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CHAPTER 1 INTRODUCTION

CHAPTER1 INTRODUCTION

1.1 Introduction

Supported by the continuous development of the global economy, the maritime trade volume grew
from 2010 through 2017 and occupied more than 80% of the global trade volume in 2017 (United
Nations Conference on Trade and Development, 2018). Hence, a ship still has a key role on the
global economy. A ship is a vehicle that transports cargos and passengers by running on water
surface. Hence, in case that a ship sinks, lives of crews and passengers may be lost. Although the
number of ship losses is in decreasing trend in these years, 94 ships were still lost in 2017. 65% of
the losses were due to sinking, and the rest 35% consists of grounding, fire, machinery damage,
collision, and hull damage (Lloyd’s Register, 2018). Since sinking of a ship is often driven by a
water ingress or cargo shifting, large roll can be a trigger of sinking. No need to sink, large roll leads
to damage or loss of cargos, so that large roll should be also prevented from the view point of
economy and ecology. Then, the author focused on ship intact stability, especially on parametric roll,
in this dissertation. This is because accidents related to parametric roll of merchant ships are still
reported even in recent years (France et al., 2003; Hua et al., 2006; Danish Maritime Accident
Investigation Board, 2014).

Ship intact stability treats large roll motion of intact ships. Metacentric height (GM), which is a
basic index of ship stability, is mainly considered in the early design stage. GM is a linear slope of
restoring moment against heel, so that it represents ship stability in her upright condition. GM can
provide sufficient stability assessment when ship roll motion can be regarded as small, and the ship
roll motion is enough small under usual weather conditions. However, ship stability inspection
requires accurate estimation of heavy roll even if it hardly occurs because it must be based on
probability or risk of casualty. In this case, nonlinear effects on ship motion are no longer negligible.

There are various critical roll motions of intact ships in waves. They can be categorized into four
groups by a wave encounter frequency and wave direction. Well-known critical roll motions are
categorized into the four groups as Tab. 1.1.1. The roll motions are briefly explained as an
introduction to this dissertation of nonlinear roll motion. First, synchronous roll is a roll with the
same frequency as the wave encounter one. Forcing with a frequency near the ship natural roll one
excites heavy roll motion. Second, parametric roll is excited by periodic variation of restoring
coefficients due to incident waves and ship vertical motions. Parametric roll with a frequency that is
half the wave encounter one is likely to occur in longitudinal waves. Third, pure-loss of stability is a
large roll caused by a small restoring moment at wave crests. Last, broaching-to is a large roll caused
by abrupt yawing due to loss of manoeuvability after surf-riding. Third and last one happen only
when a ship runs at high speed in following waves whose length is comparable to the ship length.
Most critical roll motions in longitudinal waves were considered to happen only to small ships such
as a fishing vessel. However, such accidents on larger ships were recently reported, and the threat of
longitudinal waves are getting revealed (France et al., 2003; Hua et al., 2006; Danish Maritime
Accident Investigation Board, 2014). This study mainly focuses on parametric roll in longitudinal
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and quartering waves due to periodic variation of restoring coefficients.

Table 1.1.1 Categories of well-known roll modes.

encounter frequency

comparable to a ship

low

natural roll frequency
5 beam synchronous roll ]
g waves parametric roll
=
4 longitudinal . ure-loss of stabilit
3 g parametric roll P . Y
= waves broaching-to

1.2 Social Background

Parametric roll has long been known, and pioneering studies of parametric roll can be found in the
literature (Watanabe, 1934; Kerwin, 1955). Watanabe (1934) showed that parametric roll is an
unstable phenomenon in the Mathieu equation caused by GM variation due to incident longitudinal
waves. Kerwin (1955) showed that the Mathieu equation with nonlinear damping can explain a finite
amplitude of parametric roll. Moreover, He experimentally presumed that parametric roll rarely
occurs in actual seas by using a fishing vessel. So, researchers of ship stability had regarded
parametric roll as just a theoretical phenomenon. In the latter half of the 20th century, new-type of
cargo ships were invented for more superior economy. This led to specialization and increasing size
of cargo ships. In 1970s, Japanese researchers started focusing on intact stability problem under
operational condition. Kan (1990) conducted free running model experiments with a container ship
in following and quartering waves and pointed out that dangerous roll in following waves were
mainly caused by pure loss of stability. Umeda et al. (1995a) also conducted free running model
experiment and confirmed that the modern container ship could suffer parametric roll in short-
crested irregular waves even when she complied with the Intact Stability Code of the International
Maritime Organization (IMO). In 1998, a C11-class post-Panamax container ship suffered heavy roll
with amplitude of over 40° under heave-to condition in actual sea. France et al. concluded that the
accident was caused by parametric roll at the Society of Naval Architects and Marine Engineers
(SNAME) annual meeting in 2001 (France et al., 2003). After the accident was revealed, accidents
due to parametric roll started being reported for container ships and car careers. For example, Hua et
al. (2006) reported that a pure truck and car career suffered parametric roll of about 50° in 2003, and
Danish Maritime Accident Investigation Board (2014) reported that a 346.98 m-long container ship
suffered parametric roll of 41° in 2014. lkeda et al. (2013, p.133) supposed that no one simply had
not been able to judge as parametric roll before the first report and there had been many accidents
due to parametric roll.

Accidents due to parametric roll on recently-investigated ships forced the IMO to start developing
the second generation intact stability criteria for critical roll motions including parametric roll in
2002. The existing intact stability criteria is based on statistical information of old ships that were
built before 1950s. This means that the existing criteria might not always assess stability of recently-
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investigated ships. Hence, in order to properly assess any ships, the new criteria should be based on
physics. Since too complicated criteria shall hinder development of shipbuilding, the new criteria
consists of three levels. The lower levels are simple but require enough safety margin. In contrast,
the higher levels have lower safety margin but require more complicated procedure.

1.3 Preceding Researches

Parametric roll has long been discussed in the context of ship stability. There are pioneering
studies of parametric roll in the literature (Watanabe, 1934; Grim, 1952; Kerwin, 1955; Paulling
1959; Ogawara & Miura, 1960). Watanabe (1934) focused on the fact that GM decreases due to trim
or variation of relative wave elevation in longitudinal waves and a ship sometimes loses her stability.
He proved that the instability is not a statistic one due to decrease of GM but a dynamical one due to
periodic variation of GM by using stability criterion of the Mathieu equation with various parameters.
Grim (1952) experimentally investigated a roll instability in regular longitudinal waves. Kerwin
(1955) treated parametric roll as a phenomenon that appears in unstable region of the Mathieu
equation as well. He showed that the Mathieu equation with nonlinear damping can estimate
parametric roll with its finite amplitude. Furthermore, he conducted model experiment with a fishing
vessel and confirmed that she easily suffers from parametric roll with an amplitude of 30° or more in
regular waves. However, he finally presumed that parametric roll is not real threat in actual seas
because the unstable region was very narrow and the growth of parametric roll required longer time.
Paulling (1959) focused on GM variation due to heave and conducted forced-heave model
experiment in calm water. He confirmed that the parametric roll due to heave can be qualitatively
explained as an unstable phenomenon in an unstable region of the Mathieu equation. Ogawara and
Miura (1960) also conducted model experiment with constant heel and observed parametric roll
when the natural roll frequency divided by half the wave encounter frequency is near n (2:n
parametric roll, where n =1, 2, 3,...). Moreover, they confirmed that parametric roll amplitude in the
experiment is well estimated by the nonlinear Mathieu equation proposed by Kerwin (1955) with
experimentally obtained GM variation.

In 1970s, researchers focused on physics-based intact stability criteria. Kobylinski (1975) and
Krappinger (1975) stated that the stability criteria have to separately manage various capsizing
scenarios based on physics. Paulling et al. (1972) conducted model experiment in severe irregular
waves in San Francisco bay and observed capsizing of the ship model. They grouped the capsizing
scenarios into three modes: parametric roll, pure-loss of stability, and broaching-to. Moreover, they
concluded that the vulnerability should be examined by the occurrence probability of critical waves.
Based on these concepts, the second generation intact stability criteria are divided into five major
scenarios of ship accidents (parametric roll, pure loss of stability, broaching-to, dead ship, and
excessive acceleration) and the vulnerability in the level 2 of the new intact stability criteria is
judged by using wave occurrence probability. In order to deal with probability of capsizing due to
parametric roll, dynamic instability of ship roll motion started being investigated with more realistic
approaches. Abicht (1975) addressed parametric roll in irregular longitudinal waves, proposed a way
to convert irregular longitudinal waves to regular waves, and showed that the stability in irregular
longitudinal waves can be estimated by the Mathieu equation. The reason why the conversion was
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used was because general statistical method, in other words superposition of waves, cannot be
applied to GM variation in longitudinal waves, although it can be applied to roll in irregular beam
waves. Blocki (1980) estimated probability of capsizing due to parametric roll in irregular waves
based on Y. Goda’s wave group model. He conducted model experiment with cylindrical model in
regular beam waves and observed capsizing due to parametric roll. The time series of capsizing due
to parametric roll were well estimated by using the nonlinear Mathieu equation with cubic damping
and restoring moment. In the calculation, the GM variation was induced by heave that was estimated
based on a linear theory independently of roll.

Although nonlinear terms had been taken into account to estimate parametric roll amplitude in
aforementioned studies and simple nonlinearities, such as fold bifurcation or jump phenomenon, had
been already known (e.g. Bhattacharyya, 1978), nonlinear-dynamical ideas and approaches were
introduced to the field of ship stability by Cardo et al. (1980; 1981; 1984) and Nayfeh and Khdeir
(1986a; 1986b). Cardo et al. (1980; 1981; 1984) investigated damping effect on the steady-state
nonlinear roll response in regular beam waves, such as subharmonics and superharmonics (or
ultraharmonics), by applying approximately-analytical methods called a harmonic-balance method,
averaging method, and multiple-scales method. Nayfeh and Khdeir (1986a; 1986b) intensively
investigated nonlinear dynamical structure of roll motion in regular beam waves and found the
nonlinear behaviors, such as jumps, subharmonics, superharmonics (ultraharmonics), loss of
symmetry, period doubling, and chaos. Further, they applied a multiple-scales method to estimate
approximate steady-state roll response. These ideas and approaches are also employed to estimate
parametric roll. Sanchez and Nayfeh (1990a) used the nonlinear Mathieu equation with cubic
damping and quintic restoring and applied second-order multiple scales method to the nonlinear
ordinary differential equation in order to obtain approximate analytical periodic orbits. The response
of the roll equation was well investigated by using nonlinear dynamical approaches and found many
nonlinear behaviors, such as jump, loss of symmetry, period-doubling, chaos, and capsizing. They
showed that when chaotic response that comes after infinite times of period-doubling loses its
stability, the ship capsizes if her upright is unstable and the ship settles to upright if her upright is
stable. Soliman and Thompson (1992) investigated the indeterminate subcritical bifurcations. Here,
indeterminate means that the steady state to which the ship settles after subcritical pitchfork
bifurcation cannot be determined because of fractal boundaries in the Poincare map of the phase
plane. They revealed that the fractal boundaries is associated with a heteroclinic bifurcation in the
phase plane between a saddle type unstable parametric roll and vanishing stability point of the GZ
curve. Umeda et al. (2004) applied these nonlinear dynamical approaches to the uncoupled roll
model with a more realistic restoring moment in waves. They found the similar nonlinear behaviors,
such as jump, loss of symmetry, period-doubling, chaos, and capsizing.

The contributions related to the nonlinear dynamics suggested that very complex behaviors
appears even in a simple single-degree-of-freedom (1-dof) model. The complexity shall confuse
users of the new physics-based stability criteria because almost all of them are not familiar with
nonlinear dynamics. The approximate analytical methods provides results according to the assumed
form of solutions and the magnitudes of results are expressed as algebraic equations. Hence, all
possible solutions can be obtained by solving the algebraic equations and the solution includes only

-4-
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what are expected. This characteristic is very useful for the new stability criteria because only
desired solutions are obtained without knowledge of nonlinear dynamics. For this reason, realistic
roll models and their approximate analytical solutions are proposed (Umeda et al., 2004; Bulian,
2004). The method of Umeda et al. is used in the draft second check of the second generation intact
stability criteria for parametric roll. In the draft, the ship vulnerability is judged based on dangerous
wave occurrence probability and irregular waves are converted to a regular wave based on Grim’s
effective wave (Grim, 1961). Further, Maki et al. (2011) combined the approximate analytical
solutions and wave stochastic theories, thereby estimating parametric roll in irregular waves.

Whereas researches based on uncoupled roll models are introduced in the above paragraphs, the
researches aiming to investigate more precise response of parametric roll with multi-dof models are
introduced in this paragraph. Hamamoto and Akiyoshi (1988) compared a 6-dof model based on the
Froude Krylov assumption and a slender body theory and free running model experiment in regular
following waves. Even though their calculation did not consider a diffraction effect, the calculated
results showed good agreement with the experiment. de Kat and Paulling (1989) took diffraction
forces into account and also showed good agreement with experimentally obtained roll motion. They
focused on not only parametric roll but also pure loss of stability and broaching-to. Since parametric
roll is caused by variation of restoring coefficients, estimation of the variation is much important to
obtain accurate results. Boroday (1990) showed that the restoring variation can be precisely
estimated by adding added mass terms based on a strip theory to the Froude Krylov forces by
comparing calculation with a captive model experiment. Nowadays, almost all advanced simulation
models for parametric roll take into account radiation and diffraction effects based on seakeeping
theory. de Kat and Paulling (2001) proposed the 6-dof model FREDYN that estimates ship motion
under wind and waves. For, the Froude Krylov force, the pressure is integrated over an instantaneous
wetted surface. The radiation and diffraction forces are calculated based on a linear strip theory.
Further, manoueuvring forces, rudder forces, propeller thrust, hull resistance, and wind forces are
nonlinearly considered. Shin et al. (2003) described development and applications of the 6-dof
model called LAMP (Large Amplitude Motion Program). In the model, the hydrodynamic forces
related to waves are calculated based on a panel method, and the panel-based potential flow is solved
over an instantaneous wetted hull surface. FREDYN and LAMP were developed to investigate ship
dynamics on the ocean. On the other hand, Hashimoto and Umeda (2010) focused on only
parametric roll in longitudinal waves and proposed a heave-roll-pitch coupled 3-dof model. The 3-
dof model took radiation and diffraction effects as a function of an instantaneous heel angle into
account. The results showed good agreement with towing model experiments. As a further
improvement, Sadat-Hosseini et al. (2010) used CFD to estimate parametric roll and showed good
agreement with free running model experiment. However, benchmark studies of parametric roll
(Spanos & Papanikolaou, 2009; Reed, 2011) indicated that no simulation models could estimate
parametric roll amplitude enough accurately under any situation.

Parametric roll can occur when a natural roll frequency wy is almost equal to an integer multiple
of half the encounter frequency we, hence we:wy ~ 2:n (n is an integer.). This is estimated by using
the Mathieu equation. In this dissertation, parametric roll in the Mathieu’s unstable region of we: w4~
2:n is called 2:n parametric roll. Only the 2:1 parametric roll is often focused on mainly because the



CHAPTER 1 INTRODUCTION

Mathieu’s unstable region decreases as n increases. Sanchez and Nayfeh (1990a) closely
investigated the 2:1 and 2:2 parametric roll by using nonlinear dynamical approaches based on 1-dof
roll model. Vilensky (1995) revealed that the 2:2 parametric roll is not so dangerous relative to the
2:1 parametric roll in purely following waves; however, the 2:2 parametric roll in stern quartering
waves can cause a large roll motion due to the combination of the periodic GZ variation and direct
exciting moment. Unfortunately, his study is not sufficiently accessible to the public. The 2:n
parametric roll (n > 2), in other words, the higher advance speed region does not appear to have been
investigated enough. Spyrou (2000) investigated the 2:1 and 2:2 parametric roll with different wave
encounter frequencies by using the Mathieu-type nonlinear differential equation with a nonlinear roll
damping. He defined very quick capsize events that occurred around a wave crest as a pure loss of
stability. However, he mentioned that there was no practical reason to divide parametric roll and
pure loss of stability. Moreover, Spyrou (2005) estimated that when n is greater than 2, 2:n
parametric roll rarely happens mainly because the ship should run at high speed to achieve such a
small encounter frequency and then the roll damping becomes too large to cause parametric roll.
However, it is no more than a presumption based on the Mathieu-type equation.

As mentioned above, parametric roll has been investigated from various viewpoints. Simplified
estimation models were sufficiently investigated by Umeda et al. (2004) and Bulian (2004).
However, the estimation accuracy of intensive roll by the averaging method is sometimes
insufficient due to absence of higher order effects in the model and averaging method. The method
of Umeda et al. is used to estimate parametric roll amplitude in the draft second check of the second
generation intact stability criteria for parametric roll. Since an averaging method yields an algebraic
equation of amplitude, the algebraic equation may provide more useful information for the criteria
than just an amplitude.

1.4 Aim and Composition of This Dissertation

This dissertation aims to: 1) estimate nonlinear response of parametric roll in regular waves by
using averaging methods; 2) utilize simplified methods for the physics-based stability criteria against
parametric roll; 3) estimate ship motions with low advance speed in regular oblique waves; 4)
investigate qualitative transition of roll response in following waves.

In chapter 2, averaging methods are used to estimate nonlinear response of parametric roll with
additional treatment of superharmonic components, actual GZ curve, and vertical motions. Moreover,
the design criteria is considered by using the averaged equations (Umeda et al., 2004) and Grim’s
effective wave concept (Grim, 1961).

In chapter 3, a 5-dof model is proposed to estimate parametric roll in oblique waves. Since the
Cl1-class post-Panamax container ship suffered parametric roll under a heave-to condition (France
et al., 2003), the maoeuvrability when the ship speed is low is taken into account.

In chapter 4, effect of a wave encounter frequency on the roll response is investigated. Although
parametric roll is known as a phenomenon that occurs in unstable regions of the Mathieu equation.
The unstable regions cover a wide range of a wave encounter frequency because parametric roll
might happen when @e:@g ~ 2:n. Here, we is a wave encounter frequency, wy is a ship natural roll

-6-
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frequency, and n is a natural number. However, in the region of small wave encounter frequency, i.e.
when a ship runs at high speed in following waves, pure loss of stability or broaching-to might
happen.

