
Title
An Implementation of Embedded Object Detection
System with Information-Preserved Algorithm
Transformation

Author(s) 光成, 浩一

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72584

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

An Implementation of

Embedded Object Detection System

with Information-Preserved Algorithm

Transformation

Koichi MITSUNARI

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2019

Publications

Transactions
1. K. Mitsunari, Y. Takeuchi, M. Imai, and J. Yu, “Decomposed vector histograms

of oriented gradients for efficient hardware implementation,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences,
vol. E101-A, no. 11, pp. 1766–1775, Nov. 2018.

2. K. Mitsunari, J. Yu, T. Onoye, and M. Hashimoto, “Hardware architecture for
high-speed object detection using decision tree ensemble,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences,
vol. E101-A, no. 9, pp. 1298–1307, Sep. 2018.

International Conference Papers (Refereed)
1. K. Mitsunari, J. Yu, and M. Hashimoto, “Hardware architecture for fast general

object detection using aggregated channel features,” in Proceedings of IEEE
Asian Solid-State Circuits Conference, Nov. 2018, pp. 55–58.

2. E. Aliwarga, K. Mitsunari, J. Yu, T. Onoye, T. Azuma, and M. Koga, “System
design of vision-based framework for senior driver assistance,” in Proceedings
of Workshop on Synthesis And System Integration of Mixed Information
Technologies, Oct. 2016, pp. 77–80.

3. K. Mitsunari and J. Yu, “Influence of numerical precision on machine learning
and embedded systems,” in Proceedings of International Workshop on Smart Info-
Media Systems in Asia, Sep. 2016, pp. 164–169.

4. K. Mitsunari, J. Yu, Y. Takeuchi, and M. Imai, “Object tracking based on path
similarity of boosted decision trees,” in Proceedings of International Technical
Conference on Circuits/Systems, Computers and Communications, Jul. 2016,
pp. 563–566.

i

ii

Summary

Demand for advanced driver assistance systems (ADAS) based on visual object
detection is increasing for reducing deaths and economic loss due to traffic accidents.
These embedded systems require fast and accurate object detection with limited power
consumption. Due to the severe constraint on power consumption, hardware-oriented
design optimization is a promising approach. However, it is still difficult to satisfy the
above requirements simultaneously because many existing object detection algorithms
are not designed considering hardware implementation. To address this issue, this
dissertation proposes a hardware architecture for an object detection method with
aggregated channel features (ACF). This dissertation approaches the issue through
information-preserved algorithm and hardware architecture for fast classification.
For improving the trade-offs, this dissertation focuses on information preservation
in histograms of oriented gradients (HOG) feature descriptor and a quantization
method for boosted decision trees (BDT) classifiers, and highly-parallelized hardware
architecture for BDT.

For improving the trade-off between detection accuracy and power consumption
of feature extraction, this dissertation proposes information-preserved HOG feature
descriptor named decomposed vector HOG (DV-HOG). DV-HOG feature extraction is
based on the decomposition of a gradient vector to generate a histogram. DV-HOG
extracts equivalent information to the original HOG, and it can be computed only
with additions and multiplications. The hardware architecture for DV-HOG utilizes
the symmetry of the vectors to reduce power consumption. Experimental results show
that DV-HOG achieves the equivalent or better detection accuracy to the original HOG
only with one-fourteenth hardware area.

For reducing memory requirements, this dissertation proposes a quantization
method for a BDT classifier, which ACF uses as a classifier. The proposed method
utilizes the BDT’s characteristics that BDT is based on the comparison of a pair of a
feature and a threshold. Thus, the range of thresholds of a BDT classifier is narrower
than that of features. The proposed quantization method focuses only on the range of
thresholds for quantization. Experimental results show that the memory requirement can
be reduced to one-sixteenth with 2% accuracy degradation on INRIA Person Dataset,
which improves the trade-off between the detection accuracy and memory requirement.

For improving detection speed, this dissertation proposes a hardware architecture

iii

iv

for fast BDT classification. The fast classification is realized by hardware-software
cooperative approach: highly-parallelized hardware and a software algorithm for
avoiding memory access conflict from multiple hardware modules. The hardware
supports 3-D parallelized classification: 2-D for images like SIMD operation and
1-D for feature channels. The hardware is designed to reduce hardware resources
and connections for improving the scalability to the high degree of parallelism. The
scheduling algorithm using a greedy approach determines the memory access pattern
before classification. The evaluation result shows that 1,024-parallel implementation is
capable of classifying pedestrian in 350 frames of Full HD images.

Based on the above three methods, this dissertation proposes an ACF object
detection hardware. Thanks to the high compatibility of ACF to hardware
implementation and the above hardware-oriented algorithms to overcome the
challenges, the hardware achieves fast and accurate classification. An FPGA
implementation result shows that the proposed system can detect pedestrians in 170
fps a Full HD image, which is 57-times faster than the existing ACF hardware
implementation. As an evaluation in a practical environment, the proposed hardware
can process 6-class traffic object detection in 78 fps for a Full HD image, which satisfies
the requirement for the automatic braking system of ADAS.

The main contribution of this work is the improvement of trade-offs between
detection accuracy, detection speed, and power consumption in object detection, which
is achieved by the use of the information-preserved algorithm and hardware-oriented
approaches.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor
Professor Masanori Hashimoto in Osaka University for his insightful comments and
valuable advice. He carefully reviewed my papers and gave me much advice for
completing this dissertation.

I would like to acknowledge Professor Takao Onoye in Osaka University for
his insightful comments to this dissertation. Also, he provided me with precious
opportunities to attend many research projects during my graduate studies. I would
like to express my appreciation to Professor Haruo Takemura in Osaka University for
reviewing my dissertation and giving me valuable suggestions to raise the quality of this
dissertation as a member of my dissertation committee.

My appreciation for Assistant Professor Jaehoon Yu in Osaka University cannot be
expressed in words. Without his proper guidance and continuous encouragement, this
research would not have been possible.

I deeply appreciate Emeritus Professor Masaharu Imai in Osaka University and
Professor Yoshinori Takeuchi in Kindai University for providing me with opportunities
to study at Imai Laboratory while I was pursuing master’s degree.

I would like to thank all the members of the Integrated System Design Laboratory
in Osaka University for daily discussion and having a comfortable time.

v

vi

Contents

1 Introduction 1
1.1 Background on Object Detection . 3
1.2 Challenges . 6
1.3 Research Objectives . 7
1.4 Outline of the Dissertation . 8

2 Preliminaries of Visual Object Detection 11
2.1 Machine Learning Algorithms . 11

2.1.1 Multilayer Perceptron . 11
2.1.2 Support Vector Machine . 13
2.1.3 Adaptive Boosting . 14

2.2 Aggregated Channel Features . 14
2.3 HOG Feature Descriptors and Its Hardware Architectures 15

2.3.1 HOG Feature Descriptor . 15
2.3.2 Hardware Architectures for HOG Feature Descriptors 18

2.4 Boosted Decision Trees and Its Hardware Architectures 22
2.4.1 Hardware Architectures for Boosted Decision Trees 22

2.5 Pedestrian Detection . 23
2.6 Summary . 24

3 Decomposed Vector Histograms of Oriented Gradients 25
3.1 Introduction . 25
3.2 Decomposed Vector HOG Feature Descriptor 26

3.2.1 Details of DV-HOG . 26
3.2.2 Representation Capability Analysis 28
3.2.3 Detection Accuracy Evaluation 30

3.3 Hardware Architectures for HOG Feature Descriptors 33
3.3.1 Hardware Architecture for DV-HOG 34
3.3.2 Application of Quadrant Folding to HOG-Dot 35

3.4 Evaluation . 36
3.4.1 Detection Accuracy Evaluation with Fixed-point Arithmetic . . 37
3.4.2 Area Evaluation with Logic Synthesis 39

vii

viii CONTENTS

3.4.3 FPGA Implementation . 39
3.4.4 Discussion . 40

3.5 Summary . 43

4 Aggressive Quantization Method for Boosted Decision Trees 45
4.1 Introduction . 45
4.2 Influence of Numerical Precision on Classification Accuracy 46
4.3 Aggressive Approximation for Fixed-Point AdaBoost 49
4.4 Evaluation on Pedestrian Detection . 51
4.5 Summary . 52

5 Hardware Architecture for Parallel Boosted Decision Trees Classification 55
5.1 Introduction . 55
5.2 Parallel Implementation of BDT using Multiple Memory Banks 56

5.2.1 Architecture Overview . 56
5.2.2 Details of Sub-modules . 58

5.3 Task Scheduling for Parallel Implementation 59
5.3.1 Boosted Decision Trees Scheduling Problem 59
5.3.2 Proposed Heuristic Scheduling Algorithm 62
5.3.3 Analysis of Scheduling Algorithm 63
5.3.4 Scheduling under Deeper Boosted Decision Trees 65

5.4 Evaluation . 66
5.4.1 Evaluation Settings . 66
5.4.2 Resource Usage . 67

5.5 Summary . 68

6 Hardware Accelerator for Aggregated Channel Features 69
6.1 Introduction . 69
6.2 Proposed Hardware Accelerator Architecture 70
6.3 Evaluation using Logic Simulator . 71

6.3.1 Processing Performance . 72
6.3.2 Discussion . 73

6.4 FPGA Implementation . 74
6.4.1 Performance Evaluation on Pedestrian Detection 75
6.4.2 Traffic Object Detection . 77

6.5 Summary . 78

7 Conclusion 79
7.1 Summary and Conclusions . 79
7.2 Future Works . 80

List of Figures

1.1 Stopping distances for various running speed. 2
1.2 Detection error trade-off (DET) curves of leading-edge algorithms and

SVM+HOG [24] from pedestrian detection benchmark [25]. The closer
a curve gets to the bottom left corner, the better the DET is. 3

1.3 Object detection flow of conventional approaches. 3
1.4 ACF object detection flow. 5
1.5 Boosted decision trees. 5
1.6 Overview of this dissertation. 8

