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Chapter 1

Introduction

In the natural world, one can see various static or dynamic patterns: animal skins, clouds,
sand dunes, forest trees and so on. They actually take their forms automatically, but how
are such patterns created? Furthermore, many organisms are known to exhibit complex
aggregation behaviors and coordinations. These can be seen in schools of fish, honey
bee colonies, and mounds built by termites and so on. Many examples are shown in [1]
by Camazine, Franks, Sneyd, Bonabeau, Deneubourg, and Theraula. However, how do
organisms create these seemingly intelligent behaviors? While, in applications, there are
many cases that one has to predict or control those phenomena represented as weather
forecasts. However, how can we predict or control the phenomena? In order to answer
the above problems, it is important to understand essential mechanisms governing the
phenomena. One of the methods to understand such mechanisms is to use favorable math-
ematical models describing the phenomena. Generally speaking, one considers models to
be favorable if their solutions can show good agreements to the phenomena. Therefore,
one has to reconstruct models again and again equations by comparing the properties of
solutions derived from the models and the observations for natural phenomena.

As models describing various phenomena, many researchers have often utilized advection-
reaction-diffusion equations. A. M. Turing suggested that a reaction-diffusion system with
different diffusion coefficients may lead spatial inhomogeneity [2]. Many different kinds
of advection-reaction-diffusion equations also show good agreements to various biological
phenomena, and a lot of instances are shown in Murray’s books [3, 4]. Furthermore,
the concept of dissipative structures with mathematical models, which is introduced by
Nicolis and Prigogine [5], contributes theoretical understandings for pattern formation
or self-organization in the natural world such as Belousov-Zhabotinsky reactions and
Rayleigh-Bénard convection.

Although there are many successful model equations, there are few equations whose so-
lutions can be explicitly expressed by spatial and temporal variables, including advection-
reaction-diffusion equations, for those equations are in general nonlinear. Under these cir-
cumstances, one has to investigate properties of solutions for advection-reaction-diffusion
equations. In order to overcome these problems, two approaches are developed: numerical
approaches and analytical approaches. Numerical approaches try to obtain approximate
solutions as (visible) values by using computational methods, and these approaches are
good at quantitative evaluations. In the meantime, analytical approaches are good at qual-
itative evaluations by using many kinds of mathematical theory. These two approaches are
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necessary to investigate properties of solutions for advection-reaction-diffusion equations.
One of the basic analytical studies for advection-reaction-diffusion equations is to prove

existence and uniqueness of solutions. In order to show this importance, we give some
examples here.

Although our main interest is to study advection-reaction-diffusion equations, we
firstly consider examples of ordinary differential equations for simplicity. Consider the
following ordinary differential equation

du

dt
= u2, t > 0, u(0) = u0 > 0.

This equation is analytically solved, and the solution is given by u(t) = 1/(1/u0− t). This
solution satisfies that u(t) → ∞ as t→ 1/u0−0, therefore the solution uniquely exists on
the interval [0, 1/u0) only and the length of existing interval depends on the magnitude
of initial value u0. We know from this example that, it is important to consider how long
a solution exists even if a solution uniquely exists in a short time.

Secondly, consider the following ordinary differential equation

du

dt
= 2u1/2, t > 0, u(0) = 0.

This equation is also analytically solved, and the solutions are given by{
ux(t) = (t− x)2 for x < t,

ux(t) = 0 for 0 ≤ t ≤ x
(1.1)

with arbitrary constant x > 0. Actually, each function ux(·) satisfies the above differential
equation. In this case, this equation does not possess uniqueness of solutions under the
initial condition u(0) = 0. We know from this example that, it is important to consider
when differential equations possess uniqueness of solutions.

Thirdly, as a well known example of non existence of solutions to a partial differential
equation, Lewy [6] proved that there exists a function F (x, y, z) ∈ C∞(R3) such that

−∂u
∂x

− i
∂u

∂y
+ 2i(x+ iy)

∂u

∂z
= F (x, y, z) in Ω

does not possess solutions for any domain Ω ⊂ R3. This example shows us that, even if
a differential equation exists, its meaningful solution may not exists.

Finally, consider the following partial differential equation

∂u

∂x
− ∂u

∂y
= 0 in R2.

The solution of this equation is given by u(x, y) = f(x + y) with arbitrary function
f ∈ C1(R). This means that, for each C ∈ R, u(x, y) have a uniform value f(C) on each
line x+ y = C. Now, reconsider the above equation in a bounded domain, i.e.,

∂u

∂x
− ∂u

∂y
= 0 in Ω, (1.2)
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Fig. 1.1: Boundary conditions for the equation (1.2)

where Ω is given by the shape shown in Fig 1.1 (a). The solutions of this equation are
also given by u(x, y) = f(x + y) in Ω. To this problem, we want to impose boundary
conditions which lead uniqueness of solutions. For example, consider imposing boundary
values on the boundary ∂Ω0 shown in Fig 1.1 (b) only. Then, due to the restriction of
values on each line x+y = C, the values in Ω1 are not determined. In order to ensure the
uniqueness in Ω, it is necessary to impose boundary values on the boundary ∂Ω0 ∪ ∂Ω1

shown in Fig 1.1 (c). We know from this example that it is important to consider which
boundary conditions lead unique existence of solutions of partial differential equations

As shown by the above examples, one can not always ensure existence and uniqueness
of solutions to differential equations. Furthermore, even if a solution uniquely exists in a
short time, it may blow-up in a finite time. So, investigating the existence and uniqueness
of solutions to a model equation is first priority. In the words of J. S. Hadamard, it is
important to show that the problem is “well-posed”.

In order to construct a unique local solution for advection-reaction-diffusion equations,
it is often convenient to formulate the equations as the Cauchy problem for an evolution
equation 

dU

dt
+ AU = F (U), 0 < t ≤ T,

U(0) = U0,
(1.3)

in a Banach space X. Here, U = U(t) is unknown function, A is a linear operator, and
F is a nonlinear operator. If X = Rn and A is a matrix, the matrix exponential by the
power series e−tA =

∑∞
k=0(−tA)k/k! is always well-defined; therefore, we can discuss the

unique existence of the local solution of (1.3) with this matrix exponential. However, in
many cases, X is infinite dimensional Banach space and A is not bounded operator, so we
have to be careful in the definition of e−tA. To this end, we assume that the operator A is
a sectorial operator with its angle less than π/2. For such operator A, we can consider the
exponential functions e−tA, 0 < t <∞, generated by −A. By using exponential functions
and from Duhamel’s principle, the solution of (1.3) is formally given by integral form
U(t) = e−tAU0 +

∫ t

0
e−(t−s)AF (U(s))ds. In order to ensure the unique existence of U(t)

satisfying the integral form, we have to use the Banach fixed-point theorem. To this end,
as similar to the situation for ordinary differential equations, we have to assume a Lipschitz
condition of F (U), where the Lipschitz condition is formulated by using fractional powers
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of the sectorial operator A. From this point, it is important to consider sectorial operators
A and the fractional powers of A.

Under the unique existence of solutions for advection-reaction-diffusion equations, our
studies move on next stages, that is, we study properties of solutions. We now focus on
asymptotic behaviors of solutions. As typical asymptotic behaviors of solutions, there
are chaotic behavior, periodic behavior, and convergence to a stationary solution. In
this doctoral thesis, our main theme is to study asymptotic convergence to a stationary
solution (except for Chapter 5).

In the study of convergence to a stationary solution, [7, 8, 9] give interesting results:
gradient systems whose solutions do not converge to a stationary solution. Here, gradient
systems are differential equations that have the form

du

dt
(t) = −grad Φ(u(t))

with Φ a real valued function called a Lyapunov function. Since a solution u(t) satisfies
that

d

dt
Φ(u(t)) = grad Φ(u(t)) · du

dt
(t) = −∥grad Φ(u(t))∥2,

Φ(u(·)) is strictly decreasing as time t increasing except at equilibria. One may expect
that, for every gradient system, all solutions converge to a stationary solution u such
that grad Φ(u) = 0. Actually, the value of a Lyapunov function Φ(u(t)) converges to
Φ(u) as t → ∞ (if Φ(u(t)) does not tend to −∞). However, roughly speaking, the fact
that Φ(u(t)) → Φ(u) ∈ R has only one dimensional information, so it is impossible to
bind the behavior of u(t) in a finite or infinite dimensional space. Indeed, [7, 8, 9] show
that there are gradient systems such that their solutions do not converge to a stationary
solution. The example [7, Section1.1, Example 3] gives such a gradient system of two
ordinary differential equations, and [8, 9] give such gradient systems of partial differential
equations. These facts show that additional assumptions for Lyapunov functions are
required to prove convergence of solutions.

To this problem, one of the powerful techniques is to use the  Lojasiewicz-Simon in-
equality with gradient systems.  Lojasiewicz proved the following results: let U ⊂ Rn be
open, f : U → R be a real analytic function, and a ∈ U ; then, there exits constants
0 < θ ≤ 1/2, C > 0, r > 0, such that

|f(x) − f(a)|1−θ ≤ C∥∇f∥ if ∥x− a∥ < r.

For the proof, we quote [10, 11]. The above inequality is called the  Lojasiewicz inequality.
Simon generalized the  Lojasiewicz results to analytic functions on infinite-dimensional
spaces [12], and the proof is simplified by Jendoubi [13]. The generalized  Lojasiewicz
inequality is called the  Lojasiewicz-Simon inequality. The  Lojasiewicz-Simon inequality
has been successfully applied to proving convergence results for solutions of a variety of
gradient systems; Cahn-Hilliard equations [14, 15], degenerate diffusion equations [16, 17],
second order ordinary differential equations [18, 19], damped wave equations [20, 21],
Ginzburg–Landau equations [22], and evolutionary integral equations [23, 24, 25]. From
this applicability to convergence results, the  Lojasiewicz-Simon inequality itself is studied;
Chill [26, 27] introduced a set which is called a critical manifold to show the  Lojasiewicz-
Simon inequality. Furthermore, a non-smooth version of the  Lojasiewicz-Simon inequality
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is considered in [28], and this result is applied to showing a convergence result for the
Keller-Segel equations by Feireisl, Laurençot, and Petzeltová [29].

Contributions

This doctoral thesis presents analytical studies for four advection-reaction-diffusion equa-
tions; particularly, we focus on studying asymptotic behaviors of solutions. By applying
the theory of abstract parabolic evolution equations, we construct a unique local solu-
tion to each equation. After that, by establishing a priori estimate, we extend the local
solutions to global solutions. Further details of contributions in this thesis are as follows:

• In Chapter 3, we present results about strongly elliptic differential operators in
a network shaped domain. Particularly, we intend to characterize the domains of
fractional powers of sectorial operators determined from these differential operators,
and the characterization results are applied to studying Keller-Segel equations in
network shaped domains in Chapter 6. These results are obtained in [30].

• In Chapter 5, we study attraction-repulsion chemotaxis equations. It seems that
there is no Lyapunov function for these equations, and we can not show the conver-
gence of global solutions. However, we are able to prove that a dynamical system
determined from these equations possesses exponential attractors. From this result,
all solutions are attracted at exponential rates by a compact set with finite fractal
dimension; therefore, we can indicate that their solutions show pattern formations.
These results are obtained in [31].

• In Chapter 6, we study the Keller-Segel equations in network shaped domains. By
applying the theory of abstract parabolic evolution equations, we construct strict
solutions. Furthermore, by using a non-smooth version of the  Lojasiewicz-Simon in-
equality, we conclude the asymptotic convergence of global solutions to a stationary
solution. These results are obtained in [32].

• In Chapter 7, we study a quasilinear diffusion equation. To this problem, we can
show that its stationary problem possesses a unique solution. This favorable prop-
erty yields the convergence result without using the  Lojasiewicz-Simon inequality.
These results are obtained in [33].

• In Chapter 8, we study a Laplace reaction-diffusion equation. We also use the
 Lojasiewicz-Simon inequality for proving the convergence of global solutions to a
stationary solution. To this problem, we use a concept of critical manifold (intro-
duced by [26, 27]) with some modifications. These results are obtained in [34].

Outline

The outline of this doctoral thesis is as follows.
In Chapter 2, we prepares some preliminaries which are used in the rest parts of this

thesis.
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In Chapter 3, we present some results about strongly elliptic differential operators in
a network shaped domain.

In Chapter 4, we present fundamentals of the theory of evolution equations of parabolic
type and infinite dimensional dynamical systems. We apply existence and uniqueness re-
sults of local solutions to evolution equations to advection-reaction-diffusion equations in
the subsequent chapters. A version of exponential attractor for non-autonomous dynam-
ical systems is constructed for a dynamical system determined in Section 5.2.

In Chapter 5, after reviewing results about chemotaxis equations over the past years,
we study attraction-repulsion chemotaxis equations. It seems that there is no Lyapunov
function for these equations, but a dynamical system determined from these equations
possesses exponential attractors.

In Chapters 6, 7, and 8, we show convergence results of global solutions to each
advection-reaction-diffusion equations. Chapter 6 is devoted to studying the Keller-Segel
equations in network shaped domains, Chapter 7 is devoted to studying a quasilinear
diffusion equation, and Chapter 8 is devoted to studying a Laplace reaction-diffusion
equation.

Finally, Chapter 9 ends this thesis with conclusions and future researches.
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Chapter 2

Preliminaries

2.1 Function Spaces with Values in a Banach Space

Let X be a Banach space with norm ∥ · ∥, and let [a, b] be a bounded closed interval. Let
us introduce fundamental function spaces which will often appear in this thesis.

The space of uniformly bounded functions on [a, b], which is denoted by
B([a, b];X), is a Banach space with the norm

∥F∥B = sup
a≤t≤b

∥F∥.

For m = 0, 1, 2, . . ., the space of m times continuously differentiable functions on [a, b],
which is denoted by Cm([a, b];X), is a Banach space with the norm

∥F∥Cm =
m∑
i=0

max
a≤t≤b

∥F (i)(t)∥.

In particular, C0([a, b];X) is simply denoted by C([a, b];X).

For 0 < σ < 1, the space of σ-Hölder continuous functions on [a, b], which is denoted
by Cσ([a, b];X), is a Banach space with the norm

∥F∥Cσ = ∥F∥C + sup
a≤s<t≤b

∥F (t) − F (s)∥
(t− s)σ

.

Finally, let us define the function space F1,σ((a, b];X) for 0 < σ < 1. Firstly,
F1,σ((a, b];X) ⊂ C([a, b];X). In addition, F ∈ F1,σ((a, b];X) if and only if the quantity
ωF (t) on (a, b] satisfies that supa≤t≤b ωF (t) < ∞ and limt→a+0 ωF (t) = 0. The space
F1,σ((a, b];X) is a Banach space with the norm

∥F∥F1,σ = ∥F∥C + sup
a≤s<t≤b

(s− a)σ∥F (t) − F (s)∥
(t− s)σ

.

We know that

F ∈ Cσ([a, b];X) belongs to F1,σ((a, b];X). (2.1)
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2.2 Functional Analysis

Let X and Y be Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively. The space of
all bounded linear operators from X into Y , which is denoted by L(X, Y ), is a Banach
space with the norm

∥A∥L(X,Y ) = sup
∥U∥X≤1

∥AU∥Y .

In particular, when Y = C, the space L(X,C) is called the dual space of X and is denoted
by X ′. Furthermore, when X = Y , L(X,X) is written as L(X) for brevity.

We say that Y ⊂ X with dense embedding, if, for any x ∈ X, there exists a sequence
{yn} ⊂ Y such that ∥x − yn∥X → 0 as n → ∞. In addition, we say that Y ⊂ X with
continuous embedding, if there exists a constant C ≥ 0 such that ∥y∥X ≤ C∥y∥Y for
y ∈ Y .

2.2.1 Fréchet Derivative

Let X and Y be Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively. Let O be an
open set of X, and let F : O → Y be a continuous operator. For a point U ∈ O, assume
that there exists a bounded linear operator A ∈ L(X,Y ) which satisfies

o(h) = ∥F (U + h) − F (U) − Ah∥Y , lim
h→0

o(h)

∥h∥X
= 0,

for h ∈ X such that U + h ∈ O. Note that if such an A exists then the A is uniquely
determined. Then, F is said to be Fréchet differentiable at a point U and A is called the
Fréchet differential of F at U . The operator A is denoted by F ′(U) or F ′U . When F is
Fréchet differentialble at every point of O, F is said to be Fréchet differentiable in O. The
mapping F ′ : O → L(X, Y ), U 7→ F ′U is called the Fréchet derivative of F . When the
derivative F ′ is continuous from O into L(X, Y ), we say that F is continuously Fréchet
differentiable in O.

2.2.2 Analytic functions in Banach Spaces

In this subsection, we demonstrate facts about analytic functions in Banach spaces, which
are shown in [35] or [36, Chapter 8].

Let X and Y be two Banach spaces with norms ∥ · ∥X and ∥ · ∥Y , respectively. For
n = 0, 1, 2, . . ., let an be a continuous, symmetric, and n-linear map of Xn into Y , which
denotes an ∈ Ln

s (X,Y ), with its norm

∥an∥Ln
s (X,Y ) = sup

∥xi∥X=1
i=1,...,n

∥an(x1, . . . , xn)∥Y .

For simplicity, we denote ∥·∥Ln
s (X,Y ) as ∥·∥n. For an ∈ Ln

s (X, Y ) and x ∈ X, an(x, x, · · · , x)
is written as anx

n for brevity. A power series in x ∈ X with values in Y is a series of the
form

∑∞
n=0 anx

n, where a0 is a point of Y .
Consider a sequence an ∈ Ln

s (X, Y ), n = 0, 1, 2, . . ., and a scalar r > 0 such that∑∞
n=0 ∥an∥nrn < ∞. Then, the power series

∑∞
n=0 anx

n converges absolutely and uni-
formly for ∥x∥X < r, and the power series is a continuous function with respect to x.
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For an open set O of X, consider a function F : O → Y . We say that the function F is
analytic at x0 ∈ O if it coincides with a convergent power series

∑∞
n=0 an(x − x0)

n such
that

∑∞
n=0 ∥an∥n∥x − x0∥nX < ∞ for x near x0. Furthermore, F is analytic in O if it is

analytic at each point of O. Note that F is analytic at a point x0 if and only if F is
analytic on a neighborhood of x0.

As for the Fréchet derivative of an analytic function, we know the following theorem.
For the proof, see [35, Theorem].

Theorem 2.1. Let x0 ∈ X, and let a sequence an ∈ Ln
s (X, Y ), n = 0, 1, 2, . . ., and a scalar

r > 0 satisfy
∑∞

n=0 ∥an∥nrn < ∞. Then, the analytic function F (x) =
∑∞

n=0 an(x− x0)
n

has a Fréchet derivative at any point x such that ∥x − x0∥X < r, and the derivative
(in L(X, Y )) is F ′(x) =

∑∞
n=1 nan(x − x0)

n. The new series converges for x such that
∥x− x0∥X < r.

We know the following identity theorem for analytic functions [35, Corollary].

Theorem 2.2. If two analytic functions, f(x) =
∑∞

n=0 an(x−x0)n and g(x) =
∑∞

n=0 bn(x−
x0)

n, coincide near x0, then an = bn for all n.

In the meantime, the following inverse mapping theorem holds true. For the proof,
see [36, Corollary 4.37].

Theorem 2.3. Let F : X → Y be an analytic function a point x0 ∈ X. Let F ′(x0) ∈
L(X, Y ), the first derivative of F at x0, be a bijection from X onto Y . Then, F is a
local analytic diffeomorphism at x0. That is, there exist a neighborhood OX(x0) in X and
a neighborhood OY (F (x0)) in Y such that F is a bijection from OX(x0) onto OY (F (x0))
and both F and F−1 are analytic functions.

We give one example of analytic functions in a Banach space. Since this analytic
function plays an important role in Sections 6 and 8, we give the proof of the analyticity.

Proposition 2.1. Let f : R → R be an analytic function. Then, the mapping F from
C([0, 1]) = C([0, 1];R) to R given by

F(u) =

∫ 1

0

f(u(x))dx, u ∈ C([0, 1]),

is analytic in C([0, 1]).

Proof. Let u0 ∈ C([0, 1]) be arbitrarily fixed. Put m = min0≤x≤1{u0(x)} > −∞ and
M = max0≤x≤1{u0(x)} < ∞. Then, for each a ∈ [m,M ], it follows from the analyticity
of f that there exists a ra > 0 such that

∞∑
n=0

|f (n)(a)|
n!

rna <∞

and

f(y) =
∞∑
n=0

f (n)(a)

n!
(y − a)n for |y − a| < ra.
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Put r = minm≤a≤M{ra} > 0. For such r, it is obvious that

∞∑
n=0

maxm≤a≤M |f (n)(a)|
n!

rn <∞. (2.2)

Note that, if u ∈ C([0, 1]) satisfies that ∥u− u0∥C < r, then

f(u(x)) =
∞∑
n=0

f (n)(u0(x))

n!
(u(x) − u0(x))n

for every x ∈ [0, 1].
In the meantime, for n = 1, 2, . . ., the n-th derivative of F(u) at u0, F(n)(u0) ∈

Ln
s (C([0, 1]);R), is given by

F(n)(u0)[h1h2 · · ·hn]

=

∫ 1

0

f (n)(u0(x))[h1(x)h2(x) · · ·hn(x)]dx, (h1, h2, . . . , hn) ∈ [C([0, 1])]n

with its norm

∥F(n)(u0)∥n = sup
∥hi∥C = 1

i = 1, 2, . . . , n

∣∣∣∣∫ 1

0

f (n)(u0)[h1h2 · · ·hn]dx

∣∣∣∣ .
Obviously, ∥F(n)(u0)∥n ≤ max0≤x≤1 |f (n)(u0(x))| ≤ maxm≤a≤M |f (n)(a)|. Therefore, it
follows from (2.2) that

∞∑
n=0

∥F(n)(u0)∥n
n!

rn <∞.

Furthermore, if u ∈ C([0, 1]) satisfies that ∥u− u0∥C < r, then we have

F(u) =

∫ 1

0

∞∑
n=0

f (n)(u0(x))

n!
(u(x) − u0(x))ndx =

∞∑
n=0

F(n)(u0)

n!
(u− u0)

n,

which shows that F(u) is analytic at u0. Since u0 is arbitrary, we conclude the assertion.

2.2.3 Interpolation Spaces

Let X0 and X1 be two Banach spaces with norms ∥ · ∥X0 and ∥ · ∥X1 , respectively. We
assume that X1 ⊂ X0 with dense and continuous embedding. For 0 ≤ θ ≤ 1, the
(complex) interpolation space of X0 and X1 is denoted by [X0, X1]θ. For the definition
of [X0, X1]θ, see [37, Subsection 1.5.1]. According to [38, Theorems 1.9.1 and 1.9.2], the
space [X0, X1]θ becomes a Banach space with a suitable norm.

We give the following interpolation theorem. For the proof, see [37, Theorem 1.15].

Theorem 2.4. Let X1 ⊂ X0 (resp. Y1 ⊂ Y0) densely and continuously, and let [X0, X1]θ
(resp. [Y0, Y1]θ) be the interpolation space. If T ∈ L(X0, Y0) and T ∈ L(X1, Y1), then T
belongs to L([X0, X1]θ, [Y0, Y1]θ) for any 0 < θ < 1 with the estimate

∥T∥L([X0,X1]θ,[Y0,Y1]θ) ≤ ∥T∥1−θ
L(X0,Y0)

∥T∥θL(X1,Y1)
. (2.3)
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2.2.4 Triplets of Spaces

Let Z and X be two Hilbert spaces with inner products (·, ·)Z and (·, ·)X and with norms
∥ · ∥Z and ∥ · ∥X , respectively. We assume that Z ⊂ X with dense and continuous
embedding.

Then, there exists a Banach space Z∗ (with its norm ∥ · ∥Z∗) satisfying the following
conditions. Firstly, X ⊂ Z∗ with dense and continuous embeddings. Secondly, {Z,Z∗}
forms an adjoint pair with duality product ⟨·, ·⟩Z×Z∗ , i.e., the mapping ⟨·, ·⟩Z×Z∗ : Z ×
Z∗ → C satisfies that, for α, β ∈ C, u, v ∈ Z, and φ, ψ ∈ Z∗,

⟨αu+ βv, φ⟩Z×Z∗ = α ⟨u, φ⟩Z×Z∗ + β ⟨v, φ⟩Z×Z∗ ,

⟨u, αφ+ βψ⟩Z×Z∗ = α ⟨u, φ⟩Z×Z∗ + β ⟨u, ψ⟩Z×Z∗ ,

and

| ⟨u, φ⟩Z×Z∗ | ≤ ∥u∥Z∥φ∥Z∗ ,

∥u∥Z = sup
∥φ0∥Z∗≤1

| ⟨u, φ0⟩Z×Z∗ |, ∥φ∥Z∗ = sup
∥u0∥Z≤1

| ⟨u0, φ⟩Z×Z∗ |.

Finally, the duality product ⟨·, ·⟩Z×Z∗ satisfies

⟨u, f⟩Z×Z∗ = (u, f)X for all u ∈ Z, f ∈ X.

Such a Banach space can be always constructed in a unique way. For the detail, see [37,
Chapter 1, Section 7]. Then the three spaces Z ⊂ X ⊂ Z∗ are called a triplet of spaces.

2.3 Function Spaces in Ω

Let Ω be a domain in Rn with the Lebesgue measure. For 1 ≤ p ≤ ∞, Lp(Ω) denotes the
complex valued Lp spaces. For k = 0, 1, 2, . . ., we define

Hk(Ω) = {u ∈ L2(Ω); Dαu ∈ L2(Ω) for |α| ≤ k},

where α = (α1, α2, . . . , αn) denotes a multiindex, and |α| = α1 + α2 + · · · + αn, and
Dα = Dα1

1 D
α2
2 · · ·Dαn

n denotes the derivatives in the distribution sense. The space Hk(Ω)
becomes a Hilbert space with the inner product

(u, v)Hk =
∑
|α|≤k

(Dαu,Dαv)L2 , u, v ∈ Hk(Ω).

The space Hk(Ω) is called the Sobolev space.
Let Ω be a bounded domain in Rn with Lipschitz boundary. In order to extend

the Sobolev space Hk(Ω) to that with fractional orders, we need the following extension
operator in the next subsection. For the detail, see [39, Chapter VI, Theorems 5 and 5’].

Theorem 2.5. Let Ω be a bounded domain in Rn with Lipschitz boundary, and let k =
0, 1, 2, . . .. There exists a linear continuous operator T : Hk(Ω) → Hk(R) such that
(Tu)|Ω = u and ∥Tu∥Hk(Rn) ≤ Ck∥u∥Hk(Ω) for u ∈ Hk(Ω), where the constant Ck ≥ 0
depends on k.
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2.3.1 Sobolev Spaces with Fractional Orders

Let s ≥ 0 be a nonnegative number. The space Hs(Rn) is defined by

Hs(Rn) = {u ∈ S(Rn)′;F−1[(1 + |ξ|2)s/2Fu] ∈ L2(Rn)},

where S(Rn) denotes the Schwartz space, S(Rn)′ denotes the dual space of S(Rn), and
F and F−1 denote the Fourier transform and the inverse Fourier transform of S(Rn)′,
respectively. The space Hs(Rn) is a Hilbert space with the inner product

(u, v)Hs = ((1 + |ξ|2)s/2Fu, (1 + |ξ|2)s/2Fv)L2 , u, v ∈ Hs(Rn).

By the theory of Fourier multipliers, we verify that the two definitions of Hk(Rn) and
Hs(Rn) are equivalent for nonnegative integers s = k.

Let Ω be a bounded domain in Rn with Lipschitz boundary. Let us extend the defini-
tion of Hk(Ω) for fractional orders. For s ≥ 0, we define

Hs(Ω) = {u ∈ L2(Ω);∃U ∈ Hs(Rn) such that U |Ω = u almost everywhere in Ω},

with its norm
∥u∥Hs(Ω) = inf

U∈Hs(Rn),U|Ω=u
∥U∥Hs(Rn).

With this norm, Hs(Ω) is a Banach space. Due to Theorem 2.5, we verify that the two
definitions of Hk(Ω) and Hs(Ω) are equivalent for nonnegative integers s = k.

One see that, for 0 < s0 < s1 <∞,

Hs1(Ω) ⊂ Hs0(Ω) ⊂ L2(Ω) with continuous and compact embeddings. (2.4)

According to [38, Section 4.3.1, Theorem 1], we have the following theorem.

Theorem 2.6. Let Ω be a bounded domain in Rn with Lipschitz boundary. Let 0 ≤ s0 <
s1 <∞. Then

[Hs0(Ω), Hs1(Ω)]θ = Hs(Ω) with norm equivalence, (2.5)

where 0 ≤ θ ≤ 1 and s = (1 − θ)s0 + θs1.

By using Theorem 2.4 and Theorem 2.6, we can verify the boundedness of the extension
operator T from Hs(Ω) to Hs(Rn). This fact yields that Hs(Ω) is a Hilbert space with
the inner product

(u, v)Hs(Ω) = (Tu,Tv)Hs(Rn), u, v ∈ Hs(Ω).

The space Hs(Ω) is also called the Sobolev space.

2.3.2 Embedding Theorems

According to [38, Theorem 2.8.1/Remark 2 and Theorem 4.6.1], we get the following
embedding theorem.

Theorem 2.7. Let Ω be a bounded domain in Rn with Lipschitz boundary. Let n/2 <
s <∞. Then

Hs(Ω) ⊂ C(Ω) with continuous embedding. (2.6)
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The following estimates are know as Gagliardo-Nirenberg’s inequality. When Ω = R,
the proof is given in [40, Theorem 3.3, 3.4, and 3.5]. Due to Theorem 2.5, the proofs for
other cases are immediately reduced to this case.

Theorem 2.8. Let Ω be a bounded interval in R. Let 1 ≤ q ≤ 2. Then, H1(Ω)∩Lq(Ω) ⊂
Lr(Ω) with the estimate

∥u∥Lr ≤ Cq,r∥u∥aH1∥u∥1−a
Lq

, u ∈ H1(Ω) ∩ Lq(Ω),

where q ≤ r ≤ ∞, and a is given by 1/r = −a/2 + (1 − a)/q.

2.3.3 Spaces H̊s(Ω) and H−s(Ω)

Let Ω be a bounded domain in Rn with Lipschitz boundary. By D(Ω) we denote the
space of all infinitely differentiable functions in Ω with compact support. For s ≥ 0, the
space H̊s(Ω) is defined as the closure of the set D(Ω) in the space Hs(Ω).

It is known from [38, Section 4.3.2, Theorem 1(a)] that

H̊s(Ω) = Hs(Ω) for 0 ≤ s ≤ 1/2. (2.7)

However,
H̊s(Ω) ̸= Hs(Ω) for any 1/2 < s <∞.

For s ≥ 0, the space H−s(Ω) is defined as H̊s(Ω)′. Therefore, {H̊s(Ω), H−s(Ω)} is
an adjoint pair with duality product ⟨·, ·⟩H̊s×H−s on H̊s(Ω) × H−s(Ω). We know that
L2(Ω) ⊂ H−s(Ω) with the relation

(u, f)L2
= ⟨u, f⟩H̊s×H−s for u ∈ H̊s(Ω), f ∈ L2(Ω). (2.8)

Furthermore, for any 0 < s <∞, H̊s(Ω) ⊂ L2(Ω) ⊂ H−s(Ω) becomes a triplet.
According to [41, Theorem 1.4.4.6], the following result is valid.

Theorem 2.9. For any −∞ < s < ∞, s ̸= 1/2, the partial derivation Di (i = 1, . . . , n)
is a bounded operator from Hs(Ω) to Hs−1(Ω).

By combining Theorems 2.7 and 2.9, we know that, for any k = 0, 1, 2, . . .,

Hs(Ω) is continuously embedded in Ck(Ω) if s > k + n/2. (2.9)

2.4 Sectorial Operators

Let X be a Banach space with norm ∥ · ∥. Let A be a linear operator from a domain
D(A) ⊂ X to X. The operator A is said to be a densely defined operator in X if the
domain D(A) is dense in X. In the meantime, the operator A is said to be a closed linear
operator in X if the graph G(A) = {(u,Au) ∈ X ×X; u ∈ D(A)} is closed in X ×X.

Let A be a densely defined, closed linear operator in X. We assume that the spectrum
of A, which is denoted by σ(A), is contained in an open sectorial domain such that

σ(A) ⊂ Σω = {λ ∈ C; |arg λ| < ω}, 0 < ω < π, (2.10)
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and its resolvent, which is denoted by (λ− A)−1, satisfies the estimate∥∥(λ− A)−1
∥∥
L(X)

≤ M

|λ|
, λ /∈ Σω, (2.11)

with some constant M ≥ 1. We call such an operator A a sectorial operator of X.
For a sectorial operator A, we can define its angle ωA by using analytic continuation of

the resolvent (λ− A)−1. For the definition of ωA, see [37, Chapter 2]. We know that, for
any ωA < ω′ ≤ π, it holds that σ(A) ⊂ Σω′ and ∥(λ− A)−1∥L(X) ≤ Mω′/|λ| for λ /∈ Σω′

with some constant Mω′ ≥ 1.

2.4.1 Fractional Powers of Sectorial Operators

In this subsection, we present fundamentals of fractional powers of sectorial operators
which is shown in [37, Chapter 2, Section 7].

Let X be a Banach space with norm ∥ · ∥. Let A be a sectorial operator of X with
angle 0 ≤ ωA < π.

For any integer n ∈ Z, the operator An is defined; indeed, when n > 0, An is a densely
defined, closed operator of X; when n < 0, An = (A−1)−n = (A−n)−1 is a bounded
operator of X; and, when n = 0, A0 = 1 (the identity on X).

By ω we denote an angle such that ωA < ω < π. By definition,

σ(A) ⊂ Σω = {λ ∈ C; |arg λ| < ω}, ωA < ω < π, (2.12)

and ∥∥(λ− A)−1
∥∥
L(X)

≤ Mω

|λ|
, λ /∈ Σω, ωA < ω < π, (2.13)

with some constant Mω ≥ 1. Note that (2.12) implicitly means that 0 ∈ ρ(A), and that

{λ ∈ C; |λ| ≤ δ} ⊂ ρ(A), (2.14)

provided that 0 < δ < ∥A−1∥−1.
We define, for each complex number z such that Re z > 0, the bounded linear operator

A−z =
1

2πi

∫
Γ

λ−z(λ− A)−1dλ, (2.15)

using the Dunford integral in L(X), where Γ = Γ+ ∪ Γ0 ∪ Γ− is an integral contour lying
in the resolvent set ρ(A) such that Γ+ : λ = reiω for ∞ > r ≥ δ, Γ0 : λ = δeiθ for
ω ≥ θ ≥ −ω, Γ− : λ = re−iω for δ ≤ r <∞. As a branch of the analytic function λ−z, we
take the principal branch C \ (−∞, 0]. In addition, Γ is oriented from ωeiω to δeiω, from
δeiω to δe−iω, and from δe−iω to ∞e−iω.

On the other hand, since we can verify that A−z is one-to-one for every Re z > 0, its
inverse

Az = (A−z)−1 for Re z > 0

is a single-valued linear operator of X.
According to the above definitions, for every real number −∞ < x <∞, the fractional

power Ax of A has been defined. As known properties, Ax are bounded operators on X
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for −∞ < x < 0, A0 = 1, and Ax are densely defined, closed linear operators of X for
0 < x <∞. For 0 < x <∞, the domain of Ax is denoted by D(Ax).

In the following, we present some properties of fractional powers. Firstly, for 0 ≤ θ ≤ 1,
it holds that

AθU = Aθ−1AU = AAθ−1U, U ∈ D(A).

Secondly, for 0 ≤ θ ≤ 1, the following inequality called a moment inequality

∥AθU∥ ≤ Cθ∥AU∥θ∥U∥1−θ, U ∈ D(A), (2.16)

holds true. In addition, for 0 ≤ θ0 < θ1 <∞, a more generalized moment inequality

∥Aθ0U∥ ≤ Cθ0,θ1∥Aθ1U∥θ0/θ1∥U∥(θ1−θ0)/θ1 , U ∈ D(Aθ1), (2.17)

also holds true.

2.4.2 Exponential Functions

Let X be a Banach space eith norm ∥ · ∥. Let A be a sectorial operator of X with angle
0 ≤ ωA < π/2. We define the family of bounded operators e−tA on X by the Dunford
integral

e−tA =
1

2πi

∫
Γ

e−tλ(λ− A)−1dλ, 0 < t <∞,

in the space L(X). The integral contour in an infinite curve lying in ρ(A) which surrounds
σ(A) counterclockwise. For example, we can take Γ = Γ− ∪ Γ+, where γ± : λ = re±iω,
0 ≤ r <∞, which is oriented from ∞eiω to 0 and from 0 to ∞e−iω (note that 0 ∈ ρ(A)).
The integral along Γ is convergent in L(X). The family of operator e−tA is called the
exponential function generated by −A.

2.5 Sectorial Operators Associated with Sesquilinear

Forms

Let Z ⊂ X ⊂ Z∗ be a triplet of spaces. We consider a sesquilinear form a(U, V ) defined
on Z, that is, a(U, V ) is a complex-valued function defined for (U, V ) ∈ Z × Z satisfying{

a(αU + βŨ, V ) = αa(U, V ) + βa(Ũ , V ), α, β ∈ C, U, Ũ , V ∈ Z,

a(U, αV + βṼ ) = αa(U, V ) + βa(U, Ṽ ), α, β ∈ C, U, V, Ṽ ∈ Z.

