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1.1 HEOE=

P8 AP CHES LT MBS R E R EILICEN D 72D, MEREREIE U 700 L
NFEBMTHRIL EOWRIEREIEY O, 2508, &R, 70 F~— 27 @EWe £ ot RS EY)

WM ESND. D OEHEREEEIM O 578 2 @R ISR T 2 2 & I3 Em 2Kk
ftEl LOMEBEMFHEIC B W TEETH 5. HEEY O AFRIG I IS < 95 57 50 2 T
FIESCER [1.1-1.3] KERICE LD LN TV D, BRIV TR, HAMBERS

(Japanese Society of Steel Construction, JSSC) M #if& & D 57 5% 7t+at - FfiE [1.4]

MEEHESHE LTRSBRENS.

— 77, i AR EERR B N EME 2R 1B R O BSFRIE ) 2 33 2 DIZIREETH 2 72, 5778
FERHMIEA » B AR > Min /) (Hot Spot Stress, HSS) #fH L CHEi 5. MHEMTD
HSS J%J73%iH45R#H & L C UK Den [1.5], DNV-RP-C203 [1.6] 5238 % 7%, &I Y
VEORERMERT 2 E- 5% L LTWD. £, T ORGHEEHE, eSSyt
HEN2HHF 16mm Ll EOPF 573G RICE SV TED L TE Y, [ EEEYOME R
NFEBERFAETH S5 Pt EMRTFE~OE AL 2 IIIMEES L TH 20,

— R S 1) O 55 SR EERHAR XIS SN — 2 D BREHER] (SN 7 7 —F) b
%, MERMTO HSS 9 5758 M5 1T HSS IREVE & SN #RIXOBPUZIR < KA T 5.
T D OBIROZEMET, PSR & IERIOTERE, HRIEORERARIZ L 295 5758k X &3
AEY D Z LITTE AR B OD I R E T T 2 OBGES N TH 5.

M A& T DR 758 1%, AR SR T 7 0 —F & W TR 5 & SURIETIC K- THEE
i cx5. X ZURKERAT LIk IR Ul e m 2 A oI IIERERE (Stress Intensity
Factor, SIF) OFHMmAMEIZ/e s, MAEMTFFROxZIfmx&c 5. iimE &0 SIF
RNTRRIIAFAE L2 W0 T, ARZEFETE (Finite Element Method, FEM) 25 DO ¥ fiafil 8 /) 2
fi##T (Numerical Fracture Mechanics Analysis, NFMA) (2 X 0 §Hlid 20BN H S, I
EOFHEERE ) O L3 K OGHREHE 2 2 oI LY, HIEVTPITFEET 2 ER UK
& ZFIE T 2 72D O @R R EMETIE N R E SN TE TS, L, ERPERT HIC
> THEMHTPRDZALT 2 dhif & RO SIF 232K NFMA (2 X 0 EHE S 21203, &EHES

TFFA LD IR R R TR BT 2 .

P T, REIFEBITIB VO TIT HSS & AW Tl R 2 e E S RO b 508, £ bid

MR AN & DEASVEOBN T EDO RN DO TH L Z EBREE L.

A/

1



1.2 AEHFOEFRERETICETAIMEDTIKIZDOINT

P A8 i T 0D 9 575 5 B R B RS ) O RREHERH & LT 1970 R D IR L T .
1980 2% L 7= Alexander Kielland 575 [1.7] 1, "M Fr 740 D7 L—RA~
DY AFHT MO T E K e L LIzt EbhTnd. ZOFEE—>0OR L LT,
%8 22 TN T2 RIS O J7aX Rt BURS 2 IE T3 28 & DSBS THRE D, BRI A B
#ME{A (European Coal and Steel Community, ECSC) <CZ[EVErEMA A2 (United
Kingdom Offshore Steels Research Project, UKORSP) THZAK 729 555l 23 S5k S 7=,
S OB R Z b LA R LR E T 0N R AHE R - BUR 2 BAYE Lo, BRI, 1984
FICHEE T RV —E N HEE “Background to new fatigue design guidance for steel
welded joints in offshore structures” (UK Den [1.5] ) (B W TR B REHES 2R LT,
T b OfREF BT T & L TERE TOR IR RIS TERR S Lz, #1213, UK
Den OMEMKFRITHBIT, T T (EEEIE 4567mm, EERIFIE 16mm & FEEI
914mm, EEFHRIZIT 32mm) OF v 7 7 v FRBRIKIC L Sz, 2 b OEE - B

TIEERBEH CRIBENE L2560 H o7z, 121X, UKDen TIIMEFEMIZRIZIE U T
B D SN B ZENI T 203, EFBEBPERO A L2720, WrEEmIc
T DB E D SN RH 2 2 TRV OLRARERG AN H -7z

HARENIZIHVTIE, 1986 4:~1990 4 F To 5 4], HAGEMAFIEFH 25 202 HF7EH
22 (SR202) [1.8] IZFBW\ T, SRR IR GHER VA B O B DML 2 BV L L
TZWF9EAS FEE S vz, SR202 T, MEHHM 3T (77 v bET IV, AT 4 7 FTET Y,
BT T =3y RET V) ATOW TR ITRER & IS0 OFHATV, JFEITEEHEIZ DUV TRRES
ZATo7. F7o, FEMAOMEMHEY L LT, T#F (EE/RIT 914.4mm, EHEREIL
31.8mm), X kT (FEEIT 500mm, EEHRIFIL 22mm) Z1ERLL, #57a8R 2 i L T
& ZUE A, WE B BT M O dn 2 51 L 7. ARE B EF L UK Den [1.5] ©F
— & L <~ LTEY, UKDen OFFHRMDOZYELHERL TV D.

783, SR202 [1.8] TIXINBIEN—ARRIFTEEHEIIMA T, HHERMaOFARLYE, &
B OEER EITOWTHIER 2SN TR Y, ERICBWTRERERMELEE 2D, —
U5, FHRBERE ) DR 2 & NFMA B O RAMED 728 S RUSTRIRATIL R TE T,
TR TH B —F~v— 7 EIC L D S HERBIIIITON o7,

RS, FEMFITEEOPEMFICL VMRS TEY, ThEhOMEIFREIC L
DEGESNTND. 2O &5 T R & 72 D = IRTTR 2R IE IR IR & F7 D, VA
RIS, A1 DORTT 3G TR LIS ) oA 2B U 5. MR B IR F TRMIG T



EEFRTHORNEA DT, JEIMEIT HSS Tikisns. MEM T HSS fthiEL L
Tix UK Den [1.5], DNV-RP-C203 [1.6] &4 TH 5.

BEAEAFZE U, HSS 2737 X b U » 72RO D 7o DIThk % 72iF 9823 T T & 72. Kuang
et al [1.9] 1%, ¥ =/VEFIZE D FE THERICESHTTY, KB X O KT #F OIS 14
Hi{%% (Stress Concentration Factor, SCF) #RET 572D/ T A Y v 7 HAZIRE
Liz. Yoz VEFIZLDZET MDD DEE T 0 7 7 A VIR SN TE LT, IS hidsE
e LIZRD BTV, ZoEMALIE SCF Oi/NNEMIZ >3 > 7-. Wordsworth &
Smedley [1.10] 3 X O Wordsworth [1.11] (X RETO 7 7 U V€7 AikBR & FHWT TN,
X, KBLIO KT fFOREXZEHR L. MBRCIXBET a7 7 A VEET ELET, G
WEXOT AT = 2 L CTirbiuiz. Wordsworth & Smedley [1.10] 1%, #hiJ5m),
Nl 3 KOS ORFE T CTHMZR T/Y BLOXFO SCFHERZRE L. Zhb

BRITEEOY Ve 7 T 0 ONLEDHRZ T /SN—L, HENEIZOWTOFRILE E
N7/ o 7=, Efthymiou & Durkin [1.12] 1%, FEM # AW T T/Y B L O K f#F 0 SCF &
K& U7-. Efthymiou [1.13] 1%, EEIMICEE RIS TIER L, HRERICES
WTTH, X, K, KT#FD SCF Z Tl T 237 A M) v 7B RE L. ZoRATE
B LR ORPEIESGT CORK SCF 23R, EEOHERFMFEBE SN oT. TD—
757, Efthymiou [1.13] %, ¥ KA SCFITEWEFICBW TR LN T2 2 & &27R
L7z, ZhiZ, FEESEBOMREE £ 7233 Bn LICEE SN2 LIS XD/ IMc kY, &
BOEENIHI SN D Z LICEKT 5. Efthymiou 2M2R L2EAUL, 1 SOmEHKE &
1 D OMRE L 72BCE 2 i 2 72 K kT o s il 8 T ComEAE R O SCF 2 i/ N3
D2 ENGMo TS, ZHIFRERD, ¥y 7HV O KMFLY EENT— =T »
TLTnHFy vy FELO KMFAHRERGE L CHREINZZ LICLD. 2nb0RAUX, FEM
WCEDHEMTOT — 2 RXR—= 2 PHEIC RSO TEH ESNEZR, o025
SCF Oi/NHfilL, o ThiEfMInz. LrLans, BfEL Znbo®AUL,
FEREEY) DOREFHZ B W TIAS VBT %, Efthymiou [1.13] (2 X - TRE I/ SCF
#H X American Petroleum Institute [1.14] IZEA SN TS, 74 Rk Smedley &
Fisher [1.16] (%, 69 KD 7T 7 U Lol OffF TITb L BRI S W THEMF DT
ANy 7EAEZEN L, b 0BERTT T v &% RAALED SCF OAIZHIG L,
HEFE DK SCF # & L Ty, —J5, Efthymiou [1.13] (k- THESh-TEE
XOEBEEFE L T\ 5. Morgan & Lee [1.16-1.18] 34k~ 72 K ik TRARICK L C, il
Jiml, N X OmSMEE F T SCF HRXARE L. 8 LT 7 U AVEORBRIE) B
L7z SCF % k4 5 L #24XT Efthymiou [1.13]& Lloyd »{ [1.15] X Y &L TV
L. EEBIOEEM (00, 45° , 90° , 135° BXLUN180° ) OEHEHTH SCF B LW



i sy % (Degree of Bending, DOB) @/ 37 2 v U » 7 HANBNRE I N TN D.

ZO XS ICHEMRTFO HSS ZlHHINCRKRD 72 D/3T A U v 7 BRI 28581
EFfTon TSz, LL, ThbIFMFRR OBIR, EELUIRIE, B ONLERR7R
E) T oA EEN R <, SCF OBBLZDOHZEZHGLT-DITITARESZZLNDN,
M & T ZEROSIEE) O/ FIIRIT, KO EMETH L Z &, IFOFHEEOMLER -
LOGEHRaIA MEFIZEY FEMAZHWTHSS Z:RD25 Z ENEGIT/RoT-Z L7 b,
FEEE 2RO 255 81%, FEM £7 V& W o FEICEMEDR H 5.