2.1 Basic structure of machine learning algorithms. 12
2.2 Input space separation. Each classifier separates two class data: © and ×. 13
2.3 Orientation unit vectors ui. In this figure, six unit vectors are evenly

spaced over the half range [0, π) (a) or the full range [0, 2π) (b). 16
2.4 Simple orientation binning methods for a gradient vector g. In both

methods, each gradient vector casts its magnitude for one of the
orientations in the shadowed area including g. 17

2.5 Aliasing of NaiveHOG, which makes entirely different histograms from
similar gradient vectors. 17

2.6 Bilinearly interpolated HOG. Given a gradient vector g, the interpolated
HOG bilinearly decomposes its magnitude M according to θ. 18

2.7 Outline of InterHOG hardware. 19
2.8 Outline of NaiveHOG hardware. 20
2.9 Outline of ChenHOG hardware with sign modification. 21
2.10 Outline of the HOG-Dot hardware proposed in [9]. 22
2.11 BDT and available hardware architectures. 23

3.1 Proposed DV-HOG. The proposed method decomposes a gradient
vector g into two adjacent vectors with directions of a pair of ui, where
the vectorial sum of the two decomposed vectors is equal to the gradient
vector. 26

3.2 Comparison of voted weights of DV-HOG and InterHOG. 29
3.3 Evaluation target process in ACF [36]. 30

ix

x LIST OF FIGURES

3.4 DET curves of five ACF classifiers using different HOG feature
descriptors. The closer a curve gets to the bottom left corner, the better
the DET is. 32

3.5 Outline of DV-HOG hardware. 33
3.6 Sign inversion of gx and gy for quadrant folding. 34
3.7 Outline of HOG-Dot hardware with quadrant folding. 36
3.8 DET curves of fixed-point ACF classifiers. 37
3.9 Log-average MR and the circuit area of HOG algorithms. 39
3.10 Outline of hardware architecture for object detection. 41
3.11 The number of pixels for multi-scale object detection. 42

4.1 Basic structure of machine learning algorithms. 47
4.2 Experimental results of classification accuracy with limited numerical

precision. 48
4.3 Region of interest (ROI) comparison. 49
4.4 Histograms of thresholds. 50
4.5 3-bit quantization of features on ACF channel 0. 50
4.6 Comparison of classification performances. 51
4.7 Comparison of DET curves. 52
4.8 Detection results using floating point (log-average MR = 16.9%). 53
4.9 Detection results using 2-bit wide fixed point (Min-Max feature, log-

average MR = 32.2%). 53
4.10 Detection results using 2-bit wide fixed point (Min-Max threshold, log-

average MR = 19.2%). 53

5.1 Hardware architecture overview. 56
5.2 Block diagrams of processing elements. 58
5.3 Input dependency removal of DT by visiting all nodes. 60
5.4 Target scheduling problem. 60
5.5 Detection error trade-off curves on INRIA Person Dataset. 63
5.6 Histograms of input channels. 64
5.7 Scheduling results for the different number of modules. 64
5.8 Result of depth-six ACF classifier. 65
5.9 Detection results from INRIA Person Dataset. 66

6.1 Proposed object detection system overview. 69
6.2 Problems and solutions for ACF hardware implementation. 70
6.3 ACF-Core hardware architecture. 70
6.4 Multi-scale ACF hardware architecture. 71
6.5 FPGA implementation environment. 73
6.6 FPGA implementation overview. 74
6.7 Detection results. 76

LIST OF FIGURES xi

6.8 Unstable detection results of traffic objects. 77

xii LIST OF FIGURES

List of Tables

1.1 Comparison of existing object detection hardware implmentations. . . . 4
1.2 Challenges, objectives, and solutions. 9

2.1 Coordinates of six unit vectors over the half range (N = 6). 18
2.2 Overview of images in INRIA Person Dataset. 24

3.1 Comparison between InterHOG and DV-HOG. 28
3.2 Comparison of HOG algorithms. 30
3.3 Pedestrian detection parameters for the ACF classifier. 31
3.4 Log-average MR comparison on INRIA Person Dataset. 31
3.5 Average precision comparison on pedestrian detection using KITTI

Vision Benchmark Suite. 32
3.6 Log-average MR comparison without smoothing image on INRIA

Person Dataset. 33
3.7 Select signals for each bin. 35
3.8 Coefficients of DV-HOG after sign modification. 36
3.9 Log-average MR comparison with fixed-point representation. 38
3.10 Logic synthesis settings. 38
3.11 Cell-based synthesis comparison of DV-HOG and conventional methods. 38
3.12 FPGA implementation settings. 40
3.13 FPGA implementation results. 40
3.14 Notation for object detection. 41
3.15 Estimation of LUT utilization for f = 100 MHz, color image on FPGA

implementation. 42

4.1 Format of IEEE 754 double-precision floating point. 46
4.2 Parameters and settings of each machine learning algorithm. 48
4.3 Details of classification datasets. 48
4.4 Range of non-zero frequency of a pedestrian classifier for ACF. 49
4.5 Memory usage comparison for a Full HD image. 52

5.1 Notation and description of each module. 57
5.2 Detailed scheduling result on M = 8. 63

xiii

xiv LIST OF TABLES

5.3 FPGA implementation settings. 66
5.4 FPGA resource utilization. 67

6.1 Processing performance comparison with conventional implementations. 72
6.2 Resource usage of feature extraction with 32 degrees of parallelism. . . 73
6.3 Parameters used in the evaluation. 74
6.4 FPGA resource utilization. 75
6.5 Detection performance comparison. 76
6.6 Classifiers for traffic objects. 76
6.7 Classification speed evaluation. 77

Chapter 1

Introduction

The World Health Organization reported in 2018 that more than 1.25 million people
died due to traffic crashes each year, and these accidents made 3% of gross domestic
product loss for most countries 1. In Japan, according to the National Police Agency,
there exist 3,694 deaths caused by traffic accidents 2, and 89% of the accidents are
collisions 3. For saving human lives and reducing economic loss, preventing traffic
accidents is demanded as a social requirement. Of the entire traffic accidents, there
exist some physically inevitable cases, but the majority originates from drivers’ human
errors such as operation misses and distracted driving, which is preventable with
the advanced sensor technology and machine learning techniques. Advanced driver
assistance system (ADAS) is a representative system developed for this purpose and
provides driving assistant functionalities including collision avoidance system, driver
monitoring system, automotive navigation system, etc.

Of many components composing ADAS, the collision avoidance system plays an
important role in preventing traffic crashes by controlling the braking system. Figure 1.1
shows the stopping distances of human drivers at various car speeds 4, where the
stopping distance is a sum of reaction distance needed for driver’s response and braking
distance needed for deceleration to still stand. If the vehicle speed is 60 km/h, which is
the speed limit of urban areas in Japan, the stopping distance is 45 meters in which 25
meters is the reaction distance. Collision avoidance system assesses collision risks of
objects on the road instead of drivers and can reduce the reaction distance significantly.
Although range sensors such as millimeter-wave radar provide enough information for
the basic braking functionality, recent ADAS requires a more comprehensive assessment
of the traffic environment, and as a result, the demand for visual object detection is

1http://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
2https://www.npa.go.jp/toukei/koutuu48/H29siboubunnseki.pdf
3https://www.e-stat.go.jp/stat-search/file-

download?statInfId=000031674176&fileKind=2
4https://www.qld.gov.au/transport/safety/road-safety/driving-

safely/stopping-distances

1

2 CHAPTER 1. INTRODUCTION

Reducible

Figure 1.1: Stopping distances for various running speed.

increasing.
Visual object detection for embedded systems needs to satisfy the following

requirements:

1. high detection accuracy,

2. real-time responsiveness, and

3. low power consumption.

These requirements are more stringent in ADAS than other practical applications such
as surveillance systems and autonomous robots because high detection accuracy and
real-time responsiveness are indispensable to guarantee the safety of ADAS. However,
it is difficult to satisfy these requirements simultaneously under the constraint of low
power consumption. In the case of early object detection algorithms [1–4], they
require low computational cost while it is difficult to achieve high detection accuracy.
Therefore, their hardware implementations operate with low power consumption but
their accuracy was confined to algorithmic limitation [5–13]. On the other hand,
recent object detection algorithms provide high enough detection accuracy for practical
applications [14–22]. These methods require large computational cost, but thanks to
advanced parallel computing devices such as GPUs, it is possible to process them in real
time. A critical problem is that these devices consume more than a hundred watts, which
is not affordable for the embedded systems. Dedicated hardware implementation makes
it possible to reduce this power consumption, but it still does not satisfy both processing
performance and power consumption for practical applications [23]. To improve the
trade-off relationship between three requirements, this dissertation focuses on ADAS
and will propose an object detection system focusing on information preservation,

1.1. BACKGROUND ON OBJECT DETECTION 3

Figure 1.2: Detection error trade-off (DET) curves of leading-edge algorithms and
SVM+HOG [24] from pedestrian detection benchmark [25]. The closer a curve gets
to the bottom left corner, the better the DET is.

which enables both high detection accuracy and real-time responsiveness with low
power consumption.

1.1 Background on Object Detection
Visual object detection has shown remarkable progress regarding both processing
performance and detection accuracy in the last decade [25–28], thanks to the
sophisticated machine learning algorithms [14, 15, 29, 30] and feature descriptors [24,
31–35]. As shown in Figure 1.2, novel object detection methods such as aggregated

Feature
extraction

Sampling Non-maxima
suppression

Detection
result

ClassificationInput
image

Target

Non-target

Figure 1.3: Object detection flow of conventional approaches.

