the sum of linear term and cubic term in this study and it was accepted 

in the draft second check of the level 2 for parametric roll in the second generation intact stability 

criteria. The linear roll damping component is estimated as the Ikeda’s roll damping coefficient with 

an amplitude of 1° and natural roll frequency. The cubic damping is estimated as Eq. A.1.2: 
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Since the a1 is independent of the amplitude in the Ikeda’s original method, the cubic component is a 

ship-speed-independent term. The roll damping coefficients  and  are as Eq. A.1.3-4: 
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A.2 C11-Class Post-Panamax Container Ship 

Towing model experiment was conducted with a C11-class post-Panamax container ship by 
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Hashimoto and Umeda (2010). In the experiment, the loading condition of MARIN’s experiment 

was used (Levadou & van’t Veer, 2006). On the other hand, the loading condition when she suffered 

parametric roll in actual seas (France et al., 2003) is a little different. Table A.2.1 shows principal 

particulars of both loading conditions. The estimated roll damping coefficients and coefficients of 

polynomial approximation of calm-water GZ curves are shown in Tab. A.2.2. The linear roll 

damping coefficient is divided into two components that is proportional to the ship speed and that is 

ship-speed-independent term as Eq. A.1.3. The body plan is shown in Fig. A.2.1 and the calm-water 

GZ curve is compared with its polynomial fitting in Fig. A.2.2. 

Table A.2.1 Principal particulars of the C11-class post-Panamax container ship. 

Item MARIN ACCIDENT Unit 

Length: Lpp 262.0 m 

Breadth: B 40.0 m 

Draught: d 11.5 12.34 m 

Service speed: Vs 23.6 25.0 knot 

trim 0.0 m 

Metacentric height: GM 1.965 m 

Natural roll period: T 25.1 25.7 s 

Block coefficient: Cb 0.5511 0.576  

Midship section coefficient: Cm 0.9573 0.962  

Ration of gravitational centre height: OG/d -0.6764 -0.489  

Bilge keel length ratio: Lbk/Lpp 0.292  

Bilge keel breadth ratio: Bbk/B 0.01  

    
 

Table A.2.2 Coefficients of roll damping and calm-water GZ curve of the C11-class post-Panamax container ship. 

Item MARIN ACCIDENT Unit 

Ship-speed-independent component of linear 

roll damping: 0 
1.872 × 10-3 1.632 × 10-3 s-1 

Coefficient of linear component of linear roll 

damping: 1 
1.576 × 10-4 1.407 × 10-4 m-1 

Cubic damping coefficient:  4.260 3.917 s 

Cubic restoring coefficient: l3 0.3500 0.5716  

Quintic restoring coefficient: l5 -0.7721 -1.163  
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Figure A.2.1 Body plan of the C11-class post-Panamax conatiner ship. 

 

 

Figure A.2.2 Calm-water GZ curve and its polunomial fitting of the C11-class post-Panamax conatainer ship. 

A.3 ITTC A-1 Container Ship 

Free running model experiment was conducted with an ITTC A-1 container ship by Umeda et al. 

(2008). The principal particulars are shown in Tab. A.3.1 and the estimated roll damping coefficients 

and coefficients of polynomial approximation of calm-water GZ curves are shown in Tab. A.3.2. 

The body plan is shown in Fig. A.3.1 and the calm-water GZ curve is compared with its polynomial 

fitting in Fig. A.3.2. 
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Table A.3.1 Principal particulars of the ITTC A-1 container ship. 

Item ITTC A-1 container ship Unit 

Length: Lpp 150.0 m 

Breadth: B 27.2 m 

Draught: d 8.5 m 

Service speed: Vs 23.0 knot 

trim 0.0 m 

Metacentric height: GM 1.000 m 

Natural roll period: T 20.1 s 

Block coefficient: Cb 0.6672  

Midship section coefficient: Cm 0.9841  

Ration of gravitational centre height: OG/d -0.2512  

Bilge keel length ratio: Lbk/Lpp 0.250  

Bilge keel breadth ratio: Bbk/B 0.0201  

    
 

Table A.3.2 Coefficients of roll damping and calm-water GZ curve of the ITTC ship A-1 container ship. 

