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第1章

数学的準備

1.1 記法

本学位論文では, 記号を用いて説明を簡素化する場合がある. できる限り, そのページ

においても記号の説明はするものの, 理解を助けるものとして, 表記表を用いる.

記号 意味
RP P 次元実数空間

RN×P N × P 次元実数空間
x ∈ RP xは P 次元ベクトル (太字の小文字アルファベットはベクトル)

1P 全ての要素が 1の P 次元のベクトル
X ∈ RN×P XはN × P の行列 (ボールド体の大文字アルファベットは行列)

IP P 次元の単位行列
OP×M 全ての要素が 0の行列

x⊤, X⊤ ベクトル xの転置, および行列Xの転置行列
X−1 正則行列Xの逆行列

tr(X) 正方行列Xのトレース
rank(X) 行列Xのランク
det(X) 正方行列Xの行列式
[X,Y] 行列XとYからなるブロック行列
∥x∥0 ベクトル xの ℓ0(擬)ノルム
∥x∥1 ベクトル xの ℓ1ノルム
∥x∥2 ベクトル xの ℓ2(ユークリッド)ノルム
∥X∥F 行列Xのフロベニウスノルム
∥X∥1 行列Xの要素ごとの ℓ1ノルム
log 自然対数関数

N(µ,Σ) 平均ベクトルがµ, 分散共分散行列がΣの多変量正規分布
E[x] 確率変数 xの期待値

Var[x] 確率変数 xの分散
Cov[x, y] 確率変数 xと確率変数 yの共分散
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第 1章 数学的準備

1.2 線形代数と最小二乗法

1.2.1 ベクトルとユークリッドノルム

2次元ユークリッド空間上での点と点の距離を考えてみる. 3点 (2, 2), (−3, 1), (1,−2)

があるとし, 便宜上それぞれを点 1, 点 2, 点 3とする. これを図で表すと以下になる.

図 1.1: 3点の散布図

点 1と点 2の距離, そして点 1と点 3の距離はそれぞれ√
(2− (−3))2 + (2− 1)2 =

√
26 (1.1)√

(2− 1)2 + (2− (−2))2 =
√
17 (1.2)

となる. このことから, 点 2よりも点 3のほうが点 1に近いことがわかる.

実はこうした距離の概念は, 統計学やデータサイエンスにおいても重要である. 特に線

形代数に基づく多変量解析では必須といってもよい. そこで, まず図 1.1における 3点を

線形代数によって再解釈する.
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第 1章 数学的準備

線形代数において 3点はもはや点ではなくベクトルとして扱う. つまり

a = [2, 2]⊤

b = [−3, 1]⊤

c = [1,−2]⊤

のように, 要素が 2つあることから 2次元ベクトルとなる. つまり a, b, c ∈ R2. このとき

点間の距離 (1.1)式と (1.2)式はベクトルどうしの距離と解釈でき, それぞれ

∥a− b∥2 =
√

(a− b)⊤(a− b) =
√

[2− (−3), 2− 1]⊤[2− (−3), 2− 1] =
√
26

∥a− c∥2 =
√

(a− c)⊤(a− c) =
√
[2− 1, 2− (−2)]⊤[2− 1, 2− (−2)] =

√
17

となる. 二乗根が余計な計算になるため, 後述のようにベクトルのユークリッド距離は二

乗して計算することが一般的である.

図 1.1のように我々は 2次元あるいは 3次元の点を視覚的に捉えることはできるが, よ

り高次元の空間を認知することは難しい. しかし, ベクトルを用いることで 4次元以上の

点を表現することは可能である. 例えば 100次元のベクトル

x = [x1, x2, . . . , x100]
⊤

を考えれば, 数式の上では 100次元の世界を表現することができる.

2次元に限定せず, 次元を一般化したベクトルにも距離を定義することはできる. N 次

元ベクトル y, z ∈ RN のユークリッド距離の二乗は,

∥y − z∥22 = (y − z)⊤(y − z)

= y⊤y − y⊤z − z⊤y + z⊤z

= y⊤y − 2y⊤z + z⊤z (1.3)

で表すことができる. 最後の等式は内積の性質である (1.5)式を用いた. ユークリッド距離

はユークリッドノルム ∥x∥2 =
√
x⊤xに基づいている. ベクトルの演算に関しては線形代

数の書籍によって知ることができる. 和書では特に新井 (2006), 岩崎 ·吉田 (2006)が統計

学への応用を意識して書かれており読みやすい. 洋書ではBoyd & Vandenberghe(2018),

Gentle(2017), Harville(2008), Magnus & Neudecker(2007), Schott(2016)が統計学者に向

けて書かれている.
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第 1章 数学的準備

定義 1.1. ベクトルの内積

P 次元ベクトル yと zがあるとする (y, z ∈ RP ). このとき

y⊤x (1.4)

をベクトル yと zの内積と呼ぶ.

定理 1.1. 内積の可換性

y⊤x = x⊤y (1.5)

定義 1.2. ユークリッドノルム

ベクトル xの ℓ2ノルム (ユークリッドノルム)は, xと xの内積の二乗根, つまり

∥x∥2 =
√
x⊤x (1.6)

である.

定義 1.3. ユークリッド距離

P 次元ベクトル yと zがあるとする. このとき yと zのユークリッド距離を

∥y − z∥2 =
√
(y − z)⊤(y − z) (1.7)

と定義する. ベクトル間のユークリッド距離は, 二つのベクトルの差ベクトル

e = y − z (1.8)

のユークリッドノルム

∥e∥2 =
√
e⊤e =

√
(y − z)⊤(y − z) (1.9)

と捉えることもできる.
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第 1章 数学的準備

1.2.2 行列と多変量データ解析とフロベニウスノルム

行列

行列は, ベクトルをより一般化した概念として捉えることができる. N 行 × P 列の行

列Xは

X =


x11 x12 . . . x1P

x21 x22 . . . x2P

xN1 xNP

 =


x̃⊤
1

·

·

x̃⊤
N

 = [x̃1, . . . , x̃N ]
⊤ = [x1, . . . ,xP ]

のように縦だけでなく横にも要素が広がっており, 行ベクトル x̃nがN 個縦に連なってい

る, あるいは列ベクトルxpがP 個横に連なっていると解釈できる. また, ベクトルの要素

は xnと添え字が 1つであったが, 行列の要素は xnpと添え字が 2つであるという解釈も

可能である. 今後は添え字によって十分に判断できる場合, 行からベクトルを抽出した場

合でも xnと表記することとする.

ベクトルと行列は多変量データ解析の理解には欠かせない. 例えば 100人の生徒に 5教

科のテストを受けさせ採点したとしよう. これは 100 × 5の行列X ∈ R100×5によって表

現することができる. 生徒 1の英語が 86点, 数学が 57点とすれば

英語 数学 国語 理科 社会

生徒 1 86 57 71 82 91

生徒 2 81 86 88 75 69

. . .

生徒 100 59 43 62 62 41


のようにすることで, 得られたデータを行列で表現できる. さらに n行目のベクトルは生

徒 nの各教科の得点, 1列目のベクトルは各生徒の英語の得点, というようにベクトルも

重要な役割を果たす. 足立 ·村上 (2011)やAdachi(2016), ten Berge(1993)では, 線形代数

が多変量データ解析においてどのように使われているかを詳細に書いている. また行列の

リパラメトライズとしての固有値分解, 特異値分解の重要性も強調されている. 実際, 後

述のトレース最大化に関する ten Bergeの定理など, 特異値分解を用いた最適化は応用例

が多い.
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第 1章 数学的準備

定義 1.4. 固有値分解

対称行列 S ∈ RP×P があるとする. このとき

S = LDL⊤ (1.10)

のように Sをリパラメトライズすることが可能である. ここで, D ∈ RP×P は対角

要素が Sの固有値からなる対角行列である. 降順に固有値を配置することが一般的

である (d1 ≥ d2 ≥ · · · ≥ dP ). dP ≥ 0となる行列 Sを非負定値行列という. そして

L ∈ RP×P は各列が固有ベクトルからなる行列であり, 正規直交性を満たす. すな

わち

L⊤L = LL⊤ = IP (1.11)

定義 1.5. 特異値分解

任意のサイズの行列X ∈ RN×P があるとする. Xを

X = K∆L⊤ (1.12)

のようにリパラメトライズすることができる. ただし ∆ ∈ RP×P は対角要素が

Xの特異値からなる対角行列であり, 降順に特異値を配置することが一般的である

(d1 ≥ · · · ≥ dP ). K ∈ RN×P は正規直交性を満たす左特異行列であり, L ∈ RP×P は

正規直交性を満たす右特異行列である. つまり,

K⊤K = L⊤L = LL⊤ = IP (1.13)

である. ただし行列のサイズの問題から, K⊤ ̸= KであるためKK⊤ ̸= IN であるこ

とに注意する必要がある.

系 1.1. 行列X ∈ RN×P (P ≤ N)があり, その共分散行列X⊤Xが非負定値行列であ

るとする. このとき, Xを特異値分解をすると, 正規直交性と対角行列の性質から

X⊤X = L∆K⊤K∆L⊤

= L∆2L⊤ (1.14)

が成り立つ. ∆2 = Dとすれば, これは固有値分解の式 (1.10)式と一致する.
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第 1章 数学的準備

多変量データ解析 (回帰分析)

多変量データ解析の手法においては, ユークリッド距離も頻繁に見られる. たとえば重

回帰分析の場合を考える. 目的変数ベクトル yを説明変数によって近似するのが重回帰

分析だが, (1.3)式における zを z = Xβ, (ただしX ∈ RN×P ,β ∈ RP , P ≤ N)とリパラ

メトライズすると以下に書き換えられる.

f(β|y,X) = ∥y −Xβ∥22 = (y −Xβ)⊤(y −Xβ) (1.15)

(1.15)式におけるβは回帰分析における回帰係数ベクトルであり, 値の正負や大小によっ

て説明変数が目的変数に与える影響を表現できる.

回帰分析

∥y −Xβ∥22 :回帰分析の目的関数

y :各個体 n(n = 1, . . . , N)の予測したい変数

　からなるN × 1の目的変数ベクトル

X :各個体の P 個の説明変数からなるN × P の行列

β :各変数の重みを表現する P × 1の回帰係数ベクトル

回帰分析においてyとXは与えられており, 推定すべきパラメータはβのみである. こ

こでは目的関数 (1.15)式を最小化するような β, argminβf(β|y,X)を最適パラメータと

する. こうした最適化法は最小二乗法と呼ばれる.

具体的な最適化にはベクトルの偏微分 (Magnus & Neudecker, 2007)を用いて以下の方

程式を得る.

∂f(β|y,X)

∂β
=

∂

∂β
(y −Xβ)⊤(y −Xβ)

=
∂

∂β

(
y⊤y − y⊤Xβ − β⊤X⊤y + β⊤X⊤Xβ

)
=

∂

∂β

(
y⊤y − 2β⊤X⊤y + β⊤X⊤Xβ

)
= 2(−X⊤y +X⊤Xβ) = 0P (1.16)

(1.16)式の 3行目の等式には

y⊤Xβ = β⊤X⊤y (1.17)

10
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を用いた. これは y⊤Xβがベクトル yとXβの内積であることから, 内積の可換性 (1.5)

式より成り立つ. また 4行目の等式はベクトルに関する偏微分

∂β⊤X⊤y

∂β
= X⊤y (1.18)

と

∂β⊤X⊤Xβ

∂β
=
∂β⊤ (X⊤Xβ

)
∂β

+
∂
(
β⊤X⊤X

)
β

∂β

= 2X⊤Xβ (1.19)

より従う. よって最適な β̂は

X⊤Xβ̂ = X⊤y

β̂ =
(
X⊤X

)−1
X⊤y (1.20)

によって得られる. ここで, (X⊤X)−1は正方行列X⊤Xの逆行列である.

11
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定義 1.6. ベクトル偏微分

ベクトル x ∈ RP と行列A ∈ RN×P があるとする. このときAxの xについての偏

微分は

∂Ax

∂x
= A⊤ (1.21)

で与えられる. またベクトル x ∈ RP と行列B ∈ RP×N があるとして, x⊤Bの xに

ついての偏微分は

∂x⊤B

∂x
= B (1.22)

である.

定義 1.7. 逆行列

逆行列は行列の演算における逆数に対応する概念で, 正方行列X ∈ RP×P の逆行列

をX−1と書くと,

XX−1 = X−1X = IP

が成り立つ. ただし, 逆行列が成り立たない正方行列も存在し, その行列を非正則行

列や特異行列と呼ぶ. 正方行列の固有値が全て 0より上, つまり正定値のときは正則

行列である.

ここで, パラメータβの役割および目的関数最小化の意味を考えてみる. 簡単にするた

めに, 説明変数が 1変数のみの単回帰分析を例とする. つまり P = 1とする. さらに切片

も 0とすると, 目的関数 (1.16)式は

f(β|y,x) = ∥y − βx∥22 (1.23)

となる. P = 1であるから, x ∈ RN , β ∈ Rである. 具体例をあげて考察するため, 今

N = 100人の生徒の国語を説明変数, 英語の点数を目的変数としてそれらが既知とする.

図 1.2は縦軸を英語の点数, 横軸を国語の点数とし, それぞれ標準化したときの散布図で

ある. 回帰分析は目的変数を説明変数を用いて近似することを目的としているが, 図 1.2

においては縦軸である英語の得点を, 横軸である国語の得点を用いて近似することが目的

である. 単回帰において, 回帰係数はスカラー βであり, この値は図 1.3における直線の

12
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図 1.2: 各生徒の英語と国語の得点散布図 図 1.3: 得点散布図といくつかの直線

傾きを表している. しかし, 図 1.3のように様々な直線が存在可能であるため, 最適な直線

の傾き βを推定する必要がある. では, どのような基準に基づいて最適なパラメータを推

定すればよいだろうか. 今回は最小二乗法によって求めることとする. 最小二乗法の主な

枠組みは以下である.

まず, 得られたデータに対して何らかの仮説であるモデルを立てる. そしてそのデータ

とモデルとの間の誤差を最小化する. つまり

データ =モデル+誤差

としたときに誤差を最小化するようなパラメータを推定する. 実際は

誤差 =データ−モデル

であるから, データとモデルの距離を最小化する.

今回の例である単回帰では, データは英語の得点である y, モデルは回帰係数と国語の

得点の積 βxであるから,

∥y − βx∥22

が最小化すべき目的関数になる. 実際これは (1.23)式と一致する. 距離として計算の都合

13
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上からユークリッド距離を採用しているが, ユークリッドノルムの定義から

∥y − βx∥22 =
N∑

n=1

(yn − βxn)
2

であるため, 目的関数 (1.23)式は図 1.3における直線と各点との二乗誤差の総和とも考え

られる.

多変量データ解析 (主成分分析)

ユークリッド距離 (1.7)式はベクトルの距離として定義されたが, 今度は行列の距離を

導入する. N × P 次元の行列X,Y ∈ RN×P の距離を

∥X−Y∥2F = tr(X−Y)⊤(X−Y) (1.24)

と定義する. これはフロベニウスノルム ∥X∥F =
√
tr(X⊤X) =

√∑N
n=1

∑P
p=1 |xnp|2 に基

づいている.

ここで, (1.24)式をY = FA⊤(F ∈ RN×M ,A ∈ RP×M) とリパラメトライズする. さら

にAに列についての正規直交制約を加える. よってA⊤A = IM . このとき (1.24)式は

fPCA(F,A|X) = ∥X− FA⊤∥2F (1.25)

となる. これは主成分分析 (Jolliffe, 2006)の目的関数の 1つと考えることができる. 主成

分分析では, データ行列Xが与えられたときに主成分得点行列Fと主成分負荷量行列A

を推定する.

主成分分析

∥X− FA⊤∥2F :主成分分析の目的関数

F :各個体が主成分空間上での値を

　説明するN ×M の主成分得点行列

A :変数と主成分の関係を表す P ×M の主成分負荷行列

推定するパラメータが複数ある場合, 一度に推定することができない場合がある. こう

した場合は, 各パラメータを推定し収束したと判断するまで計算を続ける方法を取る. こ

れを交互最小二乗法 (森 ·黒田 ·足立, 2017)と呼ぶ.

14
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図 1.4: 交互最小二乗法の概要図

各パラメータを推定する際には, その他のパラメータは既知として計算する. あるパラ

メータを既知として扱うことを, そのパラメータを固定するともいう. 各パラメータを更

新することで目的関数が逐次減少していくことを単調減少と呼び, 交互最小二乗法はこの

単調減少性が保証されている. また, 交互最小二乗法のように収束するまでパラメータの

更新を繰り返す必要がある計算を, 反復計算と呼ぶことがある.

15
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定義 1.8. 行列のトレース

ある P × P の正方行列Xが与えられたとき, 各対角要素の総和

tr(X) =
P∑

p=1

xpp (1.26)

を行列Xのトレースと呼ぶ.

定理 1.2. トレースの性質

行列の積XYがあり, X ∈ RN×P ,Y ∈ RP×N とする. このとき,

tr(XY) = tr(YX) (1.27)

さらにXYのトレースと, XYの転置行列のトレースは等しい. よって

tr(XY) = tr((XY)⊤) = tr(Y⊤X⊤) (1.28)

系 1.2. トレースとしてのベクトル内積の解釈

P 次元ベクトルx,y ∈ RP の内積はx⊤yである. ここで, x⊤yを 1× 1の行列だと考

えると, 内積をトレースと捉えることができトレースの性質から

x⊤y = tr(x⊤y) = tr(yx⊤) (1.29)

が成り立つ.

定義 1.9. フロベニウスノルム

N × P の行列Xに対して,

∥X∥F =
√

tr(X⊤X) =

√√√√ N∑
n=1

P∑
p=1

|xnp|2 (1.30)

をXのフロベニウスノルムと呼ぶ.

16
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さて, 主成分分析のパラメータを交互最小二乗法によって推定してみる. まずAを固定

し, Fを更新する. Fの更新式は, 目的関数 fPCA(F|X,A)の最小化によって得られる. た

だしAは観測されていないが, 既知として与える必要があるため, 乱数によって初期値を

発生させる. ただしAには直交制約があるため, その制約を満たすように乱数を発生させ

ることに注意が必要がある.

ベクトル偏微分を用いる場合は, Fの n行を更新するために

fPCA(F|X,A) = ∥X− FA⊤∥2F

=
N∑

n=1

fPCA(fn|xn,A)

=
N∑

n=1

∥xn −Afn∥22 (1.31)

を最小化するような fnを求める. したがって方程式

∂fPCA(fn|xn,A)

∂fn

=
∂

∂fn

(
x⊤
nxn

)
− 2

∂

∂fn

(
x⊤Afn

)
+

∂

∂fn

(
f⊤
n A

⊤Afn

)
= −2A⊤xn + 2fn = 0M (1.32)

を得る. よって,

f̂n = A⊤xn (1.33)

となる. ただし (1.32)式では, A⊤A = IM を用いた.

ベクトル偏微分ではなく, トレースの偏微分を用いるとより簡潔に書くことができる.

方程式

∂

∂F
fPCA(F|X,A) =

∂

∂F
∥X− FA⊤∥2F

=
∂

∂F

{
tr(X⊤X)− 2tr(X⊤FA⊤) + tr(AF⊤FA⊤)

}
=

∂

∂F

{
−2tr(A⊤X⊤F) + tr(A⊤AF⊤F)

}
= −2XA+ 2F = 0M (1.34)

から, 行列形式の更新式

F̂ = XA (1.35)

17
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を得る. 4行目の等式は, トレース tr(A⊤X⊤F)のFについての偏微分

∂tr(A⊤X⊤F)

∂F
= XA (1.36)

およびトレース tr(F⊤F)のFについての偏微分

∂tr(F⊤F)

∂F
= 2F (1.37)

を用いている.

定義 1.10. トレースの偏微分

非対称行列X ∈ RN×P と行列Y ∈ RP×N があるとする. このとき tr(XY)のXにつ

いての偏微分は

∂tr(XY)

∂X
= Y⊤ (1.38)

で与えられる.

また, 行列Z ∈ RN×P があるとして

∂tr(X⊤Z)

∂X
= Z (1.39)

である.

系 1.3. 非対称行列X ∈ RN×P と行列Y ∈ RN×N があるとする. このとき,

∂tr(X⊤YX)

∂X
=
∂tr
(
X⊤(YX)

)
∂X

+
∂tr
(
(X⊤Y)X

)
∂X

= YX+Y⊤X (1.40)

さて, Fについての最適化は偏微分によって達成されることがわかった. 続いてAに

ついての最適化を行う. ただし微分を用いた単純な最適化は使用できない. なぜなら,

A⊤A = IM の正規直交制約を満たしたうえで, 最適化を行わなければならないためで

ある.
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Fを固定したときの最小化すべき目的関数は

fPCA(A|X,F) = ∥X− FA⊤∥2F

= tr
(
(X− FA⊤)⊤(X− FA⊤)

)
= tr(X⊤X)− 2tr(X⊤FA⊤) + tr(AF⊤FA⊤)

= tr(X⊤X)− 2tr(X⊤FA⊤) + tr(A⊤AF⊤F)

= constA − 2tr(X⊤FA⊤) (1.41)

と書ける. 途中の等式にはA⊤A = IM を用いた. また constAはAに関係のない定数で,

実際 tr(X⊤X)と tr(F⊤F)はAの更新には関係しない.

(1.41)式は, Aについての最適化がトレースの最大化を意味することを示している. そ

のため, トレース最大化のためのテクニックが必要となる. もし P =M とするとAは正

方行列かつ正規直交行列である. このA⊤A = AA⊤ = IP という条件のもとで目的関数

(1.41)式を最適化することを直交プロクラステス問題 (Orthogonal Procrustes Problem)

と呼ぶことがある (Schönemann, 1966). 直交プロクラステス問題からAの更新式

Â = KL⊤ (1.42)

が得られる. ただしK ∈ RP×M とL ∈ RM×M は, X⊤Fの固有値分解

X⊤F = K∆L⊤ (1.43)

によって得られる左, 右特異行列であり正規直交性

K⊤K = L⊤L = LL⊤ = IM (1.44)

を満たす.
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定理 1.3. 直交プロクラステス問題

行列X ∈ RN×P ,F ∈ RN×P ,A ∈ RP×P が与えられているとする. そして正規直交制

約A⊤A = IP を満たす. このとき目的関数

min
A

∥X− FA⊤∥2F s.t.A⊤A = IP

を最小化するAは

A = KL⊤ (1.45)

によって得られる. ただしK,Lは特異値分解X⊤F = K∆L⊤ によって得られた左

特異行列K ∈ RP×P と右特異行列L ∈ RP×P である.

証明.

min
A

∥X− FA⊤∥2F = tr
(
(X− FA⊤)⊤(X− FA⊤)

)
= constA − 2tr(X⊤FA⊤) (1.46)

となることから, 目的関数の最小化問題はトレースの最大化問題に帰着する. ここで

X⊤Fの特異値分解とトレースの性質から,

tr(X⊤FA⊤) = tr(K∆L⊤A⊤) = tr(AL∆K⊤) = tr(K⊤AL∆) = G∆ (1.47)

を得る. ただしG = K⊤ALとした. ここで

L⊤A⊤KK⊤AL = IP (1.48)

であるから, Gは正規直交行列である. 正規直交行列かつ正方な行列Gの対角要素

は明らかに 1以下であるから,

tr(G∆) =
P∑

p=1

gppδp ≤
P∑

p=1

δp (1.49)

となる. (1.49)式が最大値になるときは, Gの各対角要素が 1になるとき, つまり

G = IP の場合である. よって

IP = K⊤AL ⇔ A = KL⊤ (1.50)
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ここで問題がひとつある. 主成分分析のパラメータ行列Aは正方行列ではなく矩形行

列であることが多い. つまり, A ∈ RP×M(M ≤ P ). このとき, 直交プロクラステス問題

の証明は用いることができない. そこで von Neumannの定理 (von Neumann, 1937)およ

びKristofの定理 (Kristof, 1970)を一般化した ten Bergeの定理 (ten Berge, 1983; 1993)

によって最適化を行う. 驚くべきことに, 後述の通り ten Bergeの定理により示されるA

の更新式と直交プロクラステス問題におけるAの更新式は同一である. すなわち, Aが

正方行列であるか矩形行列であるかを問わず

Â = KL⊤

で更新される. ten Bergeの定理には幾つか定義と補題が必要となる.

定義 1.11. 部分正規直交行列

正規直交行列の部分行列を部分正規直交行列 (sub-orthonormal matrix)と呼ぶ.

補題 1.1. 部分正規直交行列の積

X ∈ RN×P とY ∈ RP×M が, それぞれ部分正規直交行列とする. このとき, それらの

積XYも部分正規直交行列である.

補題 1.2. 部分正規直交行列の特異値

部分正規直交行列X ∈ RN×P (P ≤ N)の特異値分解X = K∆L⊤によって得られた

各特異値 δpは 0から 1, すなわち p = 1, . . . , P について 0 ≤ δp ≤ 1である.

補題 1.3. 部分正規直交行列と対角行列の積のトレース最大化

G ∈ RP×P を部分正規直交行列とし, D ∈ RP×P を対角行列とする. このとき不等式

tr(GD) ≤ tr(D)

が成り立つ. また等式はG = IP のとき成り立つ.