When a(U, V ) satisfies the condition

|a(U, V )| ≤M ∥U∥Z ∥V ∥Z , U, V ∈ Z, (2.18)

with some constant M , a(U, V ) is called a continuous form. In the meantime, when
a(U, V ) satisfies the condition

Re a(U,U) ≥ δ ∥U∥2Z , U ∈ Z, (2.19)

with some positive constant δ > 0, a(U, V ) is called a coercive form.
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For continuous and coercive sesquilinear form a(U, V ) defined on Z, we can construct
a linear isomorphism A : Z → Z∗ such that a(U, V ) = ⟨AU, V ⟩Z∗×Z for all U, V ∈ Z.
Such A is called the linear operator associated with a(U, V ). Here, let us introduce two
operators A|X and A|Z . Firstly, we introduce the operator A|X in X defined by{

D(A|X) = {U ∈ Z; AU ∈ X},
A|XU = AU, for U ∈ D(A|X).

The operator A|X is called the part of A in X. In the meantime, we introduce the operator
A|Z in Z defined by {

D(A|Z) = {U ∈ Z; AU ∈ Z},
A|ZU = AU, for U ∈ D(A|Z).

The operator A|Z is called the part of A in Z.
As for the A and its parts A|X and A|Z , we know the following theorem. For details

and its proof, see [37, Theorem 2.1].

Theorem 2.10. Let a(U, V ) be a sesquilinear form on Z satisfying (2.18) and (2.19),
and let A, A|X , and A|Z be the linear operators of Z∗, X, and Z, respectively, which are
determined from the form. Then, they satisfy (2.10) and (2.11) with angle ω = π/2 and
constant M+δ

δ
. Hence, they are sectorial operators of Z∗, X, and Z, respectively, with

angles < π/2.

2.6 Sectorial Operators in L2(Ω)

2.6.1 Under the Periodic Conditions

Let us consider the case where n = 1. Let I = (α, β) be a bounded interval in R. We
introduce the following two spaces

H1
P (I) = {u ∈ H1(I); u(α) = u(β)}

and

H2
P (I) = {u ∈ H2(I); u(α) = u(β) and u′(α) = u′(β)}.

Note that H1
P (I) and H2

P (I) become Hilbert spaces with the inner products (·, ·)H1 and
(·, ·)H2 , respectively. Furthermore, we know that H1

P (I) ⊂ L2(I) with dense and continu-
ous embedding.

Consider the sesquilinear form

a(u, v) =

∫
I

a(x)u′v′ dx+

∫
I

uv dx, u, v ∈ H1
P (I),

defined on H1
P (I). Here, a(x) is a real-valued function in I satisfying the conditions

a ∈ H1
P (I) and a(x) ≥ δ > 0 for all x ∈ I (2.20)
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with some constant δ > 0. These conditions imply that a(·, ·) fulfills (2.18) and (2.19) on
H1

P (I).

We consider the triplet H1
P (I) ⊂ L2(I) ⊂ H1

P (I)′. The part of the operator associated
with a(·, ·) in L2(I) is denoted by A. As for the domain D(A), we know the following
shift property.

Theorem 2.11. Let I = (α, β) be a bounded interval in R. Let (2.20) be satisfied. Then,
D(A) = H2

P (I) with norm equivalence.

The proof is quite similar to that of [37, Theorem 2.8], so we omit it.

2.6.2 Under the Dirichlet Conditions

Let Ω be a bounded domain in Rn. Let ∂Ω be of C2 class. Consider the sesquilinear form

a(u, v) = a

∫
Ω

∇u · ∇v dx, u, v ∈ H̊1(Ω),

on the space H̊1(Ω). Where, ∇u = t(D1u,D2u, . . . , Dnu) and ∇u · ∇v = D1uD1v +
D2uD2v+ · · ·+DnuDnv. We assume that a > 0. From the Poincaré inequality, we know
that ∥u∥L2 ≤ C∥∇u∥L2 for u ∈ H̊1(Ω) with some constant C ≥ 0. Therefore, a(·, ·) fulfills
(2.18) and (2.19) on H̊1(Ω).

We consider the triplet H̊1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω). The part of the operator associated
with a(·, ·) in L2(Ω) is denoted by A. This operator A is regarded as realizations of the
elliptic operator −a∆ in L2(Ω), under the Dirichlet boundary conditions γu = 0 on ∂Ω,
where γ is the trace operator defined by γu = u|∂Ω. From Theorem 2.10, we know that A
is a sectorial operator of L2(Ω) with angle < π/2.

We present characterization results of the domains of fractional powers Aθ for 0 ≤ θ ≤
1. For 1/2 < s ≤ 2, we define a closed subspace of Hs(Ω) by

Hs
D(Ω) = {u ∈ Hs(Ω); γu = 0}.

By the shift property, we know that D(A) = H2
D(Ω) with norm equivalence. The following

characterization is then shown. For the proof, see [42].

Theorem 2.12. Let Ω be a bounded domain in Rn with C2 boundary. Then,

D(Aθ) = [L2(Ω), H2
D(Ω)]θ =

{
H2θ(Ω) if 0 ≤ θ < 1/4,

H2θ
D (Ω) if 1/4 < θ ≤ 1,

(2.21)

with norm equivalence

C−1∥u∥H2θ ≤ ∥Aθu∥L2 ≤ C∥u∥H2θ , u ∈ D(Aθ),

C > 0 being determined by Ω and a.
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2.6.3 Under the Neumann Conditions

Let Ω be a bounded domain in Rn. Let ∂Ω be of C2 class. Consider the sesquilinear form

a(u, v) = a

∫
Ω

∇u · ∇v dx+

∫
Ω

uv dx, u, v ∈ H1(Ω),

on the space H1(Ω). We assume that a > 0. Then, a(·, ·) fulfills (2.18) and (2.19) on
H1(Ω). Note that the Poincaré inequality dose not holds true when u ∈ H1(Ω), so the
sesquilinear form a(·, ·) must have the term

∫
Ω
uv dx in order to prove the coerciveness.

We consider the triplet H1(Ω) ⊂ L2(Ω) ⊂ H1(Ω)′. The part of the operator associated
with a(·, ·) in L2(Ω) is denoted by A. This operator A is regarded as realizations of the
elliptic operator −a∆+1 in L2(Ω), under the Neumann-type boundary conditions ∂u

∂n
= 0

on ∂Ω. From Theorem 2.10, we know that A is a sectorial operator of L2(Ω) with angle
< π/2.

For 3/2 < s ≤ 2, we define a closed subspace of Hs(Ω) by

Hs
N(Ω) =

{
u ∈ Hs(Ω);

∂u

∂n
= 0 on ∂Ω

}
.

By the shift property, we know that D(A) = H2
N(Ω) with norm equivalence. The following

characterization is then shown. For the proof, see [37, Theorem 16.7].

Theorem 2.13. Let Ω be a bounded domain in Rn with C2 boundary. Then,

D(Aθ) = [L2(Ω), H2
N(Ω)]θ =

{
H2θ(Ω) if 0 ≤ θ < 3/4,

H2θ
N (Ω) if 3/4 < θ ≤ 1,

(2.22)

with norm equivalence

C−1∥u∥H2θ ≤ ∥Aθu∥L2 ≤ C∥u∥H2θ , u ∈ D(Aθ),

C > 0 being determined by Ω and a.
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Chapter 3

Network Shaped Domains

In this chapter, we are concerned with strongly elliptic differential operators in a network
shaped domain. In this doctoral thesis, we intend to characterize the domains of frac-
tional powers of sectorial operators determined from these differential operators. Here, a
network shaped domain means the pair of a set of nodes and a set of edges connecting
the nodes. Network shaped domains come from a variety of areas: carbon nanostruc-
ture [43, 44], superconductivity [45], photonic crystals [46], network of beams [47], traffic
flow on networks [48, 49], and blood vessel [50]. In the meantime, network shaped domains
are justified as an approximation of narrow branching domains under suitable assumptions
(see Fig. 3.1). For further topics, see a review paper [51] by Pokornyi and Borovskikh,
and references therein.

A differential equation in a network shaped domain is a system of differential equations
in edges which interact each other through connecting nodes. After the pioneering study
on differential equations in network shaped domains by Lumer [52], they are studied
by many researchers. Strum-Liouville eigenvalue problems are considered by Below [53].
Stability of steady states in reaction diffusion equations in network shaped domains is
studied by Yanagida [54]. In addition, adjoint and self-adjoint differential operators in
network shaped domains are studied by Carlson [55]. Recently, Camilli and Corrias [56]
studied chemotaxis equations in network shaped domains and obtained global solutions
in an integral sense. In the meantime, Kosugi [57] studied the reduction of thin domains
in Rn (n ≥ 2) to network shaped domains for a semilinear elliptic equation.

We want to study parabolic semilinear and quasilinear equations in network shaped
domains by using the theory of abstract parabolic evolution equations. Particularly, in
Chapter 6 of this thesis, we will consider the Keller-Segel equations in network shaped

Fig. 3.1: Approximating narrow branching domains by network shaped domains
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Fig. 3.2: Examples of network shaped domains

domains. To this end, it is important to investigate properties of fractional powers of
sectorial operators determined from strongly elliptic differential operators. Yagi [42] has
shown an application of the theory of H∞ functional calculus to the characterization
problem of the domains of the fractional powers of strongly elliptic differential operators
in a bounded domain of Rn with the Dirichlet boundary conditions. By utilizing his
techniques, we shall characterize the domains of the fractional powers of strongly elliptic
differential operators in a network shaped domain. However, there are a few choices of
the types of boundary conditions imposed at each node. One of the famous types is the
Kirchhoff conditions, see [53, 54, 56], that is, the condition of continuity and the condition
of the balance of flux at each node. Therefore, we will impose the Kirchhoff conditions
for strongly elliptic differential operators.

The following results are obtained in [30].

3.1 Formulation of network shaped domains

We define network shaped domains as follows. Let N = {Nj}j be a sequence of a finite
number of points in R3. Let E = {Ii}i be a sequence of segments in R3, where each
segment connects a pair of two points of N. We assume that every point has at least one
connecting segment and there is no segment which intersects another segment. We call
such a pair G = {E,N} a network shaped domain. In what follows, we call Ii ∈ E an edge
of domain and Nj ∈ N an node of domain, respectively. As examples of network shaped
domains, see Fig. 3.2.

For convenience, we consider a direction of Ii; o(Ii) ∈ N and ω(Ii) ∈ N denote a start
node and an end node of Ii, respectively. Since each Ii ∈ E has a Euclidian length li > 0,
we identify Ii as the open interval (0, li) with o(Ii) = 0 and ω(Ii) = li. Furthermore, for
each node Nj ∈ N, let o(Nj) and ω(Nj) be subsets of E given by

o(Nj) = {Ii ∈ E; o(Ii) = Nj} and ω(Nj) = {Ii ∈ E;ω(Ii) = Nj},

respectively. That is, o(Nj) is the set of edges whose start nodes are Nj and ω(Nj) is the
set of edges whose end nodes are Nj.

Let f = {fi}Ii∈E be a sequence of complex valued functions defined in each edge Ii.
In what follows, we call that such f is a function in G. As an example of functions in
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Fig. 3.3: An example of functions in a network shaped domain G

G = {{I1, I2, I3}, {N1}}, see Fig. 3.3. For each node Nj, we set fi(Nj) = fi(0) if Ii ∈ o(Nj)
and fi(Nj) = fi(li) if Ii ∈ ω(Nj). In addition, let us define the exterior normal derivative
of fi at Nj as

∂fi
∂n

(Nj) = − lim
∆xi→+0

fi(∆xi) − fi(0)

∆xi
= − dfi

dxi
(0) if Ii ∈ o(Nj),

∂fi
∂n

(Nj) = lim
∆xi→+0

fi(li) − fi(li − ∆xi)

∆xi
=
dfi
dxi

(li) if Ii ∈ ω(Nj).

By using these definitions, for each Nj, we define

∂f

∂n
(Nj) =

∑
Ii∈o(Nj)∪ω(Nj)

∂fi
∂n

(Nj) for f = {fi}.

3.2 Function Spaces in G

Let us introduce function spaces in a network shaped domain G = {E,N}. A notation
{fi}Ii∈E, which is a function in G, is abbreviated by {fi}, or it is simply denoted by f .
Furthermore, the notation {1}, which is the set of functions identically one on each Ii, is
abbreviated by 1.

Let f and g be functions in G, and let α ∈ C. We define the following operations:

f + g = {fi + gi}, αf = {αfi}, f = {fi} and fg = {figi}.

Furthermore, for a function χ : C → C, we define χ(f) = {χ(fi)}.
We often consider product spaces of Banach spaces

∏
Ii∈EXi, and they are abbreviated

by
∏
Xi.

3.2.1 Lp spaces and continuous function spaces

For 1 ≤ p ≤ ∞, let Lp(G) be the product space of spaces
∏
Lp(Ii) with the norm

∥f∥Lp(G)
= (
∑

Ii∈E ∥fi∥
p
Lp(Ii)

)1/p. Particularly, L2(G) becomes the Hilbert space with the

inner product (f, g)L2(G) =
∑

Ii∈E(fi, gi)L2(Ii).
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We introduce the space of continuous functions in G given by

C(G) =

{
f ∈

∏
C(Ii);

for each Nj ∈ N,
∀Ii ∈ o(Nj) ∪ ω(Nj), fi(Nj) has a common value

}
with the norm ∥f∥C(G) =

∑
Ii∈E ∥fi∥C(Ii). In addition, the space of continuous functions

satisfying the Kirchhoff conditions are given by

C1(G) =

{
f ∈ C(G) ∩

∏
C1(Ii);

∂f

∂n
(Nj) = 0 for all Nj ∈ N

}
with the norm ∥f∥C1(G) =

∑
Ii∈E ∥fi∥C1(Ii)

. While, let us define the following space

C2(G) =

f ∈ C1(G) ∩
∏

C2(Ii);
for each Nj ∈ N, ∀Ii ∈ o(Nj) ∪ ω(Nj),
d2fi
dx2i

(Nj) has a common value

 .

Remark 3.1. When Nj has only one connected edge, u ∈ C1(G) satisfies the ordinary
homogeneous Neumann boundary condition on Nj. Therefore, when G consists of only one
edge (see GN of Fig.3.2), u ∈ C1(G) satisfies the ordinary Neumann boundary conditions.
Furthermore, when G consists of only one loop (see GP of Fig.3.2), u ∈ C1(G) satisfies the
periodic condition on a one-dimensional domain.

For convenience, we use the following notations: for f ∈ L1(G),∫
G

fdx =
∑
Ii∈E

∫
Ii

fidxi

and
“f ≥ 0 for a.e. G” if and only if “fi(xi) ≥ 0 for a.e. xi ∈ Ii, ∀Ii ∈ E”.

In particular, we write

(f, g)L2(G) =

∫
G

fg dx for f, g ∈ L2(G).

3.2.2 Sobolev spaces

Let Hs(Ii) be the Sobolev space in Ii with fractional order s > 0. Let Di be the differen-
tiation in the sense of distribution on Ii, and let D be the following operation:

D : f = {fi} 7→ Df = {Difi} .

In the following, we will introduce the Sobolev spaces Hs(G) in G for the fractional
order 0 < s ≤ 3. But in view of trace of the function

∏
Hs(Ii) for 1/2 < s ≤ 3, we have

to consider the so-called compatibility conditions at nodes.
Firstly, we simply define Hs(G) =

∏
Hs(Ii) for 0 < s ≤ 1/2. In the meantime, we

define H−s(G) =
∏
H−s(Ii) for 0 < s ≤ 1/2. As an immediate consequence of (2.7) and

(2.8), for 0 < s ≤ 1/2, Hs(G) ⊂ L2(G) ⊂ H−s(G) becomes a triplet with the relation

(u, f)L2(G)
= ⟨u, f⟩Hs(G)×H−s(G) for u ∈ Hs(G), f ∈ L2(G). (3.1)
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Secondly, let us define Hs(G) for 1/2 < s ≤ 3/2. (2.9) implies that∏
Hs(Ii) is continuously embedded in

∏
C(Ii) if s > 1/2 (3.2)

with some embedding constant cs > 0. In view of this fact, we define the space Hs(G)
for 1/2 < s ≤ 3/2 as Hs(G) = C(G) ∩

∏
Hs(Ii). Then, Hs(G) is a closed linear sub-

space of
∏
Hs(Ii), so Hs(G) becomes a Hilbert space with the inner product (·, ·)Hs(G) =∑

Ii∈E (·, ·)Hs(Ii).

Thirdly, let us define Hs(G) for 3/2 < s ≤ 5/2. (2.9) implies that∏
Hs(Ii) is continuously embedded in

∏
C1(Ii) if s > 3/2 (3.3)

with some embedding constant c′s > 0. So, we define the space Hs(G) for 3/2 < s ≤ 5/2
as Hs(G) = C1(G)∩

∏
Hs(Ii). As before, Hs(G) is a Hilbert space with the inner product

(·, ·)Hs(G) =
∑

Ii∈E (·, ·)Hs(Ii).

Finally, we define the space Hs(G) for 5/2 < s ≤ 3 as Hs(G) = C2(G) ∩
∏
Hs(Ii). As

before, Hs(G) is also a Hilbert space with the inner product (·, ·)Hs(G) =
∑

Ii∈E (·, ·)Hs(Ii).

We show the following two lemmas.

Lemma 3.1. It holds that

(αDu,Dv)L2(G) = −(D[αDu], v)L2(G) for α, v ∈ H1(G) and u ∈ H2(G). (3.4)

Proof. From integration by parts, it is observed that∫
G

αDuDv dx =
∑
Ii∈E

[
αi[Diui]vi

]xi=li

xi=0
−
∫
G

D[αDu]v dx.

Here, since α, v ∈ H1(G) and u ∈ H2(G), we verify that

∑
Ii∈E

[
αi[Diui]vi

]xi=li

xi=0
=
∑
Nj∈N

α(Nj)v(Nj)
∂u

∂n
(Nj) = 0.

Therefore, (3.4) is obtained.

Lemma 3.2. Let α ∈ C1(G).Then, for any 0 ≤ s ≤ 1, the multiplication u 7→ αu is a
bounded operator on Hs(G) with the estimate

∥αu∥Hs(G) ≤ C∥α∥C1(G)∥u∥Hs(G), u ∈ Hs(G). (3.5)

Proof. It is clear that ∥αu∥L2(G) ≤ ∥α∥C(G)∥u∥L2(G) for u ∈ L2(G) and that ∥αu∥H1(G) ≤
C∥α∥C1(G)∥u∥H1(G) for u ∈

∏
H1(Ii). Then, the estimate is verified by applying Theo-

rem 2.4 and Theorem 2.6, In addition, it is obvious that αu ∈ Hs(G) for 1/2 < s ≤ 1, so
the lemma is proved.
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3.2.3 Mean zero spaces

In this subsection, we introduce subspaces of L2(G) and H1(G) which play an important
role in Sections 6.4 – 6.6 of Chapter 6. Let L2,m(G) be the space

L2,m(G) =

{
f ∈ L2(G);

∫
G

fdx = 0

}
.

Clearly, L2,m(G) is a closed linear subspace of L2(G), so that L2,m(G) is a Hilbert space
with the inner product (·, ·)L2,m(G) = (·, ·)L2(G). We denote the orthogonal projection from
L2(G) onto L2,m(G) by

Pf = f − 1

ltotal

∫
G

fdx, f ∈ L2(G). (3.6)

Then, we know a version of Poincaré-Wirtinger inequality, i.e., there exists a constant C
(depending on G only) such that

∥Pu∥L2,m(G) ≤ C∥Du∥L2,m(G), u ∈ H1(G). (3.7)

The proof is omitted since it is quit analogous to that of the standard Poincaré-Wirtinger
inequality (e.g. [58, Section 5.8, Theorem 1]).

Next, let us introduce Cm(G) = C(G) ∩ L2,m(G). It is easy to see that Cm(G) is a
Banach space with the norm ∥ · ∥Cm(G) = ∥ · ∥C(G). Note that P given by (3.6) also becomes
a bounded linear projection from C(G) onto Cm(G). So, we use the same notation P .

3.3 Sectorial Operators in L2(G)

Note that H1(G) ⊂ L2(G) with dense and continuous embedding. Therefore, a triplet
of spaces H1(G) ⊂ L2(G) ⊂ H1(G)′ is constructed. Particularly, the duality product
⟨·, ·⟩H1(G)′×H1(G) satisfies that

⟨f, u⟩H1(G)′×H1(G) = (f, u)L2(G) for all f ∈ L2(G), u ∈ H1(G). (3.8)

Let us consider the following sesquilinear form

a(u, v) =

∫
G

α(x)DuDvdx+

∫
G

β(x)uvdx, u, v ∈ H1(G),

defined on H1(G). Here, α(x) = {αi(xi)} is a set of real valued functions satisfying

α ∈ C1(G) and α(x) ≥ α0 in G (3.9)

with some constant α0 > 0, and β(x) = {βi(xi)} is a set of real valued functions satisfying

β ∈ L∞(G) and β(x) ≥ β0 in a.e. G

with some constant β0 > 0.
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It is easy to see that a(u, v) is continuous and coercive. More precisely, a(u, v) satisfies
that

|a(u, v)| ≤ max{∥α∥L∞(G), ∥β∥L∞(G)} ∥u∥H1(G) ∥v∥H1(G) , u, v ∈ H1(G), (3.10)

and
Re a(u, u) ≥ min{α0, β0} ∥u∥2H1(G) , u ∈ H1(G). (3.11)

Therefore, there exists a linear isomorphism A : H1(G) → H1(G)′ such that

a(u, v) = ⟨Au, v⟩H1(G)′×H1(G) , u, v ∈ H1(G). (3.12)

In what follows, let A = A|L2(G) be the part of A in L2(G). We verify by (3.8) that

u ∈ D(A) if and only if a(u, v) is continuous in v with respect to the L2(G) norm.
(3.13)

Moreover, if u ∈ D(A) then a(u, v) = (Au, v)L2(G) for all v ∈ H1(G).

3.3.1 Fundamental properties for A

We characterize A as a differential operator in L2(G).

Theorem 3.1. It holds that D(A) = H2(G) and, for u ∈ D(A),

Au = −D[α(x)Du] + β(x)u in L2(G) (3.14)

with the norm equivalence

m−1 ∥u∥H2(G) ≤ ∥Au∥L2(G)
≤ m ∥u∥H2(G) , u ∈ D(A), (3.15)

where m > 0 depends on α0, β0, ∥α∥C1(G), and ∥β∥L∞(G).

Proof. Let u ∈ H2(G). Then, it is observed from (3.4) that a(u, v) = (−D[αDu] +
βu, v)L2(G) for v ∈ H1(G). Therefore, it follows from (3.13) that u ∈ D(A).

Let us show the opposite inclusion. For u ∈ D(A), there exists f ∈ L2(G) such that
Au = f . Thus, (f, v)L2(G) = (Au, v)L2(G) = a(u, v), that is,

(f − βu, v)L2(G)
= (αDu,Dv)L2(G)

for all v ∈ H1(G). (3.16)

Since
∏

C∞
0 (Ii) ⊂ H1(G), we know that αiDiui ∈ H1(Ii) for each Ii. Then, (3.9) implies

that Diui ∈ H1(Ii); therefore, u ∈
∏
H2(Ii). Using (3.16) again, we obtain that

(f +D[αDu] − βu, v)L2(G) =
∑
Ii∈E

[
αi[Diui]vi

]xi=li

xi=0
for all v ∈ H1(G). (3.17)

In (3.17), by choosing v ∈
∏

C∞
0 (Ii), we obtain that Au = f = −D[αDu] + βu in L2(G).

Furthermore, it follows from (3.17) that∑
Ii∈E

[
αi[Diui]vi

]xi=li

xi=0
=
∑
Nj∈N

α(Nj)v(Nj)
∂u

∂n
(Nj) = 0 for all v ∈ H1(G).
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Since v(Nj) are arbitrary and α(Nj) are positive, we deduce that ∂u
∂n

(Nj) = 0. We thus
obtained that D(A) ⊂ H2(G).

Finally, let us show the norm equivalence (3.15) for u ∈ D(A). It is obvious that
∥Au∥L2(G) ≤ m ∥u∥H2(G). On the other hand, for a fixed constant k > 0, it holds that

∥[A+ (k − β)]u∥2L2(G)
=

∫
G

[(D[αDu])2 − 2kuD[αDu] + k2u2]dx

=

∫
G

[α2(D2u)2 + (Dα)2(Du)2 + 2(Dα)(Du)α(D2u) + 2kα(Du)2 + k2u2]dx

≥
∫
G

[
α2

2
(D2u)2 + (2kα− 7(Dα)2)(Du)2 + k2u2]dx.

Due to (3.9), we can choose sufficiently large k > 0 such that 2kα − 7(Dα)2 > 0 in G.
Thus, we conclude that m−1∥u∥H2(G) ≤ ∥Au∥L2(G) due to (3.11).

We know that A is a linear isomorphism from H2
C,F (G) onto L2(G). Consequently,

A−1 : L2(G) → L2(G) is a compact operator, (3.18)

since H2
C,F (G) is compactly embedded in L2(G).

3.3.2 Fractional Powers Aθ

We want to characterize the domains of fractional powers Aθ. Due to Theorem 2.10, A is
a sectorial operator of L2(G) with angle ωA < π/2, that is, the spectrum σ(A) is contained
in an open sectorial domain such that

σ(A) ⊂ Σω = {λ ∈ C; | arg λ| < ω},

where ωA < ω ≤ π/2, and its resolvent (λ− A)−1 satisfies the estimate∥∥(λ− A)−1
∥∥
L(L2(G))

≤ M

|λ|
, λ ̸∈ Σω, (3.19)

with some constant M ≥ 1. Then, fractional powers of A are defined as shown in Subsec-
tion 2.4.1. Note that, for each 0 ≤ θ ≤ 1, D(Aθ) is a Hilbert space with the inner product
(·, ·)D(Aθ) = (Aθ·, Aθ·)L2(G).

It is easy to check that A is a positive definite self-adjoint operator in L2(G). From the
results on square root problem for positive definite self-adjoint operators (for example,
[37, Theorem 2.34]), we know that D(A1/2) = H1(G) with the norm equivalence

min{α0, β0}∥u∥2H1(G) ≤ ∥A1/2u∥2L2(G)
≤ max{∥α∥L∞(G), ∥β∥L∞(G)}∥u∥2H1(G)

due to (3.10) and (3.11).
In addition, according to [37, Theorem 16.1], the domains of the fractional powers

D(Aθ) and the complex interpolation spaces [L2(G),D(A)]θ coincide; more precisely, for
any 0 < θ < 1, [L2(G),D(A)]θ = D(Aθ) with isometry. In this case, it follows from
Theorem 3.1 that

[L2(G), H2(G)]θ = D(Aθ) with norm equivalence for any 0 < θ < 1. (3.20)
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According to [37, Theorem 16.3], (3.20) implies an integrable condition along the Γω, i.e.,∫
Γω

|λ|θ|
(
A1−θ(λ− A)−2f, g

)
L2(G)

| |dλ| ≤ Cθ,ω ∥f∥L2(G)
∥g∥L2(G)

, f, g ∈ L2(G), (3.21)

for 0 < θ < 1 with some constant Cθ,ω > 0.
Our characterization result is given by the following theorem.

Theorem 3.2. It holds that

D(Aθ) = H2θ(G) if θ ̸= 1/4, 3/4

with norm equivalence

m−1
θ ∥u∥H2θ(G) ≤ ∥Aθu∥L2(G) ≤ mθ∥u∥H2θ(G) for u ∈ D(Aθ),

mθ > 0 being determined by α0, β0, ∥α∥C1(G), and ∥β∥L∞(G).

Proof. The proof will be divided into five Steps.
Step 1. Let us show that D(Aθ) ⊂

∏
H2θ(Ii) for 0 ≤ θ ≤ 1. By applying the

interpolation theorem for bounded operator, [37, Theorem 1.15], to the embedding j :
H2(G) →

∏
H2(Ii), we see that [L2(G), H2(G)]θ ⊂ [L2(G),

∏
H2(Ii)]θ for any 0 ≤ θ ≤ 1

with
∥u∥[L2(G),

∏
H2(Ii)]θ

≤ ∥u∥[L2(G),H2(G)]θ
, u ∈ [L2(G), H2(G)]θ.

Furthermore, by Theorem 2.6, it holds that [L2(G),
∏
H2(Ii)]θ =

∏
H2θ(Ii) with norm

equivalence. Therefore, we conclude from (3.20) that D(Aθ) ⊂
∏
H2θ(Ii) for every 0 ≤

θ ≤ 1 with the estimate

∥u∥H2θ(G) ≤ mθ

∥∥Aθu
∥∥
L2(G)

, u ∈ D(Aθ). (3.22)

Now, let 1/4 < θ < 3/4. It is known that D(A) is dense in D(Aθ), namely, for every
u ∈ D(Aθ), there exists a sequence u(n) ∈ D(A) such that u(n) → u in D(Aθ) as n → ∞.
Then, since 2θ > 1/2, we observe by (3.2) that, for each pair Ii, Ik ∈ o(Nj) ∪ ω(Nj),

|ui(Nj) − uk(Nj)| ≤ |ui(Nj) − u
(n)
i (Nj)| + |u(n)k (Nj) − uk(Nj)|

≤ ∥u− u(n)∥C(G) ≤ c2θ∥u− u(n)∥H2θ(G)

≤ c2θmθ∥Aθ(u− u(n))∥L2(G) → 0 as n→ ∞.

Therefore, u ∈ H2θ(G), so that D(Aθ) ⊂ H2θ(G) for 1/4 < θ < 3/4.
Next, let 3/4 < θ ≤ 1 and u ∈ D(Aθ). By the density of D(A) in D(Aθ), there exists

a sequence u(n) ∈ D(A) such that u(n) → u in D(Aθ) as n → ∞. Then, since 2θ > 3/2,
we observe by (3.3) that∣∣∣∣∂u∂n(Nj)

∣∣∣∣ =

∣∣∣∣∂u∂n(Nj) −
∂u(n)

∂n
(Nj)

∣∣∣∣
≤ ∥u− u(n)∥C1(G) ≤ c′2θ∥u− u(n)∥H2θ(G)

≤ c′2θmθ∥Aθ(u− u(n))∥L2(G) → 0 as n→ ∞.
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Therefore, u ∈ H2θ(G), so that D(Aθ) ⊂ H2θ(G) for 3/4 < θ ≤ 1.
Step 2. Next, let us prove that H2θ(G) ⊂ D(Aθ) for 0 < θ < 1/4. From the definition

(2.15), it follows that, for any 0 < θ < 1,

Aθ−1 = lim
r→∞

1

2πθi

[
λθ(λ− A)−1

]λ=re−iω

λ=reiω
+

1

2πθi

∫
Γω

λθ(λ− A)−2dλ

=
1

2πθi

∫
Γω

λθ(λ− A)−2dλ

due to integration by parts and (3.19).
Let u ∈ H2θ(G) and v ∈ D(A). Then, we can write by (3.14)(
u,Aθv

)
L2(G)

=
(
u,Aθ−1Av

)
L2(G)

=
1

2πθi

∫
Γω

λθ
(
u,A(λ− A)−2v

)
L2(G)

dλ

=
1

2πθi

∫
Γω

λθ
(
u,−D[αD[(λ− A)−2v]] + β(λ− A)−2v

)
L2(G)

dλ. (3.23)

Here, we use the following lemma.

Lemma 3.3. It holds that

|
(
u,D[αD[Aθ−1f ]]

)
L2(G)

| ≤ Cθ∥u∥H2θ(G)∥f∥L2(G) for all f ∈ D(A). (3.24)

Proof of the lemma. It is observed from (3.1) that(
u,D[αD[Aθ−1f ]]

)
L2(G)

=
⟨
u,D[αD[Aθ−1f ]]

⟩
H2θ(G)×H−2θ(G)

.

So, it is enough to show that f 7→ D[αD[Aθ−1f ]] is a bounded operator from L2(G) into
H−2θ(G). Indeed, Aθ−1 is a bounded operator from L2(G) into H2(1−θ)(G) due to (3.22).
In addition, the differentiation D is a bounded operator from H2(1−θ)(G) into H1−2θ(G)
due to (2.9), the multiplication of α is a bounded operator on H1−2θ(G) due to (3.5), and
D is a bounded operator from H1−2θ(G) into H−2θ(G) due to (2.9) again.

Therefore, it follows from the Riesz representation theorem that there exists a unique
ũ ∈ L2(G) such that(

u,D[αD[Aθ−1f ]]
)
L2(G)

= (ũ, f)L2(G)
for all f ∈ D(A) (3.25)

with the estimate
∥ũ∥L2(G)

≤ Cθ ∥u∥H2θ(G) . (3.26)

It follows from (3.24) and (3.25) that(
u,D[αD[(λ− A)−2v]]

)
L2(G)

=
(
u,D[αD[Aθ−1A1−θ(λ− A)−2v]]

)
L2(G)

=
(
A1−θ(λ− A)−2ũ, v

)
L2(G)

,

so,

|
(
u,Aθv

)
L2(G)

|

≤ C

∫
Γω

|λ|θ
{
|
(
A1−θ(λ− A)−2ũ, v

)
L2(G)

| + |
(
u, β(λ− A)−2v

)
L2(G)

|
}
|dλ|.
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Therefore, we obtain by (3.21) and (3.26) that

|
(
u,Aθv

)
L2(G)

| ≤ Cθ,ω(∥ũ∥L2(G)
+ ∥u∥L2(G)

) ∥v∥L2(G)
≤ Cθ,ωCθ ∥u∥H2θ(G) ∥v∥L2(G)

.

Consequently, since v ∈ D(A) is arbitrary and D(A) is dense in L2(G), we obtain that
u ∈ D(Aθ) with

∥∥Aθu
∥∥
L2(G)

≤ Cθ,ωCθ ∥u∥H2θ(G).

Step 3. Next, let us prove that H2θ(G) ⊂ D(Aθ) for 1/4 < θ < 1/2. Let u ∈ H2θ(G)
and v ∈ D(A). Then, as in Step 2, we can write (3.23), too. We use the following lemma.

Lemma 3.4. It holds that

|
(
u,D[αD[Aθ−1f ]]

)
L2(G)

| ≤ Cθ∥u∥H2θ(G)∥f∥L2(G) for all f ∈ D(A). (3.27)

Proof of the lemma. Since 2θ ̸= 1/2, it follows from (2.9) that Du ∈ H2θ−1(G). In the
meantime, the map f 7→ αD[Aθ−1f ] is a bounded operator from L2(G) into H1−2θ(G).
Indeed, Aθ−1 is a bounded operator from L2(G) into H2(1−θ)(G) due to (3.22). In addition,
the differentiation D is a bounded operator from H2(1−θ)(G) into H1−2θ(G) due to (2.9),
and the multiplication of α is a bounded operator on H1−2θ(G) due to (3.5). Therefore,
from (2.7), we know that ⟨

Du, αD[Aθ−1f ]
⟩
H2θ−1(G)×H1−2θ(G)

is well-defined. So,(
u,D[αD[Aθ−1f ]]

)
L2(G)

=
∑
Ii∈E

[
uiαiDi[Aθ−1f ]i

]xi=li

xi=0
−
⟨
Du, αD[Aθ−1f ]

⟩
H2θ−1(G)×H1−2θ(G)

= −
⟨
Du, αD[Aθ−1f ]

⟩
H2θ−1(G)×H1−2θ(G)

due to u ∈ H2θ(G) and Aθ−1f ∈ H2(G), and as well the estimate is valid.

So, by repeating the similar arguments to those in Step 2, we obtain that u ∈ D(Aθ)
with

∥∥Aθu
∥∥
L2(G)

≤ Cθ,ωCθ ∥u∥H2θ(G) for 1/4 < θ < 1/2.

Step 4. Let us prove that H2θ(G) ⊂ D(Aθ) for 1/2 < θ < 3/4. Let u ∈ H2θ(G) and
v ∈ D(A). In the present case, since(

u,−D[αD[(λ− A)−2v]]
)
L2(G)

=
(
αDu,D[(λ− A)−2v]

)
L2(G)

,

we can write(
u,Aθv

)
L2(G)

=
1

2πθi

∫
Γω

λθ
{(
αDu,D[(λ− A)−2v]

)
L2(G)

+
(
u, β(λ− A)−2v

)
L2(G)

}
dλ.

(3.28)
In this case, we use the following lemma.

Lemma 3.5. It holds that

|
(
αDu,D[Aθ−1f ]

)
L2(G)

| ≤ Cθ∥u∥H2θ(G)∥f∥L2(G) for all f ∈ D(A). (3.29)
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Proof of the lemma. Since 1 < 2θ < 3/2, it follows from (2.9) and (3.5) that the map
u 7→ αDu is a bounded operator from H2θ(G) into H2θ−1(G). In the meantime, the map
f 7→ D[Aθ−1f ] is a bounded operator from L2(G) into H1−2θ(G) due to (3.22) and (2.9).
Therefore, it is observed from (3.1) that(

αDu,D[Aθ−1f ]
)
L2(G)

=
⟨
αDu,D[Aθ−1f ]

⟩
H2θ−1(G)×H1−2θ(G)

,

and as well the estimate is valid.

