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Abstract

Recently, clustering has played an important role in data mining and machine learning. Semi-
supervised clustering is an extension of conventional clustering technique by integrating back-
ground information in the clustering, e.g., pairwise constraints or class labels. The conventional
way to do semi-supervised clustering is Mahalanobis-based distance metric learning which pe-
nalizes objective function using the constraints satisfactory in order to find a suitable metric.
Although, state-of-the-art semi-supervised clustering has a rich performance to improve the
clustering accuracy by utilizing the class information from human intervention; however, it is
reported that hard pairwise constraints, i.e., instance-level constraints, sometimes destroy the
clustering quality, depending on relationship between the constraints and the data distribution
and there is no monotonicity to the number of constraints, that is the improvement of cluster
quality is not guaranteed by adding constraints. These drawbacks are critical issues in prac-
tice. Evolutionary distance metric learning (EDML) has been proposed to address the problem
of instance-level constraints by directly improve cluster validity index, however, it is catego-
rized as a linear distance metric learning, which yields a small benefit when the data is not
linearly separable, like many other distance metric learning techniques. Even though many re-
searchers proposed non-linear distance metric learning, it could not get away from the problem
of instance-level constraints.

This study proposes a distance metric learning method which addresses the problem of non-
linearly separable data and the problem of instance-level constraints simultaneously. Hence,
this research provides an integration of kernelization technique with evolutionary distance met-
ric learning called kernelized evolutionary distance metric learning (K-EDML). The proposed
methods are able to handle either class labels or pairwise constraints and directly improve any
clustering index as an objective function and can also perform a non-linear distance metric
simultaneously. It can be viewed as utilizing cluster-level soft constraints, unlike other instance-
level hard constraints which sometimes collapse the clustering. This research demonstrates the
performance of the proposed method on UCI dataset compare with other well-known clustering
and distance metric learning technique. As a result, the proposed method empirically over-
comes other methods in many datasets and secure the highest average ranking in all dataset both
in training and test sample. Moreover, the results demonstrate the benefit of kernelization in dis-
tance metric learning on the real-world dataset. The advantage of directly optimize the cluster
validity index is illustrates by the improvement of cluster quality in EDML and K-EDML from



baseline and also state-of-the-art distance metric learning technique. In addition, the proposed
method demonstrates generalize performance over the evaluation environment which different
from training scheme. Finally, the proposed method maintains neighbor relation of clusters and
can lead to a better visualization of the clustering result. Thus, it can be used as a novel clus-
ter analysis technique that analyzes both class label and features sample simultaneously as a
human-centered computing. This method is applied to the real-world problem of facial images
and recipes data. The analysis provided promising insights, i.e., more intelligible cluster struc-
ture with neighbor relations can be obtained, and a particular cluster structure can be obtained
according to the purpose of analysis.
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Chapter 1

Introduction

Human has the ability to divide objects into groups (clustering) and assign an object to a partic-

ular group (classification) by their common senses. This concept has gained much attention in

data mining and machine learning, in order to automatically find clusters or assign a particular

object to groups.

Recently, clustering [54] has played an important role in data mining and machine learning.

Clustering divides data into clusters (group) according to their similarities between each other.

Depending on the purpose of clustering, it could obtain meaningful groups (e.g., capture the na-

ture structure of the data), beneficial group, which is a useful initialization for another approach,

or sometimes both. It has been extended to a wide varieties of practical problems, such as, to find

groups of similar functions genes in biology [52, 31], to use for information retrieval [74, 7, 75]

in search engine even in Google1[13], which is the current best search engine in the world, to

find the pattern of atmosphere and ocean to predict the significant climate impact [48, 23], and

to cluster patients who have similar symptom into subgroups to indicate the disease [59, 4, 27, 1]

and so on. Clustering algorithms are generally introduced only in an unsupervised learning. In

real-world application domains, the data usually contain some background information, e.g.,

pairwise constraint or class information (label). However, the traditional clustering algorithms

have no way to make use of this information even it exists. Hence, the cluster structure is

constructed only in the learning perspective, which often considers incomprehensible to human.

Semi-supervised clustering [5, 77, 33] is proposed to take advantage of this information by

integrating background information in the clustering. Traditionally, to overcome this weakness,

Xing et al. have attempted to learn a similarity metric from side information [77], such as con-

straints on which pairs of documents must or must not appear in the same cluster [66], so that
1https://www.google.com

1



the ideal clustering can be produced. Semi-supervised clustering has emerged as an interesting

alternative in the last years. These algorithms improve the clustering quality through external

knowledge conveyed in the form of constraints. These constraints are used to guide the clus-

tering process and can be directly derived from original data (using partially labeled data) or

provided by a user, trying to adapt clustering results to his/her expectations [18].

The idea to learn a similarity metric from side information is expanded to other fields not

limited to only clustering. Many research well validates the metric, both empirically and theoret-

ically, that the definition of distance between two data points significantly affects clustering and

classification tasks. Recently, varieties of distance metric learning (DML) methods have been

proposed by learning a distance metric from a dataset [79, 68, 49]. Example approaches include

nearest neighbor classification [73, 40], clustering [77, 33, 51], and data visualization [30, 39].

Meanwhile, conventional semi-supervised clustering methods [66, 77, 11] try to improve

clustering based on pairwise constraints—i.e., must-links that identify pairs of data that must

be in the same class and cannot-links that identify pairs that must not be in the same class.

These pairwise constraints can be written in binary, and can therefore be specified as a matrix;

furthermore, the optimization problem is solved in such forms as semi-definite programming

(SDP).

However, the conventional semi-supervised clustering methods have the following draw-

backs. First, it is reported that hard pairwise constraints, i.e., instance-level constraints, some-

times destroy the clustering quality [19, 67], depending on a relationship between the constraints

and the data distribution. Second, there is no monotonicity to the number of constraints, that is

the improvement of cluster quality is not guaranteed by adding constraints. These drawbacks

are critical issues in practice. Instead of including the pairwise constraints into the objective

function as a penalty, Fukui et al. [29] propose evolutionary distance metric learning (EDML), a

methodology to directly improve a cluster validity index such as purity, F-measure, and entropy.

The EDML can be regarded as based on cluster-level soft constraints.

In general, a function of the clustering index is massively multimodal when distance metrics

vary. Hence, EDML framework utilizes an evolutionary algorithm for this multimodality prob-

lem to search a sufficiently optimal metric transformation. The advantages of an evolutionary

algorithm (EA) are as follows: (1) EAs can provide a solution even to problems that are hard

to formulate using mathematical programming; (2) EAs sometimes heuristically discover un-

expected solutions; and (3) EAs are highly parallelizable and can therefore make use of recent

computational resources as multicore CPUs or PC clusters. Classic optimization methods such
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as gradient descent require a differentiable objective function, thus it addressed this by differ-

ential evolution (DE) [63] algorithm since DE does not require the optimization problem to be

differentiable. Thus, their work utilizes differential evolution with self-adapting control param-

eters and generalized opposition-based learning (GOjDE) [69] for a real-valued optimization

problem, which has a high search-ability without requiring parameter adjustments. Koloseni et

al. [43] proposed the DML method using DE [63] for classification. EDML is for clustering,

while their work supports the capability of applying DE to DML.

Although EDML provides outstanding results over other semi-supervised clustering in many

datasets [36, 38, 37], it can only perform a linear transformation, like most of the DML tech-

niques, which yields small benefit to non-linearly separable data because they are based on

Mahalanobis distance. Also, non-linear approaches to metric learning have not managed to

replicate this success [40]. Even though, many kernel-based distance metric learning approaches

have been proposed to address non-linearly separable [81, 61, 14, 45], the drawbacks of conven-

tional semi-supervised clustering methods are remained. Thus, this study proposes kernelized

evolutionary distance metric learning (K-EDML), a DML method which provides an integration

of kernelization technique to address the problem of non-linear transformation while maintain-

ing all properties of EDML simultaneously. Therefore, the non-linear transformation of the

distance metric can be performed while maintaining the optimized cluster validity index by an

evolutionary algorithm.

Moreover, this study takes advantage of the overall cluster structure evaluation by smoothed

cluster validity index in the proposed method which refines neighboring cluster for better visu-

alization, and the data points of the same class tend to locate in neighboring clusters in order

to address the limitation of state-of-the-art cluster analysis, i.e., it cannot preserve class infor-

mation as a neighborhood relation. Thus, this study proposed a cluster analysis technique that

simultaneously visualizes the cluster structure by considering the class label, which is available

from human intervention, simultaneously with the features to guide clustering to be constructed

in the human point of view. By taking advantage of EDML, it allows us to propose this novel

cluster analysis easily because of its capability that not only preserve the neighbor cluster rela-

tion, but also directly improve cluster accuracy in term of cluster validity index score.

This dissertation is organized as follows. In Chapter 2, the related literatures about basis of

the kernelized evolutionary distance metric learning are reviewed, i.e., distance metric learning,

semi-suprevised clustering, kernelization, cluster validity indices with neighborhood smoothing,

and differential evolution. Moreover, literatures about cluster analysis and human-certered com-
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puting are covered in this chapter. Then, the overview of evolutionary distance metric learning

framework is presented in Chapter 3. In Chapter 4, the kernelized evolutionary distance metric

learning is proposed. Start from the cluster structure learning, then unifying the kernelization

technique into the evolutionary distance metric learning. The proposed method is evaluated by

varieties of real-world data from UCI. Moreover, the proposed method is compared with the

state-of-the-art distance metric learning technique both linear and non-linear method to show

the effectiveness of the proposed method. Then, in Chapter 5, the proposed method is applied

to the real-world application: facial images dataset and recipe dataset. Cluster structure is visu-

alized by a K-means clustering with K-nearest neighbor centroids graph in order to explain how

the proposed method aid the cluster analysis. The analysis covers the relation between class

information and features of the data, comprehensiveness of cluster structure, neighborhood re-

lations of cluster boundary, and changing the direction of the cluster analysis. The dissertation

end with a conclusion and introduced some further study in Chapter 6.
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Chapter 2

Literature Review

2.1 Distance Metric Learning

Distance metric learning (DML) [79] attempts to optimize a metric to improve classification or

clustering. Example approaches include nearest neighbor classification [73, 40], clustering [77,

33, 51], image ranking [15, 56, 47, 84, 82], and data visualization [30, 39].