Item ITTC A-1 container ship Unit 

Ship-speed-independent component of linear 

roll damping: 0 
3.954 × 10-3 s-1 

Coefficient of linear component of linear roll 

damping: 1 
2.310 × 10-4 m-1 

Cubic damping coefficient:  4.871 s 

Cubic restoring coefficient: l3 3.196  

Quintic restoring coefficient: l5 -5.655  

    

 

Figure A.3.1 Body plan of the ITTC A-1 conatiner ship. 
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Figure A.3.2 Calm-water GZ curve and its polynomial fitting of the ITTC A-1 contianer ship. 

A.4 ONR Flare Topside Vessel 

Free running model experiment was conducted with an ONR flare topside vessel. The principal 

particulars are shown in Tab. A.4.1 and the estimated roll damping coefficients and coefficients of 

polynomial approximation of calm-water GZ curves are shown in Tab. A.4.2. The values of Cm and 

Bbk/B are out of the fitting range of Ikeda’s simplified method, so that the roll damping coefficients 

in Tab. A.4.2 are estimated by setting Cm to 0.90 and Bbk/B to 0.06. The body plan is shown in Fig. 

A.4.1 and the calm-water GZ curve is compared with its polynomial fitting in Fig. A.4.2. 

Table A.4.1 Principal particulars of the ONR flare topside vessel. 

Item ONR flare topside vessel Unit 

Length: Lpp 154.0 m 

Breadth: B 18.8 m 

Draught: d 5.42 m 

Service speed: Vs 26.44 knot 

trim 0.0 m 

Metacentric height: GM 0.7735 m 

Natural roll period: T 20.84 s 

Block coefficient: Cb 0.5695  

Midship section coefficient: Cm 0.8579 (0.90)  

Ration of gravitational centre height: OG/d -0.747  

Bilge keel length ratio: Lbk/Lpp 0.3483  

Bilge keel breadth ratio: Bbk/B 0.0707 (0.06)  
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Table A.4.2 Coefficients of roll damping and calm-water GZ curve of the ONR flare topside vessel. 

Item ONR flare topside vessel Unit 

Ship-speed-independent component of linear 

roll damping: 0 
7.126 × 10-3 s-1 

Coefficient of linear component of linear roll 

damping: 1 
2.357 × 10-4 m-1 

Cubic damping coefficient:  10.41 s 

Cubic restoring coefficient: l3 -0.5552  

Quintic restoring coefficient: l5 1.311  

    

 

Figure A.4.1 Body plan of the ONR flare topside vessel. 

 

 

Figure A.4.2 Calm-water GZ curve and its polynomial fitting of the ONR flare topside vessel. 

A.5 Pure Car Carrier 

Free running model experiment was conducted with a pure car carrier. The principal particulars 
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are shown in Tab. A.5.1. Yoshimura et al. (1986) conducted low-speed manoeuvring test with a 

similar pure car carrier, so that the manoeuvring hull, rudder, and propeller thrust coefficients 

estimated Yoshimura et al. (1986) are used and the values are shown in Tab. A.5.2. The body plan 

and GZ curve are not available due to a commercial reason.  

Table A.5.1 Principal particulars of the pure car carrier. 

Item Pure car carrier Unit 

Length: Lpp 180.0 m 

Breadth: B 32.20 m 

Draught: d 8.2 m 

trim 0.0 m 

Metacentric height: GM 1.27 m 

Natural roll period: T 23.4 s 
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Table A.5.2 Manoeuvring hull, rudder, and propeller coefficients of the similar pure car career (Yoshimura et al., 

1986). 

Item Pure car carrier Unit 

Xvv’ -0.0368  

Xvr’ 0.140  

Xrr’ 0.0125  

Xvvvv’ 0.469  

Xvvvr’ -0.11  

Yv’ -0.2629  

Yr’ 0.0381067  

Yvvv’ -1.55  

Yvvr’ -0.655  

Yvrr’ -0.738  

Yrrr’ -0.0566  

Nv’ -0.0977  

Nr’ -0.0505  

Nvvv’ -0.173  

Nvvr’ -0.627  

Nvrr’ -0.0954  

Nrrr’ -0.0353  

lP’ -0.49  

lR’ -0.811  

1-wP 0.640  

1-tP 0.838  

aH 0.283 +0.263 JP  

xH’ -0.467  

 1.170  

P 0.513  

KT(J) 0.3304 -0.2299 J -0.1617 J2  
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