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Abstract
We study the existence and the asymptotic stability of aiostaty solution to

the initial boundary value problem for a one-dimensionatifegynamic model of
semiconductors. This problem is considered, in the previmsearches [2] and
[11], under the assumption that a doping profile is flat, whithkes the stationary
solution also flat. However, this assumption is too narrowdeer the doping profile
in actual diode devices. Thus, the main purpose of the prgmer is to prove the
asymptotic stability of the stationary solution withoutsttassumption on the doping
profile. Firstly, we prove the existence of the stationarjuon. Secondly, the
stability is shown by an elementary energy method, wheresthmtion for an energy
form plays an essential role.

1. Introduction

The present paper is concerned with the existence and timepastyc stability of a
stationary solution to the initial boundary value probleon & one-dimensional hydro-
dynamic model of semiconductors. The motion of electronseémiconductors is gov-
erned by the system of equations

(1.1a) ot + (pu)x =0,
(1.1b) (pu); + (pU? + p(p))x = péx — pU,
(11C) Pyx = p — D.

We study the asymptotic behavior of a solution to this systemr bounded domain
Q:=(0,1). Here, the unknown functions u and¢ stand for the electron density, the
electron velocity and the electrostatic potential, reipely. Thus, the producf := pu
means the current density. The presspres assumed to be a function of the electron
density p given by

(1.2) p = p(p) = Kp?,

2000 Mathematics Subject Classification. Primary 82D37, 9B6E76N99; Secondary 35L50,
35J05.



640 S. NSHIBATA AND M. SUZUKI

where the constant& and y are supposed to satisfi{ > 0 andy > 1. The case
y =1 is important from the physical point of view. The dopingfile D € B%(Q) is
a function of the spatial variable € Q := [0, 1] and satisfies

(1.3) inf D(x) > 0.

XeQ2

The initial and the boundary data are prescribed as

(1.4) (p, U)(0, X) = (po, Uo)(X),
(1.5) p(t,0)=p >0, p(t,1)=p >0,
(16) ¢(t, 0) = 0! ¢(t1 1) :¢r > 0:

where o, o and ¢, are constants. In addition, the compatibility conditioms aft, x)
with orders 0 and 1 are supposed to holdtaix] = (0, 0) and {, x) = (0, 1). Namely,

1.7) p(0,0)=p, p0,1)=pr, (pu)x(0,0)=0, (Eu)x(0,1)=0.

This initial boundary value problem is considered in theioagvhere the subsonic
condition (1.8a) and positivity of the density (1.8b) hold

(1.8a) inf (p'(k) — u’) > 0,

(1.8b) inf p > 0.
XeQ
Thus, we need to suppose that the initial data (1.4) satiefget conditions
(1.9 inf(p’(po(X)) — U3(x)) > 0, inf po(x) > O.
xXeQ2 XeQ2

We construct the solution in the neighborhood of the initata (1.9) as the condi-
tions (1.8) hold. Notice that the subsonic condition is egl@nt to that one charac-
teristic speed of the hyperbolic equations (1.1a) and jlidmegative and another is
positive, that is,

(1.10) AL =uU—/p(p) <0, r:=u+/p(p)>0.

Hence the subsonic condition implies that two boundary ttmmé (1.5), (1.6) are nec-
essary and sufficient for the wellposedness of this init@lrgary value problem.
The initial boundary value problem (1.1) and (1.4) fax, {, ¢) is rewritten as

(1.11a) petjx =0,

_ ) j? j. .
(1.11b) Jt+(p(p)—;)px+2;Jx:p¢x—J,
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(1.11c) $xx=p—D

with the initial data po, jo) := (0o, poUo), Which is derived from (1.4). In Section 2,
we discuss the existence of the solution to (1.1) satisfyfregconditions (1.8). Appar-
ently, (1.1) is equivalent to (1.11), if the densityis positive. Thus once we prove
the existence of a solution to the initial boundary valuebpem (1.11), (1.4), (1.5)
and (1.6) for p, j, ¢) with p > 0, the existence of the solution to the problem (1.1),
(1.4), (1.5) and (1.6) immediately follows. Integrating1(1c) and using the boundary
condition (1.6), we obtain an explicit formula of the elestatic potential

o(t, x) = ®[p](t, x)

(1.12) X ry oy
-fofo (0 — D)(t, 2) dzdy+ (qbr —/0/0 (o — D)(t,Z)dZdy>x.

The main purpose of the present paper is to show the asymmtability of a
stationary solution, which is a solution to (1.1) indepertdef a time variablet, sat-
isfying the same boundary conditions (1.5) and (1.6). Herbe stationary solution
(5, 0, ) verifies the system of equations

(1.13a) (pU)x =0,
(1.13b) (BT + p(B))x = dx — AU,
(1.13c) (Z’xx =p—D

and the boundary condition
(1.14) p0)=p >0, p(1)=p >0,
(1.15) #(0)=0, ¢(1)=¢; > 0.

The equation (1.13a) means the prodyct= 5ii is constant. Substit~uting':: ol
in (1.13b) and dividing (1.13b) by, "we have the system equations fqr, f, ¢)

(1.16a) ix=0,

F oL~
(1.16b) (5 =~ 1.

o o
(1.16¢) ¢xx =P — D,
where

. j2 S p(©)

1.17 F(p, j) === +h(p), h() = dec.
(1.17) (0 )= 55 +hio) he)= [ B
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Differentiating (1.16b) inx yields that

OF . = .
(1.18) <3—(p, J)Px) —%px—/ﬁ—D-
o x P

Integrating (1.16b) over the domafd, we have the current-voltage relationship

1
(1.19) ¢r:F(p,,f)—F(p|,j")+J”/0 %dx.

Moreover, owing to the equation (1.16c) and the boundary itiond(1.15), ¢ is given
by the formula

. X py 1pry
120) (0= /0 fo (5 — D)) dzdy+ <¢r— /O /O (5—D)(z)dzdy)x,

which corresponds to (1.12) for the non-stationary problem
In showing the existence and the asymptotic stability ofdtagionary solution, the
strength of the boundary data, which is defined by

(1.21) §=1pr — ol + el

plays a crucial role. The existence of the stationary smiu(s, @, ¢) is summarized
in the next lemma.

Lemma 1.1. Let the doping profile and the boundary data satisfy condgid.3),
(1.5) and (1.6). For an arbitrary p, there exists a positive constast such that if
8 < &1, then the stationary problenil.13), (1.14)and (1.15) has a unique solution
(5, U, ¢)(x) satisfying the conditiong1.8) in the spaceB2(<Q2).