So, by repeating the similar arguments to those in Step 2, we obtain that u ∈ D(Aθ)
with

∥∥Aθu
∥∥
L2(G)

≤ Cθ,ωCθ ∥u∥H2θ(G) for 1/2 < θ < 3/4.

Step 5. Finally, let us prove that H2θ(G) ⊂ D(Aθ) for 3/4 < θ < 1. Let u ∈ H2θ(G)
and v ∈ D(A). Then, by the same reason as in Step 4, we can write (3.28) again. In this
case, we use the following lemma.

Lemma 3.6. It holds that

|
(
αDu,D[Aθ−1f ]

)
L2(G)

| ≤ Cθ∥u∥H2θ(G)∥f∥L2(G) for all f ∈ D(A). (3.30)

Proof of the lemma. Since 3/2 < 2θ < 2, we know that the map u 7→ D[αDu] is a
bounded operator from H2θ(G) into H2(θ−1)(G). Indeed, the differentiation D is a bounded
operator from H2θ(G) into H2θ−1(G) due to (2.9), the multiplication of α is a bounded
operator on H2θ−1(G) due to (3.5), and D is a bounded operator from H2θ−1(G) into
H2(θ−1)(G) due to (2.9) again. In the meantime, it is obvious that Aθ−1f ∈ H2(1−θ)(G).
Therefore, from (2.7), we know that⟨

D[αDu], Aθ−1f
⟩
H2(θ−1)(G)×H2(1−θ)(G)

is well-defined. So, we have(
αDu,D[Aθ−1f ]

)
L2(G)

=
∑
Ii∈E

[
αiDiui[Aθ−1f ]i

]xi=li

xi=0
−
⟨
D[αDu], Aθ−1f

⟩
H2(θ−1)(G)×H2(1−θ)(G)

= −
⟨
D[αDu], Aθ−1f

⟩
H2(θ−1)(G)×H2(1−θ)(G)

.

Thus, the desired estimate is obtained.

Repeating the similar arguments to those in Step 2, we obtain that u ∈ D(Aθ) with∥∥Aθu
∥∥
L2(G)

≤ Cθ,ωCθ ∥u∥H2θ(G) for 3/4 < θ < 1.

We have thus accomplished the proof of theorem.

From this result, we show the following estimate

∥u∥H1(G) ≤ C∥u∥2/3H2(G)∥u∥
1/3

H1(G)′ for u ∈ H2(G). (3.31)

Indeed, this is observed from the property of the triplet: ∥u∥2L2(G)
= |(u, u)L2(G)| =

| ⟨u, u⟩H1(G)′×H1(G) | ≤ ∥u∥H1(G)′∥u∥H1(G) for u ∈ H1(G), and the moment inequality for

A1/2 (see (2.16)): ∥A1/2u∥L2(G) ≤ C∥Au∥1/2L2(G)
∥u∥1/2L2(G)

for u ∈ H2(G) = D(A).
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3.4 Sectorial Operator in H1(G)

In this section, let us assume that α > 0 and β > 0 are positive constants on G, that is,
let us consider the following sesquilinear form:

a(u, v) = α

∫
G

DuDvdx+ β

∫
G

uvdx, u, v ∈ H1(G),

defined on H1(G). Of course, as similar to the previous sections, we can construct a linear
isomorphism A : H1(G) → H1(G)′ such that

a(u, v) = ⟨Au, v⟩H1(G)′×H1(G) , u, v ∈ H1(G). (3.32)

In what follows, let A = A|H1(G) be the part of A in H1(G). Since

⟨u, v⟩H1(G)′×H1(G) = ⟨u, v⟩H1(G)×H1(G)′ u, v ∈ H1(G),

we verify that

u ∈ D(A) if and only if a(u, v) is continuous in v with respect to the H1(G)′ norm.
(3.33)

Moreover, if u ∈ D(A) then a(u, v) = ⟨Au, v⟩H1(G)×H1(G)′ for all v ∈ H1(G).
In the following, we investigate properties of A.

3.4.1 Fundamental properties for A
We characterize A as a differential operator in H1(G).

Theorem 3.3. D(A) = H3(G) with the norm equivalence

C̃−1
α,β ∥u∥H3(G) ≤ ∥Au∥H1(G) ≤ C̃α,β ∥u∥H3(G) , u ∈ H3(G). (3.34)

Furthermore, for u ∈ D(A),

Au = −αD2u+ βu in H1(G).

Proof. Let u ∈ H3(G). Then, a(u, v) = ⟨−αD2u+ βu, v⟩H1(G)×H1(G)′ for v ∈ H1(G).
Therefore, it follows from (3.33) that u ∈ D(A).

Let us show the opposite inclusion. For u ∈ D(A), there exists ũ ∈ H1(G) such that
Au = ũ. As shown in Theorem 3.1, u ∈ H2(G) and

(ũ− βu, v)L2(G)
= −α

(
D2u, v

)
L2(G)

for all v ∈ H1(G).

Particularly, for v ∈
∏

C∞
0 (Ii)(⊂ H1(G)), we see by Dv ∈ H1(G) that

(Dũ− βDu, v)L2(G)
= α

(
D2u,Dv

)
L2(G)

.

Therefore, u ∈
∏
H3(Ii). Then, −αD2u = ũ− βu ∈ H1(G), so that u ∈ H3(G).

Finally, for u ∈ H3(G),

∥Au∥2H1(G) = α2∥D3u∥2L2(G)
+ (α2 + 2αβ)∥D2u∥2L2(G)

+ (2αβ + β2)∥Du∥2L2(G)
+ β2∥u∥2L2(G)

,

so, (3.34) is obtained.

It is easy to check that A is a positive definite self-adjoint operator in H1(G). Fur-
thermore, we know that A is a linear isomorphism from H3(G) onto H1(G).
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3.4.2 Fractional powers Aθ

Next, we want to characterize the domains of fractional powers Aθ for 3/4 < θ < 1. To

this end, it is convenient to use the fact that H1(G) = D(A
1
2 ) with norm equivalence due

to Theorem 3.2. Due to [37, Theorem 2.1], A is a sectorial operator of D(A
1
2 ) with angle

ωA < π/2, that is, the spectrum σ(A) is contained in an open sectorial domain such that

σ(A) ⊂ Σω′ ,

where ωA < ω′ ≤ π/2, and its resolvent (λ− A)−1 satisfies the estimate

∥∥(λ− A)−1
∥∥
L(D(A

1
2 ))

≤ M ′

|λ|
, λ ̸∈ Σω′ , (3.35)

with some constant M ′ ≥ 1. Then, fractional powers of A are defined as shown in
Subsection 2.4.1. Note that, for each 0 ≤ θ ≤ 1, D(Aθ) is a Hilbert space with the inner
product (·, ·)D(Aθ) = (A1/2Aθ·, A1/2Aθ·)L2(G).

By the same reasons as before, we know that

[H1(G), H3(G)]θ = D(Aθ) with norm equivalence for any 0 < θ < 1. (3.36)

From this result, we can show the following theorem.

Theorem 3.4. For 3/4 < θ < 1, it holds that D(Aθ) = H2θ+1(G) with norm equivalence.

Proof. The proof will be divided into two Steps.
Step 1. Let us show that D(Aθ) ⊂

∏
H2θ+1(Ii) for 0 ≤ θ ≤ 1. By the same tech-

niques in Step 1 of the proof of Theorem 3.2, we obtain that D(Aθ) = [H1(G), H3(G)]θ ⊂
[
∏
H1(Ii),

∏
H3(Ii)]θ =

∏
H2θ+1(Ii) for any 0 ≤ θ ≤ 1 with

∥u∥H2θ+1(G) ≤ C∥Aθu∥
D(A

1
2 )
, u ∈ D(Aθ). (3.37)

Now, let 3/4 < θ ≤ 1 and u ∈ D(Aθ). Since D(Aθ) = D(A
1
2
+θ) ⊂ D(A), we already

know that u ∈ H2θ+1(G). In addition, D2u ∈ H2θ−1(G) is also proved due to the denseness
of D(A) ⊂ D(Aθ).

Step 2. Conversely, let us prove that H2θ+1(G) ⊂ D(Aθ) for 3/4 < θ < 1. Let
u ∈ H2θ+1(G) and v ∈ D(A). Then, we can write

(
u,Aθv

)
D(A

1
2 )

=
(
u,Aθ−1Av

)
D(A

1
2 )

=
1

2πθi

∫
Γω′

λθ
(
u,A(λ− A)−2v

)
D(A

1
2 )
dλ

=
1

2πθi

∫
Γω′

λθ
(
A

1
2u,A

1
2A(λ− A)−2v

)
L2(G)

dλ

=
1

2πθi

∫
Γω′

λθ
{
α
(
Du,D[A(λ− A)−2v]

)
L2(G)

+ β
(
u,A(λ− A)−2v

)
L2(G)

}
dλ.

Since u ∈ H2θ+1(G) and A(λ− A)−2 ∈ H1(G),(
Du,D[A(λ− A)−2v]

)
L2(G)

= −
(
D2u,A(λ− A)−2v

)
L2(G)

.
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Note that D2u ∈ H2θ−1(G) and Aθ− 1
2 is a linear bounded operator from H2θ−1(G) to L2(G)

due to Theorem 3.2. So,

|(Aθ− 1
2D2u,A

1
2w)L2(G)| ≤ C∥u∥H2θ+1(G)∥w∥D(A

1
2 )

for all w ∈ D(A
1
2 ).

It follows from the Riesz representation theorem that there exists a unique ũ ∈ D(A
1
2 )

such that

(Aθ− 1
2D2u,A

1
2w)L2(G) = (ũ, w)

D(A
1
2 )

for all w ∈ D(A
1
2 ) (3.38)

with the estimate
∥ũ∥

D(A
1
2 )

≤ C ∥u∥H2θ+1(G) . (3.39)

It follows from (3.38) that

(Du,D[A(λ− A)−2v])L2(G) = −(D2u,A(λ− A)−2v)L2(G)

= −(Aθ− 1
2D2u,A

1
2A1−θ(λ− A)−2v)L2(G) = −(ũ,A1−θ(λ− A)−2v)

D(A
1
2 )

= −(A1−θ(λ− A)−2ũ, v)
D(A

1
2 )
,

so,

|(u,Aθv)
D(A

1
2 )
|

≤ C

∫
Γω′

|λ|θ
{
|
(
A1−θ(λ− A)−2ũ, v

)
D(A

1
2 )
| + |

(
u,A(λ− A)−2v

)
L2(G)

|
}
|dλ|.

According to [37, Theorem 16.3], (3.36) implies an integrable condition along the Γω′ , i.e.,∫
Γω′

|λ|θ|
(
A1−θ(λ− A)−2w, z

)
D(A

1
2 )
||dλ| ≤ C ∥w∥

D(A
1
2 )
∥z∥

D(A
1
2 )
, w, z ∈ D(A

1
2 ).

Therefore, we obtain by (3.39) that

|(u,Aθv)
D(A

1
2 )
| ≤ C(∥ũ∥

D(A
1
2 )
∥v∥

D(A
1
2 )

+ ∥u∥H2θ(G)∥v∥L2(G)) ≤ C∥u∥H2θ+1(G)∥v∥D(A
1
2 )
.

Consequently, u ∈ D(Aθ) with ∥Aθu∥
D(A

1
2 )

≤ C∥u∥H2θ+1(G).

We have thus accomplished the proof of theorem.

We know that

∥u∥H2(G) ≤ C∥u∥
2
3

H3(G)∥u∥
1
3
L2

for u ∈ H3(G). (3.40)

Indeed, this is observed from the moment inequality for A 1
2 (see (2.16)): ∥A 1

2u∥H1(G) ≤
C∥Au∥

1
2

H1(G)∥u∥
1
2

H1(G) for u ∈ H3(G) = D(A), and the norm equivalence ∥A 1
2u∥H1(G) =

∥Au∥L2(G).
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Chapter 4

Evolution Equations of Parabolic
Type

In this chapter, we present fundamentals of the theory of evolution equations of parabolic
type. The first four sections are devoted to showing results about constructing local
solutions for semilinear equations, quasilinear equations, and degenerate equations (the
materials in first three sections are mainly shown in [37, Chapters 3, 4, and 5] ). The
results in Section 4.1 are utilized in Chapters 5 and 6; the results in Sections 4.2 and 4.3
are utilized in Chapter 7; and the results in 4.4 are utilized in Chapter 8. A version of
exponential attractor for non-autonomous dynamical systems presented in section 4.5 is
constructed for the dynamical system determined in Section 5.2.

4.1 Semilinear Evolution Equations

Let X be a Banach space with norm ∥·∥X . We consider the Cauchy problem for a
semilinear abstract evolution equation

dU

dt
+ AU = F (U), 0 < t ≤ T,

U(0) = U0,
(4.1)

in X. Here, A is a sectorial operator of X satisfying

σ(A) ⊂ Σω = {λ ∈ C; |arg λ| < ω}, ωA < ω <
π

2
, (4.2)

and ∥∥(λ− A)−1
∥∥
L(X)

≤ Mω

|λ|
, λ /∈ Σω, ωA < ω <

π

2
. (4.3)

Meanwhile, F is a nonlinear operator from D(Aη) into X, where

0 ≤ η < 1. (4.4)

The operator F is assumed to satisfy a Lipschitz condition of the form

∥F (U) − F (V )∥X ≤ ϕ(∥U∥X + ∥V ∥X)

× {∥Aη(U − V )∥X + (∥AηU∥X + ∥AηV ∥X)∥U − V ∥X},
U, V ∈ D(Aη), (4.5)
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where ϕ(·) is some increasing continuous function. The initial value U0 is taken in X.
Then, there exists the general theorem about existence and uniqueness of local solu-

tions to (4.1). The proof is given in [37, Theorem 4.4].

Theorem 4.1. Let (4.2), (4.3), (4.4), and (4.5) be satisfied. Then, for any U0 ∈ X, (4.1)
possesses a unique local solution U in the function space:

U ∈ C([0, TU0 ];X) ∩ C((0, TU0 ];D(A)) ∩ C1((0, TU0 ];X),

where TU0 depends only on the norm ∥U0∥X . In addition, U satisfies the estimates

∥U(t)∥X + t

∥∥∥∥dUdt (t)

∥∥∥∥
X

+ t ∥AU(t)∥X ≤ CU0 , 0 < t ≤ TU0 ,

with some constant CU0 > 0 depending on the norm ∥U0∥X .

4.2 Quasilinear Evolution Equations

Let X be a Banach space with norm ∥·∥X . We consider the Cauchy problem for a
quasilinear abstract evolution equation

dU

dt
+ A(U)U = F (U), 0 < t ≤ T,

U(0) = U0,
(4.6)

in X. Let Z be a second Banach space continuously embedded in X, and let K be the
open ball of Z,

K = {U ∈ Z; ∥U∥Z < R} , 0 < R <∞.

For U ∈ K, A(U) is a sectorial operator of X with angle ωA(U) <
π
2

and with domain
D(A(U)).

We make the following assumptions. The spectrum σ(A(U)) is contained in a fixed
open sectorial domain, i.e.,

σ(A(U)) ⊂ Σω = {λ ∈ C; |arg λ| < ω}, U ∈ K (4.7)

with some angle 0 < ω < π
2
, and the resolvent satisfies∥∥(λ− A(U))−1

∥∥
L(X)

≤ M

|λ|
, λ /∈ Σω, U ∈ K (4.8)

with some constant M ≥ 1. The domain D(A(U)) satisfies

D(A(U)) = D(A(V )) for any pair of U, V ∈ K. (4.9)

In addition, A(U) satisfies a Lipschitz condition of the form∥∥[A(U) − A(V )]A(V )−1
∥∥
L(X)

≤ N ∥U − V ∥Y , U, V ∈ K (4.10)

with a constant N > 0. Here, Y is a third Banach space such that Z ⊂ Y ⊂ X with
continuous embeddings. The operator F is a nonlinear operator from another Banach
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space W into X, W being continuously embedded in Z. We assume that the Lipschitz
condition

∥F (U) − F (V )∥X
≤ ϕ(∥U∥Z + ∥V ∥Z) × {∥U − V ∥W + (∥U∥W + ∥V ∥W )∥U − V ∥Z},

U, V ∈ W, (4.11)

where ϕ(·) is some continuous increasing function.
There are three exponents 0 ≤ α < β < η < 1 such that, for any U ∈ K, D(A(U)α) ⊂

Y , D(A(U)β) ⊂ Z, and D(A(U)η) ⊂ W with the estimates
∥Ũ∥Y ≤ D1∥A(U)αŨ∥X , Ũ ∈ D(A(U)α), U ∈ K,

∥Ũ∥Z ≤ D2∥A(U)βŨ∥X , Ũ ∈ D(A(U)β), U ∈ K,

∥Ũ∥W ≤ D3∥A(U)ηŨ∥X , Ũ ∈ D(A(U)η), U ∈ K,

(4.12)

Di > 0 (i = 1, 2, 3) being some constants. The initial function U0 ∈ K satisfies

U0 ∈ D(A(U0)). (4.13)

The exponents satisfy the relations

0 ≤ α < β < η < 1. (4.14)

Then, there exists the general theorem about existence and uniqueness of local solu-
tions to (4.6). The proof is given in [37, Theorem 5.6].

Theorem 4.2. Let (4.7) – (4.14) be satisfied. Then, there exists a unique local solution
U to (4.6) on an interval [0, TU0 ] in the function space:{

U ∈ C([0, TU0 ];D(A(U))) ∩ C1−α([0, TU0 ];Y ) ∩ C1((0, TU0 ];X),

F (U) ∈ F1,σ((0, TU0 ];X)
(4.15)

with arbitrary 0 < σ < min{β−α, 1−η}, where TU0 is determined by the norm ∥A(U0)U0∥X .
Furthermore, U satisfies the estimates

∥F (U)∥F1,σ + max
0≤t≤TU0

∥A(U(t))U(t)∥X ≤ CU0 (4.16)

with a constant CU0 determined by the norm ∥A(U0)U0∥X .

4.3 Non-autonomous Evolution Equations

Let X be a Banach space with norm ∥ · ∥X . We consider the Cauchy problem for a linear
non-autonomous abstract evolution equation

dU

dt
+ A(t)U = F (t), 0 < t ≤ T,

U(0) = U0,
(4.17)
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in X, where 0 < T <∞ is a fixed time.
We make the following assumptions. For 0 ≤ t ≤ T , the spectrum σ(A(t)) is contained

in a fixed open sectorial domain, i.e.,

σ(A(t)) ⊂ Σω = {λ ∈ C; |arg λ| < ω}, 0 ≤ t ≤ T, (4.18)

with some fixed angle 0 < ω < π
2
, and the resolvent satisfies∥∥(λ− A(t))−1
∥∥
L(X)

≤ M

|λ|
, λ /∈ Σω, 0 ≤ t ≤ T, (4.19)

with some fixed constant M ≥ 1. The domain D(A(t)) satisfies

D(A(s)) ≡ D(A(t)) for any pair of 0 ≤ s, t ≤ T. (4.20)

In addition, A(t) satisfies a Hölder continuous condition of the form∥∥[A(t) − A(s)]A(s)−1
∥∥
L(X)

≤ N |t− s|µ, 0 ≤ s, t ≤ T, (4.21)

with some fixed exponent 0 < µ ≤ 1 and some constant N > 0.
We present two theorems which will be used in Chapter 7.

Theorem 4.3. Let (4.19)–(4.21) be satisfied. Then, for any

F ∈ F1,σ((0, T ];X), 0 < σ ≤ 1,

and any U0 ∈ X, there exists a unique solution U to (4.17) in the function space:

U ∈ C([0, T ];X) ∩ C1((0, T ];X), AU ∈ C((0, T ];X),

with the estimate

∥U(t)∥X + t

∥∥∥∥dUdt (t)

∥∥∥∥
X

+ t∥A(t)U(t)∥X ≤ C(∥U0∥X + ∥F∥F1,σ), 0 < t ≤ T.

Theorem 4.4. Let (4.19)–(4.21) be satisfied. Let U0 ∈ D(A(0)), and let

F ∈ F1,σ((0, T ];X), 0 < σ < µ, (4.22)

satisfy the spatial regularity condition

A(t)ρF ∈ B([0, T ];X), 0 < ρ < σ. (4.23)

Then, there exists a unique solution U to (4.17) in the function space:

AU ∈ C([0, T ];X),
dU

dt
, AU ∈ F1,σ((0, T ];X).

In addition, A1+ρU belongs to B([0, T ];X) with the estimate

∥A1+ρU∥B ≤ C[∥A(0)U0∥X + ∥F∥F1,σ + ∥AρF∥B]. (4.24)

For the proof of Theorem 4.3, see that of [37, Theorem 3.9]. For the proof of Theo-
rem 4.4, see that of [37, Theorem 3.10 and 3.11].
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4.4 Degenerate Evolution Equations

This section is devoted to constructing the strict solution to the Cauchy problem for
a degenerate abstract parabolic equation in Banach spaces. We essentially use the no-
tion of multivalued linear operators and the theory of multivalued evolution equations of
parabolic type that were monographed by Favini-Yagi [59].

4.4.1 Multivalued linear operators

Let X be a complex Banach space with norm ∥ · ∥ and let 2X denote the family of all
subsets of X. An operator A :D(A) → 2X − {∅}, where D(A) is a linear subspace of X,
is called a multivalued linear operator of X if A satisfies{

Au+ Av ⊂ A(u+ v), u, v ∈ D(A),

λAu ⊂ A(λu), λ ∈ C, u ∈ D(A).
(4.25)

When A is a multivalued linear operator, A0 is always a linear subspace of X, and for
u ∈ D(A) it holds that Au = f + A0 with arbitrary f ∈ Au. Analogously to the single
valued linear operators, i.e., those of A0 = {0}, a number λ ∈ C is said to belong to the
resolvent set ρ(A) of A if the inverse of λ − A is single valued and is a bounded linear
operator of X. On the contrary, when λ ̸∈ ρ(A), the λ is said to belong to the spectrum
σ(A) of A. The L(X) valued analytic function (λ − A)−1 defined in ρ(A) is called the
resolvent of A. Moreover, A is said to be a sectorial operator of X if there exists an open
sectorial domain such that

σ(A) ⊂ Σ = {λ ∈ C; | arg λ| < ω}, (4.26)

where 0 < ω < π, and that (λ− A)−1 satisfies

∥(λ− A)−1∥L(X) ≤
D

|λ|
, λ ̸∈ Σ, (4.27)

with some constant D > 0.
If 0 ∈ ρ(A), that is A−1 ∈ L(X), the graph

G(A) = {(f, u) ∈ X ×X; f ∈ Au}

is a closed subspace of X×X. Furthermore, {0}×A0 is a closed subspace of G(A). Then,
under 0 ∈ ρ(A), D(A) becomes a Banach space with the graph norm

∥u∥D(A) = ∥Au∥X ≡ inf
f∈Au

∥f∥, u ∈ D(A) (4.28)

(see [59, Proposition 1.1]).
If A is sectorial, (λ−A)−1 satisfies the optimal decay estimate on the half line (−∞, 0];

moreover, it is seen that

lim
λ→−∞

λ(λ− A)−1f = f, f ∈ D(A). (4.29)

From this it is proved that A0 ∩ D(A) = {0}. (In fact, if f ∈ A0, then f ∈ (λ − A)0
for every λ ≤ 0 and hence (λ − A)−1f = 0; therefore, if f ∈ D(A) in addition, then
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(4.29) implies f = 0.) This property furthermore provides that for any u ∈ D(A) and
any f ∈ X, it holds that

[f − Au] ∩D(A) is a singleton if it is not empty. (4.30)

When X is a reflexive Banach space, it is known that

X = A0 + D(A) (4.31)

(see Remark to [59, Proposition 2.1]). Then, if g ∈ Au, then f − g = f ′ + f ′′ with f ′ ∈ A0
and f ′′ ∈ D(A), i.e., f − g − f ′ = f ′′; on one hand, we have f − g − f ′ ∈ f − Au; on the
other hand, f ′′ ∈ D(A). Thus, the condition that

[f − Au] ∩D(A) is a singleton (4.32)

holds automatically for any u ∈ D(A) and any f ∈ X.
When A is sectorial, its fractional powers for negative exponents are defined by the

integrals

A−x =
1

2πi

∫
Γ

λ−x(λ− A)−1dλ, x > 0, (4.33)

in L(X), where Γ = Γ+∪Γ0∪Γ− is an integral contour lying in ρ(A) such that Γ+:λ = reiω

for ∞ > r ≥ δ, Γ0:λ = δeiϑ for ω ≥ ϑ ≥ −ω, Γ−:λ = re−iω for δ ≤ r < ∞, δ > 0
being a sufficiently small radius. It is easy to verify that A−x satisfy the exponential
law A−(x+x′) = A−xA−x′

. The fractional powers for positive exponents are defined by
Ax = [A−x]−1, x > 0; but of course Ax are multivalued linear operators of X. They also
satisfy the law Ax+x′

= AxAx′
in the sense of multivalued operators (see [59, Theorem

1.10]). As noticed by (4.28), each D(Ax) is a Banach space with the norm ∥Ax · ∥. For
0 < x < y, it is clear that D(Ay) ⊂ D(Ax) with continuous embedding. Moreover, the
moment inequality

∥Axu∥ ≤ Cx,y ∥Ayu∥x/y∥u∥1−x/y, u ∈ D(Ay), (4.34)

holds true. Indeed, if f ∈ Ayu, then u = A−yf = A−xAx−yf ; thereby, Ax−yf ∈ Axu.
Therefore, ∥Axu∥ ≤ ∥Ax−yf∥ ≤ Cx,y∥A−yf∥1−x/y∥f∥x/y = Cx,y∥u∥1−x/y∥f∥x/y. But, since
f ∈ Ayu is arbitrary, we observe (4.34) to be true.

Let now A be a sectorial operator with angle ω < π
2
. Then the analytic semigroup

e−tA generated by −A is given by the integral

e−tA =
1

2πi

∫
Γ

e−tλ(λ− A)−1dλ, t > 0,

in L(X), the integral contour Γ being as above, with the norm estimate

∥e−tA∥L(X) ≤ Ce−δt, 0 ≤ t <∞. (4.35)

If f ∈ A0, then e−tAf = 0 for all t > 0; therefore, as t→ 0, e−tAf does not converge to f
in general. As a matter of fact, it is only verified like (4.29) that

lim
t→0

e−tAf = f, f ∈ D(A) (4.36)

(see the second Remark to [59, Theorem 3.5]). It is seen that Axe−tA is single valued for
every t > 0, although Ax is multivalued. Moreover, Axe−tA satisfies the norm estimate h
the estimate

∥Axe−tA∥L(X) ≤ Ct−x, 0 ≤ x <∞, 0 < t <∞ (4.37)

(see [59, Proposition 3.2]).
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4.4.2 Semilinear Degenerate Evolution Equations

Let Y be a complex Banach space with norm ∥ · ∥Y . Consider the Cauchy problem for an
abstract degenerate equationM

du

dt
+ Lu = Mf(u), 0 < t <∞,

u(0) = u0,
(4.38)

in Y . Here, L is a (single valued) sectorial operator of Y . That is, L is a densely defined,
closed linear operator whose spectrum is contained in an open sectorial domain

σ(L) ⊂ Σ ′ = {λ ∈ C; | arg λ| < ω′} (4.39)

with 0 < ω′ < π and whose resolvent satisfies the estimate

∥(λ− L)−1∥L(Y ) ≤
D′

|λ|
, λ ̸∈ Σ ′, (4.40)

with some constant D′ > 0.

Meanwhile, M is a bounded linear operator from X into Y , where X is another Banach
space with norm ∥ · ∥X such that

D(L) ⊂ X ⊂ D(Lα) (continuously) (4.41)

with some 0 ≤ α < 1. It is assumed that M -spectrum of L is contained in an open
sectorial domain

σM(L) ⊂ Σ = {λ ∈ C; | arg λ| < ω} (4.42)

with some angle 0 < ω < π
2
, and that the M -resolvent (λM − L)−1 of L satisfies

∥(λM − L)−1M∥L(X) ≤
D

|λ|
, λ ̸∈ Σ, (4.43)

with some constant D > 0.

Finally, f is a nonlinear operator from D(f) (⊃ D(L)) into X. We assume that there
is an exponent β such that α ≤ β < 1 for which it holds that D(Lβ) ⊂ D(f) together
with the Lipschitz condition

∥f(u) − f(v)∥X ≤ φ(∥Lβu∥Y + ∥Lβv∥Y )∥Lβ(u− v)∥Y , u, v ∈ D(Lβ), (4.44)

where φ(·) is some continuous increasing function. It clearly follows that

∥f(u)∥X ≤ ∥f(0)∥X + φ(∥Lβu∥Y )∥Lβu∥Y , u ∈ D(Lβ). (4.45)

The initial value u0 is taken in D(Lβ). Under these structural assumptions (4.39)-
(4.44), one can show local existence of strict solution for (4.38).

41



4.4.3 Semilinear Multivalued Evolution Equations

It is essentially convenient to treat the Cauchy problems like (4.38) as those of non-
degenerate evolution equations by using the multivalued linear operators. Rewrite (4.38)
into the form 

du

dt
+ Au ∋ f(u), 0 < t <∞,

u(0) = u0,
(4.46)

in the space X. Here, A = M−1L is a multivalued linear operator of X defined by{
D(A) = {u ∈ D(L); ∃f ∈ X such that Mf = Lu},
Au = {f ∈ X; Mf = Lu}.

(4.47)

It is easy to see that (λ − A)−1 = (λM − L)−1M . Consequently, (4.42) and (4.43)
imply that (4.26) and (4.27) hold for A. Therefore, −A generates an analytic semigroup
e−tA on X.

For 0 < θ ≤ 1, the fractional power Aθ = [M−1L]θ is defined. It is very difficult to
know Aθ in any precise way. However, since D(A0) = X ⊂ D(Lα) due to (4.41) and

D(A1) = D(A) ⊂ D(L) due to (4.47), we can compare the domains D(Aθ̃) and D(Lθ) as
follows.

Proposition 4.1. For 0 < θ̃ < 1 and α < θ < (1− θ̃)α+ θ̃, it is true that D(Aθ̃) ⊂ D(Lθ)
with the estimate

∥Lθu∥Y ≤ Cθ̃,θ∥A
θ̃u∥X , u ∈ D(Aθ̃), (4.48)

with some constant Cθ̃,θ > 0. Note that ∥Aθ̃u∥X is defined by (4.28),

Proof. Since

L(λ− A)−1 = L(λM − L)−1M = M [−1 + λ(λ− A)−1],

it follows that

∥L(λ− A)−1∥L(X,Y ) ≤ (D + 1)∥M∥L(X,Y ), λ ̸∈ Σ.

Meanwhile, by (4.41) it follows that

∥Lα(λ− A)−1∥L(X,Y ) ≤ ∥Lα∥L(X,Y )∥(λ− A)−1∥L(X) ≤ D∥Lα∥|λ|−1, λ ̸∈ Σ.

The moment inequality then yields for α < θ < 1 that

∥Lθ(λ− A)−1∥L(X,Y ) ≤ C∥Lα(λ− A)−1∥(1−θ)/(1−α)

× ∥L(λ− A)−1∥(θ−α)/(1−α) ≤ C|λ|−(1−θ)/(1−α), λ ̸∈ Σ.

By the definition (4.33), we see that

LθA−θ̃ =
1

2πi

∫
Γ

λ−θ̃Lθ(λ− A)−1dλ.

Obviously, the integral is convergent in L(X, Y ) if (1− θ̃)α+ θ̃ > θ. Meanwhile, LθA−θ̃ ∈
L(X, Y ) immediately implies the desired inequality (4.48).
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Let us fix an exponent 0 < β̃ < 1 so that

β < (1 − β̃)α + β̃. (4.49)

By the proposition, we have D(Aβ̃) ⊂ D(Lβ) ⊂ D(f).
It is now ready to construct local solution for (4.46). Since the equation in (4.46)

is a semilinear parabolic equation (although it is multivalued), we can use analogous
techniques as in the proof of [37, Theorem 4.1(β = η)].

Theorem 4.5. Under (4.39)∼(4.44), for any u0 ∈ D(Aβ̃), (4.46) possesses a unique local
solution u in the function space:

u ∈ C([0, Tu0 ];D(Lβ)) ∩ C((0, Tu0 ];D(A)) ∩ C1((0, Tu0 ];X), (4.50)

Tu0 > 0 being determined by the norm ∥Aβ̃u0∥X alone.
Moreover, the local solution u satisfies the estimates

∥Aβ̃u(t)∥ ≤ Cu0 , 0 ≤ t ≤ Tu0 , (4.51)

∥u′(t)∥X + ∥Au(t)∥X ≤ Cu0t
β̃−1, 0 < t ≤ Tu0 , (4.52)

Cu0 > 0 being determined by the norm ∥Aβ̃u0∥X alone.

Proof. For 0 < T <∞, we set a Banach space X(T ) by

X(T ) = C([0, T ];D(Lβ))

equipped with the norm ∥u∥X = max0≤t≤T ∥Lβu(t)∥Y . In addition, we set a closed ball
B(T ) of X(T ) by

B(T ) = {u ∈ X(T ); ∥u∥X ≤ R},
where the radius R > 0 will be specified below.

For u ∈ B(T ), we define a mapping

[Φu](t) = e−tAu0 +

∫ t

0

e−(t−s)Af(u(s))ds, 0 ≤ t ≤ T.

Let us verify that, if R is suitably chosen and if T is sufficiently small, then Φ is a
contraction of X(T ) which maps B(T ) into itself.

Step 1. The function [Φu](t) is seen to be a Hölder continuous function with values in
D(Lβ). To show this, we need to introduce an auxiliary exponent β̃′ such that 0 < β̃′ < β̃
but β < (1 − β̃′)α + β̃′ (see (4.49)). Then, it follows by Proposition 4.1 that

D(Aβ̃) ⊂ D(Aβ̃′
) ⊂ D(Lβ).

Let g0 be any element such that g0 ∈ Aβ̃u0. Then, since u0 = A−β̃g0, we have

Lβ[e−tA − e−sA]u0 = LβA−β̃′
[e−(t−s)A − 1]Aβ̃′−β̃g0.

Therefore, by [59, Theorem 3.5], we obtain that

∥Lβ[e−tA − e−sA]u0∥Y ≤ C∥g0∥X(t− s)σ, 0 ≤ s < t ≤ T,
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with the exponent σ = β̃ − β̃′.
Meanwhile, we write∫ t

0

e−(t−τ)Af(u(τ))dτ −
∫ s

0

e−(s−τ)Af(u(τ))dτ

=

∫ t

s

e−(t−τ)Af(u(τ))dτ + [e−(t−s)A − 1]

∫ s

0

e−(s−τ)Af(u(τ))dτ.

Then, in view of (4.37) and (4.45), the first term in the right hand side is estimated by∥∥∥∥Lβ

∫ t

s

e−(t−τ)Af(u(τ))dτ

∥∥∥∥
Y

=

∥∥∥∥LβA−β̃′
∫ t

s

Aβ̃′
e−(t−τ)Af(u(τ))dτ

∥∥∥∥
Y

≤ C

∫ t

s

(t− τ)−β̃′
[∥f(0)∥X + φ(R)R]dτ

≤ C[∥f(0)∥X + φ(R)R](t− s)1−β̃′
, 0 ≤ s < t ≤ T.

Similarly, the second term is estimated by∥∥∥∥Lβ[e−(t−s)A − 1]

∫ s

0

e−(s−τ)Af(u(τ))dτ

∥∥∥∥
Y

=

∥∥∥∥LβA−β̃′
[e−(t−s)A − 1]Aβ̃′−β̃

∫ s

0

Aβ̃e−(s−τ)Af(u(τ))dτ

∥∥∥∥
Y

≤ CT 1−β̃[∥f(0)∥X + φ(R)R](t− s)σ, 0 ≤ s < t ≤ T.

Hence, we have observed that

[Φu] ∈ Cσ([0, T ];D(Lβ)) (with σ = β̃ − β̃′). (4.53)

In particular, Φ is a mapping from B(T ) into X(T ).

Step 2. Let us verify that Φ can map B(T ) into itself. Using (4.45) and arguing in a
similar way as above, we easily verify that

∥Lβ[Φu](t)∥Y ≤ C ′∥g0∥X + C ′′T 1−β̃′
[∥f(0)∥X + φ(R)R], 0 ≤ t ≤ T, (4.54)

with some positive constants C ′ and C ′′. Then, choose now R in such a way that

R = C ′∥g0∥X + 1.

Furthermore, diminish T > 0 in such a way that

C ′′T 1−β̃′
[∥f(0)∥X + φ(R)R] ≤ 1.

Then, Φ maps B(T ) into itself.

Step 3. In the meantime, Φ can be a contraction of X(T ). In fact, for u, v ∈ B(T ),

[Φu](t) − [Φv](t) =

∫ t

0

e−(t−τ)A[f(u(τ)) − f(v(τ))]dτ.
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Therefore, after some computations,

∥Lβ{[Φu](t) − [Φv](t)}∥Y ≤ Cφ(2R)

∫ t

0

(t− τ)−β̃′∥Lβ[u(τ) − v(τ)]∥Y dτ

≤ Cφ(2R)T 1−β̃′
max
0≤τ≤T

∥Lβ[u(τ) − v(τ)]∥Y , 0 ≤ t ≤ T.

