

Title	円管 T 継手の局所応力およびき裂伝播解析に基づく 疲労強度評価法に関する研究
Author(s)	八木, 一桐
Citation	大阪大学, 2019, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/72415
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

博士学位論文

円管 T 継手の局所応力およびき裂伝播解析に基づく 疲労強度評価法に関する研究

八木一桐

2018年12月

大阪大学大学院工学研究科

第1章	緒論1
1.1	研究の背景
1.2	円管継手の疲労強度設計に関する研究の現状について
1.3	円管継手の疲労強度に対する破壊力学的アプローチの研究の現状について
	(数值破壊力学解析)
1.4	円管継手の疲労強度に対する破壊力学的アプローチの研究の現状について
	(Mk factor 法)
1.5	本研究の目的と論文の構成
参考文南	<i>t</i>
第2章	中板厚円筒 T 継手模型の疲労試験13
2.1	緒言
2.2	疲労試験体
2.3	試験条件および計測項目18
2.4	継手近傍の応力分布とき裂伝播挙動
2.5	他疲労試験結果との比較
2.6	各種疲労線図による評価
2.7	結言
参考文南	t
第3章	円管継手中疲労き裂の三次元数値き裂伝播解析
3.1	緒言
3.2	き裂伝播解析システム
3.2.1	き裂伝播解析の流れ
3.2.2	応力拡大係数の評価
3.3	試験片の数値解析結果41
3.3.1	無き裂試験片の応力解析41
3.3.2	T 字円管継手のき裂伝播解析
3.4	き裂進展現象の評価
3.5	応力拡大係数の評価
3.6	き裂進展解析の評価

3.7	結言
参考文献	
第4章	Mk factor 法による疲労き裂伝播解析
4.1	緒言60
4.2	Mk factor60
4.2.1	平板 T 継手の Mk factor60
4.2.2	円管 T 継手の Mk factor61
4.2.3	円管 T 継手の SCF 評価法62
4.3	SCF 評価方法の選択
4.3.1	ホットスポット応力計算法
4.3.2	ホットスポット応力計算法の実験的精度検証65
4.4	Mk factor による疲労き裂伝播解析70
4.4.1	計算仕様
4.4.2	DNV-RP-C203・0.1√ <i>rt</i> 法による Mk factor の疲労き裂伝播解析
4.4.3	DEn, IIW 外挿法による Mk factor の疲労き裂伝播解析
4.4.4	Mk factor による解析精度とホットスポット応力計算法による安全余裕の関係
4.4.5	平均線図安全率が 1.0 でない場合の疲労き裂伝播解析手法
4.5	結言
参考文献	
第5章	結論
付録	グラウンド仕上げされた円管継手の Mk factor
謝辞	

略語集

JSSC	Japanese Society of Steel Construction	日本鋼構造協会
ECSC	European Coal and Steel Community	欧州石炭鋼材団体
UKORSP	United Kingdom Offshore Steels Research Project	英国海洋鋼材規格会

HSS	Hot Spot Stress	ホットスポット応力		
SIF	Stress Intensity Factor	応力拡大係数		
\mathbf{SCF}	Stress Concentration Factor	応力集中係数		
DOB	Degree of Bending	曲げ成分比率		
FEM	Finite Element Method	有限要素法		
FCP 解析	Fatigue Crack Propagation Analysis	疲労き裂伝播解析		
NFMA	Numerical Fracture Mechanics Analysis	数值破壊力学解析		
UT	Ultrasonic Testing	超音波探傷試験		
MT	Magnetic Particle Testing	磁気探傷試験		
РТ	Penetrant Testing	浸透探傷検査		
VCCM 法	Virtual Crack Closure-Integral Method	仮想き裂閉口積分法		
PSCM 法	Perpendicular Shell Coupling Method	垂直シェル結合法		

第1章 緒論

1.1 研究の背景

鋼管を溶接で接合した円管構造は強度重量比に優れるため、海底資源採掘リグや洋上風 力発電用浮体などの海洋構造物や、空港、橋梁、ランドマーク建造物などの社会基盤構造物 に多用される.それらの溶接構造部材の疲労強度を高精度に評価することは構造物全体の 健全性および信頼性評価において重要である.鋼構造物の公称応力に基づく疲労強度評価 法は文献 [1.1-1.3] に体系的にまとめられている.国内においては、日本鋼構造協会 (Japanese Society of Steel Construction, JSSC)の鋼構造物の疲労設計指針・同解説 [1.4]

が設計指針として良く参照される.

一方,荷重伝達経路が複雑な円管継手の公称応力を評価するのは困難であるため,疲労強 度評価はホットスポット応力(Hot Spot Stress, HSS)を使用して実施される.円管継手の HSS 疲労設計指針として UK Den [1.5], DNV-RP-C203 [1.6]等があるが,海底資源掘削リ グ等の厚板円管継手を主たる対象としている.また,これらの設計指針は,海洋構造物に使 用される板厚 16mm 以上の疲労試験結果に基づいて定められており,陸上構造物や洋上風 力発電用浮体で使用される中薄板円管継手への適用性は十分には検証されていない.

一般に鋼構造物の疲労強度評価は応力ベースの累積被害則(SN アプローチ)が用いられる. 円管継手の HSS 疲労強度評価結果は HSS 決定法と SN 線図の選択に強く依存する. これらの選択の妥当性は,評価対象と類似の形態,板厚の試験体による疲労試験によらず検証することはできない. 研究例の少ない中薄板円管継手ではこの検証が困難である.

円管継手の疲労強度は、破壊力学的アプローチを用いた疲労き裂伝播解析によっても評価できる.疲労き裂伝播解析では継手に生じた表面き裂の応力拡大係数(Stress Intensity Factor, SIF)の評価が必要になる.円管継手中のき裂は曲面き裂になる.曲面き裂の SIF 解析解は存在しないので、有限要素法(Finite Element Method, FEM)等の数値破壊力学解析(Numerical Fracture Mechanics Analysis, NFMA)により評価する必要がある.近年の計算機能力の向上および計算機コストの減少により、構造物中に存在するき裂や切欠きを評価するための高性能な数値解析法が提案されてきている.しかし、き裂が進展するに従って複雑に形状が変化する曲面き裂の SIF を逐次 NFMA により計算するには、設計実務では許容し難い膨大な計算工数が必要になる.

従って,設計実務においては HSS を用いた簡素な疲労評価法が求められるが,それらは, 破壊力学解析とも整合性の取れた精度の良いものであることが望ましい.

1.2 円管継手の疲労強度設計に関する研究の現状について

円管継手の疲労強度設計は海洋構造物の設計指針として 1970 年代から発展してきた. 1980年に発生した Alexander Kielland 転覆事故 [1.7] は、ハイドロフォンのブレースへの取り付け溶接部の疲労き裂を起点としたと言われている. この事故を一つの契機として、 円管を用いた大型浮体構造の疲労設計規格を拡充する動きが欧州にて始まり、欧州石炭鋼 材団体 (European Coal and Steel Community, ECSC) や英国海洋鋼材規格会 (United Kingdom Offshore Steels Research Project, UKORSP) で膨大な疲労試験が実施された. これらの試験結果をもとに船級協会や関係省庁が設計指針・規格を開発した. 例えば, 1984 年に英国エネルギー省が報告書 "Background to new fatigue design guidance for steel welded joints in offshore structures" (UK Den [1.5]) において疲労設計指針を示した. これらの指針・規格は主として実験室での疲労試験結果に基づいて作成された. 例えば, UK Den の円管継手疲労試験は、T 継手(主管径は 457mm, 主管板厚は 16mm と主管径は 914mm, 主管板厚は 32mm)のモックアップ試験体により実施された. これらの指針・規 則では実機適用で問題が生じる場合があった. 例えば, UK Den では構造詳細形状に応じて 複数の SN 線図を使い分けるが, 継手分類が橋梁の分類を踏襲したため,海洋構造物に適用 する際にどの SN 線図を使えば良いのか不明確な場合があった.

日本国内においては、1986 年~1990 年までの 5 年間、日本造船研究協会第 202 研究部 会(SR202) [1.8] において、合理的な疲労設計法及び溶接部の品質基準の確立を目的とし た研究が実施された. SR202 では、構造部材 3 種 (ブラケットモデル、スティフナモデル、 ダブラーパッドモデル) について疲労試験と応力分布の計測行い、疲労設計法について検討 を行った.また、実機相当の円管構造物として、T 継手(主管径は 914.4mm、主管板厚は 31.8mm)、X 継手(主管径は 500mm,主管板厚は 22mm)を作成し、疲労試験を実施して き裂発生寿命、板厚貫通寿命及び破断寿命を計測した.板厚貫通寿命は UK Den [1.5] のデ ータとよく一致しており、UK Den の設計線図の妥当性を確認している.

なお,SR202 [1.8] ではこれら応力ベース疲労設計法に加えて,溶接欠陥の許容基準,溶 接部の補修法などについて研究がなされており,実用において大変有益な研究と言える.一 方,計算機能力の不足とNFMA理論の未成熟のため,疲労き裂伝播解析は実施できず,疲 労試験でもビーチマーク法によるき裂進展観測は行われなかった.

一般的に,円管継手は複数の中空円管により構成されており,それぞれの円管は溶接により接合されている.このような構造は曲面形状からなる三次元的な溶接部形状を持ち,溶接 残留応力,外力の双方が接合部で複雑な多軸応力分布を生じる.複雑な円管継手で公称応力 を定義するのは困難なので,疲労強度は HSS で評価される.円管継手の HSS 計算法としては UK Den [1.5], DNV-RP-C203 [1.6] が著名である.

既往研究では、HSSをパラメトリックに求めるために様々な研究が行われてきた. Kuang et al. [1.9] は、シェル要素による FE 解析結果に基づいて T/Y, K および KT 継手の応力集 中係数(Stress Concentration Factor, SCF)を決定するためのパラメトリック算式を提案 した.シェル要素によるモデル化のため溶接プロファイルは考慮されておらず、応力は外挿 なしに求められていた. この単純化は SCF の過小評価につながった. Wordsworth と Smedley [1.10] および Wordsworth [1.11] は管状継手のアクリルモデル試験を用いて T/Y, X, K および KT 継手の算式を導出した. 試験では溶接プロファイルをモデル化せず, 応力 測定はひずみゲージを使用して行われた. Wordsworth と Smedley [1.10] は、軸方向、面 内曲げおよび面外曲げの荷重下で単純な T/Y および X 継手の SCF 算式を提案した. これら の算式は溶接のサドルとクラウンの位置のみをカバーし、中間位置についての情報は含ま れなかった. Efthymiou と Durkin [1.12] は, FEM を用いて T/Y および K 継手の SCF 算 式を導出した. Efthymiou [1.13] は、溶接止端に垂直な応力ではなく、最大主応力に基づ いて T/Y, X, K, KT 継手の SCF を予測するパラメトリック算式を提案した. この算式は主 管と枝管の溶接止端部での最大 SCF を求め、主管の境界条件は考慮されなかった.その一 |方で, Efthymiou [1.13] は, サドル部の SCF は短い主管において幾らか減少することを示 した.これは、主管端部の隔壁または試験治具に固定されたことによる剛性増加により、主 管の変形が抑制されることに起因する. Efthymiou が提案した算式は、1つの垂直枝管と 1つの傾斜した枝管を備えた K 継手の面外曲げ荷重下での垂直枝管側の SCF を過小評価す ることが分かっている.これは算式が、ギャップ有りの K 継手よりも枝管がオーバーラッ プしているギャップ無しのK継手を重視して開発されたことによる.これらの算式は,FEM による円管継手のデータベース平均値に基づいて導出されたが、これらの式を使用する SCF の過小評価は、後の研究でも指摘された. しかしながら、現在もこれらの算式は、海 洋構造物の設計において広く用いられている. Efthymiou [1.13] によって提案された SCF 算式は American Petroleum Institute [1.14] に採用されている. ロイド船級の Smedley と Fisher [1.16] は, 69本のアクリルや鋼管の継手で行われた試験に基づいて円管継手のパラ メトリック算式を導出した. これらの算式はクラウンとサドル位置の SCF のみに対応し, 継手部の最大 SCF を考慮していない.一方, Efthymiou [1.13] によって報告された主管長 さの影響を考慮している. Morgan と Lee [1.16-1.18] は様々な K 継手形状に対して, 軸 方向, 面内および面外荷重下での SCF 算式を提案した. 鋼管とアクリル管の試験体から計 測した SCF を比較すると提案式は Efthymiou [1.13]と Lloyd の式 [1.15]よりも優れてい る. 主管および枝管側(0°, 45°, 90°, 135°および180°)の溶接部での SCF および

3

曲げ成分比率(Degree of Bending, DOB)のパラメトリック算式が提案されている.

このように円管継手の HSS を簡易的に求めるためのパラメトリック算式に関する研究は 長年行われてきた.しかし,これらは継手形状(形状,管径及び板厚,各枝管の位置関係な ど)に対する依存性が高く,SCF のおおよその目安を得るためには有益と考えられるが, 円管を用いた実際の鋼構造物の継手形状は,より複雑であること,近年の計算機の性能向上 及び計算コスト低下により FEM を用いて HSS を求めることが容易になったことなどから, 精度を求める場合は,FEM モデルを用いた手法に優位性がある.

1.3 円管継手の疲労強度に対する破壊力学的アプローチの研究の現状について(数値破壊力学解析)

溶接部の疲労強度評価には、SN アプローチに代わり破壊力学的アプローチを用いた疲労 き裂伝播解析(Fatigue Crack Propagation Analysis, FCP 解析)を適用することもできる. 前述の通り、円管継手は曲面形状からなる三次元的な形状を持ち接合部の応力状態は非常 に複雑になる.溶接継手には表面欠陥や内部欠陥が少なからず存在し、繰返し荷重によりそ れらの欠陥を起点として疲労き裂が成長する可能性があることが知られている.溶接部近 傍に発生した表面き裂は、円管周方向(き裂幅方向)および円管板厚方向(き裂深さ方法) に進展する.その結果、き裂幅方向および深さ方向に三次元的な曲面を有するき裂形状 (doubly-curved surface) が形成される [1.19].さらにき裂が進展すると、その表面き裂 は最終的に円管壁面を貫通し貫通き裂となる.このような三次元的な曲面形状を有する表

面き裂を含む円管継手のき裂進展現象を評価するには,解析対象であるき裂を含む溶接構 造物の高精度なモデル化が必要となる.

過去にこのような問題に対して解析した事例として,例えば文献 [1.20-1.29] が挙げられる. これらの文献の多くは曲面形状を含む円管継手の FEM モデルを作成し,NFMA の評価を行った例である.しかしながら,その多くは溶接止端形状やき裂進展形状を簡易的に表現したモデルを用いたものである.

近年の計算機能力の向上および計算機コストの減少により,固体や構造物中に存在する き裂や切欠きを評価するための高性能な数値解析法が提案されてきている [1.30-1.35]. そ の中でも四面体要素を用いた FEM モデルは今回の研究対象である円管 T 継手のような複 雑構造中の数値破壊力学による疲労き裂伝播解析を行うのに適している. 既往研究におい て,き裂を含む溶接継手の構造解析および破壊力学評価を行う場合,六面体要素を用いるも のが一般的であった [1.36-1.38]. しかしながら,円管継手のように複雑な曲面形状を持つ 構造体においては適用性に難がある.

4

そこで,近年では四面体要素を用いた方法も提案されてきている [1.39-1.45]. 岡田ら [1.48] は四面体要素に適合した仮想き裂閉口積分法(Virtual Crack Closure-Integral Method, VCCM 法)を開発し,破壊力学評価で得られた SIF は十分に高精度な結果を得る ことができることを示している.これまでに工学的応用研究として,複数き裂を有する FCP 解析[1.46],き裂を含む中実円管 [1.47],十字溶接継手 [1.48],T型突合せ溶接継手 [1.49] および核燃料容器 [1.50] などへの適用を行なってきた.四面体要素を用いたモデル化では, き裂前縁部に対して規則的な要素配置とすることが望ましい.文献 [1.45-1.47] では節点単 位に処理を行なう自動要素生成法を提案し,手作業を介することなくき裂を含む構造のモ デルを生成可能な方法を確立している.

1.4 円管継手の疲労強度に対する破壊力学的アプローチの研究の現状について (Mk factor 法)

FEM モデルを用いた数値破壊力学による FCP 解析は計算負荷が高いため,SIF を工学 的近似式"Mk factor"を用いて求めて簡便に FCP 解析を行う手法が提案されている.Mk factor は Maddox [1.51] によってリブが取付けられた平板の表面き裂の SIF 簡易式として 提唱された.続いて,Bowness と Lee [1.52] が,平板 T 継手中の主板表面に発生した平面 き裂の SIF 近似式へ拡張し,Lee と Bowness [1.53]が,円管 T 継手の主管表面に生じた曲 面き裂の SIF 近似式を提案した.この式は [1.52] を,主管応力の継手近傍の応力集中を考 慮して修正したものである.