Proof. This lemma follows from Lemmas 2.1 and 2.3. Ol

In order to discuss the asymptotic stability of the statignsolution constructed
in Lemma 1.1, we employ the function space

x)([0, T]) := () C*([0, T HIM k@) for i,j=0,1,2,
k=0

(0, T] = x%(0, T]) for i=0,1,2,

in which the norms are denoted as in Notation below. The ntadorem, the stability
of the stationary solution, is summarized in the next theore
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Theorem 1.2. Let (g, {,$) be the stationary solution of1.13), (1.14)and (1.15).
Suppose that the initial datépo, Up) € H?(R2) and the boundary data, o, and ¢, sat-
isfy (1.5), (1.6), (1.7)and (1.9). Then there exists a positive constaatsuch that if
8+ |l(oo — B, Up — 0O)|l2 < 82, the initial boundary value problengl.1), (1.4), (1.5)
and (1.6) has a unique solutior{p, u, ¢)(t, X) € X,([0, c0)). Moreovey the solution
(p, U, @)(t, x) verifies the additional regularityp — ¢ € 3€§([0, 00)) and the decay
estimate

(1.22) (o — 3, u— ()2 + (¢ — P)(t)lla < Cli(oo — A, Uo — T) 267",
where C andx are positive constants independent of a time variable t

Related results. The hydrodynamic model of semiconductors was introduced by
Blatekjeer [1]. Recently, not only engineers but also mati&ians interested in this
model. From the mathematical point of view, the text book] [53the good reference
for the derivation of the hydrodynamic model of semicondugt It is important to
study the initial boundary problem over bounded domain wfith Dirichlet boundary
condition since semiconductor devices are minute.

Degond and Markowich [2] investigated the stationary sohutito the one-
dimensional hydrodynamic model of semiconductors with Eiechlet boundary con-
dition. They proved the existence of the stationary sofuytieatisfying the subsonic
condition (1.8a). We reconsider the existence of the gtatip solution in the present
paper since the research in [2] shows the existence for a giverent densityj, al-
though physical interest is to investigate the amount ofctimeent densityj for a given
boundary voltagep,. Li, Markowich and Mei [11] studied the asymptotic stability o
the stationary solution. However, they assumed that théndoprofile is flat, that is,
ID(X) — pi| < 1. This assumption is too narrow to cover physical problemsesthe
typical example of the doping profile does not satisfy thisuasption (see [4]). For
instance, the doping profiles off — n — n* diodes have two steep slops. Matsumura
and Murakami [14] started to study the physically meaningfaping profile. Pre-
cisely, they proved the asymptotic stability of the stagignsolution without flatness
assumption on the doping profile. However, they studied pingblem with the peri-
odic boundary condition, which makes it the full space peabloverR. Consequently,
our main concern goes to the problem to show the asymptailulisy of the station-
ary solution under the Dirichlet boundary condition withadle flatness assumption on
the doping profile.

Other kinds of hyperbolic-elliptic coupled systems, rattien (1.1), arise as mod-
els for radiating or self-gravitational fluid flow, (see [3, &, 9, 10, 12] for example).
Especially, the model for the self-gravitational flow, thiner Euler-Poisson equation,
is studied in [3, 10, 12]. The stability of traveling wavesciensidered in [9] for radi-
ating gas dynamics. In researches [7, 8], general systerhgpefrbolic-elliptic coupled
equations are considered. We have to mention that we boregera ideas from these
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papers [7, 8] although they do not cover the semiconductodein¢l.1). Hence, it
is an important open problem to generalize the results in8[7o the system includ-
ing (1.1).

After completing the present papere have learned that the almost same theorem
as Theorem 1.2concerning the stability of the stationary solution had mgeoved in-
dependently by.YXGuo and WStrauss in[5]. Howeverwe think that the present paper
is still worth of publication since the estimates are dediV®y different methods and the
paper[5] does not discuss on the existence and the regularity of theie@a Further-
more it follows the researclj2] for the existence of the stationary solution and thus it
does not state the result in terms of the electrostatic fi@enAs we have addressed
above such a consideration is important for the researchespecially in physics and
technology

Outline of the paper. The remaining part of the present paper is organized as
follows. In Section 2, we begin detailed discussions with pinoof of the existence and
the uniqueness of the stationary solution. The existengeoged in Subsection 2.1 by
the Schauder fixed-point theorem. The uniqueness follows fthe maximum prin-
ciple. In Subsection 2.2, we obtain the elliptic estimatel dhen we establish the
unique existence of the time local solution by using an fienamethod for solving
the non-linear hyperbolic equations. Here we omit the disimn on the solvability
of the linearized hyperbolic problem in Subsection 2.2. aodtpone it until Appen-
dix. Section 3 is devoted to showing the asymptotic stabdit the stationary solution.
First, we introduce the energy form to obtain the basic et Next, we derive the
system of the equations for the perturbation from the gitatip solution. Then an el-
ementary energy method yields the higher order estimatégrefore, combining the
existence of the time local solution and the a priori estériatthe H2-Sobolev space,
we complete the proof of the existence of the the time glolditeon. Finally, by
using the uniform estimates previously obtained, we shavetkponential convergence
of the solution, for the non-stationary problem, to the esponding stationary solution
in Subsection 3.4.

Notation. For a nonnegative integér> 0, H'(2) denotes the-th order Sobolev
space in the_? sense, equipped with the norm|);. We noteH®=L2 and || :=||lo.
CK([0, T]; H'(R)) denotes the space of thetimes continuously differentiable functions
on the interval [0,T] with values in H'(R). For a nonnegative integdr > 0, BX(Q)
denotes the space of the functions whose derivatives upttoorder are continuous
and bounded ovef, equipped with the norm

k
[ flic:= ) supla, F()l.

i=0 XeQ
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2. Preliminary observation

2.1. Unique existence of stationary solution. This subsection is devoted to the
discussion on the existence and the uniqueness of therstatisolution. Firstly, we
show the existence of the stationary solution by applyirgy $ichauder fixed-point the-
orem. Secondly, we obtain the estimates of the stationdrtisn, as it is necessary
in showing the uniqueness of the stationary solution. Bindahe uniqueness of the
stationary solution is proved by the maximum principle.

Apparently, (1.13) is equivalent to (1.16) if densjtyis” positive. Hence once we
show the existence and the unigueness of the solution to ribiglen (1.16), (1.14)
and (1.15) withp™> 0, the existence and the uniqueness of the solution to thie- pro
lem (1.13), (1.14) and (1.15) immediately follow. We use fbBowing constants to
discuss the properties of the stationary solution.

Cm = min{pu,pr, inf D(X)}, Cu = maX{pu,pr, sup D(X)},
x€(0,1) xe(0,1)

Cp = ¢ — th(or) — h(m)}.

The existence of the stationary solution is stated in the l@®Rma. The main idea
of this proof is essentially same as in [11].

Lemma 2.1. Let the doping profile and the boundary data satisfy condgid.3),
(1.5) and (1.6). Moreover suppose that the following inequalities hold

-1
(2.1a) VYK > 26!){6&1 /Ty + 2Tl 2 - p.2>} ,

(2.1b) Cu +2Xu(p 2= p7 20 i p<pr

Then the stationary problerfl.16), (1.14)and (1.15) has a solution(3, j, ) € BA(Q)
satisfying the conditior{1.8). Furthermore it holds that j = 0 if and only if Cp = 0.