This shows that Φ is a contraction provided we further diminish T > 0.

Step 4. By the fixed point theorem for contraction mappings, we conclude that Φ
has a unique fixed point u = [Φu] in B(T ). (4.53) jointed with (4.44) then implies that
f(u) ∈ Cσ([0, T ];X). Thanks to [59, Theorem 3.7] on the linear multivalued equations, we
obtain that u has the regularity u ∈ C1((0, T ];X) together with u ∈ C((0, T ];D(A)) and
satisfies the multivalued equation of (4.46). Moreover, according to the second Remark
to [59, Theorem 3.7], u′(t) is represented as

u′(t) = −Ae−tAu0 +

∫ t

0

Ae−(t−s)A[f(u(t)) − f(u(s))]ds+ e−tAf(u(t)). (4.55)

It is then verified that u is a strict solution to (4.46) belonging to (4.50).
Let us verify the estimates (4.51) and (4.52). Since

Aβ̃u(t) ∋ e−tAg0 +

∫ t

0

Aβ̃e−(t−s)Af(u(s))ds,

we see that ∥Aβ̃u(t)∥X ≤ C(∥g0∥X+1) by the definition of the graph norm (4.28). Thereby,

we obtain (4.51). Meanwhile, from (4.55) it follows that ∥u′(t)∥X ≤ C(tβ̃−1∥g0∥X + 1)
(due to (4.37) with x = β̃). Hence the first estimate of (4.52) is observed. Noting that
Au(t) ∋ −u′(t) + f(u(t)), the second one of (4.52) is also observed.

We remember that all the constants appearing in the arguments were determined by
the norm ∥g0∥X alone. But, since g0 was any element of Aβ̃u0, it is possible to assert that

T and Cu0 are determined by ∥Aβ̃u0∥X alone.

Step 5. It remains to see uniqueness of the solution to (4.46) in the space (4.50). So,
let v be any other solution lying in (4.50). Then, thanks to [59, Theorem 3.7] again, v(t)
must be equal to [Φv](t) for any 0 ≤ t ≤ Tu0 . Thereby,

u(t) − v(t) =

∫ t

0

e−(t−s)A[f(u(s)) − f(v(s))]ds,

∥Lβ[u(t) − v(t)]∥Y ≤ C

∫ t

0

(t− s)−β̃′∥Lβ[u(s) − v(s)]∥Y ds, 0 ≤ t ≤ Tu0 .

For 0 < S ≤ Tu0 , we see that

∥Lβ[u(t) − v(t)]∥Y ≤ C

∫ t

0

(t− s)−β̃′
ds max

0≤s≤S
∥Lβ[u(s) − v(s)]∥Y

≤ CS1−β̃′∥u− v∥X(S), 0 ≤ t ≤ S.

This means that, if S > 0 is sufficiently small, then u(t) = v(t) for all 0 ≤ t ≤ S.
Consequently,

u(t) − v(t) =

∫ t

S

e−(t−s)A[f(u(s)) − f(v(s))]ds, S ≤ t ≤ Tu0 .

We can repeat this argument to conclude that u(t) = v(t) for all 0 ≤ t ≤ Tu0 .
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Remark 4.1. We remark that the solution u may not continuous at t = 0 with respect to
the graph norm of D(Aβ̃). Indeed, from

Aβ̃u(t) ∋ e−tAg0 +

∫ t

0

Aβ̃e−(t−s)Af(u(s))ds,

it is observed that u(t) → u0 in D(Aβ̃) if e−tAg0 → g0 in X as t → 0. But, in view of
(4.36), this is the case only when g0 ∈ D(A), i.e.,

[Aβ̃u0] ∩D(A) ̸= ∅. (4.56)

It is however observed that, when X is a reflexive Banach space, this condition is au-
tomatically fulfilled for any u0 ∈ D(Aβ̃). Indeed, if g0 ∈ Aβ̃u0, then g0 = f ′ + f ′′ with

f ′ ∈ A0 and f ′′ ∈ D(A) due to (4.31); since A0 = Aβ̃0 in general, on one hand, we have

g0 − f ′ ∈ Aβ̃u0; on the other hand, f ′′ ∈ D(A). Hence, (4.56) is the case.

Remark 4.2. Similarly, the solution u may not be differentiable at t = 0 even if u0 is
taken in D(A). However, if u0 ∈ D(A) satisfies the compatibility condition

[f(u0) − Au0] ∩D(A) ̸= ∅, (4.57)

then u is differentiable at t = 0, too, and satisfies the equation of (4.46) at the initial
time. In view of (4.36) this fact is verified by the second Remark to [59, Theorem 3.7]. As
mentioned by (4.32), when X is a reflexive Banach space, this condition is automatically
fulfilled for any u0 ∈ D(A).

Remark 4.3. On the other hand, if (4.57) takes place, then [f(u0)−Au0]∩D(A) consists
of a single element u1 due to (4.30). Since the solution satisfies the relation

u′(0) + Au0 ∋ f(u0) at t = 0, (4.58)

and since u′(0) ∈ D(A), it must hold that u′(0) = u1. In other words, u′(0) satisfying
(4.58) is uniquely determined by u0.

It is immediate to verify that the solution of (4.46) constructed above gives a unique
solution to (4.38) lying in the function space:

u ∈ C([0, T ];D(Lβ)) ∩ C((0, T ];D(L)) ∩ C1((0, T ];X). (4.59)

In fact, if u is a solution of (4.46), then it follows from du
dt

(t) − f(u(t)) ∈ M−1Lu(t) that
M
[
du
dt

(t) − f(u(t))
]

= Lu(t). In addition, u naturally belongs to (4.59). Conversely, if u
is a solution to (4.38) lying in (4.59), then u actually belongs to (4.50) and satisfies the
multivalued equation of (4.46).

Next, let us show continuous dependence of local solutions on the initial values. Set a
subset of initial values

Kr = {u0 ∈ D(Aβ̃); ∥Aβ̃u0∥X ≤ r}

for r > 0. Theorem 4.5 provides for each u0 ∈ K(r), existence of a local solution in (4.50)
on a unified interval [0, Tr].
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Theorem 4.6. There exists a constant Cr > 0 such that, for u0, v0 ∈ Kr and their local
solutions u, v, respectively, it holds that

∥Aβ̃[u(t) − v(t)]∥X ≤ Cr∥Aβ̃(u0 − v0)∥X , 0 ≤ t ≤ T, (4.60)

provided that 0 < T (≤ TR) is suitably diminished.

Proof. Let g0 ∈ Aβ̃u0 and h0 ∈ Aβ̃v0. Then, u0 = A−β̃g0 and v0 = A−β̃h0. So,

u(t) − v(t) = A−β̃

[
e−tA(g0 − h0) +

∫ t

0

Aβ̃e−(t−s)A[f(u(s)) − f(v(s))]ds

]
.

The norm is then estimated by

∥Aβ̃[u(t) − v(t)]∥X ≤ C∥g0 − h0∥X + Cr

∫ t

0

(t− s)−β̃∥Lβ[u(s) − v(s)]∥Y ds

≤ C∥g0 − h0∥X + CrT
1−β̃∥u− v∥

B([0,T ];D(Aβ̃)), 0 ≤ t ≤ T.

Since g0−h0 ∈ Aβ̃(u0−v0), the Lipschitz condition (4.60) holds true if T > 0 is sufficiently
small.

4.5 Non-autonomous Dynamical Systems and Expo-

nential Attractors

Let X be a Banach space with norm ∥·∥X . Let X be a subset of X which is a metric
space equipped with the distance d(U, V ) = ∥U − V ∥X . We consider a family of nonlinear
operators U(t, s) acting on X defined for ∆ = {(t, s);−∞ < s ≤ t < ∞}. The family
U(t, s) is called a continuous evolution operator on X if U(t, s) satisfies that following
three conditions; U(s, s) is identity mapping on X for every −∞ < s < ∞; U(t, r) ◦
U(r, s) = U(t, s) for −∞ < s ≤ r ≤ t < ∞; and the mapping ((t, s), U0) ∈ ∆ × X 7→
U(t, s)U0 ∈ X is continuous. When U(t, s) is a continuous evolution operator on X, the
triplet (U(t, s),X, X) is called a non-autonomous dynamical system.

Efendiev, Yamamoto, and Yagi [60] introduced a version of exponential attractor for
non-autonomous dynamical systems. In their paper, a family {M(t)}t∈R of subsets of X
is called an exponential attractor for (U(t, s),X, X) if:

(i) Each M(t) is a compact set of X and its fractal dimension dF (M(t)) is finite and
uniformly bounded, i.e., supt∈R dF (M(t)) <∞.

(ii) It is positively invariant, i.e., U(t, s)M(s) ⊂ M(t) for all (t, s) ∈ ∆.

(iii) There exist an exponent α > 0 and two monotone functions Q and τ such that

∀B ⊂ X bounded, h(U(t, s)B,M(t)) ≤ Q(∥B∥X)e−α(t−s),

s ∈ R, s+ τ(∥B∥X) ≤ t <∞,

where h(·, ·) is the Hausdorff pseudo-distance defined by

h(A,B) = sup
U∈A

inf
V ∈B

∥U − V ∥X , A,B ⊂ X.
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Furthermore, they gave a sufficient condition to construct exponential attractors. To this
end, they assume existence of a family {N(t)}t∈R of bounded closed subsets of X with the
following properties:

(1) The diameter ∥N(t)∥X of N(t) is uniformly bounded, i.e., supt∈R ∥N(t)∥X <∞.

(2) It is invariant, i.e., U(t, s)N(s) ⊂ N(t) for all (t, s) ∈ ∆.

(3) It is absorbing in the sense that there is a monotone function σ such that

∀B ⊂ X bounded, U(t, s)B ⊂ N(t), s ∈ R, s+ σ(∥B∥X) ≤ t <∞.

(4) There is τ ∗ > 0 such that, for every s ∈ R, U(τ ∗ + s, s) is a compact perturbation
of contraction operator on N(s) in the sense that

∥U(τ ∗ + s, s)U0 − U(τ ∗ + s, s)V0∥X
≤ δ∥U0 − V0∥X + ∥K(s)U0 −K(s)V0∥X , U0, V0 ∈ N(s),

where δ is a constant such that 0 ≤ δ < 1/2 and where K(s) is an operator from
N(s) into another Banach space Z which is embedded compactly in X and satisfies
a Lipschitz condition

∥K(s)U0 −K(s)V0∥Z ≤ L1∥U0 − V0∥X , U0, V0 ∈ N(s),

with some constant L1 > 0 independent of s.

(5) For any s ∈ R and any τ ∈ [0, τ ∗], the Lipschitz condition

∥U(τ + s, s)U0 − U(τ + s, s)V0∥X ≤ L2∥U0 − V0∥X , U0, V0 ∈ N(s),

holds with some constant L2 > 0 independent of s and τ .

Under the above assumptions, a version of exponential attractor for non-autonomous
dynamical systems is constructed. For the proof, see [60, Theorem 2.1].

Theorem 4.7. Let (U(t, s),X, X) be a non-autonomous dynamical system in X. Assume
that the above conditions (1)–(5) be satisfied. Then, one can construct an exponential
attractor {M(t)}t∈R for (U(t, s),X, X).
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Chapter 5

Chemotaxis Equations in One
Dimensional Domains

In this chapter, we firstly review some results of chemotaxis model equations represented
by Keller-Segel equations. Secondly, we present results of attraction-repulsion chemotaxis
equations which is one of the extension of Keller-Segel equations.

5.1 Reviews of Chemotaxis Equations

After Keller-Segel [61] first introduced an advection-reaction-diffusion model for chemo-
tactic phenomenon, this model was developed and studied further by many researchers [62,
63, 64, 65, 66, 67, 68]. The model

∂u

∂t
= a1∆u−∇ · [u∇χ(v)] in Ω × (0,∞),

∂v

∂t
= a2∆v + g1u− dv in Ω × (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

was first studied by Childress and Percus [69]. Here, Ω is a bounded two-dimensional
domain with some regular boundary. The unknown functions u = u(x, t) and v = v(x, t)
denote the density of bacteria and the concentration of chemical attractants, respectively,
in the domain Ω at time t. The bacteria are motile in response to the gradients of
χ(v), where χ(v) is a sensitivity function of bacteria to chemical attractants. The term
−∇ · [u∇χ(v)] denotes the nonlinear advection which is affected by chemical attractants.
Bacteria move preferentially towards higher concentration of chemical attractants. The
term g1u denotes that bacteria produce chemical attractants. The term −dv denote
decay rates of chemical attractants. The unknown functions u and v satisfy the Neumann
boundary conditions on the boundary ∂Ω.

When χ(v) = v, the global existence for initial functions having small L1(Ω) norm
∥u0∥L1

was obtained by Ryu and Yagi [70]. On the other hand, blowup of solutions was
proved in [71, 72]. In addition, the stationary problem was studied by [73, 74, 75]. Feireisl,
Laurençot, and Petzeltová [29] have shown convergence of global solutions to equilibria
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by using a non-smooth version of the  Lojasiewicz-Simon inequality obtained in [28]. We
quote [76, 77] for one-dimensional problem, and [56] for network shaped domain problem.

As another chemotaxis model:

∂u

∂t
= a1∆u−∇ · [u∇χ(v)] + cu− γu2 in Ω × (0,∞),

∂v

∂t
= a2∆v + g1u− dv in Ω × (0,∞),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), in Ω,

(5.1)

was presented by Mimura and Tsujikawa [78]. This model is obtained by simplifying a
model introduced by Woodward, Tyson, Myerscough, Murray, Bedrene, and Berg [79].
As for analytical studies to (5.1), we quote [80, 81, 82, 83]. Numerical results to a slightly
changed model (more precisely, the term cu − γu2 in the first equation of (5.1) is re-
placed by a cubic function u2(1−u)) show very interesting pattern formations: stationary
spot, stationary honeycomb, stationary stripe, stationary perforated stripe, moving spot,
and moving perforated labyrinthine. These numerical results were obtained by Hai and
Yagi [84]. These mathematical studies have contributed theoretical understandings to
experimental observations observed by Budrene and Berg [85, 86].

5.2 Attraction-Repulsion Chemotaxis Equations

As shown in the previous section, there are many studies for chemotaxis equations. Al-
most all chemotaxis equations considered interactions between bacteria and chemical at-
tractant. In order to describe a variety of chemotactic phenomena, another chemical
substance, which is called a repellent, were considered. As the name suggests, repel-
lents have the bacteria tend to move toward low concentrations of repellents. Some
attraction-repulsion chemotaxis models have been proposed in [87, 88]. In these years,
attraction-repulsion chemotaxis models were studied by many researchers [89, 90, 91].

Among them, Okaie et al. [92, 93] utilized an attraction-repulsion chemotaxis model
for molecular communication. Roughly speaking, molecular communication is a means of
communication among bioparticles. Bioparticles are very tiny biological machines whose
size is nano to micro scale. Since bioparticles are made of biological materials, no tradi-
tional communication technology is applicable. Whereas, bioparticles can interact with
each other by using signaling molecules. Molecular communication is expected to be
applied to medical treatment. In particular, researchers try to develop a system deliver-
ing medicine to target (or affected area) directly, which is called Drug delivery system.
Okaie et al. developed a mathematical model of mobile bionanosensor networks for target
tracking. The mobile bionanosensor network which they proposed consists of bioparticles,
targets, and two signaling molecules: attractants and repellents. Bioparticles are capable
of moving around the environment, in addition to releasing two signaling molecules into
the environment and reacting to the molecules in the environment. Targets are also mo-
bile and their presence is assumed to be a potential thereat to the environment. When
bioparticles gather around targets after a while, they considered the network is capable
of detecting targets. At first, Okaie et al. developed an individual based model of mobile
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bionanosensor networks for target tracking [92]. After that they developed a macroscopic
model (5.2) in [93]. Both of them mainly described numerical results for their mathemat-
ical model.

Based on (5.2), Iwasaki, Yang, Abraham, Hagad, Obuchi, and Nakano showed that,
when model parameters are properly tuned, bioparticles express the ability to distribute
evenly over multi-targets by numerical simulations [94]. Furthermore, Iwasaki, Yang,
and Nakano presented a non-diffusion-based model of (5.2) in [95]. Iwasaki and Nakano
extended this model to a problem in network shaped domains [50].

In the following subsections, we present analytical results to (5.2) obtained in [31].

5.2.1 Model Equations

In the consecutive subsections, we show analytical results to the following attraction-
repulsion chemotaxis equations proposed by Okaie et al. [93]:

∂u

∂t
= a1

∂2u

∂x2
− ∂

∂x

[
u

(
∂

∂x
χ1(v) − ∂

∂x
χ2(w)

)]
in I × (0,∞),

∂v

∂t
= a2

∂2v

∂x2
+ g1T (x, t)u− dv in I × (0,∞),

∂w

∂t
= a3

∂2w

∂x2
+ g2u− hw in I × (0,∞),

∂u

∂x
=
∂v

∂x
=
∂w

∂x
= 0 on ∂I × (0,∞),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x) in I,

(5.2)

in the unit open interval I = (0, 1). The unknown functions u = u(x, t), v = v(x, t), and
w = w(x, t) denote the density of bioparticles, the concentration of chemical attractants,
and the concentration of chemical repellents, respectively, in the interval I at time t. The
bioparticles are motile in response to the gradients of χ1(v) and χ2(w), where χ1(v) and
χ2(w) are sensitivity functions of bioparticles to chemical attractants and chemical repel-
lents. The term − ∂

∂x

[
u
(

∂
∂x
χ1(v) − ∂

∂x
χ2(w)

)]
denotes the nonlinear advection which is

affected by chemical attractants and chemical repellents. Bioparticles move preferentially
towards higher (resp. lower) concentration of chemical attractants (resp. repellents). The
term g1T (x, t)u denotes that bioparticles produce chemical attractant when they find the
target T (x, t). On the other hand, bioparticles always release chemical repellents by the
production rate g2u. The terms −dv and −hw denote decay rates of chemical attrac-
tants and repellents. The unknown functions u, v, and w satisfy the Neumann boundary
conditions at ∂I.

We assume that χ1(v) and χ2(w) are real smooth functions for 0 ≤ v < ∞ and
0 ≤ w <∞, respectively, satisfying the condition

sup
0≤v<∞

∣∣∣∣diχ1

dvi
(v)

∣∣∣∣ <∞ and sup
0≤w<∞

∣∣∣∣diχ2

dwi
(w)

∣∣∣∣ <∞ for i = 1, 2. (5.3)

We also assume that T (·, t) is in H1(I) for each t ∈ (0,∞) and satisfies the two conditions:

sup
0<t<∞

∥T (x, t)∥H1 <∞, (5.4)
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∥T (x, t1) − T (x, t2)∥H1 ≤ C|t1 − t2|, ∀t1, t2 ∈ (0,∞), (5.5)

with some constant C ≥ 0. The initial functions u0(x), v0(x), and w0(x) are nonnegative
in I. Furthermore, ai (i = 1, 2, 3), gi (i = 1, 2), d, and h are positive (> 0) constants.

We will construct exponential attractors for the non-autonomous dynamical system
generated by (5.2). Due to this research, we indicate that bioparticles show aggregation
behavior.

5.2.2 Abstract Formulation

Let us formulate (5.2) as the Cauchy problem for a non-autonomous semilinear abstract
equation 

dU

dt
+ AU = F (t, U), 0 < t <∞,

U(0) = U0,
(5.6)

in X. Here, we set the underlying space X as

X =

U =

 u
v
w

 ; u ∈ L2(I), v ∈ H1(I), and w ∈ H1(I)

 ,

X being equipped with the norm

∥U∥ = ∥u∥L2 + ∥v∥H1 + ∥w∥H1 .

Due to such a setting, the nonlinear advection term − ∂
∂x

[
u
(

∂
∂x
χ1(v) − ∂

∂x
χ2(w)

)]
can be

treated as a lower term. That is, we can formulate the quasilinear problem (5.2) as a
semilinear problem of the form (5.6).

The linear operator A is given by A = diag{A1, A2, A3} in X. The operator A1 =
−a1 d2

dx2 + 1 is a positive definite self-adjoint operator of L2(I) with domain D(A1) =

H2
N(I) = {u ∈ H2(I);u′(0) = u′(1) = 0}. In addition, the two operators A2 = −a2 d2

dx2 + d

and A3 = −a3 d2

dx2 + h are positive definite self-adjoint operators of H1(I) with domain
D(A2) = D(A3) = H3

N(I) = {u ∈ H3(I);u′(0) = u′(1) = 0}. Therefore, the domain of A
is given by

D(A) =

U =

 u
v
w

 ; u ∈ H2
N(I), v ∈ H3

N(I), and w ∈ H3
N(I)

 ,

and A is also a positive definite self-adjoint operator of X. Then, according to Theorem 3.2
and 3.4, we know the following characterization of the domains of the fractional powers

D(Aη) =

U =

 u
v
w

 ; u ∈ H2η
N (I), v ∈ H1+2η

N (I), and w ∈ H1+2η
N (I)


with norm equivalence, where the exponent η is fixed in such a way that 3/4 < η < 1.
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In addition, the nonlinear operator F : (0,∞) ×D(Aη) → X is given by

F (t, U) =

 u− ∂

∂x

[
u

(
∂

∂x
χ1(Re v) − ∂

∂x
χ2(Re w)

)]
g1T (x, t)u

g2u

 , U =

 u
v
w

 .

Finally, we set the space of initial values by

K =

U =

 u
v
w

 ; 0 ≤ u ∈ L2(I), 0 ≤ v ∈ H1(I), and 0 ≤ w ∈ H1(I)

 .

5.2.3 Local Solutions

Consider the Cauchy problem:
dU

dt
+ AU = F (t, U), s < t <∞,

U(s) = Us,
(5.7)

in X, with initial time s ≥ 0. In order to construct local solutions to (5.7), we utilize
the theory of non-autonomous semilinear abstract evolution equations. According to [37,
pages 199 and 200], it is sufficient to prove that F (t, U) satisfies the Lipschitz condition:

∥F (t1, U1) − F (t2, U2)∥ ≤ ϕ(∥U1∥ + ∥U2∥)

× {∥Aη(U1 − U2)∥ + (∥AηU1∥ + ∥AηU2∥)[|t1 − t2| + ∥U1 − U2∥]},
(t1, U1), (t2, U2) ∈ (s,∞) ×D(Aη), (5.8)

where ϕ(·) is some increasing continuous function.

Proposition 5.1. F (t, U) satisfies (5.8) with some ϕ(·) which does not depend on the
initial time s.

Proof. Since it holds for all θ ≥ 0 that

max{∥Re u∥Hθ , ∥Im u∥Hθ} ≤ ∥u∥Hθ ≤ ∥Re u∥Hθ + ∥Im u∥Hθ , u ∈ Hθ(I),

it is sufficient to prove (5.8) in the case where U1 and U2 are real valued.
Since χi(·), i = 1, 2, are smooth functions, we see from [37, (1.91) and (1.92)] that

∥χi(v)∥H1 ≤ ϕ(∥v∥H1), v ∈ H1(I), (5.9)

and

∥χi(v1) − χi(v2)∥H1 ≤ ϕ(∥v1∥H1 + ∥v2∥H1)∥v1 − v2∥H1 , v1, v2 ∈ H1(I). (5.10)

In addition, we obtain that∥∥∥∥ d2dx2χi(v)

∥∥∥∥
L∞

=

∥∥∥∥∥χ′′
i (v)

(
dv

dx

)2

+ χ′
i(v)

d2v

dx2

∥∥∥∥∥
L∞

≤ ϕ(∥v∥H1)(∥v∥2H2η + ∥v∥H1+2η)

≤ ϕ(∥v∥H1)(∥v∥
1
η

H1∥v∥
2− 1

η

H1+2η + ∥v∥H1+2η)

≤ ϕ(∥v∥H1)∥v∥H1+2η , v ∈ H1+2η(I). (5.11)
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Let U1 = t(u1, v1, w1) and U2 = t(u2, v2, w2) ∈ D(Aη), then

∥F (t1, U1) − F (t2, U2)∥ ≤ ∥u1 − u2∥L2

+

∥∥∥∥ ddx
[
u1

d

dx
(χ1(v1) − χ1(v2))

]∥∥∥∥
L2

+

∥∥∥∥ ddx
[
(u1 − u2)

d

dx
χ1(v2)

]∥∥∥∥
L2

+

∥∥∥∥ ddx
[
u1

d

dx
(χ2(w1) − χ2(w2))

]∥∥∥∥
L2

+

∥∥∥∥ ddx
[
(u1 − u2)

d

dx
χ2(w2)

]∥∥∥∥
L2

+ g1∥T (x, t1)u1 − T (x, t2)u2∥H1 + g2∥u1 − u2∥H1 . (5.12)

Here, we easily obtain estimates for the first and last terms of the right hand side.
Let us estimate the second term. Obviously,

d

dx

[
u1

d

dx
(χ1(v1) − χ1(v2))

]
=
du1
dx

d

dx
(χ1(v1) − χ1(v2)) + u1

d2

dx2
(χ1(v1) − χ1(v2)) .

Due to (5.10),∥∥∥∥du1dx d

dx
(χ1(v1) − χ1(v2))

∥∥∥∥
L2

≤
∥∥∥∥du1dx

∥∥∥∥
L∞

∥χ1(v1) − χ1(v2)∥H1

≤ ϕ(∥v1∥H1 + ∥v2∥H1)∥u1∥H2η∥v1 − v2∥H1

≤ ϕ(∥U1∥ + ∥U2∥)∥AηU1∥∥U1 − U2∥.
On the other hand, by using the same techniques as in (5.10), we have∥∥∥∥u1 d2dx2 (χ1(v1) − χ1(v2))

∥∥∥∥
L2

≤

∥∥∥∥∥u1χ′′
1(v1)

[(
dv1
dx

)2

−
(
dv2
dx

)2
]∥∥∥∥∥

L2

+

∥∥∥∥∥u1
(
dv2
dx

)2

[χ′′
1(v1) − χ′′

1(v2)]

∥∥∥∥∥
L2

+

∥∥∥∥u1χ′
1(v1)

[
d2v1
dx2

− d2v2
dx2

]∥∥∥∥
L2

+

∥∥∥∥u1d2v2dx2
[χ′

1(v1) − χ′
1(v2)]

∥∥∥∥
L2

≤
∥∥∥∥u1χ′′

1(v1)

[
dv1
dx

+
dv2
dx

]∥∥∥∥
L∞

∥∥∥∥dv1dx − dv2
dx

∥∥∥∥
L2

+

∥∥∥∥(dv2dx
)∥∥∥∥

L2

∥u1[χ′′
1(v1) − χ′′

1(v2)]∥L∞

+ ∥u1∥L2

∥∥∥∥χ′
1(v1)

[
d2v1
dx2

− d2v2
dx2

]∥∥∥∥
L∞

+ ∥u1∥L2

∥∥∥∥d2v2dx2
[χ′

1(v1) − χ′
1(v2)]

∥∥∥∥
L∞

≤ ϕ(∥U1∥ + ∥U2∥){∥Aη(U1 − U2)∥ + (∥AηU1∥ + ∥AηU2∥)∥U1 − U2∥}.
By (5.9) and (5.11), the third term in the right hand side of (5.12) is estimated by∥∥∥∥ ddx

[
(u1 − u2)

d

dx
χ1(v2)

]∥∥∥∥
L2

≤
∥∥∥∥d2χ1

dx2
(v2)

∥∥∥∥
L∞

∥u1 − u2∥L2
+

∥∥∥∥dχ1

dx
(v2)

∥∥∥∥
L2

∥∥∥∥ ddx(u1 − u2)

∥∥∥∥
L∞

≤ ϕ(∥U2∥)(∥AηU2∥∥U1 − U2∥ + ∥Aη(U1 − U2)∥).
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The similar techniques are available to estimate the forth and fifth terms of the right hand
side of (5.12).

Finally, from (5.4) and (5.5), we conclude that

∥T (x, t1)u1 − T (x, t2)u2∥H1

≤ ∥T (x, t1)∥H1∥u1 − u2∥H1 + ∥u2∥H1∥T (x, t1) − T (x, t2)∥H1

≤ C(∥Aη(U1 − U2)∥ + ∥AηU2∥|t1 − t2|).

Note that this C does not depend on the initial time s. Therefore, we verify the desired
estimate (5.8).

Theorem 5.1. Let 0 ≤ s < ∞. For any Us ∈ K, there exists a unique local solutions to
(5.7) in the function space:

0 ≤ U ∈ C((s, s+ TUs ];D(A)) ∩ C([s, s+ TUs ];X) ∩ C1((s, s+ TUs ];X), (5.13)

where TUs is determined by the norm ∥Us∥ alone. In addition,

(t− s)∥AU(t)∥ + ∥U(t)∥ ≤ CUs , s < t ≤ s+ TUs , (5.14)

where CUs is determined by the norm ∥Us∥ alone. In particular, TUs and CUs do not
depend on the initial time s.

Proof. Thanks to Theorem 4.1, we conclude that for any initial value Us ∈ K, (5.7)
possesses a unique local solution in the function space:

U ∈ C((s, s+ TUs ];D(A)) ∩ C([s, s+ TUs ];X) ∩ C1((s, s+ TUs ];X)

with the norm estimate (5.14).

We notice that U(t) is real valued. Indeed, the complex conjugate U(t) of U(t) is also
a local solution of (5.7) with the same initial value Us. So, the uniqueness of solution
implies that U(t) = U(t); hence, U(t) must be real valued.

The proof of nonnegativity is verified by easier argument than the proof of Theorem 6.3
(put δ = 0 in the proof). So, the proof is omitted here.

We verify Lipschitz continuity of solutions in the initial data. Let 0 < R < ∞. Let

KR = K∩BX
(0;R), where B

X
(0;R) denotes a closed ball of X centered at 0 with radius

R. Then, there is an interval [s, s+TR] on which (5.7) has a unique local solution for any
Us ∈ KR, where TR > 0 is determined by R alone. Due to [37, Theorem 4.5], we have

(t− s)η∥Aη[U1(t) − U2(t)]∥ + ∥U1(t) − U2(t)∥ ≤ CR∥U1
s − U2

s ∥, s < t ≤ s+ TR, (5.15)

where U1(t) (resp. U2(t)) is a local solution to (5.7) for initial data U1
s ∈ KR (resp.

U2
s ∈ KR).
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5.2.4 Global Solutions

This section is devoted to showing the global existence of solutions. For U0 = t(u0, v0, w0) ∈
K, let U = t(u, v, w) denote local solutions of (5.6) in the function space (5.13), i.e.,

0 ≤ U ∈ C((0, TU ];D(A)) ∩ C([0, TU ];X) ∩ C1((0, TU ];X), (5.16)

Here [0, TU ] denotes the interval of existence of each U = t(u, v, w). We build up a priori
estimates for the local solutions.

Proposition 5.2. There exist a continuous increasing function p(·) and some positive
exponent γ > 0 such that the estimate

∥U(t)∥ ≤ p(e−γt ∥U0∥ + ∥u0∥L1
), 0 ≤ t ≤ TU , (5.17)

holds for any local solution U of (5.6) in (5.16), p(·) and γ being independent of TU .

Proof. In the proof, the notations p(·) and C stand for some continuous increasing func-
tions and some constants, respectively, which are determined by the initial constants in
(5.2) and by I in a specific way in each occurrence. We divide the proof into five steps.

Step 1. Integrate the first equation of (5.2) in I. Then, in view of u ≥ 0,

d

dt
∥u∥L1 = 0,

hence,
∥u(t)∥L1 = ∥u0∥L1 , 0 ≤ t ≤ TU . (5.18)

Step 2. Let us consider the linear problem:
d

dt
v + A2v = g1T (x, t)u, 0 < t ≤ TU ,

v(0) = v0
(5.19)

in H1(I)′, where H1(I)′ is the dual space of H1(I). In (5.19), A2 is regarded as a positive
definite self-adjoint operator of H1(I)′ with domain H1(I). The operator A2 generates an
analytic semigroup e−tA2 on H1(I)′ with the estimate

∥e−tA2∥L((H1)′) ≤ Ce−dt, 0 ≤ t <∞. (5.20)

Then, the fractional power of A2 satisfies

D(Aθ
2) = [H1(I)′, H1(I)]θ = H1−2θ(I)′, 0 ≤ θ <

1

2
(5.21)

with norm equivalence.
Meanwhile, since

∥g1T (x, t)u(t) − g1T (x, s)u(s)∥(H1)′

≤ C
[
∥T (x, t)u(t) − T (x, s)u(t)∥L2

+ ∥T (x, s)u(t) − T (x, s)u(s)∥L2

]
≤ C

[
∥u(t)∥L2

∥T (x, t) − T (x, s)∥H1 + ∥T (x, s)∥H1 ∥u(t) − u(s)∥L2

]
,
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we observe from (5.4), (5.5), and (5.16) that

g1T (x, t)u(t) ∈ C([0, TU ];H1(I)′) ∩ C0,1((0, TU ];H1(I)′).

Then, according to [37, Theorem 3.4], there exists a unique local solution v to (5.19)
in the function space:

v ∈ C((0, TU ];H1(I)) ∩ C([0, TU ];H1(I)′) ∩ C1((0, TU ];H1(I)′).

Moreover, v is necessarily given by the formula

v(t) = e−tA2v0 + g1

∫ t

0

e−(t−τ)A2T (x, τ)u(τ) dτ , 0 ≤ t ≤ TU . (5.22)

By the similar arguments, we obtain that

w(t) = e−tA3w0 + g2

∫ t

0

e−(t−τ)A3u(τ) dτ , 0 ≤ t ≤ TU . (5.23)

Step 3. Let us estimate v(t). It follows from (5.22) that

A2v(t) = e−tA2A2v0 + g1

∫ t

0

A
7
8
2 e

− (t−τ)
2

A2e−
(t−τ)

2
A2A

1
8
2 [T (x, τ)u(τ)] dτ .

Note that L1(I) ⊂ H
3
4 (I)′ with continuous embedding, i.e., ∥ · ∥

(H
3
4 )′

≤ C∥ · ∥L1 . Then,

by (5.20) and (5.21),

∥A2v(t)∥(H1)′ ≤ C

[
e−dt∥A2v0∥(H1)′ +

∫ t

0

(t− τ)−
7
8 e−

d
2
(t−τ)∥T (x, τ)u(τ)∥L1 dτ

]
.

Therefore, we obtain by (5.4) and (5.18) that

∥v(t)∥H1 ≤ C[e−dt∥v0∥H1 + ∥u0∥L1 ], 0 ≤ t ≤ TU . (5.24)

By the similar arguments, we obtain from (5.23) that

∥w(t)∥H1 ≤ C[e−ht∥w0∥H1 + ∥u0∥L1 ], 0 ≤ t ≤ TU . (5.25)

Step 4. We shall use the notation

p1(U) = p(∥v∥H1 + ∥w∥H1 + ∥u∥L1), U = t(u, v, w) ∈ X.

Multiply the second equation of (5.2) by 2 ∂2v
∂x2 and integrate the product in I. Then, by

(5.4),

d

dt

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+ 2d

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+ 2a2

∥∥∥∥∂2v∂x2

∥∥∥∥2
L2

= −2g1

∫
I

T (x, t)u
∂2v

∂x2
dx ≤ a2

∥∥∥∥∂2v∂x2

∥∥∥∥2
L2

+ C∥u∥2L2
.
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Meanwhile, by Gagliardo-Nirenberg’s inequality (Theorem 2.8),

∥u∥L2
≤ C ∥u∥

1
3

H1 ∥u∥
2
3
L1

≤ ζ1

(
∥u∥L2

+

∥∥∥∥∂u∂x
∥∥∥∥
L2

)
+ Cζ1 ∥u∥L1

with any 0 < ζ1 < 1, hence,

∥u∥L2 ≤
ζ1

1 − ζ1

∥∥∥∥∂u∂x
∥∥∥∥
L2

+
Cζ1

1 − ζ1
∥u∥2L1

. (5.26)

Therefore, we have

d

dt

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+ 2d

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+ a2

∥∥∥∥∂2v∂x2

∥∥∥∥2
L2

− ζ2

∥∥∥∥∂u∂x
∥∥∥∥2
L2

≤ Cζ2 ∥u0∥
2
L1

(5.27)

with any 0 < ζ2 < 1.
It is the same for w(t). Hence,

d

dt

∥∥∥∥∂w∂x
∥∥∥∥2
L2

+ 2h

∥∥∥∥∂w∂x
∥∥∥∥2
L2

+ a3

∥∥∥∥∂2w∂x2
∥∥∥∥2
L2

− ζ3

∥∥∥∥∂u∂x
∥∥∥∥2
L2

≤ Cζ3 ∥u0∥
2
L1
. (5.28)

with any 0 < ζ3 < 1.
In the meantime, multiply the first equation of (5.2) by 2u and integrate the product

in I. Then,

d

dt
∥u∥2L2

+ 2a1

∥∥∥∥∂u∂x
∥∥∥∥2
L2

= 2

∫
I

u

(
∂u

∂x

)(
∂

∂x
(χ1(v) − χ2(w)

)
dx

≤ a1

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ C

∫
I

u2
(
∂

∂x
(χ1(v) − χ2(w))

)2

dx.

