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In this paper, we determine the additive structure of the complex bordism
group Uy(BZ,), where BZ , is a classifying space for Z ,, p aodd prime. Conner-
Floyd [1] computed the case p=2, and solved by a goemetric method. Here we
use the Mischenko series [4] instead of the geometric method of Conner-Floyd.

The author wishes to express his thanks to Professor S. Araki for his many
valuable suggestions and discussions.

1. The order of the element [L"7'(p), i]

We denote by Ux(X, A) and U*(X, A) the complex bordism group and
the complex cobordism group of a CW complex pair (X, A) respectively. Let
L*(p) be a (2n4-1)-dimensional lens space defined by a rotation T' which acts on
a (2n+1)-sphere S**' in complex coordinate by T" (2, *--, 2,.)=(pZ%, ***, PZu)
with p=exp (2ni/p). BZ, is a CW complex of which the (2n+1)-skeleton is
L*(p). The cell structure of L*(p) is given as follows:

LY (p)=s'U U’ U p- U " U™ .

Applying the exact sequence of the bordism group to a pair (L"*'(p), L™*(p)), it
follows immediately that

U, (L"(p))= U, (L™ (p)) for k<<2n+1.
In this section we study the order of the element
[L77(2), 1€ Upno(L(P)) =+~ Unn_y (BZ,),

where :L"7' (p)—>L"(p) is the inclusion. In order to determine the order of
[L" (p), 7], we use the duality isomorphism between bordism groups and
cobordism groups, and the relation between K-theories and cobordism theories.

Theorem 1.1 (Atiyah-Kultze [3]). If X is an n-dimensional compact U-
manifold, there is an isomorphism D:Uy(X)—U""*(X).
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D[Mk*, f] is given as follows. For a large integer » such that n+t+r—k is
even, there is an embedding map f: M#—S”X*— {+}, which is homotopic to the
map f:Mk—XC S”X*—{x}, where * denotes the base point. Denote by N(M*)
the normal bundle of M#c S”X*—{}, and there is a bundle map @ from N(M¥)
to the (n+r—k)/2-dimensional universal complex bundle EU((n+r—&)/2).
Then we can construct the map

d(f):S” X+ — T(N(MBY) ~2 MU(@nt7—B)2),
where T(N(M¥*)) and MU((n+r—k)/2) are Thom complexes of N(M¥) and
EU((n+r—Fk)/2) respectively. D[M#, f1=[d(f)].
The following theorem which connects K-theories with cobordism theories
was given by Conner-Floyd [1].

Theorem 1.2 (Conner-Floyd). If X is a finite connected CW complex, the
homomorphism p: K(X)—U? (X) which maps {"}-n into the 1-st cobordism
Chern class c¢,(E™) of " is the monomorphism of K(X) onto a direct summand of
U¥(X).

Let z: L"(p)—CP" be a canonical projection. If % is a canonical complex
line bundle over CP", 7(CP")P1,=(n+1)5 and 7(L"(p))Pl==*(7(CP*)P2),
where 7(L"(p)) and 7(CP™) are tangent bundles over L"(p) and CP" respectively,
and lower index ¢ denotes a complex vector bundle. Therefore L*(p) is a
U-manifold. Considering homomorphisms D and p of Theorems 1.1 and 1.2
for a space L"(p), we have the following

Proposition 1.3. D[L"7'(p), {]=p(z*n—1.).

Proof. Let v, be the normal bundle of CP"™* in CP*. Since 7,(CP")|
CP™ = (CP" )@,

r(7(CP")| CP* )@ 1 )=r(7(CP"")D1.Dv.),
where r denotes the real restriction. Moreover,
7*r(1,(CP")®1,)| CP"'=n*r{(7(CP" D L,)Dv.} ,

which implies that z*rv, is the normal bundle of L"7*(p) in L"(p). The
total space E(7, (CP")) of 7,(CP") can be represented as the set of all pairs
%, 3] with |[idl|=1, 2= C**" and {4, v>=0 by the standard Hermitian metric
of C**', under the identification (#, 3)=(A\i, A7) for all A C?, |A||=1. Now
we define the Hermitian metric F: E(t (CP"))X E(T,(CP"))—C" by