円管 T 継手に対する Mk factor の計算では,き裂発生位置における SCF と DOB の評価 が必要となる. Lee と Bowness [1.53] は, Efthymiou [1.13] の円管継手 HSS 評価式によ り計算した SCF 及び DOB を, SIF の Mk factor 解が NFMA 解に一致するよう修正するこ とを提唱した. Efthymiou [1.13] の HSS は溶接ビードをモデル化しないシェル FE 解に基 づいており,モデル化誤差を含む. このため Lee と Bowness [1.53] の SCF 及び DOB 修 正式の適用範囲は限定されている. Mk factor 法の疲労き裂伝播解析における有効性は,円 管継手の数値破壊力学による FCP 解析および疲労試験の結果と比較して検証されるべきで あるが, Lee と Bowness [1.53] では,限定した条件での,SIF の NFMA 解と Mk factor 解 の比較しか行われていない.

SCF 及び DOB 修正式に関する問題は、疲労試験による精度検証が十分に行われた応力 計測または FE 解に基づく HSS 計算法を採用して、SCF 及び DOB の修正を不要にするこ とで解決されると期待できる. SCF 及び DOB の修正が不要な(SIF の Mk factor 解・NFMA 解の一致性が良い) HSS 計算法は、FCP 解析に適した局所応力を与える. き裂進展はき裂 発生以降の疲労の微視的過程であるから、この局所応力は疲労被害度評価にも適している 蓋然性が高い.よって、SIFのMk factor 解・NFMA 解の一致度は、厚板円管継手試験体 の疲労試験結果に基づいて定められた疲労設計規則を、中薄板継手に適用することの妥当 性を判断するための指標になると考えられる.

FEM 解析に基づく HSS は、その形状複雑さからくる円管継手の HSS の推定精度を向上 させる.また、Mk factor は破壊力学解析を簡便に実施できるため計算コストの問題を回避 できる.この2 つの組み合わせによる疲労寿命評価法を確立することで、高精度な疲労寿 命評価が設計実務において実施可能となる.

1.5 本研究の目的と論文の構成

本研究は、設計実務に適用可能な円管継手の簡便かつ高精度な破壊力学的疲労寿命評価 法の開発を目的とし、この手法によって評価される SCF は既存の疲労設計規則が規定する HSS 決定法の妥当性を評価する目的にも使用できる.

まず,円管継手中に存在する単一表面き裂のき裂進展現象について,海底資源掘削リグ等 と比較して板厚が薄い,陸上構造物円管 T 継手模型を用いて疲労試験を行い,疲労寿命や き裂進展現象を把握した.次に,疲労試験より得られた継手近傍応力とき裂進展挙動をベン チマーク対象として,数値破壊力学をベースとした FCP 解析を用いた解析的研究により, き裂進展現象や疲労寿命の再現を試みた.数値破壊力学による FCP 解析は,超細密四面体 FE モデルを作成し, VCCM 法を用いて実施する.

続いて,円管T継手の主管表面に生じた曲面き裂のSIFの工学的近似式"Mk factor"を 用いて,き裂発生位置におけるSIFを求め,き裂進展現象の評価を試みた.LeeとBowness [1.53] が提案した円管T継手のMk factorの計算では,き裂発生位置におけるSCFとDOB の評価が必要である.これらは,十分な実験的検証がなされている計測応力ベースのHSS 計算法(UK Den線形・2次外挿法[1.5],DNV-RP-C203法[1.6],IIW線形・2次外挿法 [1.54])から換算する.得られたパラメータをMk factorに用いてSIF範囲を計算し,Mk-FCP 解析を実施する.

各 HSS 計算法に基づく Mk factor による FCP 解析の結果を,数値破壊力学による FCP 解析結果および実験結果と比較して,Mk factor 法の SCF 及び DOB 計算で使用する HSS 計算法の選択方法について論じる.さらに,円管継手の疲労強度評価で採用する HSS 疲労 設計規則の評価対象継手への適合度を判断する指標として,SIF の Mk factor 解・NFMA 解の一致度を用いることを検討する. 本論文は、以下に説明する5つの章により構成されている.

第1章では、本研究を実施するに至った背景を説明した後、円管継手の疲労強度評価に 関する研究の歴史を概観すると同時に現状を評価し、本研究の目的と論文の構成について も説明する.

第2章では、後出の数値破壊力学による疲労き裂伝播解析とMk factor 法による疲労き 裂伝播解析の精度検証のため、疲労試験体3体を用いて実施した中板厚円管T継手模型の 疲労試験について説明する.3つの試験体のうち2体については、き裂発生・貫通に加えて ビーチマーク法を導入しき裂進展挙動と破面形状の観察を行う.

第3章では、四面体二次要素を用いて FEM モデルを作成し、VCCM 法を用いた数値破 壊力学による疲労き裂伝播解析を実施する.得られたき裂形状とき裂進展挙動について、疲 労試験結果との比較を行ない、三次元的な曲面を有するき裂形状を再現する.さらにき裂進 展量とサイクル数の検討を行う.

第4章では、 Mk factor 法を用いて簡便な疲労き裂伝播解析を試みる.疲労試験結果及 び数値破壊力学による疲労き裂伝播解析結果との比較を行って有効な Mk factor による疲 労き裂伝播解析方法について検討を行う.各ホットスポット応力計算法による応力拡大係 数の Mk factor 解と数値破壊力学解析解を比較することにより、円管 T 継手に対する疲労 強度評価の適用方法について検討を行う.

最後に第5章では、本研究で得られた知見を取りまとめると共に、本研究に関連した今後の研究課題を示す.

 $\mathbf{7}$

参考文献

- [1.1] Etube LS., Fatigue and fracture mechanics of offshore structures, Engineering research series, Professional Engineering Publishing (2001).
- [1.2] Maddox SJ., Fatigue strength of welded structures, 2nd edition, Woodhead Publishing (2002).
- [1.3] Fricke W., Fatigue analysis of welded joints, State of development, Marine Structures 16 (2003) pp. 185-200.
- [1.4] 日本鋼構造協会,鋼構造物の疲労設計指針・同解説,2012 年改訂版,技報堂出版, 2012
- [1.5] DEn (Department of Energy), Background to new fatigue design guidance for steel welded joints in offshore structures (1984).
- [1.6] DNV (Det Norske Veritas AS), DNV-RP-C203: Fatigue design of offshore steel structures (2011).
- [1.7] NOU, "Alexander L. Kielland" ulykken, Norges offentlige utredninger (1981).(in Norwegian).
- [1.8] (社)日本造船研究協会 : 海洋構造物の疲労試験法及び溶接部の品質に関する研究 報告書(SR202), 第 202 研究部会, 1991
- [1.9] Kuang J., Potvin A., Kahlich J., Stress concentration in tubular joints, Society of Petroleum Engineers Journal 17 (1977) pp. 287–299.
- [1.10] Wordsworth AC., Smedley GP., Stress concentrations at unstiffened tubular joints, Proceedings of European Offshore Steels Research Seminar (UK) (1978) pp. 1–7.
- [1.11] Wordsworth AC., Stress concentration factors at K and KT tubular joint, Proceedings of the Conference on Fatigue of Offshore Structural Steels (1981) pp. 56-69.
- [1.12] Efthymiou M., Durkin S., Stress Concentrations in T/Y and Gap/Overlap K-Joints, Proceedings of the 4th International Conference on Behavior of Offshore Structures (Netherlands) (1985)
- [1.13] Efthymiou M., Development of SCF formulae and generalized influence functions for use in fatigue analysis, In: Proceedings of the Conference on Recent Developments in Tubular Joints Technology (UK) (1988).
- [1.14] Recommended practice for planning, designing and constructing fixed offshore

platforms - Working stress design, American Petroleum Institute, (2005).

- [1.15] Smedley P., Fisher P., Stress concentration factors for simple tubular joints, The First International Offshore and Polar Engineering Conference, ISOPE, (1991) pp. 475–483
- [1.16] Morgan MR., Lee MMK., New parametric equations for stress concentration factors in tubular K-joints under balanced axial loading, International Journal of Fatigue 19 (1998) pp. 309-317.
- [1.17] Morgan MR., Lee MMK., Parametric equations for distributions of stress concentration factors in tubular K-joints under out-of-plane moment loading, International Journal of Fatigue 20 (1998) pp. 449-461.
- [1.18] Morgan MR., Lee MMK., Stress concentration factors in tubular K-joints under in-plane moment loading, Journal of Structural Engineering, ASCE 124 (1998) pp. 382–390.
- [1.19] Bowness D., Lee MMK., Fatigue crack curvature under the weld toe in an offshore tubular joint, International Journal of Fatigue 20 (1998) pp. 481-490.
- [1.20] Bowness D., Lee MMK., The development of an accurate model for the fatigue assessment of doubly curved cracks in tubular joints, International Journal of Fracture 73 (1995) pp. 129-147.
- [1.21] Lee MMK., Strength, stress and fracture analyses of offshore tubular joints using finite elements, Journal of Constructional Steel Research 51 (1999) pp. 265-286.
- [1.22] Cao JJ., Yang GJ., Packer JA., Burdekin FM., Crack modeling in FE analysis of circular tubular joints, Engineering Fracture Mechanics 61 (1998) pp. 537-553.
- [1.23] Chiew SP., Lie ST., Lee CK., Huang ZW., Stress intensity factors for a surface crack in a tubular T-joint, International Journal of Pressure Vessels and Piping 78 (2001) pp. 677-685.
- [1.24] Kam JCP., Dover WD., Ma CN., The prediction of crack shape development for inservice cracks in offshore welded tubular joints, Marine Structures 8 (1995) pp. 37-65.
- [1.25] Bowness D., Lee MMK., Fracture mechanics assessment of fatigue cracks in offshore tubular structures, Offshore Technology Report 2000/077, Health and Safety Executive (2002).
- [1.26] Borges L., Chiew S., Nussbaumer A., Lee C., Advanced numerical modeling of

cracked tubular K joints: BEM and FEM comparison, Journal of Bridge Engineering 17 (2012) pp. 432-442.

- [1.27] Chang E., Dover WD., Weight function and stress intensity factor for a semielliptical surface saddle crack in a tubular welded joint, Journal of Strain Analysis for Engineering Design 40 (2005) pp. 301-326.
- [1.28] Lee CK., Chiew SP., Lie ST., Nguyen TBN., Adaptive mesh generation procedures for thin-walled tubular structures, Finite Elements in Analysis and Design 46 (2010) pp. 114-131.
- [1.29] Qian X., Nguyen CT., Petchdemaneengam Y., Ou Z., Swaddiwudhipong S., Marshall P., Fatigue performance of tubular X-joints with PJP+welds: IINumerical investigation, Journal of Constructional Steel Research 89 (2013) pp. 252-261.
- [1.30] Fleming M., Chu YA., Moran B., Belytschko T., Enriched element-free Galerkin methods for crack tip fields, International Journal for Numerical Methods in Engineering 40 (1997) pp. 1483-1504.
- [1.31] Cisilino AP., Aliabadi MH., Three-dimensional BEM analysis for fatigue crack growth in welded components, International Journal of Pressure Vessels and Piping 70 (1997) pp. 135-144.
- [1.32] Belytschko T., Black T., Elastic crack growth in finite elements with minimal remeshing, International Journal for Numerical Methods in Engineering 45 (1999) pp. 601-620.
- [1.33] Nishioka T., Tokudome H., Kinoshita M., Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation, International Journal of Solids and Structures 38 (2001) pp. 5273-5301.
- [1.34] Kikuchi M., Wada Y., Shintaku Y., Suga K., Li Y., Fatigue crack growth simulation in heterogeneous material using s-version FEM, International Journal of Fatigue 58 (2014) pp. 47-55.
- [1.35] Pang JHL., Tsang KS., Hoh HJ., 3D stress intensity factors for weld toe semielliptical surface cracks using XFEM, Marine Structures 48 (2016) pp. 1-14.
- [1.36] Lee CK., Tjhen LS., Ping CS., Yongbo S., Numerical models verification of cracked tubular T, Y and K-joints under combined loads, Engineering Fracture Mechanics 72 (2005) pp. 983-1009.
- [1.37] Lie ST., Lee CK., Chiew SP., Shao YB., Validation of surface crack stress

intensity factors of a tubular K-joint, International Journal of Pressure Vessels and Piping 82 (2005) pp. 610-617.

- [1.38] Qian X., Dodds Jr RH., Choo YS., Mode mixity for tubular K-joints with weld toe cracks, Engineering Fracture Mechanics 73 (2006) pp. 1321-1342.
- [1.39] Rajaram H., Socrate S., Parks DM., Application of domain integral methods using tetrahedral elements to the determination of stress intensity factors, Engineering Fracture Mechanics 66 (2000) pp. 455-482.
- [1.40] Nagai M., Ikeda T., Miyazaki N., Stress intensity factor analyses of threedimensional interface cracks using tetrahedral finite elements, Computational Mechanics 51 (2013) pp. 603-615.
- [1.41] Okada H., Kamibeppu T., A virtual crack closure-integral method (VCCM) for three-dimensional crack problems using linear tetrahedral finite elements, Computer Modeling in Engineering and Sciences 10 (2005) pp. 229-238.
- [1.42] Okada H., Kawai H., Araki K., A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements, Engineering Fracture Mechanics 75 (2008) pp. 4466-4485.
- [1.43] Okada H., Ohata S., Three-dimensional J-integral evaluation for cracks with arbitrary curvatures and kinks based on domain integral method for quadratic tetrahedral finite element, Engineering Fracture Mechanics 109 (2013) pp. 58-77.
- [1.44] Daimon R., Okada H., Mixed-mode stress intensity factor evaluation by interaction integral method for quadratic tetrahedral finite element with correction terms, Engineering Fracture Mechanics 115 (2014) pp. 22-42.
- [1.45] Koshima T., Okada H., Three-dimensional J-integral evaluation for finite strain elastic-plastic solid using the quadratic tetrahedral finite element and automatic meshing methodology, Engineering Fracture Mechanics 135 (2015) pp. 34-63.
- [1.46] Kaneko S., Okada H., Kawahi H., Development of automated crack propagation analysis system (multiple cracks and their coalescence), Journal of Computational Science and Technology 6 (2012) pp. 97-112.
- [1.47] Okada H., Kawai H., Tokuda T., Fukui Y., Fully automated mixed mode crack propagation analyses based on tetrahedral finite element and VCCM (virtual crack closure-integral method), International Journal of Fatigue 50 (2013) pp. 33-39.
- [1.48] Tanaka S., Okazawa S., Okada H., Xi Y., Ohtsuki Y., Analysis of three-

dimensional surface crack in welded joint structure using shell-solid mixed method, International Offshore and Polar Engineering Conference, ISOPE 23 (2013) pp. 224-231.

- [1.49] Tanaka S., Kawahara T., Okada H., Study on crack propagation simulation of surface crack in welded joint structure, Marine Structures 39 (2014) pp. 315-334.
- [1.50] Arai K., Yodo K., Okada H., Yamada T., Kawai H., Yoshimura S., Ultra-large scale fracture mechanics analysis using a parallel finite element method with submodel technique, Finite Elements in Analysis and Design 105 (2015) pp. 44-55.
- [1.51] Maddox SJ., An analysis of fatigue cracks in fillet welded joints, International Journal of Fracture 11 (1975) pp. 221-243.
- [1.52] Bowness D., Lee MMK., Prediction of weld toe magnification factors for semielliptical cracks in T-butt joint, International Journal of Fatigue 22 (2000) pp. 369– 387.
- [1.53] Lee MMK., Bowness D., Estimation of stress intensity factor solutions for weld toe cracks in offshore tubular joints, International Journal of Fatigue 24 (2002) pp. 861-875.
- [1.54] Hobbacher AF., Recommendations for fatigue design of welded joints and components 2nd edition, Springer (2016).

第2章 中板厚円筒 T 継手模型の疲労試験

2.1 緒言

本章では、その後の検討のベンチマーク対象とすべく実施した中板厚円筒 T 継手の疲労 試験とその結果について述べる.まず、試験に用いた試験体とその性状について述べ、続い て試験方法について説明する.試験は3体の試験体に対して実施し、いずれも主管サドル部 溶接止端を起点とした疲労破壊が生じた.き裂発生寿命(*Nc*)、貫通寿命(*Np*)の計測に加 え、ビーチマークを導入し、き裂進展挙動、疲労破面形状の記録を行った.日本国内で実施 された類似の疲労試験結果との比較を行って試験の妥当性を確認した.円管継手の疲労設 計に一般的に用いられる各種疲労設計規則・指針の SN 線図を用いて、実験結果を評価し、 各規則・指針が規定する疲労強度評価法の妥当性についても考察した.

