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By Sigekatu KURODA

Introduction

In this Part (X) we shall make an attempt to analyse the concepts*20

of concepts and of sets. The problem is: What dependent variables in
UL can be considered as concepts and what as sets? Whether a de-
pendent variable in UL is to be considered as a concept or as a set is
not an intrinsic property of the dependent variable itself but an extrinsic
one which varies depending on the environment in which the dependent
variable is involved. A dependent variable should be considered as a set
in some UL-proof s while as a concept in some others, or more in detail,
it will be used as a concept in some "proof components" (§5), and as
a set in some others, of the same UL-proof. It will be used as a set of
some theories while as a concept of other theories. It may well be
accepted to say that the norm of distinguishing sets from concepts con-
sists in being freely dealt with as they were objects. On the other
hand, what is conceived logically may well be looked upon as an object
if it can be freely used as an instance of universally or existentially
quantified independent variables.

1) This part was first intended to be included in Part (II). Because of the difficulty of
the problem it was separated, and its first draft has recently been entirely revised. Nevertheless,
the words "concepts" and "sets" used frequently in previous Parts in referring to this Part (X)
coincide with the "cί-concepts" and "^-sets", respectively, defined at the end of § 1 of this
Part. This Part presupposes only § 1-19 of Parts (I) and (II), Hamb. Abh. 22 (1958), pp. 249-
266 and 23 (1959), pp. 206-221. However, Parts (III) and (IV), Nagoya Math. J. 13 (1958)
Parts (VI), (VII), and (VIII), ibid. 14 (1959) and Part (IX), this J. 11 (1959) are occasionally
referred to in this Part.

This Part has not yet, I believe, taken its final form and contains many problems which
should be treated in other occasions. But the writer dare publish this belated Part in this
present form.

2) The asterisk attached to the word concept in this Part means that the word "concept*"
belongs to the meta-metalanguage, while "concept" without asterisk to the metalanguage of
which the object-language is UL.
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Assuming that the above norm would be accepted, a dependent
variable occurring in a UL-proof P can surely be considered as a concept
in P if it is substituted nowhere in P for bound variables. Such a
variable, if it is used in the proof only as right-hand variables of G , is
clearly serving in the proof as an abbreviation of the property that is
expressed by the definiens of the dependent variable, so that the dependent
variable can be eliminated from the proof by replacing definiendum by
definiens3).

However, there are cases in which a concept is regarded as a concept
of other concepts so that they are likely to be substituted, as its elements,
for the element variable of its defining formula. In such cases also
there must be some appropriate elimination procedures of such a concept
in order that it may be regarded as a concept. So in § 1 we state a
general definition of "sets and concepts" in a UL-proof as well as of
a theory with respect to an unspecified species of "elimination trans-
formations" which is assumed to be given in some way or other, while
in the rest of this Part (X), except in the case of general consideration,
we confine ourselves to dealing with a specified and very simple species
8 of elimination transformations, defined at the end of § 1 by (A) and
(B). Thus, our concern in this Part is mainly the "£-sets" and "£-con-
cepts" in a UL-proof as well as of a theory.

In §2 "notions" in a UL-proof are defined as constants that occur
in the UL-proof and fulfil the conditions (#0), (/50), and (γ0) stated in § 2
and it is proved (Theorem 1) that a notion in a UL-proof is an ^-concept.
The proof of Theorem 1 is referred to repeatedly afterwards so that
the proof is divided into paragraphs indicated by numbers.

Notions are constants. In § 3 the conditions (α0), (β0), and (γ0) are so
weakened that the similar elimination procedures are applicable to de-
pendent variables which are not constants. So we define in § 3 by (α^),
(βj, and (γj) the species of "notional variables"4) and it is proved
(Theorem 4) that a species of notional variables in a UL-proof is a
"species of 5-concepts".

3) In this Part not only the formula Fu in the defining formula τ/χ. u£p = Fu of p is
called the definiens of p but also formulas Fm and -^F™ with any m are called the definiens
of the definiendum m 6 p and m $ p respectively.

4) In applying an analytic method to a certain problem we have to begin with the preci-
sion of the definitions of the concepts* we are concerned with, no matter whether these concepts*
may have some other precise definitions or may be conceived distinctly but without any precise
definitions. When such a concept* undergoes analysis, it may split into a finite or an infinite
number of different concepts* or it may come to be distorted. The concept* of "notions"
defined in § 2 coincides fairly well with the concept* of notions we are acquainted with in logic.
The concept* of "notional variables" is a technical generalization of the concept* of notions.
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We have a great deal of option in choosing the species of elimination
transformations as well as in selecting the conditions which are sufficient
for a species of dependent variables to be eliminable by the species of
elimination transformations. The species 6 of elimination transformations
and the conditions given in § 2 and § 3 are only instances of a number
of such options.

In §4 "set variables" and "concept variables" are, in an unspecified
way, defined independently of a UL-proof, and it is proved (Theorem 5)
that under the condition (αj all the non-set (concept) variables are
£-eliminable from a UL-proof "relative to set variables", that is to say,
<?-eliminable if we allow any set variables to enter anew the proof.

In §5 "coarser and finer coherent components" of a UL-proof are
defined in order to be able to apply our £Γ-elimination procedures not
only to the whole proof but also to a suitably selected part of a proof,
namely to a " £Γ-elimination (finer) component".

In §6 "coherent cycles" in a UL-proof are defined because of the
importance of the bearing on elimination of variables. Namely, in weaken-
ing the condition (aj further to (a2) the existence of coherent cycles in
a UL-proof gives a necessary and sufficient conditions for some dependent
variables to be eliminated from a proof by 6 (Theorem 6, 7 and Corol-
lary to Theorem 7).

In § 7 the repetition of elimination procedures is discussed. The
eliminations of ^-concepts from a UL-proof are to be executed by succes-
sive application of suitably selected procedures in order to fit our purpose.
There is no definite way to treat the elimination for all cases, as if there
were no definite method of assuring limes processes in analysis. We
have only to prepare a number of procedures which are practical to our
various purposes. Among others, Theorem 8 concerning cut is effectively
used during the repetition of elimination procedures.

Since the coherent cycles are closely related to predicativity and
impredicativity, we are thus automatically led to the problem of clarifying
impredicativity. Our system UL has a kind of universal variables as
independent variables so that at the beginning there is no distinction
between impredicative and predicative set- (or concept-) formations. For
instance, the totality of natural numbers is given by an impredicative
defining formula from the type theoretical point of view. We are thus
not in a position to distinguish predicative and impredicative definitions.

The concepts* of impredicativity may be, roughly speaking, looked
upon as a logical circle, if not vicious, which the defining procedures
give rise to with respect to bound variables. There is no fear of vicious
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circles10 to enter the defining procedures of dependent variables since these
procedures are recursively defined. But circles would exist, if we, for
the moment, made it a principle that the quantified variables in a defining
formula of a dependent variable should not range over the dependent
variable or dependent variables which are defined by using itself. Even
when we would avoid such circles our recursive way of defining proce-
dures would be allowed as they are. Circles in the above sense would
enter really, only when in a UL-proof a dependent variable is substituted
for a bound variable of the defining formula of a dependent variable in
spite of the latter being presupposed by the former in the defining
procedures. Interpreting the impredicativity as occurrences of such cir-
cles, we define a "Γ-impredicative proof" in §8, when a species Γ of
dependent variables participates in such circles. A Γ-impredicativity is
"£Γ-eliminable" or " £Γ-essential" according as it is eliminable by a species
3" of elimination transformations or not.

Our definition of impredicativity is based on the occurrence of circles
of the above mentioned kind and this will be a natural, if very weak,
interpretation of the usual concept* of impredicativity by our system.
But, it is entirely another thing what significance, with respect to the
problem of truth, this definition of impredicativity has. It seems that,
no matter how we might define the concept* of impredicativity with the
view of clarifying the circles which might be caused by the bound
variables in the manner above alluded to, some kinds of impredicativity
concern contradictions, and other kinds, such as impredicative mathema-
tical inductions (§ 10 (vii)), turn out to be legitimate. The bearing of the
coherent cycles on the problem of truth is just the same as in the case
of impredicativity, which is shown by examples given in § 10.

The concept* that has a direct clear significance with respect to the
problem of truth is rather simply the 3*-eliminability and non-£Γ-elimi-
nability. It might have been better, therefore, if we aimed only at adapt-
ing ourselves faithfully to the problem of truth, to use £Γ-impredicativity
as a synonym of non-£Γ-eliminability. But this is a way too much
deviated from the traditional usage of the concept* of impredicativity.

On the contrary, the predicativity is a concept which has been used
in having a direct close relation to truth. The predicative mathmatics
can be regarded as founded by its constructive method. Some formal
systems have been proved, as is well known, to be consistent as far
as it is predicative in the sense of type theory. So we idendify (§8) the

5) By vicious circles are meant here only those which are caused when a dependent vari-
able p is defined by using a dependent variable which presupposes p itself.
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3"-eliminability with £Γ-predicativity6), including ΞΓ-eliminable impredica-
tivity.

In § 9 the relation of elimination of variables with consistency is
discussed and in § 10 some examples and applications are given.

It is to be noted that in the metalogical discussions we use intuitive
logic or mathematics as in previous Parts, although some notations and
sentences are expressed for simplicity in a formal style.

In Appendix two fragments on intuitive knowledge and on defining
formulas are added.

1. Concepts and sets in a UL-proof

We shall first define the two metalogical concepts*, i.e. "concepts"
and "sets" in a UL-proof. They are defined with respect to a meta-
logically given species £Γ of transformations which are applicable not only
to a UL-proof but also to a figure which itself is not necessarily a
UL-proof but a result obtained from a UL-proof by a successive appli-
cation of a finite number of transformations of £Γ: so the terminologies
"£Γ-concepts" or "3"-sets" in a UL-proof.