4 CHAPTER 1. INTRODUCTION

Table 1.1: Comparison of existing object detection hardware implmentations.
Implmenetation [13] [23] [40]

Method SVM CNN ACF
Log-average MR on

46% <10% 17%
INRIA Person Dataset [24]

Speed Full HD 60 fps 1.3 fps VGA 30 fps

channel features (ACF) [36] and VeryFast [37] achieve about 30% lower log-average
miss rate (MR) than SVM+HOG [24] on INRIA Person Dataset [24]. Especially, the
state-of-the-art methods based on deep neural networks (DNNs) [14–22] succeeded
in rich representations of objects through a massive amount of computation with the
help of powerful computational resources such as GPUs and achieved high detection
accuracy on public datasets such as ImageNet [38] and CityPersons [39].

As for hardware implementation, Table 1.1 compares the three existing
implementations [13, 23, 40] in terms of detection accuracy and speed, where each
implementation is based on support vector machine (SVM), convolutional neural
network (CNN), and ACF, respectively. The implementation using SVM [13] achieves
detection fast enough for ADAS, but its detection accuracy is low due to the limitation of
the classification capability of a linear classifier and is not acceptable for ADAS. On the
other hand, the implementation using CNN [23] achieves the state-of-the-art detection
accuracy, but the detection speed is not enough for ADAS. Since CNN is based on
MAC operations, there exist inherent limitations of speed-up and resource reduction
by hardware implementation. Although approaches that reduce numerical precision
such as binary and ternary networks [41, 42] are proposed, it is difficult to ensure
high detection accuracy for the state-of-the-art networks. ACF is an object detection
method using aggregated channel features and decision tree based classifiers. The
ACF hardware implementation [40] shows sufficient detection accuracy and moderate
processing performance compared with two other methods. Although the detection
accuracy is somewhat inferior to that of CNN, recent research such as deep forest [43]
shows that detection accuracy of decision tree based classifiers can be improved by deep
learning. This approach is expected to improve the detection accuracy of ACF.

Figure 1.3 summarizes a typical object detection flow using a sliding window
based approach. It mainly consists of three steps: sampling, feature extraction, and
classification. First, detection windows are sampled from an input image across image
positions and scales. Next, features are extracted for each window. The features
include, for example, color, and appearance information. Feature extraction converts
the input image to the feature space, which helps the following classification step. Then,
classifiers separate the feature space into two subspaces: a target class and the others.
Classification algorithm influences the detection accuracy because the representation
capability is different among machine learning methods, which will be explained in

1.1. BACKGROUND ON OBJECT DETECTION 5

Aggregated
10 channels

Raw
10 channels

Raw feature
extraction BDT

Input
image

Non-maxima
suppression

Detection
result

HOG

LUV

Mag.

Figure 1.4: ACF object detection flow.

Decision
tree 1

Decision
tree 2

Decision
tree K

+

α1

α2

αK

(a) Boosting for classification.

f1 > t1?

f2 > t2? f3 > t3?

v1 v2 v3 v4

YesYes

Yes

NoNo

No

(b) Decision tree.

Figure 1.5: Boosted decision trees.

Chapters 2 and 4.
This dissertation focuses on the ACF object detection method [36] as the target for

hardware implementation because of the balance between detection accuracy and speed
mentioned above. Its small amount of computations and small memory requirement is
also advantageous in hardware implementation. Dollár et al. reported in [36] that a
software implementation on a single CPU can process 31.9 fps for a VGA image and
achieves reasonably high accuracy on a public dataset. Regarding the balance of the
detection accuracy and processing speed, using ACF algorithm is a promising approach
for ADAS.

Figure 1.4 shows the object detection flow of ACF. ACF uses HOG feature, gradient
magnitude, and LUV color channels as raw features, where the HOG feature represents
objects’ shape information. After the raw feature extraction, ACF accumulates adjacent
feature values of each channel to generate aggregated channels. Then, ACF uses boosted
decision trees (BDT) for classification as shown in Figure 1.5. A BDT classifier consists
of multiple decision trees (DTs) as in Figure 1.5(a), and each decision tree is shown in
Figure 1.5(b). A BDT classifier is trained by boosting algorithm such as AdaBoost [30].
Finally, as post-processing, non-maxima suppression (NMS) merges multiple detection
results that correspond to one object.

ACF has high compatibility with the hardware implementation regarding the

6 CHAPTER 1. INTRODUCTION

following three points: small memory requirement thanks to channel aggregation, small
hardware resources requirement in classification, and compatibility with a conventional
speed-up method for classification. In feature extraction, channel aggregation by
4x4 reduces the required memory capacity to one-sixteenth. The necessary hardware
resource for the classification is small because the BDT classifier is based on successive
comparisons of pairs of a feature and a threshold from its root node to a leaf node as
shown in Figures 1.5(a) and 1.5(b), and does not require multipliers. Also, BDT can
use soft cascade [44], which rejects negative samples early, for fast detection since BDT
involves a cascade structure. Even with the advantages of hardware implementation,
there exists little research on the hardware implementation of ACF. The following points
out problems to be addressed for high-throughput ACF implementation.

1.2 Challenges
It is difficult to satisfy the requirements of fast and high detection accuracy with
low power consumption in object detection hardware. Most research on hardware
implementations [5–8, 11–13, 45–51] remains focusing on classical object detection
methods, such as SVMs [24, 32], and shallow neural networks (NNs). However,
hardware implementation using SVMs and shallow NNs suffer from poor detection
accuracy and cannot fully exploit the algorithmic improvements mentioned in
Section 1.1 with Figure 1.2. On the other hand, accurate detection with state-of-
the-art DNN algorithms with rich object representations generally demands massive
computations, which prevents fast detection and low power implementation. Thus,
recently, hardware architectures for DNNs often use limited numerical precision
computations [52], which degrades detection accuracy in exchange for detection speed-
up.

To address this issue, this research focuses on ACF hardware implementation.
ACF achieves reasonably high detection accuracy and ACF uses a BDT classifier,
which requires a small amount of computation, and achieves fast detection in software
implementation. In the hardware implementation, [40] achieves a classification of
480p30 even with a serial implementation. On the other hand, its parallel hardware
implementation pursuing higher throughput is not easy due to the following three
difficulties: large hardware resources for the HOG feature extractor, large memory
for storing aggregated channel features, and memory access conflict in parallel
classification. In terms of parallel classification, the requirements for the large hardware
resources make it difficult to increase the parallelism because of limited hardware
resources, and the memory access conflict prevents fast classification.

First, the HOG feature descriptor used in ACF requires large hardware resources.
HOG is not originally designed for hardware implementation, and its feature extraction
contains hardware-unfriendly operations such as square root and trigonometric
functions. These operations require large hardware resources for accurate calculation

1.3. RESEARCH OBJECTIVES 7

especially in parallel implementation, which makes it difficult to speed-up HOG feature
extraction. Thus, existing hardware implementations introduce an approximation for
reducing power consumption [8, 11, 48] or permit large hardware resources to ensure
no accuracy degradation [5, 6], where the approximation degrades detection accuracy
by a few percents [8], and accurate HOG computation occupies as much as 58% of the
power of the entire object detection hardware [6].

Second, even with the channel aggregation of ACF, the memory requirement for a
high-resolution image is still a large burden to hardware implementation: for a single
scale of a Full HD image, 39Mbit memory is required for storing aggregated channel
features. Existing hardware implementations use limited numerical precision to reduce
memory requirements, but it degrades detection accuracy as a result. This results from
the fact that many existing quantization methods focus only on reducing the numerical
precision of calculation, but not on exploiting the algorithmic characteristics of the
machine learning algorithm.

Finally, classification using BDT machine learning algorithm is difficult to speed-
up by the parallel implementation. As explained in Section 1.1, classification using a
BDT classifier is based on the comparison of a feature and a threshold, where memory
accesses occur for each comparison. Considering the selected paths of a BDT classifier
depends on the input data, it is impossible to predict memory access patterns in advance,
which causes memory conflict and makes parallel implementation difficult in existing
ACF hardware implementation [40].

1.3 Research Objectives
The goal of this research is to build an object detection system satisfying the
requirements on detection accuracy, real-time responsiveness, and power consumption.
This research focuses on hardware architecture for ACF, whose detection accuracy is
reasonably high enough for practical applications. This work improves the trade-offs
between detection accuracy, detection speed, and power consumption by handling the
challenges explained above.

First, this research focuses on the information-preservation and hardware
implementation efficiency for improving the trade-off between detection accuracy and
power consumption of HOG feature extraction. Existing hardware implementations
require large hardware resources for ensuring no information loss or permit accuracy
degradation by using an approximation. In existing hardware implementations,
satisfying constraints on both detection accuracy and power consumption are difficult
because algorithm modification is limited at the hardware level. This research, on
the other hand, approaches in algorithmic level considering hardware implementation
efficiency. The proposed feature descriptor is based on a novel HOG feature descriptor
using vector decomposition, which has an equivalent representation capability to the
original HOG feature descriptor without any information loss.

8 CHAPTER 1. INTRODUCTION

HOG

LUV

Mag.

Aggregated
10 channels

Raw
10 channels

Feature
extraction BDT

Input
image

Non-maxima
suppression

Detection
result

Chapter 3
Chapter 4

Chapter 5
Chapter 6

Figure 1.6: Overview of this dissertation.

Second, this dissertation aims to reduce the memory requirements used for storing
features in ACF. To tackle the issue, this research focuses on the characteristics of
BDT. In many existing hardware implementations using SVMs and NNs, efficient
quantization is difficult because they are based on multiplications and only need to
represent a wide range of values. Compared with these machine learning algorithms,
BDT require a narrow value region since BDT classification is based on the comparison
of a pair of values and needs to represent values near the thresholds. Based on this
point, this research proposes a quantization method to reduce memory requirements,
which focuses on the threshold range of a BDT classifier.

Third, improving the classification speed of BDT is aimed in this dissertation. To
address the issue, this research exploits 3-D parallelism of ACF classification: 2-D for
images and 1-D for feature channels. As mentioned in the previous section, in parallel
processing, BDT suffer from random memory access depending on input data. To
prevent memory conflicts, this research adopts SIMD-like operations in a fixed order for
parallel processing. Also, this research maximizes memory usage with multiple banks
through task scheduling decided in advance by a greedy algorithm. With this hardware-
software cooperative approach, significant processing acceleration is achieved.