Fig. 2.1a shows data points with three classes, i.e., circles, squares, and stars, and three

initial partitions (or clusters) in Euclidean space. Note that one of the clusters has data points in

all three classes. To cluster all data points correctly, the data space transformation stretches the

partitions as shown in Fig. 2.1b

(a) Euclidean space (b) After transformation

Figure 2.1: Conceptual diagram of distance metric transformation

Distance metric learning can be divided into unsupervised, supervised, and semi-supervised

learning by the amount of label information:

• Unsupervised DML attempts to identify geometric relationships in the Euclidean data

space. Normally, unsupervised DML methods are viewed as dimensional reduction or

projection into low-dimensional space while preserving neighbor relations of data points.

The classical method of multidimensional scaling (MDS) fall into this category. ISOMAP

[64], local linear embedding (LLE) [58], and Laplacian eigenmaps [8]. They can also be
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called manifold learning, which is an approach to learning the nonlinear structure of the

data distribution.

• Supervised DML attempts to learn a distance metric transform function based on auxil-

iary information, including class labels and pairwise constraints of must-links and cannot-

links. So far, a lot of supervised DML algorithms have been proposed, such as Maha-

lanobis distance learning model which first proposed by Xing et al. [77], Distance Metric

Learning for Large Margin Nearest Neighbor Classification(LMNN) [73], linear DML for

ranking (LDMLR) [76], Online Algorithm for Scalable Image Similarity learning (OA-

SIS) [15], DML using dropout [56], and Geometric Mean Metric Learning (GMML) [84].

• Semi-supervised DML combines an advantage of supervised and unsupervised DML,

which attempts to use unlabeled data to help supervised metric learning which has limited

of auxiliary information to learn an appropriate metric such that it satisfies the constraints.

Example algorithms are MPC-Kmeans [11], Information-Theoretic Metric Learning (ITML)

[21], Hierarchical Confidence-based Active Clustering with Metric learning [51], An In-

trinsic Approach for Semi-supervised Distance Metric Learning [82].

Moreover, DML can be viewed in another perspective as global and local DML: Global

distance metric learning [77, 6, 30, 21, 73, 85, 15, 10, 56, 45, 84, 51, 82] has a common met-

ric transformation in a whole data space, and attempts to learn the optimal transformation by

preserving all the elements of classes close to each other while separating different classes.

Conversely, local distance metric learning [80, 73, 71] attempts to locally satisfy the constraints

rather than simultaneously satisfy all constraints. This locality is particularly useful for infor-

mation retrieval and k-nearest neighbor classifiers. Although local DML methods have rich

representation capability, they also have a tendency to over-fit owing to the high dimensionality

to learn [80] while the global DML methods have relatively high constraints and are resistant to

over-fitting.

In addition, there are several nonlinear methods which learn more flexible metrics in order

to fit into non-linearly separable data [81], for instance, the kernelization technique aid the linear

learning algorithm by a implicit nonlinear mapping function, e.g., a nonparametric kernel matrix

[61], Semi-supervised Kernel k-means (SS-K-KMN) [44], and Kernel-Based Distance Metric

Learning for Ranking [45]. Moreover, a nonlinear distance metric could be learned via non-

linear Gradient Boosting Regression Trees (GBRT) [40] or a deep feedforward neural network

[72].
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The proposed K-EDML has a distance metric learning as a basis and it is categorized as a

semi-supervised non-linear global DML.

2.2 Semi-supervised Clustering

Semi-supervised clustering tries to improve clustering quality aiding by external knowledge,

mostly pairwise constraints. COP-Kmeans [66] is the first attempt to introduce pairwise con-

straints to K-means clustering. The cluster assignments of data points are forcibly modified to

satisfy the constraints (hard-constraints), and the centroids are updated based on the modified

assignments. MPC-Kmeans [11] uses soft-constraints to allow violating some constraints, and

integrates with DML as well. Then, Information-Theoretic Metric Learning (ITML) [21] uses

the LogDet divergence regularization which will later be used in several other Mahalanobis dis-

tance learning methods. Hierarchical Confidence-based Active Clustering with Metric Learning

(HCAC-ML) [51] is one of the successor of ITML which generate the constraints from hierar-

chical information and feed to ITML. In addition, there are several nonlinear methods which

learn more flexible metrics, for example, a nonparametric kernel matrix [61], Semi-Supervised

Kernel k-means (SS-K-KMN) [44].

As mentioned earlier, the instance-level constraints sometimes collapse the clustering. David-

son et al. [19] introduced Coherence that is the degree of agreement between the constraints to

measure the property of a given set of constraints. Constraints with low coherence have contra-

dictions in the data space. Thus it will be difficult to fully satisfy the constraints and can lead

the clustering to undesirable result. Meanwhile, our EDML and K-EDML utilizes cluster-level

constraints, which tries to satisfy the constraints as much as possible guided by a clustering

validity index.

2.3 Kernelization

2.3.1 Kernel Function

Kernel trick is a technique to map the feature space to a higher dimensional feature space using

a nonlinear function. This technique benefits the clustering task which is non-linearly separable.

Given a dataset D = {xi = (xi,1, · · · ,xi,v)t 2 Rv}N
i=1. By mapping points to feature space using

basis function f(xi), then replace a dot product f(xi)f(x j) with kernel function K(xi,x j).

K(xi,x j) = f(xi) ·f(x j) (2.3.1)
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For example the polynomial kernel function is as follows:

K(xi,x j) = (gxi
t⇠ j + c)d (2.3.2)

In two dimensional space, given g = 1, c = 0 and d = 2, the basis function f(xi) can derived as

follows:

K(xi,x j) = (xi
tx j)

2

= (x2
i,1,
p

2xi,1xi,2,x2
i,2) · (x2

j,1,
p

2x j,1x j,2,x2
j,2)

= f(xi)f(x j)

(2.3.3)

Thus, the mapping function is

f(xi) = f(xi,1,xi,2) = (x2
i,1,
p

2xi,1xi,2,x2
i,2) (2.3.4)

Fig. 2.2 shows the visualization of data space on synthetic data. Each point denotes the

data points and color denotes the class of each point. In Fig. 2.2a, two classes are not linearly

separable. On the other hand, Fig. 2.2b shows the transformed data space using polynomial

mapping function in Eq. (2.3.4), this visualization shows the linearly separations of two classes.

(a) Original space (b) Kernel space

Figure 2.2: Example of the mapping function of polynomial kernel on synthetic data

In addition, their are many works that proposed a kernel functions[62]. The kernel function

utilized in this research are linear kernel, polynomial kernel, radial basis function (RBF) kernel,

laplacian kernel, and hyperbolic tangent (sigmoid) kernel. The linear kernel is the simplest

kernel function, it is given by inner product of xi and x j plus an optional constants c. The
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kernel function K(xi,x j) is as follows:

K(xi,x j) = xt
ix j + c (2.3.5)

For the radial basis function (RBF) kernel, an example of RBF kernel is a gaussian kernel. The

RBF kernel function is

K(xi,x j) = exp(�
k xi� x j k2

2s2 ) (2.3.6)

The adjustable parameter s need to be carefully tune to make sure that it will not lose its non-

linear power or sensitive to noise in training data. The laplacian kernel is similar to the RBF

kernel with the square of the norm left out and it is less sensitive for change in the adjustable

parameter s . So the laplacian kernel can be written as follows:

K(xi,x j) = exp(�
k xi� x j k

s
) (2.3.7)

Finally, Hyperbolic Tangent kernel or sigmoid kernel, which is oftened used as an activation

function in Neural Networks field is as follows:

K(xi,x j) = tanh(axt
ix j + c) (2.3.8)

There are two adjustable parameters in the this kernel, the slope a and the intercept constant c.

An inverse of number of dimension is a common value for a .

2.3.2 Kernel K-means Clustering (K-KMN)

Kernel k-means clustering (K-KMN) [25] is an enhancement of K-means clustering (KMN)

that can extract non-linearly separable clusters in the original data space by applying a proper

nonlinear mapping function (kernel) to a higher dimensional feature space. Given a dataset

D = {xi = (xi,1, · · · ,xi,v)t 2 Rv}N
i=1 with cluster set C, let the kth cluster Ck 2 C. Using the

non-linear function f(x), the objective function of K-KMN is defined as:

Minimize Â
Ck2C

Â
xi2Ck

k ⇡k�f(xi) k2
2 (2.3.9)

Note that ⇡k denotes a centroid of cluster Ck on the mapped space. Then, the ⇡k is as follow:

⇡k =
Âxi2Ck f(xi)

|Ck |
. (2.3.10)
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Here |Ck | denotes the number of data points in cluster Ck. Since the basis function f(xi) is hard

to obtain, kernel function K(xi,xj) = f(xi) ·f(xj) is calculated instead.

k ⇡k�f(xi) k2
2 =k

Âx j2Ck f(x j)

|Ck |
�f(xi) k2

2

=
Âx j,xl2Ck f(x j) ·f(xl)

|Ck |2

�
2Âx j2Ck f(xi) ·f(x j)

|Ck |
+f(xi) ·f(xi)

=
Âx j,xl2Ck K(x j,xl)

|Ck |2

�
2Âx j2Ck K(xi,x j)

|Ck |
+K(xi,xi)

(2.3.11)

2.4 Cluster Validity Indices

Validation of clustering results is a fundamental but difficult issue because clustering often in-

volves unsupervised learning and is essentially finding latent clusters in observed data[78]. This

paper focuses on using external criteria, i.e., using class label, for evaluation of a clustering

result.

Up until now, various validity measures have been proposed, and they are mainly separated

into the following two types: (1) measures using internal criteria evaluate compactness and

separability[22] of clusters based only on the distance between samples (e.g., Dunn-index[26],

DB-index[20], and CDbw[32]) and (2) measures using external criteria evaluate how accurately

the correct or desired clusters are formed in the clusters based on the class labels (i.e., categories)

of samples, e.g., purity, entropy, F-measure, and mutual information[65, 78].