In chapter 5, this dissertation is concluded with remarks.
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CHAPTER 2 AVERAGING METHOD

2.1 Introduction

An averaging method is one of analytical approaches to estimate periodic orbits of nonlinear
mechanics and is based on perturbation concept. It provides differential equations of parameters of
the periodic orbits by assuming the parameters change slowly enough in time relative to the period
of the solution. It is known as a strong method to obtain approximate periodic orbits of a weakly
nonlinear system because it is widely applicable and the stability can be straightforwardly judged.
The detailed procedures of an averaging method are available in sections 2.2. Averaging methods
were proposed by researchers of celestial mechanics and Krylov and Bogoliubov established a
general application of a first-order averaging method (Krylov & Bogoliubov, 1947). So, the first-
order averaging method is sometimes called Krylov-Bogoliubov averaging method. Although there
are other analytical approaches, such as a harmonic balance method and multiple scales method, the
first-order solutions appear to be the same. On the other hand, the second- or higher-order solutions
do not so. A harmonic balance method is based on a rather simple idea that the solutions can be
expanded in Fourier series, so that higher-order approximate solutions can be easily obtained by the
Galerkin-Urabe method (Urabe, 1965). However, this method does not provide differential equations
of parameters, so that a variational equation should be derived to judge the stability of solutions. A
multiple scales method provides the differential equations of parameters but the procedure is a little
more complicated than an averaging method. By contrast, the higher-order solutions of multiple-
scales method can be obtained a little more easily than that of an averaging method. These analytical
approaches can provide all solutions as a set of algebraic equations. On the other hand, nonlinear
differential equation can be solved nowadays by a numerical integration method, such as the Runge-
Kutta method; however, it is known that a nonlinear differential system has various coexisting
steady states, and a derived solution depends on initial values of numerical integration. Hence,
theoretically speaking, obtaining all solutions by numerical integration requires to calculate for all
possible initial values. This does not deny the efficiency of the numerical integration methods
because they easily provide an accurate solution indeed. Similarly, an analytical approach has a
drawback that they can provide only solutions having an assumed form of solutions. This means that
analytical investigation requires rough knowledge of the global structure beforehand. These indicate
the necessity of recognizing both the analytical and numerical approaches and combining them
efficiently in order to know the nonlinear mechanics.

As shown in chapter 1, parametric roll is caused by a GM variation in waves and the GM varies
due to variation of water plane area that is fluctuated by incident waves and vertical motions of a
ship. Parametric roll has been known as an unstable phenomenon which occurs in an unstable region
of the Mathieu equation since Watanabe (1934) was published. The steady state can be estimated by
the Mathieu equation with nonlinear terms (Kerwin, 1955). Hence, nonlinear effects have to be taken
into account in order to estimate parametric roll amplitude. However, since an exact solution of even
single-degree-of-freedom (1-dof) ordinary differential equation has not been found vyet, an
approximate analytical approach or numerical integration method should be used. Moreover, since

-8-
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multiple-dof model is too complicated to investigate a global response of parametric roll, 1-dof
models have been widely used in field of ship stability.

Francescutto (2001) proposed to apply an averaging method to simple 1-dof parametric roll model.
Umeda et al. (2004) applied an averaging method to a 1-dof parametric roll model with more
realistic restoring moment in waves. Bulian (2004) introduced more complicated restoring variation
into 1-dof model and applied an averaging method to the model. In this chapter, the equation
proposed by Umeda et al. (2004) is mainly used because the equation was well validated by
comparing with model experiments.

In section 2.2, a general application of an averaging method is introduced including stability of the
solutions. In section 2.3, a 1-dof model for parametric roll is introduced. In section 2.4, parametric
roll in regular longitudinal waves are discussed. In subsection 2.4.1, the method of Umeda et al.
(2004) is introduced, which is based on a GM variation due to longitudinal waves, assuming that
heave and pitch trace their static equilibria in the waves. In subsection 2.4.2, the necessity of
superharmonic components to obtain more accurate solutions is shown. In subsection 2.4.3, how to
reflect actual GZ curve in calm water is shown. In the previous methods (Francescutto, 2001; Umeda
et al., 2004; Bulian, 2004), the calm-water GZ was approximated by polynomials to obtain algebraic
equations of parametric roll amplitude, so that some information was lost at the process of
polynomial fitting. In subsection 2.4.4, effect of vertical motions are taken into account and apply an
averaging method because GM varies due to heave and pitch as well and, actually, heave and pitch
change dynamically when a ship runs at low speed in longitudinal waves whose length is
comparable to the ship length. In section 2.5, design criteria for parametric roll is discussed. Since
the vulnerability have to treat parametric roll in irregular waves, Grim’s effective wave concept
(Grim, 1961), which is adopted in the draft second check of the second generation intact stability
criteria (IMO, 2016), is introduced. In subsection 2.5.2, how to find the peak of parametric roll
resonance by using the averaged equations (Umeda et al., 2004) is proposed. In subsection 2.5.3, the
simplification on the wave encounter frequency in the draft second check is verified by using the
mean encounter frequency of Grim’s effective wave spectrum. Finally, the remarks o this chapter is
concluded in section 2.6.

2.2 General Application of Averaging Method

The procedures of an averaging method are as follows (e.g. Sato, 1977). The averaging method is
applied to a nonlinear differential equation that has a periodic solution and is expressed as Eq. 2.2.1:

X+x=¢f(x % t) (0<e<xl). (2.2.1)

Here, the function f in the right hand is periodic in time with a period 27 Based on a general solution
of Eq. 2.2.1 when & is zero, the solution is assumed as following form in Eq. 2.2.2:

x=Acos(t—p), Xx=—Asin(t—g). (2.2.2)

This is introduced by van der Pol (van der Pol, 1926) and is called “Van der Pol rotation
transformation.” This converts a problem of obtaining a periodic steady state of differential
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equations into that of solving algebraic equations of the amplitude and phase of the assumed
sinusoidal function. Applying the relationship of trigonometric functions to Eq. 2.2.2, we obtain

X
A? =x*+X°, tan(t—p)=—=. (2.2.3)
X
Differentiating Eq. 2.2.3 with respect to t, we obtain
. X . X
A=—(X+X), g=—(X+X). 224
2 (k). = 2o(%+) @24

Substituting Eq. 2.2.1 and 2.2.2 in Eq. 2.2.4, we obtain

A=—¢sin(t—g) f (Acos(t—p), — Asin(t—g), 1)), (2.2.5)
1) :%cos(t —p) f (Acos(t -p), —Asin(t-g), t). (2.2-6)

Assuming A and ¢ change slowly with time and averaging Eq. 2.2.5 and 2.2.6 over one period, we
obtain

A:—g%ﬁ”sin(t—go) f (Acos(t—gp), —Asin(t—gp), 1)) dt

=c®(A 9), (2.2.7)
. E 2z .
b=, cos(t—p) f(Acos(t—g), — Asin(t—gp), t) dt

=cy (A o). (2.2.8)

Here, Eq. 2.2.7 and 2.2.8 are no longer nonautonomous dynamical system but autonomous
dynamical system, which does not explicitly depend on time. They are called averaged equations. A
steady state periodic solution is expressed as just an equilibrium point on (A, @)-plane. The
averaging method is very useful because we can easily check the stability of the steady state by
using the Taylor expansion of the averaged equations around the equilibrium point. The procedure
can be available in subsection 2.2.1.

2.2.1 Stability of Solutions

Stability of solution means an asymptotic behavior of a perturbation around the solution. The
definition of Lyapunov stable (Hayashi, 1985), which means stable equilibrium of an autonomous
dynamical system, is as follows: if for every &> 0, there exists a & > 0 such that the orbit that starts
form a point within a distance & from the equilibrium point at t = 0 stays within a distance & from the
equilibrium point for every positive t. A Lyapunov stable point which tends to the equilibrium point
when t—oo is defined as asymptotically stable. Setting an equilibrium point of Eq. 2.2.7 and 2.2.8
as (Ao, @), we obtain
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A=c®(A, ¢,)=0, (2.2.1.1)

p=cy (A, ¢,)=0. (2.2.1.2)
Giving a small enough perturbations (&, ») as Eq. 2.2.1.3:

(A @)=(A+S @+n), (2.2.1.3)

we obtain variational equations as Eq. 2.2.1.4 and 2.2.1.5:

_ 02An) ., 0O(A. @)
S=¢ A S+e o6 n, (2.2.1.4)
_ 0¥(Ae) . 0Y(A )
n=¢& A E+e o6 n. (2.2.1.5)

Using a matrix form, we obtain

5(13(:%,(/)0) 8(1)(Ab,(p0)

gl oA dp | [¢
{n} 0¥ (A, 3) (A ) {n} (2219
oA 0

This is called the Jacobian matrix. The equilibrium point (Ao, @) is asymptotically stable only when
all eigenvalues of the matrix have a negative real part.

2.3 Governing Equation of Parametric Roll in Regular Waves

Since parametric roll is excited by a periodic variation of restoring coefficients, it is governed by
nonautonomous dynamical system, which has terms that explicitly depends on the time. A 1-dof
parametric roll model is expressed as Eq. 2.3.1:

2 GMvari (t’ ¢)

;o N
¢+ a(¢, ¢)¢+a)¢ GM ¢
+o —GZSK“A(¢) =, rko,’sinysinat . (2.3.1)

Here, ¢ is roll, « is a roll damping coefficient, and w4 and . are a natural roll frequency and wave
encounter frequency, respectively. The term GM is a metacentric height, GMyari and GZcaim are a GM
variation in waves and a calm-water GZ curve, respectively, and the frequency of GM variation is
equal to we. The restoring moment is calculated by assuming that heave and pitch always stay in
their equilibrium points under the concerned ship and wave condition. The right-hand side is an
external moment due to incident oblique waves, ¢ is the amplitude, r is the effective wave slope
coefficient, k is the wave number, and y is the ship course from the wave propagating direction (y =
0 means that the ship runs in following waves). Here, assuming that the ship runs at a constant speed
U towards the direction y and she does not drift at all, the wave encounter frequency is expressed as
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Eg. 2.3.2 by using the wave frequency @ and the gravitational acceleration g, based on the deep-
water linear wave theory:

2
o, =o-2-Ucosy. 2.3.2)
g

2.4 Parametric Roll in Regular Longitudinal Waves

Parametric roll amplitude can be estimated by taking into account nonlinearities of GZ and/or roll
damping. Kerwin (1955) modeled roll damping as nonlinear which increases with parametric roll
amplitude and this equation was often used in the early stage of the research of parametric roll
(Ogawara & Miura, 1960; Abicht, 1975). Sanchez and Nayfeh (1990a) intensively investigated
parametric roll by applying nonlinear dynamical approaches to a 1-dof roll model with nonlinear GZ
and roll damping.

Francescutto (2001) applied an averaging method to a 1-dof parametric roll model. He assumed
that the roll damping and calm-water GZ curve could be approximated by cubic curves and the GM
variation decreased proportionally with the square of roll. However, a calm-water GZ of a ship
increases proportionally with the heel (the ratio is called GM) when the heel is small, after that the
increasing ratio becomes larger than the GM, and starts to decrease after a weather deck submerges
or a bottom emerges. In addition, the GM variation does not always decrease proportionally with the
square of the roll even within a small wave steepness because it depends on the ship flare. This
indicates that at least quintic approximation is necessary to approximate the nature of GZ. Umeda et
al. (2004) applied an averaging method to roll equation with quintic GZ and nonlinear GM variation
in waves. Further, they confirmed that this model showed good agreement with model experiment,
so that parametric roll amplitude and characteristics are investigated based on this model in this
study.

As further improvement about parametric roll estimation by an averaging method, Bulian (2004)
applied it to a nonlinear Mathieu equation with cubic damping, nonic restoring moment, and higher
order effect of GM variation.

2.4.1 Estimation Method proposed by Umeda et al.

Umeda et al. used following coefficients (Umeda et al., 2004):

2a(¢, §) =2a+y ¢, (2.4.1.1)
. M
CM,ar (1, ) =(GM"‘€” 4 Moy cosa)etj [1—%4152), (2.4.1.2)
GM GM GM 7
%M:¢+|3¢3+|5 ¢5, (2.4.1.3)

.. . . GM GM 1
+200+yd’ +w, mean 4 — W cosat || p—— ¢°
p+20p+y P +o, [ GM GM @, j((ﬁ 2¢j
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+a, (p+1,¢° +1;4°)=0. (2.4.1.4)

Here, the roll damping and calm-water GZ curve are approximated by cubic and quintic polynomials,
respectively. The GM variation is modeled to take account of the upside-down condition so that the
GM variation becomes zero when ¢ = 7 The form of solutions is as Eq. 2.4.1.5:

¢=Acos(dt—¢), g=—aAsin(dt—¢). (2.4.1.5)

Here, A is the roll amplitude, @ is the parametric roll frequency and is equal to half the wave
encounter frequency, and ¢ is the phase lag. The time derivatives of A and & are expressed as Eq.
2.4.1.6:

A= 4 (p+a’g), &= (p+a’ ). (2.4.1.6)

»* A

Substituting Eq. 2.4.1.4 and 2.4.1.5 into Eq. 2.4.1.6, the averaged equations are obtained as Eq.
2.4.1.7and 2.4.1.8:

. o}’
A:-aA—gya}ZA?’—l—i’ MA(l—

2

T

Azjsin 2s, (2.4.1.7)
4 o

2

2
é:l@_l@ﬁ [1+F(1_ 3 A2j+%|3A2+g|SA4}

2 2 @ 4
a)z
1 / M(l—izAZ]COSZS, (2.4.1.8)
4 o V4
where

M
F:%, M =G e (2.4.1.9)

GM GM

Setting the time derivatives are zero and eliminating the term with £ provide:

12
D a A=0, (2.4.1.10)
k=0
where
64" R A
a, = B {40° -80° [ 20 + @) (F+1)]
+@,' [4(F +1)" M 2}} , (2.4.1.11)
64 7 N
a.2 = m{4a)4 (372'2 ay —1)
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+20°| @) (TF +4-37"1,)-160" |
o, [67°1,(F+1)+3M* —2(F+1)(5F +2) ]|,
a =L{97z4yzé)6+46€)4<—24ﬂ'2a7+1)
L A
+40°| @) (67°1,-57°|,—8F —2) +160” |
+0,'[97°17 —67°1,(TF +4)
+207* I (F +1)-13M” + F (37F +32) + 4]}
L __ 16
©5r o)
+2w, & (-37°1,+107"l, +3F )+ 0, 97" 1,7
+37° 1y (57° Iy +8F +2)~57" I, (7TF +4)+6M?
~3F(5F+2) ]},

{ ~187 y* @* +48 7% ay &'

4
257° 17 0,

+o,'| 2572°1 207" 1, (3771, - 4F 1)

+9(F -2 I3)2—4M1},

{367 y* &° 207" |, 00 &

8

4

2

Ay = (37r2 |, —57" |5—3F),

5
a, =1,
a =0 fork=13 ..11.
This algebraic equation of A can be found in Maki et al. (2011).

2.4.2 Effect of Superharmonics

In the method of Umeda et al. (2004) as shown in subsection 2.4.1, the existence of
superharmonics is not assumed, thereby being neglected in the averaging processes. Actually, there
should be a certain effect of superharmonics at least due to the nonlinearity of the differential
equation. Based on the method of Umeda et al., the effect of superharmonics are considered in this
subsection. Firstly, in order to confirm the error of the method of Umeda et al., a comparison
between the method of Umeda et al. and numerically integrated solution of Eq. 2.4.1.4 is shown in
Fig. 2.4.2.1 by using the C11-class post-Panamax container ship (used data are listed in appendix
subject ships for detailed data), which suffered heavy parametric roll in 1998 (France et al., 2003). In
the calculation, the roll damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012)
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with the lift component of Ikeda’s original method (lkeda, 2004), the natural roll frequency and roll
inertia. moment are estimated from roll decay test by using a ship model of the Cl1-class post-
Panamax container ship, and the restoring moment is estimated hydrostatically based on the Froude
Krylov assumption by assuming that heave and pitch change quasi-statically. The experiment was
conducted at the towing tank of Osaka University (Hashimoto & Umeda, 2010). The horizontal axis
shows a ship speed in Froude number, and the vertical axis does a parametric roll amplitude in
degrees. Figure 2.4.2.1 shows good agreement except around Fn of 0.00 to 0.05. Assuming that the
discrepancy is derived from the absence of superharmonic components, the numerically integrated
solution at Fn of 0.015 is expanded in Fourier series in Fig. 2.4.2.2. It shows that the second largest
superharmonic component is three times as frequent as parametric roll. The discrepancy in Fig.
2.4.2.1 appears regardless of parametric roll amplitude; therefore, this can be said that the
superharmonic effect is derived not only from the nonlinearity of the differential equation but also
from characteristics of the Mathieu equation.

70 I I I T T | |
Averaging Method

60 L O  Numerical Simulation i

50 .

40

30

Amplitude [deg]

20

0 o1 I | | o I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Fn

Figure 2.4.2.1 Parametric roll amplitude with A/Lpp of 1.0 and H/A of 0.03.
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1.0 we 1.5 we 2.0 we 2.5 we

Frequency of Component
Figure 2.4.2.2 Amplitude ratio of each frequency component with Froude number of 0.015, A/L of 1.0, and H/A of
0.03.