The species £Γ consists of two kinds of transformations: principal
transformations and auxiliary ones. A sequence of transformations
Pι> •••, Pk, TI, — , T,, consisting of a non-empty sequence ply ••• , ph (&>1)
of principal transformations of £Γ followed by a possibly empty sequence
^i, " > r / C^O) of auxiliary transformations of 3", is called for the moment
EΓ-normal with respect to a UL-proof P, if p*i-'W"r/ is a UL-proof,
which we denote simply by P', and further if the top sequence ~7<rr, H'.
of P' is related to the top sequence ^7σ, H of P in the following way.
The conclusion Ίf of P' is the formula obtained from the conclusion H
of P by the transformation pl ••• pkr1 ••• r/. Any defining formula D' in
σ is the formula obtained by the transformation pί ••• pkτ^ ••• T/ applied
to a defining formula D in σ the definiens of D may remain the same
as that of D' or may be affected by the the transformation. Some
defining formulas in σ may disappear by the transformation. The formula

(I) Vxyz. x=yλx£z->y£z,

if contained in σ-, either remains the same in σ or disappears by the
transformation, or else (I) may be added in σ' when it is lacking in σ.

The sequence of auxiliary transformations T ^ - - , - / - / has the effect of
changing the figure jPpi"'p* into a correct UL-proof Piv<Vi""r/.

6) This definition of £Γ-predicativity, or more in detail, £Γ-Γ-ρredicativity (§8) seems
to be in accord with the usual usage of the concepts* of predicativity, if £Γ and T are deter-
mined suitably.



218 S. KURODA

A dependent variable p in a UL-proof p is called 3-eliminable from
P, if P is transformed, by successive applications to P of a finite number
of £Γ-normal sequences of transformations, to a UL-proof, say P*, such
that (i) p does not occur in P* and (ii) any dependent variable, different
from p and occurring in P with a definiens G, does not occur in P* or
does occur in P* with a definiens G* which is proved to be equivalent
to G by using as premises only the premises of P and eventually the
formula (I). When p is £Γ-eliminable from p, p is called properly (im-
properly) ζF-eliminable from P if the definiens of no (some) dependent
variables remaining in P* are affected by the transformation of P to P*.

A dependent variable p in a UL-proof P is called a proper (improper)
EF-concept in P, if p is properly (improperly) 3~-eliminable from P. Proper
and improper £Γ-concepts together are called ^[-concepts in P.

A dependent variable p in a UL-proof P is called a 3-set in P if
it is metalogically known that p is not £Γ-eliminable from P. An im-
proper £Γ-concept in P is called also an auxiliary ζΐ-set in P, if the
elimination of the £Γ-concept affects the definiens of at least a 2~-set in
P. A £Γ-set is called a proper 2-set, if necessary.

A species Π of dependent variables in a UL-proof P is called simul-
taneously 3-eliminable from P, if by an application of a finite number
of ff-normal sequences of transformations the proof P is transformed to
a UL-proof P* in which no Π-variables occur and the definiens of any
dependent variable remaining in P* is proved to be equivalent to the
definiens in P of the variable by using only the premises of P and
perhaps (I) as premises. Π is called simultaneously properly 3-eliminable
from P if Π is simultaneously £Γ-eliminable from P and if thereby the
definiens of any dependent variables which remain in P* are not affected
by the transformation simultaneously improperly 3-eliminable if some of
them are affected. A species Π of dependent variables in a UL-proof
P is called a species, a proper species, or an improper species, of ^-concepts
in P if Π is simultaneously 2"-eliminable, simultaneously properly or
improperly £Γ-eliminable from P, respectively. It may happen that Π
and Π' are species of £Γ-concepts (of proper £Γ-concepts) in P but the
union ΠwIΓ is not. A species 2 of dependent variables in a UL-proof
P is called a species of £Γ-sets in P, if for any Σ-variable p it is known
that p is a £Γ-set in P. A species £Γ of transformations which is meta-
logically defined so as to have the above described properties is called a
species of elimination transformations.

As the principal transformations of a most fundamental species Q of
elimination transformations, we use the following two replacements (A)
and (B):
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(A) Replacement of a formula of form m£p by Fm

(B) Replacement of a formula of form pern by 3#. x=pλxem7\
In (A) the variable p is a dependent variable, m any variable, and

is the defining formula of p. In (B) the variables p and m are dependent
or independent variables.

The auxiliary transformations of 6 will be defined later in such a
way that by these auxiliary transformations the proof properties which
are lost by the successive applications of principal transformations of 6
can be restored in a natural manner.

Now we shall investigate various conditions for a dependent variable
to be an 5-concept in a proof.

2. Notions in a proof

A constant p occurring in a UL-proof P is called a notion in the
proof if the following conditions (α0), (β0) and (γ0) are fulfilled.

(#0) p is substituted in P for no bound υariabes except the variable z
of the formula (I)8).

(β0) If a P-constituent ~/Gm is associated with a P- formula ~7MxGx,
no dependent variable qx occurs in Gx such that qm is p.

(γ0) In the definiens Fu of p occurs no dependent variable which depends
on the element variable u.

By (<20) the substitution of p for a bound variable is not allowed in
P except the association of a P-constituent

x=yΛxeρ-*yeρ

with the P-premise 7(1). We call the proof constituent [_pΐ] the ex*
tensionality principle with respect to the variable p.

Now we shall prove the following theorem.

THEOREM 1. A notion p in a proof P is an S-concept in P.

Proof. The principal transformations we can use are the transforma-
tions (A) and (B) stated in § 1. The auxiliary transformations are for-
mulated below at the end (1-7) of the proof of Theorem 1.

(l l) If p occurs in P as left-hand variables we replace by (B) all
the subformulas of P-formulas of form pern by 3x. x=pλx£m. Let P'
be the figure thus obtained from P.

7) In order to prove the equivalence of p 6 m with 3χ. x=p / x 6 m the formula (I) is
necessary.

8) This assures that the notion p is considered extensionally. See below.
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(1-2) The figure Pr is a UL proof. This is seen by the fact that
the occurrences of p in P as left-hand variables are by virtue of (#0)
and (β0) only possible when such occurrences are inherited from the
occurrences in the definiens of some dependent variables, in the conclusion
of P, or in some cut formulas. (Therefore, such occurrences of p in P
are not essential, that is to say, we obtain a correct UL-proof from P
if we replace all the '̂s in P as left-hand variables by any arbitrarily
fixed variable which depends on no variable bound in P)

In order to see precisely that Pf is a UL-proof, we should verify
the following properties of P7, each of which is evident by the above
remark : (i) association property, (ii) cancelling property, (iii) independent
variable restriction, (iv) dependent variable restriction, (v) that a cut in
P changes into a cut in P7, (vi) that the conclusion of P changes into
that of P', (vii) that the premise of P changes into that of P'', in parti-
cular, the invariance of the top formula 7(1), if any, and the closedness
of the premise of P.

Some definiens in P may be affected by the above replacements.
(1 3) P' preserves obviously the conditions (#0) (β0), and (γ0) and p

does not occur in P' as left-hand variables.
(1-4) By (A) we replace all the subformulas of P'-formulas of form

me p by Fm. Let Q be the figure thus obtained from P''. Since p occurs
in P' only as right-hand variables, p does not occur in Q.

(1-5) We shall amend Q so as to restore the lost proof properties.
(1-5-1) Without loss of generality we can assume that P7 had the

primitive cancelling property9).
(1 5 2) It is evident that the cancelling pair of any string of P'

changes into a (not necessarily primitive) cancelling pair of the corre-
sponding string of the figure Q. The formula (I), if there is in P7,
remains invariant in Q. It is also evident that any cut in P7 changes
into a cut in Q.

(1-5-3) The defining formula (Dp) of p changes in Q into

( 1 ) Mu FU=FU.

We erase the top formula 7(1) from Q. Since (Dp) is not primitive, the
cancelling property of Q is not destroyed by our assumption (1-5-1).

(1-5-4) The association property is surely preserved in Q except the

places where the association of P-constituent ~/Gl with some / with a
P-formula of form ~7MxGx took place in P.

9) Even when P has the primitive cancelling property, P' may lose it because of the
replacement (B). But P' restores the primitive cancelling property if we add, in necessary
cases, the successive decomposition of imprimitive cancelling pairs.
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(1 5 5) By (aϋ) and (β0) the associations of the above mentioned
form are also preserved in Q except the places where in P' either one
of the P'-constituents

Fm,

~7Fm

was associated with the defining formula of p and except the places
where in P' was used the extensionality principle

with respect to p.
(1-5-6) In the former case the constituents [/>A] and [/>N] change

in Q into the cuts ~7Fm Fm and Fm~~~7Fm respectively and the defining
formula of p, which becomes (1) in Q, has been erased by (1-5-3) from
Q. Hence in these places the association property is restored in Q.

(1-5-7) As for the latter, the extensionality principle [̂ 1] changes
in Q into

( 2 ) YVxy. x=yΛFx-ϊFy .