証明. 補題 1.2の部分正規直交行列の特異値の性質からGの対角要素は全て 1以下

と言える. よって,

tr(GD) =
P∑

p=1

gppdpp ≤
P∑

p=1

dpp = tr(D)

であり, tr(GD) = tr(D)はG = IP のとき成り立つ. □
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定理 1.4. ten Bergeの定理の特殊例

いま行列X ∈ RN×P ,F ∈ RN×M が与えられているとする. そして直交制約A⊤A =

IM を満たす. このときトレース

trX⊤FA⊤

を最大化するAは

Â = KL⊤

によって得られる. ただしKと Lは特異値分解X⊤F = K∆L⊤ によって得られた

左特異行列K ∈ RP×M と右特異行列L ∈ RM×M である.

証明. Xに特異値分解を行うと

tr(X⊤FA⊤) = tr(K∆L⊤A⊤)

= tr((L⊤A⊤K)∆) (1.51)

を得る. ここでL,A,K全てが部分正規直交行列であるため, その積であるL⊤A⊤K

も部分正規直交行列である. よって補題 1.3から,

tr(L⊤A⊤K∆) ≤ tr(∆)

かつ等号成立はL⊤A⊤K = Iのときである. よって, KとLの列正規直交性から

A = KL⊤

□

ten Bergeの定理の特殊形である定理 1.4から, M ≤ P の場合でも, Aの更新式は

Â = KL⊤ (1.52)

である. まとめると, (1.35)式と (1.52)式を収束するまで繰り返すことで, 最適なパラメー

タFとAを得る.

ところが, 実際には主成分分析は反復計算を必要とせず, (1.35)式と (1.52)式を 1回ず

つ計算すれば収束する. そして偏微分やトレース最大化を用いず, 特異値分解のみでパラ
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メータを推定できる.

今データ行列X ∈ RN×P (P ≤ N)があるとする. Xの特異値分解は

X = K∆L⊤ (1.53)

と書けて, N × P の行列K ∈ RN×P は列正規直交性を満たす. つまり

K⊤K = IP

である. Kは列ごとに正規直交性が満たされるので, Kの左からM 列のみをK1, 残りの

P −M 列をK2とすると

K = [K1,K2]

であり, K⊤
1 K1 = IM かつK⊤

2 K2 = IP−M である. つまり列について分割しても, 列に関

しては正規直交性は保たれる. P × P の行列 L ∈ RP×P においても同様に L = [L1,L2],

L1 ∈ RP×M とすると L⊤
1 L1 = IM かつ L⊤

2 L2 = IP−M である. そして特異値分解 (1.53)

式は

X = K∆L⊤ = [K1,K2]

∆1

∆2

 [L1,L2]
⊤

= K1∆1L
⊤
1 +K2∆2L

⊤
2

= X1 +X2

のように書くこともできる. ただし∆1はM×Mの対角行列で, ∆2は (P −M)×(P −M)

の対角行列. また足し算が成立していることから明らかなように, X,X1,X2は全てN×P

の行列である. いま, ∆の対角要素が降順 (δ1 ≥ δ2 ≥ · · · ≥ δP ≥ 0)とする. すると, 行列

のランクがM 以下という条件を満たした上でXを最もよく近似する, つまり

∥X−Y∥2F s.t rank(Y) ≤M (1.54)

を最小にするような行列Yは

Y = K1∆1L
⊤
1 (1.55)

である (Eckart & Young, 1936). 行列のサイズこそ同じものの, その行列のランクは

rank(X) = P よりも低ランクの rank(Y) ≤ M であるため, (1.54)式の問題は低ランク

23



第 1章 数学的準備

近似と呼ばれる. また, 論文著者の名前などから (1.54)式の問題と (1.55)式を Eckart-

Young定理 (Eckart-Young-Mirsky定理)とも呼ぶ. ちなみにM 個目までの特異値が全て

正 (δ1 ≥ · · · ≥ δM > 0)であるとき rank(Y) =M である.

ここで,

K1∆1 = F (1.56)

L1 = A (1.57)

K2∆2L
⊤
2 = E (1.58)

とすると,

∥X−K1∆1L
⊤
1 ∥2F = ∥X− FA⊤∥2F = ∥E∥2F

と書け, 低ランク近似の問題と主成分分析を同一視することができる. すなわち, データ

行列の特異値分解によって主成分分析のパラメータを求めることができる.

k–meansクラスタリング

それでは, どのような問題では反復計算が必要となるのであろうか. 例えば k–meansク

ラスタリングは反復計算が必要な代表例である.

k–meansクラスタリングの目的関数は

N∑
n=1

K∑
k=1

gnk∥xn − ck∥22 (1.59)

のように書く. ただし xn, ck ∈ RP であり, N は個体数, P は変数の数とする. そして xn

は個体 nのデータベクトル, ckはクラスター kのセントロイドベクトル (代表ベクトル)

である. まず, ∥xn − ck∥22の意味について考えてみる. これは (1.7)式を見ればわかるよう

に, xnと ckのユークリッド距離である.

それでは gnkは何を表しているのだろうか. これは個体が nに所属するときのみ値が 1

となり, kに所属しない場合は 0となる関数である.

gnk =

1 個体 nがクラスター kに所属する

0 個体 nがクラスター kに所属しない
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所属を表す関数のため, gnkをメンバーシップ関数と呼ぶ. あるいは指示関数と呼ぶ場合

もある. また, k–meansクラスタリングでは 1つの個体が複数のクラスターに所属するこ

とは許されない. よって, 任意の nについて制約

K∑
k=1

gnk = 1 (1.60)

が成り立つ.

具体例を考えてみよう. いま 100個体 2変数のデータが得られたとし, さらに 3つのク

ラスターのセントロイドからなる散布図を図 1.5に描写する.

図 1.5: 100個体 2変数のデータとK = 3としたときのセントロイドの散布図

さらに図 1.6のように, ある個体 x50のみに注目してみる.

この個体 x50とそれぞれのクラスターの距離が

(−2.03− 3.11)2 + (−0.52− (−1.24))2 ≃ 5.43

(−2.03− 0.08)2 + (−0.52− 1.76)2 ≃ 3.11

(−2.03− (−1.67))2 + (−0.52− (−2.35))2 ≃ 1.87
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図 1.6: ある個体とセントロイドの散布図

となった. よって個体 50と一番距離の近いクラスター 3を個体 50が所属するクラスター

と見なし, g50,3 = 1となる. そして g50,1, g50,2 = 0となることから, それらの距離は無視す

ることとなる. よって,

K∑
k=1

g50,k∥x50 − ck∥22 = ∥x50 − c3∥22

となる.

さて, k–means クラスタリングのパラメータ推定は, 交互最小二乗法によって行う.

{gn1, . . . , gnK}は場合分けによって求めるしかない. すなわち

∥xn − cl∥22

が最小となる l(l = 1, . . . , K)を探索し gnl = 1とし, それ以外のメンバーシップ関数を 0
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とする. つまり, gnkの更新式は

ĝnk =

1 (k = argmin1≤l≤K∥xn − cl∥22)

0 (それ以外)
(1.61)

によって得られる.

次に ckの更新を行う. gnkを固定し ckについてベクトルの偏微分を行うと, 方程式

∂

∂ck

N∑
n=1

gnk∥xn − ck∥22

=
∂

∂ck

N∑
n=1

gnk
(
x⊤
nxn − 2x⊤

n ck + c⊤k ck
)

=
N∑

n=1

gnk (−2xn + 2ck)

=− 2

(
N∑

n=1

gnkxn

)
+ 2ck

(
N∑

n=1

gnk

)
= 0P (1.62)

を得る. したがって, ckの更新式は

ĉk =

∑N
n=1 gnkxn∑N
n=1 gnk

(1.63)

である.

k–meansクラスタリングの目的関数は行列を用いて表現することも可能である.

k–meansクラスタリング

∥X −GC∥2F : k−meansクラスタリングの目的関数

X : N 個体× P 変数のデータ行列

G :各個体の所属を示すN ×Kのメンバーシップ行列

C :各クラスターの中心点を表すK × P のセントロイド行列

データ行列をN × P の行列Xとすると, k–meansクラスタリングの目的関数は

∥X−GC∥2F (1.64)
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と書ける. ただしX ∈ RN×P ,G ∈ RN×K ,C ∈ RK×P とし, Kはクラスター数とする. G

は gnkを要素とする行列で, メンバーシップ行列あるいは指示行列と呼ばれる. 具体的に

はG ∈ R7×3とすると

G =



1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1


のような形になる. メンバーシップ関数の制約 (1.60)式は,

G1K = 1N (1.65)

であるからGは制約を満たしていることがわかる.

ところで, 得られた解が真の解である保証が k–meansクラスタリングに関してはない.

これは目的関数の非凸性と関係しており (Jain & Kar, 2017), 実際には複数の初期値から

解を求め, それらの中で目的関数が最も小さいものを採用する. これはランダムスタート

などと呼ぶ.

1.3 確率分布

1.3.1 正規分布

多変量解析において最も活用されている分布の 1つは, 正規分布である. x ∈ Rが正規

分布にしたがうとき確率密度関数は

p(x|µ, σ2) =
1

(2πσ)1/2
exp

{
− 1

2σ2
(x− µ)2

}
(1.66)

である. ただし µは平均, σ2は分散を表す. そして x ∈ RP が多変量正規分布にしたがう

とき確率密度関数は

p(x|µ,Σ) =
1

(2π)P/2

1

det(Σ)1/2
exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
(1.67)
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である. ただし µ ∈ RP は平均ベクトル, Σ ∈ RP×P は共分散行列を表す. ここで,

x1, . . . ,xN が独立かつ同一の多変量正規分布に従うとする. このとき x1, . . . ,xN の同時

分布 p(x1, . . . ,xN) の確率密度関数は, その独立性から各 xnの確率密度関数の積となり

p(x1, . . . ,xN |µ,Σ) =
1

(2π)NP/2

1

det(Σ)N/2
exp

{
−1

2

N∑
n=1

(xn − µ)⊤Σ−1(xn − µ)

}
(1.68)

である. この式は S =
∑N

n=1(xn − µ)(xn − µ)⊤と置くことで,

p(x1, . . . ,xN |µ,Σ) =
1

(2π)NP/2

1

det(Σ)N/2
exp

{
−1

2
tr(SΣ−1)

}
(1.69)

のように書くことができる. これには (1.29)式を用いて, ベクトルの内積をトレースに書

き換えている. この式はグラフィカルモデルなどのようにµには重きをおかない, あるい

はµ = 0P を仮定し, むしろΣの構造に関心がある場合などに用いられることが多い.

1.3.2 条件付き正規分布

2つの確率変数a ∈ RP , b ∈ RMがあるとし, それぞれ異なる正規分布, a ∼ N(µa,Σa),

b ∼ N(µb,Σb)に従うとする. すなわち

E[a] = µa

E[b] = µb

である. ここで bが与えられた場合のa, つまり条件付き分布 (a|b)を考える. 重要な事実

だが, aと bそれぞれが正規分布に従うとき, 条件付き分布もまた正規分布に従う.

条件付き分布のパラメータ推定を行うためには, まず c = [a, b]⊤ ∈ RP+M を考え,

c ∼ N(µ,Σ)とする. このとき cの期待値は

E[c] = [E[a],E[b]] (1.70)

つまり

µ = [µa,µb]
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である. cの分散は

Var[c] =

 Var[a] Cov[a, b]

Cov[b,a] Var[b]


=

(a− E[a]) (a− E[a])⊤ (a− E[a]) (b− E[b])⊤

(b− E[b]) (a− E[a])⊤ (b− E[b]) (b− E[b])⊤

 (1.71)

である. つまり

Σ =

(a− µa) (a− µa)
⊤ (a− µa) (b− µb)

⊤

(b− µb) (a− µb)
⊤ (b− µb) (b− µb)

⊤


=

Σaa Σab

Σab Σbb


ここで, 共分散行列の逆行列をΩ = Σ−1としΩもΣと同様に分割を行う. つまり

Ω =

Ωaa Ωab

Ωba Ωbb


とする. ただしΣ−1

aa ̸= Ωaaであることに注意が必要である. すると

− 1

2
(c− µ)⊤Σ−1(c− µ)

=− 1

2
(a− µa)

⊤Ωaa(a− µa)−
1

2
(a− µa)

⊤Ωab(b− µb)

−1

2
(b− µb)

⊤Ωba(a− µa)−
1

2
(b− µb)

⊤Ωbb(b− µb) (1.72)

のように分割して書くこともできる.

条件付き正規分布のパラメータの推定には, 平方完成と呼ばれるテクニックを用いるこ

とができる (Bishop, 2006). 一般に x ∈ RP が正規分布N(µ,Σ)に従うとき, その確率密

度関数の指数部分は

−1

2
(x− µ)⊤Σ−1(x− µ) = −1

2
x⊤Σ−1x+ x⊤Σ−1µ+ constx (1.73)

と書くことができる. ただし constxは xに関係しない項を表す. 正規分布の確率密度関

数の指数部を上式のような式で表現することができれば, xの二次の項の係数行列が共分

散行列の逆行列Σ−1に等しく, xの一次の項の係数ベクトルがΣ−1µに等しいことから,

µを得ることができる.
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では, この平方完成を条件付き分布 (a|b) ∼ N(µa|b,Σa|b) に適用することで, µa|b,Σa|b

を計算してみる.

実際に平方完成を用いると, aについての二次の項は

−1

2
a⊤Ωaaa (1.74)

となる. したがって,

Σa|b = Ω−1
aa (1.75)

となる. さらに一次の項も

a⊤Ωaaµa − a⊤Ωab(b− µb) = a⊤ {Ωaaµa −Ωab(b− µb)} (1.76)

であることから, µa|bを計算できる. 係数Ωaaµa −Ωab(b − µb) がΣ−1
a|bµa|bと等しくな

ることから

Σ−1
a|bµa|b = Ωaaµa −Ωab(b− µb)

µa|b = Σa|b {Ωaaµa −Ωab(b− µb)}

= µa −Ω−1
aaΩab(b− µb) (1.77)

であることがわかる. しかしこの式はΩに基づくもので, 共分散行列Σに書き換える必

要である. そのためには以下の分割された逆行列の公式が有用である.A B

C D

−1

=

 M −MBD−1

−D−1CM D−1 +D−1D−1CMBD−1

 (1.78)

ただし

M =
(
A−BD−1C

)−1
(1.79)

この公式から

Ωaa =
(
Σaa −ΣabΣ

−1
bb Σba

)−1
(1.80)

Ωab = −
(
Σaa −ΣabΣ

−1
bb Σba

)−1
ΣabΣ

−1
bb (1.81)
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を得る. よって条件付き分布 (a|b)の平均ベクトルおよび共分散行列は

µa|b = µa +ΣabΣ
−1
bb (b− µb) (1.82)

Σa|b = Σaa −ΣabΣ
−1
bb Σba (1.83)

である. 期待値 E[·]および分散Var[·]の表記で表すと

E[a|b] = E[a] + Cov[a, b]Var[b]−1(b− E[b]) (1.84)

Var[a|b] = Var[a]− Cov[a, b]Var[b]−1Cov[b,a] (1.85)

となる.
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データを集めるだけでは情報を得ることはできない. 得られたデータから情報を抽出

するためには, 解釈が不可欠である. たとえば, 2つの変数によるペアが得られたとしよ

う. この 2つの変数の関係を解釈するに, 例えば相関係数を算出することなどが考えられ

るが, 図 2.1のような散布図から関係を解釈することも重要である.

図 2.1: 2変数の散布図

しかし, 得られたデータが 4変数や 5変数の場合, 1つの散布図でデータを表すことは

できない. なんらかの方法で, 多変数を 2変数に変換することができればこのような問題

は解決できる. こうした場合に有用な手法が次元縮約法と呼ばれる手法である. 次元縮約
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法は多数の変数を少ない変数によって表現する手法で, 例えば図 2.2のように 5変数を 2

変数に縮約できるため散布図での解釈が容易になる.

図 2.2: 5変数の散布図および 2変数へ次元縮約したときの散布図

次元縮約法は例を用いて説明したような視覚化はもちろん, 変数の関係を解釈する上で

も有用である.

古くから用いられている主成分分析や多次元尺度法などが次元縮約法の代表例にあげら

れるが, 機械学習においても様々な手法が今なお提案されており (van der Maaten, 2009),

重要な研究テーマの一つである. 心理学において活用されることの多い因子分析も, この

次元縮約法の一つと考えることができる.

因子分析は 20世紀はじめに提案されたモデルであり, 提案から 100年以上経た今日で

も研究が続けられている. 応用範囲も心理学にとどまらず, 経済学, 社会学, 遺伝子解析な

ど多岐に渡っている.

因子分析はもともと,人間の知能を表現するモデルとして提案された (Spearman, 1904).

これは知能の二因子モデルと呼ばれるもので, Spearmanが考えたこの概念を視覚的に表

現すると, 図 2.4のように表すことができる. 音楽や数学など外国語などの習得には知能

が関わっていると考えられているが, 知能の二因子モデルでは全ての知的活動は一般知能

と個別の知能の二つの因子によって説明できるとしている. この Spearmanによる知能の

二因子モデルは, 因子分析の一因子モデルと考えることもできる. 一因子モデルの因子分

析のパス図を図 2.4と対応させて表現すると, 図 2.3のようになる.

図 2.3, 2.4において「一般知能」とした概念は, 因子分析においては共通因子と呼ばれ
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図 2.3: 因子分析のパス図 図 2.4: 知能の二因子モデルの概念図

るもので, それぞれに特有の潜在変数である独自因子とは対照的に, 全ての変数と関わる

潜在変数である. 共通因子は 1つに限定されるわけではなく, 後に多因子モデルも提案さ

れている.

2.1 因子分析の3つのタイプ

2.1.1 確率モデル

変数モデルと呼ばれることの多い確率モデル因子分析は, 最も広まっている因子分析の

モデルである. 本章では, 他のモデルとの兼ね合いもあり確率モデル因子分析と呼ぶ. 確

率モデル因子分析において P 次元観測ベクトル xは,

x = Λf + u (2.1)

と表現される. ただし, P 次元多変量正規分布をN(µ,Σ)として, M 次元の共通因子得点

ベクトル f と P 次元の独自因子得点ベクトルuがそれぞれ

f ∼ N(0M , IM) (2.2)

u ∼ N(0P ,Ψ
2) (2.3)

に従う. さらにΛは P ×M の因子負荷行列であり, P 個の顕在変数とM 個の潜在変数

の関係を表す. Λ, および各変数が因子では説明できない独自性をどの程度有するかを示
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す独自分散を対角要素とする独自分散行列Ψ2の 2つが確率モデル因子分析におけるパラ

メータである.

ここで, 重要な仮定として f とuは無相関

Cov [f ,u] = OM×P (2.4)

と想定する.

E [x] = ΛE [f ] + E [u] = 0P (2.5)

である. さらにV [f ] = IM であるから

E
[
(f − E[f ])(f − E[f ])⊤

]
= IM

E[ff⊤] = IM (2.6)

かつ

E
[
(u− E[u])(u− E[u])⊤

]
= Ψ2

E[uu⊤] = Ψ2 (2.7)

である. 仮定 (2.4)式および (2.5)∼(2.7)式を用いて (2.1)式の分散を計算すると

Var [x] = E
[
(x− E [x])(x− E [x])⊤

]
= E

[
xx⊤]

= E
[
(Λf + u)(Λf + u)⊤

]
= E

[
Λff⊤Λ⊤ +Λfu⊤ + uf⊤Λ⊤ + uu⊤]

= ΛE
[
ff⊤]Λ⊤ +ΛE

[
fu⊤]+ E

[
uf⊤]Λ⊤ + E

[
uu⊤]

= ΛE
[
ff⊤]Λ⊤ +ΛCov [f ,u] + Cov [u,f ]Λ⊤ + E

[
uu⊤]

= ΛΛ⊤ +Ψ2

となる. つまりデータの持つ標本分散を

データ分散 =共通分散+独自分散

のように共通因子によって説明可能な割合を示す共通分散と, 共通因子では説明できない

各変数の独自性を示す独自分散という 2つの項に完全に分離した形で表現することが可

能となる.
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パラメータの推定方法はいくつか存在するが (市川, 2010), 最も汎用的な手法はExpec-

tation - Maximization(EM)アルゴリズム (Dempster, Laird, & Rubin, 1977)による推定

法である (Rubin & Thayer, 1982). EMアルゴリズムの基本的な考え方は, 観測されてい

ない欠損データを条件付き期待値によって推定し, その推定値を用いてパラメータの推定

を行うことである. 因子分析においては, 共通因子得点 f を欠損ベクトルとみなし, 条件

付き期待値 E(f |x)によって推定する.

まず条件付き多変量正規分布を考える.x
f

 ∼ N

0P

0M

 ,
ΛΛ⊤ +Ψ2 Λ

Λ⊤ IM

 (2.8)

であるから, 正規分布の条件付き平均の (1.84)式より

E[f |x] = E[f ] + Cov[f ,x]Var[x]−1(x− E[x]) (2.9)

= Λ⊤(ΛΛ⊤ +Ψ2)−1x

= Bx (2.10)

また正規分布の条件付き分散は

Var[f |x] = E
[
(f − E [f |x]) (f − E [f |x])⊤ |x

]
= E

[
ff⊤ − 2E [f |x]f⊤ + E[f |x]E[f |x]⊤|x

]
= E

[
ff⊤|x

]
− E [f |x]E [f |x]⊤

のようにも書けるので, 正規分布の条件付き分散の定義 (1.85)式および (2.10)式から

E
[
ff⊤|x

]
= Var[f |x] + E [f |x]E [f |x]⊤

= IM −Λ⊤(ΛΛ⊤ +Ψ2)−1Λ+Bxx⊤B⊤

= IM −BΛ+Bxx⊤B⊤ (2.11)

となる.

では (2.10)式と (2.11)式を用いて, 欠損パラメータを条件付き期待値によって補完した

完全対数尤度であるQ関数を計算してみる. ベイズの定理より p(x)をxの確率密度関数

とすると

p(x) =

∫
p(x,f)df =

∫
p(x|f)p(f)df
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であるから p(f)および p(x|f) を知っておく必要がある. しかし,

N∏
n=1

p(fn) =
N∏

n=1

(2π)P/2det(Var [fn])
−1/2 exp

{
−1

2
(fn − E[f ])⊤Var[f ]−1(fn − E[f ])

}
であるから, Var[f ] = IM のとき, 定数になるため, p(x|f)のみを考えることにする.

正規分布の条件付き平均の定義 (1.84)式から

E [x|f ] = E[x] + Cov [x,f ]Var[f ]−1 (f − E[f ])

= Λf

であり, 正規分布の条件付き分散の定義 (1.85)式から

Var [x|f ] = Var [x]− Cov [x,f ]Var[f ]−1Cov [f ,x]

= ΛΛ⊤ +Ψ2 −ΛΛ⊤

= Ψ2

である. よって, (x|f) ∼ N(Λf ,Ψ2)であるから

Q =E

[
log
∏
n

(2π)P/2det(Ψ2)−1/2 exp

{
−1

2
(xn −Λfn)

⊤ (Ψ2)−1 (xn −Λfn)

}]

=const− N

2
log det(Ψ2)− 1

2

N∑
n=1

{
E
[
(xn −Λfn)

⊤Ψ−2 (xn −Λfn)
]}

=const+ − 1

2

N∑
n=1

{x⊤
nΨ

−2xn − E [f |xn]
⊤ΛΨ−2xn

− x⊤
nΨ

−2ΛE [f |xn] + E
[
f⊤
n Λ

⊤Ψ−2Λfn

]
}

=const+ − 1

2

N∑
n=1

{x⊤
nΨ

−2xn − 2x⊤
nΨ

−2ΛE [f |xn] + trΛ⊤Ψ−2ΛE
[
ff⊤|xn

]
} (2.12)

となる. ただし const = log(2π)NP/2, const+ = const− N
2
log det(Ψ2)である. (2.12)式の

中の等式は (1.15)式と (1.29)式, 内積の可換性とベクトル内積とトレースの性質から得ら

れる.

Q関数 (2.12)式をΛあるいはΨ−2について偏微分することによりパラメータΛ,Ψ2を

得る.
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まずはΛについて更新する.

∂Q

∂Λ
=

∂

∂Λ

{
−2

N∑
n=1

x⊤
nΨ

−2ΛE [f |xn] +
N∑

n=1

trΛ⊤Ψ−2ΛE [ff |xn]

}

=
∂

∂Λ

{
−2

N∑
n=1

trE [f |xn]x
⊤
nΨ

−2Λ+
N∑

n=1

trΛ⊤Ψ−2ΛE [ff |xn]

}
(2.13)

であるから, トレースの偏微分が必要となる.

trΛ⊤Ψ−2ΛE [ff |xn] = trE [ff |xn]Λ
⊤Ψ−2Λ

を利用すると尤度方程式

∂Q

∂Λ
= −2

N∑
n=1

Ψ−2xnE [f |xn] + 2
N∑

n=1

Ψ−2ΛE [ff |xn] = 0P (2.14)

を得る. したがって,

Ψ−2

N∑
n=1

xnE [f |xn] = Ψ−2Λ
N∑

n=1

E [ff |xn]

Λ =

(
N∑

n=1

xnE [f |xn]

)(
N∑

n=1

E [ff |xn]

)−1

(2.15)

が更新式となる.