Here, on account of (5.24) and (5.25),∫
I

u2
(
∂

∂x
(χ1(v) − χ2(w))

)2

dx

≤ C∥u∥2L4

(∥∥∥∥∂v∂x
∥∥∥∥2
L4

+

∥∥∥∥∂w∂x
∥∥∥∥2
L4

)

≤ C∥u∥H1∥u∥L1

(∥∥∥∥∂v∂x
∥∥∥∥ 1

2

H1

∥∥∥∥∂v∂x
∥∥∥∥ 3

2

L2

+

∥∥∥∥∂w∂x
∥∥∥∥ 1

2

H1

∥∥∥∥∂w∂x
∥∥∥∥ 3

2

L2

)

≤ ζ

(
∥u∥2H1 +

∥∥∥∥∂2v∂x2

∥∥∥∥2
L2

+

∥∥∥∥∂2w∂x2
∥∥∥∥2
L2

)
+ Cζp1(U0),

with any ζ > 0. Therefore, due to (5.26), we obtain that

d

dt
∥u∥2L2

+ ∥u∥2L2
+ (a1 − ζ)

∥∥∥∥∂u∂x
∥∥∥∥2
L2

− ζ

(∥∥∥∥∂2v∂x2

∥∥∥∥2
L2

+

∥∥∥∥∂2w∂x2
∥∥∥∥2
L2

)
≤ Cζp1(U0).
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Now, we sum up this, (5.27), and (5.28). Then, by choosing ζ, ζ2, and ζ3 properly,

d

dt

[
∥u∥2L2

+

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+

∥∥∥∥∂w∂x
∥∥∥∥2
L2

]
+ δ

[
∥u∥2L2

+

∥∥∥∥∂v∂x
∥∥∥∥2
L2

+

∥∥∥∥∂w∂x
∥∥∥∥2
L2

]
≤ p1(U0),

with δ = min {1, 2d, 2h}. Thus, we arrive at the estimate

∥u(t)∥L2 ≤ e−δt[∥u0∥L2 + ∥v0∥H1 + ∥w0∥H1 ] + p1(U0), 0 ≤ t ≤ TU . (5.29)

Step 5. Let t ∈ [0, TU ] be fixed. Then, from (5.24) and (5.25),∥∥∥∥v( t2
)∥∥∥∥

H1

+

∥∥∥∥w( t2
)∥∥∥∥

H1

≤ C
[
e−

d
2
t ∥v0∥H1 + e−

h
2
t ∥w0∥H1 + ∥u0∥L1

]
. (5.30)

By regarding U( t
2
) as an initial value, we obtain from (5.29) that

∥u(t)∥L2
≤ e−

δ
2
t

[∥∥∥∥u( t2
)∥∥∥∥

L2

+

∥∥∥∥v( t2
)∥∥∥∥

H1

+

∥∥∥∥w( t2
)∥∥∥∥

H1

]

+ p

(∥∥∥∥v( t2
)∥∥∥∥

H1

+

∥∥∥∥w( t2
)∥∥∥∥

H1

+ ∥u0∥L1

)
.

Then, due to (5.29) and (5.30),

∥u(t)∥L2 ≤ p
(
e−γt[∥u0∥L2 + ∥v0∥H1 + ∥w0∥H1 ] + ∥u0∥L1

)
. (5.31)

In this way, by (5.24), (5.25), and (5.31), we have established the desired a priori estimate
(5.17).

It is now possible to construct a global solution to (5.2) by the standard arguments.

Theorem 5.2. For any initial value U0 ∈ K, there exists a unique global solution U =
t(u, v, w) of (5.2) in the function space:

0 ≤ U ∈ C((0,∞);D(A)) ∩ C([0,∞);X) ∩ C1((0,∞);X), (5.32)

Proof. Let U0 ∈ K be initial value. Let us start with the local solution U(t) to (5.6) on
[0, TU0 ] obtained in Theorem 5.1 with s = 0. Set Us = U(s) for any s ∈ (0, TU0). On
account of Proposition 5.2, we see that ∥Us∥ ≤ CU0 , where CU0 = p(∥U0∥+∥u0∥) and p(·)
is the function in Proposition 5.2.

We here consider the Cauchy problem (5.7). Then, by using Theorem 5.1 again, there
exists a unique local solution V (t) on an interval [s, s + tU0 ], where a length tU0 > 0 is
determined by CU0 alone. Note that tU0 does not depend on the time s. Here, put

τ =

{
tU0/2 (if tU0 < TU0),

TU0/2 (if TU0 ≤ tU0),

and s = TU0 − τ . Then, by the uniqueness of solution, we have U(t) = V (t) for TU0 − τ ≤
t ≤ TU0 ; this means that we have constructed a local solution V (t) to (5.6) on the interval
[0, TU0 + τ ]. Note that U(t) and V (t) have the same initial value U0. Since we can choose
the same constant CU0 regardless of U(t) or V (t) due to Proposition 5.2, we can continue
this extension procedure unlimitedly. Each time, the local solution is extended over the
fixed length τ of interval. So, by finite times, the extended interval can cover any bounded
interval [0, T ].
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For U0 ∈ K, let U(t;U0) be its global solution of (5.2) in (5.32). From Proposition 5.2,
we obtain the estimate

∥U(t;U0)∥ ≤ p(e−γt∥U0∥ + ∥u0∥L1), 0 ≤ t <∞. (5.33)

This jointed with (5.14) provides the following stronger dissipative estimate.

Theorem 5.3. For U(t;U0), it holds that

∥AU(t;U0)∥ ≤ (1 + t−1)p̃(e−γt∥U0∥ + ∥u0∥L1), 0 < t <∞, (5.34)

with some other continuous increasing function p̃(·).

Proof. In the proof, the continuous increasing function p̃(·) may vary from line to line. Let
s ∈ [0,∞) and consider (5.7) with initial value Us = U(s;U0). We then apply Theorem 5.1
to this problem to conclude that there exists τ > 0 such that

∥AU(t;U0)∥ ≤ (t− s)−1p̃(∥U(s;U0)∥), s < t ≤ s+ τ.

Note that τ depends only on ∥U(s;U0)∥ and hence due to (5.33) only on p(∥U0∥). First,
applying this with s = 0, we see that

∥AU(t;U0)∥ ≤ t−1p̃(∥U0∥), 0 < t ≤ τ. (5.35)

Second, taking s = t− τ , we have

∥AU(t;U0)∥ ≤ τ−1p̃(∥U(t− τ ;U0)∥)

≤ τ−1p̃(p(e−γteγτ ∥U0∥ + ∥u0∥L1
)), τ < t <∞.

Since τ depends only on p(∥U0∥), we obtain that

∥AU(t;U0)∥ ≤ p̃(e−γt ∥U0∥ + ∥u0∥L1
), τ < t <∞. (5.36)

Combining (5.35) and (5.36), we conclude the desired estimate (5.34).

5.2.5 Exponential Attractors

Let us construct a non-autonomous dynamical system determined from (5.2). For this
purpose, we consider, for any −∞ < s <∞, the Cauchy problem:

dU

dt
+ AU = F(t, U), s < t <∞,

U(s) = Us,
(5.37)

in X. Here, the nonlinear operator F : R×D(Aη) → X is defined by

F(t, U) =

{
F (0, U), −∞ < t < 0,
F (t, U), 0 ≤ t <∞.

Since F(t, U) satisfies (5.8) in R×D(Aη), (5.37) possesses, for any Us ∈ K, a unique
global solution U in the function space:

0 ≤ U ∈ C((s,∞);D(A)) ∩ C([s,∞);X) ∩ C1((s,∞);X).
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Let U(·, s;Us) denote the global solution to (5.37) for initial function Us ∈ K with
initial time s ∈ R. We set

U(t, s)Us = U(t, s;Us)

as a family of nonlinear operators U(t, s) acting on K defined for (t, s) ∈ ∆ = {(t, s);−∞ <
s ≤ t <∞}. Then, the dissipative estimates (5.33) and (5.34) are rewritten as

∥U(t, s;Us)∥ ≤ p(e−γ(t−s)∥Us∥ + ∥us∥L1), s ≤ t <∞, (5.38)

and

∥AU(t, s;Us)∥ ≤ (1 + (t− s)−1)p(e−γ(t−s)∥Us∥ + ∥us∥L1), s < t <∞. (5.39)

For simplicity, p(·) is used instead of p̃(·).
Since it is clear from the uniqueness of solutions that U(s, s) = I for s ∈ R and

U(t, s) = U(t, r) ◦ U(r, s) for (t, r), (r, s) ∈ ∆, U(t, s) is an evolution operator acting on
K.

Proposition 5.3. U(t, s) is a continuous evolution operator on K, i.e., the mapping
G : ∆ ×K → K, where G(t, s;U0) = U(t, s)U0, is continuous.

Proof. Let 0 < R < ∞ and 0 < T < ∞ be arbitrarily fixed. We notice from (5.38) that
∥U(t, s)U0∥ ≤ p(2R) for any 0 ≤ t−s <∞ provided U0 ∈ KR. For simplicity of notation,
we rewrite p(2R) to p(R). By applying (5.15) with radius p(R), we see that

∥U(t, s)U0 − U(t, s)V0∥ ≤ Cp(R)∥U0 − V0∥, U0, V0 ∈ Kp(R),

provided that 0 ≤ t− s ≤ Tp(R).
Let next Tp(R) ≤ t− s ≤ 2Tp(R). Then,

∥U(t, s)U0 − U(t, s)V0∥
= ∥U(t, t− Tp(R))U(t− Tp(R), s)U0 − U(t, t− Tp(R))U(t− Tp(R), s)V0∥
≤ Cp(R)∥U(t− Tp(R), s)U0 − U(t− Tp(R), s)V0∥
≤ C2

p(R)∥U0 − V0∥.

Repeating these arguments, we see that

∥U(t, s)U0 − U(t, s)V0∥ ≤ CR,T∥U0 − V0∥

for 0 ≤ t− s ≤ T with some constant CR,T > 0.
On the other hand, we observe that U(t, s)U0 satisfies the integral equation

U(t, s)U0 = e−(t−s)AU0 +

∫ t

s

e−(t−τ)AF (τ, U(τ, s)U0)dτ , s < t <∞.

We can then verify that U(t, s)U0 is continuous for (t, s) with values in X.
Therefore, as ((t1, s1), U1) → ((t0, s0), U0),

∥G(t1, s1;U1) −G(t0, s0;U0)∥
≤ ∥G(t1, s1;U1) −G(t1, s1;U0)∥ + ∥G(t1, s1;U0) −G(t0, s0;U0)∥ → 0.
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Hence, (U(t, s),K, X) becomes a non-autonomous dynamical system determined from
(5.6).

We proceed to construct an exponential attractor. As shown in Section 4.5, Efendiev,
Yamamoto, and Yagi [60] introduced a version of exponential attractor for non-autonomous
equations. However, in this case, since the norm ∥u(t)∥L1 = ∥us∥L1 is conserved for ev-
ery t ∈ [s,∞), no compact set can attract every solution of (5.37) (cf. [77, Section 6]).
Therefore, for each ∥us∥L1 = l > 0, we have to consider a space of initial values like
Kl = { t(u, v, w) ∈ K; ∥u∥L1 = l} to reset. In the same way as above, for any Us ∈ Kl,
(5.37) possesses a unique global solution in the function space:

U ∈ C((s,∞);D(A)) ∩ C([s,∞);Kl) ∩ C1((s,∞);Kl).

Moreover, we can construct the non-autonomous dynamical system (U(t, s),Kl, X) deter-
mined from (5.37).

Let us construct an exponential attractor for (U(t, s),Kl, X).

Theorem 5.4. There exists an exponential attractor {M(t)}t∈R for (U(t, s),Kl, X).

Proof. We verify the sufficient conditions, namely, we show that there exists a family of
closed bounded subset X(t), t ∈ R, of Kl having the properties (1) ∼ (5) in Section 4.5.

In view of the dissipative estimate (5.39), we consider a subset

B = Kl ∩BD(A)
(0; 2p(2 + l)).

This B is a compact set of X and is a bounded subset of D(A). Since B is also a bounded
subset of Kl, we observe from (5.39) that there exists a time tB such that U(t, s)B ⊂ B

for every t ≥ tB + s, where tB is independent of s. We here set, for each t ∈ R, that

X(t) =
∪

−∞<s≤t

U(t, s)B =
∪

t−tB≤s≤t

U(t, s)B.

Let us see that the family X(t), t ∈ R, fulfills all the desired conditions. It is clear that
X(t) ⊂ Kl. In addition, since a mapping g : [t − tB, t] × B → Kl such that g(s, U0) =
U(t, s)U0 is continuous and the subset [t−tB, t]×B is compact, its image g([t−tB, t]×B) =
X(t) is also compact. Hence, the condition (1) is fulfilled.

By the definition of X(t),

X(s) =
∪

−∞<r≤s

U(s, r)B.

For each r and t such that −∞ < r ≤ s ≤ t < ∞, it follows that U(t, s) ◦ U(s, r)B =
U(t, r)B ⊂ X(t). Hence, U(t, s)X(s) ⊂ X(t), i.e., (2) is valid.

Consider any bounded subset B of Kl. Thanks to (5.39), there exists a time tB such
that U(t, s)B ⊂ B for every t ≥ tB + s. Since B ⊂ X(t), this means that the condition
(3) is valid.

In the same way as [60, Proposition 5.1], we prove that the union ∪t∈RX(t) is a bounded

subset of D(A). Hence, there is R > 0 such that ∪t∈RX(t) ⊂ Kl
R = Kl ∩ BX

(0;R). We
here set Z = D(Aη). Then, (5.15) shows that the condition (4) is valid provided τ ∗ = TR,
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δ = 0, and K(s) = U(s + TR, s). The estimate provides also the Lipschitz condition of
(5).

Therefore, we have verified that all the conditions (1)–(5) are fulfilled. Hence, [60,
Theorem 2.1] yields existence of an exponential attractor {M(t)}t∈R for (U(t, s),Kl, X).
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Chapter 6

Keller-Segel Equations in Network
Shaped Domains

In this chapter, we study the Keller–Segel equations in network shaped domains of the
form (6.1). We use notations in Chapter 3. The following results are obtained in [32].

6.1 Model Equations

We are concerned with the classical Keller-Segel system on a network shaped domain
G = {E,N}.

∂ui
∂t

=
∂2ui
∂x2i

− ∂

∂xi

[
ui
∂vi
∂xi

]
in Ii × (0,∞), Ii ∈ E,

∂vi
∂t

= α
∂2vi
∂x2i

− βvi + γui in Ii × (0,∞), Ii ∈ E,

ui(xi, 0) = u0i (xi) ≥ 0, vi(xi, 0) = v0i (xi) ≥ 0, in Ii, Ii ∈ E,

(6.1)

with the Kirchhoff conditions: for each Nj ∈ N and t > 0,

∀Ii ∈ o(Nj) ∪ ω(Nj), ui(Nj, t) has a same value (depending on Nj and t), (6.2)

∀Ii ∈ o(Nj) ∪ ω(Nj), vi(Nj, t) has a same value (depending on Nj and t), (6.3)

and

∂ui
∂n

(Nj, t) = 0, (6.4)

∂vi
∂n

(Nj, t) = 0. (6.5)

From the fact (6.16), we know that the total mass of {ui}Ii∈E is conserved for all time
t > 0. Therefore, without loss of generality, it is possible to normalize the total mass of
{ui}Ii∈E; consequently, we can always assume that∑

Ii∈E

∫
Ii

u0i dxi = 1. (6.6)
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Remark 6.1. Instead of (6.4), one may impose more natural condition for Keller-Segel
system which describe the conservation of the total flux about u:∑

Ii∈o(Nj)∪ω(Nj)

[
∂ui
∂n

− ui
∂vi
∂n

]
(Nj, t) = 0, ∀Nj ∈ N, ∀t > 0.

However, this condition and (6.5) imply (6.4). So, it is enough to consider (6.4).

6.2 Local solutions

Let us construct a local solution for (6.1) – (6.6). At first, note that the first two equations
of (6.1) are simply denoted by

∂u

∂t
= D2u−D[uDv] in G× (0,∞),

∂v

∂t
= αD2v − βv + γu in G× (0,∞).

From this view point, we formulate (6.1) as the Cauchy problem for a semilinear abstract
equation: 

dU

dt
+ AU = F (U), 0 < t <∞,

U(0) = U0,
(6.7)

in the underlying space X = L2(G) ×H1(G), X being equipped with the inner product

(U, Ũ)X = (u, ũ)L2(G)
+ (v, ṽ)H1(G) , U = t(u, v), Ũ = t(ũ, ṽ) ∈ X.

By setting X as above, the nonlinear advection term −D [uDv] can be treated as a lower
term. That is, we can formulate the quasilinear problem as a semilinear problem of the
form (6.7).

By using the results obtained in Chapter 3, the linear operator A is defined as follows:
A = diag{A1,A2} in X, where A1 = −D2 + 1 of L2(G) and A2 = −αD2 + β of H1(G).
From Theorems 3.1 and 3.3, the domain of A is given by

D(A) = H2(G) ×H3(G) (6.8)

with norm equivalence ∥U∥D(A) = ∥u∥H2(G)+∥v∥H3(G) for U = t(u, v) ∈ D(A). In addition,
from Theorems 3.2 and 3.4, we know the following characterization of the domains of the
fractional powers:

D(Aη) = H2η(G) ×H2η+1(G) for 3/4 < η ≤ 1 (6.9)

with norm equivalence ∥U∥D(Aη) = ∥u∥H2η(G) + ∥v∥H2η+1(G) for U = t(u, v) ∈ D(Aη). In
what follows, the exponent η is arbitrarily fixed such that 3/4 < η ≤ 1.

The nonlinear operator F : D(Aη) → X is given by

F (U) = t(u−D [uDv] , γu), U = t(u, v) ∈ D(Aη).
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Finally, we set the space of initial values by

K =

{
U =

(
u
v

)
∈ X;

0 ≤ u for a.e. G and 0 ≤ v for G,∫
G
udx = 1

}
.

In order to construct local solutions to (6.7), we apply Theorem 4.1. To this end, we
prove that F (U) satisfies the following Lipschitz condition.

Proposition 6.1. F (U) satisfies that, for U, Ũ ∈ D(Aη),

∥F (U) − F (Ũ)∥X
≤ C

[
(1 + ∥U∥X + ∥Ũ∥X)∥U − Ũ∥D(Aη) + (∥U∥D(Aη) + ∥Ũ∥D(Aη))∥U − Ũ∥X

]
.

Proof. Let U = t(u, v) and Ũ = t(ũ, ṽ). Since

∥F (U) − F (Ũ)∥X ≤ ∥u− ũ∥L2(G) + ∥D[uDv] −D[ũDṽ]∥L2(G) + γ∥u− ũ∥H1(G),

it is enough to show that

∥D[uDv] −D[ũDṽ]∥L2(G)

≤ C
[
(∥U∥X + ∥Ũ∥X)∥U − Ũ∥D(Aη) + (∥U∥D(Aη) + ∥Ũ∥D(Aη))∥U − Ũ∥X

]
. (6.10)

We know that

∥D[uDv] −D[ũDṽ]∥L2(G) ≤ ∥D[(u− ũ)Dv]∥L2(G)
+ ∥D[ũD(v − ṽ)]∥L2(G)

.

Then,

∥D[(u− ũ)Dv]∥L2(G)
=
∥∥[D(u− ũ)][Dv] + (u− ũ)[D2v]

∥∥
L2(G)

≤ ∥D(u− ũ)∥C(G) ∥Dv∥L2(G)
+ ∥u− ũ∥L2(G)

∥∥D2v
∥∥
C(G)

≤ C
[
∥v∥H1(G)∥u− ũ∥H2η(G) + ∥v∥H2η+1(G)∥u− ũ∥L2(G)

]
,

here, the last inequality comes from (3.3). In the meantime,

∥D[ũD(v − ṽ)]∥L2(G) ≤ C
[
∥ũ∥H2η(G)∥v − ṽ∥H1(G) + ∥ũ∥L2(G)∥v − ṽ∥H2η+1(G)

]
by the similar reasons as above. Therefore, due to (6.9), the desired estimate (6.10) is
obtained.

Then, let us show the local existence of solutions to (6.7).

Theorem 6.1. For any U0 ∈ K, there exists a unique local solution U = t(u, v) to (6.7)
in the function space:

0 ≤ U ∈ C((0, TU0 ];D(A)) ∩ C([0, TU0 ];X) ∩ C1((0, TU0 ];X), (6.11)

where TU0 is determined by the norm ∥U0∥X alone. In addition,

∥U(t)∥D(A) ≤ t−1p0(∥U0∥X), 0 < t ≤ TU0 , (6.12)

where p0(·) is an increasing continuous function.
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Proof. Due to Theorem 4.1, we conclude that for any initial value U0 ∈ K, (6.7) possesses
a unique local solution in the function space:

U ∈ C((0, TU0 ];D(A)) ∩ C([0, TU0 ];X) ∩ C1((0, TU0 ];X)

with the estimate (6.12).
We notice that U(t) is real valued. Indeed, the complex conjugate U(t) of U(t) is also a

local solution of (6.7) with the same initial value U0. So, the uniqueness of solution implies
that U(t) = U(t); hence, U(t) must be real valued. Nonnegativity of local solutions is
proved by similar techniques in the proof of Theorem 6.3.

6.3 Global solutions

This section is devoted to showing the global existence of solutions. Let U = t(u, v) be
any local solution to (6.1) in the function space (6.11), i.e.,{

0 ≤ u ∈ C((0, TU ];H2(G)) ∩ C([0, TU ];L2(G)) ∩ C1((0, TU ];L2(G)),

0 ≤ v ∈ C((0, TU ];H3(G)) ∩ C([0, TU ];H1(G)) ∩ C1((0, TU ];H1(G)).
(6.13)

Here [0, TU ] denotes the interval of existence of each U = t(u, v). We then show the
following a priori estimates.

Proposition 6.2. Let U0 = t(u0, v0) ∈ K. For any local solution U to (6.1) in (6.13) with
initial value U0, it holds that

∥U(t)∥X ≤ C(∥U0∥X + 1), 0 ≤ t ≤ TU . (6.14)

Remark 6.2. More precisely, the constant C in (6.14) depends on the norm ∥u0∥L1(G)
.

However, from the view point of (6.6), we do not write the dependence.

Proof. We divide the proof into four steps.
Step 1. Firstly, we observe that

∥u(t)∥L1(G) ≡ ∥u0∥L1(G)
= 1, 0 ≤ t ≤ TU . (6.15)

Indeed, in view of u ≥ 0, u ∈ H2(G), and v ∈ H3(G),

d

dt
∥u∥L1(G) =

∑
Ii∈E

d

dt

∫
Ii

uidxi =
∑
Ii∈E

[Diui − uiDivi]
xi=li
xi=0 = 0, (6.16)

so (6.15) is valid.
Step 2. Considering that (∂u

∂t
, 2u)L2(G) = (D2u−D[uDv], 2u)L2(G), we obtain from (3.4)

that

d

dt
∥u∥2L2(G)

+ 2 ∥Du∥2L2(G)
= −

∫
G

u2[D2v]dx.

Here, by Young’s inequality,

−
∫
G

u2[D2v]dx ≤
∫
G

(
ε|u|4 + Cε[D

2v]2
)
dx = ε ∥u∥4L4(G)

+ Cε

∥∥D2v
∥∥2
L2(G)
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with any ε > 0. Then, by Gagliardo-Nirenberg’s inequality and (6.15),

∥u∥4L4(G)
≤ C ∥u∥2H1(G) ∥u∥

2
L1(G)

≤ C ∥u∥2H1(G) ,

so,

d

dt
∥u∥2L2(G)

− εC ∥u∥2L2(G)
+ (2 − εC) ∥Du∥2L2(G)

≤ Cε

∥∥D2v
∥∥2
L2(G)

. (6.17)

In addition, by Gagliardo-Nirenberg’s inequality (Theorem 2.8) and (6.15) again,

∥u∥2L2(G)
≤ C ∥u∥

2
3

H1(G) ∥u∥
4
3

L1(G)
≤ ε′

(
∥u∥

2

L2(G)
+ ∥Du∥2L2(G)

)
+ Cε′

with any 0 < ε′ < 1, hence,

∥u∥2L2(G)
≤ ε′

1 − ε′
∥Du∥2L2(G)

+
Cε′

1 − ε′
. (6.18)

Therefore, by taking ε and ε′ sufficiently small, it follows from (6.17) that

d

dt
∥u∥2L2(G)

+ ∥u∥2L2(G)
+ ∥Du∥2L2(G)

≤ C
(∥∥D2v

∥∥2
L2(G)

+ 1
)
. (6.19)

Step 3. Considering that (∂v
∂t
, 2v)L2(G) = (αD2v − βv + γu, 2v)L2(G), we obtain from

(3.4) that

d

dt
∥v∥2L2(G)

+ 2α ∥Dv∥2L2(G)
+ 2β ∥v∥2L2

= 2γ

∫
G

uvdx ≤ β ∥v∥2L2(G)
+ C ∥u∥2L2(G)

.

It follows from (6.18) that

d

dt
∥v∥2L2(G)

+ 2α ∥Dv∥2L2(G)
+ β ∥v∥2L2

≤ ξ1 ∥Du∥2L2(G)
+ Cξ1 (6.20)

with any 0 < ξ1 < 1.
Step 4. Considering that (∂v

∂t
, 2D2v)L2(G) = (αD2v − βv + γu, 2D2v)L2(G), we obtain

from (3.4) that

d

dt
∥Dv∥2L2(G)

+ 2α
∥∥D2v

∥∥2
L2(G)

+ 2β ∥Dv∥2L2(G)
= −2γ

∫
G

u[D2v]dx, (6.21)

due to dv
dt

∈ H1(G). It follows by (6.18) that

−2γ

∫
G

u[D2v]dx ≤ α
∥∥D2v

∥∥2
L2(G)

+ C ∥u∥2L2(G)
≤ α

∥∥D2v
∥∥2
L2(G)

+ ξ2 ∥Du∥2L2(G)
+ Cξ2

with any 0 < ξ2 < 1. Thus,

d

dt
∥Dv∥2L2(G)

+ α
∥∥D2v

∥∥2
L2(G)

+ 2β ∥Dv∥2L2(G)
≤ ξ2 ∥Du∥2L2(G)

+ Cξ2 (6.22)
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After multiplying a parameter 0 < ζ < 1 to (6.19), we add the product to (6.20) and
(6.22) to obtain that

d

dt

[
ζ ∥u∥2L2(G)

+ ∥v∥2L2(G)
+ ∥Dv∥2L2(G)

]
+
[
ζ ∥u∥2L2(G)

+ β ∥v∥2L2(G)
+ (2α + 2β) ∥Dv∥2L2(G)

]
+ (ζ − ξ1 − ξ2) ∥Du∥2L2(G)

+ (α− ζC)
∥∥D2v

∥∥2
L2(G)

≤ ζC + Cξ1 + Cξ2 .

Now, fix the parameters ζ, ξ1, and ξ2 so that α− ζC ≥ 0 and ζ − ξ1 − ξ2 ≥ 0. Then, we
arrive at the differential inequality

d

dt

[
ζ ∥u∥2L2(G)

+ ∥v∥2H1(G)

]
+ δ

[
ζ ∥u∥2L2(G)

+ ∥v∥2H1(G)

]
≤ C

with δ = min{ζ, β, 2α + 2β}. Therefore, we conclude that

ζ ∥u(t)∥2L2(G)
+ ∥v(t)∥2H1(G) ≤ e−δt

[
ζ ∥u0∥L2(G)

+ ∥v0∥2H1(G)

]
+ C, 0 ≤ t ≤ TU ,

so, the desired estimate (6.14) is established.

It is now possible to construct a global solution to (6.7).

Theorem 6.2. For any initial value U0 ∈ K, there exists a unique global solution U of
(6.7) in the function space:

0 ≤ U ∈ C((0,∞);D(A)) ∩ C([0,∞);X) ∩ C1((0,∞);X). (6.23)

Proof. Let U(t;U0) be the local solution with initial value U0 to (6.7) on [0, TU0 ] obtained
in Theorem 6.1. Set Us = U(s;U0) for any s ∈ (0, TU0). On account of the a priori
estimate (6.14), we see that ∥Us∥X ≤ C(∥U0∥X + 1). Then, by using Theorem 6.1 again
with initial value Us, there exists a unique local solution U(t;Us) on an interval [s, s+T ′

U0
],

where a length T ′
U0
> 0 is determined by ∥U0∥X alone (note that ∥Us∥X ≤ C(∥U0∥X +1)).

Here, put

τ =

{
T ′
U0
/2 if T ′

U0
< TU0 ,

TU0/2 if TU0 ≤ T ′
U0
,

and s = TU0 − τ . Then, by the uniqueness of solution, we have U(t;U0) = U(t;Us) for
TU0 − τ ≤ t ≤ TU0 ; this means that we have constructed a local solution U(t;U0) to (6.7)
on the interval [0, TU0 + τ ]. Due to the a priori estimate (6.14), we can continue this
extension procedure unlimitedly. Each time, the local solution is extended over the fixed
length τ determined by ∥U0∥X alone. So, by finite times, the extended interval can cover
any bounded interval [0, T ].

Obviously, it is true that

∥U(t)∥X ≤ C(∥U0∥X + 1), 0 ≤ t <∞. (6.24)

Furthermore, we show the following strong estimate.
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Proposition 6.3. Let U0 ∈ K be initial value. Then, the global solution U(t) = U(t;U0)
of (6.7) in (6.23) holds that

∥U(t)∥D(A) ≤ (1 + t−1)p1(∥U0∥X), 0 < t <∞, (6.25)

with some increasing continuous function p1(·).

Proof. Let s ∈ [0,∞) and apply Theorem 6.1 with initial value Us = U(s;U0) to conclude
that there exists τ > 0 (depending only on ∥Us∥X and hence only on ∥U0∥X) such that

∥U(t)∥D(A) ≤ (t− s)−1p0(∥Us∥X), s < t ≤ s+ τ.

First, applying this with s = 0, we see that

∥U(t)∥D(A) ≤ t−1p0(∥U0∥X), 0 < t ≤ τ.

Second, taking s = t− τ , it follows by (6.24) that

∥U(t)∥D(A) ≤ τ−1p0(∥U(t− τ ;U0)∥X)

≤ τ−1p0(C(∥U0∥X + 1)), τ < t <∞.

Combining these estimates, we conclude the desired estimate (6.25).

In order to prove the convergence result, we need positivity of u(t). For this purpose,
we introduce the following space:

D(A)+ =

{
U =

(
u
v

)
∈ D(A);

0 < u for G and 0 ≤ v for G,∫
G
udx = 1

}
.

Theorem 6.3. Let U(t) = t(u(t), v(t)) be the global solution in the function space (6.23)
with initial value U0 ∈ K. Assume that there exists a t0 ∈ (0,∞) such that U(t0) ∈ D(A)+.
Then, it holds that u(t) > 0 for G, for every t ∈ [t0,∞).

Proof. By slightly modifying the following techniques (particularly taking t0 = 0 and
δ = 0), we can show that u(t) ≥ 0 for G for every t ∈ [0,∞). So, we prove the positivity
of u(t) under the condition u(t) ≥ 0.

Put δ = minIi∈E[minxi∈Ii ui(xi, t0)] > 0. In addition, for arbitrarily fixed τ ∈ (t0,∞),
put Cτ = maxIi∈E[max(xi,t)∈Ii×[t0,τ ]

D2
i vi(xi, t)]. It follows from (6.25) that |Cτ | <∞.

Regard the solution v ∈ C((0,∞);H3(G)) as a known function and consider the linear
diffusion equation on G:

∂u

∂t
= D2u+ pDu+ qu in G× (t0,∞),

where p = {−Dv} and q = {−D2v}.
Now, introduce a cutoff function H(ξ) such that

H(ξ) =
1

2
ξ2 for −∞ < ξ < 0 and H(ξ) = 0 for 0 ≤ ξ <∞,

and the function

φ(t) =

∫
G

H(u(t) − δe−Cτ t)dx, t0 ≤ t ≤ τ.
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Then, we know that

φ′(t) = (H ′(u− δe−Cτ t),
∂u

∂t
+ δCτe

−Cτ t)L2(G)

= (H ′(u− δe−Cτ t), D2u+ pDu+ qu+ δCτe
−Cτ t)L2(G).

Firstly,

(H ′(u− δe−Cτ t), D2u)L2(G) = −(DH ′(u− δe−Cτ t), Du)L2(G)

= −(H ′′(u− δe−Cτ t)Du,Du)L2(G)

= −
∫
G

H ′′(u− δe−Cτ t)[Du]2dx ≤ 0.

Secondly, since p = {−Dv} and v ∈ H2(G),

(H ′(u− δe−Cτ t), pDu)L2(G)

= (pH ′(u− δe−Cτ t), D[u− δe−Cτ t])L2(G)

= −(D[pH ′(u− δe−Cτ t)], u− δe−Cτ t)L2(G)

= −([Dp]H ′(u− δe−Cτ t) + pH ′′(u− δe−Cτ t)Du, u− δe−Cτ t)L2(G).

Since it follows from (6.25) that ∥p∥C(G) +∥Dp∥C(G) ≤ C∥p∥H3(G) ≤ C ′
τ <∞, we know that

(H ′(u− δe−Cτ t), pDu)L2(G) ≤
1

2

∫
G

H ′′(u− δe−Cτ t)[Du]2dx

+ C ′
τ

∫
G

[H ′(u− δe−Cτ t)(u− δe−Cτ t) +H ′′(u− δe−Cτ t)(u− δe−Cτ t)2]dx

=
1

2

∫
G

H ′′(u− δe−Cτ t)[Du]2dx+ 4C ′
τφ(t).

Here, note that H ′′(ξ)ξ2 = H ′(ξ)ξ = 2H(ξ) for any ξ ∈ R.
Finally, it follows from q + Cτ ≥ 0 and u ≥ 0

(H ′(u− δe−Cτ t), qu+ δCτe
−Cτ t)L2(G)

= (H ′(u− δe−Cτ t), [q + Cτ ]u)L2(G) − Cτ (H ′(u− δe−Cτ t), u− δe−Cτ t)L2(G) ≤ 0.

Combining above estimates, we obtain that φ(t) ≤ 4C ′
τφ

′(t), so that φ(t) ≤ φ(0)e4C
′
τ t

for t0 ≤ t ≤ τ . Since φ(0) = 0, it follows that φ(t) ≡ 0 for t0 ≤ t ≤ τ ; consequently, we
conclude that u(t) ≥ δe−Cτ t for G, for every t ∈ [t0, τ ].

6.4 Lyapunov function

In what follows, let U0 ∈ K be arbitrarily fixed and let U(t) = t(u(t), v(t)) denote the
global solution of (6.7) in the function space (6.23) starting from U0. We can prove the
convergence of global solution U(t) under the assumption that

∃t0 ∈ [0,∞) such that u(t) > 0 for G. (6.26)
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For such a U(t), Theorem 6.3 and Proposition 6.3 ensure that

u(t) > 0 for G for every t ∈ [t0,∞), (6.27)

and
∥U(t)∥D(A) ≤ R0 for every t ∈ [t0,∞), (6.28)

where R0 = (1 + t−1
0 )p1(∥U0∥X).

It is well known that the Keller-Segel system has Lyapunov functions, and that is
same for our problem. By combining (∂u

∂t
, log u − v)L2(G) and 1

γ
∥∂v
∂t
∥2L2(G)

, we obtain that,

for every t ∈ [t0,∞),

d

dt

∫
G

[
u log u− u− uv +

α

2γ
[Dv]2 +

β

2γ
v2
]
dx (6.29)

= −
∫
G

u[D[log u− v]]2dx− 1

γ

∫
G

(
∂v

∂t

)2

dx

due to u > 0 for G. Therefore,

Φ(U) =

∫
G

[
u log u− u− uv +

α

2γ
[Dv]2 +

β

2γ
v2
]
dx

=

∫
G

[u log u− u− uv]dx+
1

2γ
⟨A2v, v⟩H1(G)′×H1(G)

is a global Lyapunov functional of the problem (6.7). It is easy to see that Φ(U(t)) ≥ −CR0

for all t ∈ [t0,∞) with some constant CR0 ≥ 0 depending on R0.

6.4.1 Stationary solutions

Let us show the following proposition.

Proposition 6.4. The value Φ(U(t)) is monotonously decreasing in t ≥ t0. Moreover, if
d
dt

Φ(U(t)) |t=t = 0 at some time t ≥ t0, then U(t) is a stationary solution of (6.1).

Proof. The first assertion is obvious from (6.29). Assume that d
dt

Φ(U(t)) |t=t = 0 at some
time t and put U(t) = t(u, v). It follows from (6.29) that

D[log u− v] = 0 and
∂v

∂t
= −A2v + γu = 0 for G. (6.30)

Since ∂u
∂t

= D[uD(log u− v)] = 0, u is a stationary solution of (6.1).

As for stationary solutions of (6.7), we know the following proposition.

Proposition 6.5. Assume that U = t(u, v) ∈ D(A) is a stationary solution of (6.7), i.e.,
U is a solution of the problem:

0 = D2u−D [uDv] for a.e. G,

0 = αD2v − βv + γu for G,

u ≥ 0 and v ≥ 0 for G,∫
G
udx = 1.

(6.31)

Then, it holds that u > 0 for G.
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Proof. Obviously, v ∈ C2(G) due to H3(G) ⊂ C2(G). Furthermore, since D2u = [Du][Dv]+
uD2v ∈

∏
C(Ii), it holds that u ∈ C1(G) ∩

∏
C2(Ii).