1.3 FAERFORFAREICHT HIMENZNT TO—FORRDOFKIZDOL
(BB R A FARAT)

EES OYE 7R E LML, SN 7 7 a—F b D 1207 7 e —F % T3k 55

= ZURKEEAT (Fatigue Crack Propagation Analysis, FCP fi##7) # @ H 35 2 & TX 5.

AR O Y, FEMRFIZIE R D 72 2 ZWRTH R R 2 B H A O s TR BEITIE R
(M 72 D TREEAE T IR M RPN R M2 D 72 B TR L, R LAFEIC R W 2
NODOXRMZRRE L TRTERDPEET DARMERH D Z LRI TWD. BT
I FEA Ut & 20F, MEETm (ZEIES M) B L OMEREG M (XRESIT7E)
CHERT L. FORE, THETMB LIRS F =woci) e dhim 243 5 & 20K
(doubly-curved surface) MK IND [1.19]. I HICERNERTH L, TOEHEH
IEARICHEREmZ BB LEEERHE RS, 2oL R =kl iimRe a4+ 5%
& Wa G M EMkT O Z0ERBIG 2 TN 5121%, TR Th 5 & Ha G
EMOEREERET VLR LEEL 2%,

WEIZZ DX D 2RISR UCTRRIT L7256 & LT, B2 1330k [1.20-1.29] 82 Hh
5. ZbOXRDOZ (TR 2 ST HEMFO FEM €7 V2 E L, NFMA OFf
MizAT 7B TH L. L L0 b, D% AXEHE LIRS & Z5E R 2 il 5 s F&
BLEEETVERWZHDTHS.

A DOFHRERE ) D 1) L3 JTOGHE# 2 2 S ORIy, BEECHEEY PICHFET D
EERPUIR & & FHl T 5 72 D O @ PERE R BEMATIE N R E S L TE TV [1.30-1.35]. %
O T H M EREREZ AV FEM 7 /UWTA RO S TH L ME T T X 5 el
HEREE T ORI )T K D EZURTRIRIT 24T 5 DI L TV A, BEEFERICRE W
T, EHEGUEEMNT ORISR L OBEN T 04217 5 56, NERERERZAVD b
DON—fETH -7 [1.36-1.38]. LnLAn3n, MEMKTO X 5 ICHEHME/2 dim R % £
S NI STANEES WCHER S .



Z 2T, WETIENEAEREREZ N HELREINTE TS [1.39-1.45]. [MEHS
[1.48] 1 EAZERICHEA LKA X2 0fE 5L (Virtual Crack Closure-Integral
Method, VCCM %) #Bi%E L, ) FRHIICA b7z SIF 1300 @ AefE R 2155
TLENTEAHIEZRLTWA. ZHE TSRS E LT, &% A9 5 FCP
fiEtril.a6], EREGhEMNE [1.47], +FREEET [1.48], T RZEHEEEMT [1.49]
B LORRE AR [1.60] 72 E~Di#E 21778 > CE 7z, WEREREZ V=€ T LTI,
X ARSIk U CHAI R R E & 52 Z ENEE L. S0k [1.45-1.47] CI3EisE
ATV 24T 72 9 BHENERERIEEZRE L, FEEEN TSR/ EEF0HBEDT
TV EAERLATRE IR A ML L T D,

1.4 HE#RFOEFBREICHTAIWEAZHNT TO—FOHEDITIKRIZDL
T (Mk factor %)

FEM €7 /L% W23 ) 512 £ % FCP T i Zat AR @m0, SIF & T
AN “Mk factor” % TR TRFEIZ FCP #2147 5 FIEDRE SN TS, Mk
factor i% Maddox [1.51] (2K > TV 7REfHIT b B ORI & A D SIF i e LT
EE X7, KW C, Bowness & Lee [1.52] 2%, PR T #¢Frh o FEMFE IS FAE L7z Fif
84D SIF Il ~JE3E L, Lee & Bowness [1.53]72°, M& TH#FOEEERMmITE L7~
H &R SIFERAARE Lz, 2ok [1.52] &, EEISOMFIEEORE 25
BLTEELZLDTHS.

M%& T fkFI2%f 95 Mk factor OFFHR TlE, ZZLEANEIZEIT S SCF & DOB DR
NWFL L7275, Lee & Bowness [1.53] 1%, Efthymiou [1.13] @& T HSS iz &
Y FH5 L7= SCF X U*DOB %, SIF @ Mk factor fi#23 NFMA fif il —%3 2 X 5 EIET 5 2
& ZfEE L7z, Efthymiou [1.13] @ HSS i3iE#: e — R&2 €7 L L7723 = /L FE figl2 5
SNWTEY, ETULEREEEET. ZD7-% Lee & Bowness [1.53] @ SCF &' DOB &
ER O HEFHILRE S LTV 5. Mk factor EDYE 57 & SURTRIRENTIC BT 2 A %0MEIE, M
BT ORI )71 K 5 FCP fiftr o L OYR TR ORI & g L THiGES o _&E T
571, Lee & Bowness [1.53] TiZ, [BE L=<, SIF ® NFMA fi# & Mk factor fi%
DHHR L AT O TR0,

SCF KU DOB fE1EUCBE 2 BEIE, #975BRIC K DG EERGED T3 (AT DTS T
FHAIE 721X FE RIS < HSS FHRIEZBH L C, SCF X U'DOB OEEEZREIZTSHZ
TR END EHIFF T 5. SCF TN DOB MEIEN A 72 (SIF @ Mk factor fi#+ NFMA
fpD—EMEA BV HSS B EL, FCP T ICE LIRS & b5 2%, S20ERITEH



A LA DR T OARBBBIRTH D0 D, Z DRSS ERETMECLHE LT D
RV SV, Ko T, SIF @ Mk factor fi# - NFMA D —B8 1%, JEH &k TFRER 4
DY F7FRBRAE RAZIES W TED B AV R FHHAIZ, bk FIc#E 5 2 & oY
PEZ IR D72 O DIREREIZ R D LB BILD.

FEM f##TI2 -5 < HSS 1, T ORIRBHME S 6 < 2 IERF O HSS OHEEREHE 4 1) 1
SH5. F7o, Mk factor (FAEE )R 2 fEIC S5 C X 272 OFHHE 2 A2 h ORI % [A1kE
TE5. 20 2 DOMBEDEIZ L DI AL 2 ML T 5 2 & T, EEERIET 7
AR S G R ISR W CTHMATRE & 72 5.

1.5 AHEDBHELHIDIERK

AWFZENE, BREHFEHS I W RE 72 P A8 A T O 5 20> 1= R 2 2R B ) "7 A9 57 75 i Al
LD EZ R E L, ZOFEZL > TGl D SCFIIBEFOR TR FHARI S HE T 5
HSS IREEDZ A2 FHET 2 BRI b TE 5.

F7, MEMFPITFET 2R RO S ZERBRITOWT, EERIEH Y 7%
S L THRIED Y, B EAEIEIE T kR 2 WD ORGSR 21TV, A0
SRERBIG 2R L7z, KIS, EITRBR I VG ORI ES ) & & REREE) &2~
F~v—rxt5RE LT, BEMIE) 1% X—A & LTz FCP fiftr & W tirrub58ic L v,
&GO RBGOPE T i DB AT T BUEREE A2 K 5 FCP B#AT IS, RIS DU i A
FE €7 Vv ZER L, VCCM iE& AW TE-T 5.

feWN T, M T kT o EERmICAE Ccdhim &Ko SIF O TRl “Mk factor” %
MWT, ERFEAENEIZR T D SIF 2K, & RZMERB G O %237 7-. Lee & Bowness
[1.58] 232% L 7= T #kF0 Mk factor OFHH T, & HFEAMEICE T 5 SCF & DOB
DOFHENKETH D, ZiublE, +a7RERIREED 72 STV HEHIS ) ~_—Z D HSS
5L (UK Den #47F « 2 AMEYE [1.5], DNV-RP-C203 % [1.6], TIW #JE - 2 IRSMFEE
[1.54]) MBHET 5. Hoh/=/3T7 A —% % Mk factor |2V T SIF #iHZ 3R L, Mk-
FCP fifttr & Fhid 5.

% HSS 5tH L1225 < Mk factor |2 & % FCP fiffr OfE R %, kg )¢z L %5 FCP
FEAT G SR do KL OVIEBRAE 3L & bt L C, Mk factor ¥ SCF KU DOB &% T 7 % HSS
SHRIEDOBRIRFIEIZOW TR LS. 61, MEMKTFORI7REFG CERM 35 HSS #57
A At R R O RRAth e Gk T~ D A B A flWr - S FRfE & LT, SIF @ Mk factor fi# + NFMA
fRO—EEZ D Z & ERFT 5.



AL, LLFICHAT 5 5 DOREIZI DRI TWD

1 ETE, AR DICESTLHEREGY Lok, FENRT ORI 50 LI
B D WFFEDIE SR A EL9 % & [FIRFICHIR Z Rl L, AWFFED B Y & iR SCORRRIZ DUV T
LA 5.

B2 BCIE, OSBRI K DT & ZURIEMRNT & Mk factor 15T L DR G &
FURTBFENT OREFERGED 7o, P F73BRIK 3 (K% AV TN L7 HAREME T fkFHE O
P FTRBRIC DWW T T 5. 3 DDORBRIKD 5 b 2KIZONWTIE, R4 - BBz T

E—F~v— 7 EAEAN L & R R OB 21T D .

B3 ETIEL, WMER REHEHWT FEM E7 V& {ER L, VCCM k% 7= B
BT & B & BURRARAT & N 5. 3D SRR & & BHERFTIC VT, 5
SR e & DHBEAT A, SUGERZR I 2T 5 S KA BT 5. & bic s 2
Bkt e YA 7 VOB EST 5

%43 TlE, Mk factor % W TR 72 97 & ZURTRIRNT 25l 5. I J7 il 3 K
OB 71502 K D92 57 & FUCTRIRMTRS B & O 24T - TH%N72 Mk factor (2 X 57%
& RUCTEIAT T IEIZ DWW TR 21T 9. &Ry F ARy MSHRIRIEIC X 28 IHE KR
D> Mk factor fif & BB ) PN IR 2 Ll + 2 Z L kv, M T T 50597
5P A 0D 3 FH 7RI D W TRET AT 9 .

RBIZHE b HTIE, AMIETHONIZHMEZIY LoD LIS, KOFJEICEE L5
T OMFERREZ R
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Fig. 2.1 Tubular T-joint specimen.
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Fig. 2.2 Fatigue testing apparatus.
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Table 2.1 Mechanical properties and chemical components of the steel.