Here, using the same coefficients as the method of Umeda et al. as shown in subsection 2.4.1 as
follow:

GM GM
+a, (p+1,¢° +1;4°)=0. (2.4.2.1)

. o GM
p+2ap+yd’ +w¢2[GMmea" +— cosa)etj(qﬁ—izfj
T

The form of solutions with the third superharmonic components is as Eq. 2.4.2.2:

p=¢+¢, ¢=Acos(dt-¢g), g=—adAsin(at—g),
¢, =Acos(3dt—g,), ¢, =-30Asin(3dt—s,). (2.4.2.2)
Here, A; and A; are the roll amplitudes, @ is the parametric roll frequency and is equal to half the

wave encounter frequency, and & and &; are phase lags. The two components are defined as ¢ and
¢s, respectively. The time derivatives of A1, As, &1, and & are expressed as Eq. 2.4.2.3and 2.4.2.4:

| =é)?1A1 (d+d4). élzcﬁiz (& +0°4). (2.42.3)
A= : (d+9074,). &= e (4+90°4,). (2.4.2.4)
9(?)2A3 3 3 78 9(?)A32 3 &}
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Here, Eq. 2.4.2.1 can be rewritten as Eq. 2.4.2.5:

p+o’ p=9(4 4.1). (2.4.2.5)
where
GMmean
af:a);[u =y J (2.4.2.6)

Substituting ¢ = ¢ + ¢ into Eq. 2.4.4.5 provides:

(é+a§2¢l)+(;}53 +96° ¢3)
=(0" -0’ ) +(90" -0 ) +9(dh + 4. dh+4h. 1). (2.4.2.7)

The assumed solutions of ¢ and ¢ are determined as following the left-hand side of Eq. 2.4.2.7 by
assuming the right-hand side of Eq. 2.4.2.7 as negligibly small. We need an additional assumption
that the first and second parentheses on the left-hand side of Eq. 2.4.2.7 are sinusoidal functions with
frequency of @ and 3@, respectively. This is an assumption related to the second derivatives
with time. Then, while averaging with one of the frequencies, the second derivative with another
frequency can be zero. In order to apply the averaging method by using the assumed solution as Eq.
2.4.2.2, the first and second term of the right-hand side of Eq. 2.4.2.7 should be negligibly small;
however, the second term is not small and the value is almost equal to 8@ when the first term can
be regarded as small. This does not agree with the fact that the solution is expressed as a sum of
sinusoidal functions with frequency of @ and 3@ as shown in Fig. 2.4.2.2. Hence, the third term
of the right-hand side should have the term that is proportional to ¢ and the sum of them can be
regarded as small. Using above assumptions and substituting Eq. 2.4.2.1 and 2.4.2.2 into Eq. 2.4.2.3
and 2.4.2.4, the averaged equations are obtained as Eq. 2.4.2.8t0 2.4.2.11:

. 3 . 27 .
A1=—aA1—§7602 A&3—TJ/GJZA1A32

+M sin(Zgl)(wfzJ(; Af+8i2 A A? —%Alj

+Msm

J 167[2A1 A3 2A3 __A3]

8 s

+sin(3&, - )( J ——|3A1 %——L—,A& A3__|5A1 Aa]

034(0 e)

+¢0s(3¢, - &) ( " A? A3j’ (2.4.2.8)
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5w, . 15 .
-E[ ]A——( Jm
3o, \(F _ , 15

S NS O W

+M cos(Zgl)(aZf; j[;{z A13+8i2 A A? —%Alj

+MCOS(81_83)[%J[169”2 A12A3 16 2 A3 __Azj

+cos(381—53)(a§J
-[——SA A= ATAT [ ja Aaj
+sin (3, —53)(—27/6?)2 A? Aaj, (2.4.2.9)
h=-an-2lyon =Ty 0N A
M Sin(gl_gS)[%]£_16;2 A _163;;2 A A33+$A1]
+sm<3gl_ga)(%{]{g_56.5 W LA A (S )]

+¢0s(35,— &;) (2—14%32 Afj, (2.4.2.10)
1 15( w,’

:=—(9 —wF)A - = [ILA*

&, Gé)(a) o —w )A3 16[(?))5A1A3

134120
M cos(Zgl)[a)fzJ[# Angj

o, , 1
+Mcos(el—g3)( J[167Z'ZAL Tox = A A —EAJ
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2
+¢0s(3¢, —53)(% ]

@
5 5 1(F
. ——I 5__| 3 2+_(__Ij 3
{ 965Al 165A*A3 24\ 72 ° A
] 1 .
+sin(3e, —53)(ﬂyw2 Af) (2.4.2.11)
where
M
F=%, M =G amp (2.4.2.12)
GM GM

Next, sample calculations of the averaged equations are shown for the C11-class post-Panamax
container ship (used data are listed in appendix subject ships). Figures 2.4.2.3, 2.4.2.4, and 2.4.2.5
show that comparisons between the newly-proposed method, the method of Umeda et al. and
numerically integrated solution of Eq. 2.4.2.1. The results of the newly-proposed method are
obtained by using the Newton method with appropriate initial conditions. This is because the
averaged equations are nonlinear simultaneous equations with four independent variables Ai, As, &,
and &, so that it is very difficult to obtain equations which includes only one variable like the
method of Umeda et al.

Figure 2.4.2.3 shows the results of the same condition as Fig. 2.4.2.1 and the newly-proposed
method clearly shows much better agreement with the numerically integrated solution than the
method of Umeda et al. Figure 2.4.2.4 shows that the method of Umeda et al. disagrees with the
numerically integrated solution but the newly-proposed method agrees well with the numerically
integrated solution. Since a difference between the two is just the wave heights, it can be said that
parametric roll is much more affected by superhrmonics in the case of larger GM variation. In
addition, experimental results are plotted in this figure. The 1-dof roll model conservatively predict
the results of the experiments. This is because heave and pitch effects on a roll restoring moment are
neglected, and because the restoring variation is represented only by the GM variation based on the
Froude Krylov assumption. The effect of heave and pitch is investigated in subsection 2.4.4, and the
effect of GZ variation was investigated by Hashimoto and Umeda (2004) and Hashimoto et al.
(2008) based on model experiment and calculation. Figure 2.4.2.5 shows that the time series of
parametric roll estimated by the three methods under the same condition as Fig. 2.4.2.3, in which the
method of Umeda et al. does not show good agreement. The importance of the third superharmonic
components can be clearly understood in Fig. 2.4.2.5.
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Figure 2.4.2.3 Parametric roll amplitude with A/L of 1.0 and H/A of 0.03.
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Figure 2.4.2.4 Parametric roll amplitude with A/L of 1.0 and H/A of 0.04.
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Figure 2.4.2.5 Time series with Froude number of 0.015, A/L of 1.0 and H/A of 0.03.
2.4.3 Effect of Approximation of Calm-Water GZ Curve

The calm-water GZ curve is approximated by a quintic polynomial in subsection 2.4.1 and 2.4.2
in order to obtain polynomial expression of averaged equations with amplitudes. However, a quintic
polynomial is sometimes insufficient to approximate a calm-water GZ curve. In this subsection, an
averaging method is applied to a 1-dof parametric roll model without calm-water GZ approximation.
Further, the effect of accuracy of calm-water GZ approximation is investigated by using the obtained
averaged equations.

The coefficients of the damping and GM variation are the same as the method of Umeda et al.
(2004) as shown in section 2.4.1. By contrast, the calm-water GZ curve is not approximated by a
quintic polynomial, so that the roll equation is as Eq. 2.4.3.1.:

%+2a¢2+7/¢23+a)¢2(GMmean +GMamp COSCOetJ{¢—(1/7Z'2)¢3}

GM GM
+w 2 GZcalm (¢)

=0. 2431
O~y ( )

Following the same procedure as the method of Umeda et al., averaged equations are derived as Eq.
2.4.3.2and 2.4.3.3:

) ®}
A=—aA—§yéo2 A3—1—f|v| A 1—i2A2 sin2¢
8 4 @ 27
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o &
% > ~ i (A
(Epr-ry IO GZy (Acos(at —))sin (ot —¢)dt, (2.4.3.2)
2
felp 1% 1—12A2)
2 2 @ A
2
_la)q’ M(l——zAzjcosz.s
4 @ T
a)z 2r
% ry A -
-—F | 2GZ Acos(aot—g))cos(at—g)dt, 2.4.3.3
27GM Ao calm( ( )) ( ) ( )
where
FoMuw My (2.4.3.4)
GM GM

The integration term in Eq. 2.4.3.2 is calculated as Eq. 2.4.3.5:

2z

2 GZy, (Acos(dt—¢))sin(adt—¢)dt

2r
=— c?)lA 1 GZ, (Acos(dt - g))%[Acos(a?)t —¢)|dt
1 5 z
_ _ﬁ[Pcalm (Acos(at— g))]ow
_0. (2.4.3.5)

Here, Pcam is an indefinite integral of GZcam. However, there is still an integration term left in
2.4.3.3, so that it is impossible to obtain analytical solutions of the amplitude and phase difference.
In this study, the Newton method is used to obtain solutions from initial values that are obtained
from the existing averaged equations proposed by Umeda et al. (2004) according to Eq. 2.4.1.7 to
2.4.1.18.

Figure 2.4.3.1 shows validation of the averaged equations by using the ONR Flare topside vessel,
Cli-class post-Panamax container ship, and ITTC A-1 container ship. In the calculation, the roll
damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012) with the lift component
of Tkeda’s original method (lkeda, 2004), the natural roll frequency and roll inertia moment are
estimated from roll decay tests by using the ship models, and the restoring moment is hydrostatically
estimated in longitudinal waves based on the Froude Krylov assumption by assuming that heave and
pitch change quasi-statically. (See appendix subject ships about the ships, coefficients, and
experiments.) The averaging method without the polynomial approximation of the calm-water GZ
curve (ave_GZ) is compared with the averaging method with the polynomial approximation
proposed by Umeda et al. (the existing averaging method, ave_exg), numerical solutions of the
uncoupled roll equation without the polynomial approximation (sim_1), and experiments (exp) as
shown in Fig. 2.4.3.1. Positive and negative Froude numbers indicate that the ship runs in following
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and heading waves, respectively. All methods here conservatively predict the results of the
experiments. This is because heave and pitch effects on a roll restoring moment are neglected, and
because the GZ variation is represented only by the GM variation based on the Froude Krylov
assumption. The effect of heave and pitch is investigated in subsection 2.4.4, and the effect of GZ
variation was investigated by Hashimoto and Umeda (2004) and Hashimoto et al. (2008) based on
model experiment and calculation. The ave_GZ gives almost the same results as those of both
ave_exg and sim_1 for the ONR Flare topside vessel and the C11-class post-Panamax container ship.
However, this is not so for the ITTC A-1 container ship; the ave_GZ well agree only with sim_1 in
that case. This is because the accuracy of the fitted GZ curves is unsatisfactory only for the ITTC A-
1 container ship, as shown in Fig. 2.4.3.2. Hence, the method using the original GZ curves can be
recommended only if the fitted GZ is not satisfactory.

Figure 2.4.3.1 (e) shows that the parametric roll amplitude estimated by the method of Umeda et
al. (ave_exg) shifts towards the right relative to the averaging method with actual GZ curve. In order
to investigate how the discrepancy of calm-water GZ curve affects the estimated amplitude, an
equation of steady state parametric roll amplitude is derived from Eq. 2.4.3.2-3. Although the
integration term in Eq. 2.4.3.3 appears to be a function of ¢, it is independent of ¢ and just a function
of A because the interval of the integration is over one period. Setting the time derivatives of Eq.
2.4.3.2-3 to zero and eliminating the term with &from them provides:

& 2 = . .
> o Ao Cean (Acos(@t—¢))cos(at—e)dt

& 3
z—j—F@—42Aq

a)¢ T

A 3 2
@ (0{+8]/(?)2 Azj

2
ilM(L"%Aﬂ L—az 1 (2.4.3.6)
2 7 SM[1-—= A
4 2r
Setting 7 = @t the left-hand side of Eq. 2.4.3.6 is rewritten as:

o _2 272’”GZC m (Ac0s(dt—¢))cos(at—g)dt
27 GM Ao :

1 2 2z
=———| GZ,n,(Acost)cosrdr. (2.4.3.7)

Here, since the integration interval is the same as the period of the integrand 27 /@, shifting the
phase of integrand does not change the result. Thus, the left-hand side depends only on parametric
roll amplitude and GZ in calm water. When GZcnm is fitted by a quintic curve, Eq. 2.4.3.7 is
expressed as Eq. 2.4.3.8:
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l, A + =1, A*. (2.4.3.8)

Here, the linear coefficient is GM in calm water. Of course, substituting Eq. 2.4.3.7-8 into Eq.
2.4.3.6 yields an equivalent equation to Eq. 2.4.1.10. The solutions of Eq. 2.4.3.6 are expressed as
crossing points when the curves of the both sides are drawn as functions of parametric roll amplitude.
For the ITTC A-1 container ship, the left and right-hand side of Eq. 2.4.3.6 are plotted on Fig.
2.4.3.3 in case of Fn of -0.117 and -0.170. The left-hand sides of ave_GZ and ave_exg are calculated
as following Eq. 2.4.3.7 and Eq. 2.4.3.8, respectively, and represented by the black and gray solid
lines, respectively. The dashed lines are the value of the right-hand side. Since the left-hand side is
calculated only with the calm-water GZ curve, the difference between ave_GZ and ave_exg is purely
derived from the accuracy of calm-water GZ approximation. On the other hand, the right-hand side
are not affected by the nonlinear calm-water GZ component because the natural roll frequency is
directly depends on GM in calm-water, and GM variations are nondimensionalized by GM in calm-
water. The value of horizontal axis of the crossing point between the solid and dashed lines
represents steady state parametric roll amplitude. According to Eq. 2.4.3.6, when the ship speed
increases, the right hand side move to the downward in case that A is not so large. That can be
clearly confirmed in Fig. 2.4.3.3. From the above, for the ITTC ship A-1 container ship, the cubic
coefficient of her approximated calm-water GZ curve is underestimated, so that the left-hand side of
Eq. 2.4.3.6 becomes smaller, and the parametric roll amplitude shifts towards the right.
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2.4.4 Effect of Vertical Motions

In subsections 2.4.1, 2.4.2, and 2.4.3, the GM variation is caused by change of water-area due to
longitudinal waves, and heave and pitch are assumed to quasi-statically trace their equilibria in
waves. Since the GM can be changed by ship vertical motions, i.e. heave and pitch, heave and pitch
should be estimated more accurately. Neves and Rodriguez (2006) showed that their third-order
nonlinear heave-roll-pitch coupled model agreed well with model experiment in regular heading
waves. Taguchi et al. (2006) added the GM variation due to linearly estimated heave and pitch to a
1-dof roll model and confirmed that the 1-dof roll model could estimate the property of parametric
roll by comparing the estimated amplitudes with those of free running model experiment. In this
subsection, the effect of vertical motions on the GM variation is considered apart from the effect of
an incident wave profile and how the heave and pitch affect parametric roll is investigated.

The roll equation here is also based on the method of Umeda et al. (2004) in subsection 2.4.1 but
restoring moment is calculated without changing sinkage and trim. Comparing estimated parametric
roll amplitude with and without the vertical motions with free running model experiment shows the
importance of GM variation due to the vertical motions. Since roll-heave-pitch coupled motion
equations are too complicated to apply an averaging method, linearly-estimated heave and pitch
motion are used to estimate the GM variation due to vertical motion. The linear heave-pitch coupled
equations are as Eq. 2.4.4.1 and 2.4.4.2:

(Mm+A,)Z+B,2+(pg A, +Cy)z

+As 6+ 8356’+(pg A, Les +C35)‘9
=|F,™|cos(, t+£,7)+|F,°|cos(a,t+£,°), (2.4.4.1)

(1, +Ag)0+By 0+(pgWGM, +Cy )0

+A; Z+ B, Z+(pg A, Les +C53)Z
=|R,™|cos(@, t+ &™)+ |F°|cos(m, t+&°). (24.4.2)

Here, z and @ are heave and pitch displacement, m and lyy are a ship mass and pitch inertia, p is
density of fluid, and g is gravitational acceleration. The term Ay is water-plane area in calm water,
Lcs is a longitudinal position of centre of buoyancy from ship gravitational centre, and W is ship
displacement. The terms Ajj, Bijj and C;; are the added mass, wave damping coefficient and restoring
coefficient, respectively, and subscripts 3 and 5 indicate heave and pitch, respectively. The absolute
values of F are amplitudes of external forces, ¢ is a phase lag of the external force, and the
superscripts FK and D indicate the Froude Krylov force and diffraction force, respectively. The
derived heave and pitch are expressed as Eq. 2.4.4.3 and 2.4.4.4:

z=17,,sin(a,t+s,), (2.4.4.3)
0=0,,sin(a,t+s,). (2.4.4.4)

GM is a function of heave, pitch, wave amplitude ¢, and relative position between the ship and
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wave & as Eq. 2.4.4.5:

GM =GM (2,60,¢,.&;). (2.4.4.5)
Then, GM variation due to heave GM; and pitch GMy are defined as Eq. 2.4.4.6 and 2.4.4.7:

oM, =M 20.¢..¢)

0z 2=0,6=0,£,=0

_GM (Zamio’o’gG)_GM( am’o 0, é:G)
- 22

(2.4.4.6)

am

oGM
——(2.0.4,.%)
a0 ° 2=0,0=0,¢,=0

=GM( am70 éG) ( am’oée)
- 2gam

GM, =

(2.4.4.7)

Since the GM variations are calculated in calm water, the relative position does not affect the result.
The roll equation is as Eq. 2.4.4.8:

. . . GM GM 1
2 3 2 mean amp Cos .t = 43
P+20p+y @ + o, [ M + oM @, j( 7[2¢j

GM GI\/I
+a)¢2(¢+l3¢3+l5¢5)+w¢2[GM GMH

9j¢ 0. (2.4.4.8)

Here, restoring moment in calm water and waves are calculated without changing sinkage and trim.
Applying an averaging method as the same procedure of subsection 2.4.1 provides following
averaged equations and an algebraic equation of parametric roll amplitude:

. 10)
A=—aA—§7/c?)2A3 1 2 MA(l—izA2 sin2¢
8 4 6 2
1o 1 w2
=t M,z, Acos(2e+¢,)+=—-M, 0, Acos(2s+¢,), (2.4.4.9)
1) 4 o
2
PR T R ) T STy Y
2 2 @ 4r 4 8
2
1o M(l—izAzjcosz(e
w T
2 2
—la)‘” %zamsin(25+gz)—1w—fGM90 sin(2s+¢,), (2.4.4.10)
4 o GM 4 o GM
12
D> b A=0, (2.4.4.11)
k=0
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3847° .
b2 = a2 +25M2—M(M22 Zam2 + M92 eamz){Zﬂ-2 a7w4
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6 Yam
96 7
—5M7§|5 (F-7*1)M, 2,, M, 6, cos(e, - ¢,). (2.4.4.15)
4
bB :as + 472-2 (Ivlz2 Zam2 +M92 gamz)
24”—70)[M Z,,C08(&,)+ M, 6, cos(&,) ]
5I; M o, ¢ am
8
Y IS(GF—67z2 l,+571,)
(M, z,,sin(g,)+M, 6, sin(s,)]
4
+8”2 M, z,, M, 6,,cos(&,—¢,), (2.4.4.16)
by =a,—7° MIZ[ M, z,,sin(g,)+ M, 6,,sin(z,)], (2.4.4.17)
b, =1, (2.4.4.18)
b,=0 fork=13..,11, (2.4.4.19)
where
F _ Moy , M :—GM"""“’ , M, _GM, , M, = CM, . (2.4.4.20)
GM GM GM GM

The terms ax are available in Eqg. 2.4.1.11 to 2.4.1.18, which are the coefficients of parametric roll
amplitude in longitudinal waves estimated by an averaging method without taking the effect of
vertical motion into account. Figure 2.4.4.1 shows a comparison between the 1-dof averaging
method proposed by Umeda et al., 3-dof averaging method, and experiment. In the calculation, the
added mass, wave damping coefficient, restoring coefficient, and diffraction force of heave and pitch
are derived by a linear ordinary strip method (OSM), which is introduced in subsection 3.3.2. The
roll damping is estimated by Ikeda’s simplified method (Kawahara et al., 2012) with the lift
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component of Ikeda’s original method (Ikeda, 2004), the natural roll frequency and roll inertia
moment are estimated from roll decay test by using a ship model of the C11-class post-Panamax
container ship, and the restoring moment is estimated hydrostatically based on the Froude Krylov
assumption by assuming that heave and pitch change quasi-statically. (See appendix subject ships
about the ships, coefficients, and experiments.) The experimental results in regular heading waves
are obtained from free running model experiment at the national research institute of fisheries
engineering (NRIFE) (Morimoto, 2012). The 1-dof averaging method overestimates the experiment
especially around Fn of zero. On the other hand, the 3-dof averaging method can explain the
decrease of amplitude.