Proof. Firstly, we define the mappin: q — Q over W := {f € BY(Q);Cn <
f < Cwm} by solving the linear problem

oF J
(2.23) (%(q, Jq)QX)X - 3Q-Q=-D, xean

(2.2b) QO)=p, Q) =p

with the constant]; defined by solving the current-voltage relationship (1.%8%h
(g, Jg) in place of i). Namely, it is given by

2
(2.3) Jy = zéb{/ol q ltdx+ \/(fol q-! dx) +2Cp(pr % — ,0|_2)]

-1
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due to the assumption (2.1b) for the case< p,. Now, we show that the mapping
T is well-defined. Estimating (2.3) by using the assumptiori)(2we see that there
exists a certain constaittsuch that

oF

(2.4) W

(qv Jq) 26> 0

The estimate (2.4) implies the paig,(J;) satisfies the subsonic condition (1.8a). We
have from (2.1a) that

9F
(2.5) [Jql, SU%%(q, Jg)| =C,

XeQ2

where C is a certain positive constant independentqof The above estimates (2.4)
and (2.5) mean that the equation (2.2a) is elliptic. Henge,applying the standard
theory for the linear elliptic equations, we see that thebfmm (2.2) has a unique so-
lution Q € B?(R2). Moreover, we have the estimat€, < Q < Cy by the maximal
principle for the elliptic equation (2.2a). Thus, we haversghat the mapping is
well-defined.

Then we show the estimate by the standard energy method

(2.6) Qxll < Cy,

where C; is a certain constant depending onp;, o and D, but independent of.
In fact, from (2.2a) we have the equation

@.7) {%(x +A)x} - 230+ A=+ A= D,
AX) =p(l=Xx)+pX, x=Q—A

Multiply (2.7) by x, integrate the resultant equality over (0, 1) and then edénthe
resultant integration. These procedures yield the desstidhate (2.6). For the details
of the derivation of (2.6), see [11].

Letting T; be the restriction off on W; :={f € W; || fx|| < Cy}, we see from (2.6)
that the restrictionT; is a mapping oW, into itself. NamelyT;: Wy — W;. Moreover,
the straight forward computation shows that the mappings continuous. Ifg € Wy,
then we have the estimate

(2.8) | Quxll < Ca,

whereC, is a certain constant depending onp;, o and D, but independent of.
In fact, multiplying (2.7) by xxx and integrating the result over (0, 1), we have the
estimate (2.8) (see [11] for the details).
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The image of the mappind, i.e., T1(Wy), is contained in the sei\, := {f €
B?(Q2) N Wy; || fxxll < C2}, which is a compact convex subset (). Moreover, let
T, be a restriction off; on W,. Then, T, is a continuous mapping oV, into itself.
Consequently, we see that there exists a fixed-ppirtT3(0) € W, by the Schauder
fixed-point theorem (see Theorem 11.1 in [6] for example).pdently, the function
o is a solution to the scalar equation (1.18) with the boundfata (1.14).

We construct the solution to (1.16), (1.14) and (1.15) frdva & as follows. De-
fine a constantf := J; by (2.3) and then define a functiop by the formula (1.20),
i.e., ¢ := ®[p]. Finally, it is a straight forward computation to confirmath(s, j, ¢) €
B?(Q) is a desired solution to the stationary problem (1.16)14)L.and (1.15). Fur-
thermore, we see thq'~t§ 0 holds if and only ifCy § 0 due to (2.3). Thus, the proof
is completed. Ul

The above lemma ensures the existence of the stationaryiosoluln order to
show its uniqueness, we need an additional assumption (seenk 2.3). We obtain
several estimates for the stationary solution in the nextnia before discussing the
unigueness.

Lemma 2.2. Let(3, j, $) be a stationary solution i82(S) to the problent(1.16),
(1.14) and (1.15) satisfying the conditior{1.8). Then the solutior(g, j, ¢) verifies the
estimates

(2.9) Cm =<4 <Cu,
(2.10) Bl2 < Cwi + ér,
~ = —y+l, _ —
(@11 171= Ju = Cu(Ky Ty o2 = o721 + Col),
—2 — _

(2.12) 1y lo < SmICM(Cu * ) + Ju)

. Pxlo = K Eyﬂ 7 ,

V m - ™M
ol =1\ ~ —=2 , . — _

(213) Il < (X0 1)Cy +2J3Cro )15x13+ Cu(13lo + Cw)(Cw +¢r)

* XX = — .

KyCr):l— 3

Moreovery for an arbitrary o, there exists a positive constast such that if § < 8,
then the stationary solution satisfies the estimates in thilét space

(2.14) (B, )12 = C,

(2.15) Gl =

where C is a positive constant independentopfand ¢ .

Proof. Applying the maximum principle to the elliptic eqioat (1.18) yields the
estimate (2.9), since the stationary solution satisfiesthesonic condition (1.8a). Note
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that ¢ is given by the formula (1.20) or equivalently

1,1 1,1
(2.16) &(x):/f (/S—D)(z)dzdy+¢rx—</0/ (5—D)(z)dzdy)(1—x).
XJy y

By estimating the formula (1.20) for € [0, 1/2] and the formul (2.16) fox € (1/2, 1],
we obtain the estimate (2.10) due to the estimate (2.9) amdssumption (1.3). Ow-
ing to the subsonic condition (1.8a) and the estimate (21#), inequality@}j p'(Cw) —
i2> 52p/(5) — |2 > 0 holds. Namelyj? < K;/C,\,I 1, which yields the estimate (2.11)
with the aid of the current-voltage relationship (1.19).eTéstimates (2.12) and (2.13)
immediately follow from the equation (1.16b) and the estasg2.9), (2.10) and (2.11).
The estimate (2.14) apparently follows from (2.9), (2.1@)12) and (2.13). The straight
forward computation with (2.11), (2.12) and (2.13) alsoldse(2.15). ]

Even though Lemma 2.1 shows the existence of a stationawfi@o| the stronger
assumption than in Lemma 2.1 is necessary for its uniqueness

Lemma 2.3. Suppose that the doping profile and the boundary datd4) and
(1.15) satisfy (1.3), (1.5)and (1.6) as well as

(2.17) yKTL™ > 32 +2C\u(Cu + ¢ ) du.

If the solution (g, |, #) to the stationary problen{1.16), (1.14)and (1.15) exists in
B?(Q) and satisfieq1.8), then the solution is unique

Proof. Let (1, 1, $1) and (G2, j2, ¢>2) be solutlons to the stationary problem
(1 16), (1.14) and (1 15). We can assume< j, without loss of generallty Since
(1 — $2)(0) = (p1 — $2)(1) = 0, the mean value theorem shows that € ¢2)x(x1) = 0
holds for a certainx; € [0, 1]. Thus, we may assume without loss of generality that
(1 — P2)x attains the nonnegative maximum at a certgjre [0, 1].