続いて, Ψ2について更新する. Ψ−2について微分するためには, トレースの偏微分およ

び行列式の偏微分が必要になる. まず指数部分をQexpとすると, Q− const+であるから

Qexp =− 1

2

N∑
n=1

{
x⊤
nΨ

−2xn − 2x⊤
nΨ

−2ΛE [f |xn] + trΛ⊤Ψ−2ΛE
[
ff⊤|xn

]}
=− 1

2

N∑
n=1

{
trΨ−2xnx

⊤
n − 2trΨ−2ΛE [f |xn]x

⊤
n + trΨ−2ΛE

[
ff⊤|xn

]
Λ⊤} (2.16)

であるから,

∂Qexp

∂Ψ−2
= −1

2

N∑
n=1

{
xnx

⊤
n − 2ΛE [f |xn]x

⊤
n +ΛE

[
ff⊤|xn

]
Λ⊤}

= −1

2

N∑
n=1

{xnx
⊤
n }+Λ

N∑
n=1

{
E [f |xn]x

⊤
n

}
− 1

2
Λ

(
N∑

n=1

E [ff |xn]

)
Λ⊤ (2.17)
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となる. (2.17)式をさらに簡潔な形にすることもできる. Λの更新式 (2.15)式を最後の項

のΛ⊤に代入すると

∂Qexp

∂Ψ−2
= −1

2

N∑
n=1

{xnx
⊤
n }+

1

2
Λ

N∑
n=1

E [f |xn]x
⊤
n (2.18)

を得る. つづいて, const+, 特に const+における−N
2
log det(Ψ2)をΨ−2で微分する. 逆行

列の行列式の性質および行列式の偏微分から,

∂const+
∂Ψ−2

= − ∂

∂Ψ−2

N

2
log det(Ψ2)

= − ∂

∂Ψ−2

N

2
log det(Ψ−2)−1

=
∂

∂Ψ−2

N

2
log det(Ψ−2)

=
N

2
((Ψ−2)−1)⊤ =

N

2
Ψ2 (2.19)

である. (2.18)式と (2.19)式から尤度方程式は

∂Q

∂Ψ−2
=
N

2
Ψ2 − 1

2

N∑
n=1

{xnx
⊤
n }+

1

2
Λ

N∑
n=1

{
E [f |xn]x

⊤
n

}
= OP×P (2.20)

である. したがって, Ψ2が対角行列であることに注意すると

Ψ2 =
1

N
diag

(
N∑

n=1

{xnx
⊤
n } −Λ

N∑
n=1

E
{
[f |xn]x

⊤
n

})
(2.21)

がΨ2の更新式である. ここで diag(·)は非対角要素を 0にする作用素である.

定義 2.1. 行列式の対数の偏微分

P 次元の平方行列A ∈ RP×P があるとする. このとき以下が成り立つ.

∂det(A)

∂A
=
(
A−1

)⊤
定理 2.1. 逆行列の行列式

行列式には様々な性質がある. 特に逆行列の行列式は有用で以下が成り立つ.

det(A−1) = det(A)−1
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2.1.2 母数モデル

因子分析において, パラメータである因子負荷量および独自分散が解釈の材料となる.

しかし, これらは変数に関わるパラメータであり個体についてのパラメータではない. 個

体に関心がある場合は共通因子得点が主な解釈の対象となるが, 確率モデル因子分析にお

いては共通因子得点は確率変数でありパラメータではない. そのため近似手法によって共

通因子得点を推定することしかできない.

母数モデル因子分析では,独自因子得点を確率変数としたまま,共通因子得点をパラメー

タとしたモデルである. よって独自因子得点についての分布の仮定は変わらず,

u ∼ N(0P ,Ψ
2) (2.22)

とする. 問題は共通因子得点であり, 確率変数ではなくパラメータとして扱うことから正

規分布を用いて共通因子得点の性質を表すことはできない. そこで, (2.2)式の性質を線形

代数的に記述する. まず, 平均が 0であることから

1⊤
NF = 0M (2.23)

とし, 共通因子得点行列Fの各列の平均を 0とした. また分散が IM であることから

N−1F⊤F = IM (2.24)

パラメータ推定としては, 最尤推定法が考えられる. モデルは確率モデルと同様に

x = Λf + u (2.25)

とするので, (2.15)式を移項することで得られる

u = x−Λf (2.26)

が正規分布 (2.13)式に従うことがわかる.

uが独立かつ同一の分布 (i.i.d.)に従うとすると, それらの同時分布の確率密度関数は

p(u1, . . . ,uN |0P ,Ψ
2) =

1

(2π)NP/2

1

det(Ψ2)N/2
exp

{
−1

2

N∑
n=1

(un − 0P )
⊤(Ψ2)−1(un − 0P )

}

∝ 1

det(Ψ2)N/2
exp

{
−1

2

N∑
n=1

(xn −Λfn)
⊤Ψ−2(xn −Λfn)

}
(2.27)
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さらに S =
∑N

n=1(xn −Λfn)(xn −Λfn)
⊤ とすると (2.27)式を

p(u1, . . . ,uN |0P ,Ψ
2) ∝ 1

det(Ψ2)P/2
exp

{
−1

2
tr
(
SΨ−2

)}
(2.28)

と書き換えることもできる.

通常は最尤法では対数尤度を最大化するため, 目的関数は

logL = −det(Ψ2)N/2 − 1

2

{
tr(xn −Λfn)

⊤Ψ−2(xn −Λfn)
}
+ const (2.29)

であり, パラメータは目的関数を最大化することにより推定できる.

ところが, 最尤法による母数モデルのパラメータ推定は, 尤度が発散してしまうため不

可能である. これは母数モデルを活用するうえで致命的な問題である.

2.1.3 行列モデル

確率モデルでは, 共通因子得点と独自因子得点を確率変数として考えていた. 近年, 因

子負荷行列と独自分散のみではなく, 因子得点もパラメータとして扱う行列モデル因子分

析が研究されている. この行列モデルという名称は, 最適化の過程で行列分解を用いられ

ていることに因んでいる. 確率モデルや母数モデルに比べ, 行列モデルは新しいモデルで

あるため, 理論的な研究も進み始めたばかりである (Adachi & Trendafilov, 2018).

行列モデル因子分析では, データ行列X ∈ RN×P が与えられたとき

X = FΛ⊤ +UΨ+ EFA (2.30)

というモデルを考える. F ∈ RN×M は共通因子得点行列, Λ ∈ RP×M は因子負荷行列,

U ∈ RN×P は独自因子得点行列, Ψ ∈ RP×P は対角行列であり, Ψ2の対角要素は独自分

散である. これら 4つの行列全てがパラメータであり, 制約条件

1⊤
NF = 0M (2.31)

1⊤
NU = 0P (2.32)

N−1F⊤F = IM (2.33)

N−1U⊤U = IP (2.34)

F⊤U = OM×P (2.35)
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を満たす. パラメータの最適解を一度に解くことはできないため, 交互最小二乗法により

推定する. 最小化する目的関数は,

f(F,Λ,U,Ψ) = ∥X− FΛ⊤ −UΨ∥2F (2.36)

であり, 最適化したいパラメータ以外を固定したうえで更新し, f が収束するまで更新を

繰り返す.

2.1.4 因子分析と主成分分析の違い

古くから用いられてきた次元縮約法である因子分析と主成分分析は, その考え方が似て

いることから, しばしば混同されてきた. そこで本小節では, 因子分析と主成分分析の違

いを述べる.

2.1節で述べたように, 因子分析には 3つのタイプがあり確率モデルが最も普及してい

る. それに対して主成分分析は, 確率分布の仮定を用いない行列モデルが一般的である.

そこで, まず確率モデルの主成分分析 (Tipping & Bishop, 1999)と確率モデル因子分析を

比較する. その後, 行列モデルの主成分分析と行列モデル因子分析を比較する. 確率モデ

ルの主成分分析は, 確率主成分分析 (Probabilistic Principal Component Analysis)と呼ば

れ, そのモデルは

x = Ah+ e (2.37)

と確率モデル因子分析 (2.1)式と同じ形式である. しかし, それぞれの確率変数の従う分

布に違いがあり

h ∼ N(0M , IM) (2.38)

e ∼ N(0P , σIP ) (2.39)

となっている. 誤差の分布 (2.39)式と因子分析における独自因子の分布 (2.3)式を比べる

と, 主成分分析では誤差分散が変数間で同一なのに対して, 因子分析の独自分散は変数ご

とに分散が変わっている. それ以外に違いはないため, 誤差の等分散性を仮定するか否か

のみが違いとなる.
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次に行列モデルでの違いを比較する. 行列モデルの主成分分析は,データ行列X ∈ RN×P

が与えられたとき

X = FA⊤ + EPCA (2.40)

というモデルを想定する. 行列モデル因子分析のモデル (2.30)式と比較すると, 主成分分

析のモデル誤差にあたるEPCAが, 行列モデル因子分析ではUΨ + EFAとさらにリパラ

メトライズされていることがわかる.

これは重要な違いであり, 行列モデル因子分析では主成分分析や確率モデル因子分析で

は分離不可能だったモデルの独自部分と観測誤差をUΨ+EFAに分離可能なことを示唆

している. 実際, 行列モデル因子分析では確率モデル因子分析に比べΨ2の値が小さくな

る傾向にあることが報告されている (足立, 2014). 考えられる説として, 従来は観測誤差

の影響によって独自性が過大評価されていた可能性がある.

2.2 因子分析における2つの不定性

因子分析には 2つの不定性がある. 1つは回転の不定性であり, もう 1つは因子得点の

不定性である. 不定性は, パラメータを変換すれば異なるモデルをいくらでも作ることが

できることを意味する. したがって, 不定性を解消することは因子分析を運用するうえで

重要なテーマである. 本節では, 因子分析におけるこの 2つの不定性について述べる.

2.2.1 回転の不定性

前節にて解説した 3つのタイプの因子分析いずれも回転の不定性を有しており, なんら

かの強い仮定を置かなければ不定性を避けることはできない. そして因子分析を用いる

際に, 分析者は回転の不定性の深刻さを知っておく必要がある. なぜなら回転の不定性は,

因子分析における主目的である観測変数と因子との関係の解釈に用いられる因子負荷量

の値を著しく変化させる恐れがあるからである.

確率モデル因子分析のモデルは

x = Λf + u
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である. 行列T ∈ RM×M が制約T⊤T = TT⊤ = IM を満たすならば

x = ΛTT⊤f + u = Λ̃f̃ + u (2.41)

のように書き換えることができる. しかしΛと Λ̃はもはや別の行列であるにもかかわら

ず, 因子分析の目的関数は変化しない. なぜなら

∥N−1X⊤X− (ΛΛ⊤ +Ψ2)∥2F = ∥SXX − (ΛTT⊤Λ⊤ +Ψ2)∥2F

= ∥SXX − (Λ̃Λ̃⊤ +Ψ2)∥2F (2.42)

あるいは

log(|ΛΛ⊤ +Ψ2|) + tr((ΛΛ⊤ +Ψ2)−1SXX)

= log(|ΛTT⊤Λ⊤ +Ψ2|) + tr((ΛTT⊤Λ⊤ +Ψ2)−1SXX)

= log(|Λ̃Λ̃⊤ +Ψ2|) + tr((Λ̃Λ̃⊤ +Ψ2)−1SXX) (2.43)

のように, 制約T⊤T = TT⊤ = IM のおかげでΛが Λ̃に置き換えたとしても目的関数は

変化しない.

実際に例を用いてΛと Λ̃でどれぐらい異なるか, 検証してみる.

Λ =



0.80 0.60

0.60 0.50

0.60 −0.50

−0.50 0.70

−0.60 0.40

−0.50 −0.60


, T =

0.71 −0.70

0.70 0.71

 , Λ̃ = ΛT =



0.99 −0.13

0.78 −0.07

0.08 −0.78

0.14 0.85

−0.15 0.71

−0.78 −0.08


上式のように, Λと Λ̃の解釈容易性は全く異なっていることがわかる. そのため, 因子分

析によって得られた因子負荷行列には何らかの回転法を適用した後に解釈する 2段階の

分析が通例となっている.

2.2.2 因子得点の不定性

回転の不定性, あるいは回転の不定性を利用した回転法の存在が心理学者に広く認知さ

れているのに対して, 因子得点の不定性は十分に知られているとはいえない. しかし, 因
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子得点の不定性は因子分析によって変数ではなく個人の関係を解釈しようとする場合, 多

大な影響を与えうる. なぜなら, 回転の不定性によって因子負荷量が様々な値に変化しう

るのと同様に, 因子得点の不定性によって個人の関係を表す共通因子得点および独自因子

得点が, 大きく変化する可能性があるからである.

確率モデル因子分析における因子得点の不定性は丘本 (1986)などで詳しく述べられて

いる. 今, 因子モデルをもつデータベクトル xに無相関なM 次元確率ベクトル tを考え

る. tの平均ベクトルと共分散行列を

E[t] = 0M (2.44)

E
[
tt⊤
]
= Σtt (2.45)

とする. ここで

t̃ = (IM −Λ⊤Σ−1Λ)1/2Σ
−1/2
tt t (2.46)

とすると,

E[t̃] = (IM −Λ⊤Σ−1Λ)1/2Σ
−1/2
tt E [t]

= 0M (2.47)

かつ

E
[
t̃t̃⊤
]
= E

[
(IM −Λ⊤Σ−1Λ)1/2Σ

−1/2
tt tt⊤Σ

−1/2
tt (IM −Λ⊤Σ−1Λ)1/2

]
= (IM −Λ⊤Σ−1Λ) (2.48)

となる. t̃を用いて, 共通因子得点ベクトル f と独自因子得点ベクトルuを

f̃ = Λ⊤Σ−1x+ t̃ (2.49)

ũ = Ψ2Σ−1x−Λt̃ (2.50)

と書き換えると,

x = Λf̃ + ũ (2.51)

が成り立つ. 明らかにE[f̃ ] = 0,E[ũ] = 0で, tとxは無相関E[xt⊤] = OP×Mであるから,

E
[
xt̃⊤

]
= E

[
xt⊤Σ

−1/2
tt (IM −Λ⊤Σ−1Λ)1/2

]
= OP×M (2.52)
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となる. このことから

E
[
f̃ f̃⊤

]
= E

[(
Λ⊤Σ−1x+ t̃

) (
Λ⊤Σ−1x+ t̃

)⊤]
= Λ⊤Σ−1Λ+Λ⊤Σ−1E

[
xt̃⊤

]
+ E

[
t̃x⊤]Σ−1Λ+ E

[
t̃t̃⊤
]

= Λ⊤Σ−1Λ+OM×M +OM×M + (IM −Λ⊤Σ−1Λ)

= IM (2.53)

さらに

E
[
ũũ⊤] = E

[
(Ψ2Σ−1x−Λt̃)(Ψ2Σ−1x−Λt̃)⊤

]
= Ψ2Σ−1Ψ2 +Ψ2Σ−1E

[
xt̃⊤

]
Λ−ΛE

[
t̃x⊤]Σ−1Ψ2 +ΛE

[
t̃t̃⊤
]
Λ⊤

= Ψ2Σ−1Ψ2 +Λ(IM −Λ⊤Σ−1Λ)Λ⊤

= Ψ2Σ−1Ψ2 +ΛΛ⊤ −ΛΛ⊤Σ−1ΛΛ⊤

= Ψ2Σ−1Ψ2 +Σ−Ψ2 − (Σ−Ψ2)Σ−1(Σ−Ψ2)

= Ψ2Σ−1Ψ2 +Σ−Ψ2 −Σ+Ψ2 +Ψ2 −Ψ2ΣΨ2

= Ψ2 (2.54)

であり

E
[
f̃ ũ⊤

]
= E

[(
Λ⊤Σ−1x+ t̃

) (
Ψ2Σ−1x−Λt̃

)⊤]
= Λ⊤Σ−1Ψ2 −Λ⊤Σ−1E

[
xt̃⊤

]
Λ⊤ + E

[
t̃x⊤]Σ−1Ψ2 − E

[
t̃t̃⊤
]
Λ⊤

= Λ⊤Σ−1Ψ2 − (IP −Λ⊤Σ−1Λ)Λ⊤

= Λ⊤Σ−1Ψ2 −Λ⊤ +Λ⊤Σ−1ΛΛ⊤

= Λ⊤Σ−1Ψ2 −Λ⊤ +Λ⊤Σ−1(Σ−Ψ2)

= Λ⊤Σ−1Ψ2 −Λ⊤ +Λ⊤ −Λ⊤Σ−1Ψ2

= OM×P (2.55)

である. よって, f とuを f̃ と ũに置き換えても因子分析モデルが成り立つ. ただし f̃ の

第 2項 t̃は, 幾通りも考えることができる. したがって確率モデル因子分析には因子得点

の不定性が存在する.

47



第 2章 序論

行列モデル因子分析における, 因子得点の不定性は違った形で示される. 目的関数が

∥X− FΛ⊤ +UΨ∥2F

= ∥X− [F,U][Λ,Ψ]⊤∥2F

= ∥X− ZA⊤∥2F

と書きかえる. ここで, 共通因子得点行列と独自因子得点行列からなるブロック行列Zの

更新は, ten Bergeの定理より

Z = N1/2KL⊤ (2.56)

によって達成される. (Unkel & Trendafilov, 2010). ただし,行列Kと行列Lは固有値分解

N−1/2XA = KΘL⊤ (2.57)

によって得られる. ただしこの固有値分解は

N−1/2XA = KΘ1L
⊤

= [K1,K2]

Θ
OM×M

L1

L2

 (2.58)

のようにブロック行列を用いて表現することができる. ただしK1 ∈ RN×P ,K2 ∈ RN×M ,L1 ∈

R(P+M)×P ,L2 ∈ R(P+M)×M であり, Θ1は P 次元の対角行列である. そして, 制約条件に

対応するように

K⊤
1 K1 = L⊤

2 L2 = IP ,K
⊤
1 K2 = L⊤

1 L2 = OP×M (2.59)

を満たす. 上式は rank(XA) = P < (P +M)により, ランク落ちした結果, M 個の特異

値が 0であることを示唆している. その結果Θの中のOM×M に対応する特異行列である

K2とL2は, 制約条件を満たす限り自由に値をとることができる. このことから,

Z = N1/2KL⊤

= N1/2K1L
⊤
1 +N1/2K2L2 (2.60)

と表すと, 左辺第 2項N1/2K2L2は一意に定まらない. これが行列モデル因子分析におけ

る因子得点の不定性である.

48



第3章

クラスタリングを伴う母数モデル因子分析

本章はUno, Satomura, & Adachi(2016)および宇野 (2016)を拡張したものである.

3.1 導入

N 個体×P 変数の列中心化された行列をXとしたとき, 因子分析のモデルは次のよう

に書くことができる.

X = FΛ⊤ + E, (3.1)

(Mulaik, 2010). このとき, 行列FはN 個体×M 因子の因子得点行列, ΛはP×M の因子

負荷行列である. ただし, M < P とする. また, 行列 Eの各列は, 1×P の確率誤差ベク

トル e⊤とする. 確率誤差ベクトル eの確率分布を仮定するとき, 通常は平均ベクトルを

P×1の 0ベクトルとする多変量正規分布に従うものとする. つまり,

e ∼ N(0P ,Ψ
2). (3.2)

ここで, 共分散行列Ψ2は対角行列とし,

Ψ2 = diag{ψ2
1, ..., ψ

2
P}, (3.3)

と書ける. Ψ2の対角要素, ψ2
1, ..., ψ

2
P は独自分散と呼ばれる. 通常, 因子分析では, 推定す

るパラメータ行列はΛとΨである. その一方, 行列Fの中の, 因子得点は確率変数として

扱われることが一般的である. しかし, この行列Fもパラメータ行列として推定する因子

分析が Lawley(1942)によって提案された. このモデルは, fixed factor analysis(Unkel &

Trendafilov, 2010), もしくは母数モデル因子分析と呼ばれている (丘本, 1986). 本研究で

は, この母数モデル因子分析に着目する. 母数モデル因子分析において, 行列Fは列中心
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化されており, 直交行列である. つまり,

1⊤
NF = 0M , (3.4)

1

N
F⊤F = IM , (3.5)

を満たす. ここで, 1P は全ての要素が 1であるN×1のベクトル, IM はM×M の単位行

列を表す. したがって, 母数モデル因子分析においてパラメータ行列はF,ΛとΨ2である.

ただし次節で説明する通り, これらのパラメータを同時に推定することは不可能であるこ

とが知られている (Anderson & Rubin, 1956). 本提案手法では, F = [f1, ...,fN ]
⊤に制約

をかけることで, パラメータを同時に推定できることを目指す. ここで, fnは個体 nの因

子得点ベクトルを意味する.

Fにかける制約であるが, 提案手法では, F中のN個体が少数のクラスターに分類され,

同じクラスターに所属する個体は全て同一の因子得点を持つとした. この制約を加えた

母数モデル因子分析を, 本論文ではFixed Clustered Factor Analysisより, 以後FCFAと

呼ぶ. FCFAの定式化は第 2節で行い, なぜ FCFAにおいてはパラメータを同時に推定で

きるかを説明する. 第 3節では FCFAのアルゴリズムを述べ, 第 4節ではシミュレーショ

ンによって FCFAが正しく推定できることを確認する.

FCFAは, 二つの目的を同時に達成することが可能な手法で, [1]多数の変数を説明する

因子を抽出する, [2]個体を分類する, という目的のために有効である. 同様の目的は, 既に

提案されている二つの手法, 1994年にDe SoeteとCarsollにより提案されたReduced K-

Means analysis (RKM)と 2001年にVichiとKiersにより提案されたFactorial K-Means

analysisによっても達成できる. ただし, この二つの手法は因子分析ではなく主成分分析

に基づいた手法である. よって, [1]における因子は, 主成分に置き換わる. RKMと FKM

がFCFAとどのように関連しているかは第 5節にて述べる. さらにRKMとFKMが最小

二乗法による推定なのに対し, FCFAは最尤法による推定である. しかし, 式 (3.3)を単位

行列 IP とすることで RKMの最尤推定と FCFAが一致することから, RKMは FCFAの

特殊例と言える. そして第 6節では, 分類精度の点から FCFAがRKMと FKMを上回っ

ていることを示す.
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3.2 モデル

本節ではまず, なぜ母数モデル因子分析におけるパラメータを同時に推定することが不

可能なのかを説明する. その後, 提案手法である FCFAを定式化する. そして最後に, な

ぜFCFAにおいてはパラメータの同時推定が可能であるかと, 同時推定が不可能となる例

外を述べる.

式 (3.1)∼(3.3)を用いると, 母数モデル因子分析の対数尤度は正規分布の確率密度関数

にEを代入することで得られ, 以下のように書ける.

LL(F,Λ,Ψ2) ∝ −N
P∑

p=1

logψ2
p − tr(X− FΛ⊤)Ψ−2(X− FΛ⊤)⊤

= −
P∑

p=1

{
1

ψ2
p

∥xp − Fλp∥22 +N logψ2
p

}
. (3.6)

ここでベクトルxpはXの第 p列を, λpはΛの第 p行を, ψ2
pはΨ2の p番目の対角要素を

表す. しかし, (3.6)式の最尤推定量は以下で述べるように存在しない.

独自分散の推定値は, 必ず

ψ2
p =

1

N
∥xp − Fλp∥22, (3.7)

を満たす. これは尤度方程式

∂

∂ψ2
p

{
1

ψ2
p

∥xp − Fλp∥22 +N logψ2
p

}
= 0

− 1

ψ4
p

∥xp − Fλp∥22 + ψ2
pN = 0

から得られる. しかし, (3.6)式は, Fλp → xp, すなわち xp = Fλpのように発散するので

(Anderson & Rubin, 1956), 独自分散の推定値は 0になってしまう.

それに対して, 提案手法であるFCFAではFに制約を加えているため, F,ΛとΨ2の最

尤推定量が与えられ, (3.6)式が最大化される. その制約とは, 前述の通り, Fにおける個

体, つまり Fの行 f1, . . . ,fN がK個のクラスターに分類されるという制約である. ただ

し, KはK < N を満たす. この制約を式で表すと,

F = GC, (3.8)
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となる. ここで, G = {gnk}はN 個体×Kクラスターのメンバーシップ行列を表す. 個体

nがクラスター kに分類されるときのみ gnk = 1となり, それ以外の場合は gnk = 0であ

る. 式で表現すると,

gnk = {0, 1}, G1K = 0N , rank(G) = K, (3.9)

となる. rank(G)はGのランクを表し, rank(G) = Kは全てのクラスターに少なくとも

1個体は含まれることを意味する. 一方, 行列C = [c1, ..., ck, ..., cK ]
⊤はK×M の行列で

あり, ckはCの第 k行, すなわちクラスター kの得点ベクトルを意味し, クラスター kに

所属する全ての個体の因子得点は ckとなる.