In order to analyze the reason why the estimation of the parametric roll amplitude is improved, the
GM variations in the calculations are shown in Fig. 2.4.3.2-3. Figure 2.4.3.2 shows that the GM
variation in the 3-dof averaging method is smaller than that of the 1-dof averaging method. This
decrease of GM variation is the reason of the good agreement around Fn of 0.0. Figure 2.4.3.3 shows
the GM variation of each component used in the 3-dof averaging method. The GM variation due to
pitch clearly decreases the GM variation in total. The heave and pitch motions in both calculations
are shown in Fig. 2.4.3.4-5. They clearly show the difference of the vertical motions taken into
account in each model. In the 1-dof averaging method, which is based on the quasi-static vertical
motions, the heave motion is heavy but the pitch motion is not so. On the other hand, in the 3-dof
averaging method, which is based on the dynamic vertical motions, no significant heave motion can
be seen but the pitch motion is relatively large. Furthermore, the phase of the pitch motions are
almost opposite in the two cases. These differences are the reason of the GM variation.

Figure 2.4.4.1 also shows that the amplitude estimated by the 3-dof averaging method
asymptotically approaches that of the 1-dof averaging method in higher speed cases. Firstly,
comparisons of the GM variation, heave, and pitch in the case of Fn of —0.15 are shown in Fig.
2.4.4.6-8. They show almost the same quantities with those of Fn of 0.0 as shown in Fig. 2.4.4.2, 4-5.
The total GM variations considered in both models are shown with Fn in Fig. 2.4.4.9. The GMamp of
the 3-dof averaging method is calculated as a sum of wave, heave, and pitch components with taking
the phases into account. Although it clearly shows that the amplitude of the GM variation in the 3-
dof averaging method decreases in higher speed as shown in Fig. 2.4.4.9, the response curve of the
3-dof approaches to the 1-dof as shown in Fig. 2.4.4.1. This can be explained by the nonlinearity of
parametric roll responses. Figure 2.4.4.10 shows parametric roll amplitude calculated with changing
GMamp and Fn based on the method of Umeda et al. Here, the value of GMpean is the same as that of
the 3-dof averaging method with A/L of 1.0 and H/A of 0.04 and GMamp is changed from 2.3 to 3.0
[m], in which the GManp in the 3-dof shown in Fig. 2.4.4.9 is included. This figure shows that the
parametric roll amplitude strongly depends on the GMamp around Fn of 0.0. This is because the peak
of parametric roll shifts towards the right as shown in Fig. 2.4.4.10 due to a hard-type GZ curve of
the Cll-class post-Panamax containership as shown in appendix subject ships. In this sense, it is
very difficult to estimate parametric roll around the right part of unstable region (or a left part of an
unstable region for a ship with a soft-type GZ curve).

-32-



CHAPTER 2 AVERAGING METHOD

70 | , ; : |
__ Averaging Method
with Vertical Motions
60 . Averaging Method _
by Umedaetal. | .- -~
50 H X Experiment | ___..-="770 i

40

LA I

30

Amplitude [deg]

20

10

O |
-0.15 -0.125 -0.1 -0.075 -0.05 -0.025 0

Fn

Figure 2.4.4.1 Parametric roll amplitude with A/L of 1.0 and H/A of 0.04 in heading waves.
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Figure 2.4.4.2 Comparison of the GM variation in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of 0.0.
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Figure 2.4.4.3 GM variation of each component with A/L of 1.0, H/4 of 0.04, and Fn of 0.0.
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Figure 2.4.4.4 Comparison of the heave in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of 0.0.
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Figure 2.4.4.5 Comparison of the pitch in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of 0.0.
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Figure 2.4.4.6 Comparison of the GM variation in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of —0.15.
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Figure 2.4.4.7 Comparison of the heave in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of —0.15.
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Figure 2.4.4.8 Comparison of the pitch in the two calculations with A/L of 1.0, H/A of 0.04, and Fn of —0.15.
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Figure 2.4.4.9 Comparison of the GM variations in the two calculations with A/L of 1.0 and H/A of 0.04.
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Figure 2.4.4.10 Parametric roll amplitude with various GMamp and Fn.
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2.5 Application to Design Criteria

As Paulling (1972) stated, the vulnerability for parametric roll is examined by the occurrence
probability of critical waves in the draft second check of the second generation intact stability
criteria (IMO, 2015). The draft second check adopted the Grim’s effective wave (1961) to convert
irregular incident waves to regular longitudinal waves.

2.5.1 Parametric Roll in Irregular Waves

In order to deal with parametric roll in irregular waves, Grim’s effective wave concept is useful.
Generally speaking, since parametric roll is a resonance, three or more waves are required to grow
the parametric roll amplitude and the required number of waves depends on the roll damping and
magnitude of restoring variation. Hence, the important point is to estimate how high and frequent
“continuous” waves can be expected in the irregular waves. In other words, a “single” steep wave is
not so dangerous for parametric roll. In the draft second check, the Grim’s wave height is determined
as a significant wave height of Grim’s effective wave spectrum as shown in subsection 2.5.1.1. Once
the height of incident waves is determined, the parametric roll amplitude is obtained according to the
roll model in regular waves.

2.5.1.1 Grim’s Effective Wave Concept

In the section 2.3, the governing equation of parametric roll in regular waves are introduced. In
this section, how to convert short-crested irregular waves into an equivalent regular longitudinal
wave is introduced based on the extended Grim’s effective wave concept (Umeda & Yamakoshi,
1992). Grim proposed that how to convert long-crested irregular waves into an equivalent regular
longitudinal wave (Grim, 1961), and Umeda and Yamakoshi (1992) expanded the concept to short-
crested irregular waves.

The length of the equivalent regular longitudinal wave is equal to the ship length between
perpendiculars Lyp. The effective wave amplitude (e is calculated by the least squares method as Eg.
25.1.1.1:

S =G(®, Ly 7) - o 25.1.1.1)
27r|'/1‘)pcos(;()sin[7zl'/1””cos(;()j

|_ 2
2 _ PP
7 [72’ 3 cos ;()j

where 1 is the wavelength and (, is the wave amplitude. Then, a spectrum of irregular waves is
converted to Grim’s effective wave spectrum as Eq. 2.5.1.1.3:

G(w, Ly x)= : (2.5.1.1.2)

S1 (a), Lpp,a) =[G(a), Lpp,)()]z Sw(a), a), (25.1.1.3)

where « is a wave propagating direction for each individual wave and Sw(w, @) and S#7er(@, Lop, @)
are an incident wave spectrum and Grim’s effective wave spectrum, respectively. Here, the
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significant effective wave height based on the ITTC spectrum is derives as Eqg. 2.5.1.1.4 (IMO,
2016):
a=r/2 pw=x
Hye =4.0043Jm, , m, =[""" |

- @" St (CU L a)da)da,

=0 ' Tpp?

S, (@) =(173H Ty ) exp(—(691T01‘4 Jor™ ) , T, =1.086T,, (2.5.1.1.4)

where Hefr is the Grim’s effective wave height, m, is n-th moment of Grim’s effective wave spectrum,
H; is a significant wave height [m] and T is a zero-crossing mean wave period [s]. The terms Hs and
T, are given from a wave scatter diagram in the North Atlantic Ocean in the draft second check. The
zero-upcrossing mean wave encounter frequency, ., is defined as a zero-upcrossing mean

e H
frequency as Eq. 2.5.1.1.5:

0 0)2 ?
L (w_gu COS Y | ST (‘" Lpp’l)da’ (2.5.1.1.5)

@, = p
_[0 Sest (a), Lpp,;()da)

where u is the ship speed. On the other hand, the current draft uses Eq. 2.5.1.1.6 instead of Eq.
2.5.1.1.5:

2

o, =, —%u cos z, (2.5.1.1.6)
where
27g
o = [T (2.5.1.1.7)

Equation 2.5.1.1.7 is the dispersion relationship of deep water wave whose length is equal to the ship
length.

2.5.2 Estimation of Critical Ship Speed

In above sections, averaging methods are treated as a tool to calculate parametric roll amplitude
under a certain condition. However, the averaged equations can be regarded as equations that include
all the solutions of parametric roll under all conditions, so that the averaged equations can provide
more useful information than just an amplitude under a certain condition. In this section, critical ship
speed is estimated by using the method of Umeda et al. (2004), Eq. 2.4.1.10 to 2.4.1.18. Here, the
critical ship speed is defined as the ship speed with which parametric roll amplitude is maximized in
a certain wave. The maximum parametric roll can appear when a partial derivative of parametric roll
amplitude with a ship speed is zero. Then, the critical speed is obtained by solving the averaged
equations under the condition that the partial derivative is zero. Let the equation of the amplitude, eq.
2.4.1.10, be rewritten as Eq. 2.5.2.1:
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12
D> a A“=0. (25.2.1)
k=0

Differentiating Eq. 2.5.2.1 with respect to a ship speed U yields:

12 aa aA 12

D EAH—>a kAT =0. (25.2.2)

koo OU U i

Applying a condition of stationary (i.e., that the partial derivative of A with respect to the ship speed
is zero) yields:

12

Z%Ak =0. (2.5.2.3)

koo OU

The only coefficients included in Eq. 2.5.2.1 that depend on the ship speed are the linear damping
coefficient and the wave-encounter frequency. The partial derivatives of ax with respect to the ship
speed are given in subsection 2.5.2.1. Solving Eq. 2.5.2.1 and 2.5.2.3 simultaneously gives the
critical ship speed.

Figure 2.5.2.1 shows validation of the critical speed for parametric roll by using ONR Flare
topside vessel, a C11-class post-Panamax container ship, and ITTC A-1 container ship (used data are
listed in appendix subject ships). In the calculation, the roll damping is estimated by Ikeda’s
simplified method (Kawahara et al., 2012) with the lift component of Ikeda’s original method (lkeda,
2004), the natural roll frequency and roll inertia moment are estimated from roll decay test by using
ship models, and the restoring moment is hydrostatically estimated in longitudinal waves based on
Froude Krylov assumption by assuming that heave and pitch change quasi-statically. (See appendix
subject ships about the ships, coefficients, and experiments.) Each calculated critical speed is the
relevant peak value of the existing averaging method, so that the critical speed is not overlooked by
using this method.
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ONR flare topside vessel with a wave steepness of

0.04;
C11-class post-Panamax container ship with a wave

steepness of 0.01;
C11-class post-Panamax container ship with a wave

steepness of 0.02;
C11-class post-Panamax container ship with a wave

steepness of 0.03;
ITTC A-1 container ship with a wave steepness of

0.03.
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2.5.2.1 Derivatives of Coefficients

The coefficients that depend on the ship speed are the parametric roll frequency and the linear
damping coefficient. Their derivatives with respect to the ship speed are as Eq. 2.5.2.1.1—2:\

o |1 2 T
- {E(a)k - U cos(;()]} = —zcos(;(), (25.2.1.1)
0 0

Here, ax is the wave frequency. The roll damping consists of a term that is proportional to the ship
speed C1U and ship-speed-independent term C,. Then, the partial derivatives of ax with respect to
the ship speed are as Eq. 2.5.2.1.310 2.5.2.1.10:

0 10247* 3 T .
%:m{— 3;005(;()+2¢()205Cl
5 @y

17 cos(7)[ 2"+, 1+ F)]}, @52.13)

aa, 2567°

2 "4 ”~ 2 _
U 25| {3 @' C,y—40° ACOS( )(37z ay 1)

~160° 2 C, - &= cos( )| ~16a” +w, (37" 1, + TF +4)]}, (2.5.2.1.4)

SN

ca, %

= 277 &° Z cos 2247 &' C
U 25I52a)4{ Zeos()y :

-80° %COS(}()(—247Z'2 ay +l) +640° aC,
AT
~4d>~-cos x)[16a” + ;2 (6771, 57" | ~8F - 2)]} , (25.2.1.5)

G, ___ 64

= 12774%" v* Eoos(y)+127% ' C
U 2572'2|2a)¢4|: @y os(x) 1 o Cry

— 4877 c?fzcos(;() y
—a)lcos(z) *(-37°1, +107"I +3F)} (2.5.2.1.6)

a;ag_ 32

aU - 2572_4 I 2 © 4 |:_277Z'4 C,(\)S %COS(Z) 7/2 +5C’!\)%COS(;{)CO¢2 72'4 |5:| , (25217)
5
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%y _g (2.5.2.1.8)
ouU
% =0, and (2.5.2.1.9)
ouU
% _0 fork=13 ..,11. (2.5.2.1.10)
ou

2.5.3 Effect of Wave Encounter Frequency

The amplitude of the wave-induced GM variation in irregular waves cannot be expressed as a
superposition of GM variation due to each individual wave, so that Grim’s effective wave (Grim,
1961) was introduced to the current draft second check of the second generation intact stability
criteria for parametric roll. GM variation in irregular waves is converted to that in equivalent regular
waves. By using this concept, the wvulnerability for parametric roll is estimated in regular
longitudinal waves with changing her speed. For a simple criterion, the GM variation frequency is
assumed to be equal to a wave encounter frequency that is estimated by using ship speed and wave
frequency as Eq. 2.5.1.1.6 and 2.5.1.1.7. Since Grim’s effective wave has the same length as the ship
length, the wave frequency is calculated by the dispersion relationship of deep water waves whose
length is equal to the ship length. However, the Grim’s effective wave is not propagating waves. It is
just a variation of wave surface whose profile is always along a cosine function. Thus, theoretically,
the dispersion relationship cannot be applied to Grim’s effective wave and a mean value of wave-
encounter frequency should be calculated by using Grim’s effective wave spectrum. In order to
examine the frequency effect, parametric roll amplitude is estimated by using the mean frequencies
of Grim’s effective waves and the vulnerabilities derived by using the mean frequency and the
current draft are compared. Finally, the results show good agreement, therefore it is shown that the
assumption of the wave frequency is appropriate. In addition, it is shown that number of samples of
operational conditions for ship courses should be at least 24. The above calculations are conducted
based on the method of Umeda et al. (2004) as shown in section 2.4.1.

The current draft criteria of the second check of the level 2 of the second generation intact
stability criteria for parametric roll adopts the 1-dof roll model as Eq. 2.4.1.4. Parametric roll is one
of the roll resonance, so that the wave encounter frequency governs the amplitude, which depends on
the ship speed and course. For simple criteria, the IMO adopted calculation only in irregular-
longitudinal waves with several ship speeds uk as Eq. 2.5.3.1:

U, =u__ COS(kﬂ'j (k=0,12,...,n). (25.3.1)
n

Here, umax is the ship service speed and a positive and negative uk indicates that the ship runs in
following and heading waves, respectively. The ship speeds in the current draft are estimated as
component speeds of her service speed in the wave propagating direction based on the assumption
that a ship runs with her service speed in different directions and each course is chosen with the
same probability. The reason why only a longitudinal wave is considered is that GM variation due to
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waves has almost its maximum value in longitudinal waves. The wave properties are estimated by
Grim’s effective wave concept as shown in subsection 2.5.1.1. Therefore, vulnerability for
parametric roll is examined in regular longitudinal waves by systematically changing her speed as
Eg. 2.5.3.1 (IMO, 2015):

1 n
C2=—-> C2,(u), 2532
n+143 () (2532)
where
N
C2, (u)=>.W,C (u,)- (25.3.3)
i=1

Here, C2 is an occurrence probability of irregular wave case that is judged as dangerous and is to be
used an index of the vulnerability criteria. The term n is a number of samples of operational
conditions. The term Wi is the occurrence probability of i-th wave case and N is the number of wave
cases. The term Ci(uk) is one when the parametric roll amplitude exceeds 25° in i-th case of waves
with ship speed ux and otherwise is zero.