Set-Based Indices

Given dataset D with cluster set C and class set T, let Ns,i be the number of data points with

class s 2 T in the ith cluster Ci 2 C; Ns,i = #{xk|t(k) = s,c(k) = Ci}, where # denotes the

number of elements, and c(k) and t(k) denote the cluster/class assignment for xk. Ni denotes

the number of data points in cluster Ci; Ni = #{xk|c(k) = Ci}, N is the total number of data

points; N = #{xk|xk 2 D}. These basic values are smoothed by a weighting function hi, j as
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follows:

N0s,i = Â
Cj2C

hi, jNs, j, (2.4.1)

N0i = Â
s2T

N0s,i = Â
s2T

Â
Cj2C

hi, jNs, j, (2.4.2)

N0 = Â
Ci2C

N0i = Â
Ci2C

Â
s2T

Â
Cj2C

hi, jNs, j. (2.4.3)

Here, the smoothing function hi, j can be any monotonically decreasing function, we use

Gaussian function; hi, j = exp(�dc
i, j/s2), where dc

i, j denotes inter-cluster distance such as dis-

tance between cluster centroids and s(> 0) is a smoothing (neighborhood) radius.

By using eqs. (2.4.1) through (2.4.3) instead of the original values, any set-based clustering

index, such as purity, F-measure, and entropy, can be extended as follows:

weighted purity (wPUR)

wPUR(C,T) = 1
N0 Â

Ci2C
max
s2T

N0s,i (2.4.4)

weighted F-measure (wFME)

wFME(C,T) = Â
s2T

Ns

N
max
Ci2C

F(s,Ci), (2.4.5)

F(s,Ci) =
2 ·Prec(s,Ci) ·Rec(s,Ci)

Prec(s,Ci)+Rec(s,Ci)
, (2.4.6)

where Prec(s,Ci) = N0s,i/N0i , Rec(s,Ci) = N0s,i/Ns, and Ns = #{xk|t(k) = s 2 T}.

weighted entropy (wENT)

wENT(C,T) = 1� 1
|C| Â

Ci2C
Entropy(Ci), (2.4.7)

Entropy(Ci) =�
1

logN0 Âs2T

N0s,i
N0i

log
N0s,i
N0i

. (2.4.8)

Pairwise-Based Index

Given class and cluster assignment of a data point xi denoted as t(i) and c(i). Table 2.1 shows

a class and cluster confusion matrix of data pairs, where a,b,c,d are the number of data pairs

that xi and x j do or do not belong to the same class/cluster.

Here, Fukui and Numao [28] introduced likelihood(c(i) = c( j)) indicating a degree that
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Table 2.1: Class and cluster confusion matrix of data pairs

t(i) = t( j) t(i) 6= t( j)
c(i) = c( j) a b
c(i) 6= c( j) c d

a data pair xi and x j belongs to the same cluster instead of the actual number of data pairs.

The likelihood is given by a weighting function based on inter-cluster distance of the data pair;

likelihood(c(i) = c( j)) = hc(i),c( j).

Then, a,b,c,d are replaced by summation of the likelihoods as follows:

a0 = Â
{i, j|t(i)=t( j)}

hc(i),c( j), (2.4.9)

b0 = Â
{i, j|t(i) 6=t( j)}

hc(i),c( j), (2.4.10)

c0 = Â
{i, j|t(i)=t( j)}

⇣
1�hc(i),c( j)

⌘
= a+ c�a0, (2.4.11)

d0 = Â
{i, j|t(i)6=t( j)}

⇣
1�hc(i),c( j)

⌘
= b+d�b0. (2.4.12)

With these extended a0,b0,c0 and d0, weighted pairwise F-measure is defined as follows:

weighted pairwise F-measure (wPFM)

wPFM(C,T) = 2 ·P ·R
P+R

, (2.4.13)

where P = a0/(a0+ b0) is a weighted precision and R = a0/(a0+ c0) is a weighted recall.

The conventional precision is a ratio of the data pairs belonging to the same class within

the same cluster. Likewise, the conventional recall is the data pairs belonging to the same

cluster within the same class. The weighted precision and recall are extended to calculate

the degree of belonging to the cluster/class by neighborhood relation of clusters.

2.5 Differential Evolution

Differential evolution (DE) [63] is a population-based meta-heuristics approach for solving real-

valued optimization problems. Fig. 2.3 shows the population-based probabilistic search on

the landscape of EDML fitness function. Each circle represents individual population in the

search space. DE requires less user’s interaction by requiring minimal gene selection operator(s)

and control parameter adjustments. Furthermore, DE performs better than real-valued genetic

algorithms or evolution strategies and is therefore applied to various optimization problems [55].
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Figure 2.3: Conceptual diagram of population-based probabilistic search on the landscape of
EDML fitness function

The proposed method makes use of a variant of DE, generalized opposition-based jDE (GO-

jDE) [69], which is an extension of self-adaptive differential evolution (jDE) [12]. They do not

require any adjustment to crossover rate CR and scale factor SF by randomization of the pa-

rameters while searching. Because each individual has its own CR and SF values, GOjDE/jDE

allows individuals that have better values to lead to better individuals in the next generation ow-

ing to their higher survivability rates. Also, jDE showed the best performance in “Evolutionary

Computation in Dynamic and Uncertain Environments” in CEC2009 [46].

GOjDE employs generalized opposition-based learning (GOBL) for population initializa-

tion and for population jumping during the optimization. GOBL improves the search perfor-

mance of DE for functions whose global optimum is around the center of its search space, in

particular [57, 70]. Because most non-diagonal elements of optimal solutions in EDML be-

come zero, which implies the solutions located around the center of the search space, GOjDE is

suitable for this problem. The GOjDE algorithm is summarized as follows:

Step 1: Initialization

Randomly generate NP individuals with m-dimensional vector pi,g = {p1,i,g, p2,i,g, . . .

, pm,i,g}(i = 1,2, ...,NP) within each domain of the definition, and set the generation num-

ber as g = 0. Then, create an opposition population using GOBL by the following equa-

tions:

p⇤j,i,g = k(a j,g +b j,g)� p j,i,g ( j = 1,2, . . . ,m) (2.5.1)

a j,g = min
i
(p j,i,g), b j,g = max

i
(p j,i,g) (2.5.2)

where p⇤j,i,g denotes an opposite point calculated from a reference point k(a j,g +b j,g). In

initialization, a j,0 and b j,0 are regarded as the min and the max of the defined range of jth

variable, respectively, and k = 1. Next, evaluate the fitness (i.e., one of the smoothed clus-

tering indices mentioned above) for individuals in the original and opposite populations,
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and select top NP individuals to the next population.

Step 2: Termination determination

When a termination condition is satisfied, the process terminates.

Step 3: Operation selection

Select GOBL operation (go to Step 4) with the probability to, otherwise perform jDE

operations (go to Step 6).

Step 4: GOBL

Randomly determine k within the range of [0,1]. Then, create opposition population by

eq. (2.5.1). The change of k produces various reference points, allowing the population to

jump to another place in the search space; the closer to k = 1, the opposition population is

generated inside the population in previous generation, while the closer to k = 0, the op-

position population jumped to farther area from the previous population. If p⇤j,i,g exceeds

the defined domain range, p⇤j,i,g is redetermined by rand(a j,g,b j,g).

Step 5: Evaluation and selection (GOBL)

Evaluate the fitness of individuals in the opposition population, and then select top NP

individuals from a union of previous and opposite populations to the next generation.

Update the generation no. g! g+1, and go back to Step 2.

Step 6: Control parameter update

Update scale factor SFi and crossover rate CRi of ith individual by the following equations:

SFi,g =

(
SFl + rand1 ·SFu if rand2 < t1

SFi,g�1 otherwise
(2.5.3)

CRi,g =

(
rand3 if rand4 < t2

CRi,g�1 otherwise
(2.5.4)

where rand j ( j 2 1,2,3,4) are uniform random values ranging in [0,1], t1 and t2 are

probabilities changing SFi,g and CRi,g, respectively, and SFl and SFu determines the range

of scale factor values.

Step 7: Mutation

Let a target vector be the ith individual pi,g to be operated on. Select a base vector pb,g
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from individuals, and generate a mutant vector vi,g by

vi,g = pb,g +SFi,g · (pr1,g�pr2,g), (2.5.5)

where b 6= r1 6= r2 (r1,r2 2 {1, · · · ,NP} are randomly selected), and scale factor SFi,g(0

SFi,g  1) is an important parameter to determine the search range.

Step 8: Crossover

Generate trial vector ui,g by a crossover operation between target vector pi,g and mutant

vector vi,g. Eq. (2.5.6) shows a binomial crossover. Each element of u j,i,g 2 ui,g ( j =

1,2, · · · ,m) is determined with crossover rate CRi,g (0  CRi,g  1) and a randomly se-

lected index jrand (1 jrand  m) as:

u j,i,g =

(
v j.i,g if rand[0,1]CRi,g or j = jrand ,

p j,i,g otherwise,
(2.5.6)

where rand[0,1] is a uniformly distributed random numbers in the range [0,1].

Step 9: Repair

When the trial vector involves a violation against the constraint, the repair operation is

executed in order to maintain the individual back on track, e.g., the repair operation of

individual in EDML and K-EDML are explained in section 3.6.

Step 10: Evaluation and selection (DE)

Evaluate the fitness of the trial vectors and compare with each target vector, and then

select the more fit vector as an individual to the next generation. Update the generation

no. g! g+1, and go back to Step 2.

2.6 Cluster Analysis

In data mining and machine learning, cluster analysis [54] has received much attention in recent

years due to a capability to a wide variety of fields. Cluster analysis attempts to analyze the

cluster structure according to clustering purposes: clustering for understanding and clustering

for utility. In cluster analysis, data are identified and grouped according to the similarities;

similar data group together in the cluster and vice versa. Moreover, cluster analysis has become

a standard method for many practical problems. In biology, Biologists spent many years and

obtain a few patterns of cell [52]. Guzzi et al. [31] combine cluster analysis with Bioinformatics

analysis to help understanding cell mechanisms by explaining the relationship among genes and

15



related molecular processes. In information retrieval, nowadays many data are flooded in the

internet, obtain the beneficial information is a challenging task. Hence, many approaches using

cluster analysis have been proposed [74, 7, 75], even in search engine like Google [13], cluster

analysis helps produce much more satisfying search results than existing systems. Learning

the nature of the natural disaster can result in prediction and saving human being. Liu and

Roy [48] applied the cluster analysis in spatio-temporal nature of weather data to identify and

preserve interesting phenomena in the weather data. Dey et al. [23] utilized clustering in the

generic methodology for weather forecasting. Knowing the disease beforehand can result in

prevent people in dead, many works in medical applied cluster analysis to cluster patients into

subgroups that have similar symptom to indicate the disease [59, 4, 27, 1]. Or in the business,

it can discover the insight (e.g., merchandises that customers usually buy together) to tailor

marketing strategies [9].