1.4 Outline of the Dissertation

The rest of this dissertation explains the proposed ACF hardware implementation.
Chapters 3, 4, 5, and 6 are the main contributions of this work, which are summarized
in Figure 1.6. Table 1.2 shows the challenges and objectives mentioned above. The
remaining chapters are organized as follows.

Chapter 2 provides the knowledge required for understanding ACF and its hardware
architecture. First, it reviews three types of machine learning algorithms, which are
SVM, multi-layer perceptron (MLP), and AdaBoost. Then, it explains the ACF object
detection flow and its components, HOG feature descriptor, and BDT classification,
followed by the algorithms and hardware implementations of the original HOG and

1.4. OUTLINE OF THE DISSERTATION 9

Table 1.2: Challenges, objectives, and solutions.
Target Challenge Objective Solution

Chapter 3 HOG
Large power Computational cost Decomposed vector
consumption reduction HOG

Chapter 4 BDT
High numerical

Memory reduction
Quantization focusing

precision on thresholds

Chapter 5 BDT
Slow

Fast classification
SIMD-like HW and

classification task scheduling

approximated ones. As the required knowledge for BDT, this chapter explains available
hardware architectures for BDT in literature.

Chapter 3 presents the proposed information-preserved HOG feature descriptor,
decomposed vector HOG (DV-HOG). Compared with the existing algorithm based
on angular interpolation, the proposed DV-HOG uses vector decomposition in the
histogram voting method based on linear algebra. This chapter explains its algorithm
and shows that the information is preserved in the algorithmic level. Then, a hardware
architecture for DV-HOG is presented. The hardware architecture exploits the symmetry
of the vector to the x and y-axes to reduce computation and hardware resources. The
evaluation shows the detection accuracy and hardware resources of multiple HOG
feature descriptors to compare the trade-off between detection accuracy and power
consumption.

Chapter 4 presents a quantization method for a BDT classifier. It first explains a
preliminary evaluation to show that BDT machine learning algorithm is efficient for
implementation with low numerical precision. Exploiting the result that BDT is based
on the comparison and it is robust to limited numerical precision, this chapter proposes a
quantization method for memory-efficient BDT. The basic idea of the proposed method
is that the numerical precision can be reduced as long as comparison result at each
decision node does not change. The proposed method quantizes the threshold value
focusing on the range of threshold values. The evaluation shows the relationship
between numerical precision and required memory for a classifier.

Chapter 5 presents a hardware architecture for parallel computation for a BDT
classifier, which is based on hardware-software cooperative approach. The proposed
implementation consists of a hardware module and preliminary task scheduling software
to control the memory access orders in advance. The proposed highly-parallelized
hardware architecture supports SIMD-like processing for both speed-up by increasing
the parallelism and maintain easiness by assigning same processing to each component.
As a software approach, the task scheduling method avoids memory conflict in parallel
classification. This task scheduling problem is an NP-hard problem, and a greedy
approach is adopted. An evaluation using pedestrian classifiers shows that the proposed
greedy approach contributes to speed-up classification. The required hardware resources
and processing time for task scheduling are also presented.

10 CHAPTER 1. INTRODUCTION

Chapter 6 presents an ACF object detection hardware architecture, which uses the
algorithms and hardware architectures proposed in Chapters 3, 4, and 5. This chapter
explains the hardware architecture for the ACF object detection in order. First, it
explains a hardware module for single-scale object detection followed by the whole
hardware architecture of the detection system, which supports multi-class and multi-
scale detection. The proposed hardware accelerator is a standalone detection system.
An evaluation using FPGA demonstrates the required hardware resources and object
detection accuracy in two applications. One is pedestrian detection for comparison with
existing implementations, and the other is 6-class traffic object detection taking into
account practical usage such as ADAS.

Finally, Chapter 7 summarizes the proposed approaches and the evaluation results.
Then, it provides a discussion on the proposed method and explains the future work of
this research.

Chapter 2

Preliminaries of Visual Object
Detection

This chapter provides preliminary knowledge required for understanding object
detection hardware. First, Section 2.1 describes three major machine learning
algorithms, which are used in Chapter 4 for comparison. Next, Section 2.2 explains
the ACF object detection method, which is the implementation target of this work.
Sections 2.3 and 2.4 explain existing algorithms and hardware architectures of HOG
feature descriptor and BDT, respectively, which are the two main components of ACF.
Then, Section 2.5 explains pedestrian detection and its evaluation environment, where
pedestrian detection is a widely used object detection task used for the evaluation.
Finally, Section 2.6 concludes this chapter.

2.1 Machine Learning Algorithms

This section explains three major machine learning algorithms for comparison: an
MLP [53], an SVM [29], and an AdaBoost [30] algorithm. Although few recent research
uses an MLP algorithm itself, it is used as a comparison target as a representative of
convolutional neural networks. This section describes the basic structure of a binary
classifier trained by each machine learning algorithm, and how each machine learning
algorithm separates the input space.

2.1.1 Multilayer Perceptron

An MLP consists of multiple layers of perceptrons as shown in Figure 2.1(a), where
each perceptron calculates an inner product between a weight vector and an input vector.
Given a weight vector w ∈ RN and an input vector x ∈ RN , the perceptron f (x) is defined

11

12 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

Input layer

Hidden layer

Output layer

x0 x1 x2 xN

w
(1)
0,1 w

(1)
N,M

w
(2)
1,1 w

(2)
M,1

hσhσhσhσhσ

hσ

sign

b(3)

b(2)

(a) Multilayer perceptron (MLP).

x0 x1 x2 xN

w1 w2w0 wN

sign

(b) Support vector machine (SVM).

Decision stump

Yes No

α1,{0,1}

x1, x2, . . . , xN

αK,0 αK,1

xi ≥ tK

h1 hKh2

sign

αK,{0,1}

(c) AdaBoost.

Figure 2.1: Basic structure of machine learning algorithms.

as

f (x) = h

 N∑
i=1

wixi + b

 , (2.1)

where h is activation function, and b is a bias. Assuming x0 = 1 and w0 = b, the equation
can be rewritten as follows:

f (x) = h
(
w>x

)
. (2.2)

Based on Eq. (2.2), the MLP shown in Figure 2.1(a) is represented as follows:

fMLP(x) = sign
(

f (2)(x) + b(3)
)
, (2.3)

f (2)(x) = hσ

 M∑
j=1

w(2)
j,1 f (1)

j (x) + b(2)

 ,
f (1)

j (x) = hσ
(
w(1)>

j x
)
,

where w(1)
j is a weight vector from all the input nodes to the j-th hidden node, w(2)

j,1 is a
weight from the j-th hidden node to the output node, b(i) is a bias of the i-th layer, and

2.1. MACHINE LEARNING ALGORITHMS 13

(a) Multilayer perceptron (MLP). (b) Support vector machine
(SVM).

(c) AdaBoost.

Figure 2.2: Input space separation. Each classifier separates two class data: © and ×.

the activation function hσ(x) is defined as

hσ(x) = 1.7159 ×
1 − exp(−2x/3)
1 + exp(−2x/3)

. (2.4)

The final classification result fMLP(x) is calculated by the following sign function to
threshold the prediction value to two classes:

sign(x) =

1 x ≥ 0
0 otherwise

. (2.5)

In the training process, backpropagation is used to update the weights and the biases.
Figure 2.2(a) shows an example of how an MLP divides the input space in binary
classification. Due to the nonlinearity of Eq. (2.3), the representation capability is high,
and it is able to separate an input space complexly. The state-of-the-art DNN classifiers
contain more layers in the classifier and the number of nonlinear transformations, which
is the main reason for the high representation capability of the state-of-the-art DNN
classifiers.

2.1.2 Support Vector Machine
The basic structure of an SVM is identical to that of a simple perceptron as shown in
Figure 2.1(b), where a linear SVM is discussed for the convenience of explanation. A
linear SVM is represented by

fSVM(x) = sign
(
w>x

)
, (2.6)

where the activation function is the sign function. The only difference between an
SVM and a simple perceptron is the training algorithm maximizing the margin between

14 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

classes in N-dimensional feature space. Figure 2.2(b) shows a classification example.
We can see that a linear SVM classifier cannot separate linearly inseparable data, which
is one of the most significant reasons of accuracy degradation.

2.1.3 Adaptive Boosting
An AdaBoost is one of ensemble learning algorithms, building a strong classifier
consisting of weak learners as shown in Figure 2.1(c), where “strong” and “weak”
represent high and low prediction capability, respectively. The strong classifier, which
is composed of K weak learners, is represented as follows:

fAdaBoost(x) = sign

 K∑
k=1

hk(x)

 , (2.7)

where the k-th weak learner hk(x) is defined as

hk(x) =

αk,0 xi ≥ tk

αk,1 otherwise
. (2.8)

In the training process, each sample has a weight indicating the difficulty of classifying
the sample; the weight is increased when the sample is misclassified and vice versa. This
algorithm iteratively selects a weak learner to minimize the total weight of misclassified
samples. Figure 2.2(c) shows an example of a classification using AdaBoost. The figure
shows that AdaBoost has high representation capability to nonlinear data because of the
combinations of threshold values of the classifier.

2.2 Aggregated Channel Features
In computer vision, non-rigid object detection has been a challenging issue and studied
for several decades. Of many existing methods, Dollár et al. proposed an object
detection method named ACF [36], which shows excellent performance in terms
of both classification accuracy and computational efficiency. Figure 1.4 shows the
processing flow of ACF. As shown in Figure 1.4, the ACF extracts ten raw channels
of features from an input image: six channels for HOG [24], a channel for normalized
gradient magnitude, and three channels for each of LUV color channels. Then,
channel aggregation step accumulates the adjacent features of each memory to compute
aggregated channel features. Throughout this dissertation, the block size is set to
4x4 pixels, and the memory requirement of aggregated channels is one-sixteenth size
compared with that of raw channels. Each pixel of aggregated channels is looked up
by BDT, where depth-two DTs are used as weak learners of the AdaBoost. After
classification, multiple detection results are obtained around the target object in general,
and these results are clustered by non-maxima suppression.