The subject ship is the Cll-class post-Panamax which suffered parametric roll in actual seas
(France et al., 2003) and the ship data and calculation conditions are shown in appendix subject ships.
Figures 2.5.3.1 and 2.5.3.2 show the comparison of C2 in Eq. 2.5.3.2 and C2(ux) in Eq. 2.5.3.3
derived by using the mean frequency of Grim’s effective wave and wave frequency used in the draft
second check. Here, the circles indicate results derived by using the mean frequency of Grim’s
effective wave and the x-marks do those derived by using the current draft second check. Figure
2.5.3.1 shows good agreement between the two for larger n. It clarifies that n = 6, which was
tentatively adopted by the IMO (IMO, 2015), is not sufficient because the C2 value is clearly larger
than the C2 values of more larger n, which can be more reliable. For n = 12 and 18, the discrepancy
appears large, so that it is finally concluded that n should be at least 24 and the index of 0.06 for C2
should be reduced since this ship has to fail to pass the level 2. Figure 2.5.3.2 shows a slight shift of
the peak of the current draft second check towards lower speed but it can be said that the difference
between the two is not significant.

In order to investigate the reason why the simple assumption provides satisfactory approximations
shown in Fig. 2.5.3.1 and 2.5.3.2, the mean frequencies of Grim’s effective waves and the frequency
assumed in the draft second check are compared in Fig. 2.5.3.3-5. Here, the significant wave heights
and mean wave frequencies of Grim’s effective waves are calculated for all sea states appearing in
the North Atlantic. Calculated conditions in Fig. 2.5.3.3-5 are zero forward speed, the service speed
in heading waves and the service speed in following waves. The horizontal axis indicates the
nondimensionalized frequency with the encounter frequency assumed in the draft second check for
each calculated condition. So, the gray vertical line, which is located at one in the horizontal axis,
indicates the frequency assumed in the draft second check. For more than 2.0 [m] height effective
waves in Fig. 2.5.3.3-5, the mean frequency is distributed only near that of the draft second check.
This guarantees that the simple assumption that the wave frequency of A/Ly, = 1 can represent the
GM variation frequency. The reason of the agreement of encounter frequency shown in Fig. 2.5.3.3-
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5 can be explained by Fig. 2.5.3.6. It indicates that the transfer function, [G(ew, Lpp, 7]? has the
largest peak around the wave frequency of A/Lp, = 1 and can also explain the groups around
nondimensionalized wave encounter frequencies of 1.5, 2.0, and 2.5 in Fig. 2.5.3.3-5.

0.1 I T T T T T
o Mean Frequency of
Grim's Effective Wave
X Draft Second Check
0.08 - 7
O]
X
0.06 - .
(o]
) Q
o S X % Q S L
0.04 - X _
0.02 - -
O | | | 1 | |
6 12 18 24 30 36 42 48

Number of Samples of Operational Condition

Figure 2.5.3.1 Comparison of C2 with number of samples of operational condition.
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Figure 2.5.3.2 Comparison of C2«(uk) when n = 48.
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Figure 2.5.3.3 Relationship between the mean wave frequency and wave height of Grim’s effective wave with zero

forward speed.
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Figure 2.5.3.4 Relationship between the mean wave frequency and wave height of Grim’s effective wave with

service speed in heading waves.
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Figure 2.5.3.5 Relationship between the mean wave frequency and wave height of Grim’s effective wave with

service speed in following waves.
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Figure 2.5.3.6 Transfer function of Grim’s effective wave spectrum.
2.6 Conclusions
In this chapter, parametric roll is investigated by using an averaging method. The conclusions are:

1. Adding superharmonic components to the assumed form of solution in the averaging method
improves the estimation accuracy;

2. Averaged equations is derived by using the actual GZ curve in calm water, and the effect of
calm-water GZ on parametric roll response is revealed;

3. Taking account of linearly-estimated vertical motions resolves overestimation of the model
experiment especially around low speed region;

4. The critical ship speed for parametric roll is estimated by using averaging method;

5. The wave encounter frequency used in the draft second check of the second generation intact
stability criteria (IMO, 2015) is verified by using the mean encounter frequency of Grim’s
effective wave spectrum.
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CHAPTER 3 LOW SPEED MODEL

3.1 Introduction

In chapter 2, a simplified 1-dof parametric roll model is used. To investigate more precise
response of parametric roll, multi-degree-of-freedom models is proposed in this chapter. For
example, Hamamoto and Akiyoshi (1988) proposed the 6-dof model based on Froude Krylov
assumption and slender body theory, De Kat and Paulling (1989) took diffraction forces into account.
They focused on not only parametric roll but also pure loss of stability and broaching-to, so that their
models were not specialized ones to estimate parametric roll.

Since parametric roll is caused by the variation of restoring coefficients, estimation of the
variation is essential to obtain accurate results. Boroday (1990) showed that the restoring variation
could be estimated by adding added mass terms based on a strip theory to the Froude Krylov forces
by comparing with a captive model experiment. From this point of view, Hashimoto and Umeda
(2010) proposed a heave-roll-pitch coupled 3-dof to estimate parametric roll in longitudinal waves.
The 3-dof model took radiation and diffraction effects as a function of an instantaneous heel angle
into account. The results showed good agreement with towing model experiments.

However, a ship encounters waves from various directions in actual seas, so that coupling with
sway and yaw motions should not be neglected. Thus, parametric roll in oblique waves have to be
investigated. Based on the well validated 3-dof model (Hashimoto & Umeda, 2010), a sway-heave-
roll-pitch-yaw coupled 5-dof model is proposed in this chapter. For oblique waves, validation efforts
for existing numerical models (Sanchez & Nayfeh, 1990b; Neves & Valerio, 2000) have not been
sufficient so far, partly because a model experiment requires a seakeeping and manoeuvring basin
and partly because coupling with manoeuvring motion including rudder actions are unavoidable.
Further, the Cll-class post-Panamax container ship suffered parametric roll under heave-to
condition (France et al., 2003), so that manoeuvring with low speed should be considered.

Based on these understandings, in this study, the 5-dof model is proposed based on a low-speed
manoeuvring model in oblique waves and is validated with newly executed model experiment in the
seakeeping and manoeuvring basin of National Research Institute of Fisheries Engineering (NRIFE).
The comparison between the 5-dof model and experiment in regular oblique waves is performed in
section 3.5, while validation with experiment in irregular oblique waves will be a subject of future
work.

3.2 Mathematical Model

The coordinate systems are shown in Fig. 3.2.1. The space-fixed coordinate system is denoted by
01-&n¢, the coordinate system moving with a constant speed of U and course of y is denoted by O,-
XYZ and the body-fixed coordinate system is denoted by G-xyz. Here, we assume that a wave
propagates in the direction of the Oi&axis and the ship oscillates around O»-XYZ. The point G
indicates the centre of ship mass and O1Go indicates the initial depth of the centre of ship mass. The
ship’s motions around O»-XYZ are denoted by x;: surge (i = 1), sway (i = 2), heave (i = 3), roll (i = 4),
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pitch (i = 5) and yaw (i = 6). The coupled sway-heave-roll-pitch-yaw motions are modelled as Eq.
3.2.1:

me = FZ(X27X37X4’XS’XG’XZ’XS’XMXS’)'(6’).(.275(.375(.475(.5’5('67t)
mxS = FS(XZ’XS’X47X5’X67X27X37X4’XS’XG’XZ’X3’X4’X5’X6’t)
I, X, = F (X, Xay Xyy X, Xgy Xoy Xg, Xy s X, X, X5y X5, Xy, X5, X, 1) (3.2.1)
L, % = F5 (X, Xgy Xy X5 Xgs Koy Xgs Xyy X5, X5 Ky y Xg, Xy, X5, X, 1)

IZZXG = FG(XZ,XS,X4,X5,XG,)'(2,)'(3,)'(4,)'(5,)'(6,5('2,5('3,5('4,)'('5,)'('6,t)

where m: ship mass, lx: moment of inertia of ship mass in roll, lyy: moment of inertia of ship mass in
pitch, I;;: moment of inertia of ship mass in yaw, t: time and Fj: force or moment in the j direction. A
dot denotes differentiation with time. Here, to avoid the estimation of added resistance due to waves,
we assume that the surge motion x; is zero, i.e. the ship runs with a constant velocity U. The forces
are modelled according to

F=F°+F™+F*+F +FP+F" +F o, (32.2)

where the superscript B indicates the component due to hydrostatic pressure, FK the component due
to incident wave pressure, EG the component due to gravity, R the radiation component, D the
diffraction component, MLS the hull force due to manoeuvring motion and DEL the force due to
rudder action.

Wave
0,
¢ E
Wave 0,
0/~ 5 ¢
B >0 U 4
Al X X i
G ¢
Y X
y

n
Figure 3.2.1 Coordinate systems
3.3 Modeling of External Forces

The external forces are divided into the seven components, which are explained following
subsections, as Eq. 3.2.2. The buoyancy, Froude-Krylov, and gravitational forces are shown in
subsection 3.3.1. The radiation and diffraction forces are shown in subsection 3.3.2 based on a
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seakeeping theory. However, since the roll damping moment is dominated by the viscous effect, the
roll damping and inertia coefficients are estimated by roll decay test as shown in subsection 3.3.3.
The manoeuvring hull and rudder forces are shown in subsection 3.3.4.

3.3.1 Buoyancy and Froude Krylov Forces

Assuming that the incident waves are sinusoidal, their elevation, &, and wave pressure, p, are
given by

2
Cw=0Ca COS(%f—ij' (3.3.1.1)

p=pg9<, exp[—%z(g—gw)jcos[%zg—a}kt], (3.3.1.2)

where p. water density, {: wave amplitude, g: gravitational acceleration, wy: wave circular
frequency and t: time. Here, water pressure is adjusted to be zero at the wave surface, although this
is a higher-order correction under the assumption of small wave steepness.

The sectional submerged hull contour, Sy, can then be determined by
Sy =S, (8 Xis Xos Xg, Xy, X, X3 X) (3.3.1.3)

By integrating the water pressure on the sectional submerged hull contour, the buoyancy, F, and
Froude Krylov forces, Fj™, can be calculated as Eq. 3.3.1.4 and 3.3.1.5:

F® = pg IL deH ~¢n,ds, (3.3.1.4)

F* :—USH pn, dsdx , (3.3.15)

where L indicates the range of the hull in the x direction and n; is the vector normal to the hull
surface. The gravitational force, FsC, in the vertical direction is given by

F=mg. (3.3.1.6)
3.3.2 Radiation and Diffraction Forces

When parametric roll occurs, the frequency of roll is definitely smaller than the wave encounter
frequency. Thus the hydrodynamic coefficients could depend on not only the frequency but also the
instantaneous roll angle. Thus, the radiation and diffraction coefficients are calculated at each roll
angle based on the strip theory. The radiation force, Fi®, can be calculated as Eq. 3.3.2.1:

FR o _26:[_'6“ (%)%, — By (%)%, —Cy (%) %; | (3.3.2.1)

where Ajj, Bij and Cj are the added mass, wave damping coefficient and restoring coefficient,
respectively. If the ship motions are harmonic, the terms in Cj; in analytical formulae for determining
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the ship motions are equivalent to the terms in A;; divided by we?. If we do not replace the parts of Ajj
with Cij, we could face difficulty in accurate calculation when «.? tends to zero. Actually, Lee and
Kim (1982) did not use the Cjj to estimate motion of a ship who had an asymmetric submerged hull.
This was because they considered a damaged ship, so that the encounter frequency was not so small.
By extending the equations without coupling between vertical and horizontal motions (Takaishi &
Kuroi, 1977) to those with coupling, the following equations are obtained:

Azz=_fLAszdx, AzaszAstde AMZJLAHde, Azsz—ILXAstdX,

AzeZILX/Mzde, ASZZILAﬂsde' A33=ILAHssdx, AM:jLAmdx,
A= XA, Ay =] xA0x, A, = [ Ax,
P = [, v, Ay =—[ XA50x, Ag = XA, ,0x,
Py =] XA0X, Ay =] XA0X, Ay =] XA,
A55:J.LXZAHS3dx, A56:—J-Lx2AH3zdx, AGZ:J.LXAHZde,
P = [ XA0X, Ay = [ XAdX, Ay == X*Ax,

Ais = [ X Ay, (33.2.2)

By, = [ BuooOX—U[A ], By =] Btk —U[A]!
B, =, BualX-U[A]
Bys == XBsst+U [ Aypdi+U XA,
B, =.fL xBszdx—ULAszdXJrU (XA ],
By, = | BugoOX—U[A3 ], By =] Buggdx-U[A]",
By, = [ BuastX—U [A]
B, =—_[L xBHSde+UILAHSng+U (%Al
B, :IL XBngdX_UILAHSZdX_U [XA1-132]§f '
B,, =IL B, ,dx-U [AH42]Z . By =_[L By 10X -U [AH43]: '
Bis ==, XBusst+U [ Aygt+U XA, ]
B, :IL XBH42dx—ULAH42dX—U XA,
552=_ILxBH32dx4JILA432dx+U[XAH32] ,
By, =—| XBgsOx—U [ A x+U XA, ],
[ :

f
3

a

X¢

Xa

a

B, = —IL xBH34dx4JILA434dX—U XAz,

a

B = _[L XZBHsst_U [XZAH33]: ’
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Z_J.L XZBHSZdX+UIL XA 50X +U [XzAH?’Z]: '

Xg

By, = [ XBu o0 U | Apdx—U [xA,, ],
By, = || XByps0x+U [ A dx—U XA, ],
By = |, xBH24dx+U.|. Ao X=U XA, ]

——I X*B,,,,0x +U [x Ast , By = j X*By, ,,dx U [x AHZZJ (3.3.2.3)

Cus :U.[L BstdX_UZ[AH%]: + G :_U.[L BHZZdX"_UZ[AHZZ]: '

X¢

Css :U_[L BHasdx_Uz['A‘Hse,Kf » Css :_U_[L BH32dX+U2[AHSZ]X '

a a
Xy

C4s :U_[L BH43dX_U2[AH43]: ) C46 =-U IL BH24dX"'U2 [AH24]><a '
Css :_UJ.LXBHsst_UZJ.L'%sst"'UZ [XAHss]Z '
Ces :—UjL xBszdx—UzjL A, ,dx +U? [XAsz]zf : (3.3.2.4)

where

. BHij
Ay =i :—pLH #nds. (3.3.2.5)

Here, ¢ is the velocity potential of the two-dimensional flow under hull and linear free surface
conditions. These coefficients are calculated as w is @ for j = 2, 4 and 6 and as ae is @ for j = 3 and
5 This is because upon the occurrence of parametric roll, the frequency of lateral motion is
approximately wy rather than we. The added mass and damping in roll are estimated by using roll
decay test as shown in subsection 3.3.3 because the viscous effect is dominant in roll motion. The
diffraction force, F;°, can be calculated as Eq. 3.3.2-5 (Salvesen et al., 1970):

FP =¢,F)(x,)cos(-at—&7 (x,)), (3.3.2.6)
where
Ry =|E). (33.2.7)
5kj =arg EkJ , (3.3.2.8)
_D pgg“ I de. (iw, — %)%njds, (3.3.2.9)
W, =, —%'EU CoS y . (3.3.2.10)

Here, ¢p is the diffraction potential of two-dimensional flow under the hull and linear free surface
conditions in incident waves. All the above radiation and diffraction forces are calculated for the hull
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with the instantaneous heel angle at every time step of the numerical simulation in time domain.
3.3.3 Estimation of Roll Damping

The roll damping coefficients and inertia are estimated as Eq. 3.3.3.1 and 3.3.3.2:

T+T.. )
I + A, =W-GM [‘”Tj : (3.3.3.1)
BuX, =aX, +7%x°, (333.2)

where Tcorr is the correction factor of the roll inertia due to the nonlinearity of the added inertia. A
roll decay test without advance speed is conducted to obtain the roll damping coefficient and roll
inertia for the 5-dof numerical simulation.

3.3.4 Manoeuvring Hull and Rudder Forces

Since parametric roll occurs at low speeds, it is desirable to estimate manoeuvring forces with a
mathematical model suitable for a situation where the ship’s forward velocity is comparable to its
lateral velocity (Umeda & Yamakoshi, 1989). The hull manoeuvring force, FiMS, can be estimated
as the sum of linear lift components Y, and N_ and non-linear cross-flow drag components Yc¢ and
Nc:

R =Y +Y,, (3.34.1)
FMS = Ng+N,, (3.3.4.2)
where
1 L/2
Y. = 5P j d-Cp|v+rx|(v+rx)dx, (3.3.4.3)
-L/2
1 L/2
N, = 5P I d-Cp v+ rx|(v+rx)xdx, (3.3.4.4)
-L/2
Y =YV+Y,r, (3.3.4.5)
N, =N,v+N.r, (3.3.4.6)
u=UcosX, +X,SinXs, v=—UsinX, +X,C0SX,, =X, (3.3.4.7)
1 :
Y, = Eprpd u -y, ", (3.3.4.8)
1. 2 :
N, =| 5 pLyd-u|-N,", (3.3.4.9)
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1
Y. =(§prp2d -u]-Yr " (3.3.4.10)

1
N, = (Epr;d -u)- N,". (3.3.4.11)

Here, d is the mean draft of the ship, and u and v are the surge and sway velocity defined in the
body-fixed coordinate system G-xyz, respectively. Cp is the cross-flow drag coefficient when the
ship is laterally towed.

The rudder-induced force, FiPEL, is calculated as Eq. 3.3.4.12 and 3.3.4.13:

% = —(1+a,)2 p A 1,5, (334.12)
FﬁDEL = _(XR +ay Xy )%pAR UR2 fa 0, (3.3.4.13)
where
S =-K, X, (3.3.4.14)
8K
Uy =&, U, [1+ ~ JT2 , (3.3.4.15)
u, =(@-w,)U (3.3.4.16)
_ (3.3.4.17)
"D, 3.4.
K, =aJ?+bJ +c, (3.3.4.18)

Here, & rudder angle, an: the interaction factor for rudder force between hull and rudder, xu: the
longitudinal position of rudder force due to interaction between hull and rudder, xg: the longitudinal
rudder position, Ar: the rudder area, f,: the hydrodynamic rudder lift slope, Kp: the rudder gain, up:
the propeller inflow velocity, ur: the rudder inflow velocity, ny: the propeller revolution number, Dg:
the propeller diameter, Kr: the thrust coefficient, and &y: the wake fraction ratio between propeller
and rudder positions. From Eq. 3.3.4.15 and 3.3.4.17-18, the rudder inflow velocity can be rewritten
as Eq. 3.3.4.19:

8 b ¢
URZSWUP 1+; a+3+?

bn D. c¢n?D.?
=¢g,U l+§£a+ P_FF "J

w=p
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8
_ 2 2 2 2
_gw\/up Jr;(aup +bn, D,u,+cn,?D,’). (3.3.4.19)

The flow straightening effect is ignored because captive model experiment related to rudder forces
has not been conducted for a subject ship shown in section 3.4.