2.2 疲労試験体

円管 T 継手試験体3体の疲労試験体を用意した. Fig. 2.1 に試験体の形状・寸法を示す.

Fig. 2.1 Tubular T-joint specimen.

主管の外径・板厚は dc=406.4mm, tc=12.7mm, 枝管の外径・板厚は dg=139.7mm, tg=5.0mm であり, 板厚は海底資源掘削リグ等の鋼管板厚より大幅に薄い. 主管と枝管は直 角に交差し, 交差部は裏当て材を用いて片面完全溶込溶接で接合した. 試験前に超音波探傷 試験(Ultrasonic Testing, UT)及び磁気探傷試験(Magnetic Particle Testing, MT) によ る非破壊検査を行ない溶接部に大きな欠陥が無いことを確認している. 主管の両端は, き裂 の主管貫通をエア漏れで検知できるよう気密蓋で密封した. Fig. 2.2 に疲労試験装置を示す.

Fig. 2.2 Fatigue testing apparatus.

主管両端を単純支持して枝管上端に定振幅片振り(応力比 R=0.05)繰返し荷重を負荷する疲労試験(試験条件の詳細は次節に示す)を実施したところ,継手サドル部の主管側溶接止端に疲労き裂が発生し,溶接止端に沿って進展した後に主板貫通に至った.以下で継手サドル部主管側止端を Hot spot とよぶ. Fig. 2.1 平面図の上側を North side,下側を South side とよぶ. 試験体は止端半径 ρ が 3mm 以上になるよう溶接止端をグラインダ仕上げした.

円管はオーストラリア鋼材規格溶接用鋼材 AS/NZS1163 [2.1] で作成した. 材料の機械的 特性および化学成分を Table 2.1 に示す. 主管と枝管は完全溶込み FCAW(溶接パス数 9) により溶接した. 溶接材料はアメリカ溶接協会規格 AWS A5.20 [2.2] に適合した E71T-1M H8 (ワイヤ直径 1.2mm)を使用した. 各パスの溶接入力は 0.4~1.9 kJ/mm であった.

Test Heat Yield Str. Tensile Str. %Elongation Absorbed Shear %Elongation Test freq treatment (MPa) (MPa) L0=5.65√S0 sample Energy (J) Area % ChL 387 Heat Aged 100Heat&Batch LTAged 4105003432L0-Gauge length; S0-Original cross-sectional area; LT-Longitudinal tensile; ChL-Longitudinal charpy impact test

Table 2.1 Mechanical properties and chemical components of the steel.

%C	%Mn	%P	%S	%Cr	%Nb	%Cu	%Mo	%Ni	%Si	%Ti	%V	%Al	%Sn	%B	CE(IIW)	CE(Pcm)
0.86	0.630	0.10	.003	.017	.021	.017	.002	.020	.140	.011	<.003	.033	<.002	<.0003	.19	.12

Carbon equivalent; If%C>0.12 CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15

Carbon equivalent; If%C \leq 0.12 CE(Pcm)=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B

試験に先立ちシェル要素を用いた FEM モデルを作成し,試験条件を模擬して,枝管上端 に引張り軸方向荷重を静的に負荷して応力状態を確認した.モデル及び応力分布を Fig. 2.3 に示す.解析の結果,サドル部周辺に高応力が確認され,疲労試験において,サドル部にき 裂が発生すると予測された.

Fig. 2.3 Shell model and stress (Von-Mises) distribution.

以下で片振り繰返し荷重の最大値を P_{max} と書く. 各試験体の荷重条件 (P_{max} =170kN~ 120kN,荷重比 R=0.05) とサドル部溶接止端半径 ρ の計測値を Table 2.2 に、サドル部の 溶接止端形状を Fig. 2.4~2.6 に示す. 止端形状はシリコンゴム (信越化学工業: KE12) を 使って型取りし、試験後、き裂発生断面箇所にて切断して確認を行った. 荷重は目標き裂発 生寿命を $1.0 \times 10^5 \sim 5.0 \times 10^5$ 回として、DNV-RP-C203 [2.3] の簡易算式による応力集中係 数から逆算して設定した.

Test ID (Specimen)	P_{\max} (kN)	R	ho (mm)
T1 (1)	170	0.05	3.0
T2 (2)	140	0.05	6.0
T3-1 (3)	120	0.05	11.0
T3-2 (3)	140	0.05	11.0

Table 2.2 Loading conditions and weld dimensions.

Fig. 2.4 Weld profiles of the saddle part in specimen1 (T1), $\rho=3$ mm.

Fig. 2.5 Weld profiles of the saddle part in specimen2 (T2), ρ =6mm.

Fig. 2.6 Weld profiles of the saddle part in specimen3 (T3-2), ρ =11mm.

2.3 試験条件および計測項目

疲労試験には最大荷重容量 200kN のデジタル制御油圧サーボ疲労試験機を使用した.主管を、両端を単純支持して水平に保持し、枝管の頂部に枝管軸方向の片振り荷重を応力比 R=0.05 で負荷した.当初想定したき裂発生寿命に 2.5×10⁵回に対し、十分に回数の大きい 10⁶を実用上の疲労限とみなし Run-out 負荷回数とした.

試験体 3 体を連番で識別する. 試験は Table 2.2 に示す T1, T2, T3-1, T3-2 の 4 ケースに ついて実施した. T1, T2, T3-1 は試験体番号 1, 2, 3 の初期状態(負荷履歴なし)各 1 体を 用いて実施した. T3-2 は T3-1 で Run-out した試験体に, T3-1 より大きな荷重を負荷して 実施した. 各試験の最大荷重 *P*max を Table 2.2 に示す.

試験体表面の歪を単軸歪ゲージ(東京測器研究所製:FXV-1-11-5LT ゲージ長さ 1mm, FLA-3-11—5LT ゲージ長さ 3mm)により計測した.得られた歪みにヤング率 *E*を乗じて 応力を求めた. 歪ゲージは,North side, South side 双方の Hot spot 近傍の主管・枝管表面 に,Fig. 2.7 に示すように密に配置した.

Fig. 2.7 Strain gauge arrangement on joint.

疲労試験中は Hot spot 近傍の表面状態を目視で監視し、き裂が検出されて以降、定期的 に浸透探傷検査(Penetrant Testing, PT)によりき裂表面長を測定した. 試験 T2, T3-2 で は、き裂表面長が 5~10mm 増大した負荷サイクルで、20,000 サイクルの間 P_{max} を維持し て応力比 R を 0.5 に増大させてビーチマークを導入し,試験終了後に破面を写真撮影した. 以下で N, Nc, Np を負荷回数、き裂発生寿命、主管板厚貫通寿命とする. Nc は目視で初め てき裂が確認された N で、Np は気密構造にした主管の内部を大気圧以上に加圧して疲労 試験を実施し、主板貫通時に生じる内圧の低下を検知することで計測した.

2.4 継手近傍の応力分布とき裂伝播挙動

Fig.2.8 に示す主管・枝管継手サドル部の主管・枝管外面上応力の,溶接線に直交する方向(サドルを通る主管断面と主管外面の交線の方向)の成分を σ_n とかく. 試験体 1,2,3 で 歪ゲージにより測定した,主管,枝管外面止端近傍における止端からの距離と σ_n の関係を Fig. 2.9~2.11 に示す. グラフ中の N と S は Fig.2.1 に示す North side と South side を指す. 図では, σ_n が止端に近づくにつれて増大すること,および,枝管より主管の方が, σ_n が 大きいことが示されている.

Fig. 2.8 Direction of surface stress distribution.

Fig. 2.9 Measured surface stress distributions in the saddle part of specimen1 (T1) (S: south-side, N: north-side).

Fig. 2.10 Measured surface stress distributions in the saddle part of specimen2 (T2) (S: south-side, N: north-side).

Fig. 2.11 Measured surface stress distributions in the saddle part of specimen3 (T3-2) (S: south-side, N: north-side).

以下で *a*, *2c* をき裂の最深部深さ, 表面全長さとする. 溶接線上の位置を, Fig. 2.1 の north 方向を 12 時, south 方向を 6 時とする方位で表す. 荷重繰返し数を *N*と書く.

Table 2.3 に疲労試験で計測された *Nc*, *Np* を示す. *N*=10⁶ で Run-out した試験 T3-1 を 除く全ての試験で, σ_n が最大値を示したサドル部主管側溶接止端でき裂が発生した. 主管 表面のき裂進展現象を PT により可視化した.

	P _{max} (kN)	Beach mark	Nc	Np
Test 1	170	N/A	66,400	153,000
Test 2	140	Yes	193,000	546,300
Test 3-1	120	Run-out	>1,000,000	
Test 3-2	140	Yes	410,000	634,400

Table 2.3Fatigue test results.

試験 T1 で計測された表面のき裂伝播挙動を Fig. 2.12 に示す. №66,400 にて, サドル部 より南北 15°の位置にき裂が確認された. き裂は溶接線に沿って円周上に進展し, №153,000 にて主管板厚貫通に至った. 表面き裂の PT による計測を Fig.2.13, き裂貫通 部の板厚方向の断面形状を Fig 2.14 に示す. 深さ方向のき裂の角度は 15°であった.

Fig. 2.12 Measured fatigue crack propagations (T1).

Fig. 2.13 Observation of Surface crack behavior by PT method (T1).

Fig. 2.14 Cross-section of fracture specimen1 (T1).

試験 T2 で計測されたき裂伝播挙動を Fig. 2.15 に示す. 試験 T2 では, N=193,000 で 6 時方向に初めてき裂が確認された. その直後に 5.5 時方向に別のき裂が発生し, N=400,000 で合体して扁平なき裂(Long Shallow Crack)が形成された. このき裂は溶接止端に沿っ て進展し, N=564,300 で主管板厚貫通に至った. 表面き裂の PT による計測を Fig.2.16, き裂貫通部の板厚方向の断面形状を Fig 2.17 に示す. 深さ方向のき裂の角度は 10°であった.

Fig. 2.15 Measured fatigue crack propagations (T2).

Fig. 2.16 Observation of Surface crack behavior by PT method (T2).

Fig. 2.17 Cross-section of fracture specimen2 (T2).

試験 T3-2 で計測されたき裂伝播挙動を Fig. 2.18 に示す. 試験 T2 では, №410,000 で 6 時方向にき裂が確認された. このき裂は溶接止端に沿って進展し, №634,400 で主管板 厚貫通に至った. 表面き裂の PT による計測を Fig.2.19, き裂貫通部の板厚方向の断面形状 を Fig 2.20 に示す. 深さ方向のき裂の角度は 14°であった.

Fig. 2.18 Measured fatigue crack propagations (T3-2).

Fig. 2.19 Observation of Surface crack behavior by PT method (T3-2).

Fig. 2.20 Cross-section of fracture specimen3 (T3-2).

3体の試験体のいずれもサドル部よりき裂が発生したが、6時の位置に発生したケースや 6時から少し外れていたケースもあった.これは、試験体を評価対象とする陸上構造物と同 じ手順で製作したため、厳格なアライメント管理や溶接手順を指示しておらず、試験体毎に 僅かながらの製作誤差が発生したことによる差異と考えられる.

Fig. 2.21 及び **Fig. 2.22** に試験 **T2**, **T3-2** の破面を示す. 写真では, 主管外表面で発生した多数の微小き裂が合体して Long Shallow Crack となり, それが成長して主管板厚貫通に至った様子が示されている.

Fig. 2.22 Fatigue fracture surface (T3-2).

Fig. 2.23 及び Fig. 2.24 に試験 T2, T3-2 で計測されたき裂伝播曲線 (*a*, *2c* と *N*の関係) を示す. T2 では, *N*=401,800 までは合体前のき裂の各々の伝播曲線が, *N*=439,000 では合 体後のき裂の単一の伝播曲線が示されている. Fig. 2.23 と Fig. 2.24 は, き裂伝播の全期を 通じて *2c*>*a* であり, き裂の合体時にアスペクト比 *2c*/*a* が急増したことが示されている.

Fig. 2.23 Fatigue crack propagation curves (T2).

Fig. 2.24 Fatigue crack propagation curves (T3-2).

2.5 先行研究の疲労試験結果との比較

同様の円管継手の疲労試験結果として、SR202 [2.4] にて実施された T 型円管継手(主管 直径 914.4mm, 主管板厚 31.8mm), X 型円管継手(主管直径 500mm, 主管板厚 22mm) の疲労試験結果との比較を Fig. 2.25 に示す. これらは海洋構造物を想定しているため, 今 回の試験体より主管板厚 1.7~2.5 倍の厚板鋼管構造となっている. SR202 の試験体は, 溶 接部の開先形状は V 開先であり,本章の試験体も同様であるが,管径が大きいため裏ハツ リ有りの完全溶け込み溶接で施工されている点が異なる.

継手部のホットスポット応力は、SR202 [2.4]と同様に、Fig. 2.9~2.11 に示すひずみ計測 結果から、UK Den [2.5] の 2 点の線形外挿法によって求めた. 今回の疲労試験結果は、本 試験体も溶接止端形状をグラインダ仕上げしており、SR202 結果の Toe-Ground Weld に近 い結果となっており、今回の疲労試験の妥当性が確認できた.

試験結果の得られた T1, T2, T3-2 の結果に対する回帰曲線を n=-1/3 の傾きで求めた.平 均線図に対する倍率(安全率)は 1.68 となっており,当 SN 線図は,設計線図として,か なり安全側の線図であることがうかがえる.

Fig. 2.25 Comparison with SR202 Fatigue tests.

2.6 各種疲労線図による評価

UK Den 以外に円管継手の疲労強度評価によく用いられる DNV-RP-C203 [2.3] 及び平 板継手用の疲労強度評価法の IIW 疲労設計指針[2.6] による荷重伝達型十字継手の設計疲 労線図を準用して、本実験結果を評価した. DNV による評価を Fig. 2.26 に IIW による評 価を Fig. 2.27 に示す. IIW では設計線図のみ規定されているので、同指針が推奨する標準 偏差 *Stdv*=0.25 を使用して平均線図を作図した. なお、DNV におけるホットスポット応力 は $0.1\sqrt{rt}$ 法、IIW は 2 点からの外挿によって求めた. 詳細な算出方法については、第 4 章 にて説明する.

DNV-RP-C203 [2.3] による評価では、実験結果の回帰曲線が平均線図に対し、安全率 1.22 と僅かに安全側となっている一方、設計線図に対して十分な余裕を持っており、設計 線図の妥当性がうかがえる.

IIW 疲労設計指針[2.6] は設計線図(95%信頼区間下限)のみ規定しているので,同指針が推奨する標準偏差 *Stdv*=0.25 を使用して平均線図を作図した.実験結果の回帰曲線が平均線図に対し,安全率 1.57 と UK Den [2.5] 同様に大幅に安全側の評価を与えていることが分かる.

Fig. 2.26 Fatigue assessment in accordance with DNV-RP-C203[2.5].

Fig. 2.27 Fatigue assessment in accordance with IIW[2.6].

2.7 結言

陸上構造物を想定した円管 T 継手模型の疲労試験を実施し,継手近傍応力と疲労き裂伝 播挙動を計測した.実験結果から次の知見が得られた.また,得られた結果は第3章以降の 検討で参照データとして用いる.

(1) 中板厚(主管板厚 12.7mm 円管 T 継手試験体 3 体の疲労試験を実施した.全ての試験 体でサドル部主管側止端に多数の微小き裂が発生し,それが合体して Long Shallow Crack となった後に,溶接止端に沿ってクラウン部に向けて進展して主管板厚貫通に至った.

(2) 同種の疲労試験である SR202 の円管継手疲労試験と比較を実施した. 今回の試験結果 は Toe-Ground Weld の結果と同じ傾向を示しており,疲労試験の妥当性が確認できた.

(3) また、中薄板の円管継手の疲労試験結果が、厚板鋼管の試験結果と同じ傾向であったことから、これらの円管継手用の設計疲労指針が中薄板の鋼管構造に対しても適用可能であることが示された.

(4) 実験結果を UK Den 及び DNV-RP-C203, IIW 疲労設計指針の各種設計疲労線図を用 いて評価すると, UK Den 及び IIW は平均線図に対して安全率 1.57~1.68 と大幅に安全側 の評価となっていた.一方, DNV 規則は安全率が 1.22 と平均線図近くにに収まっており, 実験結果とよく対応している.本円管継手の条件では DNV 規則を用いることで合理的な疲 労強度評価ができると考えられる.