In order to recover the association property in these places of Q, we
replace every Q-constituent (2) by the cut

( 3 ) Vxy. x =yΛFx-*Fy yVxy. x =yΛFx->Fy

and place under the right cut-formula of (3) the part of Q which is
under (2). We place further under the left cut-formula of (3) the proof
of the cut formula, which runs as follows:

( 4 )1 ; 2
3

where r and 5 are eigen variables. In the part denoted by , we
decompose successively the formulas 2 and 3 in (4) as follows. If Fs is

of form VxGs x we place under Fs in (4) the constituents G^ and
associated with 3 and 2 in (4) respectively. If Fs is of form ASΛBS we

place under Fs in (4) the constituents j~7Ar, ~7Br and As Bs associated
with 2 and 3 respectively. If Fs is of form ~7MxGs'x or "/* ASAB\ then
we treat symmetrically with respect to r and s. Proceeding in this way
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successively, some strings become to contain cancelling pairs10), or else
we arrive at the primitive constituents of the following form :

(5) (5')

(6) (60
mes m € r ,

where m is an independent or dependent variable. Note the condition
(70). For the symmetric reason we consider only (5) and (6). The formula
sem in (5) and the formula mes in (6) are inherited from a subformula
of form s£m' and m'Gs of Fs respectively where m and m' are isological
each other since in the above decomposition of Fs and ~7Fr only eigen
variables are substituted for bound variables. In order to complete the
proof (4) we go on as follows in each case:

(1-5-7-1) Under the figure (5) we have only to use the extensionality
principle

{mi} ~:
with respect to m.

(1 5 7 2) Under the figure (6) we have only to use the association
with the formula 1 in (4):

_

(1 5 7 3) In [ml] and (7) we have substituted m for a bound variable,
namely for z of (I) and for x of the equality 1 in (4), respectively. Only
these m's are the dependent variables perhaps substituted in the proof
(4). Note that m is different from p.

(1 5 7 4) Thus the association property is restored in Q at the prob-
lematic places where [pΐ] took place in P.

(1-6-1) Let P* be the figure thus obtained. The association property
is preserved everywhere in P*. P* has also the cancelling property,
since the cancelling property of Q is not destroyed by the transformation
of Q to P*. P* preserves evidently the independent variable restriction.

(1-6-2) The dependent variable restriction is preserved in P* in
particular by virtue of (γ0). For, first, in the replacement of m£p by Fm

10) Namely when one of As and B5 has come not to depend on s.
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the dependent variables occurring in Fm occur already in P, namely m
occurs naturally in m£p and those different from m occur in the definiens
F" of p by virtue of the assumption (γ0) so that these variables have
their defining formulas in P*-top sequence, and second, no new dependent
variables enter the proof (4) of the left cut-formula of the cut (3), as is
already mentioned in (1 5 7 3).

(1 6 3) The closedness of the premise of P* is clear, although some
definiens occurred in the original proof P are perhaps affected. The
affected definiens are proved by virtue of (γ0) to be equivalent to the
corresponding original ones only by using the premises of P and even-
tually the formula (I).

(1 7) The transformations used as auxiliary transformations of Q
during the process of the above proof are as follows:

( i ) Erasing a formula.

(ii) Replacement of a constituent ~7K carrying a formula by the

cut K ~7K when the cut is ordinary and placing under K the proof of
the cut formula K.

(1 8) Thus the <?-eliminability of p from P is proved under the
assumptions (tf0), (β0), and (γ0), and the proof of Theorem 1 is complete.

As for the simultaneous 5-elimination of notions from a proof we
have the following theorems:

THEOREM 2. Let P be a \JL-proof. If ply ••• ,pk are notions in P,
then p!, ~ pk aγe simultaneously S-elίminable from P.

From Theorem 2 immediately follows :

THEOREM 3. All the notions in a \3L-proof P are simultaneously
6-eliminable from P.

Remark : The principal transformations (A) and (B) of Q in § 1 are
stated with respect to p. If we denote these transformations by (A p)
and (B p) respectively, then the principal transformations needed in
proving Theorem 2 are (A; pg) and (B ps) for !</<&.

Theorem 2 is a special case of Theorem 4 proved in § 3, so we omit
the proof of Theorem 2.

3. Notional variables in a UL-proof

We use in this § 3 following terminologies concerning dependent
variables, some of which are defined in Part (I). Let T be the tree of
variables for a dependent variable p. A dependent variable occurring in
T (including the top variable p of T) is called subordinate to p. The order
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of p was defined there as the length of the tree T. If p is homological
to qy then p and q have the same order.

Assume that p depends on an indepenent variable x : p=px. In this
case an upper part S' of a T-string S is called an x-string of T, if all
the variables in Sf depend on x and moreover either if S' is the whole
string S of T or if no variable situated in T directly under the bottom
variable of S' depends on x. (Note that the tree of variables of a
dependent variable p is constructed from the recursive description of p.)

Let now Π be a species of dependent variables occurring in a UL-
proof P. The species Π is called a species of notional variables in P if
the following conditions (cc1)9 (/3J, and (γj are fulfilled.

(tfj) Any variable of Π is substituted in P for no bound variables
except the variable z of the premise (I).

(βj Let a P-constituent ~7Gl be associated with a P-formula
and qx be a dependent variable occurring in Gx and depending on x. Then
either both qx and ql do not belong to Π or both do. In the latter case for
any dependent variable kx in any x-string of the tree of variables for qx

either both kx and kl do not belong to Π or both do.
(γt) No dependent variable occurring in the definiens of a dependent

variable belonging to Π depends on its element variable.

THEOREM 4. Let Π be a species of notional variables in a UL-proof
P. All the lί-variables are simultaneously C-eliminable from P.

Proof. The proof of Theorem 1 with some changes gives that of
Theorem 4, if in the proof of Theorem 1 the conditions (α0), (/30), and
(γ0) are replaced by the conditions (tfj, (&), and (γj respectively and
the variable p is regarded as any arbitrary Π-variable. We shall describe
the necessary changes with some additional remarks. The numbers (4 n)
in the following correspond to the paragraph (l n) of the proof of
Theorem 1.

(4-1H4-3) The same as in (1 1)-(1 3). It is only to be noted that
we need only the first part of (βj in (4 2).

(4 4) The transformation of P to Q goes on, instead of (1-4), as
follows. Let pίy ••• ,pk be the sequence of all the Π-variables, occurring
in P and not isological each other. For any one j (!</</?) we replace
all the occurrences in Pr of form m£pj by FJ*, where pj is a variable
isological to pj and F" is the definiens of pj. Let P" be the figure
thus obtained from P'. In P" the variables isological to ps do not occur
since m in m£p^ is not a Π-variable and no dependent variable in Fl]
depends on u by (γj. Some of the definiens of pt (iφj, l<ί<



An Investigation on the Logical Structure of Mathematics (X) 225

remaining in P" may be affected but the condition (γO is fulfilled for
these p{ and the variables isological to p£ occur in P" also only as
right-hand variables. No new dependent variables enter P". For any
remaining p we proceed in the same way, getting a figure Pf" from P".
Proceeding sucessively in this way we get a series of figures P', P", •••,
Pck+1\ Put Q=P<k+1\ No Π-variables occur in Q.

(4-5) The procedures of transforming Q into a UL-proof are quite
parallel to (1 5 1)-(1 5 7 4). We note only the following. The associa-

tion in P' of a P'-constituent ~7Gl with a P'-formula YMxG* may be
destroyed in the intermediate P(έ). But these possible destructions are
finally restored in Q = Pc*+υ by virtue of (ft).

In this connection it is also to be noted that after a [_pA~] or [^N]
for some Π-variable p changes into a cut, the cut remains as cut in the
later stage of transformations since both cut formulas are affected in
the same way. This remark is also available for any cut in P' and for
any cancelling pair in P'.

No Π-variables occur in the formulas F* and Fy in (2) which occurs
in Q and which is the result of transforming a [_pΐ} in P' with respect
to a Π-variable p. Hence the transformation of Q to a correct UL-proof
is achieved just in the same way as in (1-5) and the rest of the proof of
Theorem 4 runs in the same way as in the proof of Theorem 1.

Remark 1. The species Π of all the notional variables in P is a
proper species of (^-concepts in P, exactly if no Π-variables occur in the
definiens of non-Π-variables.

Remark 2. By the above proof it is seen that the ^-elimination of
Π-variables in Theorem 4 can be achieved regardless of the orders of
eliminations of Π-variables.

4. Set variables and concept variables

Let m be any variable and px be a dependent variable which depends
on x. We use, as usual, the notation pm in order to denote the dependent
variable px

m which we obtain when we substitute m for x in p*. A species
2 of dependent variables is called a set speciesl0a\ if for any m, p*9 and
pm it holds that pm belongs to 2, exactly if both m and p* belong to 2.
If 2 is a set species, the species of all dependent variables which do
not belong to 2 is called the concept species with respect to 2. When
a decomposition of the species of all the dependent variables into a set
species 2 and a concept species Π is given, 2-variables and Π-variables

10a) This has, of course, no relation to Brouwer's Mengenspezies (spread species).
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are called respectively set variables and concept variables with respect to
this decomposition1^.

Hereafter, we assume that a set species 2 is given and Π is the
concept species with respect to 2, and we regard the species Π in the
conditions (tfj, (β1)9 and (γj as representing this concept species so that
Π is defined independently of a given UL-proof P. Then, the condition

(βj) follows from (αj. For, if a P-constituent 7ΊG7 is associated with a
P-formula ^7MxGx and qx is a dependent variable occurring in G*, then
/ is by (αjj) a set variable or an independent variable, so that by the
definition of Π the variables qx and ql are both set variables or both
concept variables. In the latter case the same reasoning shows that the
latter condition of (/3J is also fulfilled. Thus from Theorem 4 follows
that if Π is the concept species with respect to a set species 2 and if
(tfj) and (γj are fulfilled for a UL-proof P and the species Π, then all
the Π-variables occurring in P are 5-eliminable from P. Further, we
shall drop the assumption (γj and prove Theorem 5 below. Before doing
this we shall consider what will happen when we drop the assumption (γj.

Let pQ be a Π-variable occurring in P and Vu0. u0£p0=F%> be the
defining formula of p0. When (γj is not assumed, a dependent variable,
say pl9 which depends on the element variable UQ of F%° may occur in
the definiens of poy so that the defining formulas of p0 and p1 are, if
these occurrences are explicitly written, as follows :

( 8 ) \/uQ.u0ep0=F0(u0; pΐ°),

(9 ) V^. u^pp^Ffa u0 Pl^),

where in (9) another possible occurrence in F1 of a dependent variable
p$ "o depending on u^ and u0 is indicated.