ここで, xpにおける異なる値の数Npを考える. たとえば, xp = [−1, 4, 2,−1, 2]⊤にお

ける異なる値は 1, 2と 4なので, Np = 3となる. もしNpがクラスター数より大きいとき,

つまり

Np > K, (3.10)

のとき, FCFAでは (3.7)は 0にならない. なぜなら (3.8)式を (3.7)式に代入すると

ψ2
p =

1

N
∥xp −GCλp∥22, (3.11)

になるからである. このとき, 行列GCλpの中の異なる値は, c⊤1 λp, ..., c
⊤
KλpのK個だが,

xpはNp個の異なる値を持つ. これは, 制約として (3.8)式を加えた (3.7)式, もしくは 3.11

式は 0になり得ないということを意味している. よって, (3.10)式を満たすとき, (3.6)式

は発散しない. xpが様々な実数を含み, クラスターが限られた数のとき, (3.10)式は通常

満たされると考えることができる. しかし, Np ≤ Kとなるとき, (3.11)式は 0となってし

まう. 例えば, xp = [−1, 4, 2,−1, 2]⊤, K = 3,

G =



1 0 0

0 0 1

0 1 0

1 0 0

0 1 0


, C = s


−1 0 0

0 2 0

0 0 4

 , and λp =
1

s


1

1

1

 ,

とすると, xp = GCλpとなる. ただし s ̸=0とする.
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(3.8)式を (3.1), (3.4)と (3.5)式に代入するとそれぞれ以下の 3つの式に書き換えるこ

とができる.

X = GCΛ⊤ + E, (3.12)

1⊤
NGC = 0M , (3.13)

1

N
C⊤DC = IM . (3.14)

ここで, 行列D = G⊤Gは対角行列とする. さらに FCFAモデル (3.12)式と (3.2)式より

対数尤度は

LL(G,C,Λ,Ψ) = −N
P∑

p=1

log ψ2
p − tr(X−GCΛ⊤)Ψ−2(X−GCΛ⊤)⊤, (3.15)

となる. したがって FCFAは, 制約条件 (3.8), (3.13), (3.14)式および, Ψ2は対角行列であ

るという制約の元, パラメータG,C,Λ,Ψ2 について (3.15)式を最大化すると定式化さ

れる.

(3.8)式および (3.13)式では rank(GC) ≤ K−1を示しているが, (3.14)式では rank(GC) =

M であることが必要であるため,

rank(GC) =M ≤ K − 1, (3.16)

となることを明記する. この不等式 (3.16)式より, K > Mが導ける. すなわちクラスター

数は因子数よりも大きくなければならない.

3.3 アルゴリズム

FCFAの問題を解くために, 収束するまで各パラメータG,C, Λ,Ψ2を順番に更新する

アルゴリズムを提案する. 行列G,CとΛを固定すると, 最適な独自分散ψ2
pは (3.11)式に

よって得られる. (3.11)式によって得られた ψ2
pを固定したとき, G,C,Λについて (3.15)

式を最大化することは次のトレースをG,C,Λについて最小化することと等しい.

tr(X−GCΛ⊤)Ψ−2(X−GCΛ⊤)⊤ = ∥XΨ−1 −GCΛ⊤Ψ−1∥2F

= trX⊤XΨ−2 +N trΛΛ⊤Ψ−2 − 2trΨ−2X⊤GCΛ⊤. (3.17)
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したがって, G,C,Λを更新する際は, (3.17)式の最小化のみを考慮すればよい.

Λの更新は, 簡単に導ける. G,CとΨを固定したとき

Λ =
1

N
X⊤GC (3.18)

続いてG = {gnk}の更新するために, (3.8)式の制約条件の元, (3.17)式を最小化する. Xの

第 n行をx⊤
n , Cの第 k列を c⊤k としたとき, (3.17)式は,

∑
n

∑
kgnk∥x⊤

nΨ
−1− c⊤k Λ

⊤Ψ−1∥22
と書き換えられ,

gnk =

1 iff k = argmin1≤l≤K∥x⊤
nΨ

−1 − c⊤l Λ
⊤Ψ−1∥22

0 otherwise.
(3.19)

ここで制約条件 (3.13), (3.14)式および rank(G) = Kは, (3.9)式では考慮されていないこ

とを考える. これらの制約条件は, FCFAのアルゴリズム中で満たすことが保証されない.

よって,あるクラスターにどの個体も所属しない, rank(G) < Kとなる場合がある. この場

合, FCFAモデルがデータセットに適していないことが考えられるため, 計算を中止する.

制約条件 (3.13), (3.14)式が満たされている場合, Cを更新するためにG,Λ,Ψ2を固定して,

Cについて (3.17)式を最小化する必要がある. この最小化は, 関数 f = trΨ−2X⊤GCΛ⊤

の最大化と等しい. M = N
1
2D− 1

2G⊤XΨ−2Λとしたとき, f = trM⊤(N− 1
2D

1
2C)と書き

換えることもできる. この一次形式 f は, 以下の不等式を満たす.

f = trMD
1
2C≤tr∆ (3.20)

この不等式は, 制約条件 (3.14)式を満たすので成り立つ (ten Berge, 1983). 行列∆は特

異値分解

M = V∆W⊤, (3.21)

によって得られる. ここで, V⊤V = W⊤W = IM かつ∆は対角行列である. (3.20)式に

おける tr∆の上限は, D
1
2C = N

1
2VW⊤

C = N
1
2D− 1

2VW⊤ = N
1
2D− 1

2MW∆−1W⊤, (3.22)

(3.21)式のV = MW∆−1を使うと. 得られた行列CによってGCが制約条件 (3.13)式

を満たしていることについては, 付録にて述べる.
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ここで, (3.18)式を (3.17)式に代入すると, 制約条件 (3.14)式を用いてN(trS− trΛΛ⊤)

に書き換えることができる. ただし Sは共分散行列 S = N−1X⊤Xである. したがって,

(3.18)式の更新後の対数尤度 (3.15)式の値は次のように表現できる.

LL(G,C,Λ,Ψ2)∝−N

P∑
p=1

logψ2
p −N(trS− trΛΛ⊤)Ψ−2. (3.23)

ここで右側項は容易に収束しているかどうかを判定できる. FCFAのアルゴリズムは以下

である:

[1] G,CとΨ2を初期化する.

[2] (3.18)式によってΛで更新する.

[3] 収束していれば終了し, 収束していなければ [4]に移動する.

[4] C,ΛとΨ2を固定して, Gを (3.19)式を更新する.

[5] Cを (3.22)式によって更新する.

[6] Ψ2を (3.11)式によって更新する. その後 [2]に移動する.

ステップ [3]の収束判定は, (3.23)式における右側項の値をNtrSで割った値が, 前回の更

新時と比べた増加量が 10−6未満だったときに収束とする. ステップ [1]の初期化は乱数

によって行う. Gに関しては, 各行で 1となる列を無作為に選び, Cは各要素を一様分布

U(−1, 1)から抽出する. Ψ2の対角要素は, 一様分布 U(0.1, 0.9)から抽出する. 最適解が

局所解となることを避けるために, 200回初期値を発生させてそれぞれ更新して (3.15)式

の値が一番大きいときの解を最適解とする. ここで, M ≥ 2のとき

CΛ⊤ = CTT⊤Λ⊤ (3.24)

のように得られたCとΛは回転の不定性を有する. 行列TはM ×M の直交回転行列で,

T⊤T = TT⊤ = IM を満たす. このとき最適解のクラスター中心行列はCT, 因子負荷行

列はΛTとなる. ここでは既存の回転手法であるバリマックス回転を用いる.

3.4 シミュレーション

推定されたパラメータが真のパラメータを再現できているか, シミュレーションを行う.

どのようにシミュレーションを行うかを 4.1で記述し, その結果を 4.2で報告する.
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3.4.1 データの合成と分析

因子数をM = 2, クラスター数をK = 4とする. そして, 制約条件 (3.8), (3.10), (3.13),

(3.14)式を満たすFCFAモデル (3.12)式に従うような 200×12の行列Xをつくる. (3.12)

式中の真のパラメータと誤差行列については, 以下の通りに生成した.

[1] 各クラスターに個体数が少なくとも 10以上となるよう無作為にGを生成する.

[2] Cの各要素は, 一様分布 U(−1, 1)から抽出したあと, GCが (3.13), (3.14)式を満た

すように正規化する.

[3] Λの各要素は,一様分布U(−1, 1)から抽出し, Ψ2の対角要素は IP−diag(ΛΛ⊤) = Ψ2

によって生成する. ここで, diag(ΛΛ⊤)は, ΛΛ⊤の対角要素からなる対角行列である. Ψ2

のある対角要素が 0.05以下のときは, Λを再生成する.

[4] (3.4)式を満たすよう, 誤差行列Eの各列を生成する.

Xを 500個作成し, M = 2, K = 4として FCFAをそれぞれのXに適用する. 得られたC

とΛには (3.24)式のように回転の不定性が存在する. ここで, Tは直交プロクラステス回

転によって求める. つまり (P +K)×M の行列M = [P−1Λ⊤, K−1C⊤]⊤を真値からなる

行列Mtrueに最も近づける, Tについて ∥MT−Mtrue∥2F を最小化にするTを最適解とす

る. 求められたTによるCTとΛTをそれぞれ Ĉ = (ĉkl)と Λ̂ = (λ̂pl)のように表現する.

同様に, 得られたGとΨ2をそれぞれ Ĝ = (ĝnk), Ψ̂
2 = diag(ψ̂2

1, ..., ψ̂
2
P )と表す.

3.4.2 結果

表 3.1: AADの平均値とパーセンタイル
Λ Ψ21P C G

平均値 0.035 0.033 0.035 0.022

中央値 0.035 0.033 0.033 0.013

75パーセンタイル 0.039 0.039 0.043 0.030

95パーセンタイル 0.073 0.047 0.070 0.043

真のパラメータをどの程度再現できたかの指標として, 平均絶対差 (AAD)を用いる. 因

子負荷行列ΛのAADは, AAD(Λ) = (PM)−1
∑

p

∑
l |λ̂pl−λpl|で定義される. 同様にメン
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バーシップ行列G,セントロイド行列C,独自分散行列Ψ2のAADはそれぞれAAD(G) =

(2N)−1
∑

n

∑
k |ĝnk−gnk|, AAD(C) = (KM)−1

∑
k

∑
l |ĉkl−ckl|, AAD(Ψ1p) = P−1

∑
p |ψ̂2

p−

ψp|で定義される. 表 3.1は, 500個のデータセットで得られた AADの平均値, 中央値と

二つのパーセンタイルを表示している. 表 3.1の通り, 全てのパラメーターにおいてよく

再現できている. たとえば, AAD(Λ)が 0.07と, 95%で絶対値が 0.07以内である. また

AAD(G)の平均値は 0.02であった.

3.5 類似手法

本節では, FCFAとReduced K-means analysis(RKM), Factorial K-means analysis(FKM)

がどのように関係しているかを述べる. RKMと FKMは, FCFAと同様の目的で用いら

れる. まずRKMとFCFAが非常に密接した関係にあることを示し, 次に, FCFAがRKM

や FKMと同様にタンデムクラスタリングと呼ばれる手法の欠点を回避できることにつ

いて説明する.

3.5.1 Reduced K-means analysis

RKMは, 制約つき主成分分析と考えることができる. 主成分分析の最小二乗基準にお

ける目的関数は, ∥X− FΛ⊤∥2F と書くことができる. 制約条件 (3.8)式をこの目的関数に

加えると,

fRKM(G,C,Λ) = ∥X−GCΛ⊤∥2F , (3.25)

と表せる. RKMでは, この目的関数 (3.25)式をG,C,Λについて制約条件 (3.9), (3.13)

式と

rank(CΛ⊤) ≤ min(K − 1, P ) (3.26)

の元, 最小化する (DeSoete & Carroll, 1994). (3.26)式は FCFAの制約条件 (3.16)式とは

異なるが, rank(GC) =M のとき一致する. 詳細は付録A.2で記述する. また (3.25)式は

最小二乗の関数だが, FCFAモデルの (3.15)式は最尤法の関数である.

よって FCFAとRKMの違いは,
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[1] RKMが最小二乗法による手法なのに対して, FCFAは最尤法による手法であること

[2] RKMにおいて, 独自分散Ψ2は現れない

である. しかし, [1]は重要ではない. なぜなら, (3.2)式という仮定をおけば,

Ψ = νIP (3.27)

という制約を除いて, 最小二乗基準の (3.25)式とRKMの最尤法は等しくなる. よって, 対

数尤度 (3.15)式を制約条件 (3.27)式の元で最大化すると, 付録A.3で詳しく述べる通り,

最小二乗の RKMで得られた解と同じ解が得られる. これらのことから, RKMは (3.27)

式の制約を加えた FCFAといえる. (3.27)式を加えるということは, 誤差分散が全ての変

数で同一であることを意味する. 一方, FCFAにおけるΨ2 = ψ2
1, ..., ψ

2
P は制約のない対角

行列である. ある誤差は他の変数の誤差と無相関であり, ψ2
p(p = 1, ..., P )は変数 pに対し

て独自の値をとることから ψ2
pは独自分散と呼ばれる.

それぞれの変数における分散Var(xp)は, 以下のようにクラスター因子GCによって説

明できる部分と説明できない部分 ψ2
pに分解することができる.

Var(xp) =
1

N
∥GCλp∥22 + ψ2

p. (3.28)

これらについては付録 A.4にて証明する. (3.28)式より, FCFAにおける独自分散 ψ2
p は

GCによって説明される部分より, 大きな値を取りうる. 一方, RKMでは ψ2
p には制約

(3.27)が課せられこのようなことを起こり得ない.

3.5.2 Factorial K-means analysis

FKMは以下の目的関数

fFKM(W,G,C) = ∥XW −GC∥2F (3.29)

をW,G,Cについて最小化する. 制約条件は, (3.9)式および, W⊤W = IM である (Vichi

& Kiers, 2001). ここで, Wは P×M の行列で, XWはX中の P 個の変数がM 個の成分

に要約された, N×M の成分行列とみなせる. FKMは, XWの各行をクラスター化する

ために, 成分行列XWとGCを近似させる. しかし RKMと FCFAでは, クラスター因

子, またはクラスター成分行列GCと負荷行列の転置行列Λ⊤の積をデータ行列Xに近
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似させる. この違いによって, RKMの場合とは異なり, FCFAと FKMの直接的に関係し

ているとすることは難しい. しかし, FCFAとFKMは共にGCを求め, FKMにおいて変

数と成分の関係性を表すWの役割は, FCFAにおいてはΛが担っているので, 比較する

ことができる.

3.5.3 タンデム分析

RKMと FKMは [1]変数を説明する成分の抽出と [2]個体の分類を同時に行う. これら

二つの目的は, データ行列Xに主成分分析を行い, その結果得られた成分行列に対してク

ラスター分析を行うことでも達成することができる. しかし, タンデム分析と呼ばれるこ

の手法は批判されることが多い. なぜなら, Xの成分はXのクラスター構造を必ずしも

反映しているとは言えないからである. 実際, タンデム分析に比べてRKMのほうがより

正しく個体を分類できることが経験的に知られている.

同様に, Xに因子分析を行って得られた因子得点に対しクラスター分析を行う, タンデ

ム分析に比べて FCFAがより分類精度がよいことは自然な発想である. 変数モデル因子

分析がΛとΨ2のみをパラメータとし, 因子得点 Fは確率変数として扱う. 因子得点 F

は, 因子分析を行って得たΛとΨ2を使って計算できるので, 因子分析におけるタンデム

分析, タンデム因子分析は, 次の三つの手順からなる.

[1] データセットに対して因子分析を行い, ΛとΨ2を得る.

[2] [1]によって得られたΛとΨ2によりFを計算する.

[3] Fに対してクラスター分析を行い, GとCを得る.

次節では, [1]は最尤法, [2]は回帰法, [3]は k-meansを用いた.

3.6 実データ解析

本節では, 四つの手法, FCFA, RKM, FKM, タンデム因子分析を, 事前に個体がどのク

ラスターに分類されるか知られているデータセットを用いて比較する. 用いたデータセッ

トは全て Izenman(2008)のサイト http://astro.temple.edu/∼alan/MMST/datasets.html

で得ることができる. また, 全てのデータセットを平均 0, 分散 1に標準化して分析した.
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加えて, クラスター数K は正しい群の数にした. FCFAと比較するために RKMの制約

条件を (3.14)式を用いた. Timmerman(2010)などでは, (3.14)式ではなくΛに直交制約

Λ⊤Λ = IMを設けているが, 付録で述べる通り分類結果は変わらないため問題ない. FKM

の制約条件W⊤W = IM は, 代わりとなる制約条件をみつけることができなかった.

3.6.1 あやめデータ

表 3.2: あやめデータに対する主成分負荷量と因子負荷量
タンデム FCFA RKM FKM

Λ ψ2
p Λ ψ2

p Λ W

S.L 0.87 0.24 0.80 0.36 0.81 0.28

S.W -0.42 0.82 -0.48 0.76 -0.52 -0.14

P.L 0.99 0.01 0.97 0.06 0.97 -0.81

P.W 0.96 0.07 0.96 0.07 0.95 0.50

C C C C

SE 1 -1.30 -1.32 -1.34 0.01

VE 2 0.30 0.26 0.30 0.18

VP 3 1.07 1.12 1.06 -0.19

表 3.3: あやめデータにおける真のクラスターと結果得られたクラスターの分割表
タンデム FCFA RKM FKM

Cluster SE VE VI SE VE VI SE VE VI SE VE VI

SE 50 0 0 50 0 0 50 0 0 31 6 13

True VE 0 48 2 0 49 1 0 45 5 26 16 8

VI 0 7 43 0 4 46 0 6 44 21 16 13

CCP 94 97 93 40

第一の例は, 有名な Fisher(1936)のあやめデータを用いる. あやめデータは, 150の花

びらと 4つの指標からなるデータで, それぞれの花びらは三つのグループに分けられる.

このデータは判別精度を試すために広く用いられている. 変数が P = 4と少数なため,

M = 1とした. 表には, Λ,W,Cと, タンデム因子分析および FCFAにおける ψ2
p が書か

1Setosa
2Versicolor
3Verginica
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れている. 表 3.2の通り, FCFAとタンデム因子分析, RKMは似通った負荷行列を持つが,

FKMの重み行列は異なる形をしている. この傾向は, クラスター得点行列Cにおいても

見られる. 各手法で得られたメンバーシップ行列Gの分類精度は, 表 3.3に示している.

表 3.3は, 行が真のクラスター, 列が手法によって得たクラスターの分割表である. 分割表

の対角マスは, 正しく分類された個体の数を表す. 例えば, 表 3.3では FCFAは真のクラ

スターVIにおいて 46個体が正しく分類されたが, 4個体はVEに誤って分類されている.

また正分類率は, 100×(50 + 49 + 46)/(50 + 50 + 50) = 97%となる. 表 3.3の通り, FCFA

が最も正分類率が高く, 反対に最も正分類率の低い手法は FKMであった.

3.6.2 糖尿病データ

表 3.4: 糖尿病データに対する主成分負荷量と因子負荷量
タンデム FCFA RKM FKM

Λ ψ2
p Λ ψ2

p Λ W

glucose.area 0.56 0.09 0.67 0.46 0.13 0.77 0.64 0.17 0.21 -0.02

Insulin.area -0.18 0.97 0.02 -0.21 0.89 0.16 -0.20 0.89 0.39 0.67

SSPG -0.09 0.98 0.04 -0.08 0.91 0.16 -0.11 0.89 0.26 -0.73

Relative.weight 0.49 -0.31 0.66 0.54 -0.22 0.65 0.53 -0.24 -0.07 0.02

f.p.glucose 0.54 0.84 0.01 0.31 0.83 0.20 0.30 0.80 -0.86 0.08

C C C C

O 4 -0.81 2.45 -0.89 2.33 -0.79 2.37 -0.60 -0.04

C 5 1.08 0.13 1.46 0.13 1.28 0.01 -0.04 0.04

N 6 -0.55 -0.54 -0.62 -0.67 -0.78 -0.68 0.47 -0.01

表 3.5: 糖尿病データにおける真のクラスターと結果得られたクラスターの分割表
タンデム FCFA RKM FKM

Cluster O C N O C N O C N O C N

O 15 14 4 20 12 1 20 10 3 13 10 10

True C 0 26 10 0 27 9 0 29 7 17 14 5

N 0 11 65 0 7 69 0 16 60 10 24 42

CCP 73 80 75 48

二つめのデータは, 糖尿病に関するデータで, http://archive.ics.uci.edu/ml/datasets/

4Overt diabetic
5Chemical diabetic
6Normal
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Diabetes で手に入れることができる. データは 145人の被験者の 5つの指標からなる. 因

子数は, M = 2としΛ,Wにはそれぞれバリマックス回転を施した. 表 3.4には, 得られた

Λ,W,Cと, FCFAとタンデム因子分析によって得られたψ2
pを載せている. あやめデータ

と同様, FCFAとタンデム因子分析, RKMの負荷行列は近しいのに対し, FKMの重み行

列は全く違う構造をしている. 各手法の分類精度に関しては, 表 3.5に記しており, 書き方

は表 3.3に準拠している. 表 3.5の通り, またしても FCFAが正分類率が最も高く, FKM

が正分類率が最も低かった.

3.6.3 霊長類肩甲骨データ

表 3.6: 霊長類肩甲骨データに対する主成分負荷量と因子負荷量
タンデム FCFA RKM FKM

Λ ψ2
p Λ ψ2

p Λ W

AD.BD 0.82 0.52 0.01 0.75 0.59 0,07 0.72 0.59 -0.15 0.78

AD.CD 0.85 0.04 0.28 0.91 -0.04 0.16 0.91 0.01 0.63 0.03

EX.CD -0.96 -0.02 0.07 -0.85 0.16 0.24 -0.84 -0.15 0.04 0.48

Dx.CD 0.01 0.54 0.71 -0.06 0.61 0.62 -0.15 0.69 0.11 -0.10

SH.ACR -0.24 -0.14 0.92 -0.26 -0.17 0.89 -0.19 -0.37 -0.19 -0.01

EAD -0.09 -0.95 0.09 -0.13 -0.80 0.33 -0.08 -0.80 0.09 0.37

beta -0.82 0.06 0.32 -0.91 0.13 0.15 -0.90 0.03 0.72 0.08

C C C C

HY 7 1,18 -1.15 1.68 -1.37 1.72 -1.14 -0.52 0.11

PO 8 -0.66 -1.03 -0.62 -1.28 -0.38 -1.60 0.18 -0.16

PA 9 0.98 0.57 0.88 1.27 0.66 1.10 -0.23 -0.02

GO 10 0.59 1.31 0.43 0.85 -1.14 0.64 -0.11 0.24

HO 11 -0.99 0.26 -1.01 0.24 -0.91 -0.40 0.55 -0.13

表 3.7: 霊長類肩甲骨データにおける真のクラスターと結果得られたクラスターの分割表

タンデム FCFA RKM FKM

HY PO PA GO HO HY PO PA GO HO HY PO PA GO HO HY PO PA GO HO

HY 16 0 0 0 0 15 1 0 0 0 15 1 0 0 0 6 2 2 4 2

PO 1 12 0 0 2 0 15 0 0 0 0 8 0 0 7 4 3 6 1 1

True PA 0 0 12 8 0 0 0 17 3 0 0 0 20 0 0 7 0 5 8 0

GO 0 0 4 10 0 0 0 3 11 0 0 0 14 0 0 2 1 3 8 0

HO 0 9 0 0 31 0 4 0 0 36 0 4 0 17 19 0 17 3 1 19

CCP 77 90 59 39
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三つ目のデータは霊長類の肩甲骨についてのデータで, 105個体 7変数のデータである.

因子数をM = 2とM = 3で分析したが, ここではM = 2のときの結果のみを表 3.6, 3.7

に記す. ΛとWにはバリマックス回転を行った. 表 3.6の通り, FCFAとタンデム因子分

析, RKMは似た負荷行列を持つが, FKMの重み行列は全く異なる.

表 3.7は, 各手法の分類精度に関する分割表であり, 書き方は表 3.3, 3.5と同様である.

これまでのデータ同様, FCFAが最も正分類率が高く, FKMは正分類率が低かった. この

傾向はM = 3の場合でも同様で, FCFAの正分類率が最も高く 90%, FKMの正分類率は

最も低く 39% であった. タンデム因子分析とRKMの正分類率は, それぞれ 77%, 59%で

あった.

3.6.4 独自分散と群間分散の関係

本節で紹介した全てのデータセットで, FCFAは最も正分類率が高く, FKMは正分類率

が最も低かった. FKMの正分類率が低い理由は, 本論文の主題から外れるので省略する.

FCFAがタンデム因子分析を上回っている理由は, RKMがタンデム主成分分析より分類

精度が良い理由と同じ理由であり (De Soete & Carroll, 1994), 因子分析によって得られ

た因子得点は, Xのクラスター構造を必ずしも反映しているとは限らないからである.

ここで注目すべきは, FCFAが正分類率の高さでRKMを上回っている点である. この

原因は, 3.5節で述べたRKMと FCFAの違いにある. (3.28)式の通り, FCFAにおける独

自分散 ψ2
pはGCによって説明できない変数, すなわちクラスター構造にあまり関係して

いない変数において高くなる. しかし, RKMでは (3.27)式のようにそのようなことは起

こらない. つまり, FCFAの高い正分類率は独自分散によるものであると導ける. FCFA

の独自分散 ψ2
p と群間分散とに強い負の相関関係があることから推し量ることができる.