2.3. HOG FEATURE DESCRIPTORS AND ITS HARDWARE ARCHITECTURES15

Since each DT consists of multiple decision stumps, BDT is expected to show a
similar result to the AdaBoost explained in the previous section, but in this case, each
value of leaf nodes is positive-semidefinite, which means that it is not necessary to
consider the sign bit in fixed-point representation. In [36], Dollár et al. reported that
BDT using ACF achieved 17% log-average MR on INRIA Person Dataset [24] and
31.9 fps processing performance on a single CPU, which outperforms other types of
state-of-the-art methods.

2.3 HOG Feature Descriptors and Its Hardware
Architectures

The HOG feature descriptor extracts appearance information from images. Many object
detection algorithms use this feature descriptor including state-of-the-art methods. For
hardware implementation, variants of HOG feature descriptors have been proposed.
First, this section explains algorithms for extracting the HOG feature and its variants
and then describes hardware architectures for each feature descriptor.

2.3.1 HOG Feature Descriptor

The HOG feature descriptor extracts appearance information from images in the form
of a distribution of intensity gradients. Given an input image I, horizontal and vertical
intensity gradients are calculated for each pixel. From these two gradients, a two-
dimensional gradient vector g can be defined with magnitude M and orientation θ as
follows:

M :=
√

gx
2 + gy

2, (2.9)

θ :=


cos−1 gx

M , if gy ≥ 0 and M > 0
2π − cos−1 gx

M , if gy < 0 and M > 0
0, if M = 0

, (2.10)

where

g = (gx, gy) =

(
∂I
∂x
,
∂I
∂y

)
. (2.11)

Then, the magnitude of each gradient vector is voted to a histogram. The histogram
has N orientation bins, where the bins are evenly spread over 0 to π radians as shown
in Figure 2.3(a) or 0 to 2π radians as shown in Figure 2.3(b). In Figure 2.3, each ui

represents an orientation unit vector with magnitude 1. Gradient vector’s magnitude M

16 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

u0

u1

u2

u3
u4

u5

x

y

θ1

(a) Half range [0, π).

u0

u1u2

u3

u4 u5

x

y

θ1

(b) Full range [0, 2π).

Figure 2.3: Orientation unit vectors ui. In this figure, six unit vectors are evenly spaced
over the half range [0, π) (a) or the full range [0, 2π) (b).

is voted to the bin including the gradient vector g. Given a histogram of N orientation
bins, the N + 1 unit vectors, ui(i = 0, . . . ,N), are defined as

ui :=
[
ux

i
uy

i

]
=

[
cos θi

sin θi

]
, (2.12)

where θi = iθ1 and θ1 represents the angle between two adjacent unit vectors: θ1 equals
π
N for the half range and 2π

N for the full range.
A basic way of orientation binning is that each gradient vector casts a single vote

for a single bin with the range including it or with the nearest orientation as illustrated
in Figure 2.4. In the range binning method, unit vectors are used as bin edges as shown
in Figure 2.4(a), and the following relation determines the index i∗range:

i∗range ∈ {i | θi ≤ θ < θi+1} . (2.13)

If the half range is adopted and gy is negative, g is moved to the first or second quadrant
by the point reflection to the origin because unit vectors are located only in y ≥ 0.

In the nearest binning method, the index of the nearest unit vector, i∗nearest, is
calculated as

i∗nearest = argmax
i

g · ui, (2.14)

where unit vectors are located at the bin center as shown in Figure 2.4(b). These two
binning methods are equivalent to each other regarding feature description, because
their voting index areas are identical, except for the θ1

2 rotation, as in Figure 2.4. In
this dissertation, the sort of HOG using this type of voting is called NaiveHOG for
convenience.

2.3. HOG FEATURE DESCRIPTORS AND ITS HARDWARE ARCHITECTURES17

u0

u1

u2
g

(a) Range

u0

u1

u2
g

(b) Nearest

Figure 2.4: Simple orientation binning methods for a gradient vector g. In both methods,
each gradient vector casts its magnitude for one of the orientations in the shadowed area
including g.

H
is

t.

H
is

t.

θ = θ1
2
+ ǫ

θ1
θ

θ = θ1
2
− ǫ

g

u0u0 u0
u1u1

u1

MM

Figure 2.5: Aliasing of NaiveHOG, which makes entirely different histograms from
similar gradient vectors.

However, as mentioned in [24], there is an aliasing issue, and Figure 2.5 shows an
example. Assuming there is a gradient vector in the middle of u0 and u1, only a slight
difference in θ can make an entirely different voting result. [24] introduces a voting
method using bilinear interpolation to resolve this aliasing problem. The concept of
using bilinear interpolation is simple. As shown in Figure 2.6, given a gradient vector
between two unit vectors, it casts votes for both adjacent bins representing the unit
vectors with weights that are proportional to the proximity of the angles, which can be
described as the angles. The following equations represent the weights for the adjacent
bins, ai∗range , and bi∗range:

ai∗range = θ1−∆θ
θ1

M, bi∗range = ∆θ
θ1

M, (2.15)
∆θ = θ − θi∗range .

This bilinearly interpolated HOG enables to suppress the influence of aliasing.
However, a trigonometric function is necessary for acquiring θ, and bilinear
interpolation requires a division and a multiplication, which means complex
computations are necessary in hardware implementation. Therefore, in straightforward
hardware implementations [5, 6], the HOG calculation is the dominant process from
the point of power consumption. Hereafter, this bilinearly interpolated HOG is called
InterHOG.

18 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

H
is

t.

θ1
θ

g

u0u0
u1

u1

θ1−θ
θ1

M

θ
θ1
M

Figure 2.6: Bilinearly interpolated HOG. Given a gradient vector g, the interpolated
HOG bilinearly decomposes its magnitude M according to θ.

Table 2.1: Coordinates of six unit vectors over the half range (N = 6).
u0 u1 u2 u3 u4 u5

ux
i 1

√
3/2 1/2 0 −1/2 −

√
3/2

uy
i 0 1/2

√
3/2 1

√
3/2 1/2

The magnitude calculation of Eq. (2.9) contains a square root operation, which
requires plenty of computational resources in a hardware implementation. Hardware-
oriented HOG feature descriptors use approximated magnitude calculations to alleviate
this problem. This section explains two approximate magnitude calculation methods
used in related works.

Square root approximation (SRA) [54] is a hardware-oriented approximation
method for the square root used in [8], and Eq. (2.16) expresses the magnitude
calculation:

MSRA := max ((a − 0.125a) + 0.5b, a) , (2.16)
a = max(|gx|, |gy|), b = min(|gx|, |gy|).

Hardware for the SRA consists of only an adder, a shifter, and a comparator, but the
simplification limits its approximation capability. Chen et al. proposed a hardware-
efficient HOG feature descriptor using SRA [8]. The algorithm calculates SRA and
votes MSRA/2 to two adjacent bins to alleviate the aliasing problem. Chen’s HOG
feature descriptor is called ChenHOG.

Another magnitude approximation method is to use the dot product. HOG-Dot
proposed in [10] adopts the nearest binning method defined in Eq. (2.14) and votes
the dot product of g and ui∗nearest

instead of magnitude M. However, in HOG-Dot,
the magnitude is voted to the nearest bin and ignores the other weight, which causes
information loss.

2.3. HOG FEATURE DESCRIPTORS AND ITS HARDWARE ARCHITECTURES19

Comp Comp

(CORDIC)

Square root
(Newton-Raphson)

0 5 1 4 2 3

gx gy

(∆θ/θ1)M

|gx|2 + |gy|2

θ

M − bi∗

bi∗ ai∗

i∗

qflag

qflagqflagqflag

|gx| |gy|

θ1

θ1

θ2

θ2

∆θt = θ − θk

∆θ

θ1 −∆θt

θ0

Figure 2.7: Outline of InterHOG hardware.

2.3.2 Hardware Architectures for HOG Feature Descriptors

This section introduces hardware architectures based on the HOG algorithms explained
in the previous section. In Chapter 3, they are implemented and used for comparison
with the proposed DV-HOG. Their designs are based on their original works but largely
improved by the proposed quadrant folding described in Chapter 3. For proving the
superiority of DV-HOG, applying quadrant folding to existing HOG algorithms may
not be a reasonable choice. However, it makes it possible to focus only on the feature
descriptor in the evaluation. Also, even without the advantage of quadrant folding, DV-
HOG outperforms existing methods. Each hardware is designed to output a set of index
and magnitudes per clock cycle in fixed-point representation and based on the settings
of an ACF classifier: six unit vectors over the half range, whose settings are used in the
implementation of ACF [36]. In this setting, the unit vectors are located in y ≥ 0 area,
and Table 2.1 summarizes the six unit vectors.

20 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

Square root
(Newton-Raphson)

Comp Comp

gx gy

|gx|2 + |gy|2

M

|gx| |gy|

|gx| tan θ1 |gx| tan θ2

0 5 1 4 2 3

i∗

qflagqflagqflag

Figure 2.8: Outline of NaiveHOG hardware.

In [5] and [6], Mizuno et al. proposed a HOG pedestrian detection hardware using
InterHOG. They used CORDIC [55] and the Newton-Raphson method to implement
InterHOG. The InterHOG hardware for the evaluation is based on [5] and [6], and
the quadrant folding is applied to reduce circuit area. Figure 2.7 shows the InterHOG
hardware architecture, where the quadrant flag is used for quadrant folding to represent
the signs of the gradient vector, In Figure 2.7, the architecture includes a CORDIC
module for the θ calculation, a Newton-Raphson module [56] for the square root
calculation, together with multipliers, adders, multiplexers, and simple logic gates.
Since the InterHOG hardware adopts straightforward implementation, the processing
flow follows the calculation described in the previous section.