参考文献

- [2.1] AS1163-1991, Structural steel hollow sections, Australian Standard (1991).
- [2.2] AWS A5.20/A5.20M, Specification for carbon steel electrodes for flux cored arc welding, American Welding Society (2005).
- [2.3] DNV (Det Norske Veritas AS), DNV-RP-C203: Fatigue design of offshore steel structures (2011).
- [2.4] (社)日本造船研究協会:海洋構造物の疲労試験法及び溶接部の品質に関する研 究報告書(SR202),第202研究部会(1991).
- [2.5] DEn (Department of Energy), Background to new fatigue design guidance for steel welded joints in offshore structures (1984).
- [2.6] Hobbacher AF., Recommendations for fatigue design of welded joints and components 2nd edition, Springer (2016).
第3章 円管継手中疲労き裂の三次元数値き裂伝播解析

3.1 緒言

2章にて実施した疲労試験結果を検証対象として,三次元き裂伝播解析システムと疲労試験結果を用いて円管 T 継手中に存在する表面き裂のき裂進展現象の評価に関する研究を行った.円管曲面どうしが接合された円管継手に対して四面体要素を用いた有限要素法

(Finite Element Method, FEM) によりモデル化を行ない,仮想き裂閉口積分法(Virtual Crack Closure-Integral Method, VCCM) [3.1] を用いて破壊力学パラメータの評価を行い,得られた解析結果を実験結果と比較し考察を行った.

3.2 き裂伝播解析システム

溶接止端部の曲面形状を再現するため、3D-CAD にて試験体モデルを再現し、そのデー タをもとに四面体による自動要素生成技術を適用して円管継手の FEM モデルを生成した. FEM モデル中に表面き裂を比較的導入しやすい四面体要素を用いた FEM モデル化と自動 要素生成機能を用いた要素分割システムによる円管継手中表面き裂のき裂伝播解析

(Fatigue Crack Propagation Analysis, FCP 解析)を実施した.本章では円管継手に静的 荷重および周期荷重を負荷した解析をそれぞれ実施した.実験から得られた溶接部近傍の 応力分布,き裂進展経路,疲労試験回数などの結果を解析から得られた結果と比較した.そ の後,き裂進展挙動について考察した.

3.2.1 き裂伝播解析の流れ

表面き裂を含む円管継手 FEM モデルの生成は FEM 解析前処理システム TSV-Pre [3.2] を適用した.破壊力学パラメータ評価のために Okada ら [3.1] が開発した四面体二次要素 向け VCCM 法を用いた.VCCM 法計算で必要になる変形場は汎用 FEM ソフト MSC. Nastran [3.3]で計算した.各処理を統合した解析システムを構築し,効率的な FCP 解析を 実現した.解析の流れを Fig. 3.1 に示す.TSV-Pre で生成した FE メッシュを用いて MSC.Nastran によりき裂周辺の変形を計算した.その結果から, VCCM 法により応力拡大 係数 (Stress Intensity Factor, SIF)範囲を計算した.

Fig. 3.1 Flowchart of the crack propagation simulation system.

Fig. 3.2~3.7 に単一の表面き裂を持つ T 型円管継手の FEM モデルを示す.曲面形状を有 する表面き裂は以下の方法によって生成される.まず,無き裂円管継手の形状を 3D-CAD により生成する.その CAD モデルを TSV-Pre に入力し, Fig. 3.2 に示すようにファセット データ (三角形で構成される表面形状データ) を TSV-Pre 上で生成する.Fig. 3.3 に示 すように初期き裂形状もファセットデータとしてモデルに挿入する.

初期き裂は半楕円形状とした.溶接部形状および表面き裂形状を正確にモデル化するために,円管継手モデルに対して部分的に要素を細かく分割するための設定を行なう.修正された円管継手交差部の CAD モデルを Fig. 3.4 に示す.四面体二次要素により CAD モデルをもとにソリッド要素を自動的に生成させる.その後,き裂モデルを生成するために二重節点を生成する.その FEM モデルを Fig. 3.5 に示す.さらに,き裂近傍の溶接部近傍のモデルを Fig. 3.6 に示す.また, Fig. 3.7 に表面き裂形状を示す.SIF を評価するために,き裂前縁部には非常に細かい構造的な要素を配置した.

境界条件を設定したあと、バッチ処理を用いて FCP 解析を行う. SIF を評価するために 各ステップで線形弾性解析を行う. Windows 上で前処理ソフト (TSV-Pre) と解析ソル バーMSC.Nastran を連結させて自動的に解析を行うようにした. SIF は解析の後処理とし て四面体二次要素向け VCCM 法を用いて行なった. SIF 計算からき裂進展速度と,き裂進 展方向を決定した.それらの情報をもとに次ステップの表面き裂形状を決定し,要素再生成 を行なう.以上のバッチ処理を繰返し,き裂がある深さになるまで繰返し計算を行なった.

Fig. 3.2 Surface crack modeling in a tubular structure: import 3D-CAD data.

Fig. 3.3 Surface crack modeling in a tubular structure: create a surface crack.

Fig. 3.4 Surface crack modeling in a tubular structure: local parameter setting.

Fig. 3.5 Surface crack modeling in a tubular structure: 3D FEM model generation.

Fig. 3.6 Surface crack modeling in a tubular structure: FE meshing of the weld part.

Fig. 3.7 Surface crack modeling in a tubular structure: a surface crack embedded in the weld part.

3.2.2 応力拡大係数の評価

四面体二次要素向け VCCM 法 [3.1] を用いてモード I, II, III (KI, KII, KII) の応力拡 大係数を全てのき裂前縁部の節点で評価した.弾性体中に存在する表面き裂の図を Fig. 3.8 に示す.また,き裂前縁部の拡大図も示してある.VCCM 法を用いて SIF を求めるために き裂先端において四面体要素を等間隔に配置してある.Fig. 3.9 にき裂先端を進展させる方 法の図を示してある.

灰色で示される領域は Nk ステップでの表面き裂形状である.また, Mi (产1,…,m) はそのときのき裂前縁の節点番号である.またΔi をき裂進展速度, θi をき裂進展方向とし て,これらは得られた応力拡大係数から算出する.Δi, θiの決定後,次のき裂解析のために き裂形状を更新する.Nk サイクルから Nk+1 サイクルにき裂が成長すると,き裂前縁部の 節点の個数は維持したまま独立に移動する.そのため,比較的曲線状のき裂形状をモデル化 しやすい方法である.

VCCM 法では, SIF はき裂開口変位とリガメントの節点力により計算を行なう. エネル ギ解放率と各モードの応力拡大係数(K値)の関係は以下のように与えられる.

$$K_I = \sqrt{E'G_I} \tag{3.1}$$

$$K_{II} = \frac{G_{II}}{|G_{II}|} \sqrt{E' G_{II}}$$
(3.2)

$$K_{III} = \frac{G_{III}}{|G_{III}|} \sqrt{2\mu |G_{III}|}$$
(3.3)

ここで、 G_{I}, G_{II}, G_{III} は VCCM 法から得られる各モードのエネルギ解放率である. Eは 材料パラメータであり、平面ひずみ状態を仮定する場合、 $E' = E/(1 - v^2)$ 、平面応力状態を 仮定する場合 E'=Eである. Eはヤング率、vはポアソン比、 μ はせん断弾性係数である.

き裂マウス部の自由表面部近傍の応力状態は平面応力状態となるが、今回の解析では、き 裂前縁全ての節点で SIF を求める際に、全て平面ひずみ状態を仮定した.その理由は以下 の通りである.クラックフロントのどこからどこまでが平面応力状態/平面ひずみ状態か明 確に定義できない.マウス部でのき裂先端の応力集中は 1/√r の特異性とはならず SIF を 定義することができない [3.4]、またき裂深さ方向からマウス部に至る SIF が急激に落ちる (振動する)ことなどが報告されているためである [3.5]. そこで、マウス部の SIF に関しては、き裂内部の値を外挿し、き裂進展速度や方向を決定している.

Fig. 3.8 Cross-section of a surface crack in the crack propagation system and the crack path prediction: FE surface crack model.

Fig. 3.9 Cross-section of a surface crack in the crack propagation system and the crack path prediction: a technique to extend the surface crack in the FE model.

数値破壊力学解析(Numerical Fracture Mechanics Analysis, NFMA)による FCP 解析 を行う場合,き裂を成長させるためのき裂進展速度や方向などの破壊基準を決定する必要 がある.これまでに三次元の混合モードき裂に対してさまざまな方法が提案されている [3.6-3.10]. 今回の解析では、パリス則 [3.11] と Dell' Erba と Aliabadi [3.12] の方法を 採用した. パリス則は設計規則・指針で広く用いられており、実験的知見も豊富な上、破壊 基準の中でも比較的プログラム化しやすい方法である. 使用した破壊基準について以下に 示す.

欠陥を含む構造に周期荷重が負荷されるとして、その混合モードの応力拡大係数範囲を $\Delta K_{I}, \Delta K_{II}, \Delta K_{II}$ とする、パリス則 [3.11] を適用した場合、以下のような式で表すことが できる.

$$\frac{da}{dN} = C\Delta K_{eq}^m, \qquad \Delta K_{eq} > \Delta K_{th}$$
(3.4)

$$\frac{da}{dN} = 0, \qquad \qquad \Delta K_{eq} \le \Delta K_{th} \tag{3.5}$$

また,修正パリス則 [3.13] を用いた場合,SIF 範囲の下限界*4Kth* を用いて,以下のような式で表すことができる.

$$\frac{da}{dN} = C \left(\Delta K_{eq}^m - \Delta K_{th}^m \right), \quad \Delta K_{eq} > \Delta K_{th}$$
(3.6)

$$\frac{da}{dN} = 0, \qquad \Delta K_{eq} \le \Delta K_{th} \tag{3.7}$$

ここで, *da/dN* はき裂進展速度, すなわち, 繰返し数に対するき裂長さの変化である. また, *C*, *m* は材料, 荷重振幅, 環境, 平均応力に影響する材料定数である. *AKeq* は混合モードの影響を考慮するための等価応力拡大係数範囲であり, 以下の式で与えられる.

$$\Delta K_{eq}^2 = (\Delta K_I + B | \Delta K_{III} |)^2 + 2\Delta K_{II}^2$$
(3.8)

ここで Bは経験的に決定される係数である.

Fig. 3.10 Polar coordinates at point P along the crack front.

き裂進展方向を決定するために, Fig. 3.10 に示すようにき裂前縁部に局所座標系を定義 する.ここで, (n,b,t) はあるき裂前縁部の点 P での局所座標系であり, (r, θ) は rb 面 上での点 P からの距離と角度である.最大周方向応力説 [3.14] を適用すると,角度 θ を以 下の式で定義することができる.

$$\theta = 2Tan^{-1} \left[\frac{-2\Delta K_{II}}{\Delta K_{Ieq} + \sqrt{\left(\Delta K_{Ieq}\right)^2 + 8\left(\Delta K_{II}\right)^2}} \right]$$
(3.9)

ここで ΔK_{Ieq} はモード III の影響を考慮したモード I の等価 SIF 範囲であり、以下の式で表すことができる.

$$\Delta K_{Ieg} = \Delta K_I + B |\Delta K_{III}| \tag{3.10}$$

式(3.8), (3.10) において Dell'Erba et al. [3.12] に倣い *B*=1.0 とした. き裂進展速度と, き裂進展方向はき裂前縁部の全ての節点で評価された. 各ステップのき裂増分*Δi*(*i*=1,...,*m*) の中で最大の進展量がき裂前縁部 3 要素程度になるようにし,その結果から逆算して単位 ステップでの繰返し数を決定する.き裂前縁部の全ての節点にその繰返し数を適用して,最 終的なき裂進展量を決定し,次のき裂形状を決定して次の解析を進める.

3.3 円管 T 継手に対する数値解析結果

2章で行った疲労試験結果を対象として NFMA による FCP 解析を実施した. FCP 解析 は単一き裂からのき裂進展が確認された試験 T1, T3・2 に対し実施した. 解析モデルおよび 解析の詳細については,単一き裂のビーチマークが得られている T3・2 を対象として説明す る.

3.3.1 無き裂試験片の応力解析

円管 T 継手の破壊評価をする前に,溶接部近傍の局所応力を調査するため FEM モデル を用いて応力解析を行った.さらに,その数値解析結果を実験結果と比較した.円管継手は 3D-CAD を用いて製作され,自動要素生成ソフトを用いて四面体二次要素によりモデル化 を行なった.その FEM モデルを Fig. 3.11 に示す.解析対象の対称性を考慮して,1/2 モデ ルの円管継手を FEM によりモデル化し対称条件を付加した.FEM モデル主管の両サイド は完全拘束した.

一方向引張り荷重 P_{static}=70KN を枝管上部に加えた. Fig. 3.12 にはサドル部の x-y 断面 のモデル図を示してある. 溶接止端形状の曲面形状を表現した FEM モデルを生成するた め,止端半径 ρ=11mm となるように CAD モデルを修正した. 点 A は溶接部の R 止まり (radiused weld toe) である. 円管継手の全体構造は約 8mm の四面体二次要素で分割し, 高精度に溶接部近傍の応力を高精度に評価するために約 0.5mm のファインメッシュを用い た. その FEM モデル図を Fig. 3.13 に示す. この FEM モデルは約 653,400 節点, 383,700 要素である. ヤング率を *E*=206GPa, ポアソン比を*v*=0.3 とした. 線形弾性解析を行った. なお,溶接残留応力の影響は考慮していない.

溶接部近傍の応力分布を数値解析的,実験的に検証した. Fig.3.14 にひずみゲージの位置 を示す. 主管,枝管に対して3方向の応力分布を評価した. すなわち, Fig. 3.13~3.14 に示 すように Line A, B, C である. 溶接ビード部曲面の終端を R 止まりとし,主管,枝管表面 の接線方向の直応力分布 (The normal stress at the brace-chord surfaces in the tangential direction) を A 方向および B 方向に計測した. さらに,主管側 R 止まりから 4 mm 離れた応力分布も同時に計測した. それらの結果を FEM から得られた最大主応力 と比較した.

Fig.3.11 FEM model of an un-cracked tubular T-joint.

Fig.3.12 x-y cross-section of the saddle location.

Fig.3.13 FE meshing at the weld part and stress evaluation lines A, B and C.

Fig.3.14 Location of the strain gauges.

Fig. 3.15 に線AとB上での応力分布を比較した結果を示す. 点線と自抜きの印は測定したひずみから得られた表面応力であり,実線と黒印はFEMにより得られた主応力である. それぞれの線の基準はFig. 3.14で示す主管と枝管の溶接止端近傍のR止まりである. 枝管と主管の交差部の表面応力はどちらとも溶接部に向かうに従い上昇していることがわかる. 主管表面部の応力は枝管表面部の応力よりも高いことがわかる. 線Aに関して,測定結果と計算結果の全体的な傾向はおおむね良好に一致しているが,溶接部近傍では誤差が生じている. この原因として,試験体形状のモデル化による差異があった可能性がある. 溶接部の形状は型取りしたシリコンゴムを切断して計測したが,サドル部のプロファイル形状のみの情報であり溶接線方向の形状の再現性は明確ではないためである. 一方,線Bに関しては測定結果と解析結果が良好に一致していることが分かる.

さらに溶接部近傍の応力分布を詳細に調査するために,線 C にそって測定値と解析値を 比較した結果を Fig. 3.16 に示す. 点線と実線はそれぞれ計測値と解析値である. 測定結果 は解析結果と比較して若干高めではあるものほとんど一様の応力分布を示している. また それぞれの結果はおおむね一致している. 以上の結果, 今回用いているモデル化では, 円管 継手の局所応力を高精度に評価できていることが分かった.

Fig. 3.15 Stress distribution near the weld toe: (a) lines A and B.

Fig. 3.16 Stress distribution near the weld toe: (b) line C.

3.3.2 T字円管継手のき裂伝播解析

3.3.1 で使用した FEM モデルをもとに,式(3.4)で示されるパリス則を用いて,き裂伝播 解析を実施した.き裂伝播解析は主管を貫通するまで行った.初期き裂はそれぞれのモデル 溶接止端部の R 止まりに挿入した.

初期き裂や欠陥は応力集中部に発生することが知られている. T 字円管継手形状が複雑で あるため,溶接止端部近傍の表面応力を詳細に検討した. Fig. 3.17 の線 A および D に対す る最大主応力を Fig. 3.18 に示す.溶接止端部の R 止まりから約 3mm 内側(ビード側)の 位置で主応力は最大となっており, Fig. 3.17 ではその位置に初期き裂を定義したモデルで あるが,ホットスポット応力(Hot Spot Stress, HSS)の参照点を考慮して,以降の評価に 使用する解析モデルの初期き裂は R 止まりに配置した.この応力差は初期き裂の発生には 影響があると考えられるが,き裂進展寿命に関わる SIF には,溶接形状による応力集中で はなく,構造影響による応力集中が支配的となるため,影響は小さいと判断した.

Fig. 3.17 x-y cross-section of the FEM model at the saddle.

Fig. 3.18 Stress distribution from the chord to weld surface.