Test Heat Yield Str. | Tensile Str. . | %Elongation| Absorbed Shear
Test freq %Elongation
sample | treatment (MPa) (MPa) L0=5.65VS0 | Energy (J) Area %
Heat ChL Aged 387 100
Heat&Batch LT Aged 410 500 34 32
L0-Gauge length; SO-Original cross-sectional area; LT-Longitudinal tensile; ChL-Longitudinal charpy impact test
%C |%Mn | %P | %S |%Cr | %Nb [%Cu %Mo | %Ni | %Si | %Ti | %V |%Al |%Sn | %B |CEIIW) | CE(Pcm)
0.86 |0.630 | 0.10 | .003 | .017 | .021 | .017 | .002 | .020 | .140 | .011 | <.003 | .033 [<.002 |<.0003 .19 12

Carbon equivalent; If%C >0.12 CEIIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Carbon equivalent; If%C =0.12 CE(Pcm)=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B

AR H v 2 VEFEE W FEM £ 7 VA ERC L,

BRI 2R LT, B L

(Z513R Y S5 A B A FIC B LTS R A ERR L 7. BT VRS )04 & Fig. 2.3

(R BT ORER, Y RVERERZIZ mIS A
HKFET D LTSN

BEN, EHRBRIZBWT, ¥ RLERcE

Fig. 2.3 Shell model and stress (Von-Mises) distribution.

LUFTHIRY MR LT E DR KL Poax & <. BRBIKOMESENT (Pnax=1T0kN~
120kN, fifEEtk R=0.05) &Y REEEE LI -2E p DOFHHEZ Table 2.2 (2, ¥ RAERD
e bk % Fig. 2.4~2.6 [Ond . gz ) a4 (k71  KE12) %
fii > CHRIER Y L, Bk, ZZURAEWm &I COIWr L CHEREIT - 7. faf EId B AR & 5%
AF A 1.0x105~5.0X 105 [a] & LC, DNV-RP-C203 [2.3] OffiSH i Xk 215 H5E 1%
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BNOHHE L TRIE L.

Table 2.2 Loading conditions and weld dimensions.

Test ID (Specimen) Prax (kN) R p (mm)
T1 (1) 170 0.05 3.0
T2 (2) 140 0.05 6.0
T3-1 (3) 120 0.05 11.0
T3-2 (3) 140 0.05 11.0

MADE IN ..aAF'ﬁN

i

TR E (VB4 AHFESARES

1]

Fig. 2.4 Weld profiles of the saddle part in specimen1 (T1), p=3mm.
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Fig. 2.6 Weld profiles of the saddle part in specimen3 (T3-2), p=11mm.
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Fig. 2.7 Strain gauge arrangement on joint.
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Fig. 2.8 Direction of surface stress distribution.
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Fig. 2.9 Measured surface stress distributions in the saddle part of specimen1 (T1)

(S: south-side, N: north-side).
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Fig. 2.10 Measured surface stress distributions in the saddle part of specimen2 (T2)

(S: south-side, N: north-side).
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Fig. 2.11 Measured surface stress distributions in the saddle part of specimen3 (T3-2)

(S: south-side, N: north-side) .
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Table 2.3 Fatigue test results.

Prax  (kN) Beach mark Ne Np
Test 1 170 N/A 66,400 153,000
Test 2 140 Yes 193,000 546,300
Test 3-1 120 Run-out >1,000,000
Test 3-2 140 Yes 410,000 634,400

AR T1 TR SN/ RO X ZUEFHEZEB % Fig. 2.12 127 F. N=66,400 (2T, ¥ KL
Xvmit 15° OfEICETANHERINT. SRIFEERICH > TCHE EICERL,
N=153,000 | EHREEBICE 72, BHEHD PT 12Xk 53H% Fig.2.13, ZEEH
HOREF M OWrEEk Z Fig 2.14 1077, IS FMOERHOMEIL 15" ThoT-.

T1 N

44 Number of the loading cycle
8 = 66,450 (generation)
- 120,000
—— 169,000 (penetration)
183,209 (terminal condition)

30 -3 1
—
28

10  [126

S

Fig. 2.12 Measured fatigue crack propagations (T1).
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Fig. 2.14 Cross-section of fracture specimen1 (T1).
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X AEEE OMIE T MO WE IR A Fig 2.17 IORT. RS MO DML 10° Tho
7=.
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Fig. 2.15 Measured fatigue crack propagations (T2).

Fig. 2.16 Observation of Surface crack behavior by PT method (T2).
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Fig. 2.17 Cross-section of fracture specimen2 (T2).

Bk T3-2 TRl Sz & ZUEHE %8 % Fig. 2.18 1T, 3B T2 TiE, N=410,000 T
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Fig. 2.18 Measured fatigue crack propagations (T3-2).
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Fig. 2.20 Cross-section of fracture specimen3 (T3-2).
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Fig. 2.22 Fatigue fracture surface (T3-2).
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Fig. 2.23 Fatigue crack propagation curves (T2).
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Fig. 2.24 Fatigue crack propagation curves (T3-2).
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Fig. 2.25 Comparison with SR202 Fatigue tests.
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Fig. 2.26 Fatigue assessment in accordance with DNV-RP-C203[2.5].
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(Fatigue Crack Propagation Analysis, FCP fi##r) % 920 L7z, ARE CIEMEMFFICHT
i E IS K OVE I B & A L To AT & L EM LTz, B BA5 O VTR B
ST, X SERARES, JETRBRE e & ORER AT N O E LN RER L iR L. &
D%, HEREIITHOVWTER L.

3.21 ZTIUREBBHFORN

Fii S REGUMENERT FEM €7 /L 0EKIE FEM a2 7 & TSV-Pre [3.2]
A L. S RT A — D=1 Okada 5 [3.1] 23B% L7z Mk — R E#H
M} VCCM % fv7=. VCCM {EFE CHLEIZ /2 585 3L FEM Y 7 = MSC.
Nastran [3.3] CHMR L7z, BB ARE LI AT L& L, 2h¥Er7 FCP fighr %
KH L. oz Fig. 3.1 (2”7, TSV-Pre TAEM L7 FE A v a2 T
MSC.Nastran |2 & W X RELOEEEFHE LT-. ZOREENS, VCCM IEIZ XV ISk
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( Import 3D-CAD Data )

| Create Crack |

2nd step - (Automatic
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| Boundary*ConditionJ 4
{

( Stop Calculation )
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1 * * 1
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Fig. 3.1 Flowchart of the crack propagation simulation system.
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RGN AZRE LIz, T ODERZE S LITRAT v 7OREE RIPRZIRE L, EHRHEENK
AT 0. DAEOANy FRE AR L, ERNHLESITR D E THIR LR AT o 7.

Fig. 3.2 Surface crack modeling in a tubular structure: import 3D-CAD data.

Frans e 14 / \‘f// s
/

/

Fig. 3.3 Surface crack modeling in a tubular structure: create a surface crack.
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Fig. 3.4 Surface crack modeling in a tubular structure: local parameter setting.

Frame Ratz 042

Fig. 3.5 Surface crack modeling in a tubular structure: 3D FEM model generation.
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the weld part.
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G 7
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22T, Gy, G, G [T VCCM EN O/ LN L EE— RO X AVFRIERTHS. B 1L
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DY THD. 77770y bOEIMND EZE TONMHIEIIREE Tk O Aok gg B
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(EEI42) Z &R ENRMESNTWALIZDTHD [85]. 2T, ~7RED SIFIZEL
Ti, SHNEOMAEIMTL, SZEREESCHAZREL TND.

Crack face Crack front

Close-up view

Fig. 3.8 Cross-section of a surface crack in the crack propagation system and the crack

path prediction: FE surface crack model.

Crack front
Ni+AN Crack frontNk 2c Crack surface

Fig. 3.9 Cross-section of a surface crack in the crack propagation system and the crack

path prediction: a technique to extend the surface crack in the FE model.

FOAEAREE 7157 f#HT (Numerical Fracture Mechanics Analysis, NFMA) (2 X % FCP fi##T
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p surface

Bottom surface

Crack front

Fig. 3.10 Polar coordinates at point P along the crack front.
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Fig.3.11 FEM model of an un-cracked tubular T-joint.
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Radiused weld toe

Fig.3.12 x-y cross-section of the saddle location.

42



e
)

1
a5

AV
AV

LVAY;

Fig.3.13 FE meshing at the weld part and stress evaluation lines A, B and C.

Radiused Weld toe

Line B

|
Strain gauge A

mm

A

ine

L

f the strain gauges.

10n O

14 Locat

3

ig.

F

43



Fig. 3.15 IZ# A & B ECOISHNAI % i L7 R 2~ s e A& OFIEHIE L
TLOTHPOELONTERES I THY, EHREBMIX FEM XV ELNLEEZINITHS.
TNZENOMOILNEX Fig. 3.14 TrT 2B L HEOEELHIEO R IEEV TH D, KE
EEBEORAEMOREICNIE D B & HBEHEBIZMN D IV EF L TWD 2 ENbND.
FEREBOISINIEEREIHOR LY bEWZ E3brd. #AICBELT, JIERER
&FHREAE R ORI EANIB BB RA RIS —E L TWD A, EEEEGIEE CIERiERNE L
TW5. ZORKE LT, BBREROET /UIC L 2R RS ST mTREEN S 5. TEHET
DOIGRITHERY L7 ) a T2 0l U TEHII L7228, % A o7 1 7 7 A VIR O
FOER T 0 IEHERR T 0 OFAR O FEMEIIWf CII2W=oThsb. —J7, i BICEL
TIERHEREF & FTRE R BAFIZ — B L TWD Z LB n 5.

& DITEBEL R OIS 15340 & SRS TAE T 572012, #R C 12T o THIEM & i %
b U755 % Fig. 8.16 12”3, it & ERUTZNZNEHIE & fTECTH 5. HIERSE
IEHTAE R L R L CETED TIREH DL DIFE A E OIS i R LTS, £z
INFRoERIIBBR KL TWD. UEOKE, SEHNTHSET METIE, A%
FDJRFTE ) Z @Il TE TWD Z &3 mino Tz,

200 —mmm o

I e e et

Bt L i | ~o— Experiment (Line A) |

— HIANE | -0 Experiment (Line B) |,
L 150 [t —A= FEM (Line A) !
= B i N | | FEM (Line B) |
3 | 1 |
£ 100 [ B
[ ! |
Q S S T N NN NSO S 4
g 50 —-E-- pm !— ------ R Y S _:::_c_)__j
3 i i i i I I
o | | | | | . ' |
0 ! ! ! ! : ! ! !

0 5 10 15 20

Distance from Weld Toe (mm)
Fig. 3.15 Stress distribution near the weld toe: (a) lines A and B.
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Fig. 3.16 Stress distribution near the weld toe: (b) line C.
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Initial Crack
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%

Fig. 3.17 x-y cross-section of the FEM model at the saddle.
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Fig. 3.19 Stress distribution at the toe in depth trough the thickness of the plate.