Let us show the positivity of u by contradiction. Assume that there exist Ii ∈ E and
ai ∈ Ii such that ui(ai) = 0. Then, Diui(ai) = 0 due to the nonnegativity of ui (and (6.4)
if ai ∈ {0, li}). Regard Divi ∈ C(Ii) and D2

i vi ∈ C(Ii) as known functions and consider
the following Cauchy problem:{

D2
i ui − [Divi][Diui] − [D2

i vi]ui = 0 in Ii,

ui(ai) = 0, Diui(ai) = 0.

By the classical results for ordinary differential equations, the solution ui is written in the
form ui = C1u

(1)
i +C2u

(2)
i with linear independent solutions u

(1)
i , u

(2)
i and some constants

C1, C2 ∈ R. Then, considering the Wronskian of u
(1)
i and u

(2)
i at ai, we know that

C1 = C2 = 0. Therefore, ui ≡ 0 in Ii. This implies that u ≡ 0 for G, which contradicts∫
G
udx = 1.

6.4.2 ω-limit set

We consider the ω-limit set defined by

ω(U0) = {U ∈ X; ∃tn ↗ ∞ s.t. U(tn) → U in X}. (6.32)

Since the closed ball B
D(A)

(0;R0) of D(A) is a relatively compact set of X due to the
compact embeddings H2(G) ⊂ L2(G) and H3(G) ⊂ H1(G), it is observed from (6.28) that

ω(U0) ̸= ∅. Furthermore, since ∥U(t)∥
D(A

1
2 )

≤ C∥U(t)∥
1
2
X∥U(t)∥

1
2

D(A) ≤ CR
1
2
0 ∥U(t)∥

1
2
X due

to the moment inequality for A
1
2 (see (2.16)) and (6.28), we know that

U ∈ ω(U0) if and only if ∃tn ↗ ∞ such that U(tn) → U in D(A
1
2 ). (6.33)

It is clear that inft0≤t<∞ Φ(U(t)) > −∞. Meanwhile, Φ(U(tn)) → Φ(U) as n → ∞.
Therefore, it follows that

lim
t→∞

Φ(U(t)) = Φ(U) for any U ∈ ω(U0). (6.34)

From these results, we obtain the following theorem.

Theorem 6.4. The ω-limit set ω(U0) contains at least one stationary solution of (6.7).

Proof. Since Φ(U(·)) ∈ C1((t0,∞);R) and limt→∞ Φ(U(t)) = const., there exists some
increasing time sequence tn ↗ ∞ such that d

dt
Φ(U(t)) |t=tn

→ 0 as n→ ∞. Therefore, it
is observe from (6.29) that, as tn → ∞,√

u(tn)D[log u(tn) − v(tn)] → 0 in L2(G), (6.35)

∂v

∂t
(tn) → 0 in L2(G).

Note that (6.35) implies that

D2u(tn) −D[u(tn)Dv(tn)] → 0 in H1
C(G)′ (6.36)
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since, for w ∈ H1
C(G),∣∣∣⟨D2u(tn) −D[u(tn)Dv(tn)], w

⟩
H1

C(G)′×H1
C(G)

∣∣∣
=
∣∣∣(√u(tn)D[log u(tn) − v(tn)],

√
u(tn)Dw)L2(G)

∣∣∣
≤ CR0∥

√
u(tn)D[log u(tn) − v(tn)]∥L2(G)∥w∥H1(G)

due to (6.28).

On the other hand, since B
D(A)

(0;R0) is a relatively compact set of D(A
1
2 ) and

B
D(A)

(0;R0) is sequentially weakly closed in D(A), there exists some subsequence tnk
→

∞ such that U(tnk
) converges to a limit U = t(u, v) ∈ D(A) in D(A

1
2 ) and weakly in

D(A). Then, we know from (6.36) that D2u−D[uDv] = 0 in H1(G)′. Consequently, U is
a stationary solution of (6.7) and U ∈ ω(U0) by definition.

In what follows, let U = t(u, v) ∈ ω(U0) be fixed such that U is a stationary solution
of (6.7). Then, Proposition 6.5 ensures that U ∈ D(A)+. Now, our goal is to prove that
ω(U0) = {U}.

6.4.3 Some extension of Φ(U)

Remember that
∫
G
u(t)dx ≡ 1 for every t ∈ [0,∞) due to (6.15). In view of this fact,

consider the decomposition

um(t) = u(t) − u and vm(t) = v(t) − v.

Then, for every t ∈ (0,∞), um(t) is in Cm(G)(⊂ L2,m(G)), where L2,m(G) and Cm(G) are
defined in Subsection 3.2.3.

Since U ∈ D(A)+, there exist constants 0 < δ0 < δ1 and r > 0 such that

δ0 ≤ um + u ≤ δ1 for G if um ∈ BCC,m(G)(0; r). (6.37)

In view of this fact, we introduce a smooth extension of (ξ log ξ − ξ) on the whole line R
such that

χ(ξ) ≡ ξ log ξ − ξ for ξ ∈ (δ0/2, 2δ1) (6.38)

and the values χ(ξ) for ξ ∈ (−∞, δ0/2] ∪ [2δ1,∞) being defined suitably as follows; there
exist constants 0 < χ0 < χ1 such that

χ ∈ C2(R) and χ0 ≤ χ′′(ξ) ≤ χ1, ξ ∈ R. (6.39)

Obviously,
χ : (δ0/2, 2δ1) → R is analytic. (6.40)

Introduce the space
Xm = L2,m(G) ×H1(G)

and the functional Ψ : Xm → R given by, for Um = t(um, vm) ∈ Xm,

Ψ(Um)

=

∫
G

[χ(u+ um) − (u+ um)(v + vm)]dx+
1

2γ
⟨A2(v + vm), v + vm⟩H1(G)′×H1(G) .

It is observed from (6.39) that Ψ(Um) is defined for every Um ∈ Xm. In addition,
Ψ(Um) = Φ(U + Um) if um ∈ BCm(G)(0; r) due to (6.37) and (6.38).
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6.4.4 Differentiability of Ψ(Um)

In order to prove the convergence result, the Fréchet derivative of Ψ(Um) plays an impor-
tant role. Identifying L2,m(G) with its dual L2,m(G)′, we regard X ′

m = L2,m(G) ×H1(G)′.

Proposition 6.6. The function Ψ : Xm → R is Fréchet differentiable with derivative

Ψ′(Um) =

(
P [χ′(u+ um) − (v + vm)]
1
γ
A2(v + vm) − (u+ um)

)
∈ X ′

m for Um = t(um, vm) ∈ Xm, (6.41)

where P is given by (3.6). In particular, Ψ′(0) = 0.

Proof. From the simple calculation, we know that, for Gm = t(gm, hm) ∈ Xm,

Ψ(Um +Gm) − Ψ(Um) −
⟨(

P [χ′(u+ um) − (v + vm)]
1
γ
A2(v + vm) − (u+ um)

)
, Gm

⟩
X′

m×Xm

=

∫
G

[χ(u+ um + gm) − χ(u+ um) − χ′(u+ um) − gmhm] dx

+
1

2γ
⟨A2h

m, hm⟩H1(G)′×H1(G) .

Due to (6.39),∣∣∣∣∫
G

[χ(u+ um + gm) − χ(u+ um) − χ′(u+ um)] dx

∣∣∣∣ ≤ χ1∥gm∥2L2(G)
,

so,
|Ψ(Um +Gm) − Ψ(Um) − ⟨Ψ′(Um), Gm⟩X′

m×Xm
| ≤ C∥Gm∥2Xm

. (6.42)

Hence, the Fréchet derivative (6.41) is obtained.
Remember (6.30). Particularly, since u, v ∈ H1(G), we know that log u − v = const

which does not depend on Ii ∈ E. Hence, P [log u − v] = P [χ′(u) − v] = 0 due to (6.37);
consequently, Ψ′(0) = 0.

Due to (6.39), it is easy to see that Ψ′ is Lipschitz continuous, i.e., there exists a
constant L0 > 0 such that

∥Ψ′(Um) − Ψ′(Ũm)∥X′
m
≤ L0∥Um − Ũm∥Xm for any Um, Ũm ∈ Xm. (6.43)

6.5 Asymptotic Convergence of Global Solutions

In this section, we conclude the main result of this chapter. As stating in Section 6.4, we
assume that the global solution U(t) = t(u(t), v(t)) starting from U0 ∈ K satisfies (6.26).
Let U = t(u, v) ∈ ω(U0) be a stationary solution of (6.7) and U ∈ D(A)+. Furthermore,
Um(t) = t(um(t), vm(t)) = t(u(t) − u, v(t) − v).

We introduce the following two spaces

W = Cm(G) ×H2(G) and X−1 = H1(G)′ × L2(G).
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6.5.1 Key properties of Ψ

Let us show the following angle condition in W .

Proposition 6.7. Let t ≥ t0. For sufficiently small r0 > 0, there exists a constant ε > 0
such that

− d

dt
Ψ(Um(t)) ≥ ε∥Ψ′(Um(t))∥L2,m(G)×L2(G)

∥∥∥∥dUm

dt
(t)

∥∥∥∥
X−1

for Um(t) ∈ BW (0; r0).

(6.44)

Proof. Firstly, we show that

− d

dt
Ψ(Um(t)) ≥ ε′∥Ψ′(Um(t))∥2L2,m(G)×L2(G)

(6.45)

with some constant ε′ > 0. Here, let r0 be chosen small enough such that (6.37) is satisfied
if Um(t) ∈ BW (0; r0). Then, by using a version of Poincaré-Wirtinger inequality (3.7), we
obtain that

∥P [χ′(u(t)) − v(t)]∥L2,m(G) ≤ C∥D[χ′(u(t)) − v(t)]∥L2,m(G)

≤ C√
δ0
∥
√
u(t)D[χ′(u(t)) − v(t)]∥L2,m(G).

Therefore, (6.45) is obtained from (6.29) and (6.41).

Secondly, we show that

− d

dt
Ψ(Um(t)) ≥ ε′′

∥∥∥∥dUm

dt
(t)

∥∥∥∥2
X−1

(6.46)

with some constant ε′′ > 0. Noting dU
dt

= dUm

dt
, this is immediately observed from the

estimate: for w ∈ H1(G),

|
⟨
D2u(t) −D[u(t)Dv(t)], w

⟩
H1(G)′×H1(G)

|

= |(Du(t) − u(t)Dv(t), Dw)L2(G)| ≤
√
δ1∥
√
u(t)D[χ′(u(t)) − v(t)]∥L2(G)∥w∥H1(G).

Here, (6.37) is used again.

Combining (6.45) and (6.46), we obtain the desired angle condition (6.44).

Next, we can also show the following  Lojasiewicz-Simon inequality.

Proposition 6.8. For sufficiently small r1 > 0, there exist an exponent 0 < θ ≤ 1/2 and
a constant ε̃ > 0 such that

∥Ψ′(Um)∥X′
m
≥ ε̃|Ψ(Um) − Ψ(0)|1−θ if Um ∈ BW (0; r1). (6.47)

The proof of the proposition will be given in Section 6.6.
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6.5.2 Asymptotic convergence of u(t) to u

We give a main result of this chapter: the convergence of U(t) to U in X−1 as t→ ∞.
If Ψ(U(t)) = Ψ(U(s)) for some t0 ≤ s < t, then Ψ(U(τ)) is constant with respect to

τ ∈ [s, t] and Proposition 6.4 yields that U(τ) is a stationary solution, i.e., ω(U0) = {U}.
So, it is enough to consider the case where Ψ(U(s)) > Ψ(U(t)) for any pair of t0 ≤ s < t.

Let us begin with proving the following crucial proposition. Let r > 0 be a radius so
that (6.44) and (6.47) is satisfied in a ball BW (0; r).

Proposition 6.9. Let t0 ≤ s < t < ∞ be such that, for all τ ∈ [s, t], the values Um(τ)
stay in BW (0; r). Then, we have

∥Um(t) − Um(s)∥W ≤ C[Ψ(Um(s)) − Ψ(0)]
θ
3 , (6.48)

where C > 0 depends on θ, ε, ε̃, and R0.

Proof. Since Ψ(Um(τ)) > Ψ(0) for s ≤ τ ≤ t, we observe from (6.44) that

− d

dτ
[Ψ(Um(τ)) − Ψ(0)]θ = −θ[Ψ(Um(τ)) − Ψ(0)]θ−1 d

dτ
Ψ(Um(τ))

≥ εθ[Ψ(Um(τ)) − Ψ(0)]θ−1∥Ψ′(Um(τ))∥L2,m(G)×L2(G)

∥∥∥∥dUm

dt
(τ)

∥∥∥∥
X−1

.

Since ∥Ψ′(Um(τ))∥L2,m(G)×L2(G) ≥ C∥Ψ′(Um(τ))∥X′
m

, it follows from (6.47) that

− d

dτ
[Ψ(Um(τ)) − Ψ(0)]θ ≥ Cε̃εθ

∥∥∥∥dUm

dt
(τ)

∥∥∥∥
X−1

.

Integrate this inequality on [s, t]. Then,

[Ψ(Um(s)) − Ψ(0)]θ − [Ψ(Um(t)) − Ψ(0)]θ ≥ C

∫ t

s

∥∥∥∥dUm

dτ
(τ)

∥∥∥∥
X−1

dτ

≥ C∥Um(t) − Um(s)]∥X−1 . (6.49)

On the other hand, since D(A
1
2 ) is continuously embedded in W , it is observed from

(3.31) and (3.40) that

∥Um(t) − Um(s)∥W ≤ CR0∥Um(t) − Um(s)∥
1
3

X−1 . (6.50)

By combining (6.49) and (6.50), the desired estimate (6.48) is concluded.

Due to (6.33), there exist some time sequence tn ↗ ∞ and an integer N such that,

for all n ≥ N , ∥Um(tn)∥W ≤ r
3

and C[Ψ(Um(tn)) − Ψ(0)]
θ
3 ≤ r

3
, here C is the constant

obtained in (6.48). Assume that, for all τ ∈ [tN , t], the values Um(τ) lie in BW (0; r).
Applying (6.48) with s = tN , we observe that

∥Um(t)∥W ≤ ∥Um(t) − Um(tN)∥W + ∥Um(tN)∥W

≤ C[Ψ(Um(tN)) − Ψ(0)]
θ
3 + ∥Um(tN)∥W ≤ 2r

3
.

This means that, after the time tN , the trajectory must remain in the ball BW (0; 2r
3

)
forever.

It is now ready to prove the asymptotic convergence of U(t).
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Theorem 6.5. Let U(t) be the global solution starting from U0 ∈ K satisfying (6.26) and
take a U ∈ ω(U0) which is a stationary solution of (6.1). Then, actually ω(U0) = {U}
and it holds the following estimate

∥Um(t)∥X−1 ≤ C[Ψ(Um(t)) − Ψ(0)]θ, ∀t ≥ tN , (6.51)

where Um(t) = U(t) − U and θ is the exponent appearing in (6.47).

Proof. Let tN ≤ s ≤ tn; since Um(τ) ∈ BW (0; r) for all τ ∈ [s, tn], the inequality (6.49) is
available with t = tn to conclude that

[Ψ(Um(s)) − Ψ(0)]θ − [Ψ(Um(tn)) − Ψ(0)]θ ≥ C∥Um(tn) − Um(s)∥X−1 .

By taking limit n→ ∞, we obtain that

∥Um(s)∥X−1 ≤ C−1[Ψ(Um(s)) − Ψ(0)]θ, s ≥ tN ,

since Um(tn) → 0 in W .

When U0 ∈ D(A)+, the condition (6.26) is satisfied automatically with t0 = 0. So, we
obtain the following corollary.

Corollary 6.1. For any U0 ∈ D(A)+, the global solution U(t) starting from U0 converges
to a stationary solution U ∈ ω(U0) and it holds the following estimate

∥Um(t)∥X−1 ≤ C[Ψ(Um(t)) − Ψ(0)]θ, ∀t ≥ tN . (6.52)

6.6 Proof of  Lojasiewicz-Simon inequality

In this section, we prove the  Lojasiewicz-Simon inequality (6.47). The following proof is
based on the techniques in [29, Section 4]. We divide the proof into five steps.

Step 1. For the eigenvalue problem

A−1
2 en = µnen in L2(G),

due to a theory of compact operator and (3.18), we know that there exist a Hilbert basis
{en}n∈N(⊂ H2(G)) of L2(G) and positive eigenvalues {µn}n∈N such that µn ↘ 0 as n→ ∞.
For each N ∈ N, considering orthogonal projection QN from L2(G) onto span {e1, . . . , eN},
the estimate

∥v∥2L2(G)
≤ ∥QNv∥2L2(G)

+ µN+1 ⟨A2v, v⟩H1(G)′×H1(G) , v ∈ H1(G) (6.53)

is obtained.
From this result, it is observed that the mapping Θ : Xm → X ′

m given by, for U =
t(u, v) ∈ Xm,

Θ(U) = Ψ′(U) +

(
0

ΛQNv

)
=

(
P [χ′(u+ u) − (v + v)]

1
γ
A2(v + v) − (u+ u) + ΛQNv

)
,

is a coercive monotone operator if N ∈ N and Λ > 0 take sufficiently large.
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Proposition 6.10. For sufficiently large N ∈ N and Λ > 0, there exist 0 < L1 such that

1

L1

∥U − Ũ∥2X ≤
⟨

Θ(U) − Θ(Ũ), U − Ũ
⟩
X′

m×Xm

, U, Ũ ∈ Xm. (6.54)

Proof. Since χ′(ξ) − χ′(ξ̃) =
∫ 1

0
χ′′(θξ + (1 − θ)ξ̃)dθ × (ξ − ξ̃) for ξ, ξ̃ ∈ R, it is observed

from (6.39) that χ0(ξ − ξ̃)2 ≤ (χ′(ξ) − χ′(ξ̃))(ξ − ξ̃). From this, it is easy to obtain the
estimate ⟨

Ψ′(U) − Ψ′(Ũ), U − Ũ
⟩
X′

m×Xm

≥ 1

γ
⟨A2(v − ṽ), v − ṽ⟩H1(G)′×H1(G) +

χ0

2
∥u− ũ∥2L2(G)

− 8

χ0

∥v − ṽ∥2L2(G)
.

After multiplying Λ > 0 to (6.53), we add the product to this inequality. Then, by
choosing Λ > 8/χ0 and taking N ∈ N sufficiently large (so that µN+1 sufficiently small),
we obtain the desired estimate (6.54).

It follows by (6.54) that Θ : Xm → X ′
m is injective. In addition, by the Browder-Minty

theorem (see [96, Theorem 9.45]), Θ is surjective. As for its inverse Θ−1 : X ′
m → Xm, we

obtain by (6.54) that

∥Θ−1(U∗) − Θ−1(Ũ∗)∥Xm ≤ L1∥U∗ − Ũ∗∥X′
m

for all U∗, Ũ∗ ∈ X ′
m. (6.55)

Step 2. We introduce ∂Θ0 ∈ L(Xm, X
′
m) defined by

∂Θ0 =

(
P 0
0 1

)(
χ′′(u) −1
−1 1

γ
A2 + ΛQN

)
∈ L(Xm, X

′
m). (6.56)

By using the same techniques in the proof of Proposition 6.10, it is obtained that 1
L1
∥U∥2Xm

≤
⟨∂Θ0U,U⟩X′

m×Xm
for U ∈ Xm. Therefore,

∂Θ0 is a linear isomorphism from Xm onto X ′
m. (6.57)

Here, we introduce the following two spaces:

Zm = Cm(G) ×H2(G) and Ym = Cm(G) × L2(G).

As a restriction of Θ, consider the mapping Θ̃ : Zm → Ym such that

Θ̃(U) =

(
P [χ′(u+ u) − (v + v)]

1
γ
A2(v + v) − (u+ u) + ΛQNv

)
∈ Ym, U =

(
u
v

)
∈ Zm. (6.58)

Remember that P given by (3.6) becomes a bounded linear projection from C(G) onto
Cm(G). Then, we can show the following proposition.

Proposition 6.11. Θ̃ : U(0) ⊂ Zm → Ym is an analytic function, where U(0) is a
neighborhood of 0 in Zm.

Proof of the Proposition. It suffices to prove that the mapping F : BCm(G)(0; r) → Cm(G)
given by F(u) = Pχ′(u + u) is an analytic mapping, where r > 0 is in (6.37). The proof
is similar to that of Proposition 2.1, so we omit it.
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Particularly, its first derivative Θ̃′ : U(0) → L(Zm, Ym) is given by, for U = t(u, v) ∈
U(0),

Θ̃′(U) =

(
P 0
0 1

)(
χ′′(u+ u) −1

−1 1
γ
A2 + ΛQN

)
∈ L(Zm, Ym).

Here, we want to apply the inverse mapping theorem (Theorem 2.3). To this end, we
show the following proposition.

Proposition 6.12. Θ̃′(0) : Zm → Ym is bijective.

Proof of the Proposition. Let t(z, w) ∈ Ym. Then, since t(z, w) ∈ X ′
m, it follows from

(6.57) that there exists a unique t(g, h) ∈ Xm such that

∂Θ0

(
g
h

)
=

(
P [χ′′(u)g − h]

1
γ
A2h− g + ΛQNh

)
=

(
z
w

)
.

Firstly, since 1
γ
A2h = g−ΛQNh+w ∈ L2(G), we know that h ∈ H2(G) due to Theorem 3.1.

On the other hand, since 1/χ′′(u) ∈ C(G), we obtain that

g =
1

χ′′(u)

[
h+ z +

∫
G

[χ′′(u)g − h]dx∑
Ii∈E li

]
∈ C(G).

Therefore, Θ̃′(0) is a bijection from Zm onto Ym.

Due to Propositions 6.11 and 6.12, it follows from Theorem 2.3 that there exists a
neighborhood V(0) ⊂ Ym (note that Θ̃(0) = 0 due to Proposition 6.6) such that

Θ̃ : U(0) → V(0) is an analytic diffeomorphism, (6.59)

by retaking U(0) small enough.
Step 3. Consider the following finite dimensional linear space

EN = {0} × span {e1, . . . , eN} ⊂ Zm

with its norm ∥ · ∥EN
. From the fact that any two norms on a finite dimensional linear

space are equivalent, we particularly know the norm equivalence

∥t(0, v)∥EN
= ∥v∥H1(G) for t(0, v) ∈ EN . (6.60)

Then, we can show the following proposition.

Proposition 6.13. There exist a constant C > 0 and a radius r1 > 0 such that

∥(Ψ ◦ Θ̃−1)′(t(0,ΛQNv))∥E′
N

≥ C|Ψ ◦ Θ̃−1(t(0,ΛQNv)) − Ψ(t(0, 0))|1−θ, ∥v∥H1(G) < r1. (6.61)

Proof of the proposition. It is observed from similar techniques to the proof of Proposi-
tion 6.11 that Ψ is analytic as a function from U(0) ⊂ Zm to R. By combining this fact
and (6.59), we know that

Ψ ◦ Θ̃−1 : V(0) ∩ EN → R is an analytic function from EN to R. (6.62)
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Therefore, we can apply the classical  Lojasiewicz theorem [10] to obtain that there exist
θ ∈ (0, 1/2] and a neighborhood W(0) in EN such that

∥(Ψ ◦ Θ̃−1)′(U0) − (Ψ ◦ Θ̃−1)′(0)∥E′
N

≥ C|Ψ ◦ Θ̃−1(U0) − Ψ ◦ Θ̃−1(0)|1−θ, U0 ∈ W(0).

Here, note that (Ψ ◦ Θ̃−1)′(U0) = Ψ′(Θ̃−1(U0)) ◦ (Θ̃−1)′(U0) by the chain rule, so that
(Ψ ◦ Θ̃−1)′(0) = 0 due to Θ̃−1(0) = 0. Therefore, we obtain that

∥(Ψ ◦ Θ̃−1)′(U0)∥E′
N
≥ C|Ψ ◦ Θ̃−1(U0) − Ψ(0)|1−θ, U0 ∈ W(0).

Thus, (6.60) implies (6.61)

Step 4. Let us give estimate of the left hand side of (6.61). It follows from (6.59) that
∥(Θ̃−1)′(t(0,ΛQNv))∥L(EN ,Xm) ≤ Cr1 if ∥v∥H1(G) < r1. Therefore,

∥(Ψ ◦ Θ̃−1)′(t(0,ΛQNv))∥E′
N
≤ Cr1∥Ψ′(Θ̃−1(t(0,ΛQNv)))∥X′

m
.

For arbitrarily fixed u ∈ L2,m(G), we know that

∥Ψ′(Θ̃−1(t(0,ΛQNv)))∥X′
m
≤ ∥Ψ′(Θ̃−1(t(0,ΛQNv))) − Ψ′(t(u, v))∥X′

m
+ ∥Ψ′(t(u, v))∥X′

m
.

(6.63)
Then, since it follows by (6.55) and the definition of Θ that

∥Θ̃−1(t(0,ΛQNv)) − t(u, v)∥Xm ≤ L1∥Ψ′(t(u, v))∥X′
m
, (6.64)

we know from (6.43) that

∥Ψ′(Θ̃−1(t(0,ΛQNv))) − Ψ′(t(u, v))∥X′
m
≤ L0L1∥Ψ′(t(u, v))∥X′

m
.

Therefore, for t(u, v) ∈ Xm such that ∥v∥H1(G) < r1,

∥Ψ′(t(u, v))∥X′
m
≥ C|Ψ ◦ Θ̃−1(t(0,ΛQNv)) − Ψ(t(0, 0))|1−θ. (6.65)

Step 5. From (6.42) with U = t(u, v) and G = Θ̃−1(t(0,ΛQNv))− t(u, v), it is observed
that

|Ψ(t(u, v)) − Ψ ◦ Θ̃−1(t(0,ΛQNv))| ≤ ∥Ψ′(t(u, v))∥X′
m
∥Θ̃−1(t(0,ΛQNv)) − t(u, v)∥Xm

+ C∥Θ̃−1(t(0,ΛQNv)) − t(u, v)∥2Xm
.

By using (6.64), we know that

|Ψ(t(u, v)) − Ψ ◦ Θ̃−1(t(0,ΛQNv))| ≤ C∥Ψ′(t(u, v))∥2X′
m
. (6.66)

Therefore, we obtain that, for t(u, v) ∈ Xm such that ∥v∥H1(G) < r1,

|Ψ(t(u, v)) − Ψ(t(0, 0))|
≤ |Ψ(t(u, v)) − Ψ ◦ Θ̃−1(t(0,ΛQNv))| + |Ψ ◦ Θ̃−1(t(0,ΛQNv)) − Ψ(t(0, 0))|
≤ C[∥Ψ′(t(u, v))∥2X′

m
+ ∥Ψ′(t(u, v))∥1/(1−θ)

X′
m

].

Due to (6.43), it is possible to choose sufficiently small r1 > 0 such that ∥Ψ′(t(u, v))∥2X′
m
≤

∥Ψ′(t(u, v))∥1/(1−θ)
X′

m
for all t(u, v) ∈ BXm(0; r1).

Since W is continuously embedded in Xm, we have established the desired estimate
(6.47).
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Chapter 7

Quasilinear Diffusion Equations

In this chapter, we consider the initial-boundary value problem for a quasilinear parabolic
equation.

As a motivation to consider this problem (7.1), we want to study asymptotic behavior
of solutions of (5.2). However, it is very difficult to investigate the time evolution of solu-
tions in detail. One of the reasons for this difficulty is that (5.2) is an advection-reaction-
diffusion equation with three components. Furthermore, the moving target T (x, t) makes
it hard to investigate the stationary state. Therefore, we intend to simplify the original
model. First, we assume that the target is stationary, i.e., T (x, t) ≡ T (x). Next, we as-
sume that the sensitivity functions are of the forms χ1(v) = V1v and χ2(w) = V2w, where
V1 and V2 are some positive constants. Finally, we assume that g1 and d are sufficiently
large, so that v is in quasi-equilibrium state, i.e., v = (g1/d)T (x)u. It is the same for
g2 and h; therefore, w = (g2/h)u. By substituting these for χ1(v) and χ2(w) in the first
equation of (5.2), we obtain that

∂u

∂t
= a1

∂2u

∂x2
− ∂

∂x

[
u
∂

∂x

(
g1V1
d
T (x) − g2V2

h

)
u

]
.

Putting a1 = a, G(x) = g2V2/h− (g1V1/d)T (x), we then arrive at (7.1).

On the other hand, Iwasaki and Hatanaka have applied these analytical results to
theoretical understandings evolutionary computation, which is one of the famous compu-
tational algorithms to black box function optimization problems [97].

In [33], we consider the problem (7.1) with the Neumann boundary conditions, but
we present some results with the periodic conditions in this chapter.

7.1 Model Equations

We are concerned with the initial-boundary value problem for a nonlinear diffusion equa-
tion 

∂u

∂t
= a

∂2u

∂x2
+

∂

∂x

[
u
∂

∂x
(G(x)u)

]
in I × (0,∞),

u(0, t) = u(1, t) and
∂u

∂x
(0, t) =

∂u

∂x
(1, t) on (0,∞),

u(x, 0) = u0(x) in I,

(7.1)
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in the unit open interval I = (0, 1). Note that the first equation of (7.1) is rewritten as

∂u

∂t
=

∂

∂x

[
(a+G(x)u)

∂

∂x
u

]
+

∂

∂x
[G′(x)u2]. (7.2)

We assume that a > 0 is a positive constant. We also assume that

G ∈ C2
P (I) (7.3)

and there exists a positive constant c > 0 such that

c ≤ G(x) in I. (7.4)

The space of initial functions is set by

K = {u0 ∈ H1
P (I);u0(x) > 0 in I}. (7.5)

Here, C2
P (I) = {u ∈ C2(I); u(0) = u(1), u′(0) = u′(1) and u′′(0) = u′′(1)} and H1

P (I) =
{u ∈ H1(I); u(0) = u(1)}.

In Section 7.2, a local unique solution to (7.1) is constructed for each initial value
u0 ∈ K. In Section 7.3, some regularity properties of local solutions are verified, which
is necessary to obtain a priori estimates. In Section 7.4, we establish a priori estimates
for local solutions to obtain the global existence of solutions. Section 7.5 is devoted to
investigating the stationary problem of (7.1). Finally, in Section 7.6, we show that each
global solution converges to a corresponding stationary solution.

7.2 Local Solutions

Note that H1
P (I) ⊂ L2(I) with dense and continuous embedding. Therefore, a triplet of

spaces H1
P (I) ⊂ L2(I) ⊂ H1

P (I)′ is constructed.
Problem (7.1) is written as the Cauchy problem for an abstract equation

du

dt
+ A(u)u = F (u), 0 < t <∞,

u(0) = u0,
(7.6)

in X = H1
P (I)′. Here, A(u) is a linear operator defined for u ∈ Z = Hε1

P (I), where
1/2 < ε1 < 1. For u ∈ Z, let us consider the sesquilinear form

a(u;u1, u2) =

∫
I

(a+G(x)χ(Re u))
du1
dx

du2
dx

dx+

∫
I

u1u2dx

on H1
P (I). Here χ(u) is a smooth cutoff function such that χ(u) = u for u ≥ 0 and

χ(u) ≡ −δ for u ≤ −δ, δ > 0 being some small positive constant such that 2∥G∥Cδ ≤ a.
Then, due to (7.3) and (7.4), the sesquilinear form a(u; ·, ·) is continuous and coercive.
More precisely, a(u; ·, ·) satisfies that

|a(u;u1, u2)| ≤Mu ∥u1∥H1 ∥u2∥H1 , u1, u2 ∈ H1
P (I), (7.7)
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and
Re a(u;u1, u1) ≥ min{a/2, 1} ∥u1∥2H1 , u1 ∈ H1

P (I), (7.8)

where Mu ≥ 1 depends on ∥u∥Z (note that ∥u∥C ≤ C∥u∥Z due to (2.6)) and ∥G∥C.
Therefore, a(u; ·, ·) defines sectorial operators A(u) : H1

P (I) → H1
P (I)′ such that

a(u;u1, u2) = ⟨A(u)u1, u2⟩H1′
P ×H1

P
, u1, u2 ∈ H1

P (I). (7.9)

with angles ωA(u) < π/2. We define A(u) in (7.6) as this one.
The nonlinear operator F : W → X is given by

F (u) = u+
∂

∂x
[G′(x)u2].

Here, W = Hε2
P (I), where ε1 < ε2 < 1.

Let 0 < R <∞, and let A(u) be defined for u ∈ KR = {u ∈ Z; ∥u∥Z < R}. According
to Theorem 2.10, we can see from (7.7) and (7.8) that the spectrum σ(A(u)) is contained
in a fixed open sectorial domain, i.e.,

σ(A(u)) ⊂ ΣωR
= {λ ∈ C; | arg λ| < ωR}, u ∈ KR (7.10)

with some angle ωA(u) < ωR < π/2, and the resolvent satisfies

∥∥(λ− A(u))−1
∥∥
L(X)

≤ MR

|λ|
, λ /∈ ΣωR

, u ∈ KR, (7.11)

with a constant MR ≥ 1. Furthermore, the domain of A(u) satisfies

D(A(u)) ≡ H1
P (I), u ∈ KR. (7.12)

Let us set Y = Hε0
P (I) with a third exponent ε0 chosen so that 1/2 < ε0 < ε1. Thanks

to the assumption of χ(u), it holds that

∥χ(Re u) − χ(Re v)∥C

=

∥∥∥∥∫ 1

0

χ′(θRe u+ (1 − θ)Re v)dθ · (Re u− Re v)

∥∥∥∥
C

≤ C(∥u∥C + ∥v∥C) ∥u− v∥C
≤ CR ∥u− v∥Y , u, v ∈ KR.

Therefore,

| ⟨[A(u) − A(v)]u1, u2⟩H1′
P ×H1

P
|

=

∣∣∣∣∫
I

G(x)[χ(Re u) − χ(Re v)]
du1
dx

du2
dx

dx

∣∣∣∣
≤ ∥G∥C∥χ(Re u) − χ(Re v)∥C

∥∥∥∥du1dx
∥∥∥∥
L2

∥∥∥∥du2dx
∥∥∥∥
L2

≤ CR∥G∥C∥u− v∥Y ∥u1∥H1∥u2∥H1 , u1, u2 ∈ H1
P (I), u, v ∈ KR.
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This inequality implies that∥∥[A(u) − A(v)]A(v)−1
∥∥
L(X)

≤ CR ∥G∥C ∥u− v∥Y , u, v ∈ KR. (7.13)

The nonlinear operator F satisfies

∥F (u) − F (v)∥X

≤ ∥u− v∥X +

∥∥∥∥ ∂∂x [G′(x)(u+ v)(u− v)]

∥∥∥∥
X

≤ C [1 + ∥G∥H1(∥u∥Z + ∥v∥Z)] ∥u− v∥W , u, v ∈ W. (7.14)

By similar techniques to the proof of Theorem 3.2, we verify that, for any 3/4 < θ ≤ 1,
D(A(u)θ) = [H1

P (I)′, H1
P (I)]θ = H2θ−1

P (I) with a norm equivalence (although u is not in
H1

P (I) but in Z = Hε1
P (I)). Thus, by setting α = (1 + ε0)/2, β = (1 + ε1)/2, and

η = (1 + ε2)/2, we see that, for any u ∈ KR, D(A(u)α) = Y , D(A(u)β) = Z, and
D(A(u)η) = W with the estimates

∥ũ∥Y ≤ D1 ∥A(u)αũ∥X , ũ ∈ D(A(u)α), u ∈ KR,

∥ũ∥Z ≤ D2

∥∥A(u)βũ
∥∥
X
, ũ ∈ D(A(u)β), u ∈ KR,

∥ũ∥W ≤ D3 ∥A(u)ηũ∥X , ũ ∈ D(A(u)η), u ∈ KR,

(7.15)

Di > 0 (i = 1, 2, 3) being some constants depending on R. The initial value u0 ∈ KR ∩K

satisfies

u0 ∈ D(A(u0)) = H1
P (I). (7.16)

The exponents satisfy the relations

3

4
< α < β < η < 1. (7.17)

Theorem 7.1. For each u0 ∈ KR ∩K, there exists a unique local solution to (7.6) in the
function space:{

0 ≤ u ∈ C([0, Tu0 ];H
1
P (I)) ∩ C1−α([0, Tu0 ];Y ) ∩ C1((0, Tu0 ];H

1
P (I)′),

F (u) ∈ F1,σ((0, Tu0 ];H
1
P (I)′),

(7.18)

with 0 < σ < min{β − α, 1 − η}, where Tu0 is determined by the norm ∥u0∥H1
P
. Further-

more, u satisfies the estimates

∥F (u)∥F1,σ + max
0≤t≤Tu0

∥A(u(t))u(t)∥H1′
P
≤ R0 (7.19)

with a constant R0 determined by the norm ∥u0∥H1
P
.

Proof. Let us apply a Theorem 4.2 to construct local solutions to (7.6). Conditions
(7.10) – (7.17) imply that the conditions of Theorem 4.2 are satisfied. Therefore, for any
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u0 ∈ KR ∩ K, there exists an interval [0, Tu0 ] such that (7.6) possesses a unique local
solution in the function space:{

u ∈ C([0, Tu0 ];H
1
P (I)) ∩ C1−α([0, Tu0 ];Y ) ∩ C1((0, Tu0 ];H

1
P (I)′),

F (u) ∈ F1,σ((0, Tu0 ];H
1
P (I)′),

(7.20)

with 0 < σ < min{β − α, 1 − η}, where Tu0 is determined by the norm ∥u0∥H1
P

. Further-
more, u satisfies the estimates (7.19).