We show that the maximum ofp{ — @)y is zero by the contradiction. Firstly,
suppose thatd(; — ¢32) (Xo) > 0 with 0 < xo < 1. Then it holds thatd; — ¢2)x(Xo) > O,
(P1— p2)(X0) = (@1 — ¢2)xx(Xo) 0 and @7 — 2)x(Xo) = (¢1— P2)xx(Xo) < 0. Substitute
(P1, ] 1,41) and (02, ]2, $2) in (1.13b) and then take the difference of these two restilta
qualities to see that the following inequality holds>at

~ i
(218) (11— j~2)<1—(i~1+ J'Nz)%) (p(Pl) 72 )(Pl_pZ)x = p1(d1 — d2)x-
1

Combining the corlditio~n (2.12) yvith the estimates (2.1~Jd (92110) yields the inequality
PP (P1) > prgi(j1 + J2) — J1J2, which shows 1— (j1 + j2)f1x/p% > O with the
aid of the condition (1.8) and the equation (1.16b). Henbe, left hand side of the
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equation (2.18) is non-positive. On the other hand, thetrigind side of the equa-
tion (2.18) is positive. This is a contradiction.

Hence, the remained possibility is that (— $.)y attains the positive maximum at
the boundaryx = 0 or 1. We treat the former case that it attainscatO only since the
latter case is handled similarly. Ifo{ = 52)x(0) < 0, the similar observation as above
with (61— 02)(0) = 0 yields (2.18), which is contradiction. Ip{= 52)x(0) > 0, we see
from (61 — 02)(0) = 0 that there exists a positive constapntsuch that if O< X < §y,
then (@1 — 32)(x) > 0 holds. Thus ¢1 — $2)xx(X) = (51 — 52)(X) > 0 holds for 0<
X < &1, and then ¢, — ¢2)X(0) < (¢1 — ¢2)x(X) for 0 < x < &1, which also contradicts
to the assumption thatz)( ¢>2)x attains the positive maximum at the boundary 0.
So, the maximum of¢(1 —¢z)x must be zero.

Thus, we have shownd{ — ¢,)x < 0. Since §1 — ¢2)(0) = (b1 — ¢2)(1) = 0
$1 = ¢». Owing to the equation (1.16c), we spg = j,. Since (2.18) holds for an
arbitrary xo € (0, 1), we havej; = j,. The proof is completed. ]

Consequently, Lemma 1.1 holds apparently from Lemmas 2dlL 2a8 since the
smallness off implies all assumptions in Lammas 2.1 and 2.3 hold.

2.2. Time local solution to non-stationary problem. This subsection is devoted
to the discussion on the unique existence of the solutioallpén time to the initial
boundary value problem. The existence of the time local tewiuis proved by the
similar method as in [7] and [8] with using the standard itera method.

Lemma 2.4. Suppose the initial datgpo, Up) € H3(R2) and the boundary data
o, or and ¢, satisfy(1.9), (1.5), (1.6)and (1.7). Then there exists a constant ¥ 0
such that the initial boundary value proble¢h.1), (1.4), (1.5)and (1.6) has a unique
solution (p, u, ¢)(t, X) € X2([0, T1]) satisfying the conditior{1.8).

In order to define the successive approximation sequencesdiving the prob-
lem (1.11), (1.4), (1.5) and (1.6), we study the linearizgdtem for the unknown

(. J):
(2.19a) pi+ ix =0,

2
(2.19b) (p(,o) 2 )/Ox +21Jx Pdx — |,

with the initial data (1.4) and the boundary data (1.5), whigre functiong in (2.19b)
is defined by (1.12), i.e¢p = ®(p). The functions g, j) in the coefficients in (2.19)
are supposed satisfy

(2.20) (0, 1) € X2([0, T]), - (0, 1)(0, %) = (00, o),
(2.21) po(t, X) > m, (p’(,o) — j)—z)(t, x) >k for (t,x)e€]0, T] x L,
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(2.22) (o, DOz + 1ot J)MN2+ (o, ju)OI =M for t [0, T],

whereT, m, k and M are positive numbers. We denote Byg(T; m, k, M) the set of
functions f, j) satisfying (2.20), (2.21) and (2.22). Hereafter we abiatev
Xo(T; m, k, M) by X,(-) without confusion. Due to (1.12),

¢ € CX([0, T]; HAR)), lldlgt)lla<M for i=0,1,2, tel0,T]

Then the next lemma shows that for suitably chosen consfents), k and M, the
set X,( ) is invariant under the mapping(j) — (o, f) defined by solving the prob-
lem (2.19), (1.12), (1.4) and (1.5). The solvability of thisear problem is discussed
in Appendix. Then we have the next lemma. Since it is provedheysimilar method
as in [7, 8], we omit the details.

Lemma 2.5. Suppose that the initial datdoo, jo) € H?(X) and the boundary
data py and p; satisfy (1.9) and (1.5). In addition, assume the compatibility condi-
tions (1.7) hold. Then there exist positive constants M, k and M with the following
property. If (o, j) € Xz(-), then the problem(2.19), (1.12), (1.4)and (1.6) admits a
unique solution(p, f)(x, t) in the same set X -).

Using above lemma, we can prove Lemma 2.4.

Proof of Lemma 2.4. We define the successive approximatiqnesee{(p", j")}52,
by (0° j° = (0o, jo) and

2.23a o+ jml =,
t X
ey i (PO - (£>Z)p“ﬂ v2lljmas prgn o
. t ,On X pn X X !
(2.23c) 9" = @[p"]

with the initial and the boundary conditions

(2.24) (0™, i™H)(0, %) = (po, jo)(X),
(2.25) P"HE 0) =, p™HE, 1) =py
forn=0,1,..., where® in (2.23c) is defined by (1.12). By virtue of Lemma 2.5,

the sequencé(p", j™)} is well defined and satisfiep, j") € X2(-). Lemma 2.5 also
implies that the estimate

(o™, IOz + 1o, IO+ I(eg, DO < M

holds fort € [0, T]. Moreover, applying the standard energy estimate for the li
ear symmetric hyperbolic system satisfied by the differege®® — p", j™! — |,
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we see that{(p", j")} is the Cauchy sequence #;([0, T]). Consequently, there ex-
ists a function f, j) € X1([0, T]) such that p", j") — (p, j) strongly in X1([0, T])

asn — oo. Moreover, it holds 4, j) € X,([0, T]) by the standard theory for the
hyperbolic equations (see [15] for example). For the fumcth thus obtained, de-
fine ¢ := ®[p] as (1.12). It is easy to see thap,(j, ¢) is the desired solution to
the problem (1.11), (1.4), (1.5) and (1.6) as well as satisfile8). Thus the proof
of Lemma 2.4 is completed. Ul