11) As is remarked at the end of Introduction, we use always intuitive logic in the meta-
logical consideration. So the species Σ is assumed to be defined recursively by using the
defining procedure of dependent variables, so that for a given dependent variable it is intuitively
decidable whether it is a Σ-variable or non-Σ-variable. Thereby, we do not take the exten-
sionality of dependent variables into consideration but only the procedures by which they are
defined. (For instance, the species consisting of V, 0, N and all the elementary sets generated
by V, 0, and N (i.e. the species of sets of the theory T0(N), see Part (VIII), p. 138) is a set
species.) In fact, a Σ-variable may be proved to be coextensional to a Π-variable in some
subsystems of UL. When we speak later about the elimination of TΓ-variables from a proof,
we do not mean the elimination of every variable which is coextensional to a 7Γ-variable in
some subsystem of UL but the elimination of those variables by whose defining procedure it
is known that they are ZΓ-variables. The union Σ v_j Π coincides intuitively with the species
of all the dependent variables. But the species Σ \u IT and the universal constant V in UL
are quite different objects. The former is a notation belonging to our metalanguage while the
latter to our object language.

When Σ is a set species, it is not excluded that a non-Σ-variable occurs in the definiens
of a Σ-variable.



An Investigation on the Logical Structure of Mathematics (JC) 227

It may happen that a formula of form m0e£0 with some variable mQ

occurs in a proof P, and if m0epQ is replaced by FQ(mQ\ p™°), it may also
happen that m^p™0 with some m^ occurs in F0(m0 p™°), and again m2ep™i>m°
may occur in F^m^ mQ p™*™*), and so on. The variables m0, ml9 m2> —
may also depend on element variables or on other variables, such as
πΓ\ mmι mo, — or ml, m™0, w?1'™0, ••• and so on. In such cases the degrees
of variables p™°, p™l>m°9 -•• are successively increasing and these variables
may not be defined in the premise of P.

We introduce some terms. Let Γ and Δ be any species of dependent
variables. We denote by Γ(Δ) the species of dependent variables generated
by Δ with basis Γ, namely the species of all the dependent variables
pmι- "'mn where m1> ••• 9mn are independent variables or Δ-variables and
pxι>~ *n is a Γ-variable with xl9 ,xn as complete system of variables.
In particular pmv" mn is a variable generated by mly - ,mn with basis
pxι " 'xnt Now, when eliminating Π-variables from P, we allow new
variables to enter the transformed proof so long as these variables
are set variables, and we define 2-elimination of Π-variables from a
UL-proof P relative to 2 as SΓ-transformation of P into a UL-proof P*
in which Π-variables do not occur but any 2-variables may occur, no
matter whether they occurred in the original proof P or not. The means
of proof of equivalence of affected definiens to the original ones should
also be so extended in a natural manner to the case of elimination of
Π-variables from P relative to 2 that the equivalence proof shall be
executed by using only the defining formulas of any 2-variables and
of Π0(2)-variables and perhaps the formula (I), where Π0 is the species
of Π-variables occurring in P.

We define one more term. Let p be a dependent variable and T
the tree of variables for p. We erase every 2-variable occurring in T
under p, together with the whole part of T that is under the 2-variable.
Thus we get a tree T(2) from T which consists exclusively of Π-vari-
ables, perhaps except p. The length of T(2) is called the order of p
relative to 2. A 2-variable is of order 0 relative to 2. It is noted that
the order relative to 2 of a Π-variable p is possibly smaller than that
of a Π-variable which is subordinate to p.

Now we formulate Theorem 5 as follows.

THEOREM 5. Let 2 be a set species, Π the concept species with respect
to 2, and P a UL-proof. Assume that Π and P fulfil the condition (oίλ).
Then all the ΐL-variables occurring in P are simultaneously β-eliminable
relative to 2.

Proof. The proof runs on again quite similar to those of Theorems 1
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and 4. As is remarked before, the condition (βj is fulfilled by virtue of
(MI) and of the fact that Π is the concept species with respect to 2.
So we have only to examine the preservability of dependent variable
restriction, the equivalence proof of the affected definiens to the original
ones, and the finiteness of the procedures.

As for the first we should add to the premises of each figure P', P", •••
(notations as in the proofs of Theorems 1 and 4), obtained at each step
of transformations, the defining formulas of dependent variables which
entered anew at each step of transformations. If all the Π-variables,
together with those added newly in this way, could, after all, be elimi-
nated, then all the dependent variables remaining in the possible final
figure Q would be 2-variables. So the elimination relative to 2 would
be achieved.

As for the second we have extended above the means of equivalence
proof so as to be able to execute this proof reasonably.

As for the last we refer to (4 4) of the proof of Theorem 4. In order
to see the finiteness of the procedures we define an ordinal number v(P')
of the proof P' by

(10) »(P') = v>MaM+<»M-*aM^ + - +*0

where M is the maximum of the orders relative to 2 of the dependent
variables occurring in P and #, (0</<CM) is the number of non-isological
dependent variables occurring in P' of relative order ί. The entrance of
new dependent variables into the transformed figures P', P", ••• are caused,
as is explained above, by the possible existence of dependent variables
such as pιQ, ̂ ϊ0'?1, is0'"1'"2, ••• depending on element variables. Owing to
the closedness of premises (Part (I), §11), these variables p%>9 p20>HI, •••
are defined in the premise of P while pp>, p%° mι, ••• are the variables
perhaps entering anew P', P", ••• in replacing mQ£p0, m^pΐ0,--- by
F0(mQ> pT°), F^ , m0; pmι m°), ~ respectively. Since in P', P", ••• there
is no occurrence of Π-variables as left-hand variables, these m^m^
are 2-variables or independent variables. Note the case where ml = lfQ,
m2 = lmQ'mι, —. In this case /?°e^ϊ° occurs in F0(u0; py>) of (8). Since /ϊ°
is, as left-hand variable in P, a 2-variable and since m0 is also a 2-
variable or an independent variable, l™°=mί is a 2-variable, because 2 is
a set species. The same reasoning shows that m2 = lm° mι is also a 2-
variable, and so on. Therefore the order of ρ™r-ι ~ >mo relative to 2 is
equal to the relative order of ^ y-i — «o.

In passing from Pco to Pcί+υ by eliminating a Π-variable pj from
the relative order of dependent variables perhaps newly entering
is by the above reason at least one smaller than that of pj. Therefore
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the coefficient of ωfe of y(Pα+υ), k being the relative order of p^ becomes
by one smaller than that of v(Pco), the coefficients of ωk~1

y ω fe~2, •••, ω° may
increase, while those of ωM, « ,ωfe+1 remain the same. Hence v(Pc''+1))<i
v(P('°), and our procedures come to an end after a finite number of steps.

Another attention should be paid to the transformation of the prin-
ciple of extensionality to cuts. Namely, in the final figure Q the P-con-
stituent [̂ 1] with Π-variable p is changed into (2) of which F* and Fy

do not contain Π-vriables. But in the present case it may happen that
in the proof (4) we arrive at, besides (5), (5'), (6), and (6'), a primitive
constituent of the following form (see figure (4)):

(ID ^— (HO ——
5 mseΓ mrems

where mr and Γ are Σ-variables, one of which does not perhaps depend
on r or may be r itself.

We consider only (11) for the symmetric reason. If Γ is r we treat
(11) as (6). So we assume that Γ is a dependent variable and let Gu>r

be the definiens of Γ. Instead of placing under 5 in (11) the proof
constituent [ΓN] with the left formula mreΓ directly, put the following
figure under (11):

Cut ms£l
(5)

(4) (6)

Under (*) and (#*) we proceed as follows:

(*) - (**)

- V*. x€mr==x£ms - MX. xeΓ=x£ls

(MO (w)

(t)

Now we use the defining formulas of mx and /* and place, for instance,
under (ΐ) the following figure:
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(t)
(4)-

Gω r

(13) «.,
\w \ s

The part in (13) indicated by . f . is again the decomposition of ~7Gw'r

and Gw's. Since r, s, and w are independent variables, in ~7GW''r and Gw's

possibly occur only dependent variables of absolute order less than that
of /*12). Hence, repeating the decomposition successively in this way, any
string of the figure finally comes either to contain a cancelling pair or
to arrive at a figure of form (5) or (6). In the last case we have only
to proceed one step more just as in (1 5 7 1) or (1 5 7 2) of the proof
of Theorem 1. Thus, the proof (4) of the left cut formula of cut (3)
completes.

Thus, Theorem 5 is proved.

5. Coherent components of a proof

Let P be a UL-proof and for the sake of simplicity we assume that
P has the primitive cancelling property and also the properties (a7), (b),
and (c') (see Part (II), p. 214).

Let C(A, K) be the carrier (ibid. p. 220) in P of an affirmative sub-
formula A of a P-formula K. Then each formula, say G, of C(A, K)
has at a fixed position a subformula, say ^4*, such that A* is the
subformula of G that is derived from A by successive applications of
associations perhaps in substituting variables for some bound variables
occurring in A. Every such subformula A* of each C(A, K)-formula,
including A of K, is called a carried formula of the carrier C(A, K).

We say that C(A, K) is the carrier of any carried formula A* of
C(A, K) and denote C(A, K) also by C(A*, K), if no confusion be feared.