Let us show the nonnegativity of local solutions of (7.6). For u0 ∈ KR ∩ K, let u(t)
be the local solution of (7.6) constructed above in (7.20). Firstly, since u0 is real valued,
the uniqueness of the solution yields that u(t) is real valued.

Let H(u) be a C1,1 cutoff function given by H(u) = u2/2 for −∞ < u < 0 and
H(u) ≡ 0 for 0 ≤ u < ∞. Since u ∈ C([0, Tu0 ];H

1
P (I)) ∩ C1((0, Tu0 ];H

1
P (I)′), we see that

ψ(t) =
∫
I
H(u(t))dx is continuously differentiable with the derivative

ψ′(t) = ⟨H ′(u(t)), u′(t)⟩H1
P×H1′

P
, 0 < t ≤ Tu0 ,

where ⟨·, ·⟩H1
P×H1′

P
is a duality product of {H1

P (I), H1
P (I)′}. Therefore, we have

ψ′(t) =

⟨
H ′(u(t)),

∂

∂x

[
(a+G(x)χ(u(t)))

∂

∂x
u(t)

]⟩
H1

P×H1′
P

+

⟨
H ′(u(t)),

∂

∂x

[
G′(x)u(t)2

]⟩
H1

P×H1′
P

.

Due to the assumption of χ(·), we see that⟨
H ′(u(t)),

∂

∂x

[
(a+G(x)χ(u(t)))

∂

∂x
u(t)

]⟩
H1

P×H1′
P

≤ −a
2

∫
I

∣∣∣∣ ∂∂xH ′(u(t))

∣∣∣∣2 dx
and ⟨

H ′(u(t)),
∂

∂x

[
G′(x)u(t)2

]⟩
H1

P×H1′
P

≤ a

2

∫
I

∣∣∣∣ ∂∂xH ′(u(t))

∣∣∣∣2 dx+ C∥H ′(u(t))∥2L2
∥G∥2C2 .

Therefore, we obtain that

ψ′(t) ≤ C∥G∥2C2ψ(t), 0 < t ≤ Tu0 ,

so,
ψ(t) ≤ ψ(0) exp

(
C∥G∥2C2t

)
, 0 < t ≤ Tu0 .

Then, ψ(0) = 0 implies ψ(t) ≡ 0. Thus, u(t) ≥ 0 for every 0 < t ≤ Tu0 .

Since u(t) ≥ 0, it holds that χ(Re u(t)) = u(t); this then means that the local solution
of (7.6) is regarded as a local solution to the original problem (7.1).
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7.3 Some Regularity Properties

As will be seen in the next section, we have to obtain the a priori estimate of the form
(7.27) to show the global existence. To this end, it is necessary to verify some regularity
property of local solutions in the variable t. Our goal is to prove that, for u0 ∈ K ∩KR,
the local solution constructed above enjoys the regularity

u ∈ C((0, Tu0 ];H
2
P (I)) ∩ C1((0, Tu0 ];L2(I)),

so that d
dt

∥∥∂u
∂x

∥∥2
L2

is well-defined.
Firstly, we prove the following lemma.

Lemma 7.1. Let 0 < τ < Tu0. Then, it holds that

sup
τ≤t≤Tu0

∥A(t)1+ρ(u(t))∥H1′
P
≤ CR0 (7.21)

with some exponent 0 < ρ < σ.

Proof. We regards u(t) as a solution of the linear problem
du

dt
+ A(t)u = F (t), τ < t ≤ Tu0

u(τ) = uτ ,
(7.22)

in H1
P (I)′. Here, the linear operator A(t) is given by A(t) = A(u(t)), and the function

F (t) is given by F (t) = F (u(t)). In order to apply Theorem 4.4 (with X = HP (I)′) to
(7.22), we verify the conditions in the theorem.

The conditions (7.10), (7.11), and (7.12) implies that (4.18), (4.19), and (4.20), re-
spectively. In addition, (7.13) and u ∈ C1−α([0, Tu0 ];Y ) imply that∥∥[A(t) − A(s)]A(s)−1

∥∥
L(H1′

P )
≤ NR0 |t− s|1−α, 0 ≤ s, t ≤ T,

with NR0 > 0, that is, (4.21) holds true with µ = 1 − α.
The external force F satisfies (4.22) since F (u) ∈ F1,σ((0, Tu0 ];H

1
P (I)′) and σ < µ. In

the meantime, for all τ ≤ t ≤ Tu0 , u(t) ∈ H1
P (I) implies that F (t) ∈ L2(I) = D(A(t)1/2).

Therefore, for arbitrary 0 < ρ < σ,

∥A(t)ρF (t)∥H1′
P

= ∥A(t)ρ−1/2A(t)1/2F (t)∥H1′
P
≤ ∥A(t)ρ−1/2∥L(H1′

P )∥A(t)1/2F∥H1′
P

≤ CR0∥F∥L2 ,

thus, we verify (4.23). Finally, note that uτ ∈ H1
P (I) = D(A(τ)).

Let us apply Theorem 4.4 to (7.22). Then, we obtain from (4.24) the desired estimate
(7.21).

Due to this Lemma, we have

∥u(t) − u(s)∥H1
P
≤ CR0 |t− s|µ (7.23)
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with µ = ρ/(1+ρ). Indeed, by applying generalized moment inequality (2.17) with θ0 = 1
and θ1 = 1 + ρ,

∥u(t) − u(s)∥H1
P
≤ CR0∥A(t)[u(t) − u(s)]∥H1′

P

≤ CR0Cρ∥A(t)1+ρ[u(t) − u(s)]∥1/(1+ρ)

H1′
P

∥u(t) − u(s)∥ρ/(1+ρ)

H1′
P

≤ C ′
R0
Cρ∥u(t) − u(s)∥ρ/(1+ρ)

H1′
P

.

In addition, since u ∈ C1([τ, Tu0 ];H
1
P (I)′), we obtain the desired estimate (7.23).

Now that we can show the following Theorem.

Theorem 7.2. Let 0 < τ < Tu0. Then, it holds that

u ∈ C((τ, Tu0 ];H
2
P (I)) ∩ C1((τ, Tu0 ];L2(I)) (7.24)

with the estimate

∥u(t)∥L2 + (t− τ)

∥∥∥∥dudt (t)

∥∥∥∥
L2

+ (t− τ)∥u(t)∥H2
P
≤ CR0 , τ < t ≤ Tu0 . (7.25)

Proof. We regards u(t) as a solution of the linear problem
du

dt
+ Ã(t)u = F̃ (t), τ < t ≤ Tu0

u(τ) = uτ ,
(7.26)

in L2(I). Here, the linear operator Ã(t) is the part of A(t) in L2(I), and the function F̃ (t)
is given by F̃ (t) = F̃ (u(t)) in L2(I). In order to apply Theorem 4.3 (with X = L2(I)) to
(7.26), we verify the conditions in the theorem.

It is obvious from Theorem 2.10 that (4.18) and (4.19) are fulfilled. In addition,
since (a + G(x)u) ∈ H1

P (I), it follows from Theorem 2.11 that D(Ã(t)) ≡ H2
P (I) for all

τ ≤ t ≤ Tu0 ; so, (4.20) holds true.
Meanwhile, for v ∈ H2

P (I),

[Ã(t) − Ã(s)]v = − d

dx

[
G(x)[u(t) − u(s)]

dv

dx

]
.

Therefore, due to (7.23),

∥[Ã(t) − Ã(s)]v∥L2 ≤ C∥u(t) − u(s)∥H1
P
∥v∥H2

P
≤ C|t− s|µ∥v∥H2

P
,

that is, (4.21) holds true.
Furthermore, due to (7.23) again,

∥F (t) − F (s)∥L2

≤ ∥u(t) − u(s)∥L2 + ∥ d
dx

[G′[u(t) + u(s)][u(t) − u(s)]]∥L2

≤ CR0∥u(t) − u(s)∥H1
P
≤ Cu0 |t− s|µ,

thus, F (t) ∈ Cµ([τ, Tu0 ];L2(I)); this implies (4.22) (with σ = µ) due to (2.1).
Let us apply Theorem 4.3 to (7.26). Then, we conclude the desired temporal regularity

(7.24) with the estimate (7.25).
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7.4 Global Solution

For u0 ∈ K, let u denote any local solution of (7.6) on [0, Tu] in the function space:

0 ≤ u ∈ C((0, Tu];H2
P (I)) ∩ C([0, Tu];H1

P (I)) ∩ C1((0, Tu];L2(I)). (7.27)

We then show the following a priori estimates.

Proposition 7.1. There exists a continuous increasing function p(·) such that, for any
local solution u of (7.6) in (7.27) with initial value u0 ∈ K, it holds that

∥u(t)∥H1
P
≤ p(∥u0∥H1

P
), 0 ≤ t ≤ Tu. (7.28)

Proof. In the proof, the notations C and p(·) stand for some constants and some con-
tinuous increasing functions, respectively, which are determined by the initial constants
and ∥G∥C2 (see (7.3)) and by I in a specific way in each occurrence. In the following, we
divide the proof into four steps.

Step 1. Let us integrate the first equation of (7.1) in I. Then, obviously, d
dt
∥u∥L1 = 0,

i.e.,

∥u(t)∥L1 = ∥u0∥L1 , 0 ≤ t ≤ Tu. (7.29)

Step 2. Multiply the equation (7.2) by 2u and integrate the product in I. Then,

d

dt
∥u∥2L2

+ 2

∫
I

(a+G(x)u)

∣∣∣∣∂u∂x
∣∣∣∣2 dx = 2

∫
I

u
∂

∂x
[G′(x)u2]dx.

Here,

2

∫
I

u
∂

∂x
[G′(x)u2]dx = −2

3

∫
I

[
∂

∂x
u3
]
G′(x)dx

=
2

3

∫
I

u3G′′(x)dx

≤ ζ ∥u∥4L4
+ Cζ ∥G′′∥4L4

≤ ζ ∥u∥2H1 ∥u∥2L1
+ Cζ

≤ ζ ∥u∥2H1 + Cζp(∥u0∥L1
),

with any ζ > 0. Therefore, we get

d

dt
∥u∥2L2

+ ∥u∥2L2
+ a

∥∥∥∥∂u∂x
∥∥∥∥2
L2

≤ p(∥u0∥L1
). (7.30)

So, we obtain the following inequality

∥u(t)∥2L2
≤ e−t ∥u0∥2L2

+ p(∥u0∥L1
), 0 ≤ t ≤ Tu. (7.31)

Step 3. In this step, we shall use the notation

P (u0) = p(∥u0∥L2
).
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Multiply the equation (7.2) by 4u3 and integrate the product in I. Then,

d

dt
∥u∥4L4

+ 12

∫
I

(a+G(x)u)u2
∣∣∣∣∂u∂x

∣∣∣∣2 dx =
12

5

∫
I

u5G′′(x)dx.

Here,

12

∫
I

(a+G(x)u)u2
∣∣∣∣∂u∂x

∣∣∣∣2 dx = 3a

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

+
48

25

∫
I

G(x)

∣∣∣∣ ∂∂xu 5
2

∣∣∣∣2 dx,
and

12

5

∫
I

u5G′′(x)dx ≤ C∥u5∥L1∥G′′∥C ≤ C
∥∥∥u 5

2

∥∥∥2
L2

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1

∥∥∥u 5
2

∥∥∥2
L1

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1 ∥u∥
3
L2

∥u∥2L4

≤ ζ1

∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+ Cζ1P (u0)
∥∥u2∥∥

L2

≤ ζ1

(∥∥∥∥ ∂∂xu 5
2

∥∥∥∥2
L2

+

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

)
+ Cζ1P (u0),

with any ζ1 > 0. Therefore, we obtain the following differential inequality

d

dt
∥u∥4L4

+ ∥u∥4L4
+ a

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

≤ P (u0). (7.32)

Step 4. Multiply the equation (7.2) by 2∂2u
∂x2 and integrate the product in I. Then,

d

dt

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ 2

∫
I

(a+Gu)

∣∣∣∣∂2u∂x2

∣∣∣∣2 dx
= −2

∫
I

∂2u

∂x2
∂u

∂x

∂

∂x
[Gu]dx− 2

∫
I

∂2u

∂x2
∂

∂x
[G′u2]dx. (7.33)

First, by repeating integration by parts, we obtain

− 2

∫
I

∂2u

∂x2
∂u

∂x

∂

∂x
[Gu]dx

= −1

3

∫
I

G′′
[
∂

∂x
u2
]
∂u

∂x
dx− 5

3

∫
I

G′
[
∂

∂x
u2
]
∂2u

∂x2
dx.

On the other hand,

− 2

∫
I

∂2u

∂x2
∂

∂x
[G′u2]dx

= −2

∫
I

G′′u2
∂2u

∂x2
dx− 2

∫
I

G′
[
∂

∂x
u2
]
∂2u

∂x2
dx.
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Therefore,

− 2

∫
I

∂2u

∂x2
∂u

∂x

∂

∂x
[Gu]dx− 2

∫
I

∂2u

∂x2
∂

∂x
[G′u2]dx

= −1

3

∫
I

G′′
[
∂

∂x
u2
]
∂u

∂x
dx− 11

3

∫
I

G′
[
∂

∂x
u2
]
∂2u

∂x2
dx− 2

∫
I

G′′u2
∂2u

∂x2
dx.

So, we obtain by Young’s inequality,

− 2

∫
I

∂2u

∂x2
∂u

∂x

∂

∂x
[Gu]dx− 2

∫
I

∂2u

∂x2
∂

∂x
[G′u2]dx

≤ a

∥∥∥∥∂2u∂x2

∥∥∥∥2
L2

+ C

[∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

+

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ ∥u∥4L4

]
.

From this inequality and (7.33), we have

d

dt

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ a

∥∥∥∥∂2u∂x2

∥∥∥∥2
L2

≤ C

[∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

+

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ ∥u∥4L4

]
.

Multiply a parameter ξ > 0 to the above differential inequality and add the product
to (7.30) and (7.32). Then,

d

dt

[
∥u∥2L2

+ ∥u∥4L4
+ ξ

∥∥∥∥∂u∂x
∥∥∥∥2
L2

]
+ ∥u∥2L2

+ (1 − ξC)∥u∥4L4
+ (a− ξC)

∥∥∥∥∂u∂x
∥∥∥∥2
L2

+ (a− ξC)

∥∥∥∥ ∂∂xu2
∥∥∥∥2
L2

≤ 2P (u0).

Therefore, by choosing ξ > 0 such that 1 − ξC > 0 and a− ξC > 0, we obtain

d

dt

[
∥u∥2L2

+ ∥u∥4L4
+ ξ

∥∥∥∥∂u∂x
∥∥∥∥2
L2

]
+ δ

[
∥u∥2L2

+ ∥u∥4L4
+ ξ

∥∥∥∥∂u∂x
∥∥∥∥2
L2

]
≤ 2P (u0)

with some constant δ > 0. So, we conclude that[
∥u(t)∥2L2

+ ∥u(t)∥4L4
+ ξ

∥∥∥∥∂u∂x(t)

∥∥∥∥2
L2

]

≤ e−δt

[
∥u0∥2L2

+ ∥u0∥4L4
+ ξ

∥∥∥∥∂u0∂x

∥∥∥∥2
L2

]
+ 2P (u0), 0 ≤ t ≤ Tu.

We have in this way established the desired a priori estimate (7.28).

Thanks to Proposition 7.1, we conclude the global existence of solutions. The proof is
quite similar to the argument in [37, Chapter 15, Section 4.1], we omit it here. Therefore,
we know that, for any initial value u0 ∈ K, there exists a unique global solution u to (7.6)
in the function space:

0 ≤ u ∈ C((0,∞);H2
P (I)) ∩ C([0,∞);H1

P (I)) ∩ C1((0,∞);L2(I)). (7.34)

It is obvious that
∥u(t)∥H1

P
≤ p(∥u0∥H1

P
), 0 ≤ t <∞. (7.35)

Furthermore, we show the following strong estimate. By using Theorem
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Proposition 7.2. Let u0 ∈ K be initial value. Then, the global solution u(t) = u(t;u0)
of (7.6) in (7.27) holds that

∥u(t)∥H2
P
≤ (1 + t)p1(∥u0∥H1

P
), 0 < t <∞, (7.36)

with some increasing continuous function p1(·).

Proof. Let 0 ≤ τ < ∞. Apply Theorem 7.1 and Theorem 7.2 with initial value uτ =
u(τ ;u0) to conclude that there exists T > 0 (depending on ∥u(τ)∥H1

P
and hence on ∥u0∥H1

P

due to (7.35)) such that

∥u(t)∥H2
P
≤ (t− τ)−1p0(∥u0∥H2

P
), τ < t ≤ τ + T,

with some increasing continuous function p0(·). First, applying this with τ = 0, we see
that

∥u(t)∥H2
P
≤ t−1p0(∥u0∥H2

P
), 0 < t ≤ T.

Second, taking τ = t− T , it follows by (7.35) that

∥u(t)∥H2
P
≤ T−1p0(∥u(t− T, u0)∥H1

P
) ≤ T−1p0(p(∥u0∥H1

P
)), T < t <∞.

Combining these estimates, we conclude the desired estimate (7.36).

In the meantime, we show the positivity of global solutions.

Theorem 7.3. Let u(t) be the global solution in the function space (7.34) with initial
value u0 ∈ K. Then, it holds that u(x, t) > 0 for every (x, t) ∈ I × [0,∞).

Proof. Put δ = minxi∈I u0(x) > 0. In addition, for arbitrarily fixed τ ∈ (0,∞), put
Cτ = max(x,t)∈Ii×[0,τ ] [−G′′(x)u(x, t)] <∞.

Regard the solution u(x, t) as a solution to the linear diffusion equation

∂u

∂t
= p

∂2u

∂x2
+ q

∂u

∂x
+ ru in I × (0, τ),

where p = p(x, t) = a + G(x)u(x, t), q = q(x, t) = 3G′(x)u(x, t) + G(x)∂u
∂x

(x, t), and
r = r(x, t) = G′′(x)u(x, t).

Now, introduce a cutoff function H(ξ) such that

H(ξ) =
1

2
ξ2 for −∞ < ξ < 0 and H(ξ) = 0 for 0 ≤ ξ <∞,

and the function

φ(t) =

∫
I

H(u(x, t) − δe−Cτ t)dx, 0 ≤ t ≤ τ.

Then, we know that

φ′(t) =

∫
I

H ′(u− δe−Cτ t)(
∂u

∂t
+ δCτe

−Cτ t)dx

=

∫
I

H ′(u− δe−Cτ t)(p
∂2u

∂x2
+ q

∂u

∂x
+ ru+ δCτe

−Cτ t)dx.
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Firstly, ∫
I

H ′(u− δe−Cτ t)p
∂2u

∂x2
dx

= −
∫
I

H ′′(u− δe−Cτ t)

∣∣∣∣∂u∂x
∣∣∣∣2 p dx− ∫

I

H ′(u− δe−Cτ t)
∂p

∂x

∂u

∂x
dx.

Here,

−
∫
I

H ′′(u− δe−Cτ t)

∣∣∣∣∂u∂x
∣∣∣∣2 p dx ≤ −a

∫
I

H ′′(u− δe−Cτ t)

∣∣∣∣∂u∂x
∣∣∣∣2 dx ≤ 0.

Secondly, let us estimate the following quantity∫
I

H ′(u− δe−Cτ t)(q − ∂p

∂x
)
∂u

∂x
dx.

Note that q − ∂p
∂x

= 2G′(x)u, and put s = s(x, t) = 2G′(x)u(x, t). Then, we have∫
I

H ′(u− δe−Cτ t)s
∂u

∂x
dx

=

∫
I

H ′(u− δe−Cτ t)s
∂

∂x
[u− δe−Cτ t]dx

=

∫
I

[H ′′(u− δe−Cτ t)
∂u

∂x
sH ′(u− δe−Cτ t)

∂s

∂x
][u− δe−Cτ t]dx.

Therefore, since maxt∈[0,τ ] ∥s(·, t)∥C1(I) <∞, we know that

∫
I

H ′(u− δe−Cτ t)s
∂u

∂x
dx ≤ a

2

∫
I

H ′′(u− δe−Cτ t)

∣∣∣∣∂u∂x
∣∣∣∣2 dx

+ C ′
τ

∫
I

[H ′(u− δe−Cτ t)(u− δe−Cτ t) +H ′′(u− δe−Cτ t)(u− δe−Cτ t)2]dx

=
a

2

∫
I

H ′′(u− δe−Cτ t)

∣∣∣∣∂u∂x
∣∣∣∣2 dx+ 4C ′

τφ(t)

with some constant C ′
τ > 0. Here, note that H ′′(ξ)ξ2 = H ′(ξ)ξ = 2H(ξ) for any ξ ∈ R.

Finally, it follows from r + Cτ ≥ 0 and u ≥ 0 that∫
I

H ′(u− δe−Cτ t)(ru+ δCτe
−Cτ t)dx

=

∫
I

H ′(u− δe−Cτ t)(r + Cτ )u dx− Cτ

∫
I

H ′(u− δe−Cτ t)(u− δe−Cτ t)dx ≤ 0.

Combining above estimates, we obtain that φ(t) ≤ 4C ′
τφ

′(t), so that φ(t) ≤ φ(0)e4C
′
τ t

for 0 ≤ t ≤ τ . Since φ(0) = 0, it follows that φ(t) ≡ 0 for 0 ≤ t ≤ τ ; consequently, we
conclude that u(x, t) ≥ δe−Cτ t for (x, t) ∈ I × [0, τ ].
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On the other hand, it follows from (7.29) that the quantity
∫
I
u0(x)dx is conserved for

every time. Therefore, it is convenient to introduce the following initial value space

Kl = {u0 ∈ K;

∫
I

u0(x)dx = l}

for each l > 0. From the above results, we obtain the following theorem.

Theorem 7.4. Let 0 < l <∞. Then, for any initial value u0 ∈ Kl, there exists a unique
global solution u of (7.1) in the function space:

0 < u ∈ C((0,∞);H2
P (I)) ∩ C([0,∞);H1

P (I)) ∩ C1((0,∞);L2(I)) (7.37)

with ∫
I

u(x, t)dx ≡ l for all t ∈ [0,∞).

7.5 Stationary Problem

In this section, we investigate the stationary problem of (7.1). As shown in Section 7.4,
global solutions of (7.1) with initial value u0 ∈ Kl conserve the quantity

∫
I
u(t)dx ≡∫

I
u0(x)dx. Therefore, it is important to consider the following stationary problem for

each fixed 0 < l <∞:

a
d2ul
dx2

+
d

dx

[
ul
d

dx
(G(x)ul)

]
= 0 in I,

ul(0) = ul(1) and u′l(0) = u′l(1),∫
I

ul(x)dx = l,

ul(x) ≥ 0 in I.

(7.38)

Firstly, we show the following proposition.

Proposition 7.3. Assume that ul ∈ H2
P (I) is a solution of (7.38). Then, ul ∈ C2

P (I) and
it holds that ul(x) > 0 for x ∈ I.

Proof. Put p = p(x) = a + G(x)ul(x), q = q(x) = 3G′(x)ul(x) + G(x)u′l(x), and r =
r(x) = G′′(x)ul(x). Then, u′′l = −(q/p)u′l − (r/p)ul ∈ CP (I), so ul ∈ C2

P (I).
Let us show the positivity of ul by contradiction. Assume that there exists x0 ∈ I such

that ul(x0) = 0. Then, u′l(x0) = 0 due to the nonnegativity of ul. Consider the following
Cauchy problem: {

pu′′l + qu′l + rul = 0 in I,

ul(x0) = 0, u′l(x0) = 0.

By the classical results for ordinary differential equations, the solution ul is written in the
form ul = C1u

(1)
l +C2u

(2)
l with linear independent solutions u

(1)
l , u

(2)
l and some constants

C1, C2 ∈ R. Then, considering the Wronskian of u
(1)
l and u

(2)
l at x0, we know that

C1 = C2 = 0. Therefore, ul ≡ 0 in I, which contradicts
∫
I
ul dx = l > 0.
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Fig. 7.1: Graphs of f(y, C) and g(y).

Furthermore, we can show the uniqueness of solutions to (7.38).

Theorem 7.5. For each l > 0, the stationary problem (7.38) possesses a unique solution
ul(x). Moreover, ul(x) is characterized by the functional equation

ul(x) = exp

(
Cl −G(x)ul(x)

a

)
in I,

where Cl is some constant determined by l.

The proof of Theorem 7.5 relies on the following two lemmas (see Fig. 7.1).

Lemma 7.2. Let x0 ∈ I be fixed. Then, for each C ∈ R, a transcendental equation with
respect to y :

y = exp

(
C −G(x0)y

a

)
(7.39)

possesses a unique positive solution.

Proof. Let us put f(y, C) = y exp (−C/a) and g(y) = exp (−G(x0)y/a). Since a > 0 and
G(x0) > 0, we can observe that there exists a unique y(C) > 0 satisfying f(y(C), C) =
g(y(C)). This y(C) is the solution of (7.39).

Lemma 7.3. Let x0 ∈ I be fixed. Then, the mapping

y : C ∈ R 7→ y(C) ∈ (0,∞),

where y(C) is the solution of (7.39) with C, is a strictly increasing continuous function
satisfying

y(−∞) = 0 and y(∞) = ∞.

Proof. When −∞ < C < C ′ < ∞, we obviously see that f(y, C) > f(y, C ′) for all
y > 0. Since f(y, C) and g(y) are continuous functions with respect to y, we observe that
y(C) < y(C ′) and y(C) → y(C ′) as C → C ′. Furthermore, exp−(C/a), i.e., the slope of
f(y, C), converges to ∞ (resp. 0) as C → −∞ (resp. C → ∞). Thus, y(−∞) = 0 and
y(∞) = ∞.
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Proof of Theorem 7.5. Due to the positivity of ul, the first equation of (7.38) is written
as

d

dx

[
ul
d

dx
(a log ul +G(x)ul)

]
= 0 in I.

Multiply this equation by (a log ul + G(x)ul) and integrate the product in I. Then, we
obtain that ∫

I

ul

∣∣∣∣ ddx (a log ul +G(x)ul)

∣∣∣∣2 dx = 0.

Therefore, ul satisfies
a log ul(x) +G(x)ul(x) = C in I

with some constant C ∈ R, i.e.,

ul(x) = exp

(
C −G(x)ul(x)

a

)
in I. (7.40)

On account of Lemma 7.2, we verify the existence and uniqueness of ul(x) satisfying
(7.40). Furthermore, due to Lemma 7.3, the condition

∫
I
ul(x)dx = l determines the

constant C uniquely, and ul with the C is the very solution of (7.38).

7.6 Convergence to a Stationary Solution

In what follows, let u0 ∈ Kl be arbitrarily fixed and let u(t) denote the global solution
of (7.1) in the function space (7.37) with initial value u0. Now, we want to show the
convergence of u(t) to the stationary solution ul obtained in Section 7.5. In is enough to
consider the solution u(t) after a fixed time, so we assume from (7.36) and Theorem 7.3
that

min
x∈I

u(x, t) > 0 for every t ∈ [0,∞), (7.41)

and
∥u(t)∥H2

P
≤ R for every t ∈ [0,∞), (7.42)

where R = 2p1(∥u0∥H1
P

). Furthermore,∫
I

u(x, t)dx ≡ l, for all t ≥ 0. (7.43)

7.6.1 Lyapunov function

In this subsection, let us construct a Lyapunov function for (7.1). As u is positive due to
(7.41), the first equation of (7.1) is written as

∂u

∂t
=

∂

∂x

[
u
∂

∂x
(a log u+G(x)u)

]
.

Multiply this equation by (a log u+G(x)u) and integrate the product in I. Then,

d

dt

∫
I

[
a (u log u− u) +

G(x)

2
u2
]
dx = −

∫
I

u

∣∣∣∣ ∂∂x (a log u+G(x)u)

∣∣∣∣2 dx. (7.44)
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Let 0 < s < t <∞. Integrating this inequality in [s, t], we obtain that[∫
I

[
a (u(τ) log u(τ) − u(τ)) +

G(x)

2
u(τ)2

]
dx

]τ=t

τ=s

≤ 0.

If we set

Φ(u) =

∫
I

[
a (u log u− u) +

G(x)

2
u2
]
dx,

then Φ(u(t)) ≤ Φ(u(s)). This means that Φ is a Lyapunov function for (7.1). It is easy
to see that Φ(u(t)) ≥ −CR for all 0 ≤ t < ∞ with some constant CR ≥ 0 depending on
R.

Let us show the following proposition.

Proposition 7.4. If d
dt

Φ(u(t)) |t=t = 0 at some time t ≤ 0, then u(t) is a stationary
solution of (7.1). Consequently, it follows from Theorem 7.5 and (7.43) that u(t) = ul,
where ul is the stationary solution of (7.1) obtained in Section 7.5.

Proof. Put u = u(t) > 0. It follows from (7.44) that

a log u+G(x)u = C

with some constant C ∈ R. By similar proof of Theorem 7.5, we conclude that u is a
stationary solution of (7.1).

7.6.2 ω-limit set

We consider the ω-limit set defined by

ω(u0) = {u ∈ L2(I); ∃tn ↗ ∞ s.t. u(tn) → u in L2(I)}. (7.45)

Since the closed ball B
H2

P (0;R0) of H2
P (I) is a relatively compact set of L2(I) due to the

compact embeddings (2.4), it is observed from (7.42) that ω(u0) ̸= ∅. Furthermore, since

∥u(t)∥H1
P
≤ C∥u(t)∥

1
2
L2
∥u(t)∥

1
2

H2
P
≤ CR

1
2∥u(t)∥

1
2
L2

, we know that

u ∈ ω(u0) if and only if ∃tn ↗ ∞ such that u(tn) → u in H1
P (I). (7.46)

It is clear that inf0≤t<∞ Φ(u(t)) > −∞. Meanwhile, Φ(u(tn)) → Φ(u) as n → ∞.
Therefore, it follows that

lim
t→∞

Φ(u(t)) = Φ(u) for any u ∈ ω(u0). (7.47)

From these results, we obtain the following theorem.

Theorem 7.6. The ω-limit set ω(u0) contains ul, where ul is the stationary solution of
(7.1) obtained in Section 7.5.
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Proof. Since Φ(u(·)) ∈ C1((0,∞);R) and limt→∞ Φ(u(t)) = const., there exists some
increasing time sequence tn ↗ ∞ such that d

dt
Φ(u(t)) |t=tn

→ 0 as n → ∞. Therefore, it
is observe from (7.44) that, as tn → ∞,√

u(tn)
∂

∂x
[a log u(tn) +G(x)u(tn)] → 0 in L2(I). (7.48)

Note that (7.48) implies that

a
∂2

∂x2
u(tn) +

∂

∂x
[u(tn)

∂

∂x
[G(x)u]] → 0 in H1

P (I)′ (7.49)

since, for v ∈ H1
P (I),∣∣∣∣∣

⟨
a
∂2

∂x2
u(tn) +

∂

∂x
[u(tn)

∂

∂x
[G(x)u]], v

⟩
H1′

P ×H1
P

∣∣∣∣∣
=

∣∣∣∣(√u(tn)
∂

∂x
[a log u(tn) +G(x)u],

√
u(tn)v′)L2

∣∣∣∣
≤ CR∥

√
u(tn)

∂

∂x
[a log u(tn) +G(x)u]∥L2∥v∥H1

P

due to (7.42).

On the other hand, sinceB
H2

P (0;R0) is a relatively compact set ofH1
P (I) andB

H2
P (0;R0)

is sequentially weakly closed in H2
P (I), there exists some subsequence tnk

→ ∞ such that
u(tnk

) converges to a limit u ∈ H2
P (I) in H1

P (I) and weakly in H2
P (I). Then, we know

from (7.49) that u′′ − [u[G(x)u]′]′ = 0 in H1
P (I)′. Consequently, u is a stationary solution

of (7.1) and u ∈ ω(u0) by definition. Therefore, Theorem 7.5 implies that ul ∈ ω(u0).

7.6.3 Asymptotic convergence of u(t) to ul

Finally, we show the convergence of u(t) to ul, that is, ω(u0) = {ul}.

Theorem 7.7. Let 0 < l <∞. Let u0 ∈ Kl and let u(t) denote the global solution of (7.1)
in the function space (7.37) with initial value u0. Then, u(t) converges to ul in H1

P (I),
where ul is the stationary solution of (7.1) obtained in Section 7.5.

To show the theorem, we use the following lemma.

Lemma 7.4. ω(u0) is a connected set with respect to H1
P (I) norm.

The proof is quite similar to that of [37, Theorem 6.1], we omit it here.

Proof of Theorem 7.7. We already know from Theorem 7.6 that ul ∈ ω(u0). Assume that
ω(u0) ̸= {ul}. Then, from Lemma 7.4 and the continuous embedding H1

P (I) ⊂ C(I), we
can take u ∈ ω(u0) such that u ̸= ul and u > 0. Consider the global solution u(t;u) of
(7.1) with initial value u. Then, since Φ(u(t;u)) ≡ const. for all 0 ≤ t < ∞, it holds
that d

dt
Φ(u(t;u)) |t=0 = 0. So, Proposition 7.4 implies that u(0;u) = u = ul, which is a

contraction.
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Chapter 8

Laplace Reaction-Diffusion
Equations

In this chapter, we study the initial-boundary value problem for a Laplace reaction-
diffusion equation of the form (8.1).

First, we construct a unique local solution for (8.1). We will regard the equation
as a degenerate evolution equation of parabolic type whose linear problems have been
systematically studied by the monograph [59]. Use of the multivalued linear operators
enable us to rewrite the degenerate equation into a multivalued evolution equation but
of nondegenerate form. The reduced multivalued evolution equation can then be solved
locally by analogous techniques to the usual (single valued) evolution equations. Those
have been described in Section 4.4.

Second, we show that any bounded global solution to (8.1) if it exists necessarily
converges to a stationary solution of (8.1) as t tends to infinity under the assumption
that f(u) is analytic for u which varies in a neighborhood of the ω-limit set of the global
solution. The reduction of (8.1) into a degenerate evolution equation enables us also to
use the theory of infinite-dimensional  Lojasiewicz-Simon gradient inequality which was
developed by Chill [26], Chill-Haraux-Jendoubi [98], Haraux-Jendoubi [99], Jendoubi [13]
and others.

When m(x) ≡ 1, Matano [100] first established in one-dimensional case (i.e., Ω ⊂
R) such asymptotic convergence without assuming the analyticity of f(u). For higher
dimensional cases, the papers [98, 13] suggested that the infinite-dimensional  Lojasiewicz-
Simon gradient inequality can derive the asymptotic convergence of the global solutions.
However, in higher dimensional cases, the analyticity of f(u) does not directly imply that
of the nonlinear operator u 7→ f(u) acting from H1(Ω) into H−1(Ω) because of H1(Ω) ̸⊂
C(Ω). So, its application is not straightforward and some devices like in Section 8.6 seem
to be necessary.

The following results are obtained in [34].
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8.1 Model Equations

We study the initial-boundary value problem for a Laplace reaction-diffusion equation
m(x)

∂u

∂t
= a∆u+m(x)f(u) in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

u(x, 0) = u0(x) in Ω,

(8.1)

in a three-dimensional bounded domain Ω of C2 class. Here, m(x) is a given function in
L∞(Ω) such that

0 ≤ m(x) ≤ 1 and m(x) ̸≡ 0. (8.2)

For the reaction function f(u), it is assumed that

f(u) is a real valued function for −∞ < u <∞ of class C2

satisfying the condition f(0) = 0. (8.3)

The unknown function u = u(x, t) is imposed the homogeneous Dirichlet conditions on the
boundary ∂Ω. In addition, u0(x) is a real initial function in Ω. The diffusion coefficient
a > 0 is a fixed constant.

Such an elliptic-parabolic equation arises in the study of heat conduction in the com-
posite media consisting of several materials that have their own heat conductivity (cf.,
[101, 102, 103, 104, 105]). Let Ω ⊂ R3 denote such a composite medium and let Ω be
divided into the direct sum of sub-domains Ωi, 1 ≤ i ≤ n, Ωi denoting a material with a
constant heat conductivity ai > 0. Then the equation describing heat conduction in Ω is
given by

∂u

∂t
= ∇ · [a(x)∇u] + f(u) in Ω × (0,∞),

where a(x) is a step function such that a(x) ≡ ai for x ∈ Ωi, 1 ≤ i ≤ n, and where f(u)
denotes a nonlinear heat controller. For a test function φ(x) ∈ C∞

0 (Ω), we have

⟨∇ · [a(x)∇u], φ⟩ = −⟨a(x)∇u,∇φ⟩ = −
n∑

i=1

∫
Ωi

ai∇u · ∇φdx

=
n∑

i=1

∫
Ωi

ai[∆u]φdx−
n∑

i=1

∫
∂Ωi

ai
∂u

∂ni

φdx,

where ni denotes the outer normal vector of ∂Ωi. We here assume on each interface
Γij = ∂Ωi ∩ ∂Ωj ̸= ∅ that

ai
∂u

∂ni

+ aj
∂u

∂nj

= 0 on Γij,

which means the continuity interface condition imposed in many problems (f.e., [106, 107,
108]). Under the assumption, the heat equation takes the form

∂u

∂t
= a(x)∆u+ f(u). (8.4)
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We also want to consider the case where some material may possess extremely larger
conductivity than others, say, (for simplicity) ai = ∞ for some i. In such a sub-domain,
the equation is no longer a heat equation but is a Laplace equation. Then, instead of
(8.4), it is convenient to rewrite the equation into the form

m(x)
∂u

∂t
= a∆u+m(x)f(u) in Ω × (0,∞),

where a = min1≤i≤n ai is a positive number and m(x) is the function a/a(x) for x ∈ Ω.
Clearly, m(x) satisfies (8.2). We are going to seek a continuous solution u(x, t) with respect
to the variable x in the whole Ω; therefore, our solution satisfies the free boundary value
conditions and the no crossing flux conditions on the interfaces of sub-domains Ωi.