The hardware architecture for NaiveHOG is similar to that of InterHOG because
NaiveHOG is a simplified InterHOG. NaiveHOG omits internal division, as shown in
Figure 2.8.

ChenHOG is the comparison target because it is the smallest hardware

2.3. HOG FEATURE DESCRIPTORS AND ITS HARDWARE ARCHITECTURES21

CompComp Comp

Eq.(2.16)

|gx| tan θ1 |gx| tan θ2

0 5 1 4 2 3

i∗

gx gy

|gx| |gy|

MSRA

qflagqflagqflag

ai∗ =
MSRA

2
bi∗ =

MSRA

2

Figure 2.9: Outline of ChenHOG hardware with sign modification.

implementations for HOG calculation, to the best of my knowledge. Figure 2.9
summarizes of the ChenHOG hardware architecture. The hardware mainly consists of
two constant multipliers, multiplexers, comparators, and simple logic gates. Note that
several multiplexers and comparators used for Eq. (2.16) are omitted in Figure 2.9. The
index i∗ is selected based on the results of the comparison of |gx| tan θi and |gy|. Although
ChenHOG votes the magnitude to adjacent two bins, no additional divider is required
for division by two because the architecture uses fixed-point calculations.

Figure 2.10 shows the hardware architecture for HOG-Dot based on [9]. Because
the hardware architecture described in [9] adopts full range, the following preprocessing
for mapping to the half range is conducted:

g′′x ←

gx, if gy ≥ 0
−gx, otherwise

, g′′y ← |gy|. (2.17)

The hardware consists of six dot product calculators and ten multiplexers, and each dot
product calculator contains two constant multipliers and an adder. After the dot product

22 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

Adder

gx gy

g′′yg′′x

s1 s2 s3

s4

s5

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

MDot

g′′xu
x
i g′′yu

y
i

Figure 2.10: Outline of the HOG-Dot hardware proposed in [9].

calculation, each multiplexer selects the larger input value to select the largest one.

2.4 Boosted Decision Trees and Its Hardware
Architectures

BDT is one of ensemble learning methods that use multiple DTs as weak learners in
AdaBoost. Each DT consists of decision nodes and leaf nodes, where a decision node
selects one of its child nodes based on the comparison result between its input and
threshold, and the selected leaf node returns its evaluation value. Given an input feature
vector x, a BDT classifier is defined as Eq. (2.7). Compared with recent deep learning
algorithms, BDT is a shallow machine learning algorithm. However, it is reasonably
deep and shows good classification performance for practical applications [57].

2.4.1 Hardware Architectures for Boosted Decision Trees

There exist multiple hardware architectures for BDT [58, 59], and Struharik and
Novak classified them into three types in [60]: threshold networks, single-path
architectures, and single-node architectures. Figure 2.11(a) is a target depth-two DT,
and Figures 2.11(b), 2.11(c), and 2.11(d) show a threshold network, a single-path
architecture, and a single-node architecture, which are available implementations for
a depth-two DT. The threshold network, shown in Figure 2.11(b), is an architecture that
processes all the decision nodes of a DT in parallel, calculating an output O as follows:

O = l1(d1d2) + l2(d1d̄2) + l3(d̄1d3) + l4(d̄1d̄3), (2.18)

2.4. BOOSTED DECISION TREES AND ITS HARDWARE ARCHITECTURES 23

Depth 1

Depth 2

x

d2 d3

d1

l1 l2 l3 l4

(a) Depth-two DT.

x

d1 d3d2

l1 l2 l3 l4

(b) Threshold network.

D1 universal node Pipeline
stage 1

Register

D2 universal node Pipeline
stage 2

Register

x

(c) Single-path architecture.

Universal node

Register

x

(d) Single-node architecture.

Figure 2.11: BDT and available hardware architectures.

where di is the binary response of the i-th decision node, 0 or 1, and l j is the value of the
j-th leaf node. Since threshold networks enable to calculate output instantly after input,
it is suitable for applications requiring short time delay between input and output. The
single-path architecture, shown in Figure 2.11(c), is an architecture that has pipeline
stages of universal nodes, where the number of pipeline stages is equal to the depth
of the DT, and the universal nodes are processing elements to carry out the function
of decision nodes. Since single-path architectures adopt a pipelined homogeneous
structure, it achieves equivalent throughput to the corresponding threshold network with
a relatively small amount of hardware resources. The single-node architecture, shown
in Figure 2.11(d), also uses universal nodes as processing elements but does not have
pipeline stages. The single-node architecture has more flexibility in its design than the
others mentioned above in that it can handle any processing order of decision nodes and
there exist multiple hardware architectures for storing the responses of decision nodes.
However, its processing performance and required hardware resources largely depend
on the design. Therefore, for the hardware implementation based on the single-node
architecture, the architecture design plays an important role.

24 CHAPTER 2. PRELIMINARIES OF VISUAL OBJECT DETECTION

Table 2.2: Overview of images in INRIA Person Dataset.
#Pedestrians # of positive images # of negative images

Training 1,208 614 1218
Testing 566 288 453

2.5 Pedestrian Detection
In computer vision, pedestrian detection has been studied for several decades due to (1)
difficulty originating from non-rigidity and occlusion and (2) importance in practical
situations such as ADAS and surveillance systems. For comparing detection capability
between multiple methods, many pedestrian datasets have been used, and INRIA Person
Dataset [24] is one of the most well-known datasets [25, 27]. This dissertation mainly
uses this dataset for evaluation in Chapters 3, 4, and 5. INRIA Person Dataset contains
2,573 images consisting of 1,832 training images and 741 testing images. Each positive
image has annotations indicating locations of pedestrians. Table 2.2 shows the overview
of the dataset.

INRIA Person Dataset uses a trade-off between MR and false positive per
image (FPPI), and log-average MR as evaluation criteria. The trade-off represents the
relationship between false positives and false negatives. Figure 1.2 shows this trade-off

as a detection error trade-off (DET) curve of existing object detection methods. If the
curve is close to the bottom left, it means the good result. To compare multiple object
detection algorithms, log-average MR is used as a representative evaluation criterion.
Log-average MR is the log-averaged MRs at nine FPPI points, where the nine points are
uniformly sampled in log-space from FPPI equals 0.01 to 1.0. The small log-average
MR shows the better result. To compute the DET curve, BDT classifier’s threshold
is changed, which corresponds to the sign function of Eq. (2.7). Higher threshold
generates higher false negatives and lower false positives and vice versa.

2.6 Summary
This chapter explained the preliminary knowledge of visual object detection and its
hardware implementation. First, this chapter explained the classifiers for conventional
machine learning algorithms. Then, it described the ACF object detection algorithm
and its components. Four HOG algorithms are reviewed: the original HOG, a HOG
without information loss, and two approximated HOG algorithms for efficient hardware
implementation. Next, three types of available hardware architectures of BDT and their
characteristics are introduced. Finally, as an evaluation target, pedestrian detection and
its dataset are introduced.

Chapter 3

Decomposed Vector
Histograms of Oriented Gradients

This chapter explains an information-preserved HOG feature descriptor called DV-
HOG for efficient hardware implementation [61]. The basic idea of DV-HOG is vector
decomposition of the gradient vector to the adjacent unit vectors. This chapter confirms
that DV-HOG is an information-preserved feature descriptor based on the comparison
of DV-HOG and InterHOG. Then, it explains a hardware architecture for DV-HOG, and
an evaluation result using pedestrian detection shows the improvement of the trade-off

between detection accuracy and hardware resources.

3.1 Introduction
The HOG feature descriptor proposed in [24] is still a widely used feature extraction
method, and even recently proposed algorithms utilize it or its variants as a feature
descriptor [25, 27]. A problem with using HOG feature descriptor in hardware
implementation is that it requires large amounts of computational resources for square
root and trigonometric functions in Eqs. (2.9) and (2.10). According to [5] and
[6], in straightforward hardware implementations using the Newton-Raphson method
and CORDIC, HOG feature generation accounts for more than half of the entire
power consumption of the dedicated hardware. For that reason, many hardware
implementations use simplified HOG-based feature descriptors instead of the original
one [7,8,11,12,48]. These approximations, however, degrade the detection accuracy of
the latest object detection algorithms that are sensitive to the representation capability
of the feature descriptors.

To solve this problem, this chapter proposes a HOG-based feature descriptor named
decomposed vector HOG, which utilizes only simple linear algebra for calculation. The
most important aspect of this feature descriptor is that its representation capability is
equivalent to that of the HOG feature descriptor, but it requires much less computation.

25

26 CHAPTER 3. DECOMPOSED VECTOR HOG

H
is

t.

θ1

g

u0u0
u1

u1

a0

b0

a0u0

b0u1

Figure 3.1: Proposed DV-HOG. The proposed method decomposes a gradient vector g
into two adjacent vectors with directions of a pair of ui, where the vectorial sum of the
two decomposed vectors is equal to the gradient vector.

In particular, the method makes it possible to implement existing HOG-based object
detection algorithms in a much smaller area and with lower power consumption.

The rest of this chapter is organized as follows. Section 3.2 describes DV-HOG
and explains that DV-HOG has a property of information preservation. Section 3.3
describes HOG hardware architecture for DV-HOG. Section 3.4 discusses the results of
the evaluation, and Section 3.5 summarizes this chapter.

3.2 Decomposed Vector HOG Feature Descriptor
In contrast to other HOG feature descriptors explained in Section 2.3, the InterHOG
feature descriptor is free of any information loss which is the cause of recognition
accuracy degradation. However, in the case of InterHOG, ensuring no information loss
requires large computational resources. The proposed DV-HOG shares the equivalent
representation capability to InterHOG but demands less computation.