2.7 Human-centered Computing

Computer takes an important role in most of the computing task nowadays. However, most cur-

rent methodologies only focus on a particular technological domain while overlooking human

domain yield unnatural results and difficult to use. Thus, only the experts who dedicate amounts

of their time can take advantage of this technology. Human-centered computing (HCC) [35]

aims to decrease the gap between multiple disciplines that are concerned both with understand-

ing human beings and with the design of computational artifacts by studies the design, develop-

ment, and deployment of mixed-initiative human-computer systems. HCC has been facilitated

in many aspects (i.e., personal, social [41], and cultural [34]) and addresses many problems,

such as data analysis [16], the interaction between computer-human or human-human. In this

study, evolutionary distance metric learning [29] is utilized as HCC for cluster analysis in Chap-

ter 5.
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Chapter 3

Evolutionary Distance Metric
Learning

3.1 Overview

Evolutionary Distance Metric Learning (EDML) is originally proposed by Fukui et al. in

2013 [29]. EDML is an efficient framework that applies an evolutionary algorithm (EA) to

firmly search a sufficiently optimal distance metric transformation matrix, also known as, a

distance metric learning method (DML). EDML is based on a clustering index with neighbor

relation that simultaneously evaluates inter- and intra-clusters to improve clustering quality. In

contrast to other semi-supervised clustering, which formulate a penalty function for constraints

into an objective function, EDML, however, directly improves the cluster validity index, such

as purity, F-measure, or entropy, depending on the clustering purpose, as an objective function,

when class information is available. Moreover, the cluster validity index is smoothed by neigh-

bor relations which refines neighboring cluster for better visualization and the data points of the

same class tend to locate in neighboring clusters.

3.2 Global Distance Metric Learning

In this work, a Mahalanobis-based distance is used just as in the case of many global DML

methods. Given a dataset D = {xi = (xi,1, · · · ,xi,v)t 2 Rv}N
i=1, the Mahalanobis-based distance

can be defined as:

d2
i, j = (xi�x j)

tM(xi�x j), (3.2.1)

where M = (mk,l) is a v⇥ v matrix. In the original Mahalanobis distance, M is given by the

inverse of the variance-covariance matrix of the input data, i.e., M =⌃�1. While in DML, the

17



elements of M are variables to be learned that represent a transformation of the input data, in this

case, M must be a symmetric positive semi-definite matrix to satisfy the distance propositions.

For further understanding, eq. (3.2.1) can be rewrited as follows:

d2
i, j = (xi�x j)

tM(xi�x j) = Â
k,l

mk,l(xi,k� x j,k)(xi,l� x j,l), (3.2.2)

in which diagonal elements of M (where k = l) indicate scaling for each dimension, whereas

non-diagonal elements indicate correlation between different dimensions. Obviously, when M

is a unit matrix, the Mahalanobis-based distance is equivalent to the Euclidean distance.

3.3 Cluster Structure Learning

EDML could be applied to any partition-based clustering with neighbor relation. Originally,

self-organizing map (SOM) [42] has been used as a base clustering method as well as for vi-

sualizing DML results in EDML (EDML-SOM). For this work, however, K-means clustering

with K-nearest neighbor centroids graph (KMN-KNN) was chosen instead, indicated by EDML-

KMN, in order to preserve internal cluster validity index namely sum of the squared error (SSE),

which is the K-means clustering (KMN) objective function. As a result, EDML-KMN can either

optimize internal and external criteria simultaneously. Hence, an entire the data structure can be

easily studied via inter-cluster connectivity and also visualize neighbor relations among cluster

centroids.

3.3.1 K-means Clustering

K-means clustering (KMN) is one of the most frequently used clustering method because of

its simplicity. The algorithm attempts to assign the data point to the nearest centroid in order

to minimize sum of the distance, which in this study is calculated according to Eq. (3.2.1),

between each data point and its nearest centroid. First, K initial centroids are randomly gen-

erated, namely, the number of clusters. Each point is assigned to the closest centroid, and the

points assigned to the identical centroid form one cluster, totally K clusters. The centroid is

updated based on the point. The algorithm repeatedly assigns the data point and recalculate the

centroid until all data points and centroids converge. In other words, it tries to minimize the

within-cluster SSE as the following equation:

Minimize
K

Â
i=1

Â
x j2Ci

d2
x j,µi

(3.3.1)
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where x j is the data point that belong to the cluster i and µi is the cluster centroid.

3.3.2 Mutual K-nearest Neighbor Centroids Graph

Mutual K-nearest neighbor centroids graph (KNN) is a technique to obtain K nearest mutual

neighborhood relations of each cluster centroid. The algorithm calculates the distance between

every centroid, obtained from KMN, and selects k nearest centroids for each centroid. If each

centroid pair has a mutual relation, then they form a mutual neighborhood relation. Hence, the

mutual neighborhood relation can be represented by this adjacency matrix A = (ai, j) as follows:

ai, j =

(
1 if Cj 2 O(Ci) and Ci 2 O(Cj)

0 otherwise
(3.3.2)

where O(Ci) denotes a set of k-nearest neighbor clusters from cluster ith centroid Ci. Then,

distance matrix is calculated based on adjacency matrix A. For mutual neighborhood centroids

(ai, j = 1), the distance between them can be given by Euclidean distance, Mahalanobis distance,

or 1 (number of hops). The distance between every nonmutual neighborhood centroids can be

calculated by topological distance. In this case, topological distance is the shortest path between

cluster centroids, and the shortest path of all pairs are calculated by Floyd-Warshall algorithm.

In this research, the distance between mutual neighborhood centroids is given by a number of

hops in order to normalize the distance between centroids in every data space.

This graph is simultaneously generated during the cluster structure learning because it is

utilized in the neighborhood smoothing in cluster validity index. Unlike, another clustering

method which cannot visualize cluster structure during the clustering.

3.3.3 Visualization

K-nearest neighbor centroids graph has been used with K-means clustering denotes KMN-KNN

in order to easily analyze obtained cluster structures, especially in the case of micro-clusters or

cluster number is larger than class number. With this, the entire data structures can be studied

via the inter-cluster connectivity and also visualize neighbor relations among cluster centroids.

The KNN is visualized using Cytoscape1, the open source platform for complex network anal-

ysis and visualization. Cytoscape core distribution provides a basic set of features for data

integration, analysis, and visualization. the KNN centroids are imported to Cytoscape using

edge-weighted spring embedded layout.
1http://www.cytoscape.org/

19



3.4 Clustering validity index with neighborhood smoothing

EDML focuses on using external criteria, that is provided by human interpretation of data. It

is more beneficial to use external criteria because class labels are available in this study. This

cluster validity index is used as the evaluation of objective function in EDML.

This study focuses on using extended F-measure or F1score by using the class label as exter-

nal criteria for evaluation of a clustering result. In order to evaluate the overall cluster structure,

this research used neighborhood smoothing in the cluster validity index by adding a weighting

function hi, j, unlike conventional clustering validity that can evaluate individual cluster qual-

ity, which is proposed by Fukui and Numao [28]. Weighted Pairwise F-measure (wPFM) in

Eq. 2.4.13 is mainly used in this study for the fair evaluation to other comparison methods which

utilize only pairwise constraints. The parameters for neighborhood smoothing are as follows.

The weighting function hi, j is a Gaussian function. Therefore, hi, j = exp(�ri, j/s), where ri, j

denotes the inter-cluster distance between Ci and Cj, and s(> 0) is a smoothing (neighborhood)

radius.

3.5 Objective Function

EDML approach optimizes a cluster validity index Eval as follows:

Maximize Eval(Clustering(d2
i, j)), (3.5.1)

s.t. |mk,k|� Â
l(k 6=l)

|mk,l|, 0 < mk,k  1, �1 mk,l  1 (k 6= l),

where Clustering(d2
i, j) denotes a clustering result by using a distance metric d2

i, j—i.e., Clustering() :

x 7! c 2C, where C is a set of cluster identifier. For constraint condition, in order to satisfy the

proposition of distance metric, a condition of matrix M is set to be a weak diagonally dominant

matrix—i.e., |mi,i|� Â j(i6= j) |mi, j| and the diagonal elements must be positive, to ensure that M

is a positive semi-definite matrix.

3.6 Evolutionary Algorithm

EDML is focused on applying to real-world problems, which typically involve a gigantic high-

dimensional data. High-dimensional global optimization is one such high-complexity problem.

Therefore, self-adapting control parameters and generalized opposition-based differential evo-

lution (GOjDE) [69], which explained in section 2.5, is used to optimize the objective function
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(3.5.1) in order to manage the quality of candidate solutions. Here an upper bound on the gen-

eration number or fitness evaluation number value is used as a termination condition in GOjDE.

The matrix M is an individual, and elements in a triangular matrix of M correspond to a gene,

for example, in the two-dimensional case, the individual vector for M is (m1,1,m1,2,m2,2). The

repair process in Step 9 of GOjDE is occurred during the mutation, the variables in the vector

are uniformly repaired unless the diagonally dominant matrix condition in function (3.5.1) is

satisfied. The following eqaution is a repair process for the individual in EDML.

mrepair
i, j =

mi,i

Â j |mi, j|
mi, j, (i 6= j). (3.6.1)

3.7 Evolutionary Distance Metric Learning Framework

Figure 3.1: Flowchart of the evolutionary distance metric learning (EDML)

The EDML framework is summarized in Fig. 3.1. First, the candidates of metric matrix M

are generated by evolutionary algorithm, e.g., DE, jDE, GOjDE. Next, the cluster structure—

i.e., clusters with neighbor relations—is obtained with a distance metric transformed by eq.

(3.2.1). Here the cluster structure can be obtained by any partition-based clustering technique

with neighborhood relation, such as k-means with a k-nearest neighbor graph of cluster cen-

troids, or vector quantization with topology preservation by Self-Organizing Map (SOM). After

obtaining the cluster structure with a transformed distance metric, the quality of the clusters and

neighbor relations is evaluated with class labels or pairwise constraints via the smoothed clus-

tering index; one of the weighted purity, weighted F-measure, weighted entropy, or weighted

pairwise F-measure indices are used. Next, the evaluation value is fed back into GOjDE as

the fitness for the candidate metric matrix. GOjDE selects individuals for the next generation

on the basis of the fitness and generates the next candidates by mutation and crossover with

certain probabilities. These steps are repeated until the termination condition is satisfied. The
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output is the best metric matrix M⇤ in terms of the smoothed clustering index among the overall

generations of candidates.