8.2 Local Solutions

We begin with constructing a local solution for (8.1) by employing the general theory of
semilinear abstract degenerate evolution equations explained in Section 4.4.

Let us formulate (8.1) as the Cauchy problem for an abstract evolution equation of
the form (4.38), i.e., M

du

dt
+ Lu = Mf(u), 0 < t <∞,

u(0) = u0,
(8.5)

in the underlying space
Y ≡ L2(Ω). (8.6)

Here, L is a realization of −a∆ in L2(Ω) under the homogeneous Dirichlet conditions on
∂Ω with D(L) ≡ H2(Ω) ∩H1

0 (Ω), H1
0 (Ω) being a closure of C∞

0 (Ω) in the Sobolev space
H1(Ω). Of course, L is a self-adjoint operator of Y . By Poincaré’s inequality, there exists
a positive constant c such that

(−a∆u, u) = a∥∇u∥2L2
≥ ac∥u∥2L2

, u ∈ H2(Ω) ∩H1
0 (Ω). (8.7)

Consequently,

∥u∥H2 ≤ C∥Lu∥L2 , u ∈ D(L). (8.8)

Hence, L is positive definite in Y ; and L satisfies the conditions (4.39)-(4.40) in Subsec-
tion 4.4.2.

According to Theorem 2.12, the domains of its fractional powers Lθ are known as

D(Lθ) =

{
H2θ(Ω) if 0 ≤ θ < 1

4
,

H2θ
D (Ω) ≡ {u ∈ H2θ(Ω);u|∂Ω = 0} if 1

4
< θ ≤ 1.

(8.9)

In particular, we have D(L
1
2 ) = H1

0 (Ω) = H1
D(Ω).

Meanwhile, the second Banach space X is set by

X ≡ H1
0 (Ω), (8.10)
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noting that (4.41) is verified with α = 1
2

(due to (8.9)). The operator M is then a
multiplicative operator by the function m(x) from H1

0 (Ω) into L2(Ω). As verified in [59,
Example 3.4], M and L satisfy (4.42)-(4.43) with some angle ω < π

2
. Notice that these

conditions may fail in L2(Ω); so, the settings (8.6) and (8.10) are essential.
Finally, f(u) ≡ f(Reu(x)) denotes a nonlinear operator with D(f) ≡ D(Lβ) =

H2β
D (Ω) (due to (8.9)), where β is some fixed exponent such that 3

4
< β < 1. It is

known that H2β(Ω) ⊂ C(Ω). Then f is a mapping from D(f) into X. Moreover, since

∇[f(Reu) − f(Re v)] = [f ′(Reu) − f ′(Re v)]∇Reu+ f ′(Re v)∇Re (u− v),

we observe that

∥∇[f(Reu) − f(Re v)]∥L2 ≤ [ max
|r|≤∥u∥C+∥v∥C

|f ′′(r)|] ∥u− v∥C ∥∇u∥L2

+ [ max
|r|≤∥v∥C

|f ′(r)|] ∥∇(u− v)∥L2 , u, v ∈ D(f).

From this, it is readily verified that the Lipschitz condition (4.44) takes place. In this
way, all the structural assumptions (4.39)–(4.44) in Subsection 4.4.2 are fulfilled by the
operators L,M and f .

The problem (8.5) is equivalently rewritten in the form
du

dt
+ Au ∋ f(u), 0 < t <∞,

u(0) = u0,
(8.11)

in the space X. Here, A is a multivalued linear operator of X which is given by

D(A) = {u ∈ H2
D(Ω); ∃f ∈ H1

0 (Ω) such that m(x)f = −a∆u},

i.e., A ≡M−1L. We fix the third exponent β̃ in such a way that β̃ satisfies

2β − 1 < β̃ < 1.

Then, α, β and β̃ satisfy the relation (4.49). By virtue of (4.48) in Proposition 4.1 (θ = β),

we have D(Aβ̃) ⊂ D(Lβ) and

∥u∥C ≤ C∥Lβu∥L2 ≤ C∥Aβ̃u∥H1
0
, u ∈ D(Aβ̃). (8.12)

Theorem 4.5 in Subsection 4.4.2 then provides, for any u0 ∈ D(Aβ̃) (⊂ H2β
D (Ω)), that

there exists a unique local solution to (8.11) in the function space:

u ∈ C([0, Tu0 ];D(Aβ̃)) ∩ C((0, Tu0 ];D(A)) ∩ C1((0, Tu0 ];X),

Tu0 > 0 being determined by the norm ∥Aβ̃u0∥H1
0

alone. The continuity of u(t) at t = 0

with respect to the graph norm of D(Aβ̃) is verified by Remark 4.1 because of (8.10).
As noticed in the remark of Theorem 4.5, this u(t) is a unique solution to (8.5) lying

in the function space:

u ∈ C([0, Tu0 ];H
2β
D (Ω)) ∩ C((0, Tu0 ];H

2
D(Ω)) ∩ C1((0, Tu0 ];H

1
0 (Ω)). (8.13)

If u0 ∈ D(Aβ̃) is real, then the complex conjugate u(t) of the solution u(t) is also a
solution of (8.5) lying in (8.13). Then, by the uniqueness, we must have u(t) ≡ u(t), that
is, the following result is proved.
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Theorem 8.1. Let u0 ∈ D(Aβ̃) be real. Then, (8.5) possesses a unique real local solution
in the function space (8.13). Here, the existence interval [0, Tu0 ] is determined by the

norm ∥Aβ̃u0∥H1
0
alone.

Let Hs(Ω;R) be the real Sobolev space in Ω with exponent 0 ≤ s <∞. It is naturally
true that Hs(Ω) = Hs(Ω;R) + iHs(Ω;R) (see [37, Theorem 1.34]). The operator L is
then a real sectorial operator from H2

D(Ω;R) into L2(Ω;R). Furthermore, according to
[109, Theorem 3.3], the fractional power Lβ is also a real operator and Lβu = Lβ(Reu) +
iLβ(Im u) for u ∈ D(Lβ). This together with (8.9) yields that D(Lβ) ∩ L2(Ω;R) =
H2β

D (Ω;R).
In what follows, we handle only real Sobolev spaces Hs(Ω;R). In addition, these

spaces are denoted by Hs(Ω) for simplicity.

8.3 Lyapunov Function

Let u0 ∈ D(Aβ̃) be real. Let u(t) be any local solution of (8.5) on an interval [0, T ] which
lies in the space:

u ∈ C([0, T ];H2β
D (Ω)) ∩ C((0, T ];H2

D(Ω)) ∩ C1((0, T ];H1
0 (Ω)). (8.14)

As noticed above, u(t) is a real valued function.
In view of (8.14), multiply the equation of (8.5) by ∂u

∂t
and integrate the product in Ω.

Then, ∫
Ω

m

∣∣∣∣∂u∂t
∣∣∣∣2 dx+

a

2

d

dt

∫
Ω

|∇u|2dx =
d

dt

∫
Ω

mF (u(t))dx,

or
d

dt

∫
Ω

[a
2
|∇u|2 −mF (u(t))

]
dx = −

∫
Ω

m

∣∣∣∣∂u∂t
∣∣∣∣2 dx, (8.15)

where F (u) =
∫ u

0
f(v)dv is a primitive function of f(u).

This then shows that the function

Ψ(u) =

∫
Ω

[a
2
|∇u|2 −mF (u)

]
dx, u ∈ H2β

D (Ω),

is a Lyapunov function for local solutions of (8.5) for real initial value u0 ∈ D(Aβ̃). The
following property of Ψ(·) is easily verified.

Proposition 8.1. For the local solution u(t) above, the value Ψ(u(t)) is monotonously
decreasing for 0 ≤ t ≤ T . If d

dt
[Ψ(u(t))] = 0 at some time t = t, then u = u(t) is a

stationary solution of (8.5).

Proof. The first assertion is obvious from (8.15). So, let us prove the second assertion.
Assume that d

dt
[Ψ(u(t))] = 0 at some time t = t. From (8.15) it follows that m(x)|∂u

∂t
(t)|2 =

0 in Ω; naturally, it is the same for m(x)∂u
∂t

(t). Hence,

a∆u(t) +m(x)f(u(t)) = 0 in Ω,

which means that u(t) is a stationary solution of (8.5).
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8.4 Asymptotic convergence of global solutions

Let u0 ∈ D(A) and u0 be real. Assume for this u0 that (8.5) possesses a global solution
lying in the function space

u ∈ C([0,∞);H2
D(Ω)) ∩ C1([0,∞);H1

0 (Ω)) (8.16)

and satisfying the global estimate

∥u′(t)∥H1
0

+ ∥Au(t)∥H1
0
≤ R0, 0 ≤ t <∞, (8.17)

with some constant R0 > 0. Under above assumptions, it is easy to see that Ψ(u(t)) ≥
−CR0 for all 0 ≤ t <∞ with some constant CR0 ≥ 0 depending on R0.

Here, note that, under suitable growth conditions on f(u) for 0 < u < ∞, one can
show existence of global solutions lying in (8.16) and satisfying (8.17). Assume that f(u)
is a C3 function for −∞ < u <∞ and that f(u) satisfies

−D′
1u(up−1 + 1) ≤ f(u) ≤ D′

2u(1 + u)−1, 0 ≤ u <∞,

−D′
3(u

p−1 + 1) ≤ f ′(u) ≤ D′
4, 0 ≤ u <∞,

with some exponent p ≥ 2 and some constants D′
i > 0 (i = 1, 2, 3, 4). Then, if an

initial function u0 ∈ D(Aβ̃) is real and satisfies m(x)u0 ≥ 0 in Ω, then (8.5) possesses
a unique real global solution in the function space (8.16) and the solution satisfies the
global estimate (8.17). Of course, the Theorem 8.2 is applicable to these global solutions.
The results about the existence of global solution is shown in [110].

8.4.1 ω-limit set

For the trajectory u(t), we consider its ω-limit set defined by

ω(u0) = {u ∈ D(Aβ̃); ∃tn ↗ ∞, u(tn) → u in D(Aβ̃)}.

It is seen that ω(u0) ̸= ∅. Indeed, from (8.17), sup0≤t<∞ ∥Au(t)∥H1
0
<∞; in the meantime,

D(A) is compactly embedded in D(Aβ̃) by the following lemma.

Lemma 8.1. For any 0 ≤ θ < 1, the embedding from D(A) into D(Aθ) is compact.

Proof. We notice that D(A) ⊂ D(L) = H2
D(Ω) is compactly embedded in H1

0 (Ω). Then,
the desired result is verified by the moment inequality (4.34).

It is clear that inf0≤t<∞ Ψ(u(t)) > −∞. Meanwhile, Ψ(u(tn)) → Ψ(u). Therefore, it
follows that

lim
t→∞

Ψ(u(t)) = Ψ(u) for any u ∈ ω(u0). (8.18)

Moreover, the standard arguments show the following result.

Proposition 8.2. The set ω(u0) consists of stationary solutions of (8.5).
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Proof. Let u ∈ ω(u0) and let u(tn) → u with some increasing time sequence tn ↗ ∞. In
view of Theorem 8.1, there exists time T > 0 such that the equation of (8.5) for each initial
value un = u(tn) and (8.5) possesses a local solution u(t;un) and u(t;u), respectively, on
the interval [0, T ] uniformly.

Since un → u in D(Aβ̃) it is possible to apply Theorem 4.6 to obtain that u(t;un) →
u(t;u) in D(Aβ̃) for any t ∈ [0, T ]. By the Markov property, we have u(t+ tn) = u(t;un);
therefore, u(t+ tn) → u(t;u), i.e., u(t;u) ∈ ω(u0) for any t ∈ [0, T ].

It then follows from the fact (8.18) that Ψ(u(t;u)) is constant with respect to t ∈ [0, T ].
Consequently, d

dt
Ψ(u(t;u)) ≡ 0. Proposition 8.1 then yields that u = u(0;u) must be a

stationary solution to (8.5).

8.4.2 Fundamental properties for u

In view of (8.12) and (8.17), we know that there exists a number ρ > 0 such that

sup
0≤t<∞

∥u(t)∥C ≤ ρ and sup
u∈ω(u0)

∥u∥C ≤ ρ.

Knowing this, we introduce a cutoff f̃(u) of f(u) such that f̃(u) = f(u) in a neighborhood

of the interval −ρ ≤ u ≤ ρ and f̃(u) is a C2 function for −∞ < u <∞ satisfying

|f̃ (i)(u)| ≤ Di, −∞ < u <∞, (8.19)

for i = 0, 1, 2. Let F̃ (u) =
∫ u

0
f̃(v)dv be its primitive; then, |F̃ (u)| ≤ D0|u| for −∞ <

u <∞. In addition, let us introduce a new function

Ψ̃(u) =

∫
Ω

[a
2
|∇u|2 −mF̃ (u)

]
dx, u ∈ H1

0 (Ω).

Since F̃ (u) = F (u) for −ρ ≤ u ≤ ρ, Ψ̃(u) still plays the role of a Lyapunov function for
the trajectory u(t).

As we are going to argue only for this trajectory, f̃(u), F̃ (u) and Ψ̃(u) will be simply
denoted by f(u), F (u) and Ψ(u), respectively, as before.

We can then prove that Ψ is differentiable in H1
0 (Ω).

Proposition 8.3. Ψ :H1
0 (Ω) → R is Fréchet differentiable with the derivative

Ψ′(u) = −[a∆u+m(x)f(u)] ∈ H−1(Ω), u ∈ H1
0 (Ω). (8.20)

In particular, Ψ′(u) = 0 for any u ∈ ω(u0).

The proof of this proposition will be given in Section 8.5.
In addition to (8.19), let us assume that

f(u) is real analytic for u in a neighborhood of [−ρ, ρ]. (8.21)

Under this assumption, we can prove the  Lojasiewicz-Simon gradient inequality.

Proposition 8.4. Let u ∈ ω(u0). There exists an exponent 0 < θ ≤ 1
2
and a neighborhood

U(u) of u in H1
0 (Ω) in which it holds true that

∥Ψ′(u)∥H−1 ≥ C |Ψ(u) − Ψ(u)|1−θ , u ∈ U(u). (8.22)

The proof of this proposition will be described in Section 8.6.
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8.4.3 Asymptotic convergence of u(t) to u

Using Propositions 8.3 and 8.4, we can establish convergence of u(t) to u in H1
0 (Ω) and

estimate the rate of convergence.
If Ψ(u(t)) = Ψ(u(s)) for some s < t, then Ψ(u(τ)) is constant with respect to τ ∈ [s, t]

and Proposition 8.1 yields that u(τ) is a stationary solution, i.e., ω(u0) = {u}. So, it
suffices to consider the case that Ψ(u(s)) > Ψ(u(t)) for any pair of s < t.

Let us begin with proving the following crucial proposition.

Proposition 8.5. Let r > 0 be a radius so that (8.22) is satisfied in a ball BH1
0 (u; r), i.e.,

BH1
0 (u; r) ⊂ U(u). Let 0 ≤ s < t <∞ be such that, for all τ ∈ [s, t], the values u(τ) stay

in BH1
0 (u; r). Then, we have

∥u(t) − u(s)∥H1
0
≤ C[Ψ(u(s)) − Ψ(u)]

θ
2 . (8.23)

Proof. Since Ψ(u(τ)) > Ψ(u) for s ≤ τ ≤ t, we observe from (8.15) that

− d

dτ
[Ψ(u(τ)) − Ψ(u)]θ = −θ[Ψ(u(τ)) − Ψ(u)]θ−1 d

dτ
Ψ(u(τ))

≥ θ∥m∥−1
L∞

[Ψ(u(τ)) − Ψ(u)]θ−1

∥∥∥∥Mdu

dτ
(τ)

∥∥∥∥2
L2

.

Since M du
dτ

(τ) = −Lu(τ) +Mf(u(τ)) = −Ψ′(u(τ)) due to (8.20), it follows that

− d

dτ
[Ψ(u(τ)) − Ψ(u)]θ ≥ θ∥m∥−1

L∞
[Ψ(u(τ)) − Ψ(u)]θ−1∥Ψ′(u(τ))∥L2

∥∥∥∥Mdu

dτ
(τ)

∥∥∥∥
L2

.

Here (8.22) is available to obtain that

− d

dτ
[Ψ(u(τ)) − Ψ(u)]θ ≥ C

∥∥∥∥Mdu

dτ
(τ)

∥∥∥∥
L2

with some constant C > 0. Integrate this inequality on [s, t]. Then,

[Ψ(u(s)) − Ψ(u)]θ − [Ψ(u(t)) − Ψ(u)]θ ≥ C

∫ t

s

∥∥∥∥Mdu

dτ
(τ)

∥∥∥∥
L2

dτ

≥ C∥M [u(t) − u(s)]∥L2 . (8.24)

Therefore,
∥M [u(t) − u(s)]∥L2

≤ C−1[Ψ(u(s)) − Ψ(u)]θ.

Meanwhile, in view of (8.7),

a∥∇[u(t) − u(s)]∥2L2
= (−a∆[u(t) − u(s)], u(t) − u(s))

= (M [−u′(t) + f(u(t)) + u′(s) − f(u(s))], u(t) − u(s))

≤ 2[ sup
0≤τ<∞

∥u′(τ)∥L2 + ∥f(u(τ))∥L2 ]∥M [u(t) − u(s)]∥L2 .

Hence, the desired estimate (8.23) is concluded by (8.17).
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By definition, there exists a time sequence tn ↗ ∞ such that u(tn) → u in D(Aβ̃), a
fortiori in H1

0 (Ω). As above, let r > 0 be such that BH1
0 (u; r) ⊂ U(u). Then, there exists

an N such that for all n ≥ N , ∥u(tn) − u∥H1
0
≤ r

3
and that C[Ψ(u(tn))−Ψ(u)]

θ
2 ≤ r

3
, here

C is the constant obtained in (8.23). Assume that, for all τ ∈ [tN , t], the values u(τ) lie
in BH1

0 (u; r). Applying (8.23) with s = tN , we observe that

∥u(t) − u∥H1
0
≤ ∥u(t) − u(tN)∥H1

0
+ ∥u(tN) − u∥H1

0

≤ C[Ψ(u(tN)) − Ψ(u)]
θ
2 + ∥u(tN) − u∥H1

0
≤ 2r

3
.

This means that, after the time tN , the trajectory must remain in the ball BH1
0 (u; 2r

3
) for

ever.

It is now ready to prove the asymptotic convergence of u(t).

Theorem 8.2. Under (8.2) and (8.3), let u(t) be a global solution of (8.5) lying in (8.16)
and satisfying (8.17). Let (8.21) be satisfied. Then, it holds true that

∥u(t) − u∥H1
0
≤ C[Ψ(u(t)) − Ψ(u)]

θ
2 , ∀t ≥ tN , (8.25)

where θ is the exponent appearing in the gradient inequality (8.22).

Proof. Let tN ≤ s < ∞. Let tn be the time sequence mentioned above. Let s ≤ tn;
since u(τ) ∈ BH1

0 (u; r) for all τ ∈ [s, tn], the inequality (8.24) is available with t = tn to
conclude that

[Ψ(u(s)) − Ψ(u)]θ − [Ψ(u(tn)) − Ψ(u)]θ ≥ C∥M [u(tn) − u(s)]∥L2 .

Let n→ ∞. Then, as u(tn) → u in D(Aβ̃), we obtain that

∥M [u(s) − u]∥L2 ≤ C−1[Ψ(u(s)) − Ψ(u)]θ, s ≥ tN .

Arguing in the same way as in the proof of Proposition 8.5, we can verify that

∥u(s) − u∥2H1
0
≤ C∥M [u(s) − u]∥L2 , s ≥ 0.

These estimates then yield the desired estimate (8.25).

As a corollary, we obtain the asymptotic convergence of u(t) in D(Aβ̃).

Corollary 8.1. Under the same situations as in Theorem 8.2, we have

∥u(t) − u∥
D(Aβ̃) ≤ C[Ψ(u(t)) − Ψ(u)]

θ(1−β̃)
2 , ∀t ≥ tN .

Proof. The result is immediately verified by (8.17) and (8.25) if we use the moment
inequality (4.34).
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8.5 Differentiability of Ψ

Let us verify Fréchet differentiability of the Lyapunov function.

Proof of Proposition 8.3. For u, h ∈ H1
0 (Ω), we have

a

2

[∫
Ω

|∇(u+ h)|2dx−
∫
Ω

|∇u|2dx
]

= ⟨−a∆u, h⟩H−1×H1
0

+
a

2

∫
Ω

|∇h|2dx.

Meanwhile, it is seen from (8.19) that

|F (u+ h) − F (u) − f(u)h| ≤ D1|h|2, −∞ < h, u <∞.

Therefore, ∣∣∣∣∫
Ω

m(x) [F (u+ h) − F (u) − f(u)h] dx

∣∣∣∣ ≤ C∥m∥L∞

∫
Ω

|h(x)|2dx.

Hence, we obtain that∣∣∣Ψ(u+ h) − Ψ(u) − ⟨−[a∆u+mf(u)], h⟩H−1×H1
0

∣∣∣ ≤ C∥h∥2H1
0
,

which is the assertion to be proved.

Furthermore, Ψ′ is also verified to be differentiable.

Proposition 8.6. Ψ′ :H1
0 (Ω) → H−1(Ω) is Fréchet differentiable with the derivative

Ψ′′(u) = −[a∆+mf ′(u)] ∈ L(H1
0 (Ω), H−1(Ω)), u ∈ H1

0 (Ω), (8.26)

here mf ′(u) is a multiplicative operator by the function mf ′(u) from H1
0 (Ω) into H−1(Ω).

Proof. Since

|f(u+ h) − f(u) − f ′(u)h| ≤ D2|h|2, −∞ < h, u <∞,

due to (8.19), we have

∥m[f(u+ h) − f(u) − f ′(u)h]∥H−1 ≤ C∥m[f(u+ h) − f(u) − f ′(u)h]∥L2

≤ C∥m∥L∞∥h∥2L4
, u, h ∈ H1

0 (Ω).

Therefore,

∥Ψ′(u+ h) − Ψ′(u) + [a∆h+mf ′(u)h]∥H−1 ≤ C∥m∥L∞∥h∥2L4
, u, h ∈ H1

0 (Ω).

Because of the embedding H1
0 (Ω) ⊂ L6(Ω), we verify the assertion of proposition.
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8.6  Lojasiewicz-Simon Gradient Inequality

Proof of Proposition 8.4. We will follow the similar procedure of arguments presented in
Chill [26].

Put T = Ψ′′(u). As known by (8.26), T = L−mf ′(u) is a bounded linear operator from
H1

0 (Ω) into H−1(Ω). Here, L is a realization of −a∆ under the homogeneous Dirichlet
conditions in the space H−1(Ω), L being an isomorphism from H1

0 (Ω) onto H−1(Ω). It is
easily verified that T is a symmetric operator in the sense that

⟨Tu, v⟩H−1×H1
0

= ⟨u, Tv⟩H1
0×H−1 , u, v ∈ H1

0 (Ω), (8.27)

for mf ′(u) is a multiplicative operator by the function mf ′(u). Since T is written in the
form T = [I − K]L, where K = mf ′(u)L−1, and K is a compact operator of H−1(Ω),
the Riesz-Schauder theory provides that T is a Fredholm operator with index 0, i.e.,
dimK(T ) = codimR(T ) = N .

Since K(T ) is a finite-dimensional space, we can regard it as a closed subspace of each
Banach space of the triplet H1

0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω). Let P :L2(Ω) → K(T ) be the
orthogonal projection in L2(Ω). Then, P becomes a bounded operator from H1

0 (Ω) into
itself which is a projection from H1

0 (Ω) onto K(T ) in the space H1
0 (Ω). On the other

hand, since P is symmetric in L2(Ω), P can be extended as a projection from H−1(Ω)
onto K(T ) in the space H−1(Ω), too. These projections naturally induce the following
topological direct sums for H1

0 (Ω) and H−1(Ω):

H1
0 (Ω) = H1 + K(T ), where H1 = (I − P )H1

0 (Ω),

H−1(Ω) = H−1 + K(T ), where H−1 = (I − P )H−1(Ω),

respectively. Of course, P is symmetric in the sense that

⟨Pφ, u⟩H−1×H1
0

= ⟨φ, Pu⟩H−1×H1
0
, u ∈ H1

0 (Ω), φ ∈ H−1(Ω). (8.28)

Lemma 8.2. H−1 actually coincides with R(T ) and T is an isomorphism from H1 onto
H−1.

Proof of lemma. By (8.27) and (8.28), we observe that TP = PT = 0 on H1
0 (Ω). There-

fore, T = (I − P )T on H1
0 (Ω); this means that R(T ) ⊂ H−1; in particular, T transforms

H1 into H−1. Meanwhile, codimR(T ) = N = codimH−1. This implies that R(T ) and
H−1 coincide. Clearly, T is injective on H1 and T (H1) = T (H1

0 (Ω)) = R(T ) = H−1.

We now introduce the critical manifold of u defined by

S = {u ∈ H1
0 (Ω); (I − P )Ψ′(u) = 0}. (8.29)

Lemma 8.3. In a neighborhood of u, S is a C1-manifold of dimension N .

Proof of lemma. Indeed, consider the operator G :H1
0 (Ω) → H−1 given by G(u1, u2) =

(I − P )Ψ′(u1 + u2) for u1 ∈ H1 and u2 ∈ K(T ). Then, since D1G(u1, u2) = (I −
P )Ψ′′(u1 + u2)|H1 , yields that D1G(u1, u2) = T|H1 is an isomorphism from H1 onto H−1,
where u = u1 + u2, u1 ∈ H1, u2 ∈ K(T ). So, the implicit function theorem yields that in
a neighborhood of u, S can be represented as

S = {(g(u2), u2);u2 ∈ K(T ) and g :K(T ) → H1},

where g is a C1 mapping defined in a neighborhood of u2 ∈ K(T ).
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According to [26, Theorem 2], we can state the following proposition.

Proposition 8.7. Assume that the restriction of Ψ on S satisfies (8.22) in a subset
U(u) ∩ S, where U(u) is some neighborhood of u in H1

0 (Ω), with exponent θ ∈ (0, 1
2
].

Then, Ψ itself satisfies (8.22) in a neighborhood of u in H1
0 (Ω) with the same exponent θ.

The desired inequality (8.22) on S can generally be verified, as mentioned in [26,
Corollary 3], from analyticity of the Lyapunov function Ψ(u). This is, however, not true
in the present case, for the transform u 7→

∫
Ω
mF (u)dx may not be analytic in H1

0 (Ω) due

to the fact that H1(Ω) ̸⊂ C(Ω). So, we have to utilize upper shifting of the spaces.
We introduce two auxiliary spaces

H2β
D (Ω) and H2(β−1)(Ω),

where β is the same exponent as in Section 8.2, i.e., 3
4
< β < 1. We then observe the

analyticity of Ψ(u) in a neighborhood of H2β
D (Ω).

Lemma 8.4. Ψ :H2β
D (Ω) → R is an analytic function for u ∈ BH2β

D (u; r) if r > 0 is
sufficiently small.

Proof of lemma. It suffices to prove that the function F(u) =
∫
Ω
mF (u)dx is analytic in

BH2β
D (u; r) if r > 0 is sufficiently small. The proof is similar to that of Proposition 2.1, so

we omit it.

Lemma 8.5. The manifold S defined by (8.29) is analytic in a neighborhood U(u) of u
in H1

0 (Ω).

Proof of lemma. We use the shift property of L, that is, L is an isomorphism from
H2β

D (Ω) (⊂ H1
0 (Ω)) onto H2(β−1)(Ω) (⊂ H−1(Ω)) on account of (8.9). Naturally, T =

L−mf ′(u) is a bounded operator from H2β
D (Ω) into H2(β−1)(Ω).

Since K(T ) ⊂ H2
D(Ω) ⊂ H2β

D (Ω), P is still a projection operator both in H2β
D (Ω) and

H2(β−1)(Ω). The property PT = TP = 0 holds true on H2β
D (Ω), too. Then, as before, P

induces the following two topological direct sums:

H2β
D (Ω) = H2β + K(T ), where H2β = (I − P )H2β

D (Ω) (⊂ H1),

H2(β−1)(Ω) = H2(β−1) + K(T ), where H2(β−1) = (I − P )H2(β−1)(Ω) (⊂ H−1).

In addition, it is verified that T is still an isomorphism from H2β onto H2(β−1). Indeed,

since T ∈ L(H2β
D (Ω), H2(β−1)(Ω)), T is a bounded operator from H2β into H2(β−1)(Ω).

Moreover, since PT = 0, T transforms H2β into H2(β−1). It is already known that T is
injective on H1, and hence on H2β. Finally, to see that T is surjective, let φ ∈ H2(β−1).
Then, there exists an element v ∈ H1 such that Tv = φ; since Lv = φ + mf ′(u)φ ∈
H2(β−1)(Ω), it follows that v ∈ H2β

D (Ω); therefore, if u = (I − P )v ∈ H2β, then Tu =
T (I − P )v = Tv = φ due to TP = 0.

It is now ready to prove the lemma. We first observe that S ⊂ H2
D(Ω). Indeed, u ∈ S

means that Ψ′(u) = PΨ′(u); hence, Lu = mf(u) + PΨ′(u) ∈ L2(Ω), i.e., u ∈ H2
D(Ω).

Moreover, when u varies in a neighborhood of u in H1
0 (Ω), S is contained in some bounded

set of H2
D(Ω). Therefore, S is equally given by

S = {u ∈ H2β
D (Ω); (I − P )Ψ′(u) = 0}.
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Moreover, if r̃ > 0 is sufficiently small, then

S ∩BH1
0 (u; r̃) ⊂ S ∩BH2β

D (u; r),

where r is the radius obtained in Lemma 8.4, since ∥u∥H2β
D

≤ C∥u∥2β−1

H2
D

∥u∥2(1−β)

H1
0

, u ∈
H2

D(Ω). We next remark that S is equally given by (g(u2), u2) ∈ H2β + K(T ), where

u1 = g(u2) is an implicit mapping of G(u1, u2) = 0 for the mapping G :H2β
D (Ω) →

H2(β−1) such that G(u1, u2) = (I − P )Ψ′(u1, u2) for (u1, u2) ∈ H2β + K(T ). As verified,
D1G(u1, u2) = T|H2β

, where u = u1+u2, is an isomorphism from H2β onto H2(β−1). Lemma

8.4 provides that Ψ′(u) and hence G(u) is analytic for u ∈ BH2β
D (u; r). Consequently, the

implicit mapping u1 = g(u2) is also analytic in a neighborhood of u2 ∈ K(T ).
In this way, we have completed the proof of the lemma.

By two Lemmas 8.4 and 8.5, Ψ(u) is analytic with respect to u when u varies in a
neighborhood of u on S which is a finite-dimensional analytic manifold. Then,  Lojasiewicz’
classical result [10] is available to conclude that there exists some exponent θ ∈ (0, 1

2
] for

which it holds that

∥Ψ′(u)∥H−1 ≥ C|Ψ(u) − Ψ(u)|1−θ, u ∈ BH1
0 (u; r) ∩ S.

As stated above, Proposition 8.7 thus provides the desired inequality (8.22).
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Chapter 9

Conclusions and Future Researches

In this doctoral thesis, we mainly handled four problems in Chapters 5,6,7, and 8. In
order to show the existence and uniqueness of solutions to each equation, we utilized the
theory of evolution equations of parabolic type summarized in Chapter 4. After that, we
focused on asymptotic behaviors of solutions to model equations.

In Chapter 5, we studied attraction-repulsion chemotaxis equations of the form (5.2).
As for these equations, we could construct exponential attractors for a non-autonomous
dynamical system determined from (5.2). Roughly speaking, this result means that there
exists a compact set with finite fractal dimension and the set attracts all global solutions
to (5.2) at exponential rates. From this result, we expect that the global solutions show
spatial pattern structures as time increasing.

In Chapters 6, 7, and 8, we showed, for each equation, that the global solutions con-
verge to a stationary solution. Obviously, the Lyapunov functions play an important role
for showing convergence results. Let us consider what properties of Lyapunov functions
bring us success.

In Chapter 6, we studied the Keller-Segel equations in network shaped domains of the
form (6.1). As shown in Section 6.4, (6.1) has a Lyapunov function of the form

Φ((u, v)) =

∫
G

[u log u− u]dx−
∫
G

uv dx+
1

2γ
⟨A2v, v⟩H1(G)′×H1(G) .

In order to obtain the convergence result, we showed that this Lyapunov function sat-
isfies the  Lojasiewicz-Simon inequality (6.47). For the proof of (6.47), we utilizing the
techniques in [29]. We summarize essential points of the proof. Firstly, the inverse op-
erator A−1

2 : L2(G) → L2(G) of the differential operator A2 in L2(G) becomes a positive
definite self-adjoint compact operator; so, we could obtain the inequality (6.53). Sec-
ondly, as shown in Proposition 6.10, the convexity of

∫
G

[u log u− u]dx and (6.53) yield
that the monotonicity of Θ : Xm → X ′

m (which is corresponding to the first derivative of
Φ). This fact enables us to use the Browder-Minty theorem for Θ, so that Θ is bijection.
From this result and inverse mapping theorem (Theorem 2.3), we could apply the classical
 Lojasiewicz theorem [10] to obtain Proposition 6.13. After some calculations, we conclude
the  Lojasiewicz-Simon inequality (6.47).

In Chapter 7, we studied a quasilinear diffusion equation of the form (7.1). As shown
in Section 7.5, the stationary problem of (7.1) possesses a unique solution (with char-
acterization by a functional equation). This favorable property yields the convergence
result.
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In Chapter 8, we studied a Laplace reaction-diffusion equation of the form (8.1). This
equation has a Lyapunov function of the form

Ψ(u) =

∫
Ω

[a
2
|∇u|2 −mF (u)

]
dx.

In this problem, the analyticity of
∫
Ω
mF (u)dx with respect to u plays an important

role. The analyticity of F : R → R does not always ensure that
∫
Ω
mF (·)dx : X → R

is analytic. Whether
∫
Ω
mF (·)dx is analytic or not depends on the norm of the Banach

space X. In the present case,
∫
Ω
mF (·)dx may not be analytic in H1

0 (Ω) due to the fact

that H1(Ω) ̸⊂ C(Ω). With this fact in mind, we considered the shifted triplet H2β
D (Ω) ⊂

H2β−1
D (Ω) ⊂ H2(β−1)(Ω) and a critical manifold (introduced by [26, 27]), so that the

 Lojasiewicz-Simon inequality (8.22) is verified; consequently, we proved the convergence
result. By the way, H1

0 (Ω) ⊂ C(Ω) when Ω ⊂ R; then, without considering the shifted
triplet, we can directly show the convergence result by using the theorems in [26]. This
is an example of the difficulties by increasing dimension of the domain Ω.

In Chapters 6 and 8, note that we obtain the convergence results with decay estimates
(6.51) and (8.25). This is one of the benefit of the  Lojasiewicz-Simon inequality. On
the contrary, in Chapter 7, we did not know decay estimates, since we obtained the
convergence result without proving the  Lojasiewicz-Simon inequality.

Finally, let us suggest further study on the problems in this thesis. Although we showed
that every global solution converges to a stationary solution in Chapters 6,7, and 8, we still
not know the detail of the stationary solution except for Chapter 7. Generally speaking,
a stationary problem of a parabolic partial differential equation becomes a elliptic partial
differential equation, and the investigating solutions of the a elliptic partial differential
equation is a hard work. So, we may investigate solutions of difficult elliptic partial
differential equations through limits of global solutions for a corresponding parabolic
partial differential equations. In the meantime, it is one of the interesting problems to
identify initial values which converge to a common stationary solution. We address these
problems with numerical analysis. Since we have obtained our convergence results in the
Sobolev norm topology (that is, H1 topology), we will be able to apply the theory of the
finite element method (FEM).

In Chapter 8, we could extend the results to critical manifolds introduced in [26, 27]; so,
the techniques must have a lot of potential to become successful. In this thesis, sectorial
operators, analytic property of functions, and convex property of functions leaded the
 Lojasiewicz–Simon inequality, but they have complicated relationships. If we can untie
them, then we will be able to construct frameworks which are applicable to a variety of
parabolic partial differential equations.
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[24] S. Aizicovici and H. Petzeltová, “Asymptotic behavior of solutions of a conserved
phase-field system with memory,” J. Integral Equations Appl., vol. 15, no. 3, pp.
217–240, 2003.
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