3.4 Model Experiment

To validate the numerical model for parametric roll in oblique waves, experiments using a 1/48.8
scaled model of the 154 m-long ONR flare topside vessel were performed at the seakeeping and
manoeuvring basin of the NRIFE. The technique of free running model experiment is shown in
appendix subject ships. The principal particulars and body plan of the vessel are presented also in
appendix subject ships.

The coefficients of roll damping and inertia are shown in Tab. 3.4.1. The comparison of roll decay
between experiment and numerical simulation by the 5-dof model is shown in Fig. 3.4.1. The chain
line indicate the roll decay in the model experiment. The time series of roll decay shows good
agreement when the roll amplitude is relatively large.

The system parameters for manoeuvring forces, such as Cp and Yy, can be estimated by captive
model experiment of a ship. In this study, the coefficients measured in the circular motion tests of a
Cl1-class post-Panamax container ship, whose hull form is similar to the ONR flare topside vessel,
are used. Linear coefficients could be estimated by using the ship aspect ratio k, the block coefficient
Cb and Lgp/B (Yoshimura et al., 2009). The cross-flow drag coefficient Cp is strongly dependent on
Lpp/d (Yoshimura et al., 2009). As shown in Tab. 3.4.2, the differences between these parameters for
the ONR flare topside vessel and C11 class post Panamax container ship are not large. The values of
hydrodynamic coefficients for roll manoeuvring forces are shown in Tab. 3.4.3 (Kubo, 2012).

The free running experiment was performed for regular stern quartering waves. The wavelength to
ship length ratio was 1.25 and the wave steepness was 0.03. As shown in Fig. 3.4.2, under these
wave conditions, the GZ curve of the ONR flare topside vessel clearly changes due to the
longitudinal waves. The auto pilot course ranged from 0° in the wave direction to —70° but no
parametric roll occurred for the auto pilot course of —70°. The propeller rotated at 143 rpm in the
model scale, which corresponds to Fn of 0.05 in calm water.

Table 3.4.1 Experimentally estimated roll damping coefficient of the ONR flare topside vessel in full scale.

Item ONR flare topside vessel unit
Natural roll period: T, 21.32 S
Correction factor of roll inertia: Teorr 1.0 S
Linear damping: « 2.509 x 107? st
Cubic damping: » 10.39 S
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Figure 3.4.1 Comprison of roll decay of the ONR flare topside vessel in model scale.

Table 3.4.2 Comparison of the geometrical parameters for the ONR flare topside vessel and C11-class post-Panamax

container ship.

Item C11-class post-Panamax container ship ONR flare topside vessel

k 0.0374 0.0439
Co 0.536 0.559
Lpe/B 7.84 6.55
Lpp/d 26.8 22.8
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Table 3.4.3 Experimentally estimated manoeuvring coefficients of the C11-class post-Panamax container ship.

C11-class post-Panamax

Item . . unit
container ship
Y, —0.207
Y, 0.0419
Ny’ -0.110
N’ —0.0238
Co 0.788
an 0.25
XH -66.2 m
XR -71.49 m
Ar 28.64 m?
fa 2.521
Ew 10
1-wp 1.0
Dp 4.97 m
Kr(J) 0.6336 -0.2693 J -0.09617 J?
1.2 T T T T T
', e _\'\ \\\\
08 // ~N\, -
a N, *
a';. \. ‘\
R \ *.
E‘ ,"—' / ‘\‘ e
; 04 | "'— ‘/. \. ‘\\ —
&) Lo L \ '
-"' 4"/ \. “\
o“’ - ".’ \.
0 =" v
v
.\.
\l
-04 1 1 \ 1 | N
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Heel [deg]
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—-—-+ (GZ at Position Where GM is the Smallest

Figure 3.4-2 GZ variations of the ONR flare topside vessel in longitudinal waves with wavelength to ship length

ratio of 1.25 and wave steepness of 0.03 in full scale.
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3.5 Validation

The comparison between the numerical and experimental results for the steady amplitude for each
condition is shown in Fig. 3.5.1. The numerical calculations are performed under the following
conditions: the Froude number is 0.0365, which is the mean value of the ship speed observed in the
free running experiments. The time series results of roll, pitch and heading angle with the auto pilot
course of —30° of the experiment and calculation are shown in Fig. 3.5.2 and 3.5.3, respectively. In
these figures, the roll period is twice the pitch period, which is equal to the wave encounter period,
and the roll period is nearly equal to the ship natural roll period. Thus, this can be characterized as a
typical parametric roll. The discrepancy between the auto pilot course and the heading angle in the
experiment suggests the possible existence of a wave drift yaw moment.

As shown in Fig. 3.5.1, both in experiment and calculation, the largest roll amplitude occurs at the
ship heading different from the wave direction. However, when the heading angle increases further,
the roll amplitude decreases. This is because of the shift of encounter frequency together with the
reduction in the roll restoring variation. Comparison of Fig. 3.5.2 and 3.5.3 shows that there are
discrepancies between the experimental and calculated results. One reason for this is that the heading
angles that determine the amplitude of restoring variation are not estimated well. Here, the ‘heading
angle’ means the mean value of the sum of y and xe. Therefore, the parametric roll amplitudes are
plotted as a function of the heading angle in Fig. 3.5.4. The results indicate a better agreement
between the experiment and calculation than that the results in Fig. 3.5.1 do. However, the calculated
values still overestimate the measured values.

The overestimation of the experimental values observed in Fig. 3.5.4 reveals that the difference in
the heading angle is just one of the reasons for the overestimation of the parametric roll amplitudes.
As shown in Fig. 3.5.5, & motions in experiment and calculation are then compared in order to find
the origin of the discrepancy between the experimental and calculated roll values. The horizontal and
vertical axes in Fig. 3.5.5 represent the longitudinal and lateral directions of the model basin,
respectively, if the real scale length is used. The incident waves propagate from left to right. The
trajectory in calculation is shifted in the direction opposite to wave propagation. This discrepancy
could result in the inaccuracy of the calculated roll moment coupled with sway motion. There may
be several reasons why the sway motion is not estimated well, with wave drift force and numerical
drift being the most probable ones. Therefore, the wave drift force, which acts in the direction of
wave propagation, is not considered in our model. However, since there is no restoring force in the
sway direction, numerically obtained sway motion can occasionally diverge even in regular waves.
This is not based on the physics of the problem but is rather a purely numerical issue (Fukasawa,
1990). However, as shown in Fig. 3.5.5, in our model, the sway motion does not diverge because the
manoeuvring force is taken into account.

To further investigate this issue, numerical simulation using the measured surge, sway, and yaw
motions is performed. The results with the auto pilot course of —30° are shown in Fig. 3.5.6. Here,
the initial values used in the simulation are set to be the measured values. The agreement in the roll
amplitude with the experimental results is slightly better than those obtained by the 5-dof simulation,
while the pitch motion is in good agreement with the experimental result. This means that while an
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improvement of the prediction accuracy of sway and yaw motions in waves under parametric roll
conditions will enable a more accurate estimation of parametric roll, the amplitude will still be larger
than experimental results. Resolving this issue could be one of the future tasks.

In addition to comparisons on time history, the Fourier series expansions of the time series of the
roll in the numerical and experimental results in order to identify the dominant harmonics of roll
motion as shown in Fig. 3.5.7. In the calculation, the amplitude at the frequency of half the wave
encounter frequency is dominant and those at the other frequencies are negligibly small. The same
conclusion can be applied also for the experiment but only with smaller auto pilot course. For larger
auto pilot course, the harmonic element is dominant in the experiment. This could suggest that the
experiment for large heading was not realised in steady condition assumed in the calculation. This
could be a clue for the further study to validate a numerical model for oblique waves.

30 I I T I I
Calculation
X Experiment
25
E
=
—E 20
2 x X
o,
1% 15 +
=
a4
.2
3 10
g
a4
=
a,
5 -
0 l ! \ | |
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Auto Pilot Angle [deg]

Figure 3.5.1 Steady amplitude of parametric roll in oblique waves as a function of auto pilot angle.
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Figure 3.5.3 Time series of roll, pitch and heading angle in calculation with the auto pilot course of —=30° in full scale.
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Figure 3.5.4 Steady amplitude of parametric roll in oblique waves as a function of heading angle.
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Figure 3.5.5 Ship trajectories with the auto pilot course of —30° in full scale.
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Figure 3.5.7 Roll amplitde components, which are normalized with that of the frequency of 0.5, for various
frequencies as a result of the Fourier sries expansion of the time histories in the calculation and

experiment.

3.6 Conclusions

Parametric roll in regular oblique waves was realized in free running model experiments of the
ONR flare topside vessel, and its maximum amplitude was about 20°. The 5-dof numerical model
captures some qualitative tendencies in the experiment but the estimated amplitudes are larger than
the experiment by about seven degrees. The numerical model used here includes the nonlinear
Froude Krylov components, radiation and diffraction components as functions of roll angle, and

-64-



CHAPTER 3 LOW SPEED MODEL

manoeuvring forces. The roll amplitude decreases with increasing heading angle but the largest roll
occurs for non-longitudinal waves in both experiment and calculation. Following this preliminary
validation attempt, wider validation studies of parametric roll in oblique waves will be performed
with different ships and different heading waves in the near future.
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CHAPTER 4 EFFECT OF ENCOUNTER FREQUENCY

4.1 Introduction

Parametric roll is known as a ship roll motion that is excited by a periodic variation of coefficients
of a roll restoring moment and occurs in an unstable region of the Mathieu equation. As for a ship
roll motion in longitudinal waves, the unstable regions appear when a natural roll frequency, wy, is
almost equal to an integer multiple of half the encounter frequency, we, hence we:@g = 2:n. In this
dissertation, parametric roll in the unstable region of we:@g ~ 2:n is called 2:n parametric roll. The
widely-known parametric roll is expressed as 2:1 parametric roll in this rule.

There are few researches about the 2:2 parametric roll in the literature, so that our recognition
about ship motion in this region is not enough from the view point of actual ship motion. Ogawara
and Miura (1960) conducted captive model experiment and showed that 2:n parametric roll occurred
in regular following waves. Sanchez and Nayfeh (1990a) closely investigated 2:1 and 2:2 parametric
roll by using nonlinear dynamical approaches based on 1-dof roll model. Vilensky (1995) revealed
that the 2:2 parametric roll is not so dangerous relative to the 2:1 parametric roll in purely following
waves; however, the 2:2 parametric roll in stern quartering waves can cause a large roll motion due
to the combination of the periodic GZ variation and direct exciting moment. Unfortunately, his study
is not sufficiently accessible to the public. The 2:n parametric roll (n > 2), in other words, the higher
advance speed region does not appear to have been investigated enough. Spyrou (2000) investigated
the 2:1 and 2:2 parametric roll with different wave encounter frequencies by using the Mathieu-type
nonlinear differential equation with a nonlinear roll damping. He defined very quick capsize events
that occurred around a wave crest as a pure loss of stability. However, he mentioned that there was
no practical reason to divide parametric roll and pure loss of stability. Moreover, Spyrou (2005)
estimated that when n is greater than 2, 2:n parametric roll rarely happens mainly because the ship
should run at high speed to achieve such a small encounter frequency and then the roll damping
becomes too large to cause parametric roll. However, it is no more than a presumption based on the
Mathieu-type equation.

In order to identify the 2:n parametric roll regions, the Mathieu-type 1-dof model for parametric
roll, which is introduced in section 2.3, was used, and the 2:n parametric roll was of course
confirmed. Then, actual ship roll motions in wide encounter frequency region were investigated with
free running model experiments while increasing the ship advance speed. The 2:2 parametric roll
was observed in the experiment; however, 2:3 and 2:4 parametric rolls were not observed as Spyrou
(2005) presumed. Instead, a phenomenon which can be regarded as pure loss of stability was
observed in the experiment with high ship advance speed. This indicates that the ship roll motion is
not governed by the Mathieu-type equation when she runs with high speed in following waves. This
might be because the coupling effect of surge motion is essential under such a condition. To explain
experimentally observed roll motion, the nonlinear Mathieu equation proposed by Umeda et al.
(2004) and a manoeuvring-force-based model were used. The nonlinear Mathieu equation can
predict parametric roll well as shown in chapter 2; however, it could not estimate the roll motion
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with higher advance speed. Then, the manoeuvring-force-based 4-dof model proposed by Kubo et al.
(2012) was used to estimate ship motion with higher speed. This model was well validated by model
experiment of pure loss of stability. Finally, it is experimentally and numerically revealed that
parametric roll and pure loss of stability can be distinguished and there is a difference on their
mechanism.

4.2 2:n Parametric Roll Region

Parametric roll in regular longitudinal waves has been estimated by the Mathieu-type models as
introduced in section 2.3. In this section, the 1-dof model, Eq. 2.3.1, is also used to estimate 2:n
parametric roll and is rearranged into Eq. 4.2.1:

szave (t’ ¢)

=0. 421
GM ¢ ( )

$+2a(p, ¢+,
Here, GZuave is the sum of the GM variation in waves, GMyari, and GZ in calm water, GZcam and is
estimated based on the Froude Krylov assumption. The roll damping coefficients are estimated based
on the Tkeda’s simplified method (Kawahara et al., 2012) with the lift component of Tkeda’s original
method (lkeda, 2004) as shown in section 5.1. Equation 4.2.1 is numerically solved by the Runge-
Kutta method with an initial condition is as follows: roll angle is —1.0 [deg], roll angular velocity is
0.0 [deg s], and ship gravitational centre locates at a wave trough when t = 0. The incident wave is
a following regular longitudinal wave whose length is equal to the ship length and steepness is 0.07.
The calculated maximum and minimum roll angle under steady states are shown in Fig. 4.2.1. The
2:1, 2:2, 2:3, and 2:4 parametric rolls are obtained by the calculation. The examples of time series of
2:n parametric roll responses when the ship meets two waves are shown in Fig. 4.2.2. It shows that
the ship rolls n times in two waves. Here, the 2:1 and 2:3 parametric rolls have twice the period of
the wave encounter one and show the same magnitude of roll in port and starboard side. In contrast,
the 2:2 and 2:4 parametric rolls have the same period as the wave encounter one and show a certain
shift in roll. This shift is derived from the term whose coefficient periodically varies. For example,
substituting roll whose period is the same as the wave encounter one, ¢ = ACOS(a)et) , into the
term that causes parametric roll, M cos(w,t)¢, a constant term is derived as Eq. 4.2.2: Ty=Te

M A
M cos(a)et)-Acos(a)et):T[l+cos(2a)et)]. (4.2.2)
This constant term yields the shift in the 2:2 and 2:4 parametric rolls. In contrast, if roll whose

period is twice as the wave encounter one is substituted into the term, no constant term can be
obtained, so that the 2:1 and 2:3 parametric rolls are symmetrical.
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Figure 4.2.1 Maximum and minimum roll angle estimated by the Mathieu-type model.
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Figure 4.2.2 Examples of 2:n parametric roll responses in time series.
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4.3 Mathematical Model

Ship motions in following waves are estimated by using the surge-sway-yaw-roll coupled 4-dof
model proposed by Kubo et al. (2012). The coordinate systems are shown in Fig. 4.3.1. The 4-dof
model is based on a ship maneuvering model as Eq. 4.3.1:

(M+m)u =T (u;n, ) = R(U)+ e Xy (E5.776:1 7))+ X4y,

(m+my )v=—(m+m)ur+Y, (&7t zin, )+Y, +Ye,
(1, +3,)F =Ny (&.76.t.u, zin, )+ Ny + N,
(Ig+J)P=m, z,ur+K, (éG,nG,t,u,;(;np)+KH +K,

—(1x +JXX)[$¢5+37:)\¢3\¢)—W GZ (S (Esu16 2, 1).8). (43.)
¢

Here, a space-fixed coordinate system is denoted by O-¢&7¢, and a body-fixed coordinate system is
denoted by G—xyz with setting the downward direction as positive in {'and z. The terms u, v, r, and p
are surge, sway, yaw, and roll velocities, respectively. The terms m, Iy, and I, are a ship mass and
inertia moments in roll and yaw, respectively, and my, my, Jx, and J;; are added masses in surge and
sway and added inertia moments in roll and yaw, respectively. The term T(u; np) is an effective
propeller thrust, ny, is a propeller revolution number, R(u) is a ship resistance, and acorr iS an
empirical correction factor of a diffraction effect proposed by Ito et al. (2014). The terms a and b are
linear and quadratic roll extinction coefficients, W is a ship displacement, GZ is a ship roll restoring
arm estimated based on Grim’s effective wave concept (Grim, 1961), and & is the effective wave
elevation. The coefficients with subscripts G, W, H, and R represent the forces concerned with
gravity, wave, hull reaction, and rudder, respectively.

Wave

Figure 4.3.1 Coordinate systems

4.4 Modelling of External Forces

The gravity component, i.e. the roll restoring moment, is estimated by using Grim’s effective
wave concept (Grim, 1961) as shown in subsection 2.5.1.1. The GZ in waves for Grim’s effective
wave is estimated by changing heave and pitch quasi-statically, i.e. heave and pitch always comply
equilibrium in waves for each wave amplitude and heel angle.

The wave induced forces are estimated by the slender body theory with low encounter frequency
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assumption (Umeda et al., 1995b) except surge force, which is estimated by Froude Krylov forces
with its empirical correction (Ito et al., 2014).

The added masses except that of roll are estimated by using Motora’s charts (1959; 1960a; 1960b)
and the roll inertia and extinction coefficients are estimated from free roll experiments as shown in
section 4.5.1. Yoshimura’s experimental values (Yoshimura, 1986) are used as the maneuvering,
rudder, and propeller thrust coefficients. The manoeuvring hull, rudder, and propeller thrust
coefficients are shown in appendix subject ships.