Fig. 3.20 IC XA G MEKTORKK &V RAEICERR & 2a ANz rT. 41
ZZdY A XX, Stagella U HOBZE L T10mm AEHWHEND Z L EEBEL,
X ZME 20=0.4mm, XZHEX a~0.2mm ZE L7, Rl X ZUIFERIICH L THEE
FlfE L7z, J5/ikt R=0.05 258 L Tl LATEAP=133kN %/ % 7-.

HERE2RIT bmm BEOMEAE “REFETHEIL, THMFTREEH, & ZLTeEEkT
0.05mm FLE D THE LIz, W& 2T T U3 E S5 1,179,500 &1, 752,300 B
EThD.
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A cyclic load AP

Fig. 3.20 Cracked tubular T-joint FEM model and details around the surface crack.

LRI FRER OB OME T —4% C m ZRHAT5Z RN T&leholzizd, HA
WS O TR F O WIS AR K OV 97 & KA R 5 K o 7Rl )7 7
(WES2805) [3.15lIC K W #ERIN TV LHEZ MW, AEOMEKRTIL, 9/ 3ADLE
BHECH 0, W EANHER T D HAZERIZHR O SRV RIS AN E L T eSS,
Z DT, MEHEFEIZIY, I EMIEE (Mean + 2Stdv; Mean : 2, Stdv: FEUE(FZ)
A L=, ORI, ¢=1.95e-12(unit : mm/cycle), m=2.75 T 5. £7-, FRHAD
i TYERAR S AKth=63.25 (unit : N/mm32) TH 5.

ABlD FCP T TIx, & KMERIES A7 Z[EE LI 21T - 72, 168 2T v 7 Ol &
1TV, ZHUE N=325,200 1 7 VAR T 5. OEEMNTE R % Fig. 3.21 (o~ d. &%

HERAICIE, BRI O & REITEEBICn > TIA#IN TV D, TS ILNG
R CRAET DINNEFICE D, ZOBRIE, Fig 219 IR TERERNO LR L
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MTE 5.

B R O FEM £7 V% x-y i CUIlr L7 X% Fig. 3.22 |[ZR~"3. fEHTIC LV 15
DN Fm X ZIEERE S IC b HEEZ A L 0D, £, Fig 3.23 I bh-FKm =
SR AR LTRY, Zhmb b SRITiC i & B oR i & ANER SN2 L b
%, KM B LIRS IXENEN 2=83.1mm, a=12.Tmm Th 7.

Radiuse Weld toe

Surface crack

Fig.3.21 Surface crack at saddle location.

X

" Crack angle v

Fig.3.22 x-y cross-section of the saddle location.
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Initial crack

Fig.3.23 Doubly-curved surface crack.

3.4 ZXRERBRRDE

FEATHRE R L OVERBRGE R A e+ 5 2 & T, SREREB O MAIT 72, Al Sh ek
& HIFE =Wk 2t 2 RO IR T 5. Al8l, 9 57 Fan & SRR R L NGRS
AEREB L O —F~— 7RIS &0 BAG S AU SRR R & e L7z, BRI, = RoeRy e
ROFH S HEMPE RO K FHEICKRE L, WEEZITR 7. BE—F~— 7 BROMR
%F@324K%¢ FRTIERERTH Y, FBRITHE SN FZBREREZHB Lo T

C APERER K VR T SRR O % Fig. 3.25 (TR 7. A RIOMNT ClIilliT£%
INKILH) T 2 7o R & RITHFAH S FARITERE L TWD 2 E0nbnnd.

12.2 mm
BM1BM2 BM3 BM4 BM5
Measured ----eeeeee Interpolated , o

Fig. 3.24 Beach mark obtained by the experiment.
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Fig. 3.25 Crack path evaluated by the simulation.

IHIT, TR BLOERERL VG ONTREEHDOT A7 MNEE R L7 X %
Fig. 3.26 IZ”"7. ZZCTTIXEEWETHS. T TIE, M (ade=1.0) ZRE L7
W, ZOT A NI E HBHERT DICHEOEFICED LT ZENDbnD. EREND

3O R & ZITIRIT OFER L VIRV, SEERH L2t Cld~ U A TR E 7222
MHDRER L e oTehy, ZHICIZEHEROET U, BEBILOERRIG 172 8 S E S E R
KRBz bhb. —JF, HEERB ZOEREROMEN & L IR R RBREGE O
TWa EEbins.
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Fig. 3.26 Comparison of the aspect ratio a/c of the surface crack.

W, FEEREFROHFEIZONWTHREZITH . K& RIL Fig. 3.22 17T XLHITH D
MR a2 R o T\ D, FEREITHT 2 EHRFEMBIZIH T 2 S ZERAE ¢ BFHis . £
OfER% Fig. 3.27 127379, F-EBRER%E Fig. 2.20 1277, T B DL EAH B
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TH 10 ETH o7z, REEHIVNIWGE, FEWRELSRRE F T3z 0 & RZUTITITER
BN O TN D, 2L, FEZEET L E TICBERANRRKE I Z2oTNL . ZOREE,
iR L7c 3R & 23 & HEIRE TR E 2l R 2 F5o. [AEROMEMI1T Fig. 2.20 IZHBWTHEL
BITHLENTED.

Approx. y=10 deg.

Fig. 3.27 Cross-section of the fracture surface at saddle location.

3.5 WHILKZREOFHE

K& HOBIEEICONWTELEEIT/2 ). Fig. 3.28 BL W 3.29 Ic~v 2L, &5k
FEHCH O SIF O Z T . 72, FEOBIE IR m &Y A X% Fig. 3.24 © X
912 BM1-BM5 & LT, 20FKH %% FEM 7 /VICER L THRIT L. £72, O
T ZTCHERLERmnERTEmRE LT, EFERENOEEICFHA L. SO &H
RO Ki % Fig. 3.29 ® BM1-BM5 (TRd . X ZURVEO KL, BTSSR L I13E
FRREDEZ TR L TWD Z Enbhd. JRFTEESR a) cld Fig. 3.23 IZr-T L) ICEHD
US> CERSNEEARATH S, £, Fig. 3.28 DKTEHAOHMITIEHAKERES ¢
Fig.3.29 ® 2’ I3 X RES FHAOR X TH L. £, TNZNOEE A OIS I HEKAR
BaERLTWD. ol SIF ZEHPMET 2120, HEFITHELNCEB L TND Z
ENRDDD.

< U AEO KU —ARICHM L TWB 2 ERbns. —J, SRRSO Kk Ha s

ERETT I DS AT T R EA KB TH T 2 LS bR TE 5.
iz, v U A, SEEEEHE S K LB LT Kn OEI/NES W, £, v~ U RETIE
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HLFRAD, RS CIXBRRIEM L T 2. 20720, = U AFITE TIRIEHERICI - Tillz
i< XU, e, HIRMBOIMz#< L OICERT L Z L0 b0n5s. TORAE, Fig. 3.2312
AT X IRl 2 < KO ICERT D 2 EBDbnS.

K 132X(3.8) & VW T2l SIF IZBE STV 523, K BIROKE /NS Wiew, &

DB TN X,

AlEERH L7z FEM IZ X 5 NFMA-FCP fi#ti #4175 Z & C, ME T #FRICHFIET H &
& ROAEMBEZHF T 52 LN TE. 77200, IEFITNIRPHERPERL, =
Wt Ze thifi 2 FFOREE X L R DM TH L. 8 L BE ORLZEHOEHEIZ BT, B
BE— FORME S RPBHERIC 040 F TR L.

F/o, ZTOREGE— FREBIZ=RooiRlfimBiR a2 Ak 2 5 2 TREREEL 52T
WD ZENRbIroTo. BlZIE, 3CEk [3.16] ICBWTHESILTWD L5 R R/ERBL %
MU AR 3 L OVA BB AE R &2 -\ 72 FCP fEHTIC L 0 k5 Z &3 T& 7.
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Fig. 3.28 Variations in the SIFs along the crack at crack front location at the free

surface.
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Fig. 3.29 Variations in the SIFs along the crack at deepest point.
3.6 EHREEMTOTM

YA 7 NN T DEHRFE R & EREROKREH S HOMWE, I HFMOKE SIZONTHE
EIT o7, I X RUREMNT CIIEEX RN O O X WRELZ#HERT D 2 LN TERWNZD,
E—F~—27 LVBREINTHEEL D LI, NOERA XM X E e LTI
WE{T/R T, TOLE DY —F~—71%, Fig. 3.24 [ZR-T X HIZ N=410,000 -1 7 )L
T, WL Zeexp=12.2mm, aex;=3.6mm T o7-. —F, NTHERICBONTHIZIER L K& X
D a=3.6mm (ZKET D DIC Nre =286,550 %% L7-. Z D7, FCP T T4
MMEBFEE G2 T27204 U, Lo, R T8-2 THEER LM T3 2 BT,
a=3.6mm T Npr=Nc=410,000 725 X5 N v 7 F&HDH. ZOLH I LTl L
7o, #ABR T3-2 DEERE LV FCP fight R #i#RE % Fig. 3.30 27”77, Fig. 3.30 TiX, &
FHRZ alz o\, ERHFMOLIRCER - MATAFER L RIFIC—HK LTV,

LBV, AEHRE U7 BAEMATIE CIX M AT TICAEE T 2 K il & OB 42 B
WIS 2 Z EMFRECTH D Z E BboTz. AEMA LIMET —% C m 1344
DIETEHDH. —F, ZDOFBRER LITRERIIRBIAC B L T D, 2L, AEIORERK
PRANBIEBAZ L0 RUES N2 T2 D BVRRIG IRV E L Tz &, R EVLERZ LT
N2 Rk s EEbis.
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Fig. 3.30 Comparison of simulated and measured fatigue crack propagation curves

(T3-2).
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Loy B 72, —J5, 3Bk T1 Tk Ne=66,400 T 2c¢=9.84mm D X WNBER SN, 4R
BN TIE, 2c=9.84mm (2T 5 DIT Npp=83,250 2 B L7-. AR SRR T
72Tz, 2¢=9.84mm T Npp=Nc=66,400 L7255 5 Nmp a7 h&HD., ZDOXIIC
LCthiz L7z, &R T1 0% L O FCP figtr o ih# 4 Fig. 3.31 ([TR3. Z OffE
#1195 &, FCPENTD Np X 171,450 L7025, Z OfiiE, FEBRFEHE Np=153,000 & #ia—
HLTWD

T1 & T3-2 ORRZ LI L72GE, SREAROZIHRS, SRRIZ T4 v T 47
SHTZENEIH D ODREI A O & ZHERIIMNT & FRBBEHFIC—HLTWDEH0LHE
25, ZHEIFMITONTE, 2 2O —RZBWTRKRERElROZEREN LS.
T EHOERBERICENT, EEROMNEADPEGERL TRWEAITER L TV 5 e
PEETREL TS, T3-2 OEZERIIE—F v— 27 09l 0, H— X8 X DR
¥ LW B2 oD,
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Fig. 3.31 Comparison of simulated and measured fatigue crack propagation curves

(T1).