F([ﬁu 51]) [ﬁz; %z]):<ii1' ii2> <52, 51> .
Then the total space of v, is
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E(v,)={[ii, 3] € E(r,(CP")):iicC", and F([Z, 7], [#, 3,])=0
for each [4, 3,]€ E(T, (CP"™))},

that is, E( »,) consists of the elements [i, 7], where 3=(0, -, 0, 2,). Therefore
E(z*v,) can be represented as the set of all pairs [4, 9] with [|i|| =1, Z€ C" and
and 9=(0, .-, 0, %,) under the identification (&, 9)=(p#, p7), p=exp (2=i[p).
Consider the open submanifold
l”(P)z{[zo’ ) zn]EL”(P); | 2] <1}
of L*(p); there is a diffeomorphism
g: L*(p) — E(z*»,)

given by

&(l50 s ZD=[EN =+ FuaV)y (O -+, 0, 3Nl A= 4SS5 e

i=0

that is, L*(p) is the tubular neighborhood of L"7*(p) in L"(p). We define the map
f1 Ew*v) — 7,

by f([20s ***» Rn_s], (0, +++, 0, 2,))=([20» ***s Zu_.], %), Where 7’ is a canonical
complex line bundle over CP""'. Let % be a standard homeomorphism between
the Thom complex of 7' and CP”. Then, for [L"7(p), il€ U,._, (L"(p)),

we have

e = ={ol % G 2

It follows that z=d(:). Since p(z*n—1,)=[rx], the proposition follows. q.e.d.

Kambe [2] showed that the order of z*(n—1,)€K(L*(p)) is pl* /@b 1+
Then we have the following

Proposition 1.4. [L*"(p), i]€ U,,_(BZ,) is of order ple"/=b1+1,

2. The structure of U.(BZ,).
We consider the 2n-skeleton L,*(p) of L,(p), that is,

L(p)=s"U,e'Ue U, - Ue™ U e

Using the bordism exact sequence for a pair (L"(p), L,"(p)), we have U,(L,"(p))
~Uy(L"(p)), for k<<2n. Therefore, for a large n

Uners( L)~ Ui L (D))~ Uen( L7 (9)), UL ()~ Un(Ls" (D).
The bordism spectral sequence {E,” ;} for L*(p) is trivial and if s+¢=2k, then
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EZ ,~0(s%0), E,*,~U,. It follows immediately that U,(L*(p))=~Uy.

Lemma 2.1. If a[L’(p), ]]=0 in U,;,,(L*(p)) for a large n and a€U,,,
then acpU,;.

Proof. Since U,,.,(L"(p))~U,,; 1, (L,*(p)), We can assume that a[L°(p), 7]
el, i1 (L(p)). Consider the reduced bordism spectral sequence {E,”,} for
L(p), which is trivial. There is a filtration 0C J,,C J, 4, C ++* C Jp o=~ A
(L"(p)) with J, /] ; pi~H, (L(p), U,). The multiplication

m: U(L(p)QU, — U, (L))

induces the following commutative diagram

~ ®id
T(L(P) @U, =], 0@ U,, “25 B, (LA(p)® U,
ml ’ mz

Jij _iﬁﬁl (L"(p), Uzj)

where 4 is the edge homomorphism.

au[L(p), i]l=m(p@id)([L(p), {]@c)=p'om([L(p), ]]Qa)=p'a[L’(p), i])=0.
On the other hand p[L(p). 7] is a generator of H,(L,*(p)). Since H,(L,"(p)) is
p-torsion group, ac pUy. q.e.d.

Lemma 2.2. Suppose that X is an n-dimensional U-manifold. If [M,, f],
[M,, f,]€ Ux(X) are the elements represented by embedding maps fi: My—X (k=
1,2). If the two embeddings are transversal to each other, then D{M,, f,1D[M,, f,]=
D[M,-M,, f,|M,- M,], where M,- M, is intersection manifold of M, and M, in X.

Proof. We can suppose that M, - M, is a submanifold satisfying N(M,-M,)
=% N(M,)®i*,N(M,), where i,: M,- M,—M,(k=1, 2) is the inclusion map and
N(M) is the normal bundle of M in X. D[M,-M,, f,| M,-M,] is constructed by
the bundle map

N(M,- Mz)i» N(M,) x N(M,)—EU(s) x EU(ty—> EU(s+1)

A
M,-M,—M, x M, —>BU(s) X BU(t)—> BU(s-}t),
where A is a diagonal map, and s and ¢ are the dimensions of N(M,) and N(M,)

respectively. In view of the definition of multiplication in the cobordism group,
we complete the proof.

Suppose that 7Jis the canonical line bundle over CP” it follows from
Lemma 2.2 that {¢,(z*n)}*=D[L""*(p), 7].
Mischenko obtained the following theorem [4], which plays an important
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role to deduce some relations of the elements of U,,_,(BZ,).