We consider in the sequel only the carriers C(A, K) in P such that
A is an affirmative primitive formula i.e. a formula of form aeb. By
virtue of the primitive cancelling property of P every bottom formula
of such a carrier C(aeb, K) is of form a*£b* or a*£b*. The formula K

12) The above procedures enable us, by inserting cuts, to avoid the possibility of dependent
variables of higher order entering the proof. Namely, Gw >r and ^Gw '•s in (13) will be G(mr r)

and -?>G(mr \ s} respectively if the cut Γ=ls /*"=(=/* in (12) is not inserted. If we eliminate
the inserted cut by Cut Theorem dependent variables of higher order may enter the proof13).
Since in Q no Π-variables occur, we may place also under (11) the definiens ef mr£.lr and
ms € /* directly without using Π-variables. The above procedures show the finiteness of pro-
cedures by using the decreasing absolute orders.

13) See foot-note 19).
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of the carrier C(a£b, K) considered in the sequel is either a top formula
of P or a cut formula.

Two affirmative primitive subformulas aeb and c£d of P-formulas
F and G, respectively, are called coherent in Pif aeb and c£d are related
in P in the following recursive manner.

( i ) F and G belong to the same carrier in P, and a€b and c£d
are carried formulas of the carrier.

(ii) a£b and c£d constitute the cancelling pair of a P-string. (In
this case a=c, b = d, F=a£b, G = c£d.)

(iii) F and G are cut formulas of the same cut and a€b and c€d
are situated at the corresponding positions in F and G, respectively. (In
this case F=/"G, a = c, b = d.)

(vi) a£b and c£d are the middle and the right-most formulas,
respectively, of the P-top formula (I). (In this case a=x, c=y, b=d=z.)

( v ) a£b is coherent in P to an affirmative primitive subformula of
a P-f ormula which is coherent to c€d.

A tree C in P consisting of affirmative primitive subformulas of
P-formulas is called a component of P or P-component, if P is closed with
respect to coherency, that is to say, if any affirmative primitive subformula
of a P-t ormula which is coherent to a C-ί ormula belongs also to C. All
the affirmative subformulas of all the P-formulas constitute a component
of P, which is called the maximal P-component. A P-component C is
called a coherent P-component, if any P-component which has at least a
formula common with C contains C. The maximal P-component is divided
into a finite number of mutually disjoint coherent P-components, in other
words, any affirmative primitive subformula of any P-formula belongs
exactly to one coherent P-component. A P-component which is not
coherent is called a composite P-component. A P-component has its top
affirmative primitive formulas in P-top formulas or cut formulas. There-
by, by a top formula of a P-component C is meant a formula which is
not a derivative of a formula belonging to C.

We now cut off the coherency of any affirmative subformula in the
defining formula D of any dependent variable p to a subformula in any
P-constituent [pA] or [/>N] which is associated with ~7Ό. Assuming that
the successive associations of P-constituents to the P-top formula 7(1)
are written in P without any abbreviation, we have in P, as derivatives
of 7XD, P-constitutents of form

[Γ] 7- m^

We cut off also the successive coherency of the primitive affimative sub-
formulas in all [Γ] above up to those of (I).
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After cutting off the coherency in P as described above, we define
finer coherent P-components and finer P-components in the same way as
before. A finer coherent P-component has its top affirmative primitive

formulas in formulas attached to [/>A] or E^N1 for some '̂s or attache(i
to [F], or else in the conclusion of P or cut formulas. Any primitive
affirmative subformulas of P-formulas, except the defining formulas and
the derivatives of 7(1) which are over [Γ], belongs exactly to one finer
coherent P-component. A coherent P-component whose top formulas lie
in premises of P splits perhaps into a finite number of finer coherent
P-components. A P-component, if it is necessary to distinguish it from
a finer P-component, is called a coarser P-component.

Let now Π be a species of dependent variables and C be a finer
P-component which has the following properties:

( i ) C consists exclusively of affirmative primitive subformulas whose
left-hand or right-hand variable is a Π-variable.

(i i) If the left formula of a [/>A] or a [>N] belongs to C, then
all the affirmative primitive formulas which occur in the right formula
of the [^A] or [ĵ N], respectively, and of which the right-hand or left-
hand variable is a Π-variable belong also to C.

Such a finer P-component C is called an G-elίmination P-component
for Π. By definition Π-variables may occur in P outside an ^-elimination
P-component for Π. However, it is clear by the proof of Theorems 1-5
that the Π-variables occurring in C are 5-eliminable from C if Π and
C, instead of Π and P, fulfil the assumptions of these Theorems145.
Thereby the ^-elimination of Π from C means that the part of P which
is outside C remains untouched during the (^-elimination, except possibly
some premises. The component C is naturally extended during the
transformations by introducing new cuts. It is also to be noted that
after the elimination of Π-variables from C some defining formulas of
Π-variables may possibly remain in P when Π-variables are found in
some finer P-ccomponents which are outside C. Remarking this, we state
this fact as follows.

THEOREM 6. Theorems 1-5 hold for an 6-elιmination P-component
instead of for P.

By Theorem 6 it is practically convenient to perform the <?-elimina-
tion of variables successively for a minimal ^-elimination P-components.

14) Thereby we mean that a variable m is substituted for x in C if -^Gm is associated in

P with a formula ^r\fxGx and a primitive subformula A(m) of Gm which is obtained from a
primitive subformula A(x) of Gx by this substitution belongs to C.
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6. Coherent cycles in a UL-proof

For a dependent variable p occurring in a UL-proof P we denote
by [A ?r] a P-constitutent \_pK] or [/>N] which is situated at the place
7Γ in P. By L[/>, TT] we denote the affirmative subformula of the left
formula of \_py TT], and by R[A π ] an affirmative primitive subformula
of the right formula of [_p, π~\.

Let \_pQy τr0] and [A, τt^\ be P-constituents where possibly p0=pl and
^o^^Ί* or π0 = τr1 and accordingly p0=pί. When L[A» ^o] is coherent
to an R[^j TrJ we call <L[/>0, τr0], R[p19 τrj> a coherent ordered segment
in P with L[^0, τr0] as initial, and R[A TrJ as £^c/, point. Let 00 be the
species of all the coherent ordered segments in P. Let further 01 be the
species of all the ordered segments <R[A, ^Ί], L[A ^J) where R[A> ^J
is the end point of a member of 00 . All the ordered segments belonging
to 00 and Ol constitute an " oriented graph "15) in P which we denote by
<5. Let <S19 ••• , <5r be the "connected components" of <S.

Let £ be a finer coherent P-component. If a formula Λ of C is a
point of <Sf, we say that C3 crosses 3{ at ^4. Since both formulas of a
member a of 00 are coherent in P, if £ crosses at a formula of a, then
C crosses also at the other formula of <x In this case we say that C
crosses Sέ at a. We denote by S^C) the species of all members of 00

at which C crosses St and call Sg(C) the cross-section of cSz- with C.
Since any two formulas which belong to two different connected com-
ponents of S and which belong to members of Θ0 can not be coherent
in P each other, a finer coherent P-component can not cross more than
one connected component of <S. On the other hand, for any member CL
of 00 there is a finer coherent P-component which crosses S at <x Thus,
the species of all the members of 00 which belong to a connected com-
ponent S{ of S decomposes into disjoint non-empty cross-sections £f (Cί°)>

A "closed path" consisting of 2k, (£>1), different members of <S, is
called a coherent cycle of c$z of length 2kl6\ namely a sequence β0, <x0> A>
0ί, ••• ,#&_!, «*_! of 2^ different members of S{ is a coherent cycle of S£

of length 2fe, if α/=<L[Λ, ̂ ,], IO/+ι, **+ι]> for ί=0, -,*-2, ^ =
]̂, L[A, ^]> for ί = 0, — ,*-!, and αΛ-1 = <L[ί*_1, ^-i],

o])- A P-constituent [̂ , TT] is called self-coherent if there is an
such that <L[j£>, TT], R[ί, τr]>, <R[ί, TT], L[ί, τr]> is a coherent

cycle (of length 2).

15) Concerning graphs we use, as far as we can, the same terminologies as in Denes
Konig: Theorie der endlichen und unendlichen Graphen, Leibzig (1936). All the graphs
considered below are finite.

16) The length of a coherent cycle is an even positive number.
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Let now 2 be a set species and Π the concept species with respect
to Σ. Let further C be a finer P component of a UL-proof P which
consists of all such finer coherent P-components that have non-empty
cross-sections with a connected component Sf of the oriented graph S
in P. We set the following conditions (a2) which is weaker than (αj.

(<%2) Any H-υariable is substituted1^ in C for no bound variable except
the element variables of defining formulas of ΐl~variables and the variable
z of the formula (I).

We shall examine the conditions of <?-eliminablity of Π-variables
relative to 2 from C under the assumption (<z>).

Since it is allowed by (a2) for Π-variables to be substituted, as left-
hand variables, for element variables of defining formulas of Π-variables,
the replacement (B) of eliminating left-hand Π-variables from C can not
be applied. So we shall examine the elimination of left-hand Π-variables
from C by the replacement (A).

Let [/>, ?r] be a P-constituent and assume that L[_p> τr] = #e jζ> belongs
to C where p and q are Π-variables. Then by virtue of the definition
of set species and the assumption («2), all the left-hand and right-hand
variables of formulas of the coherent finer P-component QCO to which
q£p belongs are Π-variables.

We try to replace all the formulas 0*e/>* of C0 by F£* where F£
is the definiens of p*. If there is a self-coherent P-constituent [^0, τr0]
such that <L[^0, τr0], R[/>0> ^o]) for some R[A> TTO] belongs to the cross-
section Sf(C0)9 our replacement can not change the P-constituent [_p0, τr0]
into a cut. For, L[A>, ^o] and R[A» ^0] are replaced simultaneously.