3. A priori estimate

3.1. Preliminary computation. In order to prove the stability of the stationary
solution in Theorem 1.2, we regard the solutign , ¢) as a perturbation from the
stationary solution 4,70, ¢). Thus, we introduce new unknown functions as

U(t, x) = o, X) = (¥, n(t, x) = ut, x) = G(x), ot X) = o(t, X) — G(X).
Multiplying (1.1b) by 1/p and using the equation (1.1a), we have
(3.1) Ut +uuy + (h(p))x = ¢x — u.
Similarly, we have from (1.13b) that
(3.2) Gilix + (h(7))x = ¢« — T

Subtracting (1.13a) from (1.1a), (3.2) from (3.1) and (t)1Bom (1.1c), respectively,
we obtain the equations for the perturbatiah, ¢, ) as

(3.32) Y +{(p +¥)(l+n) — pll =0,

1
(3-3b) U (Chy n)? — G2y + {h(5 +¥) — h(P)lx — wx +n =0,
(3.3¢) wxx = Y.

The initial and the boundary conditions to the system (318 @derived from (1.4),
(1.5), (1.6), (1.14) and (1.15) as

(3.4) (X, 0) =vo(x) := po(x) — A(X), an(x, 0) =no(X) := Uo(x) — T(X),

(3.5) v(t, 0) =y(t, 1) =0,

(3.6) o(t, 0) =w(t, 1) = 0.

Since ¢ @, ¢) € X2([0, T]) and » satisfies (3.3c), the local existence of the solution
(¥, n, ®) to the initial boundary value problem (3.3), (3.4), (3.5)d43.6) follows from
Lemmas 1.1 and 2.4.
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Corollary 3.1. Suppose that the initial datéyg, 7o) belongs to H(2) and (5 +
Yo, U + ng) satisfies(1.9). Then there exists a constant + 0, such that the ini-
tial boundary value problen{3.3), (3.4), (3.5)and (3.6) has a unique local solution
(¥, 1, ) € X5([0, T2]) x X2([0, To]) x X5([0, T2]) with the property thai(5 + vy, T+ n)
satisfies(1.8).

Owing to Corollary 3.1, it suffices to derive an a priori estbm (3.7) in order to
show the existence of the solution globally in time.

Proposition 3.2. Let (¥, n, w)(t, X) € X2([0, T]) x X2([0, T]) x X3([0, T]) be a

solution to(3.3), (3.4), (3.5)and (3.6). Then there exists a positive constasgtsuch
that if N(T) + 38 < €, then the following estimate holds foret[0, T].

t
@7 W, @)+ llo))3 + fo I, n)(@)I5+ ()l dr < Cl@, nNO)I5,

where C is a positive constant independent of T

The remainder of the present paper is devoted to showingriifieron estimate (3.7).
To this purpose, it is convenient to use notations

t
N(t) = sup (0, (@)l M2(t) = /0 @)+ k()] de.

O<rt<t

3.2. Basic estimate. This subsection is devoted to the derivation of the basic
estimate. First, we define an ener§yas

1, r 1,

(3:8) E=pu?+ | h(g)dé + ()",
1
Using the equality (3.1), we see that the eneE\satisfies the equation
1
(3.9) E + pu? = _E{Pu}xuz — puluy — {h(p)pu}x + {pud}x + {Pxtd}x.
In order to show the basic estimate, we define the energy toras
1 o w1 ~ - ° -
(310) €:=2pu—0Y+W(p, /) + (@~ P> (o, p) = / h(§) — h(7) dé.
P

Notice that€ is equivalent to (v, n,wx)|? if |(¥,n,wx)| < ¢, since¥(p, p) is equivalent
to |¥|%. Namely, there exist positive constaris and C; such that

(3.11) al(y, n, )2 < € < Cil(¥, 1, wy)I?
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if |(¢, n, wx)| <c. Multiply the equation (3.3b) byu — gii. Apply the integration by
parts with respect té4 and x to the first and the second terms of the left hand side,
respectively. Moreover, after integrating the third termtloé left hand by parts with
respect tox, substitute the equation (3.3b) in the resultant. Rewkhitefourth term by
similar method with using (3.3c). These computations yetdequation for the energy
form &:

(3.12a) E+pn? = Ry + Ry,
(3.12b) Ry = wax +w(pg — pd) — {h(p) — h(P)}(pu — 5T) + {h(p) — h(F)}¥,

1
Ry = _{E(uz — P)(ou— ﬁﬂ)} — Y+ (pu — F)end
(3.120) ) x
+ {5(“2 ) — o+ n}wa — {h(o) - NP (W .

Applying the Sobolev inequality ok, with the estimates (2.14) and (2.15), we have
the following estimate:

(3.13) IRe| < CIN(T) + 8)I(¥, ¥, 11, 1xs @)%

We show Lemma 3.3 to drive the basic estimate.

Lemma 3.3. Suppose the same assumptions aRrioposition 3.2hold. Then the
following estimates hold for & [0, T].

(3.14) 9l w13 < Claly ()2 for i=0,1,2,
(3.15) l{o®)IZ < Clajy@I° for i=0,1,2,
(3.16) loxe@)II* < C(N(T) +8) 1y @)1 + Clin)I%,

where C is a positive constant independent af T

Proof. The estimate (3.14) follows easily from (3.3c), [3a®d the Poincaré in-
equality. Applying the Sobolev inequality on the estima®l14), we have the esti-
mate (3.15). Substituting (3.3c) in (3.3a) yields the eiydloy; +(o+y)(l+n)—pl}x =
0. Thus, a functiork(t) := wy + (0 + ¥)(U +n) — 5l is independent ok. Hence, we
obtain the following inequality from the boundary conditiax (t, 0) = w(t, 1) = 0.

1
(3.17) /O (5 +9)(@+n) — 501 — (x)? dx = K3(0) = 0.

The estimate (3.16) follows easily from the inequality {3,1the estimates (2.14) and
(2.15) and the assumptioN(T) +§ < . ]
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Next, we prove Lemma 3.4, which gives the basic estimate.