Theorem 2.3 (Mischenko). For a complex line bundle & over a CW complex
X, define a series g(c,(£)) by

_ X c k1 2 Xy= k).
g(cl(«f))—kﬁgok T (O e UA(X)QQ, x=[CP

This satisfies, for line bundles & and u, the relation

&(a,(E®n)) = glc(&))+g(a(n) -

Proposition 2.4. There exists o, =0 mod p such that

PUILE*72(p), 1] = e [CPPTT[LY(p), 7] -

Proof. The proof is by induction on a. Let » be the canonical complex
line bundle over CP?. By Theorem 2.3

8ler) = peem) = platm+ 5 e+ 22y
and
(P—1)18(e(r") = pra(n)+p(p—1) w2 L+ (p— D! o)

Since U*(CP?) is torsion free, the above relation is an integral relation. Then,
by the naturality of g and (z*n)?=1,

pla(z*n)+p(p— 1)'“é' Laye,(m*n)° o +(p— )% o 6(z*n)? = 0.
Using Lemma 2.2,
PUL #7(p), A]+p(p—1)+-2- L [L25(p), ]+ +(p—1) %, ,[L(p), 6] = 0.

Since the order of [L/(p), ¢] is p for j<<p—1 and the order of [L?7(p), 7] is p*
by Proposition 1.4,

PUHLPT(p), i+ (p— 1), o [L(p), 1] = 0.

Since p is prime, the case a=1 follows. Suppose our assertion is true for b<a.
Let £ be the canonical line bundle over CP¢®~>+ By Theorem 2.3,

X 2 xa( -1 ap-1)+1
(6 (67 = p{a @1+ e S e )

Put  {a(p—1)+1}!=p*m, m=0 mod p. If n!=p“n’,n’==0 mod p then
u=hZ] [n/p*]. Hence
=1

s=a if a=p"+p"'4--+1, s<a otherwise.



414 M. KamMaTa

Consider the following equation

Ag(c,(8%)) = Ap{cl(s)+%cl(5)2+---+a——(;‘f’1-)1;1cl(g)“w-w} ,

where A={a(p—1)+1}1p*"
This is an integral relation. Therefore, using (z*£)?=1, the naturality of g
and Lemma 2.2,

a acp-1), p'm acp-1>-1 i PPMXah > rr0 —0.
p*m[L (), 1]+ > x[L (p), 1]+ +—a(P—1)+1 [L(p),i] =0

Denote by o([L!(p), 7]) the order of [L!(p), {]. Suppose that
t = a(p—1)—(ptn—1), =0 mod p,
By Proposition 1.4,

o([LA(p), il) = p° if k=1 and n=1,
o([L¥(p), 1]) = p", v<<a—k-+1 otherwise .

Therefore,
Pim[LEP0p), i)+ p* imix, (J[LATPCTO(p), i] = 0.

Since m=0 mod p, using the induction hypothesis, the proposition follows.
q.e. d.

Let T'(p) be the polynomial subring of Uy generated by all [Y,,]& U,, with
k+p—1. We note that T'(p)[CP? ' |=Uls.

Proposition 2.5. Suppose we are given a relation
33 [L(p), M #] = 0,
k=0

with [M*"®]ET(p). Then [M*4~P]c ple/s=bIHT(p),

Proof. The proof is by induction on #. Lemma 2.1 implies that the case
n=0is true. Suppose our assertion is true for m<<n. We consider

SIZAp), M R] = 0 (1)
Applying Smith homomorphism to this equation, we have
$1[L(p), (M=) = 0.

By the induction hypothesis [M*¢~#]= plk=D/@~DIT[N2U"E], Since [—k—_—i—]
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=[L1] for k=a(p—1) and the order of [L¥p), i] is p/®~1* by Proposi-
tion 1.4, the equation (1) becomes

2IPLPTR(p), (] [N*7**7P] = 0.
From Proposition 2.4,

20 o [N*7 @R [CPP 1 [LY(p), ] = 0.
Since @,=%=0 mod p, it follows from Lemma 2.1 that [N*~**®"Y]epU,. This
completes the proof.

Let T,(p) consist of 2k-dimensional homogenuous polynomial. Finally
we have the following

Theorem 2.6. The homomorphism

0: 33 T s PP P 1 Tty 1(p) > Uir(BZ))

given by ©( 33 [M**)) = 33 [M** ][LK(p), i] is isomorphism.

Proof. The Proposition 2.5 is precisely the statement that © is mono-
morphism. To check that © is epimorphism, we compute the order of the

group
n?o Tatn-io(P)/ DY 271 Ty (D) s

and compare it with that of U,,,,(BZ,). The former is p", 7= Ek] tk{[ﬁ]

—|—1}, where #, is the number of partitions of k, containing no (p—1), the

latter is p°, o= > 5, where s, is the number of partitions of 2. Now
k=0

o= 5=t ap o= 3 (max {a] j = k—a(p—1)}+1)¢,

5 (=

Thus O is an isomorphism. q.e. d.
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