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In this paper we study in detail some of fields of elliptic modular
functions and their jacobian varieties. In this direction we have a recent
work of K. Doi [1] who answered partially to the problem proposed by
E. Hecke, Y. Taniyama and G. Shimura to study the properties of jacobian
varieities of elliptic modular function fields. He showed in particular,
the existence of jacobian varieties of this kind which do not admit
decomposition into a product of elliptic curves (in the sense of isogeny).
He obtained this result by showing that there are jacobian varieties
of this kind for which the rings of endomorphisms are isomorphic to
real quadratic number fields (as is well known, an abelian variety is
simple if and only if the ring of endomorphisms is a division algebra).
His examples concern to the elliptic modular function fields corresponding
to the group I'(N) with N=22, 23, 29, 31 and 37, where the genus of
the fields (i.e. the dimension of corresponding jacobian varieties) is 2.

In the present note we carry out calculations similar to his in more
complicated cases of higher genus (by employing slightly improved
technics). The result obtained is as follows ; The jacobian varieties /)
and Jn» corresponding to elliptic modular groups I'(N) with N=41 and
47, are both simple abelian varieties of dimension 3 and 4, respectively.
In the first case, the ring of endomorphisms is isomorphic to a totally
real algebraic number field of degree 4 (of which we later give a full
description). In the latter case we calculate the ring of endomorphisms
of the reduction from) of Jown mod 5, instead of that of Jrgen itself,
which turns out to be isomorphic to an algebraic number field of degree 8.
This sole fact is enough for the simplicity of /i . since an abelian variety
is simple whenever a reduction (modulo some prime number) is simple.

1. Criterion for J,, to be simple. In this section, we shall
prove a criterion for the jacobian variety J (v, to be simple, in slightly
improved form than [1] for the group I'(N) of genus g.
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1.1. Let r,,, - ,7,, be the eigenvalues of the Hecke operator T,
acting on the space of cusp-forms of degree-2, and let =, ; (j=1, -, 2g)
be the eigenvalues of an /-adic representation M,(=,) of p-th power
endomorphism =, of fpo(N ) (reduction of Jn v, mod p). Then, denoting
with #,; (==, ) the complex conjugate of =, ;, =, ; and z, ; satisfy an
equation

X*—r, X+ =0

for some 7,; (1=i=<g) (cf. the proof of Lemma 2 of [1]). We assume,
without loss of generality, = o and 7 it satisfy

Xt—r, X+p=0

we remark that if the characteristic polynomial of M,(=,) is irreducible
over @, we can identify »,, with an element of the endomorphism ring
Ao Trgen) of Joyn> and set Q(z, ) S A Jow>)- Now we have in [1] the
following criterion due to G. Shimura:

Criterion (A). Let /oy, be the jacobian variety of dimension g
corresponding to I'(N), g being the genus of I'(N). Let ]r‘o(N> denote
the reduction of J. v, mod p, where p is a prime number not dividing
6N. Assume that

Pl) [@(r,):Q]l=¢g
P2) [Q(=},):Q] = 2g for every positive

integer m,
then A ( ]r*o<N>) is isomorphic to Q(=,.) and ]}O(N) and hence J v, are
simple abelian varieties.

1.2. Now we proceed to replace P2) by other conditions convenient
to apply to the case of I'y(N) of higher genus.

Proposition 1. Let notations be the same as above and suppose that
the following conditions are satisfied ;

Pl) [Qr,):Q]=g
P2y [Q(z,.):Q] = 2¢

Ql) Q(,.) is the unique maximal subfield of Q(w,,).
Then, the condition P2) in the criterion above is equivalent to
Q2) =3 is not contained in Q(7 ) for any positive integer m.

Proof. P2)=Q2) is obvious.
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Conversely, if Q(=,)&EQ(= ,1) for some positive integer m, then by Q1),
Q(7;1)<Q(7,,). This contradicts to the condition Q2).

Criterion (B). Let J. v Joon> and p be of the same meaning as
in criterion (A). The conclusions of criterion (A) hold if the conditions
P1), P2y, Q1), and the following Q2)' are satisfied ;

Q2Y (7, p)=1 (or equivalently, (N, n/a(T,1), p)=1).

Proof. By proposition 1 above, we have only to prove that the con-
ditions Q1) and Q2) imply QZ2). Suppose the contrary of Q2), ie =, €
Q(r,,) for some integer m. Then =;,=7}, and hence

7,1 = €m,,, where & denotes an m-th root of unity.

Since

Tor = Tpr+7,, = m,,(1+€), and p==,,-7,,

it follows that (p,T,,) is divisible by = This contradicts to the

assumption.