A[a], DU A B3 & O 72 FEM B 7 0B L OEE 2 v > = AR 4 V<M T ik
FHICIFET 5 M X 20> FCP fjhr & M L=, SIF FFAHIC X0 f R #1F VCCM #
ERVE. LS SIF 705, & ZHER[E & OV ZUE R & TP L. MRbTIC
0BT X EEROERITEBRA R B BPAT S 2 LB TEL, Lo THERE L
SWILE RO FCP T Z MR 5 Z s Ta /. ARk, & THFZT Tl
<, SEIERMEEYOMITICHEAT 5 Z ENARETH 5.
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3.7 #&E

RETH, M8 THFOESRERBLRAHRT 272018, L <RE L FCP itz
WH L7, WEREHEZ A7 FEM 57 0 A2EK L, FEKTETZHERT 5 FCP fi#gh %
I L7z,

9, WEAREEZ - SIF SHBEICOWCE L. R ci T EOR RIS
OWTEHH Lic, — D13 Eam EalBeE R, & 0 —DIETHABE R T 5. £ b OERKS
FATxE U TEAEAEATIC K 0 Bl A AT o 72, ISJIEITIC K D S oo RITERFSE R L0 15
NS NI E BRIFIC—8T 5 2 EhbhoTe.

I BT, EDOISTI L0 EEORAEAE L FEE L, FCP T %47 > 7. NFMA-FCP fi##Hric &
ST, ZRuielifiz AT 5 REEHREHEHRT L2 ENTE, IbIT, o &2
JBEL VA 7N ONTHREZTTo 7. TN E ORI, A7 & ZURIBMAT S 2 7
ACEHERBIGZFMCTEIHE ST Loz, AR THONTZMAIILLTICEN T
5. E£7-, Boinie SIF M L 2 REEANT, 8 4 ZEToRFHIAN 5.

(1) IR A FEhE L-MEMTR X2 e2 550, 2RI OCEBEERSE 21T,
NFMA-FCP fight %2 £l L7-. ZZ5ERAIIC WES2805 [3.15] Szl A 2 M-+ %
L, ERRER LB B L 2RISR TE

(2) ARl FCP f#HT TiE, W& R YA ZIIEDMHEZ VW THR Y, EEEOER TR
B SN E R YA XHEDED L) IR L > 7 FSEOMERDH D,

(3) NFMA-FCP f#HTIC L 0, WHEILEGICIR - THi#R & 7220, YRS 1A Tl & 72 5 & 246
AR EGD 2 UK. SRWTEORIR (AE) 2&0 T, FBRFRE L& LT
%.

(4) EEERSFMOERIZOW TN & ZRRICOW TR R —HE2ER T 52N TE
-0, REFMOERIZONTIE, —BHLTNnD 7 —A L —F L TWRNT—RTHEREMN
Gyiviuviz. ZHUE, IS  FEREFHNEROMNEREER LT D I LICHkT 5 E
RLZBZHND. H—0OERP LA e & ZEREE THIVUIMIT & — B9 5 2 & 3T
SNDN, EREHOEBENRZTONLGE3, T LV E S ERT L LEZZHND.
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FA4E Mk factor J&(2 & IR = RUBIEHENT

4.1 #E

% 3 BT, AMRIEFEYE (Finite Element Method, FEM) 7% H\ Tl 95 & ZUSFEMARAT
(Fatigue Crack Propagation Analysis, FCP f##1) #1475 7= FpIZ oW L7z, FEM
Z 7o FCP AT IIBHME IR Ok FIZ 2 DO £ £ TE 238N FIETIEH 208, K
A THEELELE L, SREHFEBEECBWTL, [EHDPEREN RS 5250, L0
{722 s TP KA S (Stress Intensity Factor, SIF) OHBE FIEDHENLETH S.
f§i5 72 SIF 1L L LT, “Mkfactor” BEE SN TN D, RETIE, MEMFHO Mk
factor Z# HWTREER < SIF #7375 Z & #3747, Mk factor |2 & 0 FH5 L7- SIF #i
P % T FCP fi##ir & 520 L7=. Mk factor OFHH Ti, ZZRAEMEIZIBIT 50 EF
£%%% (Stress Concentration Factor, SCF) & faf 8 @ i 17 1k 43 kb 2 (Degree of Bending, DOB)
OFHlRMETH D, FLATHZE Tl SCF BX W DOB %#74 v b AR v ik /1(Hot Spot
Stress, HSS) & ARSI DL TH 2 25/ M %\, £F 0 HSS 55 %% v /= SCF - DOB
P &, ZALE W7z Mk factor (2 L5 FCP T 217V, £ 6 %58 2 EOERFER, B
KO 3 EOBUEMIE /15T (Numerical Fracture Mechanics Analysis, NFMA) &5
LB L, 4 HSS GHRIEOHMEZ MG LT,

4.2 Mk factor
421 IR T #FD MK factor
Mk factor 1% Maddox [4.1] (2L » THEE N, PARICEET 2RI E O KAEICH L

T, UTROMBIC LD NETEELZR LR THY, THRFICA UM E R &
ZcHonT, R TERESINS.

K . M
Mk — (in plate with attachment) (4' 1)

K(in same plate but without attachment)

K(I’Hp]ate with attachmenV . T %%? EP = %O) SIF, Kin same plate but without attachmeni L ﬂzﬂi EP = % (%'f‘[‘_?{é
%EP % ZZ;IQJ k Iﬁjé % %ﬂ%%ﬁ_{f) @ SIF VG&) é . K(fn same plate but without attachment)ai Newman-
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Raju & [4.2] TIMETE 2. MHGET O Mk » ¥ T % iF, Newman-Raju it [4.2] %
THE U T2 Kn same piate but without attachmenhT Mk % e Uik & 20 SIF 23t H T 5.
Bowness & Lee [4.3] 1%, EHiEE (p=0), 774 U FHET (0=0.1xE) 275 —2A
T, IR S B 72l 0, Ml Is A 2MER 3 2 R T Mk & 2o NFMA % 5%
ML, Mk OERIREZRE LT, MkPBEF CThIUE, i T #F O FR Bz kil A T
7o 2ek8 M1 & 2D Kin piate with attachment/m X(4.2) TEHARTX 5.

K(in plate with attachment) — [MkmMmam + Mkbe Ub] viia (4.2)

alX SRS, Mkm, Mky IRG 7], SEHT IS 7T O Mk factor, Mum, My 3877, #HITFIGS
71 F @ shape factor (RS a OYAEMRE EHD SIF & &S 22 O 2 RoTHEFR A S B @ X
#o SIF Ok, Newman-Raju & [4.2] TEMR) Tho. Z DR EIE BS7910:1999 [4.4]
(B STz,

422 HET#FD Mk factor

Lee & Bowness [4.5] 1%, M& T#kFh &2 SIF Ktubular joint% 2(4.3) CHEAT L Z &
AR,

K(cubuiar joint) = [Mky My SCE(1 — DOB) + Mk, M,,SCF - DOB] 0,0V (4.3)

Cnom VIAFRIG I T, AWFZETIE, 2 BORIRBRIK TR AR Lzlih ) F &b W i
A 0mom =F/A L EFLT-. SCFIZHSS L6mwomDTHY, DOBIX, FEEDxZI54
Tz TkA4.)TEHEINS.

DOB = 2 = 1(1 — M) (4.4)

Ot 2 SCFouter

om & op lIMRIEAL Ul BB WIS 1 O « T %%y, oild om Eopr DFN, SCFinner, SCFouter
IR A B O EENH, Mmoo SCF THho. Lee & Bowness [4.5] X, SCF %
Efthymiou [4.6] ORXTHEAE L, ZDOLAIZEL S NFMA fi# & Mk factor fEOREZEIZIL U
TSCFEBLODOB ZEEL THiE L.

61



423 HET#MFD SCF sHfli;%

LIFTC, ISEHIE IR e — FIBREET b LTI Y U > NS HEHRE L7 HSS %
Solid-HSS &, ¥ x/V FE fi##r CEHHE L= ERIS N HEHE 35 HSS % Shell-HSS &,
HSS FHHEOIG )RS % read-out-point (ROP) & X5,

HSS FHEET, WEITRFHHAINEE T %G SN #RIX A M U THERE L 729% 55 23,
WEREEFME b > TRTABREREZHFE TS 2L o8 LS D. ZORERBOR
& SITRREHHIANC X 0 e 5. HSS % SCF sl 3 2 B3, sXGEHELI 0 F-E) SN X
LI ITRBRAE R DD/ NS W (TR DB LRERMBNS ) FTPISHHEEORER &L 785
LEZLND.

e — N2 E7 WL T&E 720 Shell-HSS 13, MEFIIK - HHGEHI° ROP LY J712 X
>, Solid-HSS & K&l ECLDEE0H 5 (4.7, ZOET/ALEEIT HSS OFt
BREE 2B EE 5. —J7, Solid-HSS T, )72 FE A v ¥ = # i 3 1UXE 7 /LR
ZrPRTE 5.

Efthymiou [4.6] ®ZFUIME#T Shell-HSS OirfPl:ATéH 5. Efthymiou [4.6] D%
MEfiR1T Shell-HSS OFEF LB ELZ G AT EE X 51 5. Lee & Bowness [4.5] Tix
SCF # 1.11 f%, DOB % 0.90 £5+0.05 T 2EENKETZ 7208, ZOEIEIE, Shell-HSS
DET IMERZED T2 D MBI 572 L HEE S5 . Lee & Bowness [4.5] 73 NFMA % Fi L
IR T2 To, Fiko SCF B X' DOB BEEADHMMEIIAHATHLS. 370bbH, Lee
& Bowness [4.5] @ Mk factor i:OF#HIZREN TH 5. =512, Efthymiou [4.6] @
HSS i UIHMET, ARG TOMMICAETH 5.