Lemma 3.4. Suppose the same assumptions asPioposition 3.2hold. Then
there exists a positive constaag such that if NT) +§ < ¢, then the following esti-
mate holds for te [0, T].

t
(3.18) lI(¥, m, @))%+ /O (¥, n,@)(@)117d7 < Cll(¥, 0, 0x)O)I*+C(N(T)+8)M*(t),
where C is a positive constant independent of T

Proof. First, integrating (3.12a) over [J,x 2 and substituting the estimate (3.13)
to handle the integration oR,, we have

1 t pl 1 t pl
(3.19a) / E(t,x)dx+// ﬁnzdxdr:/ £(O, x)dx+// R, dxdr
0 0Jo 0 0Jo

1 t p1
(3.19b) 5/0 E(O,x)dx+C(N(T)+8)(M2(t)+/O/O w2+n2+(a)x)2dxdr>

sincefo1 Rix dx = 0 owing to the boundary conditions (3.5) and (3.6). Multipty(3.3b)

by wy, integrating the resultant equality over [,x 2, applying the integration by
parts, and then using the equation (3.3c) and the boundamgitamn (3.5), we ob-
tain that

1 t p1
/ (—nox)(t, X) dx + / / (h(5 + ) — h(B) + (ax)? dxcie
(3.20a) 0 00

1 tpl
1
= [ tonond @) dxcr [ = na+ 520+ 1) dxc
0 0J0

1 t el
< [P+ @0 dxr [ [ o+ S dxar
(3.20b) 0 00

+C(N(T) + 8)<M2(t) + /Otfol U2+ (wy)? dxdr).

In deriving the above inequality, we have also used the Schwaad the Sobolev in-
equalities as well as the estimates (2.14), (2.15), (3.h8)(&8.16). Multiply (3.20) by
a, wWhereo is a positive constant to determined, and then add the esdgutequality
to (3.19). Then use the inequality-nwy| < n? + (wyx)? and takex and N(T) +§ are
sufficiently small. These procedures vyield the desiredregg (3.18). ]

3.3. Higher order estimates. This subsection is devoted to the derivation of the
higher order estimates. It is necessary to justify theseptations by the discussion
using the mollifier with respect to time variabtesince the regularity of the solution
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(¥, n) constructed in Corollary 3.1 is not enough. However we dhig discussion as
it is a well known argument. In the following computationse wifferentiate the equa-
tions with respect ta to make use of the equalities] ¢, 3} w)(t, 0) = 3} ¥, 3} w)(t, 1) =
0 fori =0, 1, 2. Thus, it is convenient to use a notation

i
AZE) =) 1@, )1 for =1, 2.
j=0
Differentiating (3.3b) with respect to, we have the following equation
(821a)  m+ @+ manx +(N(F+Y)YIx —dx+dn=F for i=1,2,
(3.21b) Foo=—@+n)n, Fai= =0+ n)xme — 2nenxe — (W' (5 +9)())x.
The absolute values df; and F, are estimated as

(3.22) |F1l = C(N(T) +8)Imel,  [F2l = C(N(T) +8)(Imeel + x| + [¥x ),

whereC is a positive constant independentf In deriving (3.22), we have also used
the estimates (2.14) and (2.15) and the following ineqgalit

(3.23) [Yt(®)lo + In(t)lo = CN(T),

whereC is a positive constant independent™f In fact, we see that/, n) € X,([0, T])
satisfies (3.23) by applying the Sobolev inequality on thaagigns (3.3a) and (3.3b)
with using the estimates (2.14) and (2.15). Next, diffdegintg (3.3a) with respect to
t, we have

{(B+ )0 nhx = =0y — @+ )3 Y + Gy
= —dl ot — @+ n)d Y +G; for i=0,1,2,
(8.24b) Gg = —Uxy + ¥y, G1:=—(U+n)x¥r, Gaz:=—(0+n)x¥ — 20«

(3.24a)

The estimates (2.14), (2.15) and (3.23) give that

IGol = C(N(T) +8)(Inl + 1¥1), [Ga| = C(N(T) +8)[¥nl,
G2l = C(N(T) +8)(Ite] + Imex| + [Yex),

whereC is a positive constant independent Bf

Lemma 3.5. Suppose the same assumptions asPioposition 3.2hold. Then
there exists a positive constaag such that if NT) +38 < ¢, then the following esti-
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mate holds for t [0, T] and i=1, 2

13w, 8 e, B wx) (I + / I3 v, 8 n, 8 wy)(7)]I* dt
(3.25) 0

<o+ AL ).
where C is a positive constant independent af T
Proof. The estimate
(3.26) I8t~ @17 + 18, k@17 + 1805 < CAXY) for i=1,2

holds from the smallness dfi(T) +§ and the equations (3.3), (3.21a) and (3.24a) for
i =1. In deriving (3.26), we have also used the estimates (2ahd (2.15). Multi-
ply (3.21a) by p™+ w)ati‘ln for i =1, 2 and integrate the resultant equality o¥&rto
obtain that

(3.27)

1 1
/ {og e+ (@+n)aimc+oym}(B+¥)o ' dX+/ (N (B+¥)o ¥ — 0 wlx(B+v)a 0 dx
0 0
1 .
= [ R tnox
0
We rewrite the first term on the left hand side of (3.27) by g the integration by

parts with respect té as

(3.28)
(the first term)

d 1. o 1 o
= 5 | vl dx— [ G+ ol aln dx

d . . L 1 ) A
+a/0 (8 +¥)(@+n)d " nd; 177xdx—/0 (5 + ¥)(@ +n)dl~In}di "Ly dx
d

e R
dt Jo 2 v o 27N R

Using the boundary conditiond v/ (t, 0) =3} v (t, 1) =8 w(t, 0) =3/ w(t, 1) = 0 and ap-
plying the integration by parts with respect xo we rewrite the second term on the
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left hand side of (3.27) as

(the second term)

=_ /0 (5 + )0 Il (3 + ¥)al ¥ — 0w} dx
(3.29) 1 ) . )
. /o NG5+ 0)@0)? + (5 + Y@+ maiwal s — W (G + ¥)Gi_1l  dx
1
+ / (3} wy)? — (T + )3} wd ~ My + Gi 10} w dX,
0

where we have also used the equation (3.24a).
Substitute the equalities (3.28) and (3.29) in the equdBt27) and then integrate
the resultant equality over (0). The result is

10t + /O /o W (5 + )3 9) + (3 wn)? dxclr
t p1

| @iy axe 100+ [ 30 dr,
0

0J0

. 1 S N . . 1 .
(3:300) 11(t) := /0 (7 + w)(a: 1ot + @+ n)a;~nd; "+ é(a;-ln)z) dx,

(3.30a)

IO = f (5 + 93 ndl " Lie + Y (8 + )3l "l "Ly + Yiedind, "t dx
0

+ / @+ m)(5 + ) nanx — W5+ )@+ n)al vaj 1y dx
(3.30c) 0

1 . . . .
+ [ G )G a8ty + @ el s+ G st d
0
11 ) )
o [ Su e G R dx

Applying the Schwarz and the Sobolev inequalities, we eattinthe first term on the
left-hand side of the equality (3.30a) as

(3.31) O < ell@ln, Bl w) )12 +Ce A2 4(t),

where we have also used the estimates (2.14), (2.15) anfl) (82well as the small-
ness assumptiolN(T) + 6§ < €. In (3.31), € is an arbitrary positive constant ari}
is a constant depending only en Substitutet =0 ande = 1 in the estimate (3.31) to
obtain that

(3.32) 1120) < C A0).
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Moreover, apply the Schwarz and the Sobolev inequalitieshéofirst term of J*(t)
with using the estimates (2.14), (2.15), (3.23) and (3.26)all as the smallness as-
sumptionN(T) + 8 < ¢ to obtain that

fo (B + ¥)3 " nd "tk dx| < Cine(®)lo 1(5 + ¥)(E)lo 13 0, 8~ ne)(t) 112

< C(N(T) + §)A%(t) + C AZ_y(1).