»L

1.3. In the following, we derive a sufficient condition for Q1) to be
true. Let K and L be the smallest galois extension fields containing
Q(r p_,) and Q(=» p,l) respectively, we assume the automorphism group
Auto (K/Q) of K/Q is isomorphic to the symmetric group &g of order gl
The automorphism of L/K induces the transformation \/v; —&;\/v; with
&==x1@G=1,--,g), where v;=72,—4p, whence Auto (L/K)=29 is identified
with a subgroup of abelian group 2 of order 2% and type (2, 2, -+, 2)
consisting of all combinations (&, -+, &,) of signs 1. Since 9 is a normal
subgroup of Auto(L/Q)=®, the factor group 8=®/9 (=®&,) operates on
9 in a canonical way: T;(h)=ghg ' for he®, and g=g9. This implies
that © contains all element (&,,, ** , €,») together with 2=(&,, --+, &,) of
9, where (1), --+, o(g)) is a permutation of (1,2, --+, g), whence we can
infer without difficulty that © is one of the following 4 subgroups of A.

(1) A, = A, the whole group
(2) S)12 = {(81, tt Eg)|$1'82"-5g = 1} [az : 1] = 287!
(3) 913: {(1’ 1)"',1)a (_1» —'1>"'7 "1)} [913.1] =2

(4) A={11-,1} [A:1]=1

Proposition 2. The assumption and notations being the same as above,
Q(7,,) is the unique maximal subfield in Q7 , )=Q(\/7) if =%, or U,.

Proof. Put, K,=Q(7,.), L,=Q(\/7,)=Q(rx,,). First we shall show
Kn®=@Q for any subfield ®==@ of L, which is not contained in K.
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Since &,_,(= Auto (K/K,)) is a maximal subgroup of &,, K,/Q does not
contain any proper subfield. We have, on the other hand, L,nK=K,.
Therefore Kn®=Kn(®NL)=(KNL)N®=K, Nnd=@Q. Let € be the
automorphism group Auwuto(L/®). Since KNn®=Q, we have €= We
put M=®.-K=®K,-K=L,-K. Then [M:K]=[L,-K:K]=2, and so
[D: Auto(L/M)]=2. We put 9,= Auto(L/M). Then 9, =9HNYE, hence
9,, is a normal abelian subgroup of € and so 9, has &,=8/9=LH/
=2/8nH=L/Y, as an operator group. One finds however, that there
does not exist such a subgroup 9, in  because any element of 9, must
fix \/7v,. This completes the proof.

The assumption that ¥;=Q(\/v;) is totally imaginary of degree 2g
over @ implies ©==A,. If $=9,, then K=L>DL;, and so L; is a subfield
of the totally real number field K. This contradicts to the assumption
on L;.

If =9, then K(\/7,)=K(\/7.)=+--=K(\/v,) =L, and hence \/v;7;€ K,
i,j=1,-,8 &;=9:;({==7)is contained in the subfield K’ of K corre-
sponding to a subgroup isomorphic to &,x&,_,, where K’ has the degree

! —1 ’ -1
o 5_2)!=g(g2 )_g’ over Q. Therefore Ny/a(vs7;)=(Nrsalr ). We

put then
(1) K(VE,) =K
(2) K'(WVE,) = K'Vv) (ZK) for some ye K.

If (1) holds, then &,=28;, for some B,,€ K’; hence, defining a polynomial
F(x)€e Z[x] by F(x)=II(x—£,;;) we have a facotorization F(x*)= +®(x)x
®(—x) with ®(x)=I(x—8;,) € Z[x]. Putting F(x*)= 2*" —ax*€"-> 4 ...
+(—1)g'ag/, @(x):xg'—b,g’-{—-~-+(—1)g'bg/, we have g’ equations in @, b;
with integral coefficients. If these g’ eqations do not have any integral
solutions, then we can conclude ©==2,. (This is the case in particular,
if a, (=Ng/jou,») is not the square of rational number.) If (2) holds,

then. NK/,Q(éi‘—2> must be a square of any rational number. Therefore
Y

if NK//Q('!’E) is not square of any rational number, then ©==9,.
Y

2. Numerical examples. In this section we apply the above results
to I'(41), I'y(47). For this purpose, we determine the characteristic equa-
tion of T, acting on S_JI'(41)), S_(I'(47)), the spaces of cusp form of
degree —2 corresponding to the modular groups ['(41), and I'(47) respec-
tively, by calculating traces Sp(T3) of the powers of these T,.

Lemma. The characteristic equations of T , With respect to S_(I'y(N))
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are as follows. In the case; the dimension of Jycn, is 3:

X*—SKT,) X2+Sp (Tg);Sp( T?) X (SH(T,)+Sp( T,,)6 —2SM(T,)SH(T?) o

In the case; the dimension of Jn (x))=r > is 4:

X‘—Sp(T,) x5, 32 (T,,);Sp( T3 [SP(T,)+25K T‘”()5 —3SH(T)SKT2]D 5

SH(T)SH(T3) [SP(T)Sp(T3)+SH(T)] Sp(T;) SKT,) 0
+ 3 - 4 tTg o T
Proof. It follows by the simple calculation as the same method as
in [1; lemma 1].
Using the trace-formula [2], we get the following table of traces
SH(T7):

’genus}Sp(T;,)’ SpTz | SpT3 | SpTt | SpT2| SpTs | SpTe | SpT, | SHT2 SpT;!spT? ST}
roun| 3 | —2 | -3 0 12 ‘—20 6 | —1 | —18] 20 ! 66
r4n| 4 | —2| 16 | —36| 24 | 36 | —56 | 464 l