個体の分離度を表す指標として, Xの各変数における比, 群間分散/全体分散を用いるこ

ととする. 群間分散とは, 真のクラスター間の二乗和を意味し, 全体分散は, 二乗和の合

計を意味する. 図 3.1は, 実データでの独自分散と群間分散/全体分散からなる散布図であ

る. 図の通り, 例に挙げた全てのデータで強い負の相関が確認できる.
7Hylobates
8Pongo
9Pan

10Gorilla
11Homo
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図 3.1: 分離度と独自分散による散布図

独自分散のこの役割は, タンデム因子分析がRKMより糖尿病データを除くと正分類率

が上回っていることとも関係しているかもしれない. とすれば, タンデム因子分析で用い

られる通常の因子分析では (3.8)式のようなクラスター構造を仮定していないにもかかわ

らず, 独自分散が正分類率を高くしている可能性がある. しかし, 結果についての深い考

察は本論文の目的からは外れるので省略する.

3.7 考察

母数モデル因子分析において, 各個体の因子得点はパラメータとして扱われるが, 他の

パラメータである因子負荷行列, 独自分散と同時に推定することはできない. そこで全て

のパラメータを同時に推定するために, 個体は少数のクラスターに所属し, 同一のクラス

ターに属する個体は因子得点が等しいという制約を加えたモデルを提案した. この制約

つき因子分析をFixed Clustered Factor Analysis (FCFA)と名付けた. シミュレーショ

ンによって, 真のパラメータをよく再現できることが確認された.

3.5節では, FCFAがどのようにRKMと FKMに関係しているかを述べた. 特にRKM

は, 独自分散が変数に関わらず同一, つまり各変数に独自ではないという制約を加えた

FCFAの特殊形とみなせることを示した. また実データの例を使って, FCFAがRKMや

FKM, タンデム因子分析に分類精度の点で上回っていたことを示した. この結果から,

FCFAが変数を説明する因子の抽出と個体の分類をするために有用であることがわかる.

FCFAがRKMより分類精度が良い理由には, 独自分散が深く関わっていると考えられ
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る. FCFAでは, クラスタリングにあまり寄与していない変数に対して独自分散が高くな

り, 得られた計算結果からも確かめることができる. 独自分散の利点に関する理論的研究

は, 今後の課題である.

FCFAはRKMと FKMより分類精度がよかったが, 後者の二つの手法にはない制限が

ある. (3.16)式のよう FCFAではK > M , つまりクラスター数は因子数より大きくなけ

ればならないという制約があったが, RKMと FKMにはこのような制約はない. この制

約は, 因子得点の直交制約 (3.5)式あるいは (3.14)式が起因している. つまり, 列直交の

K×M の因子得点行列F = GCはK > M を暗に意味している. そこで, 因子得点の直交

性を緩める, つまりK ≤M を許すようなFCFAの拡張が, 今後の課題として検討される.

もう一つのFCFAの制限は, 誤差の分布に正規分布を仮定していることである. 前述の

RKMとFCFAの比較の際は, RKMを正規分布に従う最尤法として考えたが, 最小二乗法

によるRKMや FKMには分布の仮定は必要ない. よって, 本来は比較のためには最小二

乗法によるクラスタリングを伴う因子分析を考えるべきだ. しかし最小二乗法の因子分析

は, 共分散行列にモデル部分ΛΛ⊤を近似するので, クラスター化されるべきFは考慮さ

れないので, 最小二乗法によるクラスタリングを伴う因子分析 (Adachi, 2015; 足立, 2015;

Harman & Jones, 1966)は難しいことがわかる. ただし近年新しく提案された行列モデル

因子分析は (Adachi, 2012; Unkel & Trendafilov, 2010), 最小二乗法の枠組みで Fを含む

モデル部分をデータ行列Xに近似させる手法なので, FCFAの最小二乗モデルに役立つ

可能性がある.

FCFAは因子分析における重要な不定性, 因子得点の不定性の無い特殊なモデルである.

したがって, 推定されたパラメータを用いて解釈を行うことに特別の注意を払う必要はな

い. 一方で, 回転の不定性という問題は残したままとなっている. 回転法を適用すること

なく因子負荷量の解釈を行うことはできず, さらにどのような回転基準を利用したかに

よって, 因子負荷量の値は変化してしまう. 近年の統計学の発展により, 因子負荷量に 0

の要素が多くあることを仮定としておくことで, 回転の不定性を解消できることが確認さ

れている. そのため, FCFAにおける回転の不定性も同様に解消可能であることが示唆さ

れる.
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本章の内容は, Uno, Adachi, & Trendafilov (2018)を拡張したものである.

4.1 導入

因子分析において, N 個体 × P 変数の列中心化されたデータ行列は, FΛ⊤ +UΨのよ

うにモデル化される. ただしFはN 個体 × M 因子の共通因子得点行列, Λは P 変数 ×

M 因子の因子負荷行列, UはN 個体 × P 変数の独自因子得点行列, Ψは P 変数 × P 変

数の対角行列でその対角要素の二乗は独自分散と呼ばれる. そしてM < P < N を想定

している (Harman, 1976; Mulaik, 2010). 不等式M < P は, FΛ⊤が P 個の変数をより少

数の共通因子によって説明していることを意味している. 一方でUΨの各列はそれぞれ

に対応する変数のみ特有に寄与している.

因子分析には, 回転の不定性と因子得点の不定性という 2つの不定性があることが知ら

れている (Mulaik, 2010). 本研究では因子得点の不定性を用いて, 解釈のしやすい解を得

ることを目指す. ここで, 因子得点の不定性とは FとUの共通因子得点と独自因子得点

が一意には定められないことを指す. より詳しく述べると, FとUからなる n× (m+ p)

のブロック行列 [F,U] は,

[F,U] = [Fd,Ud] + [Fu,Uu] (4.1)

のように 2つの項の和で表すことができる. ただしFdとUdはそれぞれ共通因子得点と

独自因子得点の一意に定まる部分を表す一方で, FuとUuは共通因子得点と独自因子得

点の一意に定まらない部分を表す (Gutmann, 1955; Mulaik, 1976; Stegeman, 2016).

従来の因子分析では, FとUにおける因子得点を確率変数として扱っている. 分布の仮

定を用いることで, FΛ⊤ +UΨの共分散行列はΛΛ⊤ +Ψ2となる. この共分散行列を, 標

本共分散行列 SXX = N−1X⊤Xに近づけることで因子分析の解を得る. 最小二乗基準で
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は ∥SXX − (ΛΛ⊤ +Ψ2)∥2F を最小化することで近づけ, 尤度基準では log(|ΛΛ⊤ +Ψ2|) +

trace((ΛΛ⊤ + Ψ2)−1SXX)を最小化することで近づける. 共分散行列を用いることによ

り FとUは考慮する必要がなく, ΛとΨ2の推定のみを考慮すればよい. 因子得点の推

定については, ΛとΨ2を推定したのち Fの近似値を推定する 2段階の推定方法がある

(Harman, 1976; Mulaik, 2010).

しかし近年提案された新しい因子分析の推定方法では, ΛとΨ2だけでなく共通因子得

点と独自因子得点,つまりFとUもパラメータとして推定することができる. Soc̆an(2003)

で述べられているようにKiersによって最初に提案された後,様々な研究者によって研究が

なされている (Adachi & Trendafilov, 2018; Stegeman, 2016, Trendafilov & Unkel, 2011;

Unkel & Trendafilov, 2010). この新しい因子分析では, F,Λ,U,Ψの全てがパラメータと

して扱われ, モデル部分FΛ⊤ +UΨをデータ行列に最小二乗基準の意味で直接近づける

ことができる. 本論文では, 因子分析を行列分解問題として捉えていることから, このモ

デルを行列モデル因子分析と呼ぶ. 行列モデル因子分析については次の節で詳しく述べる

が, 行列モデル因子分析では, 最適な [F,U]を推定することはできるものの, 一意に定め

ることはできない. 正確には, (4.1)式における [Fd,Ud]のみが一意に定めることができ,

[Fu,Uu]は一意に定めることができない.

これらの問題に対処するため, 以下の 2ステップによる因子得点行列 [F,U]を同定する

手法を考える:

[1] 行列モデル因子分析によりデータから, (4.1)式における [Fd,Ud]を得る.

[2] 既知の [Fd,Ud]から, なにか「望ましい特徴」を持つ [F,U]が得られるように, (4.1)

式における一意でない部分 [Fu,Uu]を推定する.

本論文では [2]のステップについて述べる. また「望ましい特徴」として, (4.1)式の因

子得点が解釈しやすさを考える. 特に (4.1)式における共通因子得点FのN 行 (つまり個

体)が, 少数のグループにまとまっていることを望ましいとした. このようなFは, 共通因

子得点の特徴を捉える際に少数のグループに着目すればよいため, 便利である. 個体のク

ラスタリングは重要なテーマであり, 多変量データ分析における大きな関心のうちの一つ

である (Adachi, 2016; Gan, Ma, & Wu, 2007). この部では, 提案手法のことをClustered

Common Factor Identificationの頭文字からCCFIと呼ぶことにする.

この章における構成は以下の通りである. 次の節では, 上記の [1]に対応する行列モデ

ル因子分析とその解について述べる. その後, [2]のためのCCFIを 4.3節で定式化し, 4.4
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節でCCFIのアルゴリズムを提案する. クラスター数の選択については 4.5節で考察する.

その後の節では, シミュレーションデータおよび実データへのアルゴリズムの有用性を検

証するために数値実験を行う.

4.2 行列モデル因子分析

行列モデル因子分析は, 最小二乗目的関数

∥X− (FΛ⊤ +UΨ)∥2F = ∥X− [F,U][Λ,Ψ]⊤∥2F (4.2)

を因子得点行列 [F,U]と共変量行列 [Λ,Ψ]について, 以下の制約を満たしたうえで最小

化する.

1⊤
N [F,U] = 0⊤

M+P (4.3)

N−1[F,U]⊤[F,U] = IM+P (4.4)

Ψ :対角行列

rank(Λ) =M

最小化について, 共変量ステップと因子得点ステップを収束するまで交互に繰り返す. 目

的関数 (4.2)式が前回の反復からの減少値が 10−5∥X∥2F よりも小さいとき, 収束したと判

断する.

共変量ステップでは, 最適な [Λ,Ψ]を得るために, [F,U]は固定したうえで (4.2)式を

最小化する. 解は Λ = N−1X⊤Fと Ψ = N−1diag(X⊤U)によって得られる. ここで

diag(X⊤U)はX⊤Uの対角要素を要素とする対角行列を表す.

因子得点ステップでは, (4.2)式は制約条件 (4.3)式と (4.4)式のもとで [F,U]について

最小化する. これによって

[F,U] = N1/2KL⊤ +N1/2K⊥L
⊤
⊥ (4.5)

を得る. (4.5)式におけるK(N × P )と L((M + P ) × P )は行列N−1/2X[Λ,Ψ]の特異値

分解

N−1/2X[Λ,Ψ] = K∆L⊤
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から得られる. ただし

K⊤K = L⊤L = IP , 1
⊤
NK = 0⊤

P (4.6)

を満たし, ∆は P × P の対角行列である. N ×M の行列K⊥と (M + P )×M の行列L⊥

は制約条件

K⊤
⊥K⊥ = L⊤

⊥L⊥ = IM , K
⊤K⊥ = L⊤L⊥ = OP×M , 1

⊤
NK⊥ = 0⊤

M (4.7)

を満たす. ただしOP×M は要素が全て 0である P ×M のゼロ行列を表す. Adachi(2012)

にて証明されているとおり, Xは列中心化されているため (4.6)式の 1⊤
NK = 0P と (4.7)

式の 1⊤
NK⊥ = 0M は成り立つ.

この節では, X[Λ,Ψ]のランクは P と想定する, つまり rank(X[Λ,Ψ]) = P . これは

N1/2KL⊤が一意に定まることを意味している. 一方で, 制約条件 (4.7)式を満たすK⊥と

L⊥が一意に定まらない. 同様にN1/2K⊥L
⊤
⊥も一意に定まらない. これらの事実を考慮し

(4.1)式を (4.5)式と比較すると (4.1)式の一意に定まる部分と定まらない部分をそれぞれ

[Fd,Ud] = N1/2KL⊤ = X[Λ,Ψ]L∆L⊤ (4.8)

[Fu,Uu] = N1/2K⊥L
⊤
⊥ (4.9)

と表現することができる. ここで (4.8)式の最後の等式は, 特異値分解N−1/2X[Λ,Ψ] =

K∆L⊤から得られる.

Adachi & Trendafilov (2017)は, (4.5)式, (4.8)式, (4.9)式の関係を図 4.1のように幾何

表現を用いて示した. ただし図における矢印は, 行列を表す.

最適な因子得点行列 [F,U]が, [Fd,Ud]を中心点とした円錐を形成することが, 図 4.1か

らわかる. ここで中心点から [F,U]までの距離は (NM)1/2である. これは (4.1)式と (4.7)

式, および

∥[F,U]− [Fd,Ud]∥2F = ∥[Fu,Uu]∥2F

= ∥N1/2K⊥L
⊤
⊥∥2F

= N∥L⊤
⊥∥2F = Ntr(L⊤

⊥L⊥) = NM

から従う. 図 4.1における円周に位置する任意の [F,U]はいずれも最適解である.
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図 4.1: Adachi & Trendafilov(2017)の因子得点の円錐

4.1節で述べたように, 古典的な因子分析はΛΛ⊤ +Ψ2を SXX = N−1X⊤Xに近似させ

ており, FとUは計算過程から除外されている. このことは, (4.5)式における最適な因

子得点の探索を考慮していないことを意味している. 代わりに, 共通因子得点 FはΛと

Ψ2が得られた後に推定される. いくつかFの 2段階推定法が提案されているが, いずれ

もXWという形をとっている. つまりXの線形関数である (Anderson & Rubin, 1956;

Bartlett, 1937; Krijnen, Wansbeek, & ten Berge , 1996; Thurstone, 1935). これはXの

列空間を Sp(X)とすると, Sp(F)が Sp(X)に必ず含まれることを意味している. ところ

が図 4.1で明らかなように, Fd のみが (XW)の形をとるため, Sp(F) ̸⊂ Sp(X)である.

Sp(XW)と表すことができる Sp(X)に含まれる空間は, Sp(Fd)ではあるが, Sp(F)では

ない. 以上の議論から古典的な因子分析によって得られる共通因子得点行列は, Fという

よりも一意に定まるFdの推定値ということがわかる. 一方で我々は, Fdを含む共通因子

得点行列Fだけでなく独自因子得点Uも同時に同定することを目指したい. この目標は,

次節で定式化する提案手法であるCCFIによって達成される.

4.3 提案手法

CCFIの目的は, [F,U]における共通因子得点Fがなんらかの望ましい特徴を有してい

るように (4.9)式における一意に定められない部分を同定することである. この目的を言
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い換えれば, 図 4.1に描かれた円周上に位置する望ましい特徴をもつ [F,U]を見つけるこ

とである. 本研究では望ましい特徴として, 4.1節で述べたように FのN 行が少数のグ

ループにできる限りクラスター化されていることとした.

Ck(k = 1, ..., K)をK ≪ N としたときのクラスターの集合とする. クラスター化され

た Fの特徴は以下で定義する: Ckに含まれる F = [f1, ...,fN ]
⊤(N ×M)の行は, クラス

ター Ckで表現される 1 ×M の列ベクトル c⊤k に最も近い. これは, FをGCに近似する

ことを意味している. ここで, C = [c1, ..., cK ]
⊤は, k列が c⊤k のKクラスター× M 因子

の行列であり, G = (gnk)はN ×K行列はN 個体× Kクラスターのメンバーシップの指

示行列であり,

gnk =

1 (個体 nがCkに所属する)

0 (それ以外)
(4.10)

である. この近似は

∥[GC,Ud]− [F,U]∥2F = ∥[GC,Ud]− ([Fd,Ud] + [Fu,Uu])∥2F (4.11)

の (4.8)式において既に定まっている [Fd,Ud]を固定したときに, G, C, [Fu,Uu]につい

て最小化することで達成される. ここで [GC,Ud]とした理由はUdについては関心の対

象外とし, 一意に定まらない部分Uuのみを調整することによって, Fの望ましい特徴を

達成するためである.

このとき, (4.11)式は

f(G,C,Fu,Uu) = ∥[GC,Ud]− [F,U]∥2F

= ∥[GC,Ud]− ([Fd,Ud] + [Fu,Uu])∥2F

= ∥[GC,Ud]− ([Fd + Fu,Ud +Uu])∥2F

= ∥GC− (Fd + Fu)∥2F + ∥Uu∥2F (4.12)

CCFIのアルゴリズムは, G, C, Fu, Uuについて, 制約条件 (4.9)式, (4.10)式のもとで

(4.12)式を最小化する.
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4.4 アルゴリズム

我々は, 最適なG,C, [Fu,Uu]の最適な更新を交互に実行する, CCFIの交互最小二乗法

を提案する. 次の 4.4.1小節と 4.4.2小節では,

[1] GとCを更新するクラスタリングステップ,

[2] [F,U]を更新する因子得点ステップ

をそれぞれ記述している. さらに 4.4.3小節では全体のステップをまとめている.

4.4.1 クラスタリングステップ

(4.12)式における最後の等式において, GとCの更新に関係するのは

h(G,C) = ∥GC− (Fd + Fu)∥2F = ∥GC− F∥2F (4.13)

のみである. したがって, Fを既知としたうえでGとCを最適に更新するためには, (4.13)

式を考慮するだけでよい. これらの更新のためには, Fの行を分類するために k平均クラ

スタリングアルゴリズムを使用することができる (MacQueen, 1967). つまり, GとFを

既知としたとき, (4.13)式は

C = (G⊤G)−1G⊤F = D−1G⊤F (4.14)

によって最小化される. ただしD = G⊤Gは, k番目の対角要素を Ckの個体数とする対

角行列とする. (4.14)式は, c⊤l (Cの l行)がクラスターClに所属するFの列の平均ベクト

ルであることを意味している. この観点から, Cはクラスターセントロイド行列と呼ばれ

る. 一方でCとFを既知として, G = (gnk)の各要素を

gnk =

1 (k = argmin1≤l≤K∥fn − cl∥22)

0 (それ以外)
(4.15)

で更新したとき, (4.13)式は最小化される. ただし fnはFの n行である.
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4.4.2 因子得点ステップ

最適な [Fu,Uu]の更新を考える. このブロック行列は, (4.9)式のようにも表せるので,

(4.12)式の 2番目の等式は以下のように書き換えることができる.

f([Fu,Uu]) = ∥[GC,Ud]− ([Fd,Ud] + [Fu,Uu])∥2F

= ∥Y − n1/2KL′ − n1/2K⊥L
⊤
⊥∥2F

= f(N1/2K⊥L
⊤
⊥) (4.16)

これにはY = [GC,Ud]と (4.8)式, (4.9)式を用いた. さらに (4.16)式は

f(N1/2K⊥L
⊤
⊥) = ∥Y −N1/2KL⊤∥2F − 2N1/2tr(Y⊤K⊥L

⊤
⊥) + ∥N1/2K⊥L

⊤
⊥∥2F (4.17)

に書き換えることができる. ここで (4.7)式から ∥N1/2K⊥L
⊤
⊥∥2F = NtrIM . したがって,

(4.17)式の最小化は

ϕ(K⊥,L⊥) = trY⊤K⊥L
⊤
⊥ = trL⊥K

⊤
⊥Y (4.18)

の最大化と等しい. ただしK⊥とL⊥は制約条件 (4.7)式を満たす.

制約条件 (4.7)式を満たすために, K⊥とL⊥をそれぞれ

K⊥ = J1JKP, L⊥ = JLQ (4.19)

とリパラメトライズする. ただしJ1 = IN−N−11N1
⊤
N , JK = IN−KK⊤, JL = IP+M−LL⊤

は, 既知の対称かつ冪等行列である. P(P ×M)とQ((P +M) ×M)は未知の行列であ

り, 制約条件

P′JKJ1JKP = Q⊤JLQ = IM (4.20)

を満たす. これによって (4.19)式におけるK⊥とL⊥は (4.7)式の中のK⊤
⊥K⊥ = L⊤

⊥L⊥ = Im

を満たす. 付録で証明するとおり, (4.19)式と (4.20)式は, (4.7)式のK⊤K⊥ = L⊤L⊥ =

OP×M を満たす. 残りの 2つの等式は (4.19)式と (4.20)式から, ただちに導ける. (4.19)

式を (4.18)式に代入すると, (4.18)式は

ϕ(P,Q) = trP⊤JKJ1YJLQ = trP⊤JKJ1(J1JKYJL)JLQ (4.21)
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と書き換えることができる. ここで用いた J1JK = JKJ1は付録にて証明している. した

がって考える問題は, (4.20)式の制約のもとでPとQについて (4.21)式を最大化するこ

とである.

これは双線型形式 (generalized bilinear form)である (4.21)式が (4.20)式の制約下で

ϕ(P,Q) ≤ trΦ1 (4.22)

を満たすことに注意することで解くことができる (ten Berge, 1983; 1993). ここでΦ1は

M ×M の対角行列であり,

J1JKYJL = V

Φ1

Φ2

W⊤ (4.23)

で定義されるJ1JKYJLの特異値分解によって得られる. ただし, V⊤V = W⊤W = IM+P

かつ

Φ1

Φ2

は (M+P )×(M+P )は対角要素が降順の非負対角行列である (ten Berge,

1993).

V1(N ×M)とW1((M + P )×M)をそれぞれVとWの左からM 列までの行列とす

る. 制約 (4.20)式がなければ, (4.22)式の trΦ1の上限は,

P = V1, Q = W1 (4.24)

によって得られる. なぜなら (4.24)式を (4.21)式に代入すると,

ϕ(V1,W1) = V⊤
1 JKJ1YJLW1

= V⊤
1 J1JKYJLW1

= V⊤
1 VΦW⊤W1

= Φ1

となるからである.

したがって残った問題は, (4.24)式が (4.20)式を満たしているかどうかである. もし

R = rank(J1JKYJL) ≥M (4.25)
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が成り立つなら, Φ1(M ×M)の全ての対角要素は正であり, (4.24)式は 4.20式を満たすこ

とを付録にて証明した. しかし付録で証明したように, R ≤ min(K − 1,M)である. よっ

て (4.25)式を考慮すると,

K ≥M + 1 (4.26)

とせざるをえない. したがって (4.24)式が最適であるためにはR =M が成り立つ必要が

ある. 今後本研究では, これが成り立つと仮定し (4.26)式からクラスター数は因子数プラ

ス 1とするべきと考える.

最後に, (4.19)式と (4.24)式を用いてK⊥ = J1JKV1と L⊥ = JLW1を得る. これらを

(4.9)式に代入すると更新式

[Fu,Uu] = N1/2J1JKV1W
⊤
1 JL

⊤ (4.27)

を得る.

4.4.3 アルゴリズムの全体

これらの結果をまとめると, CCFIのアルゴリズムは以下のようになる:

ステップ 0. (4.8)式によってFdを計算する.

ステップ 1. [Fu,Uu]とGを初期化する.

ステップ 2. Cを (4.14)式によって更新する.

ステップ 3. Gを (4.15)式によって更新する.

ステップ 4. [F,U]を (4.15)式によって更新する.

ステップ 5. 収束したと判定すれば計算を終了する. 収束していなければステップ 2に

戻る.

ステップ 1では, Gがメンバーシップ行列となるように乱数によって初期化する. 一方で

[Fu,Uu]は

[Fu,Uu] = N1/2ΓAΓB (4.28)
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によって初期化される. ここでΓAとΓBは,各要素が一様分布U(−1, 1)に従う行列A(N×

M)と行列B((M + P )×M)を用いた行列 J1JKAと JLBの特異値分解

J1JKA = ΓAΘAΓ
⊤
A

JLB = ΓBΘBΓ
⊤
B

によって得られる. ただし

Γ⊤
AΓA = Γ⊤

BΓB = Θ⊤
AΘA = Θ⊤

BΘB = IM .

Adachi & Trendafilov (2017)で示されたように, (4.28)式はありうる一つの [Fu,Uu]であ

る. ステップ 5での収束は, (4.11)式の前回の反復時と比べた減少量が 10−5以下のときと

規定する.

解が局所解である場合を避けるために, 上記のアルゴリズムを異なる初期値で 1000回

実行する. そこで得られる 1000セットの解のうち, 目的関数の値が最も小さい場合の解

を最適解とした.

[F,U]が同定されても, FとΛには回転の不定性は残っている. つまりTが正規直交行

列としたとき, FΛ⊤ +UΨ = FTT⊤Λ⊤ +UΨとなる. この回転行列Tについては既存

の回転法を用いる (Browne, 2001).

4.5 クラスター数

前章で述べた通り, CCFIのアルゴリズムにおけるクラスター数については (4.26)式が

成り立つとする. 本章では (4.26)式が満たされるとき, クラスター数をどのように決める

べきかについて議論する.