The other terms inJl(i)(t) are estimated by the similar method singé + n)(t)|; <
C(N(T) +4). Consequently, we have

(3.33) 130@)] < C(N(T) + 8)A2(t) + C A2, (1).

Substituting the estimates (3.31), (3.32) and (3.33) indhaation (3.30a) yields the
inequality

(3.34)

) ) t pl ) } t pl )
el @, D)2+ /0 /0 /(5 +1)(0] )2+ (9] wox)? dxdlr — /O fo (5+¥)(@in)? dxcr
=c.a,m+c [ AL dr+C(A-2(0)+(N(T)+8) | R) dr).
0 0

Next, multiply (3.21a) by,@f‘rw)at‘n fori =1, 2 and integrate the resultant equality
over 2 to obtain that

1 o 1 o 1 )
/ (7 + ) nal e dx+ / ({i+ m)(5 + 9)indl ny dx + / (5 + )3l n)? dx
0 0 0
1 . ) .
(335) + /0 (5 + )N (G +9)oiy — Blwhdln dx

t p1
:// (5 +y)Fdlndxde.
0J0

We rewrite the first term on the left-hand side of the equal@y85) by applying the
integration by parts with respect toas

; d (1 P32 t1 i 32
(3.36) (the first term)=cE/O 5(,0+1p)(8t n) dx—[0 Ewt(atn) dx.

Use the boundary conditiorf v (t, 0) =8} v (t, 1) = 0 and apply the integration by parts
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to rewrite the second term on the left-hand side of the etyuédi.35) as
(the second term)

:—/0 (G -+ )i {8} Y + @+ )2l Y + (5 + Y )dln — Gi) dx

d [t . 1 o
= /o —(@+mn)ond v dX+/O {(@+m)o oy dx
(3.37) +f0 (@ + )2 mxd ¥ — (G +n)(B + Y)x(@n)” + (@ + n)Gid{n dx
1

d o 1 o

:a/O —(fl+'7)3t'n8t'wdx+/0 (@ + )y + 1) dinal  dx
1 . -

—fo (@ +n)(B + ¥)x(8n)* — (@+n)Gidn dx

1 .
¥ / @i+ @+ malm) @+ Mty dx,
0

Note that we have used the equation (3.24a) too in deriviaditht equality above. By
using the boundary conditior® v/(t, 0) =} ¥(t, 1) = 0 and applying the integration by
parts with respect tx, we rewrite the last term on the right-hand side of (3.37) as

fo @+ )@+ @+ n)al )l v dx
. / @+ (=N (5 + )0l )y + o — Bl + Fi ol dx
(3.38) 01
1 . X
= /0 SING + )@+ LYY — 1G5+ y)(5 + Y@+ n)(E v ) dx

1
+/ (@ +n) (Bl oy — d8in+ F)aly dx
0

where we have used the equation (3.21a) to obtain the firstligqu
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The last term on the left-hand side of the equality (3.35kisritten by the bound-
ary conditionsd v (t, 0) =l ¥ (t, 1) =3 w(t, 0) =l w(t, 1) = 0 and the integration by
parts as

(the last term)

= - /O 1{(5 + )3 mx{N'(5 + )3 ¥ — 9w} dx

= /0 1 (5 + ) oy + 0 (5 +y)(@ + n)ag yed ¥ — (5 +¥)Gi oy dx
339) 7 /01 — 0w wxxt = (O + 0D Y + Gidh o dX

d 11 - i t1 1"(~ i
:—/0 Eh’(p+w)(atw)2o|x_/0 SN+ v L) dx

dt
! 1 = ~ i 2 I~ i
o [ =306+ @) =G+ Gl dx
d ! 1 i 2 ! ~ i i i
+—/ —(0{ wy) dx+/ {(G+n)dw}xd ¥ + G o w dX,
dt Jo 2 0

where we have also used the equation (3.24a) again. Subdtite equalities (3.36),
(3.37), (3.38) and (3.39) in the equality (3.35) and integthe resultant equality over
(0, 1) to obtain that

(3.40a)
i t pl ) . t
9w+ [ [ G+ nain? =100+ [ @ e
(3.40b)
i 11 | . 1 . . 1. . o
19 = /O S+ VYN + NG + YA+ 53l — @+ ol ok dx,
(3.40¢)
) 11 ) 1 .
30 = [ Fin? + S0 v} u) dx
+ /0 GIN (5 + Y)Y — (0 + )3l v — Gidjw dx
+/0 (@1 + )5+ V)@ 0)? — (@ + )Gidlm — mdindl g + (5 + ¥)F iy dx
1 X R .
+ /0 (NGB + )5 + Pl y — 20+ n)dln) (@ + )ty dx

1 . . .
+/ @+ n){o{n — dwx — Fi}o v dx.
0
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The 4th term inlz(i)(t) is estimated, with the aid of the estimates (2.14) and §2ak5
@4 | [ =@ematvaae 0 ax| =N + o, A

Moreover Iz(i)(O) and Jz(i)(t) are estimated similarly as the estimation kﬂ‘)(O) and
IO(). Thus the estimates

(3.42) 190) < CA20), 13D(t)] < CLN(T) +8)AX(t) + AZ,(t))

hold. Finally substituting (3.41) and (3.42) in (3.40a) egvthe inequality
(3.43)

% fo ((B+v)@n*+N (5 +9)(0 )+ (0 @)}t X) dx= CIN(T)+8)II (3 v, &) ()]
t L )
. /O /0 (5+v)(0in)? dxdr
t t
50/ Aiz_l(t)dr+C<Ai2(0)+(N(T)+8)/ A,-z(t)dr>.
0 0

Multiplying (3.43) by 2, adding the resulting inequality t8.84) and then letting both
N(T) + 8 ande be small enough, we arrive at the desired estimate (3.25). ]

Using the estimate (3.25) thus obtained, we complete thef mbProposition 3.2.

Proof of Proposition 3.2. Using the smallned¢T) +§, the equations (3.3a) and
(3.3b), we have the estimate

(3.44) cl(w, MMIZ < AXt) < Cli(y, HOIZ for i=1,2.
Moreover, the estimate

(3.45) lot)ls < Clly(t)l2

holds from (3.3c). Hence we obtain the a priori estimate )(®y combining (3.18)
with (3.25) and using the smallness Nf(T) +§ again. ]

3.4. Decay estimate. Since the existence of the time global solution to the prob-
lem (1.1), (1.4), (1.5) and (1.6) is proved owing to the coméition argument on Corol-
lary 3.1 and Proposition 3.2, it is sufficient to show decatineste (1.22) in order to
complete of the proof of Theorem 1.2.