次に Fig. 3.19 に溶接止端 R 止まり位置における主管板厚(深さ)方向の応力分布を示 す. 横軸の 0mm は主管外面, 12.7mm は主管内面である. 外面側の応力は正, 内面側は負 となっており, き裂発生部近傍の応力分布は曲げの影響を大きく受けていることが分かる.

Fig. 3.19 Stress distribution at the toe in depth trough the thickness of the plate.

Fig. 3.20 にき裂を含む円管継手の全体図とサドル部に表面き裂を入れた図を示す. 初期 き裂サイズは, Stage IIa 微小き裂の目安として 10^{-1} mm がよく用いられることを考慮し, き裂幅 *2co*=0.4mm, き裂深さ *ao*=0.2mm を仮定した. 表面き裂は主管表面に対して垂直に 配置した. 応力比 R=0.05 を考慮して繰返し荷重 ΔP =133kN を加えた.

構造全体は 5mm 程度の四面体二次要素で分割し,き裂前縁を含み,き裂近傍領域は 0.05mm 程度の要素で分割した.初期き裂モデルは節点数 1,179,500 節点,752,300 要素程 度である.

Fig. 3.20 Cracked tubular T-joint FEM model and details around the surface crack.

今回の疲労試験の試験片の材料データ *C*, *m* を利用することができなかったため、日本 溶接協会の"溶接継手のぜい性破壊発生及び疲労き裂進展に対する欠陥の評価方法" (WES2805) [3.15]により提案されている値を用いた.今回の円管継手は、9パスの多層 溶接であり,疲労き裂が進展する HAZ 部に強い引張り残留応力が生じていたと推定される. このため、材料特性には、最安全側数値 (Mean + 2Stdv; Mean:平均値、Stdv:標準偏差) を使用した.その係数は、*C*=1.95e-12(unit:mm/cycle)、*m*=2.75 である.また、下限界の 応力拡大係数*AKth*=63.25 (unit:N/mm^{3/2}) である.

今回の FCP 解析では、き裂進展増分Δ*i* を固定した解析を行った. 168 ステップの解析を 行い、これは N=325,200 サイクルに相当する. その数値解析結果を Fig. 3.21 に示す. き裂 進展初期では、自由表面近傍のき裂位置は溶接部に沿って弧を描いている. これは溶接止端 部近傍で発生する応力集中による. この現象は、Fig. 2.19 に示す実験結果からも見ること ができる.

サドル部断面の FEM モデルを x-y 平面で切断した図を Fig. 3.22 に示す. 解析により得られた表面き裂は主管板厚方向にも曲率を有している. また, Fig. 3.23 に得られた表面き 裂形状を示しており,これからも三次元的に曲面を持つ表面き裂が生成されたことがわかる. 最終的なき裂幅と深さはそれぞれ 2c=83.1mm, a=12.7mm であった.

Fig.3.21 Surface crack at saddle location.

Fig.3.22 x-y cross-section of the saddle location.

Fig.3.23 Doubly-curved surface crack.

3.4 き裂進展現象の評価

解析結果および実験結果を比較することで,き裂進展挙動の評価を行った.生成された表 面き裂は三次元的な曲面を持つ形状である.今回,疲労寿命を数値解析結果および浸透探傷 試験およびビーチマーク法により取得された実験結果と比較した.計測では,三次元的な形 状の表面き裂を初期き裂の二次元平面に投影し,測定を行なった.ビーチマーク試験の結果 を Fig. 3.24 に示す.実線は測定結果であり,点線は測定された実験結果を補間したもので ある.計算結果より得られたき裂進展の様相を Fig. 3.25 に示す.今回の解析では曲げ変形 が支配的であるため表面き裂は半楕円き裂状に成長していることがわかる.

Fig. 3.24 Beach mark obtained by the experiment.

Fig. 3.25 Crack path evaluated by the simulation.

さらに,解析結果および実験結果より得られた表面き裂のアスペクト比を比較した図を Fig. 3.26 に示す. ここでTは主管板厚である.解析では,半円(*ad co*=1.0)を仮定したた め,そのアスペクト比はき裂が進展するに従い単調に減少していくことがわかる.実験から 得られた表面き裂は解析の結果より幅が広い.今回採用した解析ではマウス部で大きな差 が出る結果となったが,これにはき裂進展のモデル化,離散化や残留応力などさまざまな原 因が考えられる.一方,計算結果および実験結果の傾向としては概ね良好な結果を得られ ていると思われる.

Fig. 3.26 Comparison of the aspect ratio a/c of the surface crack.

次に, 主管板厚方向の曲率について検討を行う. 表面き裂は Fig. 3.22 に示すようにある 曲率を持っている. 主管表面に対するき裂最深部におけるき裂傾斜角度 φ が評価された. そ の結果を Fig. 3.27 に示す. また実験結果を Fig. 2.20 に示す. 解析から得られた傾斜角度 は約 10 度であった.表面き裂が小さい場合,主管板厚半分程度まではそのき裂はほぼ直線 的に伸びている.それ以降,主管を貫通するまでに傾斜角が大きくなっていく.その結果, 成長した表面き裂はき裂最深部で大きな曲率を持つ.同様の傾向は Fig. 2.20 においても観 察することができる.

Fig. 3.27 Cross-section of the fracture surface at saddle location.

3.5 応力拡大係数の評価

表面き裂の伝播挙動について考察を行なう. Fig. 3.28 および 3.29 にマウス部と, き裂最 深部で得られた SIF の図を示す. また, 実際の観察された表面き裂サイズを Fig. 3.24 のよ うに BM1-BM5 として, その表面き裂を FEM モデルに定義して解析した. また, 簡単の ためここで使用した表面き裂は平面状として, 主管表面から垂直に挿入した. 得られたき裂 最深部の K_I 値を Fig. 3.29 の BM1-BM5 に示す. き裂最深部の K_I 値は, 解析結果とほぼ 同程度の値を示していることがわかる. 局所座標系 *a*, *c*は Fig. 3.23 に示すようにき裂の 弧に沿って定義された座標系である. また, Fig. 3.28 の水平方向の軸はき裂成長長さ *c*, Fig. 3.29 の *a*' はき裂深さ方向の長さである. また, それぞれの垂直方向の軸は応力拡大係 数を示している. 得られた SIF はき裂が成長するに従い, 非常に滑らかに遷移しているこ とがわかる.

マウス部の K_Iは一様に増加していることがわかる.一方,き裂最深部の K_Iは主管板厚半 分程度までは増加し,その後,ほぼ同じ値で推移していることがわかる.これらは曲げ荷重 が負荷された場合の K 値の典型的な結果である. Fig. 3.19 にて示したようにき裂位置の主 管板厚方向の応力分布は曲げ荷重が支配的であったことからも確認できる.

また、マウス部、き裂最深部とも KIと比較して KIIの値は小さい.また、マウス部では

単調減少,最深部では単調増加している.そのため、マウス部近傍では溶接線に沿って弧を描くように、また、最深部も弧を描くように進展することがわかる.その結果,Fig. 3.23 に示すように三次元的な曲面を描くように進展することがわかる.

K_{III}は式(3.8)を用いて等価 SIF に考慮されているが, K_{III} 自体の大きさが小さいため, その影響は小さい.

今回採用した FEM による NFMA-FCP 解析を行うことで,円管 T 継手中に存在する表面き裂の生成過程を理解することができた.すなわち,非常に小さな平面き裂が進展し,三次元的な曲面を持つ表面き裂となる過程である.主管と枝管の交差部の溶接部において,混合モードの表面き裂が複雑な応力分布下で成長した.

また,その混合モード状態は三次元的な曲面形状を生成するうえで大きな影響を与えて いることがわかった.例えば,文献 [3.16] において報告されているようなき裂進展現象を 四面体要素および自動要素生成技術を用いた FCP 解析により達成することができた.

Fig. 3.28 Variations in the SIFs along the crack at crack front location at the free surface.

Fig. 3.29 Variations in the SIFs along the crack at deepest point.

3.6 き裂進展解析の評価

サイクル数に対する計算結果と実験結果の表面き裂の幅,深さ方向の大きさについて検 討を行った.疲労き裂伝播解析では無き裂からのき裂成長を議論することができないため, ビーチマークより観察された結果をもとに,最小のき裂サイズを初期のき裂と仮定して比 較を行なった.そのときのビーチマークは,Fig. 3.24 に示すように *N*=410,000 サイクル で,幅は $2c_{exp}$ =12.2mm, a_{exp} =3.6mm であった.一方,解析結果においてもほぼ同じ大きさ の a=3.6mm に成長するのに N_{FE} =286,550 を要した.この差は,FCP 解析で便宜的な初 期き裂寸法を与えたため生じた.よって,試験 T3・2 で実験と解析で比較する際は, a=3.6mm で N_{FE} =Nc=410,000 となるよう N_{FE} をシフトさせる.このようにして比較し た,試験 T3・2 の実験および FCP 解析の進展曲線を Fig. 3.30 に示す.Fig. 3.30 では,き 裂深さ a については,進展寿命の全域で実験・解析が結果と良好に一致している.

以上より,今回提案した数値解析法では円管継手中に存在する表面き裂の伝播解析を良好に解析することが可能であることがわかった.今回使用した材料データ *C*, *m* は安全側の値である.一方,その実験結果と解析結果は良好に一致している.これは,今回の試験体が大入熱溶接により製作されたため強い残留応力が生じていたと,溶接後熱処理をしていないことなどによると思われる.

Fig. 3.30 Comparison of simulated and measured fatigue crack propagation curves (T3-2).

続いて、試験 T1 に対するき裂伝播解析について述べる. 試験 T1 ではビーチマークを導入しなかったので、き裂深さは主管貫通時 Np =153,000 で a=tc=12.7mm であったことしか判らない. 一方、試験 T1 では Nc=66,400 で 2c=9.84mm のき裂が観察された. き裂伝播解析では、2c=9.84mm に成長するのに $N_{FE}=83,250$ を要した. き裂深さ進展が把握できないため、2c=9.84mm で $N_{FE}=Nc=66,400$ となるよう N_{FE} をシフトさせる. このようにして比較した、試験 T1 の実験および FCP 解析の進展曲線を Fig. 3.31 に示す. この補正を行うと、FCP 解析の Npは 171,450となる. この値は、実験結果 Np=153,000と概ね一致している.

T1 と T3・2 の結果を比較した場合,き裂発見時のき裂長さ,き裂深さにフィッティング させた違いはあるものの深さ方向のき裂進展は解析と実験が良好に一致しているものと考 えられる.き裂長さ方向については,2 つのケースにおいて大きな傾向の差異が見られる. これはき裂の進展過程において,複数の微小き裂が合体して長いき裂に進展している可能 性を示唆している.T3・2 のき裂進展はビーチマークが示す通り,単一き裂による進展挙動 に相当していたと考えられる.

Fig. 3.31 Comparison of simulated and measured fatigue crack propagation curves (T1).

今回,四面体要素を用いた FEM モデル化および自動メッシュ生成技術を用いて円管 T 継 手中に存在する表面き裂の FCP 解析を実施した. SIF 評価には四面体要素向け VCCM 法 を用いた.計算された SIF から,き裂進展方向およびき裂進展速度を評価した.解析によ り得られたき裂進展の要素は実験結果を良く説明することができた.よって今回提案した 三次元き裂の FCP 解析法を確認することができた.今回の解析法は,円管 T 継手だけでな く,さまざまな鋼構造物の解析に適用することが可能である.

3.7 結言

本章では、円管 T 継手のき裂進展現象を議論するために、新しく提案した FCP 解析法を 適用した.四面体要素を用いた FEM モデルを作成し、円管継手中を進展する FCP 解析を 実施した.

まず,四面体要素を用いた SIF 評価法について説明した.疲労試験では二種類の結果に ついて説明した.一つは静荷重試験結果,もう一つは疲労試験結果である.それらの実験結 果に対して数値解析により評価を行った.応力解析により得られた結果は実験結果より得 られた応力分布と良好に一致することがわかった.

さらに、その応力よりき裂発生位置を特定し、FCP 解析を行った. NFMA-FCP 解析によって、三次元的な曲面を有する表面き裂形状を再現することができた. さらに、疲労き裂進 展量とサイクル数について検討を行った. それらの結果は、今回用いたき裂伝播解析システ ムでき裂進展現象を評価できる裏づけとなった. 本研究で得られた知見は以下に要約でき る. また、得られた SIF や使用したき裂伝播則は、第4章での検討に用いる.

(1) 疲労試験を実施した円管継手中き裂を対象に,き裂進展に伴い自動要素再分割を行う, NFMA-FCP 解析を実施した.き裂進展則に WES2805 [3.15] 最安全側進展則を適用する と,実験結果と良く一致したき裂進展曲線が計算できた.

(2) 今回の FCP 解析では、初期き裂サイズは仮定の値を用いており、実際の実験で最初に 観測されたき裂サイズに合わせるように伝播曲線をシフトさせる必要がある.

(3) NFMA-FCP 解析により,溶接止端に沿って曲線となり,深さ方向で曲面となるき裂進 展結果を得ることが出来た.き裂断面の形状(角度)を含めて,実験結果とよく一致してい る.

(4) き裂深さ方向の進展については解析と実験について良好な一致を確認することができ た一方,長さ方向の進展については,一致しているケースと一致していないケースに結果が 分かれた.これは,一般的にき裂進展挙動が複数の微小き裂を起点とすることに由来する差 異と考えられる.単一のき裂が支配的なき裂進展挙動であれば解析と一致することが期待 されるが,複数き裂の影響が見受けられる場合は,解析より速くき裂進展すると考えられる.

57

参考文献

- [3.1] Okada H., Kawai H., Araki K., A virtual crack closure-integral method (VCCM) to compute the energy release rates and stress intensity factors based on quadratic tetrahedral finite elements, Engineering Fracture Mechanics 75 (2008) pp. 4466-4485.
- [3.2] TechnoStar, TSV-Pre.
- [3.3] MSC Software Corp., MSC Nastran.
- [3.4] Bažant ZP., Estenssoro LF., Surface singularity and crack propagation, International Journal of Solids and Structures 15 (1979) pp. 405–426.
- [3.5] Li Y., Hasegawa K., Katsumata G., Osakabe K., Okada H., Development of stress intensity factors for surface cracks with large aspect ratio in plates, Journal of Pressure Vessel Technology, ASME 137 (2015) 051207-1-7-8.
- [3.6] Qian J., Fatemi A., Mixed mode fatigue crack growth: a literature survey, Engineering Fracture Mechanics 55 (1996) pp. 969–990.
- [3.7] Dell'Erba DN., Aliabadi MH., Three-dimensional thermo-mechanical fatigue crack growth using BEM, International Journal of Fatigue 22 (2000) pp. 261–273.
- [3.8] Schöllmann M., Fulland M., Richard HA., Development of a new software for adaptive crack growth simulations in 3D structures, Engineering Fracture Mechanics 70 (2003) pp. 249–268.
- [3.9] Richard HA., Fulland M., Sander M., Theoretical crack path prediction, Fatigue & Fracture of Engineering Materials & Structures 28 (2005) pp. 3–12.
- [3.10] Buchholz F-G., Chergui A., Richard HA., Fracture analysis and experimental results of crack growth under general mixed mode loading conditions, Engineering Fracture Mechanics 71 (2004) pp. 455–468.
- [3.11] Paris P., Erdogan F., A critical analysis of crack propagation laws, Transactions of the ASME, Journal of Basic Engineering 85 (1963) pp. 528–533.
- [3.12] Dell'Erba DN., Aliabadi MH., Three-dimensional thermo-mechanical fatigue crack growth using BEM, International Journal of Fatigue 22 (2000) pp. 261–273.
- [3.13] 日本鋼構造協会, 鋼構造物の疲労設計指針・同解説, 2012 年改訂版, 技報堂出版, 2012
- [3.14] Erdogan F., Sih GC., On the crack extension in plates under plane loading and transverse shear, Transactions of the ASME, Journal of Basic Engineering 85

(1963) pp. 519-525.

- [3.15] (社)日本溶接協会,溶接継手のぜい性破壊発生及び疲労き裂進展に対する欠陥の評価方法,WES2805 (2011).
- [3.16] Bowness D., Lee MMK., Fatigue crack curvature under the weld toe in an offshore tubular joint, International Journal of Fatigue 20 (1998) pp. 481–490.

第4章 Mk factor 法による疲労き裂伝播解析

4.1 緒言

第3章で,有限要素法(Finite Element Method, FEM)を用いて疲労き裂伝播解析 (Fatigue Crack Propagation Analysis, FCP 解析)を行った事例について報告した.FEM を用いた FCP 解析は複雑形状の継手にそのまま適用できる強力な手法ではあるが,膨大な 計算工数を必要とし,設計実務作業においては,活用が限定的と成らざるを得ない.より簡 便な応力拡大係数(Stress Intensity Factor, SIF)の計算手法の開発が必要である.