解釈を容易にするためには, 少数のクラスターのみに着目すればよいのでクラスター数

は少ない方が望ましい. このことから (4.26)式を満たしたうえで最も小さい整数をクラ

スター数とすべきである, つまり

K =M + 1. (4.29)

一方で, Kをなんらかの適合性を測る関数に基づいて決定することもできる. 目的関数

(4.11)式による決め方が最も単純な選択法である. ここではKについての関数 fKとしよ
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う. fK の値は, K の増加に伴い単調減少する. 適切なK を選択するために, スクリープ

ロットのような手順, すなわち変化量 fK+1 − fKが前回の変化量 fK+1 − fKとさほど変わ

らないようなK の値を見つける方法が考えられる. しかし, この手順では (4.29)式を選

択することはできない. なぜなら, K = M としたときCCFIアルゴリズムは適用できな

いため, (4.29)式に対して fK−1を得ることができないからである.

Milligan & Cooper(1985)には, Kについて単調に変化するとは限らないいくつかの尺

度が紹介されている. この論文では

V RCK =
SSBK/(K − 1)

SSWK/(N −K)
(4.30)

で定義されるVariance Ratio Criterion(VRC)が考慮されている中で, 最も良い尺度とし

た. ここで SSBK =
∑K

k=1Nk∥cl − c̄∥22, SSWrは (4.13)式の値, NkはクラスターCkに所

属する個体の数とする. (4.30)式はどの程度クラスターが分離しているかを表しているた

め, K =M + 1(K = 1, ..., KU)に対して (4.30)式が最大となるようなKを選択すればよ

い. ただしKU は考慮するKの上限である. しかしこの尺度は次の節で示す通りCCFIで

はうまくいかない. したがって, Kに関するいくつかの追加/事前情報が利用可能でない

限り, クラスターの数として (4.29)式を選択する.

4.6 シミュレーション

本章では人工データセットを用いてシミュレーションを行う. 本研究の目的は, [1]真の

クラスタ数をVRCで検出できるかどうか, [2]真のクラスターと因子得点をCCFIによっ

てどれくらいうまく復元できるか, [3]CCFIの計算時間, 局所解について評価することで

ある. .1章ではデータの生成と分析の手順を説明する. 残りで [3], [1], [2]の結果を, それ

ぞれこの順に報告する.

4.6.1 データの生成と分析

最初に, CCFIはデータ行列には適用されないことに注意する必要がある. これは, デー

タ行列に適用された行列モデル因子分析の解に対して実行される. ただし, CCFIがデー

タの背後にある構造を検出するためにはデータ行列が必要である. したがって, まず我々

は行列モデル因子分析によって解析されるべきデータセットを合成する.
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Fの行が正確にクラスター化できる場合, F = GCが保たれる. 4.2式で想定されてい

る行列モデル因子分析X = FΛ⊤ +UΨ+ σEにこの方程式を代入することによって,

X = GCΛ⊤ +UΨ+ σE (4.31)

を得る. ただしEはN × P の誤差行列, σはエラーレベルを決めるスカラーである. さら

に (4.3)式と (4.4)式にF = GCを代入すると, それぞれ

1⊤
N [GC,U] = 0⊤

M+P (4.32)

N−1[GC,U]⊤[GC,U] = IM+P (4.33)

となる. 得られたデータセットに行列モデル因子分析を適用し, その解に CCFIを適用

する.

この手順において, CCFIの解は典型的なシミュレーションとは異なり真値に直接関係

はしていない. 典型的なシミュレーションでは, そのモデルに従うデータセットを生成し

単一の手法でパラメータを再現する. しかし今回のシミュレーションでは, 以下の手順に

従う:

[1] (4.31)式に従うデータを作成する.

[2] データに行列モデル因子分析を適用する.

[3] 得られた解にCCFIを適用する.

そして, 手順 [1]と [3]の間に [2]を実行し, [3]の解で [1]のパラメータが復元するかどう

かを評価する. したがって, このパラメータ復元は前述の典型的なシミュレーションに比

べて幾分難しい. この困難さを考慮に入れて, 比較的 σの値は小さくする.

P = 9, N = 100と固定し因子数M とクラスター数Kの組合せとして,

[M,K] = [2, 3], [2, 4], [3, 4], [3, 5]
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の 4通りを考える. M = 3のときの真の負荷行列を Stegeman(2016)に従って

Λ =



0.9 0 0

0 0.8 0

0 0 0.5

0.7 0.6 0

0.7 0 0.3

0 0.6 0.3

0.3 0.2 0.1

0.6 0.5 0.3

0.6 0.6 0.4


とし, M = 2のときは上記のΛから第 3列を取り除いた行列を真の負荷行列とした. そ

して真のΨはΛΛ⊤ +Ψ2の対角要素が 1となるようにした. その他のパラメータの生成

については, まずGの初期化から始める. そしてCの各要素はU(−1, 1)から抽出し, GC

が制約 (4.32)式と (4.33)式を満たすようにCを変換する. Uの各要素はN(0, 1)から抽出

し制約 (4.32)式と (4.33)式を満たすようにUを変換する. E(N ×P )の各要素はU(−1, 1)

から抽出し, Eは列中心化されているとする. 最後にエラーレベルに合わせて (4.31)式に

従う 2つのデータセットを作成するために, σを決める. エラーレベル ∥σE∥2/∥X∥は, 0.1

もしくは 0.2とした.

4([M,K])×2(エラーレベル)の計 8通りそれぞれに上記の手順を 100回繰り返す. 結果

として 8条件×100 = 800データセットが得られる. これらにM を真値としたうえで行

列モデル因子分析を適用する. 得られた解を用いて, CCFIをKをM + 1, ...,M + 5それ

ぞれで実行した, つまり CCFIを 800 × 5 = 4000回実行した. その結果得られた FとC

には回転の不定性が存在するため, Λを回転した行列が真値のΛである (4.31)式と一致

するようにプロクラス回転を行った.

4.6.2 計算時間と局所解の頻度

4000通りのCCFIの実行において,局所解を避けるためそれぞれ 1000回ランダムスター

トを行っている. 本節では, この 1000回のランダムスタートにどれだけの時間がかかる
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のかを考察する. 4000通り行った計算時間の平均は 14.37秒であった. これは許容範囲内

であると考えられる.

flは l(l = 1, ..., 1000)回目のランダムスタートにおける収束時の目的関数とする. fmin =

min1≤l≤1000 flの場合の解を最適解とし, fl − fmin > 0.001を満たす場合の flの解を局所解

とした. 4000通りにおける f1, ..., f1000の局所解の数を計測した. すると平均が 998.5, 標

準偏差 0.53であった. これは 1000回のランダムスタートのほとんどが局所解であること

を意味している. しかも fminが大域解であることを保証しない. この結果から, k平均法

と同様にCCFIは局所解が非常に多いことがわかった. しかしながらCCFIにおいて, こ

れは深刻な問題とはならない. 実際, 局所解は図 4.1における円周上に存在する最適な因

子得点のうちの 1つであり, fminにおいての解はよく復元されている.

4.6.3 VRCの結果

この小節では, CCFIで用いるクラスター数とそのクラスター数をそれぞれKとKtrue

とする. それぞれのデータセットについて, CCFIの解がK = M + 1, ...,M + 5の場合

それぞれについての VRCが計 5通り得られる. ここで VRCが最大となるときのK を

K = Ktrueと定義する. しかし, 残念ながらKtrueの検出は, うまくいかなかった. 正しい

Kが検出できたデータセットの割合は, 4.6%であった. また 8条件の中で最も高いパーセ

ンテージは 10%だった. 各条件でKが大きくなるほどVRCも大きくなった. これはVRC

が有用とはいえないことを意味する. よって今後はKを (4.29)式, つまりK =M + 1に

よって選ぶ.

4.6.4 パラメータ復元

この節では (4.29)式の選択が成り立つ [M,K] = [2, 3], [3, 4]の場合のデータセットのみ

を考える. 各データセットについて, (4.31)式におけるパラメータ行列G,C,F,Uの復元

に関する指標, すなわち推定解G,C,F,Uが真の解Gtrue,Ctrue,Ftrue,Utrueをどれくらい

うまく復元しているかを示す指標を得た.

誤分類率NMC/N はGの復元を示す指標で, NMCはGtrueと一致しなかったGの列の

数である. 表 4.1の列「MCR G」は, エラーレベルと [M,K]の各組み合わせに対する 100
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表 4.1: MCR, MAE, CORR(一致係数)の平均と標準偏差
Error [M,K] MCR MAE CORR

level G C F FAR FB U U

0.1 [2,3] 0.05
0.03

(0.04)

0.15

(0.05)

0.26

(0.02)

0.30

(0.02)

0.40

(0.02)

0.85

(0.02)

[3,4] 0.16
0.07

(0.04)

0.31

(0.05)

0.57

(0.03)

0.75

(0.21)

0.49

(0.02)

0.77

(0.02)

0.2 [2,3] 0.08
0.05

(0.04)

0.22

(0.05)

0.32

(0.03)

0.35

(0.03)

0.52

(0.02)

0.75

(0.02)

[3,4] 0.19
0.09

(0.05)

0.41

(0.06)

0.61

(0.04)

0.81

(0.43)

0.60

(0.02)

0.68

(0.02)

データセットにおけるMCRの平均 (および標準偏差)を示す. このことからMCRは十分

に低く, Gtrueはうまく復元されているといえる.

Ctrueの復元は, MAE(C) = (NK)−1∥C−Ctrue∥1と定義される平均絶対誤差 (MAE)で

評価する. ここで, ∥ · ∥1は ℓ1ノルムを表す. MAEは 2つの対応する行列の要素の絶対差

である. 表 4.1における「MAE C」は, MAE(C)の平均値を示す. それらは十分小さく,

Cがよく復元されることを意味する.

「MAE F」の列は, MAE(F) = (NK)−1∥F−Ftrue∥1である. Cと比較して, Ftrueの復

元はそれほどうまくいかないことがわかる. この結果が許容できるかどうかを検討する

ために, 因子得点の従来の推定解とCCFI解を比較する. つまり, 古典的最尤法FAを実行

し, FdのAnderson & Rubin(1956)における推定法 (AR)と Bartllet(1937)における推定

法 (Bar)それぞれの推定値を得る.

これらは, CCFIの解の場合と同様にプロクラステス回転を行った. 表 2の「FAR」お

よび「FB」の欄は, Anderson-RubinおよびBartlletの推定値に対するMAEの平均値を

それぞれ示している. そこでは, CCFIの復元が古典的推定法における復元よりも実質的

に優れていることがわかる. これは, FがCCFIにおいてよく復元できているといえる.

列「MAE U」は, Utrueの復元が, 他のパラメータの復元よりも悪いことを示している.

このような結果になった理由の一つとして, UtrueにはGtrue,Ctrue,Ftrue のような特殊な

構造がないことが考えられます. 例えば, Ftrueは (4.31)式のようにGtrueCtrueに制約さ

れ, FがCCFIのGCと一致するように {G,C,F}が推定される. 残念ながらこのような
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考えはUにおいてはない. しかしながら, 表 4.1のUとUtrueとの一致係数をみると, 十

分正の値をとっていることがわかる. よって推定したUはUtrueと相関関係にあり, 解釈

する価値があるといえる.

4.7 実データ解析

本節では, 2つの実データ例を用いてCCFIの有用性を示す. 最初の例は, 識別可能な少

数の個体からなる観測データからなる. これは得られた共通因子得点と独自因子得点がど

のくらい解釈可能かを説明するのに適している. 一方, 2つめのデータは比較的個体数の

多く, クラスター化共通因子得点がどのくらい有用であるかを説明するのに適している.

4.7.1 個体数が少ないデータでの例

まず 1つめの適用例は, 表 4.2に書かれているN = 14, P = 6の職業印象データである.

表 4.2: 職業印象データ
職業 役に立つ よい 誠実な 速い 騒がしい 忙しい

僧侶 (MO) 2.7 3.7 3.3 2.2 1.4 1.8

銀行員 (BC) 3.5 3.4 4.1 3.2 2.1 4.2

漫画家 (CA) 3.2 3.5 3.4 3.3 3.4 4.3

デザイナー (DE) 3.2 3.5 3.2 3.6 2.9 4.0

保育士 (NU) 4.6 4.5 4.5 2.8 3.3 4.9

大学教授 (PR) 4.0 3.8 3.7 2.4 1.5 3.0

医師 (DR) 4.8 3.9 3.7 2.4 1.5 3.0

警察官 (PM) 4.6 4.1 4.2 4.3 3.4 4.0

新聞記者 (JO) 4.3 3.7 3.9 4.7 4.2 5.0

船乗り (SA) 3.6 3.5 3.5 3.5 3.5 3.5

プロスポーツ選手 (AT) 3.2 3.7 3.7 4.9 3.5 4.1

作家 (NO) 3.7 3.5 3.3 2.3 1.8 3.3

俳優 (AC) 3.2 3.6 2.8 3.3 3.3 4.3

キャビンアテンダント (CA) 3.8 3.8 3.9 3.9 2.5 4.3

標準化したデータをM = 2として行列モデル因子分析によって分析した. 得られた因
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子得点に対してCCFIをK = 3で適用した. アルゴリズムを 1000回実行した場合の 0.28

秒を要し, 局所解の数は 1000個中 986個であった. 比較のために古典的因子分析をデータ

セットに適用し, Fdの推定値をAnderson & Rubin(1956)とBartlett(1937)の方法によっ

て推定した. 得られた解には因子得点行列と因子負荷行列にはバリマックス回転を適用

した.

図 4.2: 職業データの共通得点散布図

図 4.2の (A)は, 共通因子得点FとCCFIによって得られたクラスターのメンバーシッ

プを表している. それに対して (B)は, (A)の解に至ったときの初期化された [Fu,Uu]を

使った F = Fd + Fuを表している. (B)ではクラスターがあまり分かれていないのに対
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して, (B)を初期値としてCCFIを適用した結果得られた得点である (A)のFは十分分か

れている. 古典的な因子分析におけるFdの推定値は, 図 4.2の (C)と (D)からわかるよう

に, クラスターは (B)のようには分かれていない.

図 4.2から, クラスターC1は銀行員,小説家,大学教授,僧侶という主にデスクワークか

ら成ることがわかる. クラスターC3は警察官,保育士,医師という人々を守る役割の職業

が集まっている. クラスターC2に分類されたキャビンアテンダントとデザイナーは芸術

的な才能が必要とされるが, 同じくC2に分類されたスポーツ選手は身体的な才能が必要

とされる. これらのことから, C1, C2, C3をそれぞれデスクワーク, 才能, 人々を守る, と

呼ぶことにする. これらの名称は表 4.3のセントロイド行列Cの行名に用いている.

表 4.3: 因子分析によって得られた職業データのパラメータ
変数 Λ ψ2

p

役に立つ 0.87 0.15 0.21

よい 0.79 0.03 0.37

誠実な 0.78 0.15 0.36

速い 0.05 0.82 0.32

騒がしい 0.05 0.94 0.11

忙しい 0.40 0.70 0.34

クラスター C

デスクワーク −0.30 −1.38

才能 −0.60 0.70

人々を守る 1.80 0.05

表 4.3には負荷行列Λを記載した. 第 1列, すなわち第 1因子は職業の印象がよいかど

うかが関与している一方, 第 2列である第 2因子は, 活動性を表している. この第 1因子と

第 2因子はそれぞれ図 4.2の (A)における縦軸と横軸を表している. 因子の解釈から, 表

3のセントロイド行列Cから各クラスターは非活動的, 活動的, 高評価という特徴をもつ

ことがわかる. 表 4.3の右側の列には, 独自分散 ψ2
pが記載されている. 独自分散は各変数

が共通因子によって説明できない分散の割合を意味し, ψ2
pはΨ2の第 p番目の対角要素で

ある. 変数の「役に立つ」と「騒がしい」はψ2
pの値が小さく, 共通因子によってよく説明

できていることがわかる.

U = (unp)の独自因子得点は, CCFIによって同定される. 図 4.3には, CCFIによって

得られた unpに ψpをかけた ψpunpを図示している. 個体ごとの ψpunpの散布図は変数 p
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図 4.3: 職業データの独自因子得点

ごとに記載しており, ψpunpのばらつきは独自分散を表す. 散布図を解釈すると, 行列モデ

ル因子分析の目的関数 (4.2)式は, X ≃ FΛ⊤ +UΨもしくは xnp ≃ f⊤
n λp + ψpunpである

から,

ψpunp ≃ xnp − f⊤
n λp (4.34)

に書き換えられる. ここで xnpはXの n行 p列の要素であり, λpはΛの p行である. ここ

で f⊤
n λpは, 共通因子 fnによって, その他の変数 xnl(l ̸= p)と関係のある xnpの成分を意

味する. この成分は (4.34)式を用いて, xnpから取り除くことができる.

この点において, ψpunpは他の変数とは独立した xnpの成分, すなわち個人 nが変数 p

のみによってどれだけ表現できるかを示すものとしてみなすことができる. たとえば, ス

ポーツ選手は職種の中で変数「速い」で最大の ψpunpを示している. これは, スポーツ選

手はその他の変数とは独立にした「速さ」によって特徴付けられると解釈することがで

きる. 対称的に, ψpunpが最小であることから, その他の変数とは独立の「速い」とは正反

対の特徴, 言うなれば「遅い」によって保育士を特徴づけることができる. 加えて, ψPunp

の値が 0に近い職業は特筆すべき「速い」あるいは「遅い」という特徴を持たないこと

がわかる.
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4.7.2 個体数が多いデータでの例

2つめの例は Izenman(2008)のウェブページでも紹介されているワインデータの例であ

る. データは個体数がN = 178, 変数が P = 13からなる. 標準化したデータを 4.7.1節

と同様のやり方で分析した. CCFIのアルゴリズムを 1000回実行するのに要した時間は

9.09秒で, 得られた 1000個の解の中で 4.6.2節で定義した局所解の数は 998個であった.

得られた共通因子得点を図 4.2と同じように図 4.4へ描写した. 図 4.4(B)にある初期値

の得点は, ワインクラスターがあまり分離されていない. 一方でCCFIによる解である図

4.4(A)ではその問題が解決されていることがわかる. 実際 3つのクラスターが明確に分

かれており, 同じクラスター内のワインは中心に集中している.

図 4.4の (C)と (D)は古典的な因子得点の推定方法によって得られたものであるが, (B)

と同様クラスターが十分に分かれているとはいえない. このような散布図では, 特に個体

数が多いような場合には何かの知見を得ることは難しい. それとは対称的には, 図 4.4(A)

のようなCCFIの解では各クラスターの個体が中心に集中しているため, 表 4.4にあるセ

ントロイド行列Cの各行ベクトルがそのクラスターにおけるワインの特性をよく表現で

きている. したがって, 図 4.4(A)を見つつ表 4.3の因子負荷行列とセントロイド行列を参

照することで容易に共通因子得点の解釈ができる.

図 4.4(A)において, 縦軸と横軸はそれぞれ第 1共通因子と第 2共通因子を表している.

図と表 4.4を見ると, クラスターC1とC2は第 1共通因子によってC3と区別できる一方,

第 2共通因子ではクラスターC1, C2, C3はそれぞれ大きい, 中ぐらい, 小さいとして区別

できることがわかる. 表 4.4が示す通り, 第 1共通因子はアルコール, 強さ, プロリンと深

く関係しているのに対し, 第 2共通因子はフェノール, フラボノイド, OD280/0D315が深

く関係している.

4.8 考察

因子分析モデルは因子得点の不定性を持つ. つまり, 共通因子得点と独自因子得点は

一意に定まる部分と定まらない部分の和である. 本研究では, 行列分解を用いた因子分

析の枠組みで一意に定まらない部分が何らかの望ましい特徴を持つように同定する手法,

CCFIを提案した. 本研究では共通因子得点が少数のグループにクラスター化されている
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図 4.4: 職業データの共通得点散布図
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表 4.4: 因子分析によって得られたワインデータのパラメータ
変数 Λ ψ2

p

アルコール 0.78 0.13 0.36

リンゴ酸 0.15 −0.51 0.70

灰 0.33 −0.04 0.79

灰のアルカリ性 −0.18 −0.42 0.69

マグネシウム 0.38 0.18 0.80

フェノール 0.28 0.82 0.23

フラバノイド 0.19 0.93 0.08

非フラバノイド −0.10 −0.57 0.64

プロアントシアニン 0.18 0.61 0.58

色彩強度 0.79 −0.37 0.22

色調 −0.26 0.67 0.44

OD280/OD315 −0.09 0.86 0.24

プロリン 0.66 0.45 0.33

クラスター C

C1 0.72 1.05

C2 0.68 −1.40

C3 1.80 0.05

ことを, 望ましい特徴と位置付けた. そのような特徴を持つ因子得点行列を得るために,

最小二乗基準においてのターゲット行列に近似させた. ここでターゲット行列の中の共通

因子得点行列にあたる部分は, 共通因子得点がよくクラスター化されているように設定し

た. 一方で残りの独自因子得点行列にあたる部分は, 一意に定まった部分の独自因子得点

にあたる部分と事前に指定した. また因子得点, クラスターメンバーシップ, およびクラ

スターセントロイドの未決定部分に対する最小二乗関数を最小化するための反復アルゴ

リズムを提示した.

因子得点の不定性とはまた別に, 因子分析モデルには回転の不定性がある. つまり, 共

通因子得点行列と因子負荷行列は回転行列によって回転することができる. 心理統計学で

は, その回転の不定性をむしろ利用して好ましい性質を持った因子負荷量を得る回転法が

数多く提案されてきた (Browne, 2001). 本研究におけるアプローチでは, 回転の不定性で

はなく因子得点の不定性を利用する. 回転法では因子分析によって得られた因子負荷量が

解釈しやすくなることを目指したが, 提案手法ではクラスター化された共通因子得点を得

られることを目指した.
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筆者の知る限りにおいて, 因子得点の不定性を利用して望ましい性質を持つ因子得点を

得ることを目指した先行研究はない. さらに 4.7.1節における独自因子得点の解釈という

ものも初めての試みと思われる. このように本研究は先進的な試みであるが, 課題も残さ

れている. 例えば, 本研究で用いた共通因子得点のクラスター化以外に考えられる望まし

い特徴の模索である. さらに独自因子得点における有用な性質の考察も重要な課題である.
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第5章

変数クラスタリングのための因子分析

因子分析は, 多数の観測変数が少数の潜在変数によって説明されうるという仮定に基づ

く多変量モデルであり, 様々な応用例がある. ところが回転の不定性と呼ばれる因子分析

が抱える根本的問題があるために, 推定された解をそのまま解釈することはできない. こ

の不定性を解消するために長年研究されているのが回転法であり, むしろ不定性を利用し

て因子負荷量の解釈をより容易にする目的で回転法を利用する分析者も多い.

本章では, 回転法とは異なるアプローチにより解釈容易な因子負荷量を得るための手法

を紹介する. 本章の構成は 5.1節にて k–meansクラスタリングを用いることにより, 解釈

のしやすい因子負荷量を得る手法を紹介する. その後, 既存手法の欠点を補う新たな手法

を紹介し, 実データに適用することで有用性を検証するとともに, 2つの手法を比較検証

する.

次節では, k–meansタイプのクラスタリングを用いることで, 解釈しやすい負荷量を得

る因子分析を紹介する.

5.1 完全単純構造因子分析

解釈を容易にするというのは曖昧な言葉であり定義することは困難であるが, 因子負荷

行列に望まれるいくつかの特徴は既に提案されている.

5.1.1 Thurstoneの単純構造ルール

Thurstone(1947)は, 因子負荷行列が満たすべき条件を単純構造 (simple structure)と呼

び, 明文化した. 単純構造の条件は以下の 5つである.
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1.各行に少なくとも 1つ, 要素が 0であること

2.各列に因子数と同じ数の要素が 0であること

3. 2つの列に着目したとき, 一方の列では 0でもう一方では 0でない行が複数あること

4.もし因子数が 4以上なら, 2つの列に着目したとき, どちらの列も要素が 0であること

5. 2つの列に着目したとき, どちらの要素も 0でない行が少ないこと

各々の条件を満たすとき, 因子負荷行列がそれぞれどのような行列となるのかを確認

する.

各行に少なくとも 1つ, 要素が 0であること

この条件を満たす因子負荷行列として, たとえば

Λ =



∗ ∗ 0

∗ ∗ 0

∗ ∗ 0

∗ 0 ∗

∗ 0 ∗

0 ∗ ∗

0 ∗ ∗


のような行列Λが考えられる. ただし, ∗は非 0の要素を表すとする. 因子負荷量が 0で

あるということは, 変数と因子の間に関係がないことを表しており, 因子の解釈を行う際

に有用である.
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各列に因子数と同じ数の要素が 0であること

この条件を満たす因子負荷行列として, たとえば

Λ =



∗ ∗ ∗

∗ ∗ 0

∗ 0 0

∗ 0 0

0 0 ∗

0 ∗ ∗

0 ∗ ∗


のような行列Λが考えられる.