Proof of Theorem 1.2. Multiply (3.20a) bg, (3.30a) withi = 1 by g2, (3.40a)
with i = 1 by 282, (3.30a) withi = 2 by g2, (3.40a) withi = 2 by 28%, where 8
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is a positive constant to the determined. Then sum up (3.48d) these results to
obtain that

(3.46a) |§(t)+/t F(r)dr = E(0) for te[0, c0),
0

(3.460b) E():= f " = Bl dx+ BP0 + 200) + 52120 + 2120),
0
(3.46¢)
. 1
£ = /O Fi? + BUN(E) — NV + (@)?) dx

2 _ _ :
+ Y pi /o (B + )@ ) + (B + )3 ¥)? + (3 wy)? dx
i=1

1 1 . 2 . ; .
- /O Ry + ,B<770)x — Nwx + E(ZUU + nz)xwx> dx — Z ﬂ|+1(‘]1(l) + 2J2(|))(t)-

i=1

Now we takeB and N(T) +§ sufficiently small in this order so that @ N(T) +§ <«
B3 <« B2 « B <« 1. This procedure yields that both quantiti€st) and F(t) are
equivalent tol|(¥, n, ¥, nt, Vi, n)(t)12. HenceE(t) and F(t) are also equivalent to
(¥, n)(t)II3 due to (3.44). These facts are confirmed by applying the Schesad the
Sobolev inequalities as well as the estimates (2.14) (2.@%16), (3.23) and (3.26).

Since E(t) and F(t) are equivalent, there exists a certain positive constastich
that « E(t) < F(t). Then differentiate (3.46a) and substitute this inedyah the re-
sultant inequality to obtain the ordinary differential quality

(3.47) %E(t)+al§(t)§0 for tel0, ).

As the quantityE(t) is also equivalent tad|(v, n)(t)||§, solving (3.47) yields that
(3.48) cl(w, (bl < E(t) < EQQ)e " < ClI(¥, n)(O)I3e ",

wherec and C are positive constants independenttofThe inequality (3.48) and the
elliptic estimate (3.45) yield the decay estimate (1.22pns2quently, the proof of The-
orem 1.2 is completed. ]

4. Appendix

In this section we discussed the solvability of the lineadiproblem (2.19), (1.12),
(1.4) and (1.5). For this purpose, we firstly study the systénaquations

()R (3) ()
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, , 12>
2 0 _ L
(41b) AO - ( p/(p) - # 0)’ Al - -2 <p (p) 102 ,
0 1 (r0-%) 2
p P

0 0

: : 0
4.1c B= , 2 2 , F= ( . )
(4.10) (—(p(p)—J—z) (%) ) (up+ i)
P/ x P/ x
with the initial and the boundary data

(4.2) v(0, X) = (po)x(X), w(0, X) = —(jo)x(X),
(4.3) w(t, 0) =w(t, 1) = 0.

Here, notice that the matrice&® and A! are symmetric.

The above initial boundary problem is derived from (2.19)f@ows. Differenti-
ating (2.19b) with respect t& and using the equation (2.19a), we see thapif ) c
X([0, T)) is a solution to the initial boundary value problem (2,19).12), (1.4) and
(1.5), and then(, w) = (px, pt) € X1([0, T]) is a solution to the initial boundary value
problem (4.1), (4.2) and (4.3). So, we consider the exigtaricolution ¢, w) to (4.1),
(4.2) and (4.3). After that, we construct the solution {J to (2.19), (1.12), (1.4)
and (1.5) from the, w).

In order to apply Theorem-Al in [16] to the symmetric lineopblem (4.1), (4.2)
and (4.3), we use approximation sequen¢Bg, C C%([0, T]; H?()) such thatB;
converges toB strongly in X4([0, T]) asi tends to infinity. Similarly take{F;}75, C
CY([0, T]; HX)) such thatF; — F strongly in C([0, T]; L3(R)). In addition, we
define a successive approximation sequeffce w‘)};’jo by solving

o () () ()

with the initial data (4.2) and the boundary data (4.3). Tbhévability of this sym-
metric liner problem (4.4), (4.2), (4.3) is ensured by ThkeorAl in [16]. For the
system (4.1), the following estimate holds from the energthod.

@', WMl + I, w)®I <C for telo, T],

whereC is a positive constant, independenticf 0, 1,.... Similarly, by applying the
Energy method on the equations faf £ v/, w' —w/) together with the above estimate,
we see that{(v', wi)}go is the Cauchy sequence ®;([0, T]). Hence, there exists a
certain function ¢, w) € X1([0, T]) such that ¢', w') — (v, w) strongly in%1([0, T]) as

i — oo. Moreover, we see from the standard argument thai] is a unique solution
to the initial boundary value problem (4.1), (4.2), (4.3).
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Next, we proceed to construct the solutiop, {) to the initial boundary value
problem (2.19), (1.12), (1.4) and (1.5). For this purposefing (o, J) by

(4.5a) o(t, x) = /X v(t, X)dx+ g,
0
j2

. T ) 2j . .
asy  ja.o= [ {-(F0 -1 )ur Duron - ife 0d+ o)
0 P P
(4.5¢) i(t, x) ::/ —w(t, X)dx + j(t, 0).
0

We show that 4/ ) € X2([0, T]) is a desired solution to the linearized problem (2.19),
(1.12), (1.4) and (1.5). Apparently, the equalitigs="v and g; = [; vidx = [ wxdx =

w = —Jjy hold from (4.1), (4.5) and (4.3). In addition, differentiay (4.5c) with re-
spect tot and using (4.1) and (4.5b), we have the equality

jl(t,x):/ox —wn(t, ) dx+ Ji(t, 0)

X 2 .
:/ {—(p/(p)—1—2>v+2_1w+¢xp—1} (t,X)dX
0 p P X

N
+ {—(p’(p) - #)w %wwxp _ j}(t, 0)
j2

“[-(Fo- L) Durouw- i
P P

g |
o I GG RS VR )
P P

where we have also used= —j, andv = p.. Thus, ¢, ) satisfies the equation (2.19).
Next, we confirm that 4,") satisfies initial condition (1.4). Actually, the equadi
p(0,X) = f pox(x)dx+p = po(x) and J(0,%) = f3' jox dx+jo(0) = jo(x) holds from (4.5),
(4.2) and the compatibility condition (1.7). Moreover, theubhdary condition (1.5)
holds, i.e.,p{t,0) =p and g(t, 1) =p;, due to (4.5a),0((t, 1) =w(t,1) =0 andp(0,1) =
po(1) = p,. Consequently, ;) is the solution to the linearized problem (2.19), (1.12),
(1.4) and (1.5).
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