AMFFETIE, JEI7RRBRIZ K D EBRARRGED +0 72 47z Solid-HSS FHHEED 9 5, AR
H IR <, o RBAIDF SN #RIX & 6 Gk T O J7 BRSO DN S 72 b D ZfifE
MUTSCF #53HRT2 2 &2 RETH. 2R, T RRENPRTE, ISHEE
BB E I BB EF £ 75D T, SCF 3L DOB OEIENEEKE L < 1TAZE
W25 Z ERHIFFTE %,

M & #k T HSS #5i£1%, Efthymiou [4.6] Ol ZHER SN TS (B 21 Chan
L Dover [4.8], Zhao & Packer[4.9], UK Den #JE + 2 %4 MEE [4.10], DNV-RP-C203
[4.11]). F7=, FHAkFH O HSS 5HHEE (B 21F, IIW HIE - 2 kIMFE [4.12]) 23 HE
MFOFMIEH SN DLE L H D, AT, ZbD o b, ERIRGEOREFINZ
v, DNV-RP-C203 [4.11], UK Den #%J¥ - 2 RSMFE [4.10], TIW #F - 2 RAMHTE [4.12]
% SCF FHHEICHM T 5.
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4.3 SCF 5}l /75 D FEIR

431 HKy FRERY FISHHSS)FHEE

LURC, ¥ M & G e RAE MmO b2 5T FE Wi & FERImOLHEZ P11
&, PR OTL L FESME O ROP ZH5 SEMZ “ROP 2" &, FEDHLAZED
TR E ROP RO 2T A ZMHE ol L5, FRFHRITIH > Tl 72 1k & ROP
DOHlEE “H—ARE” £& K 5.

Mk factor @ SCF %, 4.2.3 TEIR L7z 5 FifHD Solid-HSS (2 SV TEHART 2. 4 HSS
AHREZDTIORT. 22 CRBOLBY, tel 3 EEWE, dolZEFERETHD.

a) DNV-RP-C203 0.1+/rti% (DNV-RP-C203:2011 [4.11])
1 5 ROP ®Ji /1% HSS &34 %. ROPI%&E=0.1/(d,/2)t. DALEIZE 5.

b) UK DEn #&# 4} &% (Den:1984 [4.10])
2 50 ROP Dt ) % LS E I #IEAMT T 5. ROP X Fig. 4.1 D B4 & A412L 5.

¢) UK Den’s quadratic extrapolation (Den:1984 [4.10])
3 >0 ROP O KL)% kS &2 2 AMET 5. ROP IX Fig. 4.1 @ B4, A4 &,
A4 7153517 B4 - A4 FIBEBEZ T BEALIZ A (§ =8y + 2 X (Epq — Epa) 72D 1) 12L 5.

d) lIW's linear extrapolation (Hobbacher [4.12])
2 >®D ROP D) )] % LWL & (Z#AMET 5. ROP X Fig. 4.2 O & = 0.4, 1.0t:72 % 2
Rz E %, HSSIEXRMUL)THHETE D (604, 61.061EE = 0.4, 1.0t TDIGTT) .

HSS == 1'670—0.4t - 0'670-1.0t (4.5)

e) lIW's quadratic extrapolation (Hobbacher [4.12])
3 2® ROP D¢ KFEIS ) % ILSALEZ 2 AMFT 5. ROP 13X Fig. 4.2 O & = 0.4t¢,0.9¢,,
L4tc7e R0z 5. HSS 13:(4.6) TR TE 5 (6044 6094 01.461EE = 0.4t,0.9¢t, 1.4t
TOIEN).

HSS = 2'520-0.4-15 _— 2'240-0.91' + 0'720-1.4-t (46)
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a=0.2/ rt, but hot smaller than 4mm t

Line 1 ——
<— Line 2

A A A~ -~ A
L o

tc
tc

O4tgl | 0.4tc] |
1.0tc 0.9tc
1.4tc

Fig. 4.2 Stress ROPs defined in IIW’s guidance (Hobbacher [4.12]).
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432 Ry FRIRY MEN(HSS)FHEIADFEEREE

Ay hARy MEFHEICEH T 5 ROP IS/, MRS 4 miR 2 IREFE 2/ L
ez y KRS FE A v a2 L FE #ATIC K VEHE L. T1 ® FE X
v 2% Fig 4.3 1239, IBEHORIRE, Fig. 2.4 O X 5 1T ILEE 2 & O iR 2 A4
% .5 3 B CIRIA LI O R 2 KRB L2 T V2 W2, AT, O 729
EE W EORKERE A, PIT R E ORI AS, IR & B I & Rl SR
LD (Zo e E YR p=0) XoEEILZ. ZoiEElE, HSS @ ROP XGOS )
FERMEDR+DEHE L RIZE bR T ENDFIFRSND.

(b) Global view.

(a) Enlarged view around the hot spot.

Fig. 4.3 The shell-solid coupling FE model of specimen 1 used for HSS determination.

FE X v =amY Uy FEE, FEEFHFAIMHRFY FVE»SR1#% 200mm, J& 7 mIE
- D TAEER S5 60 deg.DFIPHE Lz, YU v R« = VEERTIX, Osawa et al
[4.13] 2R L7z, VU v FE OB R (AR I TRE R & = VER A RLE T 2 RE
= VA1 (Perpendicular Shell Coupling Method, PSCM %) (2 X 0 ¥R #hiF £ % 1=
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L7 IO R/ EFIDEIL 0.3mm, BEHEEK - ALY U v RER 949,542 B
1,321,132 Hisl, ¥ =/ Ll 8,850 Hi3% 26,686 fim TH 5.

FERERD, PRAFT W OEIS SIS %2 S8 6o & K 5. Fig. 4.3 D FE A v
= THMA L7z, BB NBIC 170kN Ol 8 2 A L7258 Doyl oD BfR % Fig. 4.4 TR
F. Fig. 4.4 120%, 4.3.1 TER LZKFE HSS #5HIED ROP IZHBT 5 o, DEtHEEE, [F
—ETERAI L7 FERA o, DREM S ~—2 T7. Fig. 4.4 T, ROP 23ELE SN D
IR CIE, o BRBNHE LR TR K LTI L, BLUWp=0 TEEILIZmH4
U7z IbSE OIS D RAER F IR L TV D Z EPREN TN D, tORERIATH, FHE L
FERO—BMEPHER SNT=D T, AFFETIZL =V Y v RIES FE X v ¥ 2 DS RIS
SCF 8 X' DOB ##tH L7=. DOB OFH Tk ROP IZH1F 2 FEFEHED o, bLETH
%. IE:f - ROP OHE AL, #EO1LH « ROP & &R o3 F CEiE Eos s L.

800 — — '
1 (B \ o FEM(outer)
| SREE t
- e S8 ‘;é'r!g o FEM(inner)
600 E’lgid oy - =} .
L wpimns =. .= o= -e-Experiment
o SI;|§ El 'E S s =
- o | (I 1 IS
) . - ' =
S by ! [ =
= 200 - oo o \ Lo
a 1 < S oop g o 1D
| S
v | o .
0 1 i . : : E — R 4 -
0 L 0.05- Aa_af a0 " 0.15
-200  fasmmn _JT...«Tu:— I ' :
oy P! [ l
. 1o \ I
-400 ! [ - ! L [ 1
Distance from welding toe(radian)

Fig. 4.4 The relation between the calculated and measured hoop stresses and the
distance from the weld toe on the outer and inner faces on the center section of the chord

for specimen 1 (T1).
B T1,T2,T3-1, T3-2 (IC2OWTC, Y=Y U v RIEA FE A v ¥ a2 OEFEMHERN S

FFAM U 7= 4578 HSS Ofii & Table 4.1 (Zo=~d". [ 0RERSEMETE, DNV-RP-C203 0.1Vt
ENR/INOHSS # 52 5.
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Table 4.1 HSS ranges calculated by 3D FE meshes for specimens 1 (T1), 2 (T2) and 3
(T3-1, T3-2) (unit: MPa).

0.14/rt Den Linear Den Quadratic IIW Linear IIW Quadratic

festib Outer Inner Outer Inner Outer Inner Outer Inner Outer Inner
T1 283.1 173.7 339.6 220.6 348.6 229.1 335.2 224.1 345.7 232.1
T2 213.9 128.8 256.5 164.0 263.3 170.0 253.3 166.5 261.2 173.3
T3-1 186.3 108.3 206.3 139.2 230.0 144.8 221.4 141.5 228.4 146.8
T3-2 217.4 126.4 240.6 162.4 268.3 169.0 258.3 165.1 266.5 171.3

4.2.3 TiX, FEBRFES & FY) SN MR D=/ S WS FHHRICEH 95 HSS El:
%, Mk factor ® SCF B XODOBFHEIZHHT L2 EAEE L=, LT T, 2x108 [F]EEH]
FREE % Aosre & 70 &, FEERGHIRIEUFRINMR & GREHBLAID) 15 SN #RIX D Aczrs D% 2x106
[FIZE 425 froome & L 5.

Table 4.1 © HSS #iP &, A I7axat M - f58F [4.10-4.12] TR R T2/ L TR
TEE N5 SN K & O L#k % Fig. 4.5~4.712, £ OX(4.7)TEFET 5 Basquin /¥
7 A% B (i MPa) , n & Ac2ke 3 £ U faczre & Table 4.2 1T/

Ac=B(N,)" .7
AR 0 FRERAC I IR C O EAREN YV 5AZ % FHE L2 /o 72D T, R —ATHA (/5
A HNRIe L) SN BIKZEH L7z, TIW 975 aHEEE [4.12] 13ERFHRE (95% (51X

MTFIR) OARELTWDOT, [FFEEAHELET HIEHERZE Stdv=0.25 % L CTFEEIHR
X 2B U7z, EERFE R oRUEEHEIL, RA.DORX T n 2-1/3 ICEE L THEME L=,
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Ao, (MPa)

100.0
)
m L)
L < |
qg": ® Fatigue Test :
g —DNV-RP-C203 S-N Curve in air, T class T 41
D - - DNV-RP-C203 S-N Curve in air, T class (mean) ~ |:-il ... ...
2 =—Regression Line
10.0 R EEEN N .

1.00E+05 1.00E+06 1.00E+07
Number of the loading cycle N

Fig. 4.5 HSS-based fatigue assessment results of the T-joints in accordance with DNV-
RP-C203 [4.11].

©
a
=
=)
<
100.0

7}
%}
==
@
g © UKDEN (Quad.)
P "1 ——UKDEn S-N Curve in air
@ || = =UKDEn S-N Curve in air (mean)
1) —Regression Line

10.0 I SN S I

1.00E+05 1.00E+06 1.00E+07
Number of the loading cycle N

Fig. 4.6 HSS-based fatigue assessment results of the T-joints in accordance with UK
Den [4.10].
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Ao, (MPa)

100.0

) :

= : ] .. .

o R T s : :

= ® |IW (Linear) P ; ;

o < 1IW (Quad.) ¥ ; ;

a —IIW FAT80 i ' =

& - =1IW FAT80 (mean) [; : : A j

—Regression Line | ! ! Lo :
10.0 : —_— ' — — :
1.00E+05 1.00E+06 1.00E+07

Number of the loading cycle N

Fig. 4.7 HSS-based fatigue assessment results of the T-joints in accordance with IIW
[4.12].