2つの列に着目したとき, 一方の列では 0でもう一方では 0でない行が複数あること

この条件を満たす因子負荷行列として, たとえば

Λ =



∗ ∗ ∗

∗ ∗ 0

∗ ∗ 0

∗ 0 ∗

∗ 0 ∗

0 ∗ ∗

0 ∗ ∗


のような行列Λが考えられる.
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もし因子数が 4以上なら, 2つの列に着目したとき, どちらの列も要素が 0であること

この条件を満たす因子負荷行列として, たとえば

Λ =



∗ ∗ 0 0

∗ 0 ∗ 0

0 ∗ ∗ 0

∗ ∗ 0 0

∗ 0 0 ∗

0 ∗ 0 ∗

0 0 ∗ ∗

∗ 0 ∗ 0

0 ∗ 0 ∗

0 ∗ ∗ 0


のような行列Λが考えられる.

2つの列に着目したとき, どちらの要素も 0でない行が少ないこと

この条件を満たす因子負荷行列として, たとえば

Λ =



∗ ∗ ∗

∗ ∗ 0

∗ 0 0

∗ 0 ∗

0 0 ∗

0 ∗ ∗

0 ∗ 0


のような行列Λが考えられる.

5つの条件はそれぞれ重複する場合もあるが, どの条件を満たしていても因子負荷量の

解釈が容易になることがわかる. しかしながら, それぞれの条件を満たすかどうかを確認

することは煩雑であることも事実である. そこで, これらの条件を統合した完全単純構造

を利用した研究が盛んになっている.
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完全単純構造

完全単純構造 (perfect simple structure)あるいは完全クラスター構成 (perfect cluster

configuration)とも呼ばれる (Browne, 2001)構造は, 各行に非 0の要素が多くとも 1つと

いう強い制約である. つまり,

Λ =



∗ 0 0

∗ 0 0

∗ 0 0

0 ∗ 0

0 ∗ 0

0 0 ∗

0 0 ∗


のような因子負荷行列は完全単純構造を満たす. 完全単純構造の負荷行列は解釈が容易で

あることから, 近年注目されており, 様々な主成分分析などの手法に応用されるなど研究

が進んでいる (Bernaards & Jennrich 2003; Jennrich 2004; Vichi & Saporta, 2009; Vichi,

2017).

完全クラスター構成と呼ばれることからも明らかなように, 完全単純構造は k–means

クラスタリングにおけるメンバーシップ行列 (指示行列)の一般化と考えることができる.

k–meansクラスタリングでは, メンバーシップ行列の要素は値が 0あるいは 1であったが,

完全単純構造は 0あるいは非 0である. また, 通常 k–meansクラスタリングは個体をクラ

スタリングするが, 完全単純構造では変数をクラスタリングしている点も異なる.

5.1.2 モデル

ある回転法は因子負荷行列を完全単純構造へと近づけることが示されているが, 回転法

の問題点は正確に値が 0にはならないという点である. 0.01や−0.01といった 0に近い値

を完全単純構造と呼べるかは疑問である.

そこで, Adachi & Trendafilov(2018)は, 変数クラスタリングを用いた完全単純構造制

約を満たす行列モデル因子分析を提案し, SSFAと命名した.
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データ行列XをN × P の行列, としたとき, SSFAのモデルは

X = QRΛ⊤ +UΨ (5.1)

である. ただし, M は因子数でありX ∈ RN×P ,Q ∈ RN×M ,R ∈ RM×M ,U ∈ RN×P ,Ψ ∈

RP×P である. そして, これらのパラメータが満たすべき条件は

N−1Q⊤Q = IM (5.2)

diag(R⊤R) = IM (5.3)

N−1U⊤U = IP (5.4)

Q⊤U = OM×P (5.5)

とする. ただしRは上三角行列, Ψは対角行列とする. 通常の行列モデル因子分析のモデ

ルである (2.30)式と比較すると, FがQRに置き換わっていることがわかる. これはQR

分解

F = QR (5.6)

によって達成できる. 通常の行列モデル因子分析では共通因子の直交性を仮定しているの

に対して, SSFAでは

N−1F⊤F = R⊤ (N−1Q⊤Q
)
R

= R⊤R = Φ (5.7)

と, 因子間に相関があることを仮定している. Φは因子間相関行列である.

そして, SSFAの最も重要かつ強い制約として, Λは完全単純構造とする. つまり,

Λ =



∗ 0 0

∗ 0 0

∗ 0 0

0 ∗ 0

0 ∗ 0

0 0 ∗

0 0 ∗


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のように各行に非ゼロ要素は 1つのみである. つまり
M∑

m=1

λpm = max(λp1, . . . , λpM)

を満たす. そして, k–meansクラスタリングのメンバーシップ行列がそうであるように

Λ⊤Λは対角行列である.

5.1.3 アルゴリズム

SSFAのアルゴリズムはモデル (5.1)式の誤差最小化であり, 目的関数は

f(Q,R,Λ,U,Ψ) = ∥X−QRΛ⊤ −UΨ∥2F (5.8)

である. (5.8)式を最小化するようなQ,R,Λ,U,Ψを交互最小二乗法によって求める.

Q–Uステップ

Z = [Q,U], B = [ΛR⊤,Ψ]とブロック行列を用いると目的関数 (5.8)式は

f(Z,B) = ∥X− ZB⊤∥2F (5.9)

と書き換えることができる. そして, Zは制約条件 (5.2)式と (5.5)式から,

N−1Z⊤Z = IP+M (5.10)

が成り立つ. Bを固定すると, 目的関数が

f(Z,B) = constZ − 2tr(X⊤ZB⊤)

と書けることから, Zの更新はトレース最大化に帰着する. ただし constZは Zに関係し

ない定数とする. ten Bergeの定理からZの更新式は

Ẑ = N1/2KL⊤ = N1/2K1L
⊤
1 +N1/2K2L

⊤
2 (5.11)

によって得られる. ここでK,Lは特異値分解

N−1/2XB = K∆L⊤

= K1∆1L
⊤
1 +K2OM×ML⊤

2

= K1∆1L
⊤
1 (5.12)
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によって得られる. XBではなくN−1/2XBの特異値分解を行う理由は, Z⊤Z = IP+M で

はなくN−1Z⊤Z = IP+M であるためである. また, 行列モデル因子分析における因子得点

の不定性からK2とL2は同定することはできない.

Ψステップ

目的関数 (5.8)式はΨ以外のパラメータを固定すると

f(Ψ|Q,R,Λ,U) = ∥X−QRΛ⊤ −UΨ∥2F

= tr(X−QRΛ⊤ −UΨ)⊤(X−QRΛ⊤ −UΨ)

= constΨ − trΨU⊤UΨ+ 2trX⊤UΨ

= constΨ −NtrΨ2 + 2trΨX⊤U

= constΨ + ∥N1/2Ψ−N−1/2X⊤U∥2F

と書き換えることができる. ただし constΨはΨとは関係しない定数である. Ψが対角行

列であることを踏まえると, Ψの更新式は

Ψ̂ = N−1diag(X⊤U) (5.13)

となる.

Rステップ

目的関数 (5.8)式はR以外のパラメータを固定すると

f(R|Q,Λ,Ψ) = trX⊤X+ trΛR⊤Q⊤QRΛ⊤ − 2trX⊤QRΛ⊤ − trΨU⊤UΨ

= trX⊤X+NtrR⊤RΛ⊤Λ− 2trYRΛ⊤ −NtrΨ2

= trX⊤X+NtrΛ⊤Λ− 2trX⊤QRΛ⊤ −NtrΨ2

= constR − 2trX⊤QRΛ⊤

と書き換えられる. ここで 3行目の等式には diag(R⊤R) = IM を用いている. したがって

Rについて目的関数を最小化することは, トレース

trX⊤QRΛ⊤ = trΛ⊤X⊤QR = trYR

97



第 5章 変数クラスタリングのための因子分析

の最大化に等しい. ただしY = Λ⊤X⊤Qとする.

Rは上三角行列であるため, たとえばM = 3とすると

R =


r11 r12 r13

0 r22 r23

0 0 r33


となる. かつ制約条件として

r11 = 1 (5.14)

∥rm∥2 = 1 (5.15)

を満たすとする. ただし rmはRのm列目とする. つまり rm = [r∗
m,0M−m]

⊤のように書

くことができる.

Rの第 1列の更新は必要ない. なぜなら r1 = [1,0M−1]
⊤であるからである. 2列目以降

の rmの更新は, 実質 r∗
mの更新であり

r∗
m =

y∗
m

∥y∗
m∥2

(5.16)

によって達成される. ただし ymは行列Yの第m列であり, y∗
mは r∗

mと同じように ym =

[y∗
m, (ym,m+1, . . . , ym,M)]と分割したとする.

Λステップ

目的関数

trX⊤X+NtrΛ⊤Λ− 2trX⊤QRΛ⊤ −NtrΨ2

をΛ以外のパラメータを固定したうえで最小化し, Λを更新する.

Λは完全単純構造であるため, Λ⊤Λは対角行列となる. したがって

trΛ⊤Λ =
P∑

p=1

M∑
m=1

λ2pm (5.17)
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である. またNtrX⊤QRΛ = trZRΛ =
∑P

p=1

∑M
m=1(z

⊤
p rm)λpm と書ける. ただし Z =

N−1X⊤Qとする. よって, Λ以外のパラメータを固定すると目的関数は

constΛ +N
P∑

p=1

M∑
m=1

λ2pm − 2N
P∑

p=1

M∑
m=1

(z⊤
p rm)λpm

と書き換えられる. したがって, λpmの更新式は

λpm =

z⊤
p rm (m = argmin1≤l≤M{λ2pl − 2(z⊤

p rl)λpl})

0 (それ以外)
(5.18)

である.

全体のアルゴリズム

SSFAの全体のアルゴリズムは

1.初期値を発生させる.

2. Zを (5.11)式で更新する.

3. Ψを (5.13)式で更新する.

4. Rを (5.16)式で更新する.

5. Λを (5.18)式で更新する.

6.収束判定をし, 収束していなければ 2.に戻る.

である. 初期値を複数回発生させて, 最も目的関数が小さくなった場合のパラメータを最

適解とみなす.

5.1.4 実データ解析

本小節では, SSFAを実際のデータに適用し有用性を検証する. 用いるデータセットは

ビッグファイブと呼ばれるパーソナリティ特性に関するデータである.

http://bstat.jp/wp-content/uploads/2017/02/Big5.xlsにて公開されているビッグファ

イブデータは 190個体 25変数からなるデータで, ビッグファイブに関する事前知識から
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図 5.1: ビッグファイブの概要図

変数である 25項目は外向性, 神経質, 開放性, 調和性, 誠実性の 5つの因子に分類される

と推察される.

M = 5として SSFAにより得られた因子負荷量と独自分散と通常の因子分析にバリマッ

クス回転を加えたを因子負荷量と独自分散をそれぞれ表にした.
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表 5.1: ビッグファイブデータに SSFAを適用して得たパラメータ
変数 因子 1 因子 2 因子 3 因子 4 因子 5 独自分散
Sociable 0.85 0 0 0 0 0.26

Talkative 0.75 0 0 0 0 0.38

Voluntary 0.76 0 0 0 0 0.39

Cheerful 0.83 0 0 0 0 0.27

Showy 0.64 0 0 0 0 0.55

Worry 0 0.75 0 0 0 0.40

Sensitive 0 0.65 0 0 0 0.52

Pessimistic 0 0.79 0 0 0 0.34

Unrest 0 0.42 0 0 0 0.71

Careful 0 0.71 0 0 0 0.45

Creative 0 0 0.73 0 0 0.41

Adventurous 0 0 0.78 0 0 0.36

Progressive 0 0 0.68 0 0 0.50

Flexible 0 0 0.54 0 0 0.65

Imaginative 0 0 0.41 0 0 0.75

Mild 0 0 0 0.51 0 0.68

Tenderhearted 0 0 0 0.59 0 0.60

Altruistic 0 0 0 0.70 0 0.48

Cooperative 0 0 0 0.68 0 0.50

Sympathetic 0 0 0 0.79 0 0.35

Deliberate 0 0 0 0 0.61 0.59

Reliable 0 0 0 0 0.60 0.53

Diligent 0 0 0 0 0.77 0.38

Systematic 0 0 0 0 0.64 0.55

Methodical 0 0 0 0 0.77 0.35

それぞれの要素の値は, 小数点第 3位で四捨五入した. また行のうちで最も大きい値は

太字とした.
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表 5.2: ビッグファイブデータに行列モデル因子分析を適用して得たパラメータ
変数 因子 1 因子 2 因子 3 因子 4 因子 5 独自分散
Sociable 0.81 -0.17 0.11 0.11 0.12 0.27

Talkative 0.82 0.04 -0.04 0 -0.08 0.30

Voluntary 0.71 -0.11 0.18 0.12 0.13 0.40

Cheerful 0.79 -0.23 0.08 0.18 0 0.27

Showy 0.64 0.05 0.23 -0.01 -0.05 0.52

Worry -0.13 0.71 -0.11 0.22 0.14 0.39

Sensitive -0.04 0.75 -0.02 0.01 -0.06 0.43

Pessimistic -0.27 0.67 -0.12 -0.04 0.29 0.37

Unrest 0.07 0.58 -0.13 -0.08 -0.30 0.53

Careful -0.08 0.61 -0.15 -0.10 0.33 0.47

Creative 0.02 -0.11 0.85 -0.05 -0.06 0.26

Adventurous 0.20 -0.23 0.67 -0.01 -0.19 0.40

Progressive 0.23 -0.21 0.62 0.09 0.09 0.50

Flexible 0.29 -0.29 0.35 0.20 0.03 0.66

Imaginative 0.09 0.18 0.46 0.12 -0.32 0.62

Mild -0.12 -0.14 0.15 0.59 0.03 0.59

Tenderhearted 0.18 0.07 0.12 0.60 0.01 0.57

Altruistic -0.01 0.12 0 0.69 0.16 0.46

Cooperative 0.25 0 -0.11 0.64 0.10 0.49

Sympathetic 0.11 0.10 -0.03 0.72 0.22 0.39

Deliberate -0.04 0.12 0.06 0.22 0.57 0.59

Reliable 0.30 -0.15 0.08 0.27 0.56 0.49

Diligent 0.04 -0.06 -0.08 0.15 0.77 0.37

Systematic -0.02 0.08 -0.10 0.01 0.69 0.49

Methodical 0.02 0.18 -0.19 0.04 0.73 0.38

それぞれの要素の値は, 小数点第 3位で四捨五入した. また行のうちで最も大きい値は

太字とした.

表 5.1と表 5.2を比較すると, 通常の因子分析の場合は因子負荷量の解釈は多くの要素

を考慮する必要がある. しかし SSFAの場合は, 因子負荷量の解釈は容易であることがわ

かる. また, SSFAの場合には回転を施す必要がないことも特徴である. これは因子負荷

量に 0の要素が多いことに起因する.

さらに, 通常の行列モデル因子分析では直交制約という強い制約を設けていたが, SSFA
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では因子間相関を推定可能であることも特徴である. ビッグファイブデータに SSFAを適

用し得られた因子間相関行列は表 5.3という結果になった. しかし SSFAの制約である完

表 5.3: ビッグファイブデータに SSFAを適用して得た因子間相関
因子 1 因子 2 因子 3 因子 4 因子 5

因子 1 1 -0.29 0.41 0.25 0.13

因子 2 -0.29 1 -0.43 0.15 0.24

因子 3 0.41 -0.43 1 0.10 -0.18

因子 4 0.25 0.15 0.10 1 0.36

因子 5 0.13 0.24 -0.18 0.36 1

全単純構造制約は, 全てのデータに対して有用というにはあまりにも制約が強すぎる. そ

こで完全単純構造制約を緩和し, 因子負荷行列におけるいくつかの要素が 0になるという

制約を検討してみる. こうしたパラメータの要素のいくつかを 0として推定する手法は,

近年注目を集めているスパース推定を用いることで達成可能である. そこで, まずスパー

ス推定について初歩的な解説を行う.

5.2 スパース推定

パラメータの要素が 0であるという特徴は, 因子分析に限らず多変量データ解析手法で

は望ましいとされている. なぜならパラメータが 0ということは, もはやそのパラメータ

を考慮する必要がないということ意味しており, 変数選択という問題に関連している. 変

数選択をどのように行うべきかはいまだ結論の出ていない研究課題であるが, 標準的な

方法は情報量規準を用いて最適なモデルを採用する方法である. 情報量規準は, モデルと

データの適合だけでなくモデルの複雑さも考慮に入れた指標であり, AIC(Akaike, 1974)

や BIC(Schwarz, 1978)などが代表例である. 一方で各モデルのパラメータ推定と情報量

規準の計算という 2ステップの計算を繰り返す必要があり, 煩雑になることもある.

Tibshirani(1996)によって提案された lasso(Least Absolute Shrinkage and Selection Op-

erator)は, 変数選択とパラメータ推定を同時に行うことができ, さらに通常では計算が不

可能であった高次元データにも対応していることから提案から数年で統計学における一

大トピックとなった. 実際に様々な教科書やサーベイ論文が出版されており (Bühlmann

& van de Geer, 2011; Hastie, Tibshirani & Wainwright, 2015), 日本国内でも大いに関心

103



第 5章 変数クラスタリングのための因子分析

を集めている (川野 ·廣瀬 ·立石 ·小西, 2010; 川野 ·松井 ·廣瀬, 2018). ℓ1ノルムは ℓ0ノル

ムの近似としては, 凸性とスパース性という 2つの好ましい特徴を持っている点で最適で

ある.

5.2.1 lassoペナルティとパラメータ推定

lassoの目的関数は, 説明変数を表すデータ行列X ∈ RN×P と目的変数を表すベクトル

y ∈ RN が与えられたとき

f(β) = ∥y −Xβ∥22 + λ∥β∥1 (5.19)

である. そして最適なパラメータβ ∈ RP は, argminβf(β)である. つまり目的関数 (5.19)

を最小化することで得られる. 回帰分析では微分を用いて最小値をとるパラメータを推

定することが一般的である. ところが, パラメータを含んだ項である ∥β∥1は微分できな

いことがわかる.

よって通常の微分の概念を拡張した劣微分を用いる必要がある. 劣微分は通常の微分を

拡張した概念であり, 劣勾配が複数とれる場合がある. 実際, β = [β1, . . . , βP ]として各ス

カラー βpごとに劣微分すると

∂|βp|
∂βp

≡ d(βp) =


1 (βp > 0)

[−1, 1] (βp = 0)

−1 (βp < 0)

(5.20)

となる. (5.20)式を用いて Lassoの目的関数 (5.20)式を各スカラー βpについて劣微分し

∂f(βp)

∂βp
=

∂

∂βp

(
∥y − xpβp∥22 + λ|βp|

)
= −2x⊤

p y + 2x⊤
p xpβp + λd(βp) = 0 (5.21)
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とすれば, βpを以下の式で更新することができる.

βp =
x⊤
p y

x⊤
p xp

− λd(βp)

2x⊤
p xp

=


βOLS
p − λ(2x⊤

p xp)
−1

(
βOLS
p > 0 かつ |βOLS

p | > λ(2x⊤
p xp)

−1
)

βOLS
p + λ(2x⊤

p xp)
−1

(
βOLS
p < 0 かつ |βOLS

p | > λ(2x⊤
p xp)

−1
)

0,
(
|βOLS

p | ≤ λ(2x⊤
p xp)

−1
)

= sign(βOLS
p )

(
|βOLS

p | − λ(2x⊤
p xp)

−1
)
+

(5.22)

ただし (a)+はmin(a, 0)を意味する. (5.22)式は, 通常の回帰分析で得られるパラメータ

βOLS
p から λ(2x⊤

p xp)
−1だけ値の絶対値が縮小し, 一定の割合を超えると 0になることを意

味している. この場合分けは図で表すことで理解が容易になる.

実際, このずれが結果として βpの推定量にバイアスを発生させてしまう. この問題が

指摘されてから (Fan & Li, 2001), 値を 0にしつつバイアスが少なくなるようなペナル

ティが数多く提案されている. SCAD(Smoothly Clipped Absolute Deviation)やAdaptive

Lasso, MCP(Minimax Concave Penalty), Square-root Lassoなどが代表例である.

ところで, lassoの目的関数は

f(β) = ∥y −Xβ∥22 + λ∥β∥1

であったが, ペナルティ項を Pλ(β)とすると

f(β) = ∥y −Xβ∥22 + Pλ(β) (5.23)

のように一般的な形で書くことができる. Pλ(β)を lassoペナルティ以外のペナルティに

することも可能で, それぞれのペナルティに利点がある.

SCAD

lassoペナルティが提案されてから初めて提案された非凸なペナルティは, SCAD(Fan

& Li, 2001)であると考えられる. SCADの考え方はシンプルで, ∥β∥1が微分不可能な点

は 0の付近のみであることから, 場合分けによって 0から大きく離れた点ではペナルティ
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を加えないようにしている. SCADのペナルティを Pλ(β)とすると実際に

Pλ(β) =
P∑

p=1

Pλ(βp) =
P∑

p=1


λ|βp| (|βp| ≤ λ)

− (|βp|2 − 2aλ|βp|+ λ2) /2(a− 1) (λ < |βp| ≤ aλ)

(a+ 1)λ2/2 (aλ < |βp|)

(5.24)

と場合分けしている. a > 2はチューニングパラメータであるが, Fan & Li(2001)では

a = 3.7としている. 一見 (5.24)式は狙いが見えづらいが, Pλ(βp)の βpについての劣勾配

を計算するとわかりやすい. 劣勾配は

∂Pλ(βp)

∂βp
=


λd(βp) (|βp| ≤ λ)

− (|β| − aλd(βp)) /(a− 1) (λ < |βp| ≤ aλ)

0 (aλ < |βp|)

(5.25)

となるため, |βp| ≤ λの場合は (5.20)式, つまり lassoの場合と同様の λd(βp)となる. 対し

て λ < |βp| ≤ aλの場合, 言い換えるなら βpの推定値が 0からは離れているものの充分に

離れているとはいえない場合は, 少し複雑なペナルティとなっていることがわかる. そし

て aλ < |βp|の場合は, βpの推定値が 0から充分に離れているため ∂Pλ(βp)/∂βp = 0, つま

り微分したときには推定値のペナルティがないと解釈できる.

MCP

MCP(Zhang, 2010)は SCADと同様に非凸かつ oracle propertyを有するペナルティで

ありベクトル β ∈ RP についてのMCPを Pλ(β)とすると

Pλ(β) =
P∑

p=1

Pλ(βp) =
P∑

p=1

λ

∫ βp

0

(1− x/λγ)+ dx

=
P∑

p=1

λ|βp| − β2
p/(2γ) (|βp| ≤ γλ)

(λ2γ)/2 (γλ < |βp|)
(5.26)

と書ける. ここで γ > 1はチューニングパラメータであり, λ→ 1のときMCPは ℓ0ノル

ムペナルティに近似され, λ→ ∞のときMCPは lassoペナルティに近似される.
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複雑な式に見えがちだが, こちらも微分することで狙いが明確になる. ペナルティ項

Pλ(βp) を βpについて微分すると

∂Pλ(βp)

∂βp
=

λd(βp)− βp/γ (|βp| ≤ γλ)

0 (γλ < |βp|)
(5.27)

となる. SCADの場合の (5.25)式と同じように, 一定以上 βpの絶対値が大きい場合には

ペナルティ項の勾配が 0となり, バイアスがなくなることが確認できる. また閉区間の不

定積分であるから, MCPは SCADと同じく, 連続な関数であることがわかる.

5.2.2 因子分析におけるスパース推定

これまで回帰分析におけるスパース推定について述べてきたが, 因子分析にもスパース

推定は活用されている. 本節では, 因子分析にスパース推定を用いた事例を紹介する. 最

初に因子分析にスパース推定を取り入れた研究は Choi, Zou, & Oehlert(2011)によるも

ので, その後Hirose & Yamamoto(2014; 2015)によって望ましい特徴を持った手法に発展

した. いずれもスパースにするパラメータは, 因子負荷量である.

因子負荷量をスパースにするという考え方は, 決して非現実的で突飛な発想ではない.

本章にて述べたように, 因子負荷量が満たしていることが望ましい性質はスパースモデリ

ングが提案される前に提示されており (Thurstone, 1947), 具代的には

1.各行に少なくとも 1つ, 要素が 0であること

2.各列に因子数と同じ数の要素が 0であること

3. 2つの列に着目したとき, 一方の列では 0でもう一方では 0でない行が複数あること

4.もし因子数が 4以上なら, 2つの列に着目したとき, どちらの列も要素が 0であること

5. 2つの列に着目したとき, どちらの要素も 0でない行が少ないこと

であった. これらを目指すべく回転法の研究が盛んに行われたが, スパース制約はThur-

stoneの単純構造の性質を満たすと考えられる. 実際, Hirose & Yamamoto(2015)ではス

パース因子分析がある回転基準の一般化であることが示されている.

2章で述べた因子分析モデルは全て直交モデルと呼ばれるものである. つまり共通因子

f ∈ RM×1の分散が IM であることを想定している. これは現実的とはいえない仮定であ
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り, Hirose & Yamamoto(2014)では直交モデルの制約を緩めた斜交モデルのスパース因子

分析を提案している.