Assume therefore that S^Co) has no segment common with a coherent
cycle of length 2. Let <L[A» ^o], R[A> ι̂]> be a segment of <Sf (Q.
By our assumption neither L[A> ^J nor R[A> πό\ belongs to C0. There
may be perhaps more than one R[A> ^i] which belongs to C0. If we
apply the replacement (A) for all C0-formulas in P, it is then clear that
LPo> ^o] changes into a cut17) and at least one, or possibly more, R[A> ^J
belonging to C0 are replaced in the right formula of [A> πι]

If L[A> ^o] is a "boundary point" of the graph Si9 the "boundary
segment" <L[A, τr0], R[A, ^J) of cS, is removed from £f by our
replacement. If L[^0, τr0] is an "inner point" of Si9 let <L[ί_i, 7r-J,
R[^o> ^o]) be a segment of £f which is connected to <L[^0, τr0], R[^ι, 7rJ>
through <R[^0, τr0], L[^>0, τr0]>. By our assumption <LlP-ly ^-J, R[^0>
τr0]> can not belong to Si(C0)9 since otherwise [^0, τr0] would be self-

17) By this replacement not only the left formula L[>0> ^oJ of [_p& tf0] but also the left
formulas L[p, τt~\ of other \_p, τtj's may be replaced. In this case these \_p> τr]'s are all changed
into cuts, since our replacements are the replacements of definiendum by definiens.
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coherent. Let C-1 be the finer coherent P-component to which <L[J£_1, τr_ι],
^o]) belongs. Neither p^ nor the left-hand variable of

is necessarily a Π- variable. Let K ^K be the cut into which [/>0, τr0]

changes by our replacement. We denote by \J)19 π^\ the P-constituent

into which \_ply TrJ changes, where & suggests the change of the right
formula of \_pl9 TrJ by our replacement. Now, the segment <ζL[p-l9 π~^\,

^o]) of Sf disappears from Si9 since \_pQ, τr0] changes into a cut
.fiΓ 7K Instead, through the intervention of subformulas of the cut
formulas K and 7/ζ i,[_p-19 7r_J is connected directly to perhaps more

than one R[A, π^\ so that the original path <L[^_X, 7r_j], R[^0 7Γ0]>>
<R[A» ^o], LOO, τr0]>, <L[A)> ^o], RCA, *Ί]> in £, may be looked upon
as splitting into a finite number of segments ζL[_p_19 τr_J, R[A> ^Ί]> of
the new <Sf . Thus, again the inner segment <L[J£0> ^o]* R[A> ^J) is

removed from <S, .
Assume that there was in cS, a coherent cycle, say Γ, of length

greater than two which runs through <L[/>_1, ^.x], R[^0> ^o]) an(i
<L[^0, τr0], R[ !̂, TrJ). By our replacements the cycle Γ perhaps splits
into a finite number of coherent cycles. But the lengths of these coherent
cycles are at least by two smaller than that of Γ - at least, because the
cycle Γ may have other segments than <L[^0, τr0], R[^1? π-J^ common
with Si(C0). By the above procedures the cross-section <Sί(Q of the
connected component <5, of S with C0 is freed from substitutions of
Π-variables for element variables of defining formulas. Let Γ* be a
coherent cycle which was born from the original cycle Γ. If in Γ* there
remains another segment <L[^f, TT^], R[^f , *r*3> of which the left-hand
variable q$ of L[^^, TT^] and p$ are Π-variables. We can apply the
same procedures on Sg(C$) where C$ is the finer coherent P-component
to which L[ ,̂ TrJ] belongs, provided that Si(C*) has no segment common
with a coherent cycle of length 2. This last condition is not fulfilled,
unless Γ* is of length greater than 2. In order, therefore, to be able to
repeat our procedures as long as Π-variables occur as left-hand variables
in the coherent cycles Γ, Γ*, Γ**, ... of decreasing length, it is necessary
that at least one left-hand variable occurring in the original cycle Γ is
a 2-variable. If this condition is fulfilled for any coherent cycle of <S, ,
then it is seen from the above consideration that by the repetition of
our procedures the connected component S{ of S can be freed from
substitutions of Π-variables for element variables of defining formulas.

Assume that P* is the figure obtained from P satisfying the above
condition by removing the relevant substitution of Π-variables. In dif-
ferent finer coherent P*-components the right formulas of P*-constituents
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[A î], [/>, τr2], ... which are the results obtained from the P constituents
[A ^Ί], [A ^2] with the same /> may perhaps be different (note the above

description where the notation p is introduced). If therefore we use,
if necessary, different defining formulas in different finer coherent P*-
components for the same dependent variable p in P, then P* is a correct
UL-proof18), and C* into which C changes and Π fulfil the condition (α^).
Thus we get the following theorems.

THEOREM 6. Let Σ be a set species, Π the concept species with respect
to Σ, P a UL-proof, Sf a connected component of the directed graph S
in P, and C the finer P-component consisting of all the finer coherent
P-components which cross Si. Assume that C and Π fulfil the condition
(oί2) and further that there is no coherent cycle Γ in Si such that all the
left-hand variables occurring in Γ are H-υariables. Then C is 6-trans-
formable to a finer P*-component C* of a UL-proof P* such that C* and
Π fulfil the condition (αj.

Remark : In C* may occur coherent cycles containing Σ-variables
and also Π-variables as right-hand variables.

THEOREM 7. 2, Π P, and S as in Theorem 6. Assume that P and
Π fulfil the condition (a2) and that there is no coherent cycle Γ in S such
that all the left-hand variables occurring in Γ are H-variables. Then all
the Tl-variables are 6-elίminable from P relative to 2.

If a connected component Si of the directed graph S of P has no
coherent cycle, Si is called of finite length and the maximum of lengths
of all " oriented paths" in S{ is called the length of the connected com-
ponent Si. If all the connected components S19 ••• , Sr of S are of finite
lengths, the maximum of the lengths S19 ••• , Sr is called the length of S.

Remark : There may be in a UL-proof P a P-component [/>, π\ of
which the left formula L[^, τi\ does not belong to the oriented graph S
of P, that is to say, L[/>, πΓ\ is neither initial nor end point of any
oriented segment in P. Such a P-formula L[/>, τi\ is called an isolated

18) Note that by condition («2) the ZΓ-variables are not substituted in C for the variables
x and y of (I), so that the formulas [Γ] in P remain unchanged in P* since the above replace-
ments are performed for the primitive formulas both of whose left-hand and right-hand variables
are TΓ-variables. The condition (#2) assumes the principle of extensionality for //"-variables
only with respect to the domain of Σ-variables. If we further weaken the condition (<τ2) to
the condition (αs3) by replacing its last clause "the variable z of the formula (I)" of (<*2) by

"the variable x, y, and z of the formula (I)", then the principle of extensionality for ZΓ-variables
takes the general form. We do not enter here into details of the elimination problems under

the condition (αj3).
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point in P. Theorem 7 and Corollary to Theorem 7 are applicable when
there are in P isolated points L[^>, π~\ for some Π- variables p.

Corollary. 2, Π, P, and S as in Theorem 6. Assume that P and Π
fulfil the condition (α>). // S is of finite length, then all the ^-variables
in P are 8-eliminable from P relative to 2.

7. Repetition of elimination procedures

Given a UL-proof P, there is freedom of choice of what dependent
variables in P we wish to eliminate from P by a certain species 9"
of elimination transformations. Moreover, the species of some dependent
variables may be eliminable from a £Γ-elimination P-component (coarser
or finer) while not eliminable from others.

For instance, assume that we have eliminated all the notions in P
by 6- transformations, getting a UL-proof Pί . Some dependent variables
in P! which are not notions in P become possibly notions in Px. We
again eliminate from Pί by 6- transformations all the notions in P l f

getting a UL-proof P2. We can repeat these procedures successively
until we arrive at a UL-proof in which no notions occur. The notions
in P, P!, P2, ••• may well be called the notions in P of G-th, first, second,
••• order, respectively, and the notions in P of any order the notions in
P in the generalized sense. The situation is the same for notional
variables in P.

We can also apply Theorem 6 first and remove the substitution of
some dependent variables from a certain P-component C. Some of these
dependent variables may still remain in the transformed proof P1 but
some of them are possibly ^-concepts in Plβ After eliminating these
(^-concepts from Pl, we can perhaps apply again Theorem 6 for some
remaining dependent variables. A species of dependent variables in P
which are 5-eliminable by such successive ό'-elimination transformations
is a species of (^-concepts by definition given in § 1. During the course
of (^-eliminations of 5-concepts from P we may apply Theorem 6 in
taking different species 2 of dependent variables as set species.

In this way the choice of dependent variables to be eliminated, of
P-components to which elimination procedures are to be applied, and of
the order of eliminations, should be determined from case to case so as
to fit in with our purpose under consideration. Thus the methods of
eliminations obtained hitherto are, so to speak, "subroutines" which must
be linked up in a suitable way in order to compose a "main routine"
of a elimination procedure. We should prepare a number of subroutines
for this purpose.
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In this connection we consider the relation between elimination of
dependent variables and that of cuts from a UL-proof P. Assume that
P has the primitive cancelling property and the properties (a'), (b), and

(cx). Assume further that P has a cut C ~7C and VxFx is a subformula
of C. Then under one of the cut formulas, say C, an eigen variable,
say wy is substituted for x of \fxFx and under the other 7C an appro-
priately selected variable, say my is substituted for x of y\/xFx. Assume
that m depends on no variable which appears, over ~7VxFx and under
the cut formula /'C, as an eigen variable of any P-constituent associated
with a derivative of 7 C of form VxGx. Then, as is seen from the proof
of cut theorem (Part (II), pp. 215/6), when the cut is removed from P,
the variable w is replaced by m wherever w occurs in P-ίormulas under
the P-formula which is directly upon the P-constituent of which w is
the eigen variable. If several ra's are used in P this replacement is
executed for each such m. The substituted variable m is a variable
occurring in P. Moreover, in case there is in Fx a dependent variable,
say px, depending on x, the variable pm is also found in the P-formula
YFm so that no new dependent variables enter the cut-eliminated proof
as far as the substitution of m for w in Fw concerns. But if this eigen
variable w is again substituted in P for the bound variable x of a P-
formula of form yMxKx which is either a derivative of Fw> of a P-top
formula, or else of other cut formula in P, then it may happen that a
dependent variable of form qw which occurs possibly in ~7KW is changed
into (f* which is perhaps not defined in P. The same situation may
occur when, instead of w, a dependent variable which depends on w is
substituted for x in ^VxKx. These dependent variables which may
enter newly the transformed proof are all those that are generated by
some variables, like m above, with a dependent variable, like q* above,
that is defined in the premise of P, as basis.