The ship resistance is estimated to reproduce the free running speed trial tests. When the ship runs
at constant speed with a constant propeller revolution number in calm water, the thrust and resistance
balance as:

R(u):T(u;np). (4.4.1)

Since the thrust is estimated by using the constant ship speed and propeller revolution number
observed in the speed trial test, the ship resistance at speed u is estimated to comply with Eq. 4.4.1.
However, since the ship resistance should be estimated by captive model experiment basically, the
estimation of the ship resistance is one of the future tasks in this chapter.

441 Wave Induced Forces

The wave induced forces are estimated based on the slender body theory with low encounter
frequency assumption (Umeda et al., 1995b) and assumed to be proportional to the wave amplitude
as Eq. 4.4.1.1-4:

Xw (ge’ﬂe’tyl)=§a

H, (a),;()‘ Cos(a)t—kf(3 +&y (a),;()) (4.4.1.1)

Yo (&50776.1u, 230,
=C, UHYF (a),;()‘ Cos(a)t—k E+ ey (a),;())
+|HYDZ (a),;()| Cos(a)t —k & +é&,, (a),,())
+H (@, 7)|cos(t k& + &g (. 7)) ] (4.4.12)

Ny (6,776, t,U, 231, )

=, UHNF (a),;()‘cos(a)t—k(fe + & (a),;())
+|HNDz (a);()| Cos(cot—k Ee +Enpy (a);())
+|HND3 (a),;()| Cos(a)t—kfG +8ND3(a),;())
+‘ Hs (a), ;()‘ COS(a)t —ké&; + & (a), ;())] , (4.4.1.3)

Kw (ieineyt'u’l;np)

=0GY, (ge’ne’tiull;n)
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+¢, |:|HKF1 , Z)|Cos(a)t k§G+gKFl DX )
+‘HKF2 a) Z)‘Cos(a)t K& +8KF2(CO Z))
+‘HKD2 w Z)‘Cos(a)t K& + &z (a) l))

+[Hyg (@, 7)|cos(@t —k & + & (@, 7)) (4.4.1.4)
where the wave elevation at the ship centre of gravity ¢ is:
Sy=C.cos(wt—k&; +e, (0, 7). (4.4.1.5)

Here, H and ¢ with subscripts are the transfer functions and phase differences, respectively: the
subscripts F indicates Froude Krylov components, D does diffraction components, and R does
rudder components. The term &, k, and @ are the wave amplitude, number, and frequency,
respectively. The above mentioned transfer functions are calculated as follows:

Hy (w'Z):ch(a”l)"‘ins(a),Z),

Hyc (@, x)=-p9g kcos;(J':EE C,(x)S(x)e™ ™ sin(k xcos x)dx
, (4.4.1.6)
Hes (@, 2)=p9 kcos;(jAFEECl(x)S (x)e ™™ cos (k xcos ) dx

Hee (@, 2) = Hyee (@, 2) +iHyes (@, ),

Hyec (a;;() = pgksin ;(j:EECl(x)S (X)e—kd(X)IZSin(k xcos;()dX @41

Hyes (@, 7)=—pgksin ;('[:EE C,(x)S (x)e ™" cos(k xcos y)dx |

Hyp, (a), Z) =Hypae (a), Z)+i Hypos (w’ Z)’
FE

Hypsc (@, 1) = —ousin )([p S, (x)e ™™ cos(k xcos ;()]AE

(4.4.1.8)

FE '

Hyoss (@, 1) = —wusin ;([p S, (x)e ™™ sin(k xcos ;()LE

Hyg (@, 7) = Hye (@, 1) +iHgs (@ 7).

8K
Hyne (@, 1) = (1+a, )%AR f, e, (1w, )u /1+ Ko %

-wsin yexp(—k z )cos(k X, cos y)

/ 8K,
HYRS(a),;()=(1+a) A f, &, (1-w,)u 1+K‘P7TJ

-wsin yexp(—k zg)sin(k x5 cos y)

(4.4.1.9)

Hye (a)’l): Hyec (w’l)"‘i Hyes (a),;(),
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Hyee (@, 2) = pngIn;(I C,(x)S(x)e ™ ™ xsin (k xcos z)dx

Hyes (@ 7)=—pgksin ;(J.AE C,(x)S (x)e ™™ xcos(k xcos ) dx |

HNDz(a)’)()= Hy\pac (a),;()-l-i Hypos (a) )

)e cos(k xcos;g)dx

(4.4.1.10)

><

. FE
Hmozc(w’l):wusmzj‘AEpSy (4.4.1.11)

Hioas (0),}()=a)USin;{.[:EEpSy (x)e ™ sm(kxcos;()dx

HNDS(C‘)'Z): H\pac (a)’l)"'i Hypas (a),;(),

Hypsc (@, x) =—wusin ;([p S, (x)e ™™ xcos (k xcos;()TE
N (4.4.1.12)

FE '

Hyoss (@, 7) = —@usin ;([,0 S, (x)e ™™’ xsin(k xcos;()]AE

Hyg (@, 7) = Hyge (@, 2) +1 Hygs (@, 7).,

8K
e ()= o+ 50) 5 A 1, o o, 5

-wsin yexp(—k zz)cos(k x5 cos z)

(K
8K
Hygs (@, 7) = (Xz +a, Xy (1 )u /1+ Kp ”JT?_

-wsin yexp(—k z; )sin (k X cos )

(4.4.1.13)

(-
HKFl(a)’;{):HKFlC(a)1I)+iHKFlS( )
HKFlc(a”Z):pnginZIAFEEQ X) 5 )[ ( ):I

—kd(x)/2

e sin(k xcos y)dx

B(x) (4.4.1.14)
R FE X 2
s (0.2) == sin £ 26,00 250 1)

-6 cog (k x cos ) dx

HKFz(w'Z): g P (a)’l)+i H e os (a),}(),
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Hroc (a),;()=pg szinZ.[:EEC“(X){B(ZX)} d (X)

e * ™" sin (k xcos x)dx

) (4.4.1.15)
i B(x
H e 2s (a),}()z—pgkZSIHZjAF;Cll(X){—(Z )} d(X)
-6 %0 cos (k xcos x) dx
HKDz(a)!Z):HKch (a)’l)"'iHKDzs (a)’l)
HKDZC(a),;()=—a)USin;([pS (X1, (x)e"‘d(x)’2 cos(k XCOSZ)JZE
. (4.4.1.16)
Hyoos (@, 7) —a)usm;([ e ‘" sin (k xcos;()]AE
HKR(C‘)Z) KRc(a)Z)+|HKRs(a)Z)
8K
Hiee (@, 7)=—(1+a, ) 2,0 2 2 Eu(1-W, ) ,1+KP7Z_—JT2
-wsin yexp(—k z, )cos(k X, cos
wsin 72exp(~k 2, Jcos (k x, c0s 7) , (4.4.1.17)
p [, . 8K
HKRS(a),;():—(1+aH)ZHREAR fagw(l—wp)u 1+K‘Pﬁ
-wsin yexp(—k z;)sin(k x5 cos y)
where
sin kB(ZX)sin;(j
C,(x)= (4.4.1.18)
k B(X)sin;(
Z{Sin( sm ;(J k (2X sin ;(cos(kB(zX)sin Zﬂ
C,(x)= : (4.4.1.19)
]
k sin y
( )u f, = 0.13A (4.4.1.20)

2.25+A°

Here, B(x), d(x), S(x), I,,(x), and Sy(x) are the breadth, depth, sectional area, lever of added mass, and
added mass in sway direction which are defined on each cross section located at a position by x away
from midship in longitudinal direction of the ship, respectively. The term au: the interaction factor
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for rudder force between hull and rudder, x4: the longitudinal position of rudder force due to
interaction between hull and rudder, xg: the longitudinal rudder position, Ar: the rudder area, f,: the
hydrodynamic rudder lift slope, Dg: the propeller diameter, Kr: the thrust coefficient, wp: the wake
ratio between hull and propeller, and &.: the wake fraction ratio between propeller and rudder
positions. The phase differences & are calculated by using real and imaginary part of the transfer
functions as Eq. 4.4.1.21:

—Arctan( Im(H )] =—Arctan (%J (4.4.1.21)
C

Re(H)
4.4.2 Manoeuvring Hull and Rudder Forces

Yoshimura’s experimental values (Yoshimura, 1986) is used as the hull reaction, rudder, and
propeller thrust coefficients. The nondimensionalized values are shown in appendix subject ships.
He used the similar ship with the subject ship in this chapter. The manoeuvring hull and rudder
forces are modelled as Eq. 4.4.2.1-8:

X, = %p LdU? (xw’ VX, VI + X T X VX, VP r’) , (4.4.2.1)
YH :%pLdUZ(YVV V,+Yr' ry+YVWI VIS +er V/2 I+Y V’ 12 +Y ) (4422)

Y, =—(1+a, )%AR f, e (1-w,) u? £1+KP S—Ksza

7
8K,
—(1+a, ) At 7a e (1-w, )u [1+x, —T 3 T(v+lgr), (4.4.2.3)
T
N, =%pL2dU2(NV'V’+Nr' r
+N,, VE+N, VN, VIZeN, r'3), (4.4.2.4)
Je) 2
Ng =—(Xg +ay X, )EAR f, e (1-w,) uz[ j&
—(Xg +ay Xy ) A fzx]/RIRgR 1 w, u ’1+K‘P (V+lor) (4.4.2.5)
K, =—2,Y,, (4.4.2.6)
Ky =—Z,g Ya. (4.4.2.7)
U=+ui+v?, v=2, Ly (4.4.2.8)
U U
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Here, L is a ship length, & is rudder angle, zy is a vertical position of the centre of the lateral
manoeuvring force and zur is vertical position of the rudder. The flow straightening effect is
included as linear effects on the rudder forces.

4.4.3 Thrust and Ship Resistance

Yoshimura’s experimental values (Yoshimura, 1986) is used as the propeller thrust coefficients
and the values are available in section 5.4. However, since the ship resistance is not available in his
paper, speed trial data in the experiment are used to estimate the ship resistance. Generally, the ship
resistance is estimated by a captive model experiment, so that it is a future task. First, the effective
thrust T is estimated as Eq. 4.3.3-1:

T(u;n,)=(1-t,) pn D K, (J). (4.4.3.2)

Here, ty: thrust reduction coefficient. When the ship runs with constant speed in calm water, the
thrust and ship resistance balance as Eq. 4.4.1. The thrust coefficient is approximated by quadratic
equation as Eq. 4.4.3.2:

KT(J)=2'0+T1J+2'2J2

2 2
. mMgww(g] | 6432
D, n,

2
b D, n,

Substituting Eq. 4.4.3.2 into Eq. 4.4.3.1, the thrust is expressed as Eq. 4.3.3.3:

2
| t-w)u  (-w)(
T(u,np)=(1—tp)pnp2 D: T, + 1, DPP n—p+rz DPZP n—p
1- 1-w, )
=(1-t,)pD; ronp2+rl(D—WF’)unp+r2(D—WZP)U2 . (4.43.3)
P P

Approximating the propeller revolution number n, as a quadratic function of the ship speed u from
the speed trial test, the calm-water resistance is expressed as a quartic function of the ship speed u.

4.5 Model Experiment

To investigate the 2:n parametric roll in following waves, experiments using a 1/53.471 scaled
model of the 180 m-long pure car carrier were performed at the seakeeping and manoeuvring basin
of the National Research Institute of Fisheries Engineering. The technique of free running model
experiment is shown in appendix subject ships. The principal particulars of the vessel are listed also
in appendix subject ships.

45.1 Roll Decay with Advance Speed

To treat nonlinear roll motions in a wide frequency range i.e. wide speed range, the speed effect
on the roll damping should be considered. Thus, roll decay tests with several advance speeds are
conducted by rotating a propeller installed on the model with propeller revolution speed of 0, 300,
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450, 600, 900, and 1200 rpm. The observed ship speeds are 0.0, 0.067, 0.078, 0.13, 0.20, and 0.26 in
Froude number, respectively. The obtained linear roll extinction coefficients are shown in Fig. 4.3-1.
Here, speed effect on quadratic roll extinction coefficient is neglected because enough large initial
heel cannot be given in running roll decay tests.

Roll damping can be divided in friction, eddy, lift, wave making, and bilge keel components. It is
known that the eddy one decreases linearly with advance speed, the lift one increases linearly with
advance speed, and the others excepting the wave making one are almost constant against variance
of advance speed (lkeda et al., 1978). The wave making component is actually affected by the ship
advance speed and the qualitative change appears at Hanaoka’s parameter of 0.25. The point
indicates the change of wave pattern induced by the advancing ship. Hanaoka’s parameter 7 is
calculated as Eq. 4.5.1.1:

e (4.5.1.1)

Here, the encounter frequency w. indicates the frequency of ship motion in waves, so that the natural
roll frequency is used instead to estimate 7 of the roll decay test with advance speed. The Froude
number that complies 7= 0.25 is 0.217 for this ship. Thus, although the wave making component is
affected with advance speed around Fn of 0.217, the effect cannot be clearly seen in the
experimental results (Fig. 4.5.1.1). Then, the qualitative change around z = 0.25 is neglected and the
wave making component is assumed to be constant with a ship speed in this study. Finally, the roll
extinction coefficients are approximated as Eq. 4.5.1.2:

(F 0.0562+0.703Fn (Fn <0.0696)
nj)= ,
0.00420+1.45Fn (Fn > 0.0696)
b =0.0110. (4.5.1.2)

The linear extinction coefficient (Fn is smaller than 0.0696) is approximated by using three points
from lower speed in Fig. 4.3-1 and the linear extinction coefficient (Fn is greater than or equal to
0.0696) is approximated by using five points from higher speed in Fig. 4.5.1.1. The natural roll
period is determined to express the large amplitude of roll decay without advance speed in Fig.
4.5.1.2. The time series of roll decay with advance speed shows good agreement for each advance
speed but the estimated roll period is a little longer than that of the experiment. An example of roll
decay comparison with advance speed, Fn of 0.128, is shown can be seen in Fig. 4.5.1.3.
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Figure 4.5.1.2 Roll decay witohut advance speed.
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Figure 4.5.1.3 Example of roll decay with advance speed, Fn of 0.128.

45.2 Speed Trial Test

The ship resistance is estimated by speed trial test. Figure 4.5.2.1 shows the relationship between
propeller revolution number and ship speed in the speed trial tests in the full scale. The propeller
revolution number is approximated by a quadratic equation that passes the point (u, np) = (0, 0). The
guadratic equation is as Eq. 4.5.2.1:

n, =0.2361u+0.003212u°. (45.2.1)

Following Eq. 4.4.1, 4.4.3.3, and 4.5.2.1, the ship resistance are estimated as Eq. 4.5.2.2:

R(u)=1058u7 +42.11u° +0.3475u* (4522)

The ship resistance estimated from speed trial tests with and without polynomial fitting as Eqg.
4.5.2.2 are compared in Fig. 4.5.2.2.
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4.5.3 Free Running Experiment

The free running experiment was performed for regular following waves. The wavelength to ship
length ratio was 1.00, and the wave steepness was 0.07. The auto pilot course was set to —10° in the
wave direction because the ship course cannot be estimated in pure-following waves due to the
asymmetric roll of 2:2 parametric roll. The rudder angle was controlled according to proportional
and differential control with the proportional gain of 3.0 and differential gain of 38.35 [s] in the
model scale. The propeller revolution number ranged from 550 to 1700 [rpm] with an interval of 100
[rom] in the model scale. Here, 1750 [rpm] could not be achieved due to the limitation of the motor,
so that the maximum propeller revolution was set to 1700 [rpm].

The observed maximum and minimum roll angle are shown in Fig. 4.5.3.1 without the result of
1650 [rpm]. This is because the observed motion in the case of 1650 [rpm] showed very large
heading less than —40°, although the auto pilot course was set to —10° and the observed heading
angles in other cases were more than —20°. This may be because the too large heading was given in
this case when the ship model was launched. In spite of the small interval of the propeller revolution
number change, the observed ship speed changed discontinuously as shown in Fig. 4.5.3.1. To show
the discontinuity more clearly, the relationship between the propeller revolution number and ship
speed is plotted in Fig. 4.5.3.2. This figure clarifies the discontinuous change of the ship speed
around propeller revolution number of 1250 and 1350 [rpm].

The time series of roll, pitch, yaw, and wave elevation at the centre of gravity in some cases are
shown in Fig. 4.5.3.3-7. These figures show the observed ship model motions while the ship model
meets three waves so that steady state of motions can be seen. Figure 4.5.3.3 (Fn of 0.135) and
4.5.3.4 (Fn of 0.177) show that the maximum peaks of roll and pitch have almost the same phase of
—-90° from a wave trough. By contrast, Fig. 4.5.3.5 (Fn of 0.217) shows that the phase difference
between roll and pitch is 90° and that the maximum peaks of roll has the phase of —180° from a
wave trough. These differences in the phases indicate that the roll motion of Fn < 0.2 is different
from that of Fn > 0.2 in Fig. 4.5.3.1. In Fig. 4.5.3.6-7, no significant roll motion cannot be seen, and
pitch and wave elevation indicate that the ship model stays longer time around a down slope of a
wave. This motion is close to surf-riding, and the ship model may suffer surf-riding after a while or
with a little larger propeller revolution number. However, surf-riding is not observed due to the
limitation of the length of the basin and motor of the propeller. In this chapter, only the large roll
motions of Fn < 0.25 in Fig. 4.5.3.1 are discussed. This is because the experimental result shows that
the roll motions of Fn > 0.25 is not so significant.