Algorithm 3.7.0.1 shows the pseudocode of EDML with the following configuration.

• Global distance metric: Mahalanobis-based distance metric

• Evolutionary algorithm: GOjDE

• Clustering algorithm: K-means clustering

• Cluster validity index: Weighted Pairwise F-measure (wPFM)

Algorithm 3.7.0.1 Evolutionary Distance Metric Learning (EDML)
Input: D : dataset, T: class labels or pairwise constraints
Output: M⇤: best metric matrix

1: g 0.
2: maxEval 0
3: Initialize candidate metric population Pg via GOjDE.
4: while g < itrmax or maxEval = 1 do
5: for 8pc,g 2 Pg do
6: M pc,g
7: if |mk,k|�Âl(k 6=l) |mk,l|,0 < mk,k  1, �1mk,l  1 (k 6= l) then // weak diagonally

dominant matrix
8: Repair M using (3.6.1).
9: end if

10: d2
i, j (xi�x j)tM(xi�x j) using (3.2.2).

11: Clustering(d2
i, j) k-means clustering using d2

i, j
12: eval wPFM(Clustering(d2

i, j) , T) using (2.4.13).
13: if eval > maxEval then
14: maxEval eval
15: M⇤  M
16: end if
17: end for
18: Crossover and Mutation Pg+1 using (2.5.5) and (2.5.6) via GOjDE.
19: g g+1.
20: end while
21: return M⇤
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Chapter 4

Kernelized Evolutionary Distance
Metric Learning

4.1 Overview

Theoretically, the evolutionary distance metric learning (EDML) yields insignificant results in

non-linearly separable data. Therefore, this study proposed an improvement of EDML, namely

kernelized evolutionary distance metric learning (K-EDML) which is an integration of ker-

nelization technique and EDML. While this proposed method maintains all the properties of

EDML, unlike other kernelized DML [49] which are formulating a penalty function for con-

straints, i.e., must-link and cannot-link, into an objective function. Obviously, the K-EDML is

equivalent to the EDML when the linear kernel function K(xi,x j) = (xt
ix j) is used as a kernel

function.

4.2 Integrating Kernelization technique in K-EDML

The kernelization technique is unified in the cluster structure learning process. K-EDML could

be applied to any partition-based kernel clustering with neighbor relation. In this study, kernel

K-means clustering (K-KMN) [25], which is introduced in section 2.3.2, has been used as a base

clustering method.

In order to integrate the kernelization technique into EDML, a symmetric positive semi-

definite matrix M in Eq. (3.2.2) can be decomposed into M = LtL by Cholesky decomposition,

where L denotes an upper triangular matrix. Eq. (3.2.1) can therefore be rewritten as:

d2
i, j = (xi�x j)

tM(xi�x j) = (xi�x j)
t(LtL)(xi�x j)

= (Lxi�Lx j)
t(Lxi�Lx j) = kLxi�Lx jk2

2. (4.2.1)
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Hence, the Mahalanobis-based distance can be viewed as the Euclidean distance after a linear

transformation by L. So, each decomposed obtained candidate L is individually multiplied to

the original data, thus the input data xi is substituted with Lxi. The transformed input is utilized

into the mapping function f(xi) in K-KMN objective function in Eq. (2.3.9). Let f 0(xi) denote

the mapping function of the transformed data f(Lxi), the K-KMN objective function utilized

transformed data is as follows:

Minimize Â
Ck2C

Â
xi2Ck

k ⇡k�f 0(xi) k2
2 . (4.2.2)

4.3 Simple Example of K-EDML

Fig. 4.1 visualizes the concept of the proposed K-EDML. The original data is visualized in

Fig. 2.2a, each color denotes each class. In order to see the difference in kernel data space, the

original data to the kernel data space is mapped using the Eq. (2.3.4) as in Fig. 2.2b. Fig. 4.1a

and Fig. 4.1b present the result of K-KMN and K-EDML respectively. Since the K-KMN cannot

make use of provided class labels, also only the minimization of the distance between centroid

and data points in Eq. (2.3.9) is preserved. Thus, K-KMN cannot correctly cluster the data

even it has a linear separation which can be seen from the mixing of two clusters on the outer

circle. In contrast, K-EDML can take advantage of class labels to preserve the clusters with the

same class label by stretch the data space, i.e., the same class data move close together, and the

different class moves apart which present in Fig. 4.1b.

(a) Kernel KMN (b) K-EDML

Figure 4.1: Visualization of clustering results on kernel space
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4.4 Kernelized Evolutionary Distance Metric Learning Framework

Figure 4.2: Flowchart of the kernelized evolutionary distance metric learning (K-EDML)

Although the framework of K-EDML is similar to EDML, there are some modification in

each step in order to integrate the kernelization technique. Fig. 4.2 summarised K-EDML frame-

work. First, candidates of metric transform matrix M are generated using GOjDE. Further, the

symmetric PSD matrix M can be decomposed into M=LtL by Cholesky decomposition, where

L denotes an upper triangular matrix. Mahalanobis distance in Eq. (3.2.1) can be rewritten as

Eq. (4.2.1). Next, each decomposed obtained candidate L is individually multiplied to the origi-

nal data, thus the input data xi is substituted with Lxi. This transformed input is utilized into the

K-KMN objective function Eq. (2.3.9) and used as Clustering() in Eq. (3.5.1) Then, class labels

are utilized in order to evaluate the quality of the cluster structure through the neighborhood

smoothing in the clustering index. This is followed by feeding the evaluated values back into

GOjDE as the fitness for each candidate M. GOjDE selects candidates based on the fitness to

evolve and generate the next candidates by mutation and crossover with certain probabilities.

These steps are repeated until the termination condition (e.g., the iteration limit) is satisfied.

Finally, the optimal metric transform matrix M⇤ is obtained in terms of the most smoothed

clustering index among the overall generations of candidates.

Algorithm 4.4.0.1 shows the pseudocode of EDML with the following configuration.

• Global distance metric: Mahalanobis-based distance metric

• Evolutionary algorithm: GOjDE

• Clustering algorithm: Kernel k-means clustering
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• Cluster validity index: Weighted Pairwise F-measure (wPFM)

Algorithm 4.4.0.1 Kernelized Evolutionary Distance Metric Learning
Input: D : dataset, K(xi,x j): kernel function, T: class labels or pairwise constraints
Output: M⇤: best metric matrix

1: g 0.
2: maxEval 0
3: Initialize candidate metric population Pg via GOjDE.
4: while g < itrmax or maxEval = 1 do
5: for 8pc,g 2 Pg do
6: M pc,g
7: if |mk,k|�Âl(k 6=l) |mk,l|,0 < mk,k  1, �1mk,l  1 (k 6= l) then // weak diagonally

dominant matrix
8: Repair M using (3.6.1).
9: end if

10: LtL M
11: d2

i, j kLxi�Lx jk2
2 using (4.2.1).

12: Clustering(d2
i, j) kernel k-means clustering using d2

i, j and K(xi,x j)

13: eval wPFM(Clustering(d2
i, j) , T) using (2.4.13).

14: if eval > maxEval then
15: maxEval eval
16: M⇤  M
17: end if
18: end for
19: Crossover and Mutation Pg+1 using (2.5.5) and (2.5.6) via GOjDE.
20: g g+1.
21: end while
22: return M⇤

26



4.5 Experimental Design

The experiment used the following ten open datasets from the well-known UCI machine learning

repository [24]; Iris, Glass, Wine, Segment, Vehicle, Balance, Pima, Yeast, Ionosphere, and

Musk. Basic statistics of these datasets are summarized in Table 4.1. The attribute values were

normalized such that each average is equal to zero and standard deviation is equal to one. Note

that for the datasets that the number of attributes is greater than 10 are indicated by adding an

asterisk (*) after their names in Table 4.1. Principal component analysis (PCA) was adopted to

reduce the input dimension to 10.

Table 4.1: The basic statistics of UCI datasets

dataset # samples # attributes # classes
Glass 214 9 6

Iris 150 4 3
Wine* 178 13 3

Vehicle* 846 18 4
Segment* 2310 19 7

Ionosphere* 351 34 2
Pima 768 8 2

Musk* 625 166 2
Balance 625 4 3

Yeast 1484 8 10

Table 4.2: Settings for K-means with K-nearest neighbor graph (KMN-KNN) and Kernel K-
means kernel function, and the evolutionary algorithms (EA)

KMN-KNN #individuals in EA #generations in EA
dataset #clusters, #neighbors full

Glass 20, 5 90 6,000
Iris 20, 5 30 2,000

Wine 20, 5 182 4,000
Vehicle 20, 5 171 3,000

Segment 20, 5 190 2,000
Ionosphere 20, 5 165 2,000

Pima 20, 5 108 2,000
Musk 20, 5 165 2,000

Balance 20, 5 30 2,000
Yeast 20, 5 108 2,000

Table 4.2 shows the settings of the parameters for each dataset. The number of clusters was

set to 20 in every dataset. In this experiment, it is not necessary to determine an appropriate num-

ber of clusters. The number of individuals in an evolutionary algorithm (EA) was determined

depending on the size of search space. It sets 1D, where D is the dimension number of variables,

for larger number of variables; Wine, Vehicle, and Segment with a full matrix, and the rest of

cases use 2D to 5D. Also, the generation limit in EA was determined by checking convergence

and by computational time consumption. As mentioned earlier, the parameters in GOjDE, CR
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and SF are automatically adjusted while searching. Moreover, the optimal neighborhood radius

in the smoothing function hi, j within a cluster validity index was also automatically determined

in advance of performing EDML for each dataset and a type of validity index. The smoothing

radius that maximizes Eval compared to the randomized neighbor relations is assumed to be an

optimal one; s⇤ = argmaxs |Eval�Evalrnd(n)|, where Evalrnd(n) denotes an average of Evals

when inter-cluster distances {ri, j} are n times shuffled.