Table 4.2 Basuquin’s parameters and stress range for Np=2x106 cycles of mean and

measured SN curves and the safety margin of the mean SN curve.

Basquin’s 0.1/t Den Linear Den Quadratic IIW Linear IIW Quadratic
params. and | mean SN mean SN mean SN mean SN mean SN
safety factor curve measured curve measured curve measured curve measured curve measured
Coef. B (MPa) | 15416.8 | 17036.7 | 14288.9  19893.0 | 14288.9 1 20991.8 | 14794.4  20196.3 | 14794.4 | 20830.9
exponent N 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Aoy s(MPa) 122.4 135.2 113.4 157.9 113.4 166.6 117.4 160.3 117.4 165.3
fao2E6 1.11 1.39 1.47 1.37 1.41

Fig. 4.5~4.7 & Table 4.2 |2 LHUZE, ARFFEOMNT 4TI, DNV-RP-C203 0.1v/rtiki
SN R L 0 22l (e 1.11) OFMEiRER%E 5 25—, DEn, IIW @ 2
A BRIEIT R AR 1.37~1.47 & 72 ) RIGICL MO R E 52 5. Ko T, At
DFFHT#15:Ti%, SCF X1 DOB D5 (2 DNV-RP-C203 0.1Vrtii% M5 &, SCF
L O'DOB OfEIEZ LC, NFMA-FCP f#frs L 0K R Bif e —BER GO D 2 &
PHITFCE 5.
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4.4 MKk factor [Z &k BIRF =GB NT

441 FEEH

4320y =)V NIRAMBE FE A v a2 B FE A vy 2 b, B FE A v a
TRHFAE L72Ie /) 2 #% FE It /) L 5. Bowness & Lee [4.3] OARIEU 8 FEM €5 /LT
TR RIED 1710 & iz, A (6=12.7mm) TIZ OET VY O ki EEiE
p=1.27Tmm (272 %. Table 2.2 IZLIITERBRIKLTp = pTHLHDT, &ET /L THMRILG
X Mk factor 2695, 72k, (EMEDplL, EHMEM TY 74 v X OMENE
JEENDLEITITAEY L.

Mk factor % i\ 7= FCP f##T 1Lk T1, T3-2 2% 5RICHE N L=, Rk T2 (3K & D
BRDA UT= O TREFT R G20 BRI L 72, Mk factor (2 X 5 FCP fi## CiE, 38.3.2 OHfififik
B K D FCP fghT & IR CRIHI & 285k, MOBHREME, S ZUERERI (WES2805 [4.14] fix
LAMEER]) 2 E L7z, SCF B LW DOB I, #% FE S/ 5 4.3.1a)~e)® HSS
RIEICHEVEE Lz, BRRITIE, MR [4.15) (27260, 1 8RRy B ARy M (B
Eika) TIHIHE ROPALE O FEREMEIG N D, 2 5k« 3 85 (REE b~e) TILME
FE A v ¥ = FEFREREIS SO AL ESMEE > S 55 L. Lee & Bowness [4.5] @ SCF
BLUODOBHEX T Tz.

4.4.2 DNV-RP-C203 - 0.1v7tikIZ & B Mk factor MRS = SUCIBREIT

AREITIE, 5857 RERE R &%) SN BRIK O ZE M /N Cdh o7z, 4.3.1a)D DNV-RP-C203 -
0.1Vrti: T SCF % L U DOB % i L 72 %54 & Mk factor (2 £ % FCP fihift 471

Fig. 4.8 |[ZiA8 T1 (p=3mm), Fig. 4.9 |[ZiE T3-2 (p=11mm) @ Mk factor & NFMA
MO LN ENE RO & R 2 1. Fig. 4.8 1213, T1 OHUE B @AM EIEL Np,
Fig. 4.9 213X T3-2 T —F~—ZIZL VW HE LT 2¢, a ODFRFZIE S~ Mk factor, i
TS ) AT O & ZURIRHIR T, YR B —F~ — 7 HllRE O & ZHEZ2 RS S & — 3
EEDH0, 3.5 LR NDOY T F&4T->CW5. Fig. 4.8 XX Fig. 4.9 TiX, T1, T3-2
Eb, alIFMOAIKT, 2¢iF 2c<40mm OFIFA T, Mk factor |2 L % FCP it difE R
NFMA-FCP it OFER & BAFHIZ—E L T\ 5. EZRELOFHAREE 23 @ T8-2 T,
Mk factor (2 X D5 RITFHIFERICH R<IE LTS, B —F~w—7 e  IEffEle 2 AR
HRAFHIITE 227272 T1 TiE, 2e DFHARER L O—BEMEIIAR TH D23, ald, 1ZIFIE
MEICEIR TE TV 5.
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-50000 0

—#—Crack Length (2c)(Mk Toe-Ground)
——Crack Depth(a)(Mk Toe-Ground)
—-A—Crack Length (2c)(FEM)
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-O-Crack Length (2c)(Experiment)
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8}
=

P N R

5000

100000

Number of Cycle (cycle)
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Fig. 4.8 Comparisons of crack propagation curves predicted by Mk factor FCP with
DNV-RP-C203’s SCF and FE FCP (T1 specimen 1, p=3mm).

140

Length and Depth of Crack (mm)
o o o o o
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—t—Crack Length (2¢)(Mk Toe-Ground)
——Crack Depth(a)(Mk Toe-Ground)
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—o—Crack Depth(a)(FEM)

-O-Crack Length (2c)(Experiment)

-0-Crack Depth(a)(Experiment)
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Number Of Cycle (cycle)
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Fig. 4.9 Comparisons of crack propagation curves predicted by Mk factor FCP with

DNV-RP-C203’s SCF and FE FCP (T3-2 specimen 3, p=11mm).
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IDDORERY, KRB OMEAT ST, HSS 1T X A 57 E SRS 5 & A SN #RIX
DO—EMEN BAF 7 HSS 387 (DNV-RP-C203 - 0.1VrtlE) (2L Y SCF B L' DOB %3
fligiuiE, Mk factor iZXL > CEH L+ KEED FCP A EMTXHZ &2/ L TV
%.

4.4.3 DEnN, IW 4 M&EXIZ &K B Mk factor DIRF = RUGIBHEAT

AREITUE, 957U R 3 ) SN #RIX K 0 RigIZRFMmM & 72 -7, 4.3.1b)~e)?® DEn
B (BIE - 2 BEIOIOW L (BUF - 2 %) T SCF B LU DOB ziffi L 72456 @ Mk
factor |12 Xk A FCP M s R4~ .

Table 4.3 B LU Fig. 4.10~4.1112, Np D, FHld v N ARy Mo iatEEEHRA Lz
Mk factor (Z K 2 FHEFER L, NFMA (2 X 25HERE (NFMA-FCP) 15X OFERBRER L O
t#e &R, Table 4.3 Tlx, DNV-RP-C203 « 0.1Vrti%E% 7z & & D Mk factor 12K 5
fik & NFMA fROFRFED 11~14%, FEBRGR & ORRZED 0~13% /N SN RS T
%. —77, DEn ik, IIWIETIE, %FEO NpHEEME & 0.1VrtiEHEEE O H A 1 T0%,
B/l 58%IZ 72 ) RIGIZEBMOHETE L 72 5. 4578y N ARy MNENFEED Np HEERZE
DR E &1L, Table 4.2 D F-¥) SN BRI DL & EDFB 27~

Table 4.3 Crack penetration liveSNp of specimen 1 (T1) and specimen 3 (T3-2)
predicted by Mk-FCP analyses with various SCF determination techniques.

Test ID measured FE FCP 0.1VRT Den Linear | Den quadratic | IIW Linear | IIW quadratic

T1 153,000 168,158 155,450 92,950 86,250 98,450 89,750

T3-2 634,400 608,529 556,100 494,000 416,400 439,700 422,100
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—1 Np predicted by Mk/WES2805
e measured Np
== = [FEFCP solution

180000
160000
140000
120000
100000
80000
60000
40000
20000

DNV-RP-C203 UK Den (linear)UK Den (quad.) 1IW (linear) IIW (quad.)

Fig. 4.10 Comparisons of crack penetration lives Np of specimen 1 (T1) predicted by
MKk-FCP analyses with the NFMA-FCP result and the measured Np.

[—1 Np predicted by Mk/WES2805
measured Np
== = [E FCP solution

700000

6mm0 G N GEER SN GEES NN GEED  GEE SN  GEER  GEEN G e .

500000

400000

300000

200000

100000

DNV-RP-C203 UK Den (linear)UK Den (quad.) 1IW (linear) IIW (quad.)

Fig. 4.11 Comparisons of crack penetration lives Np of specimen 3 (T3-2) predicted by
Mk-FCP analyses with the NFMA-FCP result and the measured Np.
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4.4.4 Mkfactor Ik BEITFEELERY XKy MIGAMHSS)FHHEEICLSRE
NI ES[E

LIFC, 97 Bt RO BT SN MRXICH 5725 (2x108 B2 figems) & T
YRl k5. Fiz, SIF @ Mk factor fif & ks NFMA fif 0 75 % Mk-SIF #47% &
5.

% 3 BT, M FE A v ¥ = 2 L T NFMA (2 L %5 FCP fi#hr % £iti L, WES2805
[4.14] FZ & FUREAEZER L2 5GA1, ERERE B %1 2 2= FiiiR 215
7=. AKEED Mk factor |2 & 5 FCP it TlE, = ORAEMEE 115212 K 50855 & ZUGREMT &
[l — ORI & ZHE, MR, SZUSRERIEZ#H L7z, Ko T, Mkfactor IZ X H#EHRMA
BAGRYIE T) HRT OFE R & — 84 5 2 &1F, Mk-SIF @R/ NS oo 2 & &2oRd. 2,
SCF 3 X ' DOB 5 T L7z HSS OFFHEN, SIF 3RO 72O O JRFTs JIRHiiE & L
T LT\l EE2EWT 5.