簡易な SIF 計算法として、"Mk factor"が提唱されている.本章では、円管継手用の Mk factor を用いて精度良く SIF を評価することを試みた. Mk factor により計算した SIF 範囲を用いて FCP 解析を実施した. Mk factor の計算では、き裂発生位置における応力集中 係数 (Stress Concentration Factor, SCF) と荷重の曲げ成分比率 (Degree of Bending, DOB) の評価が必要である.先行研究では SCF および DOB をホットスポット応力(Hot Spot Stress, HSS)と公称応力の比で与える場合が多い. 各種の HSS 計算法を用いた SCF・DOB 評価と、それを用いた Mk factor による FCP 解析を行い、それらを第2章の実験結果、および第3章の数値破壊力学解析 (Numerical Fracture Mechanics Analysis, NFMA) 結果 と比較し、各 HSS 計算法の有効性を検討した.

4.2 Mk factor

4.2.1 平板 T 継手の Mk factor

Mk factor は Maddox [4.1] によって提唱された.平板に存在する表面き裂の K 値に対し て、リブ板の付着による応力集中影響を考慮した係数であり、T 継手に生じた半楕円表面き 裂について、式(4.1)で定義される.

$$Mk = \frac{K_{(in \, plate \, with \, attachment)}}{K_{(in \, same \, plate \, but \, without \, attachment)}}$$
(4.1)

*K(in plate with attachment)*はT継手中き裂のSIF, *K(in same plate but without attachment)*は平板中き裂(継 手中き裂と同一き裂形状寸法)のSIFである. *K(in same plate but without attachment)*は NewmanRaju 式 [4.2] で評価できる. 対象継手の *Mk* が準備できれば, Newman-Raju 式 [4.2] 等 で計算した *K*_(in same plate but without attachment)に *Mk* を乗じて継手中き裂の SIF を計算できる. Bowness と Lee [4.3] は, 溶接まま (ρ =0), グラインダ仕上げ (ρ =0.1×板厚) の 2 ケース で, 主板に幅方向に均一な膜応力, 純曲げ応力が作用する平板 T 継手中き裂の NFMA を実 施し, *Mk* の近似式を提案した. *Mk* が既知であれば, 平板 T 継手の主板上溶接止端に生じ た半楕円き裂の *K*_(in plate with attachment)を式(4.2)で計算できる.

$$K_{(in \ plate \ with \ attachment)} = [Mk_m M_m \sigma_m + Mk_b M_b \sigma_b] \sqrt{\pi a}$$
(4.2)

a はき裂深さ, *Mkm*, *Mkb* は膜応力, 純曲げ応力下の Mk factor, *Mm*, *Mb* は膜応力, 曲げ応 力下の shape factor (深さ a の半楕円表面き裂の SIF と長さ 2a の 2 次元無限板中央貫通き 裂の SIF の比, Newman-Raju 式 [4.2] で計算) である. この計算法は BS7910:1999 [4.4] に採用された.

4.2.2 円管 T 継手の Mk factor

Lee と Bowness [4.5] は、円管 T 継手中き裂の SIF *K*(*tubular joint*)を式(4.3)で計算すること を提案した.

$$K_{(tubular \ joint)} = [Mk_m M_m \text{SCF}(1 - \text{DOB}) + Mk_b M_b \text{SCF} \cdot \text{DOB}]\sigma_{nom}\sqrt{\pi a}$$
(4.3)

 σ_{nom} は公称応力で、本研究では、2章の疲労試験体で枝管に負荷した軸力 Fと枝管断面積 Aから $\sigma_{nom} = F/A$ と定義した. SCF は HSS と σ_{nom} の比であり、DOB は、主管のき裂発生 個所において次式(4.4)で計算される.

$$DOB = \frac{\sigma_b}{\sigma_t} = \frac{1}{2} \left(1 - \frac{SCF_{inner}}{SCF_{outer}} \right)$$
(4.4)

 $\sigma_m \geq \sigma_b$ は線形化した主管断面応力の膜・曲げ成分、 σ_t は $\sigma_m \geq \sigma_b$ の和、SCF_{inner}、SCF_{outer} は溶接止端位置の主管内面、外面の SCF である. Lee と Bowness [4.5] は、SCF を Efthymiou [4.6] の式で計算し、その場合に生じる NFMA 解と Mk factor 解の誤差に応じ て SCF および DOB を修正して補正した.

4.2.3 円管 T 継手の SCF 評価法

以下で、応力計測またはビード形状をモデル化したソリッド解析解から計算した HSS を Solid-HSS と、シェル FE 解析で計算した要素応力から計算する HSS を Shell-HSS と、 HSS 計算の応力評価点を read-out-point (ROP) とよぶ.

HSS 計算法は,疲労設計規則が指定する設計 SN 線図を使用して推定した疲労寿命が, 適度な安全余裕をもって疲労試験結果を再現できるよう定式化される.この安全余裕の大 きさは設計規則により異なる.HSS を SCF 評価に使用する際は,設計規則の平均 SN 線図 と疲労試験結果の差が小さい(すなわち安全余裕が小さい)方が応力推定の精度が高くなる と考えられる.

溶接ビードをモデル化できない Shell-HSS は,継手形状・溶接詳細や ROP の取り方によって,Solid-HSS と大きな乖離を生じる場合がある [4.7]. このモデル化誤差は HSS の計 算精度を悪化させる.一方,Solid-HSS では,適切な FE メッシュを使用すればモデル化誤 差を排除できる.

Efthymiou [4.6] の式は円管継手 Shell-HSS の近似式である. Efthymiou [4.6] 式の参 照解は Shell-HSS のモデル化誤差を含んでいたと考えられる. Lee と Bowness [4.5] では SCF を 1.11 倍, DOB を 0.90 倍+0.05 する修正が必要だったが, この修正は, Shell-HSS のモデル化誤差のため必要だったと推定される. Lee と Bowness [4.5] が NFMA を実施し なかった条件での, 前述の SCF および DOB 修正式の有効性は不明である. すなわち, Lee と Bowness [4.5] の Mk factor 法の有効範囲は限定的である. さらに, Efthymiou [4.6] の HSS 近似式は複雑で, 実用設計での使用に不便である.

本研究では、疲労試験による実験的検証が十分なされた Solid-HSS 計算法のうち、式が 比較的簡潔で、かつ規則の平均 SN 線図と対象継手の疲労試験結果の差が小さなものを使 用して SCF を計算することを提案する.これにより、モデル化誤差が排除でき、応力推定 値に過度な安全余裕が含まれなくなるので、SCF および DOB の修正が軽微もしくは不要 になることが期待できる.

円管継手の HSS 計算法は, Efthymiou [4.6] の他にも多数考案されている(例えば Chan と Dover [4.8], Zhao と Packer [4.9], UK Den 線形・2 次外挿法 [4.10], DNV-RP-C203 [4.11]). また, 平板継手用の HSS 計算法(例えば, IIW 線形・2 次外挿法 [4.12]) が円管 継手の評価に流用される場合もある.本研究では,これらのうち,実験的検証の報告例が多い, DNV-RP-C203 [4.11], UK Den 線形・2 次外挿法 [4.10], IIW 線形・2 次外挿法 [4.12] を SCF 計算に利用する.

62

4.3 SCF 評価方法の選択

4.3.1 ホットスポット応力(HSS)計算法

以下で、サドル部を含む枝管断面の中心を含む主管断面と主管表面の交線を"中央子午線" と、中央子午線の中心と主管外面の ROP を結ぶ直線を"ROP 半径"と、主管の頂点を通る 子午線半径と ROP 半径のなす角を"緯度" *φ*とよぶ.中央子午線に沿って測った止端と ROP の距離を"ガース長" *ξ*とよぶ.

Mk factor の SCF を, 4.2.3 で選択した 5 種類の Solid-HSS に基づいて計算する. 各 HSS 計算法を以下に示す. 2.2 に記載のとおり, tcは主管板厚, dcは主管直径である.

a) DNV-RP-C203 0.1√*rt*法 (DNV-RP-C203:2011 [4.11])

1 点 ROP の応力を HSS とする. ROP は $\xi = 0.1\sqrt{(d_c/2)t_c}$ の位置にとる.

b) UK DEn 線形外挿法 (Den:1984 [4.10])

2 つの ROP の応力を止端位置に線形外挿する. ROP は Fig. 4.1 の B4 と A4 にとる.

c) UK Den's quadratic extrapolation (Den:1984 [4.10])

3 つの ROP の最大種応力を止端位置に 2 次外挿する. ROP は Fig. 4.1 の B4, A4 と, A4 から遠方に B4・A4 間距離だけ離れた点 ($\xi = \xi_{B4} + 2 \times (\xi_{A4} - \xi_{B4})$ なる点) にとる.

d) IIW's linear extrapolation (Hobbacher [4.12])

2 つの ROP の応力を止端位置に線形外挿する. ROP は Fig. 4.2 のξ = 0.4t_c, 1.0t_cなる 2 点にとる. HSS は式(4.5)で計算できる(σ_{0.4t}, σ_{1.0t}はξ = 0.4t_c, 1.0t_cでの応力).

$$HSS = 1.67\sigma_{0.4t} - 0.67\sigma_{1.0t} \tag{4.5}$$

e) IIW's quadratic extrapolation (Hobbacher [4.12])

3 つの ROP の最大種応力を止端位置に 2 次外挿する. ROP は Fig. 4.2 のξ = 0.4t_c, 0.9t_c, 1.4t_cなる点にとる. HSS は式(4.6)で計算できる(σ_{0.4t}, σ_{0.9t}, σ_{1.4t}はξ = 0.4t_c, 0.9t_c, 1.4t_c での応力).

$$HSS = 2.52\sigma_{0.4t} - 2.24\sigma_{0.9t} + 0.72\sigma_{1.4t}$$
(4.6)

Fig. 4.1 Stress ROPs defined in UK Den's guidance (Den:1984 [4.10]).

Fig. 4.2 Stress ROPs defined in IIW's guidance (Hobbacher [4.12]).

4.3.2 ホットスポット応力(HSS)計算法の精度検証

ホットスポット応力計算に使用する ROP 応力は,継手部に超細密 4 面体 2 次要素を配し たシェルソリッド混合 FE メッシュを使用した弾性 FE 解析により計算した. T1 の FE メ ッシュを Fig. 4.3 に示す. 溶接部の形状は, Fig. 2.4 のように止端部を含め曲面形状を有す る. 第 3 章では溶接止端部の曲面形状を表現したモデルを用いたが,本章では,簡単のため, 主管断面上の余盛表面を,中央子午線上の余盛断面が,主管側止端と枝管側止端を結ぶ直線 となる(このとき止端半径 *ρ*=0)よう近似した. この近似は, HSS の ROP は止端の応力 特異性が十分減衰した点にとられることから許容される.

(a) Enlarged view around the hot spot.

Fig. 4.3 The shell-solid coupling FE model of specimen 1 used for HSS determination.

FE メッシュのソリッド部は,主管長手方向は継手サドル部から前後 200mm,周方向は 中央子午線の頂部から±60 deg.の範囲とした.ソリッド・シェル境界では,Osawa *et al.* [4.13] が提案した,ソリッド部の境界部断面に板面に垂直なシェル要素を配置する垂直シ ェル結合法 (Perpendicular Shell Coupling Method, PSCM 法) により板の曲げ変形を伝 達した.止端近傍の最小要素辺長は 0.3mm,要素数・節点数はソリッド部 949,542 要素 1,321,132 節点,シェル部 8,850 要素 26,686 節点である.

主管表裏面の、中央子午線方向の直応力成分を"周応力" σ_{φ} とよぶ. Fig. 4.3 の FE メッシュで計算した、枝管端部に 170kN の軸荷重を負荷した場合の σ_{φ} と φ の関係を Fig. 4.4 に示す. Fig. 4.4 には、4.3.1 で選択した各種 HSS 計算法の ROP における σ_{φ} の計算値と、同一条件で計測した主管表面 σ_{φ} の測定値もマークで示す. Fig. 4.4 では、ROP が配置される領域では、 $\sigma_{\varphi}-\varphi$ 関係が計算と実験で良く一致していること、および $\rho=0$ で近似したため生じた止端の応力特異性が十分に減衰していることが示されている. 他の試験体でも、計算と実験の一致性が確認されたので、本研究ではシェルソリッド混合 FE メッシュの応力解からSCF および DOB を計算した. DOB の計算では ROP における主管裏面の σ_{φ} も必要である. 止端・ROP の裏面上位置は、表面の止端・ROP と緯度 φ が同じ裏面上の点とした.

Fig. 4.4 The relation between the calculated and measured hoop stresses and the distance from the weld toe on the outer and inner faces on the center section of the chord for specimen 1 (T1).

試験 T1, T2, T3-1, T3-2 について,シェルソリッド混合 FE メッシュの変形解析結果から 評価した各種 HSS の値を Table 4.1 に示す.何れの試験条件でも,DNV-RP-C203 0.1√*rt* 法が最小の HSS を与える.

Test ID	$0.1\sqrt{rt}$		Den Linear		Den Quadratic		IIW Linear		IIW Quadratic	
	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer	Inner
T1	283.1	173.7	339.6	220.6	348.6	229.1	335.2	224.1	345.7	232.1
Т2	213.9	128.8	256.5	164.0	263.3	170.0	253.3	166.5	261.2	173.3
T3-1	186.3	108.3	206.3	139.2	230.0	144.8	221.4	141.5	228.4	146.8
T3-2	217.4	126.4	240.6	162.4	268.3	169.0	258.3	165.1	266.5	171.3

Table 4.1 HSS ranges calculated by 3D FE meshes for specimens 1 (T1), 2 (T2) and 3 (T3-1, T3-2) (unit: MPa).

4.2.3 では、実験結果と平均 SN 線図の差が小さい疲労設計規則で使用する HSS 決定法 を、Mk factor の SCF および DOB 計算に使用することを提案した.以下で、 2×10^{6} 回時間 強度を $\Delta\sigma_{2E6}$ とかき、実験結果回帰曲線と(設計規則の)平均 SN 線図の $\Delta\sigma_{2E6}$ の比を 2×10^{6} 回安全率 $f_{\Delta\sigma_{2E6}}$ とよぶ.

Table 4.1 の HSS 範囲と,各疲労設計規則・指針 [4.10-4.12]で試験対象継手に対して指定される平均 SN 線図との比較を Fig. 4.5~4.7 に,各線図の式(4.7)で定義する Basquin パラメタ B (単位 MPa), $n \ge \Delta \sigma_{2E6}$ および $f_{\Delta \sigma_{2E6}}$ を Table 4.2 に示す.

(4.7)

 $\Delta \sigma = B(N_f)^n$

本研究の試験体では止端での主板削り込みを実施しなかったので,全ケースで基本(グラ インダ効果なし) SN 線図を使用した. IIW 疲労設計指針 [4.12] は設計線図(95%信頼区 間下限)のみ規定しているので,同指針が推奨する標準偏差 *Stdv=*0.25 を使用して平均線 図を作図した.実験結果の回帰計算は,式(4.7)のべき乗指数 *n* を-1/3 に固定して実施した.

67

Fig. 4.5 HSS-based fatigue assessment results of the T-joints in accordance with DNV- $$\rm RP\text{-}C203$ [4.11].

Fig. 4.6 HSS-based fatigue assessment results of the T-joints in accordance with UK Den [4.10].

Fig. 4.7 HSS-based fatigue assessment results of the T-joints in accordance with IIW [4.12].

measured SN curves and the safety margin of the mean SN curve.												
Basquin's	$0.1\sqrt{rt}$		Den Linear		Den Quadratic		IIW Linear		IIW Quadratic			
params. and safety factor	mean SN curve	measured										
Coef. B (MPa)	15416.8	17036.7	14288.9	19893.0	14288.9	20991.8	14794.4	20196.3	14794.4	20830.9		
exponent n	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		

157.9

113.4

1.47

166.6

117.4

1.37

160.3

117.4

1.41

165.3

113.4

1.39

 $\Delta \sigma_{2E6}$ (MPa)

 $f_{\Delta\sigma 2E6}$

122.4

1.11

135.2

Table 4.2 Basuquin's parameters and stress range for $Np=2\times10^6$ cycles of mean and measured SN curves and the safety margin of the mean SN curve.

Fig. 4.5~4.7 と Table 4.2 によれば、本研究の解析条件では、DNV-RP-C203 $0.1\sqrt{rt}$ 法は 平均 SN 線図より僅かに安全側(安全率 1.11)の評価結果を与える一方、DEn、IIW の 2 点・3 点法は安全率が 1.37~1.47 となり大幅に安全側の評価結果を与える. よって、本研究 の解析対象では、SCF および DOB の計算に DNV-RP-C203 $0.1\sqrt{rt}$ 法を用いると、SCF お よび DOB の修正なしで、NFMA-FCP 解析および実験結果に良好な一致性が得られること が期待できる.