Remark Γ9). After eliminating a cut from a UL-proof P the defining
formulas of some dependent variables which are generated by some
variables with dependent variables defined in the premise of P as basis
must be, if necessary, adjoined to the resulting figure.

Remark 2. A cut in a UL-proof may avoid some dependent vari-
ables to enter the proof.

On the other hand, it is seen from the proof of cut theorem that
the following theorem holds.

19) This and the following remarks should have been placed after the proof of cut theorem.
(Part (II), p. 214).
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THEOREM 8. Let P be a UL-proof with a cut C /C. Let further

MxFx be a subformula of C and a P-constituent ^7Fm be associated with
the derivative ^7MxFx of C or ~7C. This variable m is freed from sub-
stitution for x in ~7VxFx when we eliminate the cut from P.

Since in the course of ^-elimination procedures some [^A] and
[/>N] are changed into cuts, Theorem 8 is useful as a subroutine in order
to make some variables free from substitution. However,

Remark 3. If the eigen variable w of the P-constituent Fw associated
with MxFx in Theorem 8 or a dependent variable qw depending on w

is substituted under Fw for a bound variable x of a P-formula of form
~7MxG* which is not a derivative of the cut formula C or 7C, then the
substitution of m or qm for x in 7V#G* occurs in the proof after

eliminating the cut C ~7C from P.

8. Predicativity and impredicativity

A dependent variable p is called superior to qy if there is a dependent
variable cf such that a dependent variable generated with ςf as basis
occurs in the tree of variables for p and there is a dependent variable
to which both qf and q are homological. It is then necessary and sufficient
for p and q to be superior each other that there is a dependent variable
to which both p and q are homological. Thus, the species of all the
dependent variables are partly ordered with respect to the superiority
relation modulo the homological relation mentioned above. If p is supe-
rior to q, then q is called inferior to p.

Let P be a UL-proof, C a finer P-component, and p0, ••• , pk a
sequence of &(>0) dependent variables occurring in C which are not
necessarily non-isological each other. The sequence p0, ••• , pk is called
an ίmpredicative cycle in C if pk is substituted for a bound variable
(including the element variable) of a derivative of the defining formula
of p0 and moreover if for each ί=l, ••• ,k either pg^ is inferior to pf or
pi_! is substituted in C for a bound variable of a derivative of the
defining formula of />,-.

Remark 1. Since the superiority relation is an ordering relation
between dependent variables, such a subsequence of an impredicative
sequence p0, ••• , pk is an impredicative sequence in Cthat we obtain from
Po> ~ > Pk when we remove all the intermediate variables but the leftmost
and the rightmost variables pt and pj (0</<j<&) from any consecutive
subsequence piy pi+ly ••• , pj in p0, ••• , pk such that for each v = ί, ί-f 1, ••• ,
j — 1 p^ is substituted for no bound variable of derivatives of the defining
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formula of A+i (so that by definition p , is necessarily inferior to ^v+1

for v = i, ί+1, •••,/— 1). The two extreme cases of impredicative sequences
in C are thus: first, a sequence pQ9 ••• 9 pk such that for all ί=0, — , k
pi is substituted in C for a bound variable of a derivative of the defining
formula of pg+1 (Pk+ι=Po)m, and second, a sequence p0 consisting of a
single variable such that p0 is substituted in C for a bound variable
of a derivative of the defining formula of p0.

Let Γ be a species of dependent variables. An impredicative cycle
in C is called Γ-impredicative in C if there is at least a Γ-variable in
the cycle. A Γ-impredicative P-component C or a Γ-impredicative proof
P is one in which there is a Γ-impredicative cycle.

Let now £Γ be a species of elimination transformations and C a
£Γ-elimination jP-component20) of a UL-proof P. A Γ-impredicative P-
component C (or a Γ-impredicative proof P) is called ζ[-eliminαbly
Γ-impredicαtive if C (or P) is £Γ-transformable to a proof component (or
a proof) which has no Γ-impredicative cycle. If it is known that there
is no such £Γ-transformations, C (or P) is called ^-essentially I'-impredi-
cative. A theory T is called Γ-impredicative if there is a Γ-impredicative
T-proof. A theory T is ff-elimiminably Γ-impredicative if it is known

that any Γ-impredicative T-proof is £T-eliminably Γ-impredicative. A
theory T is £Γ-essentially Γ-impredicative if there is a £Γ-essentially
Γ-impredicative T-proof.

A proof P (or a 2"-elimination P-component C) is called £Γ-predicative
relative to Γ or simply 2"-Γ'-predicative if non-Γ-variables are simulta-
neously £Γ-eliminable from P (or C). If it is known that such an
elimination is impossible, P (or C) is called non-ζΓ-T'-predicative. A theory
T is called £Γ-Γ-predicative if it is known that any T-proof is £Γ-Γ-
predicative. A theory T is non-3"-Γ-predicative if there is a non-£Γ-Γ-
predicative T-proof.

In order to define a theory T in UL or a subsystem T of UL it is
necessary and sufficient to define a species Γ of dependent variables as
the species of sets 2 of the theory T and a rule of use of the Σ-variables
in T.21) A theory T is called an extension of a theory / if any ί-proof
is a T-proof.

Let T/t be an extension of a theory t and let 2(T) and 2(f) be
the species of sets of the theory T and t respectively. Then 2(f)CC2(T)

20) For an unspecified £Γ we understand by a £Γ-elimination P-component such a P-com-
ponent within which we can execute reasonably £Γ-elimination procedures.

21) Generally the species 22(T) of sets of a theory T is a species of proper £Γ-sets of
T for a suitably chosen species SΓ of elimination transformations. For some species £Γ of
elimination transformations a subspecies of Σ(T) may be a species of £Γ-concepts.
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and the rule of use of 2(/)-variables in t is contained in the rule of
use of S(T)-variables in T.

An extension T/t of a theory t is called a ^-predicative extension
if it is known that any T-proof is £Γ-transformable to a /-proof.

9. Elimination of variables and consistency

Let Tit be a ff-predicative extension of a theory t. Then any T--
proof is £Γ-reducible to a /-proof so that in particular a T-proof of a
contradiction, if any, is ΞΓ-reducible to a /-proof of a contradiction.
Prefixing the species £Γ of elimination transformations explicitly, we
express this fact in saying that a ^-predicative extension T/t of a theory
t is S-consistent relative to /, or more strongly, T is ^[-reducible to t. In
particular, a ^-predicative extension of a consistent theory is ^-consistent.
The stronger the species 2" of elimination transformations, the weaker
the results about consistency which it gives rise to. As an extreme
case, let ό be the species of transformations which are required in
eliminating Hilbert-Bernays' ^-symbol. The dependent variables in UL
are expressed by ^-symbols. Hence, owing to Hilbert-Bernays' theory of
elimination of ^-symbols, we see that UL is <3-consistenty or more strongly,
UL is ^-reducible to the predicate logic with a dyadic relation £. This
assertion is stronger than the result of consistency of UL which follows
directly from cut theorem.

If a UL-proof is ΞΓ-transformable to a proof in the predicate logic
with a dyadic relation € , the proof is called a ^-tautology. If any proof
of a theory is a 3~-tautology, the theory is called a 3"-tautology. Thus,
UL is an (3-tautology.

The elimination transformation 6 may well be regarded as weak
enough to obtain more significant consistency results. It is, however, to
be noted that, whatever species of elimination transformations we may
use, the problem of consistency is endless in the following sense. Namely,
assume that the consistency of a theory T with 2 as the species of
sets of T is proved. The conclusion H of a T-theorem σ\-H may have
assumptions Aί9 ••• , An, namely H may be of form A^A2^ ••• ΛAn-*B.
Even if σ\-H is a T-theorem, we do not yet know whether σ\-~7. A^
••• λAn is also a T-theorem or not. Namely, the problem of the con-
sistency of an assumption in T is still open. This problem is in particular
significant when the assumption is a primary one. Even if some assump-
tions in T are proved to be consistent in T, there may be still other
assumptions which are regarded as primary, and so on. However, we
shall at present confine ourselves to the investigation into the problem:
what kind of set formation will be consistent?



242 S. KURODA

10. Examples and applications

When a formula proved in previous Parts is dealt with in the
following examples, the number of the formula and the page of the Part
where a proof of the formula is given are indicated. In each such case
this proof of the formula is denoted by P.

(i) **3 *eUn (p. 48, Part (III)).

Un and ι are notions in P so that Un and ι are <?-eliminable from
P by Theorem 2 (see also § 7). The other dependent variables occurring
in P are those which are homological to <<?£> and to those which are
used to define <##>, i.e., {a} and {a, b} . These variables are all notional
variables in P so that they are £-eliminable from P by Theorem 4.

The oriented graph223 of P is shown in Fig. 1. The left and right
formulas of a P-constituent are respectively
indicated by the white and black circles in ζ Un c
Fig. 1. A variable attached to a white circle o - )• - ** - •< - o
is the dependent variable to which the P-con- Fig. i.
stituent concerns. Since the oriented graph is
of length 2 and no dependent variable is substituted in P for bound
variables, except u for element variable of Un, we see also by Corollary
2 of Theorem 7 that all the dependent variables in P are <?-eliminable
from P. The formula ^GUn is an (^-tautology.