In this experiment, the proposed EDML and K-EDML, and state-of-the-art distance metric

learning methods are tested, as well as several baseline clustering. The comparison methods are

as follows:

• Baseline

– K-means clustering (KMN)

– Kernel K-means clustering (K-KMN) [25]

• Distance Metric Learning

– Information-Theoretic Metric Learning (ITML) [21]

– Distance Metric Learning for Large Margin Nearest Neighbor Classification (LMNN) [73]

– Geometric Mean Metric Learning (GMML) [84]

– Gradient Boosted Large Margin Nearest Neighbors (GB-LMNN) [40]

Moreover, some popular semi-supervised clustering, i.e., COP-Kmeans [66], and clustering

with distance metric learning methods, i.e., DML [77] and MPC-Kmeans [11], are omitted since

other comparison methods overcome these baseline clustering and DML methods [21, 73, 40].

Fig. 4.3 summarizes framework of this experiment. For the fair comparison, the exper-

iments performed under five-fold cross-validation. In the training process, each method pro-

duces 5 metrics matrix in each fold, the number of clusters and neighbors equal to 20 and 5

respectively. Label sampling rate for training data is set to 30%. During the kernel selection and

hyper-parameter tuning, grid search with five-fold cross-validation was performed to achieve the

suitable kernel and hyper-parameters. The suitable kernel was selected among polynomial ker-

nel, radial basis function (rbf) kernel, laplacian kernel and sigmoid kernel. We omitted the linear

kernel from K-EDML because the K-EDML with a linear kernel is analogous to EDML. There-

fore, the results of K-EDML with a linear kernel can be view as EDML. For hyper-parameters

tuning range in each kernel are listed as follows:
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• Polynomial kernel:

– degree d = {�10,�9, · · · ,9,10}

– gamma g = {�10,�9, · · · ,9,10}, {�1/10,�1/9, · · · ,1/9,1/10},

{10�10,10�9, · · · ,109,1010}

– coefficient c = {�10,�9, · · · ,9,10}, {�1/10,�1/9, · · · ,1/9,1/10},

{10�10,10�9, · · · ,109,1010}

• Radial basis function (rbf) kernel:

– sigma s =
p

1/2g

where gamma g = {�10,�9, · · · ,9,10}, {�1/10,�1/9, · · · ,1/9,1/10},

{10�10,10�9, · · · ,109,1010}

• Laplacian kernel:

– sigma s = {�10,�9, · · · ,9,10}, {�1/10,�1/9, · · · ,1/9,1/10},

{10�10,10�9, · · · ,109,1010}

• Sigmoid kernel:

– alpha a = inverse of number of attibutes

– coefficient c = {�10,�9, · · · ,9,10}, {�1/10,�1/9, · · · ,1/9,1/10},

{10�10,10�9, · · · ,109,1010}

Table 4.3 shows the selected kernel function and its tuned hyper-parameter in K-EDML for

each dataset.

Table 4.3: The selected kernel function and tuned hyper-parameter used in K-EDML obtain
from grid search with five-fold cross-validation

dataset kernel function degree g s c
Glass polynomial 3 10 - 102

Iris laplacian - - 1/4 -
Wine rbf - 10�1 - -

Vehicle polynomial 9 104 - 104

Segment polynomial 3 10�7 - 104

Ionosphere polynomial 5 106 - 105

Pima polynomial 5 103 - 104

Musk polynomial 7 1 - 1
Balance polynomial 9 108 - 1

Yeast polynomial 3 104 - 105
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Product from each method, i.e., cluster centriods in KMN and K-KMN and M⇤ in ITML,

LMNN, GMML, GB-LMNN, EDML and K-EDML were carried out to the evaluation process

afterwards.

5
Distance Metric 

Learning

TRAINING (For DML technique)

Training

Data

EVALUATION

Test

Data

M*

Clustering
Cluster 

Evaluation
wPFMM*

2000 trials

5 trials
Data

set

5-folds

Cross 

validation

For each fold

Figure 4.3: Framework of the experiment

4.6 Experimental Results

4.6.1 Computational time

This experiment conducted on Intel Xeon E5-2690v4 14-Core 2.6GHz x2. Since the EDML and

K-EDML are compatible with parallel computing, they run with 56 threads. Table 4.4 shows

the training time to obtain the M⇤ for each fold. Note that KMN and K-KMN are omitted

because they do not need a training process. The EDML and proposed K-EDML are based

on an evolutionary algorithm; therefore, they inherit drawback of an evolutionary algorithm in

high complexity. As a result, both EDML and K-EDML are definitely cost more computational

time compared to other methods which based on mathematical optimization; however, in the

relatively large dataset, e.g., Vehicle, Segment, and Yeast, EDML can train faster than the math-

ematical optimization methods, due to parallel computing. Meanwhile, the proposed method is

much slower than the EDML due to the kernel calculation.

4.6.2 Comparison with Other Semi-supervised Clustering Methods

Each method is evaluated base on their category, i.e., linear and non-linear distance metric

learning. This research adopted k-means with k-nearest neighbor graph for linear technique
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Table 4.4: The computational training time (per fold)

ITML LMNN GMML GB-LMNN EDML K-EDML
Iris 7.26s 0.37s 0.36s 7.30s 7.80s 70.63s

Wine 9.94s 0.17s 0.41s 10.86s 28.82s 198.27s
Glass 15.95s 0.17s 0.50s 18.92s 26.62s 259.29s

Vehicle 215.63s 0.27s 1.72s 197.19s 101.44s 73 hours 39 minutes
Segment 1611.93s 0.90s 8.06s 498.08s 496.35s 33 hours 53 minutes
Balance 108.38s 0.28s 1.09s 5.50s 17.39s 12 hours 20 minutes

Pima 177.81 s 0.30s 1.77s 102.42s 62.77s 35 hours 4 minutes
Yeast 658.70s 1.64s 4.16s 674.17s 168.63s 144 hours 15 minutes

Ionosphere 41.28s 0.14s 0.69s 46.06s 36.65s 9 hours 0 minute
Musk 68.41s 0.10s 0.94s 45.73s 47.68s 23 hours 30 minutes

(KMN, ITML, LMNN, GMML, EDML) and kernel k-means clustering with k-nearest neighbor

graph with an identical trained kernel for non-linear methods (K-KMN, GB-LMNN, K-EDML).

Weighted pairwise F-measure (wPFM) with the same configurations as in training process, the

number of cluster and nearest neighbor equals to 20 and 5, was used to evaluating the clustering

results. For simplicity, let wPFM@a/b denotes the wPFM which evaluated using the number

of the cluster assignment equals to a and the number of nearest neighbor centroid equals to b.

wPFM@20/5 is used as an objective function for EDML and K-EDML to optimize as in Eq.

(3.5.1).

Table 4.5 and Table 4.6 present the five-fold cross-validation evaluation results in average

and standard deviation of each clustering algorithm from 2000 trials. Observation indicates as

follows: 1) ITML, LMNN, GMML, GB-LMNN, and the proposed method improve the clus-

tering performance from the baseline clustering, i.e., KMN and K-KMN, due to the benefit of

distance metric learning. 2) The proposed method overcome or at least comparable to other

clustering methods in 8 datasets and obtain the highest clustering score in 5 datasets. These

results secure the properties of the proposed method which utilize class label in order to directly

improve the objective function Despite highest results from other methods in some dataset,

they can only perform well in specific data, while the proposed method performs well in many

datasets. The reason for the suspricious performance in Wine data of K-EDML is the selected

kernel maybe not fully suitable for this data set because GMML which is a non-linear technique

still obtains the highest score in this data. 3) The benefit of kernelization technique can be seen

from the pair of the results, i.e., KMN and K-KMN, LMNN and GB-LMNN, and EDML and

K-EDML, the kernel integrated technique yield higher result than the one without kernelization

because the properties of the data that is non-linearly separable. However, EDML is still com-
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parable to other methods. 4) EDML obtains higher wPFM than K-EDML in in some dataset,

e.g., vehicle, pima, and balance dataset, because linear kernel is suitable for these dataset. These

results of EDML can be viewed as the K-EDML with linear kernel. Even though ITML obtains

the highest wPFM in these data set due to its superior performance in linearly separable data,

K-EDML achieves the comparable score.

Since EDML can be viewed as a special case of K-EDML when using the linear kernel, the

EDML is then merged to the K-EDML. The ranking is presented as Table 4.7. As a result, K-

EDML secures the top 5 in all dataset and overcomes all other unsupervised and semi-supervised

clustering methods in this paper with average ranking 1.8 and 2.1 for training and test sample.

These results clearly illustrated the performance of the proposed method.

4.6.3 Evaluation via Standard Evaluation Criteria

Lastly, to make this experiment more practical, the number of clusters is set to equal the num-

ber of classes in an evaluation process. Then, standard pairwise F-measure (PFM) which can

be seen equivalent to wPFM@#class/0 is used as the measurement criterion. Then the trained

distance metric M⇤ from the training process is evaluated again. Table 4.8 and Table 4.9 present

the evaluation results in average and standard deviation of each clustering algorithm. Table

4.10 shows the ranking of comparison results of selected K-EDML and other methods. The

selected K-EDML still achieved similar results like in the previous evaluation at wPFM@20/5.