4.4 Mk factor による疲労き裂伝播解析

4.4.1 計算仕様

4.3.2 のシェルソリッド混合細密 FE メッシュを細密 FE メッシュと, 細密 FE メッシュ で計算した応力を細密 FE 応力よぶ. Bowness と Lee [4.3] の有限止端半径 FEM モデルで は止端半径が板厚の 1/10 とされた.供試体 ($t_c=12.7$ mm) でこのモデル相当の止端半径は $\bar{p}=1.27$ mm になる. Table 2.2 によれば全試験体で $\rho \ge \bar{p}$ であるので,全モデルで有限止端 半径用 Mk factor を使用する.なお,供試体の ρ は,疲労強度評価でグラインダの効果が考 慮される場合には相当しない.

Mk factor を用いた FCP 解析は試験 T1, T3・2 を対象に実施した. 試験 T2 は複数き裂の 合体が生じたので解析対象から除外した. Mk factor による FCP 解析では, 3.3.2 の数値破 壊力学による FCP 解析と同じ初期き裂寸法, 材料特性, き裂伝播則(WES2805 [4.14] 最 安全側伝播則)を設定した. SCF および DOB は, 細密 FE 応力から 4.3.1 a)~e)の HSS 計 算法に従い計算した. 具体的には, 河原 [4.15] にならい, 1 点法ホットスポット応力(決 定法 a)では規定 ROP 位置の主管表裏面応力から, 2 点法・3 点法(決定法 b~e)では細密 FE メッシュ主管表裏面応力の止端位置外挿値から計算した. Lee と Bowness [4.5] の SCF および DOB 補正は行わなかった.

4.4.2 DNV-RP-C203・0.1√rt法による Mk factor の疲労き裂伝播解析

本節では、疲労試験結果と平均 SN 線図の差が最小であった、4.3.1 a)の DNV-RP-C203・ $0.1\sqrt{rt}$ 法で SCF および DOB を評価した場合の Mk factor による FCP 解析結果を示す.

Fig. 4.8 に試験 T1 (ρ =3mm), Fig. 4.9 に試験 T3・2 (ρ =11mm)の Mk factor と NFMA から得られたそれぞれのき裂伝播曲線を示す. Fig. 4.8 には, T1の板厚貫通時負荷回数 Np, Fig. 4.9 には T3・2 でビーチマークにより測定した 2c, aの時刻歴も示す. Mk factor,数値 破壊力学解析のき裂伝播曲線では,初回ビーチマーク計測時のき裂寸法を計測結果と一致 させるため、3.5 と同様な Nのシフトを行っている. Fig. 4.8 及び Fig. 4.9 では,T1,T3・2 とも、aは寿命の全域で、2cは 2c<40mmの範囲で、Mk factor による FCP 解析の結果が NFMA-FCP 解析の結果と良好に一致している.き裂形状変化の計測精度が高い T3・2 では、 Mk factor による結果は計測結果にも良く対応している.ビーチマークがなく正確なき裂表 面長が計測できなかった T1 では、2c の計測結果との一致性は不良であるが、aは、ほぼ正 確に計算できている.

Fig. 4.8 Comparisons of crack propagation curves predicted by Mk factor FCP with DNV-RP-C203's SCF and FE FCP (T1 specimen 1, ρ =3mm).

Fig. 4.9 Comparisons of crack propagation curves predicted by Mk factor FCP with DNV-RP-C203's SCF and FE FCP (T3-2 specimen 3, ρ =11mm).

これらの結果は、本研究の解析条件では、HSS による疲労強度評価結果と平均 SN 線図 の一致性が良好な HSS 計算法(DNV-RP-C203・ $0.1\sqrt{rt}$ 法)により SCF および DOB を評 価すれば、Mk factor によって実用上十分な精度の FCP 解析が実施できることを示してい る.

4.4.3 DEn, IIW 外挿法による Mk factor の疲労き裂伝播解析

本節では,疲労試験結果が平均 SN 線図より大幅に長寿命側となった,4.3.1 b)~e)の DEn 法(線形・2 次) および IIW 法(線形・2 次)で SCF および DOB を評価した場合の Mk factor による FCP 解析結果を示す.

Table 4.3 および Fig. 4.10~4.11 に, *Np*の, 各種ホットスポット応力計算法を採用した Mk factor による計算結果と, NFMA による計算結果 (NFMA-FCP) および実験結果との 比較を示す. Table 4.3 では, DNV-RP-C203・0.1 \sqrt{rt} 法を用いたときの Mk factor による 解と NFMA 解の誤差が 11~14%, 実験結果との誤差が 0~13%と小さいことが示されてい る. 一方, DEn 法, IIW 法では, 各手法の *Np* 推定値と0.1 \sqrt{rt} 法推定値の比が平均 70%, 最小 58%になり大幅に安全側の推定となる. 各ホットスポット応力計算法の *Np* 推定誤差 の大きさは, Table 4.2 の平均 SN 線図の安全余裕と正の相関を示す.

Table 4.3 Crack penetration liveSNp of specimen 1 (T1) and specimen 3 (T3-2) predicted by Mk-FCP analyses with various SCF determination techniques.

Test ID	measured	FE FCP	0.1√RT	Den Linear	Den quadratic	IIW Linear	IIW quadratic
T1	153,000	168,158	155,450	92,950	86,250	98,450	89,750
Т3-2	634,400	608,529	556,100	494,000	416,400	439,700	422,100

Fig. 4.10 Comparisons of crack penetration lives Np of specimen 1 (T1) predicted by Mk-FCP analyses with the NFMA-FCP result and the measured Np.

Fig. 4.11 Comparisons of crack penetration lives Np of specimen 3 (T3-2) predicted by Mk-FCP analyses with the NFMA-FCP result and the measured Np.

4.4.4 Mk factor による解析精度とホットスポット応力(HSS)計算法による安全余裕の関係

以下で、疲労試験結果の規則平均 SN 線図に対する安全率(2×10^6 回安全率 $f_{\Delta\sigma 2E6}$)を平 均線図安全率とよぶ.また、SIF の Mk factor 解と高精度 NFMA 解の差を Mk-SIF 誤差と よぶ.

第3章にて,超細密 FE メッシュを使用して NFMA による FCP 解析を実施し,WES2805 [4.14] 最安全側き裂伝播則を使用した場合に,実験結果と良く一致するき裂伝播曲線を得た.本章の Mk factor による FCP 解析では,この数値破壊力学による疲労き裂伝播解析と 同一の初期き裂寸法,材料特性,き裂伝播則を使用した.よって,Mk factor による結果が 数値破壊力学解析の結果と一致することは,Mk-SIF 誤差が小さかったことを示す.これは, SCF および DOB 計算で採用した HSS の計算法が,SIF 計算のための局所応力評価法とし て適していたことを意味する.

一方,4.4.3 で,Mk factor による解析結果が NFMA の結果と一致するのは,平均線図安 全率が 1.0 に近くなる設計規則で規定される HSS 計算法を用いて SCF および DOB を評価 する場合であることが示された.この結果は,Mk-SIF 誤差が小さくなる HSS 計算法を選 択すると,その HSS 計算法が規定された疲労設計規則を適用した場合の平均線図安全率が 1 に近づく可能性が高くなることを示す.

以上より,円管継手の Mk factor を用いた FCP 解析を実施する場合で,解析対象に類似 した円管継手の疲労試験結果が入手できる場合は,平均線図安全率が 1.0 に近くなる設計規 則を選び,その規則で規定された HSS 計算法を使用して SCF および DOB を計算すること を推奨する.

また、円管継手の HSS 用 SN 線図による疲労強度評価を実施する場合で、対象き裂 SIF の高精度 NFMA 解がある場合は、Mk-SIF 誤差を小さくするような HSS 計算法を選び、 その計算法が規定された疲労設計規則の平均 SN 線図を使用することで、良い精度の疲労 強度評価ができる可能性が高まると考えられる.

74

4.4.5 平均線図安全率が 1.0 でない場合の疲労き裂伝播解析手法

4.4.4 にて、平均線図安全率が 1.0 に近くなる設計規則を選び、その規則で規定されたホ ットスポット応力計算法を使用して SCF および DOB を求め、これらの値を用いて Mk factor による疲労き裂伝播解析を推奨した.しかし、全てのケースにおいて、平均線図安全 率が 1.0 に近くなるような設計規則が存在するとは限らない.本節では、各疲労設計規則・ 指針 [4.10-4.12]に規定される HSS 計算法の疲労き裂伝播解析への適用方法について検討 する.

各種規則・指針による HSS を用いて Mk factor により求めたき裂伝播曲線の比較を Fig. 4.12 に示す. 初回ビーチマーク計測時のき裂寸法を計測結果と一致させるため, 3.5 と同様 な Nのシフトを行っている. 既述の通り, 平均線図安全率が 1.0 に近い DNV-RP-C203・0.1√rt法による伝播曲線が実験結果との追随性が良いことがわかる.

Fig. 4.12 Comparisons of crack propagation curves predicted by Mk factor FCP and measured crack propagation curves (T3-2 specimen 3, ρ =11mm).

き裂伝播曲線の追随性を改善するため、平均 SN 線と一致するように HSS の値を修正して、Mk factor による FCP 解析を試みた.得られたき裂伝播曲線を Fig. 4.13 に示す.Fig. 4.12 と比較すると a 及び 2c ともに一致性が改善している.修正した HSS を用いた場合でも DNV-RP-C203・0.1 \sqrt{rt} 法が最も追随性が良好であった.ただし、いずれの計算法でも実

験結果より非安全側(長寿命)の計算結果が得られており,余寿命診断などで用いる場合に は注意を要する.

Fig. 4.13 Comparisons of crack propagation curves predicted by Mk factor FCP with modified HSS and measured crack propagation curves (T3-2 specimen 3, ρ =11mm).

4.5 結言

円管継手の実用疲労設計で使用される例が多い計測応力ベースホットスポット応力 (HSS)計算法と,各計算法に対し規則・指針が規定する平均 SN 線図を使用して推定した疲 労寿命と実験結果を比較し,各 HSS 計算法の有効性を比較した.そして,各種 HSS を用 いて求めた Mk factor により計算した SIF 範囲を用いて疲労き裂伝播解析(Mk-FCP)を 実施し,超細密四面体 FE モデルを用いた数値破壊力学に基づく疲労き裂伝播解析結果およ び実験結果と比較して,Mk-FCP 解析に使用する HSS 計算法の選択方法について論じた. さらに,疲労設計規則の,評価対象円管継手への適合度を判断する指標として,SIF の Mk factor 解・NFMA 解の一致度を用いることを検討した.本研究で得られた知見は以下に要 約できる.

(1) 計測応力ベースの HSS による疲労設計規則として DNV-RP-C203 [4.11], UK Den 線 形・2 次外挿法 [4.10], IIW 線形・2 次外挿法 [4.12]を選択し, 超細密 FE メッシュにより HSS を計算して実験結果の疲労強度評価を行った.本研究の解析条件では, DNV-RP-C203 [4.11]・ $0.1\sqrt{rt}$ 法は平均 SN 線図より僅かに安全側 (安全率 1.11) の評価結果を与える一方, Den [4.10], IIW [4.12] の 2 点・3 点法は安全率が 1.37~1.47 となり, 実験結果より大幅に 安全側の評価を与えることが判った.

(2) 疲労試験を実施した円管継手中き裂を対象に Mk factor による疲労き裂伝播解析を実施 した結果,本研究の解析条件では,疲労試験結果と平均 SN 線図の一致性が良好な HSS 計 算法(DNV-RP-C203 [4.11]・0.1√rt法)を採用すれば,Mk factor 法によって実用上十分 な精度の疲労き裂伝播解析が実施できることが判った.その他の計算法は,き裂貫通寿命の 大幅な安全側推定値を与え,寿命推定誤差が平均 SN 線図の安全余裕の大きさと正の相関 を示した.

(3) 円管継手の Mk factor による疲労き裂伝播解析を実施する場合で,解析対象に類似した 円管継手の疲労試験結果が入手できる場合は,平均 SN 線図の安全率が 1.0 に近くなる設計 規則を選び,その規則で規定された HSS 計算法を使用して SCF および DOB を計算するこ とを推奨する.

(4) 平均 SN 線図の安全率が 1.0 に近くなる設計規則が無い場合,適用する設計規則によっ て求められたホットスポット応力の値を平均 SN 線図上になるよう修正し,修正された値

77

を使用して求めた SCF および DOB を用いて Mk factor による疲労き裂伝播解析を行うこ とで、き裂伝播曲線は修正前のものより改善することが期待される.ただし、実験結果より もやや非安全側の評価となる場合もあり、適用には注意を要する.

(5) 円管継手のホットスポット応力 SN 線図による疲労強度評価を実施する場合で,対象き 裂 SIF の高精度数値破壊力学解析解がある場合は,SIF の Mk factor 解・NFMA 解の一致 度が高い HSS 計算法を選び,その HSS 計算法が規定された疲労設計規則の平均 SN 線図 を使用すると,精度の良い疲労強度評価ができる可能性が高まると考えられる.

参考文献

- [4.1] Maddox SJ., An analysis of fatigue cracks in fillet welded joints, International Journal of Fracture, 11 (1975) pp. 221-243.
- [4.2] Newman JC., Raju IS., An empirical stress intensity factor equation for the surface crack, Engineering Fracture Mechanics, 15 (1981) pp. 185–192.
- [4.3] Bowness D., Lee MMk., Prediction of weld toe magnification factors for semielliptical cracks in T-butt joint, International Journal of Fatigue, 22 (2000) pp. 369–387.
- [4.4] BS7910, Guide on methods for assessing the acceptability of flaws in structure, British Standards Institution (1999).
- [4.5] Lee MMk., Bowness D., Estimation of stress intensity factor solutions for weld toe cracks in offshore tubular joints, International Journal of Fatigue, 24 (2002) pp. 861-875.
- [4.6] Efthymiou M., Development of SCF formulae and generalized influence functions for use in fatigue analysis, In: Proceedings of the Conference on Recent Developments in Tubular Joints Technology (UK) (1988).
- [4.7] Osawa N., Yamamoto N., Fukuoka T., Sawamura J., Nagai H., Maeda S., Study on the preciseness of hot spot stress of web-stiffened cruciform welded joints derived from shell finite element analyses, Marine Structures, 24 (2011) pp. 207-238.
- [4.8] Chang E., Dover WD., Stress concentration factors parametric equations for tubular X and DT joints. International Journal of Fatigue 18 (1996) pp. 363–387.
- [4.9] Zhao XL., and Packer JA., Recommended fatigue design procedure for welded hollow section joints, IIW doc. XIII-1772-99 / XV-1021-99. Abington Publ., Abington Cambridge UK (2000).
- [4.10] DEn (Department of Energy), Background to new fatigue design guidance for steel welded joints in offshore structures (1984).
- [4.11] DNV (Det Norske Veritas AS), DNV-RP-C203: Fatigue design of offshore steel structures (2011).
- [4.12] Hobbacher AF., Recommendations for fatigue design of welded joints and components 2nd edition, Springer (2016).
- [4.13] Osawa N., Hashimoto K., Sawamura J., Nakai T., Suzuki S., Study on shell-

solid coupling FE analysis for fatigue assessment of ship structure. Marine Structures, 20 (2007) pp. 143-63.

- [4.14] (社)日本溶接協会,溶接継手のぜい性破壊発生及び疲労亀裂進展に対する欠陥の評価方法,WES2805 (2011).
- [4.15] 河原崇浩, 円管継手中に存在する表面き裂進展解析に関する研究, 広島大学工学 部学位論文 (2013).

第5章 結論

鋼管溶接構造は,強度重量比に優れ,海洋構造物や社会基盤構造物に多用される.それら の溶接構造部材の疲労強度を高精度に評価することは構造物全体の健全性および信頼性評 価において重要である.実用設計における円管継手の疲労強度評価は、ホットスポット応力 (HSS)に基づき実施される.円管継手の既存 HSS 応力ベースの疲労設計規則は、海底資源 掘削リグ等の厚板鋼管構造(板厚 32mm 以上)を対象としており、陸上構造物や洋上風力 発電用浮体で使用される中薄板円管継手(板厚 16mm 未満)への適用性は十分には検証さ れていない.この問題の解決手段として、SN 線図による疲労強度評価法からき裂伝播解析 に基づく破壊力学的疲労寿命評価法への転換が考えられるが、表面曲面き裂の応力拡大係 数(SIF)範囲の評価に、極めて高度な専門性と多大な計算工数が必要なため、設計実務へ の適用は実現していない.