The characteristic equations of T, and T, with respect to S_,(I'j(41))
are X*+2X*—4X—4=0 and X°—6X>+8X—2=0 respectionaly, and that
of T with respect to S_,(I',(49)) is X*+2X°*—16X*—16X+48=0. These
equations are irreducible over @. Let K, K’, K’ be respectively the
smallest galois extension fields containing Q(r,,), Q(r,,) and Q(7;,), where
‘7';,1 +2‘7'§,1—47'5,1_4 =0, ”';,1—6'7"7!,1“*‘87,1—2 =0, ﬂ§,1+2712,1"1677§,1_16’75,1+
48=0. Then we know by simple calculation that the galois groups of
K, K’ are both isomorphic to the symmetric group &, of order 3! and

that of K” is isomorphic to &, of order 4!
Case I'(41), T,, if (1) in 1.3 holds, there should be the following

relations among the coefficients b; of ®(x) and the a; of F(x) (y;=7%,—20
(6=1,2,3), &;=vi+v; and F(x)=I(x—§;;)=x"—a,x* + a,x—a, : 2b,—b=
752=2'-47, b5—2b,b,=172866, bi= —2*.239 While the corresponding rela-
tions for J, are 2b,—b}=27.5.37, b3—2bb, =2°-13.1667, b} = —2'.239).
However, these equations do not have any rational solution 5;. If (2)
in 1.3 hold, Q(7;,)(\/€,)=K=@Q(7;,) /D), where D(=2'.37) is the dis-

criminant of the equation X°+2X*—4X—4=0. Then NQ(,SYI),Q(%)

must be a square of a rational number. But we get NQ(,SII),Q(%>=

NQUB;(%)Z _ (22“1; 2;?3)2 . Therefore §=-9(,. Obviously =9, ([L: K]1).
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This, together with Proposition 2, shows that @(7;,) is the unique maximal
subfield in Q(r;,). By an analogous argument we see also that @(r,,) is
the unique maximal subfield in Q(=,,). Thus, for the case of I'(41), the
conditions of criterion (B) are whole satisfied

5/6-41 (7 46-41)
P1) [Q(7:,):Q]1=3 ([Q(r.,):Q]=3)
P2) [Q(7s.): Q1 =6 ([Q(=.,):Q]=6)
Ql) Q(7;,) (Q(r,,)) is the unique maximal subfield in Q(=; . Q(=;.))
Q2") (Nerg,pra(Ts,1), 5) = (4,5) =1
(Nerora(m,1), 7) = (2,7) = 1)
Hence Al Jrycar) = A jpom) mod 5) = Q(=;,)
and A(Jryan) < uqo(jr‘o(m mod 7) = Q(=,,) .
Moreover, we have in this case, 7,,=47,,—77,—2 which implies Q(7;,)=
T5,—20\ 2%°.239
¢%~%>:1&7-

Q(7,,), while Q(=;,)=+Q(=,,) because we have NQ(TS'D,Q<
Therefore JO(]I‘O(Ail))zQ(TS,I)'

Case I'(47), T.: Nryai) = (Nawsya (7)™ = [ Nacws, pa(ni — 20)1'=
(2°.23.5), ie £, is not a square of any element B of K,=Q(£,,), where
[K,: Q]=6<:g’=g(g%1)>. Hence

(1) in 1.3 does not hold. Let us now assume the condition (2) in
1.3. We have then [K(\/E,):K,]=2. Since in this case Auto(K/K,)=
{1, (12), (34), (12)(34)} =&,, we have

Auto (K| K(\V/E)) == {1, (12)} «ooveeeee (i)
or = {1, (34)} «weeeeee (ii)
or = {1, (12)(34)} --- (iii),

where
(1) = K{VEn) = K(51m54m5:—75.4))
= KV 73173 2(75.s— 75 4)")
(ii) = K(VEwn) = Kns:— 7525 2375.1)
= o(\/("75,1_7]5,2)2"7%,377%,4)
(i) = K{VEz) = Kf(ns,—75:(n55—75.4))
= o(\/"ls,l - "75,2)2("75,3 - 7/5,4)2

Therefore N,,O,Q< — £ 2>,
"75,17]5,2("75,3_775,4)
AQ,Q< f2 ) and
’ ("75,1_"15,2)2”12,3"72,4
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NkO,Q( EZ“ 2) must be squares of rational numbers. In our
("15,1_"75,2) ("75,3_"75,4)
case however,
N < 512 ) — ( 512 ) _ 230.233.53
YN e N\ i and)  273°27.89501-23
g 230.233.53
N 12 = T T ST
ko' ((715,1 =752 (75,5— 715,4)2> 2*-89501°.23°

hence (2) does not hold. Hence ©=2A,. We have further (7,,,5)=
(Notns, re(ms1), 5) = (48,5) =1. By Proposition 2 and Criterion (B),
(A, ]}0(“, mod 5)=@Q(w;,). Therefore jpom) is simple, and so is Jy ., simple.
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