The constant Un is used as a notion in any proof given in previous
Parts.

(ii) 0*2 σe\JnΛa£Όσ +aσr = aτ0(T (pp. 36-37, Part (III)).

The dependent variables used in P are, up to isological variables, as
follows: Un, Dσ, aσr

y aroσ, <>£>, <0σδ>, aσ

y <^σ>, τ°σ and those which
are required in defining these variables, i.e. {a} , {a, b} , {aσ} , {aσ

y b] , and
{a,(f}.

Not only the oriented graph of P but also those of any proofs given
in Part (III) are of finite length.

Among the dependent variables mentioned above, the variables <##>,
<tf°#>, <#tfσ>, and aσ are proper 5-sets in P. For, ασ is substituted for
the bound variable y in the P-constituent at the bottom on the right-hand
side of p. 36, Part (III) <#r> and <^rσ> are used in the proof of the
cut formula Im#3 (see right below of the proof of Im#3, p. 30, Part

22) The graph is described only for the variables L and Un. The graphs of other examples
are also shown for the main variables of the proofs.
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(III)) as substitutes for x and y of the principle of extensionality with
respect to the independent variable σ ; the same for <fc> and <<zV> at
the bottom of the left-hand side of P (p. 37, Part (III)).

Un is a notion, and TOOT, #στ and aτo<r are notional variables, in P,
so that these variables are <?-eliminable from P by Theorem 1 and 4.
After eliminating these variables, Dff is <?-eliminable from P, since
L[DσNJs in P are isolated (see Remark following Theorem 7). The

eliminated variables are all proper ^-concepts so that the definiens of
the remaining dependent variables are not affected.

The variables <#£>>, <tfσ£>, <zσ, and <^ασ> are, thus, all the proper
(?-sets in P and the variables required in defining these 5-sets in P are
auxiliary <?-sets in P (definition in § 1).

(iii) RusselΓs condradiction. By using the defining formula Mu.
=u£u of RusselΓs self -contradictory
set R we have the following proof of
contradiction. R /^\ ̂

The oriented graph is shown in Fig. 2 which has two coherent cycles
of length 2, namely the two bottom proof constituents are self -coherent.
The constant R is a proper £-set in the proof of RusselΓs contradiction.

(iv) -7. σ€UnΛD σ =tfΛW σ = φ(0) (p. 105, Part (VI)).

We define Lα σ, as is done there, by

A proof of the above formula runs as follows (in the proof I/
abbreviated as L) :

Mxyz.
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Spf w£a
(4)
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(5) (3) (7) (3) (5,6,=)
C13 [23 [43 [23 [33 [13

We denote the above proof by P. There are in P eleven finer
coherent P-components. The numbers in the brackets [ ] in P show
these eleven P-components. These numbers are indicated only for primi-
tive P-formulas and equalities. Namely, for a bottom P-formula the
number is attached under the bottom P-formula and for a P-formula
which is not a bottom formula to the left of the formula. For an equality
the numbers of the left-hand and the right-hand primitive formulas are
written side-by-side.

The dependent variable L is a proper S-set in P since L is substituted
in the three P-constituents indicated by [L] in P and in the two more
P-constituents [WσN] and [φ(<z)A] for element variables (these P-
constituents are written as usual abbreviatedly in P).

The oriented graph, say <S, of P consists of two connected compo-
nents : the one crosses the finer coherent components [1] and [11] and
the other [10]. Outside S there are two isolated points which concerns
Wσ and Dσ respectively. The graph S with two isolated points is shown
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in Fig. 3, which has a coherent
cycle of length 2. The self-
coherent P-component is situat-
ed directly under the left cut-

formula of the singular cut op ^ ̂
w£L w£L in P. The finer P- ° Fig. 3.
components [8] and [9] cross
the isolated points L[DffA] and L[WσN], respectively.

Besides L, the following dependent variables up to isological variables
occur in P: Un, Dσ, Wσ, ^β(tf), <w#>, <wL>, and those used in defining
(wxy and <w;L>. These variables are all <?-eliminable as follows.

Un is a notion in P. Eliminate Un first from the finer coherent
P-component [11]. The connected component of S which crosses [11]
is reduced to a graph with one coherent cycle of length two and a
boundary segment (see the middle figure of Fig. 3). Eliminate then Dσ,
Wσ, ^3(<z) from the finer P-components [8], [9], and [10], respectively.
Remove by the replacement (B) all the left-hand occurrences of ordered
pairs. Using the recursive definition of ordered pairs to the reversed
direction, eliminate all the variables isological to <jvxy and <wL>, together
with those required in defining these variables. Erase unnecessary de-
fining formulas. We get thus a UL-proof in which the single dependent
variable Lα σ occurs, the definiens of which is affected by our elimination
transformations.

Thus, as stated in p. 105, Part (VI), the three variables Lv>t, ιy and
V lead to a contradiction which is nothing else than RusselΓs contradic-
tion, as is stated there.

LΛσ constitutes an (^-essentially impredicative cycle both in the
original proof and in the transformed proof.

(v) f]~ c l£(Ί~ c l> where [\a is, as usual, defined by

a
(13) Mu. w e f

and f) -cl ( f| -closedness) by

(14) \fu. u €.{]-(

By using (13) and (14) the above formula Π"C1^Π~C1 is proved, which
shows an instance of a constant having itself as its element. The proof

runs as follows:
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m- Π
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CD-

(3)
[4]

(4)
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[8)6 W£B

(2)
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C7)

(3) (6)
C4) C8)

The above proof is denoted by P. In P there are eight finer coherent
P-components indicated again by the numbers in brackets [ ]. The
oriented graph of P is a connected graph of length 4 (Fig. 4).

The dependent variables occurring in P are []-c\ and [\x9 up to
isological variables. The substitution of these variables in P are : f] - cl
for the element variable of f] -cl in the coherent P-component [1] f] ̂
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for that of f|-cl in [2]; and [\A for
that of f] ̂  in [3]. Since the oriented
graph of P is of finite length, all the
dependent variables are 5-eliminable
from P by Corollary of Theorem 7.

Hence Π~ cl£(l~ cl *s an analytical G-
tautology (definition of an analytical
proof is given in Part (IV), p. 133).

(vi) N£N (p. 125-126, Part (VII)).

The dependent variables occurring
in P are: 0, N, s', and P. The oriented
graph (Fig. 5) in P is connected and
has a coherent cycle of length 4. The
coherent cycle crosses two finer coherent
P-components. In these components N
and P are substituted for bound variables
of the definiens of P and N, respectively.
Hence, N and P constitute an £-essen-
tially impredicative cycle.

(vii) Mathematical Induction.

Oclru

Fig. 4.

Fig. 5.

Let P be a UL-proof in which a negative P-constituent [NN] at a
place π occurs. We denote this P-constituent by [NTT], If there is in
P an impredicative cycle which concerns \Nπ~\ then [NTT] js called an
impredicative mathematical induction2^. In the proof of N^N an impredi-
cative mathematical induction is used which is <?-essential. If N occurs
in the definiens of a set M for induction and if M is substituted for x
of [NTT] in a UL-proof, then [NTT] is an impredicative mathematical
induction, since the substituted variable M is superior than N. Such a
mathematical induction is frequently used in the deductions in Part (IX).
However, N is used in any proof in Part (IX) as a notion, so that N is
5-eliminable from the deductions in Part (IX). Moreover, the proper
<?-sets used in these deductions, besides 0, V, N and elementary sets
generated by 0, V, and N, are: *, κσ9 rbt(Γ, v, and λσ, defined in pp. 9,
36, and 39, Part (IX). Let Σ be the species of all these variables and
of any sets for induction, and Ί\(N, 2) be the natural number theory
(definition in p. 134 Part (VIII)) with 2 as the species of sets. Since all
the non-Σ-variables, such as AddhNxV, N x V , DAdd, AddhNxN, NxN,

23) Owing to the definition of predicativity in this Part, I delete " otherwise predicative"
from line 14, p. 14, Part (IX).
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WA d d[sN X N, etc., are (?-eliminable from the deductions in Part (IX), these
deductions remain within the ^-^-predicative extension of Ί\(N, 2).

The proof of N^N above is the single case of (^-essentially impredica-
tive mathematical inductions used in previous Parts.

APPENDIX

1. On intuitive knowledge

In previous Parts we used the expression "intuitive knowledge" of
which we shall give a definition. Let T be a theory, 3" a species of
elimination transformations, and 2 a species of dependent variables.
Assume that it is known that any dependent variable not belonging to
2 is £Γ-eliminable from any T-proof. Assume that / is a knowledge,
independent of T and £Γ, by which we can decide for any 2-constants
m and p, which of m£p and m£p holds, and which does not, and also,
which of m=p and mφp holds, and which does not. Assume further that
the £Γ-consistency of T is proved by using the whole knowledge /. Then
the knowledge / is called the intuitive knowledge with respect to T and
3". Thus the intuitive knowledge 7 is a concept* correlative to a £Γ-
consistent formal system T. Thereby / may contain some knowledge
which is undecidable in T but / stands in harmony with T, as is mentioned
before, in the sense that what is known to be false by 7 is T-unprovable.
Thus the formal system T is founded by 7 as a consistent system and
the validity of the intuitive knowledge 7 is assured by the consistency
of T. The form and intuition give foundations mutually to each other.

2. On defining formula

The defining formula Vu. u£p=Fu of a dependent variable p does
not determine the properties of p at all but it determines entirely what
properties the variable p should possess when p is placed in a certain
environment.
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