3.2.1 Details of DV-HOG
Figure 3.1 shows the concept of DV-HOG. DV-HOG considers a gradient vector g which
is defined in Eq. (2.11) as the vectorial sum of two decomposed vectors:

g = aiui + biui+1, (3.1)

where aiui and biui+1 are decomposed vectors with magnitudes ai and bi, and they are
in the same directions as ui and ui+1, respectively. This pair of decomposed vectors
composing the gradient vector g can be calculated as follows. First, in the case of
the half range, the following preprocess is conducted to project the third and fourth
quadrants to the first and second quadrants if gy is negative:

gx ← −gx, gy ← −gy. (3.2)

3.2. DECOMPOSED VECTOR HOG FEATURE DESCRIPTOR 27

Algorithm 3.1 DV-HOG (half range).
Input: number of bins N, gradient vector g
Output: index i∗, magnitudes ai∗ , bi∗

1: if gy < 0 then
2: gx ← −gx

3: gy ← −gy

4: end if
5: for i = 0 to bN

2 c do
6: tx

i = uy
i gx

7: ty
i = ux

i gy

8: end for
9: b0 = ty

0
10: for i = 1 to N do

11: bi =

ty
i − tx

i , if i ≤ bN
2 c

−ty
N−i − tx

N−i, if i > bN
2 c

12: ai−1 = −bi

13: end for
14: i∗ ∈ {i | ai ≥ 0 ∧ bi ≥ 0}

After that, the magnitudes ai and bi of the decomposed vectors are calculated as
Eq. (3.3), which is derived from Eq. (3.1):

ai =
uy

i+1gx − ux
i+1gy

ux
i uy

i+1 − uy
i u

x
i+1

, bi =
ux

i gy − uy
i gx

ux
i uy

i+1 − uy
i u

x
i+1

, (3.3)

where each ui is defined in Eq. (2.12), and uN is equal to −u0 for the half range case and
u0 for the full range case. Eq. (3.3) defines all the pairs of decomposed vectors within
the range, but ai and bi are simultaneously nonnegative if and only if the gradient vector
g is between ui and ui+1. When either ai or bi is zero, there is more than one index i
satisfying the non-negative condition mentioned above, and each i represents identical
histogram votes. Finally, the magnitude MDV is used for cell normalization, or MDV is
used as a feature in such as [36] and [62]. As novel object detection algorithms use L1
normalization [36, 37, 62], the magnitude in DV-HOG, MDV, is defined as

MDV := ai∗ + bi∗ , (3.4)
s.t. i∗ ∈ {i | ai ≥ 0 ∧ bi ≥ 0} ,

where i∗ represents the index of the bin including g.
Algorithm 3.1 is the pseudo code of DV-HOG for the half range case. All ux

i and uy
i

are constant values, so it is possible to calculate ai and bi with constant multiplications.
Although there are divisions by (ux

i uy
i+1 − uy

i u
x
i+1) in Eq. (3.3), they are not necessary for

practice because the normalization process rescales the feature values. When the half

28 CHAPTER 3. DECOMPOSED VECTOR HOG

Table 3.1: Comparison between InterHOG and DV-HOG.
Magnitude ai∗ bi∗

InterHOG M θ1−∆θ
θ1

M ∆θ
θ1

M
DV-HOG sin ∆θ+sin (θ1−∆θ)

sin θ1
M sin (θ1−∆θ)

sin θ1
M sin ∆θ

sin θ1
M

range is adopted, unit vectors in the first and second quadrants are linear symmetry to the
y-axis. By using this symmetry, the number of the loops in lines 5–8 of Algorithm 3.1
can be reduced to half: focusing on unit vectors in the first quadrant is enough for
calculation. Considering there exist bN

2 c unit vectors in the first quadrant, the number
of multiplications for each is 2 × bN

2 c. Moreover, due to the similarity between the
calculations of ai and bi, ai can be obtained by reusing bi and vice versa: for the full
range,

ai = −b j (j = i + 1 mod N), (3.5)

and for the half range,

ai =

−bi+1, i = 0, . . . ,N − 2
b0, i = N − 1

. (3.6)

As a result, the number of computations can be reduced to a quarter by exploiting the
symmetry of the unit vectors and the similarity of ai and bi.

3.2.2 Representation Capability Analysis
The representation capability of DV-HOG is equivalent to that of InterHOG in
that neither causes any information loss unlike other HOG algorithms described in
Section 2.3: g can be reproduced by using ai and bi defined in Eqs. (2.15) and (3.3)
for InterHOG and DV-HOG, respectively. However, the representations of InterHOG
and DV-HOG are slightly different. Therefore, this section compares DV-HOG and
InterHOG and provides an analysis of their representation capabilities.

To compare DV-HOG with InterHOG directly, Eq. (3.7) is used to rewrite the
gradient vector’s components:

gx = M cos θ, gy = M sin θ. (3.7)

Let aDV
i∗ , b

DV
i∗ and aInter

i∗ , bInter
i∗ be the voted weights of DV-HOG and InterHOG. Then, aDV

i∗

and bDV
i∗ are rewritten by substituting Eq. (2.11) for Eq. (3.3):

aDV
i∗ =

sin (θ1 − ∆θ)
sin θ1

M, bDV
i∗ =

sin ∆θ

sin θ1
M, (3.8)

where

sin θ1 = ux
i uy

i+1 − uy
i u

x
i+1 (3.9)

3.2. DECOMPOSED VECTOR HOG FEATURE DESCRIPTOR 29

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

 2 4 6 8 10 12 14 16 18 20

R
at

io

N

Δa

Δb

Figure 3.2: Comparison of voted weights of DV-HOG and InterHOG.

and ∆θ is the same variable defined in Eq. (2.15). Table 3.1 compares DV-HOG and
InterHOG by Eqs. (2.15) and (3.8). Here, it is easily seen that DV-HOG and InterHOG
have different magnitudes for the decomposed vectors, but share a similar tendency
toward ∆θ. Let ∆a and ∆b be the differences between DV-HOG and InterHOG of ai∗

and bi∗:

∆a := aDV
i∗ − aInter

i∗ and ∆b := bDV
i∗ − bInter

i∗ . (3.10)

The following equation holds in the limit as θ1 approaches 0:

lim
θ1→0

∆b = lim
θ1→0

sin ∆θ

sin θ1
M − lim

θ1→0

∆θ

θ1
M = 0, (3.11)

because the second term of Eq. (3.11) is equal to

lim
θ1→0

rθ1

θ1
M = rM s.t. r ∈ [0, 1), (3.12)

and the first term is equal to

lim
θ1→0

sin rθ1

sin θ1
M = lim

θ1→0

sin rθ1

rθ1

rθ1

sin θ1
M = rM, (3.13)

where rθ1 = ∆θ. In the same way, the following Eq. (3.14) can be proven as well:

lim
θ1→0

∆a = lim
θ1→0

sin (θ1 − ∆θ)
sin θ1

M − lim
θ1→0

θ1 − ∆θ

θ1
M = 0. (3.14)

Let us compare how different the voted weights between DV-HOG and InterHOG
over N, where the difference is calculated at the point θ(a) for ai and θ(b) for bi, which

30 CHAPTER 3. DECOMPOSED VECTOR HOG

Table 3.2: Comparison of HOG algorithms.

Algorithm i∗ ai∗ bi∗

DV-HOG
⌊
θ
θ1

⌋
sin(θ1−∆θ)

sin θ1
M sin ∆θ

sin θ1
M

InterHOG [24]
⌊
θ
θ1

⌋
θ1−∆θ
θ1

M ∆θ
θ1

M

NaiveHOG [24]
⌊
θ
θ1

⌋
M 0

ChenHOG [8]
⌊
θ
θ1

⌋
MSRA

2
MSRA

2

HOG-Dot [10] argmax
i

g · ui g · ui∗ 0

Smooth
input image

Calculate
oriented gradients

L1
normalization

Aggregation
(4x4 block)

Smooth
channels

Sliding-window
detection

Evaluation target

In
pu

t
O

ut
pu

t

Figure 3.3: Evaluation target process in ACF [36].

gives the maximum difference:

θ(a) B argmax
0≤θ<θ1

∆a = θ1 − cos−1 sin θ1

θ1
, (3.15)

θ(b) B argmax
0≤θ<θ1

∆b = cos−1 sin θ1

θ1
. (3.16)

Figure 3.2 shows the behavior expected from Eqs. (3.11) and (3.14): as N increases,
the voted weights of DV-HOG and InterHOG converge. In particular, for a practical N,
such as 6 or 9, the difference in voted weights is a few percents at most.

3.2.3 Detection Accuracy Evaluation
To evaluate the influence of the DV-HOG feature descriptor on object detection
accuracy, DV-HOG is used in an ACF classifier [36]. Figure 3.3 summarizes the
processing flow of the ACF classifier, and here, this section focuses on the oriented
gradients calculation. Although the C++ software implementation is based on Dollár’s
MATLAB code available online 1, the calculations of oriented gradients and magnitude

1https://github.com/pdollar/toolbox

3.2. DECOMPOSED VECTOR HOG FEATURE DESCRIPTOR 31

Table 3.3: Pedestrian detection parameters for the ACF classifier.
Parameter Symbol Value
Pixel Step S pixel 4
Scale Step S scale 21/8

Window Width Wwin 48
Window Height Hwin 96

Table 3.4: Log-average MR comparison on INRIA Person Dataset.
Method Log-avg. MR

ACF-Exact [36] + DV-HOG 16.24%
ACF-Exact [36] + HOG-Dot [10] 17.57%
ACF-Exact [36] + InterHOG [24] 17.90%
ACF-Exact [36] + NaiveHOG [24] 20.60%
ACF-Exact [36] + ChenHOG [8] 21.42%

values are varied for each HOG feature descriptor. Table 3.2 summarizes the
feature descriptors used in the evaluation. The evaluation uses 32-bit floating point
representation for gx, gy, ai∗ , and bi∗ , and 3-bit fixed point representation for i∗. Fast
feature pyramids (FFP) [36] are not used to exclude its impact on detection accuracy.
Detection accuracy is evaluated on the public pedestrian detection datasets, INRIA
Person Dataset [24], and KITTI Vision Benchmark Suite [63].