Parametric roll is excited by a periodic variation of a roll restoring coefficient: the restoring
coefficient is small when the roll increases, and it is large when the roll decreases. Since it varies
depending on the water area, it is small when the wave crest locates amidship, and it is large when a
wave trough locates amidship for general ships. Thus, a maximal roll due to parametric roll appears
after a wave crest passes through the ship gravitational center. From this point of view, the
phenomenon in Fig. 4.5.3.3-4 is parametric roll; however, the phenomenon in Fig. 4.5.3.5 is not
parametric roll because the maximal roll appears when the wave crest locates around the ship
gravitational center. On the other hand, pure loss of stability is a large heel caused by a long time
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decrease of stability. This mechanism indicates that the maximum heel due to pure loss of stability
appears when the wave crest locates around the ship gravitational center. Thus, the phenomenon in
Fig. 4.5.3.5 can be judged as pure loss of stability.
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Figure 4.5.3.1 Maximum and minimum roll angle observed in the free running model experiment.
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Figure 4.5.3.2 Relationship between propeler revolution number and ship speed under free running condition in
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Figure 4.5.3.3 Time series of roll, pitch, yaw, and wave elevation in the case of 650 [rpm] (Fn of 0.135).
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Figure 4.5.3.4 Time series of roll, pitch, yaw, and wave elevation in the case of 1050 [rpm] (Fn of 0.177).
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Figure 4.5.3.5 Time series of roll, pitch, yaw, and wave elevation in the case of 1250 [rpm] (Fn of 0.217).
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4.6 Ship Roll Response in Following Waves

In this section, experimental results are investigated by using the nonlinear Mathieu equation as
shown in section 4.2 and 4-dof model as shown in section 4.3 and 4.4. The experimentally obtained
ship roll responses in regular following waves as shown in section 4.5.3 show that two kinds of roll
responses appear when the propeller rotational number is changed little by little.

4.6.1 Parametric Roll Region by the Nonlinear Mathieu Equation

The maximum and minimum roll angle in the experiment and nonlinear Mathieu equation are
compared in Fig. 4.6.1.1. As section 4.5.3, roll response of Fn < 0.2 can be judged as 2:2 parametric
roll from the viewpoint of the phase between roll and wave elevation. Moreover, the nonlinear
Mathieu equation estimates the 2:2 parametric roll around Fn of 0.15 to 0.2. Thus, the
experimentally obtained roll response of Fn < 0.2 can be also judged as 2:2 parametric roll from this
point of view. However, the amplitude is not estimated well. For the roll response of Fn > 0.2, the
nonlinear Mathieu equation cannot explain the experimental result at all. This is because pure loss of
stability can be estimated by taking into account manoeuvring motions but they are not included in
the nonlinear Mathieu equation.
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Figure 4.6.1.1 Maximum and minimum roll angle in the nonlinear Mathieu equation and experiment.

4.6.2 Pure Loss of Stability Region by 4-degree-of-freedom Model

Numerically simulated and experimentally observed maximum and minimum roll angles are
compared in Fig. 4.6.2.1. The 4-dof model shows good agreement with experimental results of Fn >
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0.2. This indicates that the 4-dof model, which is based on maneuvering model by assuming long-
period motions, can accurately estimate the ship roll motion with higher advance speed. From the
contraposition of this, the ship roll motion is not based on manoeuvring model but frequency-based
model where the 4-dof model cannot provide good estimation. This also suggests that the two kinds
of observed roll motions are based on the other mechanism. Further, the phase difference of
maximum and minimum roll from the trough of the wave elevation at the ship gravitational centre
are shown in Fig. 4.6.2.2-3. Since the phase differences show good agreement in whole range, it can
be said that the 4-dof model can also explain 2:2 parametric roll qualitatively but not quantitatively.

Although the propeller revolution number is changed little by little, the experimental data around
Froude number of 0.2 was not obtained. On the other hand, the result of 4-dof model shows very
smooth transition of roll motion from the 2:2 parametric roll to pure loss of stability. This conflict
should be examined by using a numerical simulation which can estimate both frequency-based
motion and manoeuvring-based motion in the future.
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Figure 4.6.2.1 Maximum and minimum roll angle in the 4-dof model and experiment.
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Figure 4.6.2.3 Phase difference of minimum roll angle from a trough of the incident wave.
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4.7 Conclusions

The 2:n parametric roll is investigated by model experiment and numerical simulation. The 2:n
parametric roll (n > 2) does not occur in the experiment; instead, pure loss of stability is observed in
Mathieu’s unstable regions for 2:n parametric roll (n >2). This indicates that the ship roll motion
with relatively high ship speed is governed by manoeuvring equation instead of Mathieu’s equation.
Then, 4-dof model proposed by Kubo et al. (2012) is used to reproduce the experiment, and it can
estimate roll motion in a higher speed case. This supports that the parametric roll and pure loss of
stability have different mechanism. However, the 4-dof model, which is based on manoeuvring
model, cannot explain the 2:2 parametric roll observed in the experiment due to lack of frequency-
based hydrodynamic forces. To more precisely investigate roll responses in following waves, a
numerical simulation that takes frequency-based and manoeuvring-based forces into account should
be used in the future. Further, the danger of 2:2 parametric roll in quartering waves that is mentioned
Vilensky (1995) is also remaining stability problem.
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CHAPTER5 CONCLUSIONS

In this dissertation, parametric roll, which is one of the dynamic ship instability problems, is
discussed from following three viewpoints: approximate analytical estimation by using an averaging
method; parametric roll estimation at low speed in oblique waves; effect of variation frequency in
wide encounter frequency region in following waves. These results could contribute to discussion on
the new second generation intact stability criteria, which is almost ready for their trial period from
2021.

In chapter 2, averaging methods are applied to the 1-dof parametric roll model proposed by
Umeda et al. (2004), and the usefulness of the approximate analytical approaches on a design stage
is shown. There are two aspects of utilization of averaging methods: improvement of accuracy and
design criteria. For the first aspect, averaging methods are applied by considering following three
effects: 1) superharmonic components; 2) actual GZ curve in calm water; 3) vertical motions. Then,
following remarks are concluded:

1) Adding superharmonic components to the assumed form of solution in the averaging method
improves the estimation accuracy;

2) The effect of calm-water GZ on parametric roll response is revealed,;

3) Taking account of linearly-estimated vertical motions resolves overestimation of the model
experiment especially around low speed region.

For the second aspect, 4) the way to estimate the critical ship speed for parametric roll is proposed
by using the averaged equation proposed by Umeda et al. (2004) and its partial derivative with a ship
speed; 5) the simplification related to the wave encounter frequency in the second check of the level
2 of the second generation intact stability criteria for parametric roll is compared with more rigorous
method, which is based on the mean encounter frequency obtained from Grim’s effective wave
spectrum. Then, following remarks are concluded:

4) The critical ship speed for parametric roll can be estimated by using averaging method;

5) The wave encounter frequency used in the draft second check is verified, and the number of
samples of operational conditions should be at least 24.

In chapter 3, for more precise estimation for parametric roll in oblique waves, the heave-roll-pitch
coupled 3-dof model (Hashimoto & Umeda, 2010) is expanded to the 5-dof model by adding sway
and yaw. Thus, the frequency-based model is combined to the low-speed manoeuvring model.
Further, the 5-dof model is validated with the model experiment. As a result, following remarks are
concluded:

6) the 5-dof model can reproduce the free running model experiment qualitatively but there are
still some quantitative discrepancies. The main reason of the discrepancy may be the estimation
of the low-speed manoeuvring motion in waves.;
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CHAPTER 5 CONCLUSIONS

7)  While substituting experimentally observed manoeunvring motions into the 5-dof model a little
improves the accuracy of the estimated roll amplitude, the model still overestimates the
experiment.

As a result of the validation, it can be said that the new suggestion for the future works are clearly
shown although there appears to be more difficulties to be resolved especially related to
manoeuvring motion at low speed.

In chapter 4, the 2:n parametric roll is experimentally and numerically investigated. Here, the free
running model experiment was conducted by increasing the propeller revolution number in regular
following waves. Further, the experimental results are compared with numerically estimated roll
motion based on the nonlinear Mathieu equation and 4-dof manoeunvring based model (Kubo et al.,
2012). As a result, following remarks are concluded:

8) 2:2 parametric roll was observed in the model experiment but 2:n parametric roll (n > 2) was
not observed;

9) Pure loss of stability occurred in high speed region instead of 2:n parametric roll (n > 2);

10) The 2:2 parametric roll and pure loss of stability can be distinguished by the phase differences
between roll, pitch, and wave elevation at the centre of gravity;

11) The nonlinear Mathieu equation can estimate the roll response in lower speed cases but not in
higher speed cases. By contrast, the 4-dof manoeuvring-based model shows opposite results.
This fact supports that the roll responses in lower speed cases are 2:2 parametric roll, and that
of higher speed cased are pure loss of stability.

However, the transitions between 2:2 parametric roll and pure loss of stability is still our future task.
This is because parametric roll is mainly governed frequency-based forces but pure loss of stability
is by manoeuvring-based forces. Hence, a numerical model that takes both frequency-based and
manoeuvring-based forces into account should be used.
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APPENDIX SUBJECT SHIPS

A.1 Introduction

For the sake of validation study, captive and free-running experiment with several ship models are
introduced in this dissertation. The experiments were conducted at the towing tank of Osaka
University or seakeeping and manoeuvring basin of National Research Institute of Fisheries
Engineering (NRIFE) based on the ITTC recommended procedure for intact stability model tests
(ITTC, 2008). Roll, pitch, and yaw motions were observed by using a fiber optical gyroscope. In free
running experiment, the ship position was observed by using a total station system. The ships were
propelled with an electric motor, the propeller RPM were controlled to be constant, and the auto-
pilot course keeping was used with a certain rudder gain.

In this appendix, principal particulars, damping coefficients, and restoring coefficients of subject
ships are shown. The subject ships were following four ships: a C11-class post Panamax container
ship, ITTC A-1 container ship, ONR flare topside vessel, and pure car career. The linear roll
damping coefficient is derived by using Ikeda’s simplified method (Kawahara et al., 2012) with the
lift component of Tkeda’s original method (lkeda, 2004). Its linear component a is divided into the
two components; one is ship-speed-independent and another is proportional to the ship speed U as
Eq. A.1.1:

a=B,(¢4,,=1°)=a,+a,U, (A1)

where Baa(¢am) is the Tkeda’s roll damping with an amplitude of ¢am and natural roll frequency. The
roll damping is expressed as the sum of linear term and cubic term in this study and it was accepted
in the draft second check of the level 2 for parametric roll in the second generation intact stability
criteria. The linear roll damping component is estimated as the Tkeda’s roll damping coefficient with
an amplitude of 1° and natural roll frequency. The cubic damping is estimated as Eq. A.1.2:

_ B44 (¢am = 250)_ B44 (¢am :10) .
( 257 )2 (A.1.2)
180

Since the a; is independent of the amplitude in the Ikeda’s original method, the cubic component is a
ship-speed-independent term. The roll damping coefficients « and yare as Eq. A.1.3-4:

2 2
a=—a=—(a,+aU)=q,+q U, (A.1.3)
T T
_AT A14
r=5:¢ (A.1.4)

A.2 Cl11-Class Post-Panamax Container Ship

Towing model experiment was conducted with a Cl1-class post-Panamax container ship by
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Hashimoto and Umeda (2010). In the experiment, the loading condition of MARIN’s experiment
was used (Levadou & van’t Veer, 2006). On the other hand, the loading condition when she suffered
parametric roll in actual seas (France et al., 2003) is a little different. Table A.2.1 shows principal
particulars of both loading conditions. The estimated roll damping coefficients and coefficients of
polynomial approximation of calm-water GZ curves are shown in Tab. A.2.2. The linear roll
damping coefficient is divided into two components that is proportional to the ship speed and that is
ship-speed-independent term as Eq. A.1.3. The body plan is shown in Fig. A.2.1 and the calm-water
GZ curve is compared with its polynomial fitting in Fig. A.2.2.

Table A.2.1 Principal particulars of the C11-class post-Panamax container ship.

Item MARIN ACCIDENT Unit
Length: Lpp 262.0 m
Breadth: B 40.0 m
Draught: d 115 12.34 m
Service speed: Vs 23.6 25.0 knot
trim 0.0 m
Metacentric height: GM 1.965 m
Natural roll period: Ty 251 25.7 ]
Block coefficient: Cp 0.5511 0.576

Midship section coefficient: C, 0.9573 0.962

Ration of gravitational centre height: OG/d -0.6764 -0.489

Bilge keel length ratio: Luk/Lgp 0.292

Bilge keel breadth ratio: Bu/B 0.01

Table A.2.2 Coefficients of roll damping and calm-water GZ curve of the C11-class post-Panamax container ship.

Item MARIN ACCIDENT Unit
Shlp-spee.d-lrlldependent component of linear 1872 x 10 1,632 x 103 sl
roll damping: ao

((j)oeff_lme'nt of linear component of linear roll 1576 x 10 1.407 x 10 m

amping: aa

Cubic damping coefficient: y 4.260 3.917 S
Cubic restoring coefficient: I3 0.3500 0.5716

Quintic restoring coefficient: Is -0.7721 -1.163
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Figure A.2.1 Body plan of the C11-class post-Panamax conatiner ship.
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Figure A.2.2 Calm-water GZ curve and its polunomial fitting of the C11-class post-Panamax conatainer ship.

A3 ITTC A-1 Container Ship

Free running model experiment was conducted with an ITTC A-1 container ship by Umeda et al.
(2008). The principal particulars are shown in Tab. A.3.1 and the estimated roll damping coefficients
and coefficients of polynomial approximation of calm-water GZ curves are shown in Tab. A.3.2.
The body plan is shown in Fig. A.3.1 and the calm-water GZ curve is compared with its polynomial

fitting in Fig. A.3.2.
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Table A.3.1 Principal particulars of the ITTC A-1 container ship.

Item ITTC A-1 container ship Unit
Length: Lpp 150.0 m
Breadth: B 27.2 m
Draught: d 8.5 m
Service speed: Vs 23.0 knot
trim 0.0 m
Metacentric height: GM 1.000 m
Natural roll period: T4 20.1 S
Block coefficient: Cp 0.6672

Midship section coefficient: Cy, 0.9841

Ration of gravitational centre height: OG/d -0.2512

Bilge keel length ratio: Lu/Lpp 0.250

Bilge keel breadth ratio: Bu/B 0.0201

Table A.3.2 Coefficients of roll damping and calm-water GZ curve of the ITTC ship A-1 container ship.

Item ITTC A-1 container ship Unit
Shlp—spee_d—lrldependent component of linear 3.954 x 10°? s
roll damping: ao

Coeff-|C|e_nt of linear component of linear roll 2310 x 10 m
damping: oz

Cubic damping coefficient: y 4.871 S
Cubic restoring coefficient: I3 3.196

Quintic restoring coefficient: Is -5.655

\ /)

Figure A.3.1 Body plan of the ITTC A-1 conatiner ship.

-96-



GZ [m]

0

Figure A.3.2 Calm-water GZ curve and its polynomial fitting of the ITTC A-1 contianer ship.

A4 ONR Flare Topside Vessel

10 20 30 40 50

Heel Angle [deg]

approximated GZ O actual GZ

Free running model experiment was conducted with an ONR flare topside vessel. The principal
particulars are shown in Tab. A.4.1 and the estimated roll damping coefficients and coefficients of
polynomial approximation of calm-water GZ curves are shown in Tab. A.4.2. The values of Cy, and
Bu/B are out of the fitting range of Ikeda’s simplified method, so that the roll damping coefficients
in Tab. A.4.2 are estimated by setting Crn to 0.90 and By/B to 0.06. The body plan is shown in Fig.

A.4.1 and the calm-water GZ curve is compared with its polynomial fitting in Fig. A.4.2.

Table A.4.1 Principal particulars of the ONR flare topside vessel.

Item ONR flare topside vessel Unit
Length: Lpp 154.0 m
Breadth: B 18.8 m
Draught: d 5.42 m
Service speed: Vs 26.44 knot
trim 0.0 m
Metacentric height: GM 0.7735 m
Natural roll period: Ty 20.84 S
Block coefficient: Cy 0.5695

Midship section coefficient: Cp, 0.8579 (0.90)

Ration of gravitational centre height: OG/d -0.747

Bilge keel length ratio: Lo/Lpp 0.3483

Bilge keel breadth ratio: Bu/B 0.0707 (0.06)
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Table A.4.2 Coefficients of roll damping and calm-water GZ curve of the ONR flare topside vessel.

Item ONR flare topside vessel Unit
Shlp—spee_d—lr)dependent component of linear 7126 x 102 it
roll damping: ao

Coeff_|C|e.nt of linear component of linear roll 9 357 x 104 m
damping: oz

Cubic damping coefficient: y 10.41 S
Cubic restoring coefficient: I3 -0.5552

Quintic restoring coefficient: Is 1.311

IR
N

Figure A.4.1 Body plan of the ONR flare topside vessel.
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Figure A.4.2 Calm-water GZ curve and its polynomial fitting of the ONR flare topside vessel.

A5  Pure Car Carrier

Free running model experiment was conducted with a pure car carrier. The principal particulars
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are shown in Tab. A.5.1. Yoshimura et al. (1986) conducted low-speed manoeuvring test with a
similar pure car carrier, so that the manoeuvring hull, rudder, and propeller thrust coefficients
estimated Yoshimura et al. (1986) are used and the values are shown in Tab. A.5.2. The body plan
and GZ curve are not available due to a commercial reason.

Table A.5.1 Principal particulars of the pure car carrier.

Item Pure car carrier Unit
Length: Lpp 180.0 m
Breadth: B 32.20 m
Draught: d 8.2 m
trim 0.0 m
Metacentric height: GM 1.27 m
Natural roll period: Ty 23.4 ]
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Table A.5.2 Manoeuvring hull,

rudder, and propeller coefficients of the similar pure car career (Yoshimura et al.,

1986).
Item Pure car carrier Unit
Xw’ -0.0368
Xur’ 0.140
Xee’ 0.0125
Xoww 0.469
Xowr -0.11
Yy’ -0.2629
Y’ 0.0381067
Yw -1.55
Ywr’ -0.655
Yorr -0.738
Yerr -0.0566
Ny’ -0.0977
N’ -0.0505
Nuw -0.173
Nyvr -0.627
Nurr -0.0954
Nerr -0.0353
Ip’ -0.49
IR’ -0.811
1-wp 0.640
1-tp 0.838
au 0.283 +0.263 Jp
XH -0.467
£ 1.170
KPp 0.513
Kr(J) 0.3304 -0.2299 J -0.1617 J?
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