パス図で表すと直交と斜交の違いはわかりやすい. 図 5.2と図 5.3における各線は変数

あるいは因子の間での関係性を示しているが, 直交モデルでは因子間に関係がない. つま

り各因子は無相関という強い仮定を置いている. それに対して斜交モデルでは因子間に

関係があることを想定しており, より現実に即したモデルと言える.

図 5.2: 直交モデルでの因子分析のパス図 図 5.3: 斜交モデルでの因子分析のパス図

モデルとアルゴリズム

スパース因子分析のモデルを記述する. データベクトルを x ∈ RP としたとき

x = Λf + u (5.28)

とする. ここで共通因子得点と独自因子得点はそれぞれ

f ∼ N(0M ,Φ) (5.29)

u ∼ N(0P ,Ψ
2) (5.30)

に従う. ただしΦ ∈ RM×M は因子間相関行列である.

目的関数は, スパース制約を加えない対数尤度を L(Θ)とすると

L(Θ)− P (Λ, ρ) (5.31)

である. ここで P (Λ, ρ)はΛに関するペナルティ項である.
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提案モデルのパラメータは, f を欠損値としてみなすことによるEMアルゴリズムで推

定する. そのためアルゴリズムは EステップとMステップの二つに分けられる.

-Eステップ-

xの平均は

E[x] = ΛE[f ] + E[u] = 0P (5.32)

であるから, xの分散は

V[x] = E
[
(x− E[x]) (x− E[x])⊤

]
= E

[
(Λf + u)(Λf + u)⊤

]
= ΛE

[
ff⊤]Λ⊤ +ΛE

[
fu⊤]+ E

[
u⊤f

]
Λ⊤ + E

[
uu⊤]

= ΛΦΛ⊤ +Ψ2 (5.33)

である.

ここで条件付き多変量正規分布を考える. まず同時分布がx
f

 ∼ N

0P

0M

 ,
 Var [x] Cov[x,f ]

Cov[f ,x] Var [f ]


= N

0P

0M

 ,
ΛΦΛ⊤ +Ψ2 ΛΦ

ΦΛ⊤ Φ

 (5.34)

であるから,

E [f |x] = E [f ] + E
[
fx⊤]E [xx⊤]−1

(x− E [x])

= ΦΛ⊤(ΛΦΛ⊤ +Ψ2)−1x

= ΦBx (5.35)

である. ただし

B = Λ⊤(ΛΦΛ⊤ +Ψ2)−1 (5.36)

109



第 5章 変数クラスタリングのための因子分析

とする. さらに条件付き分散が

Var [f |x] = E
[
(f − E [f |x]) (f − E [f |x])⊤ |x

]
= E

[
ff⊤|x

]
− E [f |x]E [f |x]⊤ (5.37)

であるから,

E
[
ff⊤|x

]
= Var [f |x] + E [f |x]E [f |x]⊤

= Var [f ]− Cov [f ,x]Var [x]−1Cov [x,f ] + E [f |x]E [f |x]⊤

= Φ−ΦΛ⊤(ΛΛ⊤ +Ψ2)−1ΛΦ+ΦBxx⊤B⊤Φ

= Φ−ΦBΛΦ+ΦBxx⊤B⊤Φ (5.38)

となる.

-Mステップ-

ベイズの定理より
∫
p(x,f)df =

∫
p(x|f)p(f)dfである. そこで, 最大化すべきQ関数

を得るために, 条件付き分布の期待値および分散の定義からx|fの従う分布のパラメータ

E[x|f ] = Λf (5.39)

Var[x|f ] = Ψ2 (5.40)

を計算する. したがってQ関数は

Q = E

[
log

N∏
n=1

p(xn|f)p(fn)

]

= E

[
log

N∏
n=1

(2π)P/2det(Ψ2)−1/2 exp

{
−1

2
(x−Λf)⊤Ψ−2(x−Λf)

}

× (2π)M/2det(Φ)−1/2 exp

(
−1

2
f⊤Φf

)]

= const−Ndet(Ψ2)−Ndet(Φ)−
N∑

n=1

{
E[(xn −Λfn)

⊤Ψ−2(xn −Λfn) + f⊤
n Φ

−1fn]
}

(5.41)
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となり, 目的関数である罰則対数尤度は以下のように書ける.

Lp = Q− P (Λ, ρ)

Mステップでは,罰則対数尤度を最大化することで各パラメータを更新するが,まずΛの

更新を行う. Λのスパース推定には,様々な先行研究がある. ここでは, coordinate-descent

による推定を行う.

A =
N∑

n=1

{E[ff⊤|xn]}

B =
N∑

n=1

{E[f |xn]x
⊤
n }

とすると, 目的関数は

constΛ −N
(
logψ2

p − ψ−2
p

(
spp − 2λ⊤

p bp + λ⊤
p Aλp

))
− 2NP (Λ, ρ)

と書き換えられる. ただし constΛはΛに関係しない定数, bpはBの p列ベクトルとする.

したがって,

λpm = argminλpm

1

2

{
λpm − a−1

mm

(
bmp −

∑
l ̸=m

almλ̃pl

)}2

+
ψ2
p

amm

P (λpm, ρ)

によって λpmは求まる. ただし, ammは行列Aのm行m列, bmpは行列Bのm行 p列.

たとえばペナルティを lassoペナルティとすれば,

λpm = sign(θ)

(
|θ| −

ψ2
pρ

app

)
+

となる. ただし

θ = a−1
mm

(
bpm −

∑
l ̸=m

almλ̃pl

)

とする.

つづいてΨ2を更新する. 罰則対数尤度をΨ−2について偏微分し, 尤度方程式

NΨ2 −
N∑

n=1

{
xnx

⊤
n

}
+ 2Λ

N∑
n=1

{
E[f |xn]x

⊤
n

}
−Λ

(
N∑

n=1

{E[ff⊤|xn]}

)
Λ⊤ = OP×P
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を得る. よってΨ2の更新は

Ψ2 =
1

N
diag

(
N∑

n=1

{xnx
⊤
n } − 2Λ

N∑
n=1

{
E[f |xn]x

⊤
n

}
+Λ

(
N∑

n=1

{E[ff⊤|xn]}

)
Λ⊤

)
(5.42)

によって達成される.

実データ解析

スパース因子分析の実データの有用性を示すために, 実データに適用する.

まず, SSFAの適用例でもあるビッグファイブのデータに適用した. 得られた因子負荷

量と独自分散を表 5.4に記した. 用いたペナルティはMCPとしたためチューニングパラ

メータは 2つあり, スパース性をコントロールする ρ > 0と, ℓ1ノルムから ℓ0ノルムへの

調整を行う γ > 1である. 今回は ρ = 0.33, γ = 1.5とした.

SSFAとの結果と比較すると, 完全単純構造制約を課していないにも関わらず SSFAの

因子負荷量と近いことがわかる. すなわちスパース因子分析は, SSFAの制約をより一般

化した因子分析と考えることができる. さらに全ての要素に当てはまるわけではないが,

因子負荷量の絶対値が SSFAに比べ小さい傾向にある. これは, スパースペナルティによ

る縮小が影響していると考えられる. lassoに比べMCPは縮小の影響が抑えられている

が, それでも多少の影響は避けられないことが因子負荷量から推察できる.

また,独自分散に着目すると変数「Sympathetic」のように同じような因子負荷量である

にもかかわらず,スパース因子分析の独自分散が大きいことがわかる. これは,足立 (2014)

にて報告されている行列モデル因子分析の傾向と一致しており, 2.1.4小節にて考察され

た説を支持する結果と言える.
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表 5.4: ビッグファイブデータにスパース因子分析を適用して得たパラメータ
変数 因子 1 因子 2 因子 3 因子 4 因子 5 独自分散
Sociable 0.73 0 0 0 0 0.28

Talkative 0.64 0 0 0 0 0.44

Voluntary 0.77 0 0 0 0 0.43

Cheerful 0.53 0 0 0 0 0.32

Showy 0.71 0 0 0 0 0.60

Worry 0 0.83 0 0 0 0.45

Sensitive 0 0.73 0 0 0 0.58

Pessimistic 0 0.74 0 0 0 0.34

Unrest 0 0.80 0 0 0.31 0.67

Careful 0 0.62 0 0 0 0.49

Creative 0 0 0.73 0 0 0.44

Adventurous 0 0 0.77 0 0 0.36

Progressive 0 0 0.64 0 0 0.56

Flexible 0 0 0.42 0 0 0.78

Imaginative 0 0 0.24 0 0 0.87

Mild 0 0 0 0.51 0 0.74

Tenderhearted 0 0 0 0.56 0 0.69

Altruistic 0 0 0 0.68 0 0.54

Cooperative 0 0 0 0.69 0 0.53

Sympathetic 0 0 0 0.79 0 0.37

Deliberate 0 0 0 0 0.60 0.63

Reliable 0 0.26 0 0 0.54 0.56

Diligent 0 0 0 0 0.77 0.39

Systematic 0 0 0 0 0.66 0.55

Methodical 0 0 0 0 0.75 0.42

次にThurstoneのボックスデータに適用した. ペナルティはMCPを用い, チューニン

グパラメータは ρ = 1.0, γ = 1.1とした. 得られたパラメータを表 5.5に記した.

結果を考察すると, 完全単純構造ではないが要素に 0が多く解釈しやすく, さらに妥当

な構造の因子負荷量を得ることができていることがわかる. よって, 完全単純構造を仮定

するには不適切と思われるデータについてもスパース因子分析は適用可能であることが

ボックスデータからわかる.

113



第 5章 変数クラスタリングのための因子分析

表 5.5: Thurstoneのボックスデータにスパース因子分析を適用して得たパラメータ
変数 因子 1 因子 2 因子 3 独自分散
x2 0.49 0 0 0.11

y2 0 0.50 0 0.10

z2 0 0 0.48 0.14

xy 0.31 0.29 0 0.21

xz 0.28 0 0.29 0.22

yz 0 0.30 0.29 0.19

(x2 + y2)1/2 0.34 0.32 0 0.12

(x2 + z2)1/2 0.33 0 0.31 0.13

(y2 + z2)1/2 0 0.31 0.33 0.13

2x+ 2y 0.34 0.35 0 0.09

2x+ 2z 0.33 0 0.34 0.09

2y + 2z 0 0.32 0.33 0.10

log x 0.44 0 0 0.22

log y 0 0.43 0 0.25

log z 0 0 0.44 0.23

xyz 0.16 0.18 0.21 0.32

(x2 + y2 + z2)1/2 0.27 0.24 0.25 0.12

expx 0.26 0 0 0.54

exp y 0 0.23 0 0.60

exp z 0 0 0.25 0.56

それぞれの要素の値は, 小数点第 3位で四捨五入した. また行のうちで最も大きい値は

太字とした.

5.3 考察

スパース推定は元々回帰分析の文脈で提案された. そのため, 回帰係数を 0にするとい

うことは変数選択と同等であった. しかし因子分析の場合, 因子数がM > 1のときは変数

選択が行われたとはいえない. さらに, たとえある行の因子負荷量が 0になったとしても

独自因子がモデルに組み込まれているため, 完全に変数の影響を排除したとはいえない.

そのため, 因子分析におけるスパース推定は回帰分析などにおける変数選択とは別の文脈

で解釈する必要がある. 実際, Hirose & Yamamoto(2015)ではスパースペナルティが回転
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基準の一般化であることが述べられている. 今後, 因子分析に適した新たなスパースペナ

ルティが
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総合考察

因子分析は心理学だけでなく計量経済学や生物学など応用範囲の広い手法であるが, 回

転の不定性や因子得点の不定性といった問題も抱えている. この問題は共通因子得点ある

いは独自因子得点が確率変数であることに起因するものではない. 実際, 共通因子をパラ

メータとした母数モデル因子分析, 共通因子と独自因子をパラメータとした行列モデル因

子分析にも問題は存在する.

6.1 因子分析における不定性の解消

本論文では, 解釈を容易にすると考えられるクラスタリング法を因子分析法と組み合わ

せることで, 解釈性を向上させるとともに因子分析の問題を解消する新たな手法を提案

した.

6.1.1 回転の不定性の解消

まず回転の不定性という大きな問題について考える. 回転の不定性は確率モデル因子

分析, 母数モデル因子分析, 行列モデル因子分析の全てに当てはまる問題であり, 何らか

の対処しないことにはパラメータが一意に定まらないため, 解釈が目的の 1つである因子

分析において極めて重要な問題である. 近年この不定性を解消しうる画期的な研究が進

んでおり, それがスパース因子分析である. スパース推定により因子負荷行列のうちの一

定数以上の要素を 0とし, さらに 0となる要素の場所もパラメータ推定と同時に推定する

ことができる.

これはある意味では, 事前に 0の場所を分析者が指定する必要があった確認的因子分析

を特殊例として含んでいるとも考えられる. つまり, 従来は回転を伴う探索的因子分析と

確認的因子分析を使い分けていたが, スパース因子分析により, 統一的に因子分析による
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図 6.1: スパース因子分析の位置づけ

分析が行える可能性が示唆される. もちろんスパース因子分析にはない確認的因子分析

の利点もあるため, 完全に移行することはないものの, スパース推定により心理統計学に

おける分析手法の選択肢が広がることが期待される.

6.1.2 因子得点の不定性の解消

次に因子得点の不定性について考察する. 因子分析が提案された初期から因子得点の

不定性は指摘されていたものの, この問題を問題視し, さらには解決しようという研究は

活発ではなかった. さらに因子得点を用いることで, 個体の解釈を行うことについての危

険性についても周知されているとはいえない. こうした現状の中, 本論文の 4章で提案し

た新しい手法は, 行列モデル因子分析での因子得点の不定性をむしろ利用し, 共通因子得

点の解釈を容易にしつつ解を一意に定める今までにない発想の手法である. むしろ不定

性を利用するという発想は, 回転法で用いられてきた発想であり, この研究を機に因子負

荷量だけでなく共通因子得点あるいは独自因子得点の解釈も積極的に行われる可能性が

期待できる. また, 4章では解釈しやすい共通因子得点の特徴をグルーピングされている,

つまりグループごとに分けられていることを捉え, アルゴリズムを提案した. しかし, グ

ループ化だけが共通因子得点に望まれる特徴ではない. また独自因子得点への応用例は

未だ少ないものの, 独自因子得点を理想の得点へ近似するアルゴリズムも理論上は提案可

能である. そのため, 今後の因子得点の推定アルゴリズム開発研究も期待できる.
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6.2 多変量データ解析における本研究の位置づけ

本研究はクラスタリングおよび次元縮約法に関連した研究といえる. 次元縮約法には,

因子分析だけでなく主成分分析なども含まれる. 主成分分析を拡張し, 3相データに適用

可能した主成分分析は 3相主成分分析あるいはテンソル主成分分析と呼ばれ, これらのパ

ラメータが解釈しやすくなるような手法も研究されている (Ikemoto & Adachi, 2016). こ

の 3相主成分分析のパラメータを解釈するよう, 完全単純構造制約を加えた手法も研究さ

れており, 因子分析や主成分分析に限らない, より広範囲の手法に対して完全単純構造制

約が適用可能であることが示唆される.

完全単純構造という強い制約をより柔軟にしたともいえるスパース推定の研究につい

ては 5章で言及したが, スパース推定は近年の統計学における大きなトレンドといえる.

本論文では回帰分析と因子分析のスパース推定のみを紹介したが, それらに限らず様々な

手法に用いられている.

例えば k–meansクラスタリング (Sun, Wang, & Fang, 2012)やファジィc–meansクラ

スタリング (宇野, 2018), あるいは混合モデルにもスパース推定は応用可能であり, 変数

選択として有用であると考えられている.

また, 変数間の条件付き独立性を図示できるグラフィカルモデルにもスパース推定は積

極的に活用されており, スパース推定の恩恵を受けて従来の手法では計算不可能であった

遺伝子データなどにもグラフィカルモデルが適用可能であることを示している (Danaher,

Wang, & Witten, 2014; Friedman, Hastie, & Tibshirani, 2008; 宇野, 2017).

さらに因子分析を正解, 不正解といった 2値データを分析可能なように拡張した項目反

応モデルにもスパース推定が用いられるようになってきており (Uno & Huang, 2018), 今

後さらに多変量解析における一般的な概念として広がることが期待される.

さらに正規分布とは異なる分布を用いた研究も盛んに行われている. t分布のような正

規分布に比べ裾の重い分布を用いることによる外れ値に対して頑健なモデルの提案は, 因

子分析を含めて研究されている (Zhang, Li, & Liu, 2014).
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要約

1章では, 本論文で基礎知識となる線形代数や確率分布を多変量データ解析への応用を

意識しながら解説した.

2章では, 因子分析法の概念と現在まで考えられている三つのタイプの因子分析モデル

を紹介した. さらにそれぞれのモデルの目的関数を導出した.

3章では, 三つのタイプの因子分析法のうち, 母数モデル因子分析に着目した. 母数モデ

ルが最尤推定できないという問題を解消するために, パラメータである各個体の共通因子

得点にクラスター制約を課した. その結果制約付き母数モデルは最尤推定可能となり, さ

らに類似手法を分類精度の点で上回ることが実データ分析例から示唆された.

4章では, 行列モデル因子分析に着目した. 行列モデル因子分析も, 確率モデル因子分析

と同じく因子得点の不定性を持つ. そこで, 回転の不定性を解消しつつ解釈しやすい因子

負荷行列を得る回転法の発想を共通因子得点に取り入れた. つまり, 因子得点の不定性を

解消しつつ解釈しやすい共通因子得点が得られるような手法を提案した. 個体の解釈に

有用と思われる制約はクラスター制約と考え, 特にクラスター制約を課したときの目的関

数およびアルゴリズムを提案した.

5章では, 因子分析法において避けられない回転の不定性に着目した. 近年統計学にお

いて盛んに研究されているスパース推定を因子分析に適用することで, 回転の不定性を解

消した既存の研究を紹介した.

6章では, これまでの議論を踏まえ因子分析法について考察を行った.
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A.1

ここでは, (3.22)式による更新後のGCが制約条件 (3.13)式を満たすことについて証明

する. (3.22)式とM = n
1
2D− 1

2G⊤XΨ−1Λを使うと, GCは

GC = n
1
2GD− 1

2MW∆−1W⊤

= n(GD−1G⊤X)Ψ−1ΛW∆−1W⊤, (A.1)

と書ける. ここで, (3.9)式より 1⊤
nG = 1⊤

KD, またXは列中心行列であることを用いると

1⊤
nGD−1G⊤Xは,

1⊤
nGD−1G⊤X = 1⊤

KDD−1G⊤X = 1⊤
KG

⊤X = 1⊤
nX = 0p (A.2)

であると言える. よって, (3.13)式は成り立つ.

A.2

ここでは,制約条件 (3.9), (3.13), (3.14)式と制約条件 (3.9), (3.13), (3.26)式, rank(GC) =

mが等しいとみなせることを証明する. そのためには,

[A] 前者の制約条件から, 後者の制約条件を示せる.

[B] 後者の制約条件を満たす行列は, RKMの目的関数 (3.25)式を変化させることなく,

前者の制約条件を満たす行列に書き換えられる.

の二つを確かめる必要がある.

まず [A]だが, (3.9), (3.13), 3.14式から (3.16)式が示されることから確かめられる. 加え

て,序章にてΛは列についてフルランクであることが前提とされていたので, rank(GCΛ⊤) =

m ≤ min(K − 1, p)となる. これに加え (3.9)式の rank(G) = Kを用いると, (3.26)式が

導ける.
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次に [B]だが, (3.9), (3.13), (3.26)式においてHをm×mの非特異行列として, C̃ = CH,

Λ̃ = ΛH′−1と書いたとき,

GCΛ⊤ = GCHH−1Λ⊤,

である. rank(GC) = mなので, C̃が制約条件 (3.14)式を満たすようにH = (nC⊤DC)
1
2

と置くことができる. このとき, Gが変化しない限り, Hもまた不変である.

A.3

制約条件 (3.27)式を正規分布の仮定 (3.2)式に代入すると, e ∼ N(0p, vIp)が得られる.

このとき対数尤度 (3.15)式は,

LL(G,C,Λ, v)∝ − np log v − 1

v
∥X−GCΛ⊤∥2, (A.3)

と書くことができる. これは, (3.27)式の制約を加えた (3.15)式といえる. また, vの最尤

推定量は,

v =
1

np
∥X−GCΛ⊤∥2,

である. この最尤推定量を, (A.3)式に代入すると,

−np log 1

np
∥X−GCΛ⊤∥2 − np,

が得られるが, これはRKMの最小二乗基準での目的関数と一致する.

A.4

ここでは, (3.28)式を証明する. 誤差行列Eの第 j列を ẽjとしたとき, FCFAのモデル

(3.12)式は, xj = GCλj + ẽj(j = 1, ..., p)と書き換えることができる. xjを中心化すると,

その要素の分散は以下のように表現できる.

1

n
∥xj∥2 =

1

n
∥GCΛj∥2 +

2

n
(GCλj)

⊤ẽj +
1

n
∥ẽj∥2. (A.4)

ここで, GCλjはパラメータ, ẽjは (3.2)式に従う確率変数なので, (A.4)式の母集団は

V (xj) =
1

n
∥GCλj∥2 +

2

n
(GCλj)

⊤E(ẽj) + ψj, (A.5)

と書ける. eの期待値E(ẽj)は, (3.2)式より 0pなので, (A.5)式から (3.28)式が導ける.
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B.1

(4.6)式における等式 1⊤
nK = 0pは, 1K = Kを意味している. K⊤JK = Op×nであるか

ら, このことと (4.19)式より

K⊤K⊥ = K⊤J1JKP = K⊤JKP = Op×m

が導かれる. 同様に, L⊤JL = Op×(m+p)であるから,

L⊤L⊥ = L⊤JLQ = Op×m

が導かれる.

B.2

(4.7)式における 1⊤
nK = 0⊤

p から, 等式 J1JK = JKJ1は

J1JK = (In − n−11n1
⊤
n )(In −KK⊤) = In − n−11n1

⊤
n −KK⊤

JKJ1 = (In −KK⊤)(In − n−11n1
⊤
n ) = In − n−11n1

⊤
n −KK⊤

が導かれる.

B.3

ここで (4.20)式が成り立つとすると, このとき

V⊤
1 JKJ1JKV1 = W⊤

1 JLW1 = Im (B.1)

である. これは (4.24)式を用いたときの制約条件 (4.20)式である.
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(4.23)式における SVDは, V1 = J1JKYJLW1Φ
−1
1 を意味している. (B.1)式の左辺に

これを代入すると

Φ−1
1 W⊤

1 JLY
⊤JKJ1(JKJ1JK)J1JKYJLW1Φ

−1
1

= Φ−1
1 W⊤

1 JLY
⊤J1JK(JKJ1JK)JKJ1YJLW1Φ

−1
1

= Φ−1
1 W⊤

1 JLY
⊤J1JKJ1JKJ1YJLW1Φ

−1
1

= Φ−1
1 W⊤

1 JLY
⊤J1JKJ1YJLW1Φ

−1
1

= Φ−1
1 W⊤

1 W

Φ2
1

Φ2
2

W⊤W1Φ
−1
1 = Im

これには,付録B.2で証明したJ1JK = JKJ1および (4.23)式から得られるJLY
⊤JKJ1JKYJL =

W

Φ2
1

Φ2
2

W⊤を用いた. この等式は, W1 = JLY
⊤JKJ1V1Φ

−1
1 であることも意味し

ている. これを (B.1)式におけるW⊤
1 JLW1に代入すると

(Φ−1
1 V⊤

1 JKJ1YJL)JL(JLY
⊤JKJ1V1Φ

−1
1 )

= Φ−1
1 V⊤

1 J1JKYJLY
⊤JKJ1V1Φ

−1
1 )

= Φ−1
1 V⊤

1 V

Φ2
1

Φ2
2

V⊤V1Φ
−1
1 = Im

上記の等式には, J1JKおよび (4.23)式から得られるJLY
⊤JKJ1JKYJL = W

Φ2
1

Φ2
2

W⊤

を用いた.

B.4

ここで, (4.25)式における R = rank(J1JKYJL)について考える. Y = [GC,Ud]を

J1JKYJLへ代入すると

J1JKYJL = [J1JKGC,J1JKUd]JL = [J1JKGC,On×p]JL (B.2)

と書き換えることができる. これは (4.8)式が示唆するUd = n1/2KL⊤[On×p, Ip]
⊤とそれに

従うJKUd = (In−KK⊤Ud) = On×pより得られる. 等式 (B.2)式は, Rが rank(JKJ1GC)
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と rank(JL)の最小値であることを示している. ここで, JL = Im+p − LL⊤は冪等行列で

あり (4.6)式から rank(LL⊤) = pである (Lütkepohl, 1996)ゆえ,

rank(JL) = (m+ p)− p = m (B.3)

である. また, n− p ≤ r − 1だと仮定すると

rank(JKJ1GC) = min(n− p, r − 1,m) = min(r − 1,m) (B.4)

である. これは, JK = In −KK⊤は冪等行列であること, (4.6)式より rank(JK) = n − p

であること, J1G1r = J11n = 0nから rank(J1G) ≤ min(n, r− 1)であること, rank(C) ≤

min(r,m)を考えると得られる. (B.3)式と (B.4)式を比べると, R = rank(J1JKYJL) ≤

min(r − 1,m)である.
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