The proposed method empirically overcomes other methods with the lowest average rank of

2.6 and 2.5 in both training and test dataset, also it still places in the top 4 in all dataset ex-

cept Balance dataset. Since Balance dataset has an imbalance of the class distribution, this is

possibly a reason why K-EDML is not performed well in this dataset. Even the number of the

cluster in training and evaluation process is not identical which is the properties of the proposed

method. These results clearly affirmed the performance and robustness of the proposed method,

the benefit of neighborhood smoothing in cluster validity index which is an objective function

and kernelization technique. Meanwhile, determining the number of clusters is still a hot topic

nowadays.
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Table 4.7: The rank of average wPFM@20/5 of proper kernel selection on K-EDML and their
comparison clustering methods on training/test data

KMN ITML LMNN GMML K-KMN GB-LMNN K-EDML
Glass 6/5 5/7 7/6 4/4 2/2 3/3 1/1

Iris 7/7 5/4 3/2 4/5 2/3 6/6 1/1
Wine 7/6 2/2 3/3 6/4 5/7 1/1 4/5

Vehicle 7/6 1/1 6/5 5/3 3/7 4/4 2/2
Segment 7/7 4/3 6/6 5/4 2/2 3/5 1/1

Ionosphere 6/6 3/2 5/5 2/1 7/7 4/4 1/3
Pima 4/5 1/2 3/4 6/3 7/7 5/6 2/1
Musk 6/7 3/1 7/6 4/3 1/4 5/5 2/2

Balance 6/6 1/1 4/3 5/5 7/7 2/2 3/4
Yeast 5/4 4/2 7/5 3/3 6/7 2/6 1/1
Rank 6.1/5.9 2.9/2.5 5.1/4.5 4.4/3.5 4.2/5.3 3.5/4.2 1.8/2.1
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Table 4.10: The rank of average standard PFM of proper kernel selection on K-EDML and their
comparison clustering methods with the number of clusters is equal to the number of classes on
training/test data

KMN ITML LMNN GMML K-KMN GB-LMNN K-EDML
Glass 5/5 6/2 2/7 4/4 7/6 1/1 3/3

Iris 7/6 3/3 1/2 4/4 6/7 5/5 2/1
Wine 7/6 2/2 1/1 6/5 5/7 3/3 4/4

Vehicle 7/7 1/1 6/6 4/4 3/2 5/5 2/3
Segment 7/7 4/3 6/6 5/5 3/2 2/4 1/1

Ionosphere 7/6 1/1 6/7 2/3 4/4 5/5 3/2
Pima 5/4 2/3 6/6 4/5 1/1 7/7 3/2
Musk 4/5 3/3 6/6 5/4 1/1 7/7 2/2

Balance 7/7 4/3 3/2 2/4 5/5 1/1 6/6
Yeast 5/3 7/7 4/5 2/2 3/4 6/6 1/1
Rank 6.1/5.6 3.3/2.8 4.1/4.8 3.8/4.0 3.8/3.9 4.2/4.4 2.7/2.5
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Chapter 5

Human-Centered Cluster Analysis via
EDML

5.1 Overview

The proposed K-EDML directly improves the cluster validity index as an objective function and

the cluster validity index is smoothed by neighbor relations which refines neighboring cluster

relation and the data points of the same class tend to locate in neighboring clusters. Accordingly,

a rich representation capability and empirically high performance are obtained in the proposed

method. This research takes advantage of these properties to address state-of-the-art cluster

analysis limitation, i.e., it cannot preserve class information as a neighborhood relation by con-

sidering both features and class labels, provide from a human point of view to guide clustering

to be constructed correspondingly with human intuition based on evolutionary distance metric

learning. Thus, this study proposed a cluster analysis technique that simultaneously visualizes

the cluster structure by considering the class labels, which are available from human interven-

tion, simultaneously with the features to guide clustering to be constructed in the human point

of view. By taking advantage of EDML, it allows us to propose this novel cluster analysis easily

because of its capability that not only preserve the neighbor cluster relations but also directly

improve cluster accuracy in term of cluster validity index score.

By applying K-EDML as a human-centered computing for cluster analysis, a novel cluster

analysis technique which improves interpretation of cluster analysis by utilizing class infor-

mation is proposed. This technique is demonstrated by analyzing the cluster structure result of

real-world dataset: facial images and food recipes, to present the usefulness of proposed method

which not only preserves the similar features, but also utilizes the class label from the data while

learning a distance metric learning simultaneously, unlike any other semi-supervised clustering
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algorithm. Then the cluster structure is visualized using a K-means clustering with K-nearest

neighbor centroids graph (KMN-KNN) [38, 37]. Thus, it helps us to investigate comprehen-

siveness of cluster analysis, the relationship between class and features, neighborhood relation

of cluster boundary and specify the direction of cluster analysis by constructing a particular

structure according to the class category (e.g., age or gender), unlike any other semi-supervised

clustering algorithm which is impossible to investigate and analyze these properties. For sim-

plicity, the K-EDML with a linear kernel is utilized in this chapter and it is denoted by EDML.

5.2 Experimental Design on Facial Images Data

This experiment performed on facial images from MIT face recognition project1. The original

facial images are monochrome facial images with 99 features, calculated by coefficients mea-

suring. A principal component analysis (PCA) is applied for dimension reduction. Each face

image contains a descriptor of each face, e.g., age, gender, skin color, facial expression, and

property on their face. In this experiment, age, namely Child, Teen, Adult and Senior, was used

as a class label for DML. Gender was also used as a class label, but only in the last experiment.

200 images were selected in total, 50 images from each age category. Fig. 5.1 shows some

examples of facial images. Each row from top to bottom presents an example from each class

from Child to Senior. First 3 columns are male and the rest are female.

Child

Teen

Adult

Senior

Male Female

Figure 5.1: Example of monochrome facial images from each category

Note that the number of dimension D depends on the number of variable in the distance

transform matrix M in Eq. (3.2.1). In this dataset, the diagonal representation with 55 dimen-

sions was used. Consequently, PCA was applied to reduce the features to 55. Table 5.1 presents

the dataset information.

In addition, population size was set to 5 times the number of dimensions. This experiment
1http://courses.media.mit.edu/2004fall/mas622j/04.projects/faces/
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Table 5.1: Facial image dataset information

dataset DML representation #samples #attributes #classes (Age) #classes (Gender)
faceR-D55C4 diagonal 200 55 4 2

was conducted for five trials with 10,000 iterations (generations) per trial. K-means clustering

with K-nearest neighbor centroids graph was utilized with EDML and without EDML for further

analysis on the neighborhood relation of clusters. 20 clusters and 5 mutual neighborhoods were

employed to obtain cluster structure. For better visualization, all labeled data are provided

to EDML in this experiment. The cluster structure was evaluated using weighted F-measure

(wFME).

The KMN-KNN structures were individually visualized by Cytoscape2 using edge-weighted

spring embedded layout. Cluster analysis was done and summarized interesting things in the

following subsections.

5.3 Experimental Results on Facial Images Data

Before the visualization, the numerical result is examined first. EDML archived about 61%

accuracy in terms of wFME, obviously yielding an improvement of 10% over the one without

EDML. The clustering result by EDML shows that the images in the same age category are

either in the same or neighboring clusters more than without EDML, and different age category

are in the distant clusters.

5.3.1 Comprehensiveness of Cluster Structure

A visualization of KMN-KNN on the dataset results is visulized in Fig. 5.2 in order to investi-

gate the micro-cluster. Let Ci denotes the ith cluster. Ci is represented by a node, where the edge

between two clusters indicates a mutual neighborhood relation. The class label of each cluster is

determined by the majority class of the samples in the cluster. The class label of each cluster is

indicated by the brightness of the node, the brighter the younger, and vice versa. As well as the

node’s size indicates the number of majority class’s sample. In Fig. 5.2a which is the visualiza-

tion of EDML, overall distribution can be viewed as a clique, most of the cluster with the same

class are intensely connected and appears to be neighbors because of the benefit of preserving

age category while cluster is constructed. For example, in Fig. 5.2a Child (C4, C15 and C17),

Teen (C1, C3, C8, C16 and C18), Adult (C2, C10, C14 and C19) and Senior (C0, C5, C7, C11 and
2http://www.cytoscape.org/
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Figure 5.2: Example of facial images in cluster

C12) class individually group together and has strong relation between the cluster with the same

class than one with the different class. Also only a few individual nodes, no neighbor relation,

appear here. Contrary, the without EDML results in Fig. 5.2b, the structures are complicated,

the cluster with the same class divided into many parts, for instance, Child class is separated.

Unlike the EDML results, many individual nodes appear in Fig. 5.2b, in which EDML is not

applied.

Moreover, the number of majority class’s sample in each micro-cluster, which is indicated by

node’s size is also investigated. In without EDML case, each cluster size is similar to each other,

while they are varieties of cluster size in EDML. Numerically, the standard deviation of number

of majority class sample in each figure is calculated to represent the distribution of the cluster

size. The average standard deviation of cluster size in EDML is 4.849 while without EDML is

3.128 which means that EDML can provide a distinct structure of the cluster distribution.

Then the overall cluster distribution is further investigated. In order to confirm the generality

of visualization, 4 more trials (5 trials in total) are done in each dataset both with and without

EDML, and visualized in in Fig. 5.4 and Fig. 5.3. Sub-figures (a) to (e) in each figure denote

different trials. Similar trend can be obtained in every trial.

Therefore, utilizing EDML to KMN-KNN provides a better view of cluster structure, for

example, identical class clusters are intensely connected and appear to be neighbors, reduce the

number of individual clusters, and affect distribution of samples. Because the cluster analysis

using EDML could preserve class information in each cluster.

5.3.2 Investigating Relation Between Class and Features
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Figure 5.3: KMN-KNN visualization with EDML
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Figure 5.4: KMN-KNN visualization without EDML
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A unique pattern facial images such as persons wearing glasses and wearing a hat are attached

to the node in Fig. 5.2. By comparing Fig. 5.2a, in which EDML was applied, with Fig.

5.2b, in which did without EDML, and analyze the cluster structure. As a result, a pattern

that images which contain a unique pattern are obtained such as persons wearing glasses are in

neighborhood clusters (C10 and C19) and wearing a hat are neighbor (C8 and C14 , and C7 and

C12) in Fig. 5.2a. In contrast to Fig. 5.2b that these pictures are located in the different region of

the cluster structure. This is because of the benefit of EDML which can utilize class information

(age category) in the clustering. Moreover, it preserves the neighbor relation between the same

age category, as a result, it groups the clusters with the same age category close together while

it preserves the similar image features, e.g. people wear glasses or hat. Therefore, clusters with

the same age category are grouped together, and the similar feature images are gathered together

in these groups as well, e.g., in Fig. 5.2a people who wearing glasses are in C10, C14 and C19 or

people who wearing hat in C7 and C12. These patterns cannot be occurred when without EDML

(Fig. 5.2b).

5.3.3 Investigating Neighborhood Relation of Cluster Boundary

In order to investigate another benefit of this work that can preserve the neighborhood relations

and provide the cluster boundary. Let assume that the cluster with same label (nodes) which

has a neighbor relation merge into a big cluster. Fig.5.3b is selected and defined big clusters

indicated by a dash line circle as in Fig. 5.5.