—7, 4.4.3 T, Mk factor (T L DENTHE SR 2 NFMA OFER & —E3 501, FHRXNZE
RN 102U e DR FHRAITHE Shvd HSS 1A% W T SCF 35 X OV DOB % §Hil
THHATHDLZ LDURENT. ZOfRRIE, Mk-SIF @20/ &< 72 % HSS ftHEZ R
RF 2 &, 20 HSS FHRIENBUE S U792 975G HBLRI 2 ] U 72 556 00 - B 22 423 3
I Nl RG] ¢ 3 Y/ TR S AN = N

LibkX v, MEHKT0 Mk factor %z A\ 7= FCP fi#tT % M4 5 AT, MR8 I3 R
L7 ME T OB TRBER B AT TE 2561, FERKLZ2EN 1.0 13E< e HakiH
Rz %Y, 2 OBAITHE S 7z HSS 3HAIEZMH L T SCF B L U'DOB #3tH 352 &
AT S,

F7-, MEMKTO HSS A SN MREIC X 29 57 TR 2 Fhi 3 2856 C, 5 x4 SIF
DFEFEE NFMA #8584, Mk-SIF a2 /& <45 & 9 7 HSS stHiEERY,
Z OFBEIEPHE SNSRI O SN MK AT 5 2 & T, BUWKEE O Y
PREEFHE N CTE DAl S E DL EEZX DILD.
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445 FHHREREEMN 1.0 THWNGEDRF SRICEBITFE

4.4.4 12T, FHRHZ 2N 1.0 1TEL 2 H5RFHHAIZERY, 2OMAITHE ST
v M ARy MEDFEEEMH LT SCF 8L DOB #ko, ZhbofEiz T Mk
factor (2L 5 SEURTEIRAT 2 HELE L7, L)L, 2 TOr—R BT, FHRXKZ A

A 10T 22D K9 RERFHHAINFEET 2 L IF R O 2. ARHEICIE, & 57aRaHEAN -
fagt [4.10-4.1212BUE S D HSS FHRIEOR 57 & ZURIRRENT ~ O F 5 ISV TRt
T5.

KFEHH] - FREHZ K D HSS & H T Mk factor (2 & W k7= & ZURFF R O Ll % Fig.
4121277, Pl —F~— 7 RO & RZ-EAFHARE R & —B ¥ 5720, 3.5 LAk
MNDYT FaiToT0D. BERo@y, FE#RXZL 4505 1.0 (285 DNV-RP-C203 -
0.1WrtiEIZ X DB S EBAE R & OBFEEDS BV Z E 30D,

140 —{1-Crack Length (2c)(Mk)(DnV) .
—{~Crack Depth(a)(Mk)(DnV) .’

120 —C0—Crack Length (2¢)(Mk)(UK Den Linear) I
—C—Crack Depth(a)(Mk)(UK Den Linear) '.

[ary
o
o

——Crack Length (2¢)(Mk)(UK Den quad.)
=—Crack Depth(a)(Mk)(UK Den quad.)
=X=Crack Length (2¢)(Mk)(IIW linear)
=Xx—Crack Depth(a){Mk)(IIW linear)

=& Crack Length (2c¢)(Mk)(IIW quad.)
—@- Crack Depth{a)(Mk)(IIW quad.) 34

co
o

[=)]
o

B
o
Np

= +(Crack Length (2c)(Experiment)

Length and Depth of Crack (mm)

= «Crack Depth(a)(Experiment)

M
o

0
0 100000 200000 300000 400000 500000 600000 700000 800000

Number Of Cycle (cycle)

Fig. 4.12 Comparisons of crack propagation curves predicted by Mk factor FCP and

measured crack propagation curves (T3-2 specimen 3, p=11mm).

TRCREMBROBRHM A SET D720, P SNHE T 5L 9 ICHSS DEEAEEL
T, Mk factor (& k% FCP gt ik A7z, 1§ b  ZUEREh# % Fig. 4.13 12”3, Fig.
412 LT DL a KM 2e & bIC—EMERSEL TWD. BIEL HSS Z W& T
b DNV-RP-C203 - 0.1VrtiEN i bIBREMER BAF Ch o 72, 72720, WFROFFRIETHE
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Bt R 0 FRE A (R OFIEMEPFHFONTEY, REmskie & THOWDEAEIC

TEEEET S,
140 —{Crack Length (2c)(Mk)(DnV) E
—{J-Crack Depth(a)(Mk){DnV) .’
‘E‘ 120 —C—Crack Length (2c)(Mk)(UK Den Linear) "
E —o—Crack Depth(a)(Mk)(UK Den Linear) !
é 100 | s crack Length (2c)(MK)(UK Den quad.) ';
S ——Crack Depth(a)(Mk)(UK Den quad.) .
E 80 =x=Crack Length (2c)(Mk)(lIW linear)
‘é —x—Crack Depth(a)(Mk)(IW linear)
-% 60 =B Crack Length (2c)(Mk)(IIW quad.)
s —BCrack Depth(a)(MK)(IIW quad.) 8 2
:a 40 = «Crack Length (2c)(Experiment)
§ == +Crack Depth(a)(Experiment)
20
0 L7 :
0 100000 200000 300000 400000 500000 600000 700000 800000
Number Of Cycle (cycle)

Fig. 4.13 Comparisons of crack propagation curves predicted by Mk factor FCP with

modified HSS and measured crack propagation curves (T3-2 specimen 3, p=11mm).
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45 #EE

MEMEFOERE TR THEH SN DR L VEHIE I X—2AKy ARy M)
(HSS)EMRE L, AFHEIEICK LKA - 58 23BLE T 2 V%) SN BRI 26 L CHEE L 7o
T & EERAER AR L, 4 HSS SHEEOFDMEL i L-. £ LT, &% HSS % H
WSR2 Mk factor (2 K Y F1A L7z SIF &2 H T 97 & ZUEHEENT (Mk-FCP) %
S L, B WU A FE &7V & FO 7o BUERREE T 52 20D < IR 97 & BRI R 36 &
OFEBRE R & bl L C, Mk-FCP f#tric i 42 HSS GHRIEDRIRGIEIC O W T Ue.
S BIZ, WHRFHRRAIO, GG R E R F~Om & L 2 Wi 546 L LT, SIF © Mk
factor fif - NFMA O —HE 25 Z Lt Lz, AR TH O F IZLUFICH
HTED.

(1) FHANG T~ — A D HSS (1T K 2957331 A & LT DNV-RP-C203 [4.11], UK Den ##
¥ - 2 OMEL [4.10], TIW #RIE - 2 ROMEE [4.12] %8R L, BME FE A v v 210XV
HSS % GH5 U CIBRAE R O 55 TR BTN 21T > 7. AWFFEOfENT 54 Clk, DNV-RP-C203
[4.11] - 0.1Vrt i1 ) SN #RIX L 0 22 (4R 1.11) OFHlifER%E 52 56— 5,
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8 7592 FELEFEh=-AEH#RF D Mk factor

H % : Bowness D., Lee MMK., Fracture mechanics assessment of fatigue cracks in
offshore tubular structures, Offshore Technology Report 2000/077, Health and Safety
Executive (2002).

(1) Deepest point under membrane loading with a toe-ground weld

Mk(g)ma = f1 (%'%) f2 (%%)

where

Az

Al =m(E) " +a[- @)+ [ (F) +ad

A; = —3.2172(a/c)? + 8.9931(a/c) — 7.356

Ay = —0.22457(a/c)? — 0.41009(a/c) + 0.86071
A; = 0.65009(a/c)? — 0.76603(a/c) — 1.0351
Ay =0.10745(a/c)? — 11.0.9(a/c) + 30.557

As = 1.2494(a/c)? — 7.1510(a/c) + 9.4916

Ag = 0.33693(a/c)? + 0.23884(a/c) + 2.3341

A

A =a ) +a - )

A1o

A, = —0.0021981(L/T)? + 0.0066388(L/T) + 0.23244
Ag = 0.098096(L/T)? — 0.22280(L/T) + 0.19344

Ao = 0.015584(L/T)? + 0.026458(L/T) + 0.31065

Ay = —0.29651(L/T)? + 1.2995(L/T) + 1.0362
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(2) Deepest point under bending loading with a toe-ground weld
i _ aa al
Mk(9)pa = f1 (7';) f2 (7,7)

where

A

Al =m(@) " +ai- @)+ 1) ad

A, = 45.856(a/c)? — 60.626(a/c) + 8.4952

A, = —0.51457(a/c)? + 0.47958(a/c) + 0.60176
Az =3.9209(a/c)? — 6.0652(a/c) + 49184

A, =2.9459(a/c)? + 0.21875(a/c) + 22.732

As = —43.456(a/c)? + 54.877(a/c) — 5.0448

Ag = —3.4851(a/c)? + 5.9129(a/c) + 5.7718

Ag A1o

a L a a
Arr) =4 ) +as[i-G)]
A, = —0.0060502(L/T)? + 0.021490(L/T) + 0.069432
Ag = 0.037163(L/T)? — 0.044638(L/T) + 0.026591

Ag = 0.0028790(L/T)? + 0.019043(L/T) + 0.052756
Ao = —0.87465(L/T)* + 3.8378(L/T) — 1.1298
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(3) Crack ends under membrane loading with a toe-ground weld

’

a
Cc

)

=l

ME@me = fi (7.2) f2 (7

where

A Ay

A =aE) +af- @)

A, = 0.028842(c/a)? — 1.0656(c/a) + 24.632

A, = 0.0028700(c/a)? — 0.036501(c/a) + 0.18232
As = 0.24850(c/a)? — 2.9413(c/a) + 7.9199

A, = 1.8860(c/a)? — 7.4014(c/a) + 11.572

As = 0.035640(c/a)? — 0.54495(c/a) — 2.3387

Ag = 0.016883(c/a)? + 0.57762(c/a) — 7.7623

Ay A1z

) = [ @) Q)+ 4] @)

o[-

A, = —0.0030300(L/T)? + 0.022235(L/T) + 0.0068564
Ag = 0.0052426(L/T)? — 0.033387(L/T) — 0.018504
Ay = —0.0038516(L/T)? + 0.014780(L/T) + 0.093071
Ay = —0.0081421(L/T)? + 0.012290(L/T) — 0.17469
Ay; = —0.021264(L/T)? + 0.067165(L/T) — 0.043132
Ay = 25.693(L/T)? — 19.570(L/T) + 5.4032
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(4) Crack ends under bending loading with a toe-ground weld

1]

a
c

)

<>

M@ = £ (7.2) £ (7

where

A Ay

A =aE) +af- @)

A; = 0.43193(c/a)? — 4.0236(c/a) + 27.425

A, = 0.013058(c/a)? — 0.12466(c/a) + 0.46051
A = 0.22388(c/a)? — 2.8643(c/a) + 7.8688

A, = 0.19132(c/a)? — 0.84291(c/a) + 5.2955
As = —0.46115(c/a)? + 3.6620(c/a) — 9.0179
Ag = 0.038190(c/a)? + 0.40816(c/a) — 5.6913

Ay A1z

) = [ @) Q)+ 4] @)

o[-

A, = —0.0028759(L/T)? + 0.022350(L/T) — 0.018110
Ag = 0.0045215(L/T)? — 0.031258(L/T) + 0.022686
Ag = —0.0038941(L/T)? + 0.015240(L/T) + 0.076791
Ay = —0.0056783(L/T)? + 0.0036876(L/T) — 0.31959
Ay; = 0.10998(L/T)? — 0.10623(L/T) + 0.0047289

Ay = 52.952(L/T)? + 64.680(L/T) — 42.169
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