本論文では,設計実務に適用可能な,円管継手の簡便かつ高精度な破壊力学的疲労寿命評 価法の開発を目的として研究を行った.この手法で評価される局所応力集中率は,既存疲労 設計規則が規定する HSS 計算法の妥当性を評価する目的にも使用できる.本論文は上記目 的に沿った研究成果をまとめたもので,以下の4章で構成される.

第1章では,主要円管継手疲労設計規則を調査し,根拠となった疲労試験結果が 32mm 上の厚板構造に限定されていて,中薄板構造への適用性は新たな実験・解析により確認する 必要があることを示した.円管継手はその複雑な応力分布から疲労強度評価には HSS が用 いられる. HSS を計算するために,応力集中係数をパラメトリックに求める研究が多数な されてきたが,これらはモデル誤差含むなどの問題があることを述べた.続いて,破壊力学 的疲労寿命評価法に関する先行研究を調査し,円管継手では限定された条件での数値 SIF 計算例しかなく,実機の疲労試験結果によりき裂伝播解析の精度を検証した研究例が稀で あることを報告した.さらに HSS に,平板表面き裂の SIF を継手中き裂の SIF に等しく するための修正倍率との新たな解釈を加えることを提案し,本論文の構成について説明し た.

第2章では、研究の基板となるデータ入手のために実施したフルスケール円管 T 継手の 疲労試験について述べた.3体の試験体に対し、定振幅荷重による3点曲げ試験を実施し、 き裂発生寿命(*Nc*)、き裂貫通寿命(*Np*)を計測している.疲労試験では、ビーチマークを 導入し、き裂発生から板厚貫通に至る疲労破面の成長を記録している.また、継手止端近傍 の応力が詳細に計測され,各種疲労設計規則の HSS が計算されている.この結果から平均 SN 線図の試験結果に対する安全余裕が評価され,調査対象の中では,DnV RP-C203・0.1 √rt 法で平均線図と実験結果の一致性が最良になる一方,UK DEn(線形),IIW(線形) の平均線図が大幅な安全側推定を与えることを示した.

第3章では、第2章の疲労試験結果を対象に、FEM を用いた三次元曲面疲労き裂の伝播 解析を実施した.解析では、き裂進展の度に自動再分割される超細密四面体メッシュを使用 し、SIF の計算に四面体要素に適合したき裂閉口積分法(VCCM 法)を用いた.き裂伝播 則には WES2805 最安全側伝播則を使用した.き裂進展挙動の計算結果と実験結果を比較 して両者が良好に一致したこと、すなわち本研究で採用した計算手法により、円管 T 継手 サドル部に生じた曲面き裂のき裂伝播解析を高い精度で実施できることを示した.一方、本 研究で実施した解析手法は、設計実務への適用が困難で、より簡便な実用的 SIF 計算手法 の開発が必要であることを述べた.なお、便宜上の初期き裂を与えたため、き裂発生寿命 (*Nc*) については一致しておらず、実験において最初に発見されたき裂サイズを基準とし てき裂伝播解析によるき裂発生寿命(*Nc*)を修正する必要があった.修正後のき裂進展挙 動及びき裂貫通寿命(*Np*)は実験とき裂伝播解析結果は良く一致した.

第4章では、円管継手中曲面き裂の SIF を工学的近似式"Mk factor"により精度よく評価 することを試みた. Mk factor の評価で必要になるき裂発生位置における応力集中係数 (SCF)と曲げ成分比率(DOB)を、第1章で吟味した各種 HSS 計算法で求めた. 各種 HSS 計算法により評価した SCF および DOB で計算したき裂伝播曲線を、第2章の実験結 果および第3章の高精度 FEM 解と比較した. その結果、Mk factor 解が実験結果および FEM 解と最も良く一致するのは、平均 SN 線図の疲労試験結果に対する安全余裕が最小に なる DnV RP-C203 が規定する HSS 計算法(0.1√rt 法)で SCF を計算した場合であるこ とを示した. なお、第3章と同様の理由により、Mk factor によるき裂発生寿命(*Nc*) につ いて修正が必要であった. 以上の結果より、Mk factor 法に使用する SCF および DOB を、 平均 SN 線図の疲労試験結果に対する安全余裕が 1 に近い疲労設計規則が規定する HSS 決 定法により計算することを提案した. また、Mk factor で計算した SIF が、高精度数値破壊 力学解析解と一致する SCF および DOB に近くなる HSS 決定法を使用すると、選択した疲 労設計規則の平均 SN 線図と疲労試験結果が近づく可能性が高いと論じた.

今後の課題としては、大きく次の2点が上げられる.まず、本研究では、き裂発生寿命(Nc) については議論できていない.これは、実用的非破壊検査(UT, MT)により疲労き裂の起

82

点となりうる欠陥が検出できなかったため、無欠陥表面または検出限界寸法以下の微小き 裂からの疲労き裂発生・伝播を取り扱う必要があったためである.この問題を解決するには、 超高精度計測による微小欠陥・疲労き裂発生過程の観察と、実現象に忠実な Stage IIa 微小 き裂の伝播解析が必要であるが、それらの実験技術・解析理論は確立していない..

次に、今回、検討対象とした疲労試験は、「荷重伝達経路の単純な円管 T 継手」「一定荷 重」「荷重比 R=0.05 の一様引張り」となっており、これらの条件下では、本研究による成 果が適用できるものと考えられるが、より複雑な条件(複雑な継手形状、変動荷重、圧縮を 含む繰り返し荷重など)においては、適用可否について、改めて検討が必要となる. FEM を用いたき裂進展解析を用いることで、一定の予測を得ることも可能と思われるが、一般の 条件下ではき裂開閉口やき裂面どうしの接触も考慮する必要がある. また、複雑形状の継手 の場合、近接しない複数箇所でき裂が発生する事例もあり、検討をさらに困難にしている. 解析による検討に疑念がある場合は、改めて疲労試験が必要となる状況も見込まれる.

付録 グラウンド仕上げされた円管継手の Mk factor

出展: Bowness D., Lee MMK., Fracture mechanics assessment of fatigue cracks in offshore tubular structures, Offshore Technology Report 2000/077, Health and Safety Executive (2002).

(1) Deepest point under membrane loading with a toe-ground weld

$$Mk(g)_{ma} = f_1\left(\frac{a}{T}, \frac{a}{c}\right) f_2\left(\frac{a}{T}, \frac{L}{T}\right)$$

$$f_1\left(\frac{a}{T}, \frac{a}{c}\right) = A_1\left(\frac{a}{T}\right)^{A_2} + A_3\left[1 - \left(\frac{a}{T}\right)\right]^{A_4} + \left[A_5\left(\frac{a}{T}\right) + A_6\right]$$

$$A_{1} = -3.2172(a/c)^{2} + 8.9931(a/c) - 7.356$$

$$A_{2} = -0.22457(a/c)^{2} - 0.41009(a/c) + 0.86071$$

$$A_{3} = 0.65009(a/c)^{2} - 0.76603(a/c) - 1.0351$$

$$A_{4} = 0.10745(a/c)^{2} - 11.0.9(a/c) + 30.557$$

$$A_{5} = 1.2494(a/c)^{2} - 7.1510(a/c) + 9.4916$$

$$A_{6} = 0.33693(a/c)^{2} + 0.23884(a/c) + 2.3341$$

$$f_2\left(\frac{a}{T}, \frac{L}{T}\right) = A_7\left(\frac{a}{T}\right)^{A_8} + A_9\left[1 - \left(\frac{a}{T}\right)\right]^{A_{10}}$$

$$A_{7} = -0.0021981(L/T)^{2} + 0.0066388(L/T) + 0.23244$$

$$A_{8} = 0.098096(L/T)^{2} - 0.22280(L/T) + 0.19344$$

$$A_{9} = 0.015584(L/T)^{2} + 0.026458(L/T) + 0.31065$$

$$A_{10} = -0.29651(L/T)^{2} + 1.2995(L/T) + 1.0362$$

(2) Deepest point under bending loading with a toe-ground weld

$$Mk(g)_{ba} = f_1\left(\frac{a}{T}, \frac{a}{c}\right) f_2\left(\frac{a}{T}, \frac{L}{T}\right)$$

$$f_1\left(\frac{a}{T}, \frac{a}{c}\right) = A_1\left(\frac{a}{T}\right)^{A_2} + A_3\left[1 - \left(\frac{a}{T}\right)\right]^{A_4} + \left[A_5\left(\frac{a}{T}\right) + A_6\right]$$

$$A_{1} = 45.856(a/c)^{2} - 60.626(a/c) + 8.4952$$

$$A_{2} = -0.51457(a/c)^{2} + 0.47958(a/c) + 0.60176$$

$$A_{3} = 3.9209(a/c)^{2} - 6.0652(a/c) + 4.9184$$

$$A_{4} = 2.9459(a/c)^{2} + 0.21875(a/c) + 22.732$$

$$A_{5} = -43.456(a/c)^{2} + 54.877(a/c) - 5.0448$$

$$A_{6} = -3.4851(a/c)^{2} + 5.9129(a/c) + 5.7718$$

$$f_2\left(\frac{a}{T},\frac{L}{T}\right) = A_7\left(\frac{a}{T}\right)^{A_8} + A_9\left[1 - \left(\frac{a}{T}\right)\right]^{A_{10}}$$

$$A_{7} = -0.0060502(L/T)^{2} + 0.021490(L/T) + 0.069432$$
$$A_{8} = 0.037163(L/T)^{2} - 0.044638(L/T) + 0.026591$$
$$A_{9} = 0.0028790(L/T)^{2} + 0.019043(L/T) + 0.052756$$
$$A_{10} = -0.87465(L/T)^{2} + 3.8378(L/T) - 1.1298$$

(3) Crack ends under membrane loading with a toe-ground weld

$$Mk(g)_{mc} = f_1\left(\frac{a}{T}, \frac{c}{a}\right) f_2\left(\frac{a}{T}, \frac{a}{c}, \frac{L}{T}\right)$$

$$f_1\left(\frac{a}{T}, \frac{c}{a}\right) = A_1\left(\frac{a}{T}\right)^{A_2} + A_3\left[1 - \left(\frac{a}{T}\right)\right]^{A_4} + \left[A_5\left(\frac{a}{T}\right) + A_6\right]$$

$$A_{1} = 0.028842(c/a)^{2} - 1.0656(c/a) + 24.632$$

$$A_{2} = 0.0028700(c/a)^{2} - 0.036501(c/a) + 0.18232$$

$$A_{3} = 0.24850(c/a)^{2} - 2.9413(c/a) + 7.9199$$

$$A_{4} = 1.8860(c/a)^{2} - 7.4014(c/a) + 11.572$$

$$A_{5} = 0.035640(c/a)^{2} - 0.54495(c/a) - 2.3387$$

$$A_{6} = 0.016883(c/a)^{2} + 0.57762(c/a) - 7.7623$$

$$f_2\left(\frac{a}{T}, \frac{a}{c}, \frac{L}{T}\right) = \left[A_7\left(\frac{a}{c}\right)^2 + A_8\left(\frac{a}{c}\right) + A_9\right]\left(\frac{a}{T}\right)^{A_{10}} + A_{11}\left[1 - \left(\frac{a}{T}\right)\right]^{A_{12}}$$

$$A_{7} = -0.0030300(L/T)^{2} + 0.022235(L/T) + 0.0068564$$

$$A_{8} = 0.0052426(L/T)^{2} - 0.033387(L/T) - 0.018504$$

$$A_{9} = -0.0038516(L/T)^{2} + 0.014780(L/T) + 0.093071$$

$$A_{10} = -0.0081421(L/T)^{2} + 0.012290(L/T) - 0.17469$$

$$A_{11} = -0.021264(L/T)^{2} + 0.067165(L/T) - 0.043132$$

$$A_{12} = 25.693(L/T)^{2} - 19.570(L/T) + 5.4032$$

(4) Crack ends under bending loading with a toe-ground weld

$$Mk(g)_{bc} = f_1\left(\frac{a}{T}, \frac{c}{a}\right) f_2\left(\frac{a}{T}, \frac{a}{c}, \frac{L}{T}\right)$$

$$f_1\left(\frac{a}{T}, \frac{c}{a}\right) = A_1\left(\frac{a}{T}\right)^{A_2} + A_3\left[1 - \left(\frac{a}{T}\right)\right]^{A_4} + \left[A_5\left(\frac{a}{T}\right) + A_6\right]$$

$$A_{1} = 0.43193(c/a)^{2} - 4.0236(c/a) + 27.425$$

$$A_{2} = 0.013058(c/a)^{2} - 0.12466(c/a) + 0.46051$$

$$A_{3} = 0.22388(c/a)^{2} - 2.8643(c/a) + 7.8688$$

$$A_{4} = 0.19132(c/a)^{2} - 0.84291(c/a) + 5.2955$$

$$A_{5} = -0.46115(c/a)^{2} + 3.6620(c/a) - 9.0179$$

$$A_{6} = 0.038190(c/a)^{2} + 0.40816(c/a) - 5.6913$$

$$f_2\left(\frac{a}{T}, \frac{a}{c}, \frac{L}{T}\right) = \left[A_7\left(\frac{a}{c}\right)^2 + A_8\left(\frac{a}{c}\right) + A_9\right]\left(\frac{a}{T}\right)^{A_{10}} + A_{11}\left[1 - \left(\frac{a}{T}\right)\right]^{A_{12}}$$

$$A_{7} = -0.0028759(L/T)^{2} + 0.022350(L/T) - 0.018110$$

$$A_{8} = 0.0045215(L/T)^{2} - 0.031258(L/T) + 0.022686$$

$$A_{9} = -0.0038941(L/T)^{2} + 0.015240(L/T) + 0.076791$$

$$A_{10} = -0.0056783(L/T)^{2} + 0.0036876(L/T) - 0.31959$$

$$A_{11} = 0.10998(L/T)^{2} - 0.10623(L/T) + 0.0047289$$

$$A_{12} = 52.952(L/T)^{2} + 64.680(L/T) - 42.169$$

本研究を遂行するにあたり、大阪大学大学院工学研究科教授 大沢直樹先生には、研究の 方向付けから本論文の取りまとめに至るまで、研究全般にわたり、熱心なご指導、ご鞭撻を 賜りました.また、社会人として在職のまま入学したため、ご迷惑を多々おかけすることも ありましたが、様々な形でご支援頂き、終始変わらぬ熱意をもってご指導頂けたことに、心 から感謝し、お礼申し上げます.

大阪大学大学院工学研究科名誉教授 冨田康光博士には、本研究のきっかけとなった疲 労試験のアイデアを始め、疲労強度の基礎となる考え方をご指導賜りました.先生のご助言 があればこそ、このような先進的な研究に携わる機会を得ることができたものと感謝して おります.

広島大学大学院工学研究科准教授 田中智行先生には,数値破壊力学解析の分野から,多 くのご指導,ご支援を頂きました.講演論文には共著者として名を連ねて頂き,貴重なご助 言を頂きました.また,第3章で用いたき裂伝播解析は先生の研究に支えられて得られた成 果であり,先生の研究に敬意を表するとともに,心よりお礼申し上げます.

大阪大学大学院工学研究科教授 藤久保昌彦先生,大阪大学接合科学研究所教授 麻寧 緒先生からは幾度もご指導を賜りました.また,研究の進捗にもお気遣いを頂き,心より感 謝申し上げます.

地球総合工学専攻船舶海洋工学部門第二講座の皆様には、本研究にご協力頂き、お礼申し 上げます.本論文で取り上げた幾つかの項目は、研究室が継続的に取り組んで来た内容に基 づいており、すでに卒業された諸氏も含めて、皆様のご協力により最後まで取りまとめるこ とができました.あらためて、お礼申し上げます.

サノヤス造船株式会社の各位にお礼申し上げます.著者が博士課程に進学する機会を与 えて頂いた落合諒会長(現最高顧問),上田孝社長,倉持貴好専務を初めとする方々のご英 断,ご支援に心から感謝申し上げます.また,前野嘉孝常務(現サノヤス・ビジネスパート ナー社長)には,著者が現職に就いて以来,長きにわたり構造設計技術者として指導頂きま した.その成果が研究者の道へ繋がったものと深く感謝しております. 構造設計課の諸君にも種々のご協力を頂きました.特に,黒田和宏くんには,研究の遂行 に必要な計算や図表の取りまとめなどで助けて頂きました.黒田くんの協力によって,研究 の幅を拡げることができたと,大変,感謝しております.

最後に、ここで行った研究は造船所だけでなく、鋼構造物の設計実務の役に立つ研究であ ったと自負しております.今後は、本研究で培った技術や知見を活かし、サノヤス造船、さ らには造船業界の発展に微力ながら貢献して参りたいと思います.今後も啓発につとめ、自 身のひいては自分を含めた周囲の技術力向上に貢献できるよう精進することをお誓いして、 謝辞の結びの言葉とさせて頂きます.