When examined these big clusters, the features in the border node should be similar to the

neighboring clusters of the other class. Result in the distribution of the sample in the big cluster

that can divide a relatively younger or older in the class which can be seen from the sample of

facial images in Fig. 5.5. If it connects to the older class, that cluster tends to be a relatively older

face in that class, for example, considering C10 (Teen) and C19 (Senior), the average age in C10

is relatively higher than the other cluster with the class label, and C19 are younger in the senior

class. Moreover, C4 and C17 has high probabilities to be a younger teen because it is connected

to Child class. On the other hand, C1 clustered the elder child, as it has neighbor relations with

Teen, Adult and Senior class. Furthermore, when Senior class was considered, each individual

sub cluster could be analyzed, and show that C13 is relatively oldest senior because it has only

relation with the same class (Senior) and has no relation to another class. Similarly to C2 in Child

class and C9 in Adult class. Note that image features do not reflect only age, other possibilities

are such as similar hair style, face shape, or they are families. Importantly, these boundaries
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cannot be found without EDML (Fig. 5.2b).
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Figure 5.5: Cluster structure boundary

5.3.4 Changing the Viewpoint of Cluster Analysis

When the target of cluster analysis is changed, it is better to construct a new cluster structure

according to the target class category. Since EDML has an ability to optimize class information,

this method makes use of it to select a different class category (e.g., age or gender) to optimize

and change the viewpoint of cluster analysis. For example, using age category aids cluster

analysis together with image features, and similarly in gender category.

In this experiment, the KMN-KNN was visualized according to the gender of sample: male

and female, denoted by node’s color (i.e., white and black respectively). The proposed method

can provide a particular optimization for the gender analysis, which can be visualized as shown

in Fig. 5.6a. Conversely, without EDML, as seen in Fig. 5.6b changes is noticed only in the

labels of the micro-clusters; however, the cluster structure is identical to the one in the age

analysis in Fig. 5.2b.

Fig. 5.6a, KMN-KNN preserves the neighbor relations and forms the clique in between

the cluster with samples of identical majority class. Also, the border properties of clusters

representing males with long hair are shown in close proximity with females who have short

hair, shown in the figure by the dash line, due to their similar visual features. Lastly, the unique

patterns can be recognized in each class: male wearing glasses C11, male wearing hat (C8 and

C11), women wearing glasses (C3 and C17) and women wearing hat (C2 and C3) which are located
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close together.
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Figure 5.6: KMN-KNN visualization on gender category

5.4 Experimental Design on Recipe Data

This experiment applied EDML to a larger dataset by performing on food recipes data from

Cookpad3, the Japan’s largest site for sharing their original recipes. The dataset is provided

from collaboration between Cookpad Co., Ltd and National Institute of Informatic (NII) to

reseacher4 [17]. The recipes are all in Japanese, each recipe contains ingredients and how to

cook. First, recipes is selected from 10 preselected food categories (Seaweed, Vegetable, Fish,

Noodle, Pasta, Egg, Salad, Soup, Sauce & Dressing, and Meat), which come from today’s

recipe category total 19236 recipes and 8398 ingredients. A Japanese cooking ontology [50] is

applied to merge various ingredient names since the users freely write their ingredients. Then,

random sampling was used to select about 220 to 400 recipes from each category to resolve the

imbalance of the data. Consequently, total 3732 recipes and 129 ingredients were selected to

use in this experiment. The features are extracted from ingredients of each recipe using term

frequency-inverse document frequency (TF-IDF) and PCA is appllied to reduce dimension to

10. The food categories is corresponded to data class label. As previous experiment wFME was

used as an objective function. Unlike in facial images data set, cluster size is set to 50, and full

matrix representation is applied instead, due to the limitation of computational time.
3http://cookpad.com/
4https://www.nii.ac.jp/dsc/idr/cookpad/cookpad.html
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5.5 Experimental Results on Recipe Data

The goodness of the cluster structure is preliminary evaluated by wFME. Although, EDML

archived 0.261 of wFME in this data, it yielded an improvement of 30% over the clustering

without EDML. The improvement of wFME clearly illustrated the distribution of the same

class recipes which are either in the same cluster or neighbor clusters more than the one without

EDML. Conversely, the different recipe category seems to be located farther away.

Seaweed
Vegetable

Fish
Noodle
Pasta
Egg

Salad
Soup

Sauce	&	Dressing
MeatOil’s	base	recipe

Soy	sauce’s	
base	recipeSoup	stock

OilCucumber

Sesame

Mayonnaise

Figure 5.7: KMN-KNN visualization on cookpad recipe’s data set

Then, the KMN-KNN visualization is shown in Fig. 5.7. From the visualization, EDML

still archived similar results like in facial image dataset. First, comprehensiveness of cluster

structure is preserved. It is evident from the visualization that preserving class category, while

construct the cluster, benefit most of the clusters with the same class to be intensely connected

and appears to be neighbors. These results are indicated by dash line ellipse in Fig. 5.7, e.g.,

Salad (C21, C24, C30, C45, C47 and C48), Soup (C8, C15, C33, C37 and C41), and so on.

In order to investigate relationship between classes and features, the most occurrence ingre-

dients in each cluster are investigated as shown in Table 5.2 (unnecessary clusters are omitted).

These results indicated that not only the same category recipes tend to locate close together, but

recipes that contain similar ingredients (feature) are also located nearby either in the same or

neighbor clusters. These clusters are denoted inside the red ellipse in Fig. 5.7. These could help

the user to select the recipe according to the remaining ingredients, or what kind of taste they

want, for example, soy sauce’s base recipe: “Basil Chicken” (C38), oil’s base recipe: “Napolitan
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spaghetti” (C44), and so on.

Lastly, the big cluster is indicated as in a dash line ellipse in order to explore the cluster

boundary. The features in the border node is discovered again as in the previous experiments

that it should be similar to the neighboring big clusters, as can be seen from the relationship

between C9 (Egg) and C33 (Soup) that the intersection of these two clusters is “Green onion”.

While in their own big clusters are “Oil” for Egg (C4, C9, C19 and C42) and “Soup stock” for

Soup (C8, C15, C33, C37 and C41) big clusters respectively. Moreover, we surprisingly discovered

that the border is possible to occur in an individual big cluster. The Salad big cluster (C21, C24,

C30, C45, C47 and C48), indicated inside the blue dash line ellipse, was carefully investigated

and found that C21 is the inner border of their own big cluster. By dividing the big cluster into

two groups using C21, indicated by blue ellipse, the similar features in C45, C48, C30 change

to mayonnaise, and another group is sesame instead of cucumber. Thus, border between big

clusters can be occasionally extended to the neighbor cluster of the border of the big cluster.
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Chapter 6

Conclusion and Future work

6.1 Summary

Many well-known semi-supervised clustering is suffered from monotonicity to the number of

constraints and constraint satisfactory objective function, which sometimes destroy the cluster

quality. Moreover, conventional distance metric learning techniques are based on Mahalanobis

distance which yields small benefit to non-linearly separable data. This research addresses these

problems by unifying the state-of-the-art evolutionary distance metric learning (EDML) and

kernelization technique. The proposed method not only overcomes other methods in term of

cluster validity. It can also preserve class information as a neighborhood relation by considering

both features and class labels to guide clustering to be constructed correspondingly with human

intuition based on evolutionary distance metric learning.

The first contribution to this dissertation is a novel kernelized evolutionary distance metric

learning (K-EDML) for semi-supervised clustering, an integration of kernelization, and evolu-

tionary distance metric learning technique wherein any set-based or pairwise-based clustering

validity index can be optimized utilizing a differential evolution with self-adapting control pa-

rameters and generalized opposition-based learning (GOjDE) algorithm in Chapter 4. In this

experiments, the proposed method is compared to baseline clustering, i.e., k-means cluster-

ing and kernel k-means clustering, and well-known distance metric learning techniques, i.e.,

information-theoretic metric learning, distance metric learning for large margin nearest neighbor

classification, Geometric Mean Metric Learning, and Gradient Boosted Large Margin Nearest

Neighbors, in ten datasets from the UCI machine learning repository. The cross-validation com-

parison results illustrate that the proposed K-EDML obtain the highest accuracy in five datasets

in both training and test data, which confirms the benefit of the evolutionary distance metric

learning (EDML) in K-EDML that directly optimize the cluster validity index as an objective
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function. Despite highest results from other methods in some dataset, they can only perform well

in specific data, while the proposed method performs well in many datasets, which can be seen

from the highest average ranking in all dataset. Moreover, K-EDML addressed the drawback of

EDML in non-linearly separable input space and demonstrate the benefit of kernel function in

real-world dataset not only to the proposed K-EDML method but also other kernelized methods

due to its superior results improving from its couple methods. Finally, the proposed method

demonstrates its generalization capability by overcoming other competitor methods in standard

cluster evaluation, even the evaluation criteria is different from the training scheme.

Another contribution to this dissertation a novel cluster analysis technique that simultane-

ously analyzes both class label and features sample by utilizing an evolutionary distance metric

learning in Chapter 5. This research demonstrated the method in the real-world dataset called

facial images from the MIT face recognition project and food recipe dataset from Cookpad.

Cluster structures of these images were constructed using the proposed method and without

the proposed method then visualized KMN-KNN by Cytoscape. The experimental results have

shown the advantage of the proposed cluster analysis method which provide a more understand-

ing cluster structure. The proposed method can help to investigate the relationship between

class and features, for example, the same class clusters are grouped together in order to pre-

serve the class and neighbor relations while features are also preserved. Thus, Adult (class)

who wear glasses (feature) is located in the same or neighbor clusters. Moreover, overall cluster

structure is well-organized, identical majority class groups together and reduce the number of

individual clusters, confirm by both visualization and numerical analysis with higher standard

derivation from the one without the proposed technique. In addition, an approach could analyze

each individual sub cluster, for example, elder teen and older teen, which can investigate from

the boundary of the big clusters. Lastly, EDML can specify the direction of cluster analysis by

constructing a particular structure according to the class category (e.g., age or gender), unlike

other methods which can construct only one structure for the dataset in the same environment.

6.2 Future work

Although, K-EDML has a rich representation capability and empirically high performance;

however, it suffers from computational time. Thus, this research aims to improve the computa-

tional efficiency of K-EDML in the higher dimensionality problems, e.g., eigenvalue optimiza-

tion [83], reinforcement learning [2, 3] and aggregated DML [47]. Moreover, in more complex

dataset which data are gathered from multiple sources, this research aims to utilize more label

52



information, e.g., multiple-kernel learning [45], utilize hierarchical information [51], and inte-

grate deep learning technique to learn a distance metric [53, 60, 72]. Moreover, applying the

proposed methods to other field is also a candidate goal, e.g., classification and image retrieval.

Lastly, this research aims to apply the proposed method to many more real-world dataset.
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