First, INRIA Person Dataset [24] is used for the training and testing procedures, and
the well-known pedestrian detection benchmark [25] is used for evaluation. Table 3.3
lists the object detection parameters used in the evaluation. Table 3.4 shows the log-
average MR, and Figure 3.4 shows the DET curves of each HOG algorithm. We can
see that DV-HOG gives equivalent or better DET compared with the other HOG feature
descriptors. Moreover, Table 3.4 shows that its log-average MR, 16.24%, is around 5%
better than the approximated method, ChenHOG. Although Chen et al. indicated that
the detection accuracy of ChenHOG is equivalent to that of NaiveHOG based on a false
positive per window evaluation in [8], ChenHOG has approximately 0.8% worse log-
average MR compared with NaiveHOG in the FPPI-based evaluation. HOG-Dot slightly
degrades detection accuracy compared with InterHOG and DV-HOG which have no
information loss.

In the evaluation using the KITTI Vision Benchmark Suite, the 7,481 training data
are split to 6,000 for training and 1,481 for testing because the ground truth for test
data are not publicly available. Table 3.3 lists the parameters used in the evaluation, and
Table 3.5 shows the average precision (AP) on pedestrian detection. AP is the average of
precision values corresponding to recall at 0.0, 0.1, . . . , 1.0. Training data are different;
nevertheless, the AP reported in Table 3.5 shows the equivalent accuracy to that reported

32 CHAPTER 3. DECOMPOSED VECTOR HOG

Figure 3.4: DET curves of five ACF classifiers using different HOG feature descriptors.
The closer a curve gets to the bottom left corner, the better the DET is.

in KITTI Evaluation 2. The result indicates the similar tendency to the INRIA Person
Dataset. DV-HOG and InterHOG, which are HOG algorithms without approximation,
show higher AP than others.

Information loss in HOG calculation has a considerable influence on detection
accuracy especially in a noisy environment such as practical applications. For
evaluation, input image smoothing is disabled to evaluate the detection accuracy on
INRIA Person Dataset. As shown in Table 3.6, log-average MR increases from 9.3% to
11.9% without denoising. The result indicates that DV-HOG achieves the best detection

2http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

Table 3.5: Average precision comparison on pedestrian detection using KITTI Vision
Benchmark Suite.

Method Easy Moderate Hard
ACF (reported in KITTI Evaluation) 49.08% 40.62% 36.66%
ACF-Exact [36] + DV-HOG 48.46% 40.07% 34.02%
ACF-Exact [36] + InterHOG [24] 48.14% 39.72% 33.31%
ACF-Exact [36] + HOG-Dot [10] 47.83% 38.80% 32.82%
ACF-Exact [36] + ChenHOG [8] 44.77% 36.74% 31.13%
ACF-Exact [36] + NaiveHOG [24] 41.50% 34.78% 29.36%

3.3. HARDWARE ARCHITECTURES FOR HOG FEATURE DESCRIPTORS 33

Table 3.6: Log-average MR comparison without smoothing image on INRIA Person
Dataset.

Method Log-avg. MR Diff. from Table 3.4
ACF-Exact [36] + DV-HOG 25.67% +9.44%
ACF-Exact [36] + InterHOG [24] 27.25% +9.35%
ACF-Exact [36] + HOG-Dot [10] 28.31% +10.74%
ACF-Exact [36] + NaiveHOG [24] 29.90% +9.30%
ACF-Exact [36] + ChenHOG [8] 33.35% +11.93%

A
dd

er
A

dd
er

E
q.

(3
.2

3)

(i) (ii) (iii)

gx

gy

ai∗

×
(−

1)

bi∗

g′xu
y
1

g′yu
x
1

g′yu
x
2

g′xu
y
2

g′y

g′x b0

b1

b2

b3

i∗
1
2

0

4
3

5 ss

s

qflag

qflag

Figure 3.5: Outline of DV-HOG hardware.

accuracy without denoising, and its accuracy degradation is small compared with other
methods. The differences in log-average MR using DV-HOG and HOG-Dot are 9.4%
and 10.7%, respectively.

3.3 Hardware Architectures for HOG Feature
Descriptors

So far, this chapter has explained that DV-HOG has the equivalent representation
capability to InterHOG, and because it does not have any complex computations, it
would be a useful implementation in hardware. This section proposes a DV-HOG
hardware architecture used for the evaluation. Similar to the hardware architectures
explained in Section 2.3.2, the hardware is designed to output a set of index and
magnitudes per clock cycle in fixed-point representation and based on the settings of
an ACF classifier: six unit vectors over the half range. This section also introduces
quadrant folding to reduce hardware resource utilization, which can be applied to any
HOG feature descriptors.

34 CHAPTER 3. DECOMPOSED VECTOR HOG

The 1st
quadrant

The 2nd
quadrant

The 3rd and 4th
quadrants (Eq. (3.18))

12

3 4

12

3 4

12

3 4

−gy

−gy−gy

bi = tyi − txi bi = −tyN−i − txN−igx ← −gx, gy ← −gy

gxgxgx
gygygygygy

−gx−gx −gx

−gx−gx

Figure 3.6: Sign inversion of gx and gy for quadrant folding.

3.3.1 Hardware Architecture for DV-HOG

Figure 3.5 summarizes the DV-HOG hardware architecture. The hardware consists of
three parts: (i) quadrant folder for mapping g to the first quadrant, (ii) vector decomposer
for each unit vector in the first quadrant, and (iii) selector for the output. Because ai can
be calculated from bi as explained in Algorithm 3.1, this hardware calculates bi only.

The quadrant folder aims to calculate bi by the single equation regardless of the
position of g. Eq. (3.17) shows its calculation consisting of two multiplication with
constant and one addition using u in the first quadrant:

bi = g′yu
x
i + g′xu

y
i , (3.17)

where g′ = (g′x, g′y) is used to modify the sign of g as shown in Figure 3.6. The following
explains the steps of g′ calculation. First, if g is in the third or fourth quadrant, g
is projected to the first or second quadrant by the point symmetry to the origin. This is
because bi does not change due to the point symmetry of the unit vectors. The movement
is formulated as follows:

gx ← −gx, gy ← −gy, (3.18)

which corresponds to lines 1 to 4 in Algorithm 3.1. Then, if g is in the second quadrant,
g is mapped to the first quadrant based on the linear symmetry of u to the y-axis. The
conversion is represented as follows:

g′y ← −gy. (3.19)
∵ bi = g′y(−ux

i) + g′xu
y
i = (−g′y)u

x
i + g′xu

y
i

Now, g is in the first quadrant, and by comparing the signs of g and g′ in Eqs. (3.3) and
(3.17), it is necessary to modify the sign of gx as follows:

g′x ← −gx. (3.20)

3.3. HARDWARE ARCHITECTURES FOR HOG FEATURE DESCRIPTORS 35

Table 3.7: Select signals for each bin.
i∗ 0 1 2 3 4 5

s1, s0 01 10 00 00 10 01
qflag 0 0 0 1 1 1

Therefore, the following sign conversions summarize the quadrant folding:

g′x ←

|gx|, if qflag = 1
−|gx|, otherwise

, (3.21)

g′y ←

|gy|, if qflag = 0
−|gy|, otherwise

,

where

qflag := sign(gx) ⊕ sign(gy), (3.22)

⊕ is an exclusive OR operator, and the sign function is defined in Eq. (2.5).
In the vector decomposition part, it is possible to calculate each bi with Eq. (3.17).

Eq. (3.17) is implemented with adders in Figure 3.5, in which there is no adder for u0

or u3 because they are unit vectors on the x and y-axes. Moreover, in the case of ACF,
the multiplication of uy

1 and ux
2, which is 1/2, does not require a multiplier, and the

implementation makes use of this optimization.
The last part of the DV-HOG hardware selects the index i∗ and its weights ai∗ and

bi∗ , which corresponds to line 14 in Algorithm 3.1. For each of the three outputs, three
multiplexers are used as shown in Figure 3.5: two multiplexers in the first layer and
a multiplexer in the second layer. The first layer selects a bin in each quadrant, and
the second layer selects the quadrant based on the signs of g. The select signal s for
multiplexers in the first layer is a 2-bit signal, and each bit is defined as follows:

s0 := sign(b0) ⊕ sign(b1), (3.23)
s1 := sign(b1) ⊕ sign(b2).

The select signal for the second layer is qflag defined in Eq. (3.22). Table 3.7 shows
the select signals for each bin. Table 3.8 summarizes the ai∗ and bi∗ values for each
corresponding bin, which is calculated by using Eq. (3.6) and the following equation

bi = b6−i. (3.24)

3.3.2 Application of Quadrant Folding to HOG-Dot
This section introduces quadrant folding to reduce hardware resource utilization, which
uses the symmetry about the x and y-axes. Quadrant folding utilizes ui or θi of the

36 CHAPTER 3. DECOMPOSED VECTOR HOG

Table 3.8: Coefficients of DV-HOG after sign modification.
i∗ 0 1 2 3 4 5
ai∗ −b1 −b2 −b3 −b2 −b1 −b0

bi∗ b0 b1 b2 b3 b2 b1

Adder Adder

Comp

gx gy

ai∗

|gx|ux
1 |gy|uy

1 |gy|uy
2|gx|ux

2

|gy||gx|

i∗

25

0 3

qflag qflag

41

Figure 3.7: Outline of HOG-Dot hardware with quadrant folding.

first quadrant to minimize the circuit scale, and each architecture outputs its calculation
results based on the signs of gx and gy.

The hardware architecture proposed in [9] calculates for all the quadrants. However,
the quadrant folding, a part of the proposed HOG algorithm, can be also applied
to HOG-Dot to reduce the hardware resources. Figure 3.7 outlines the hardware
architecture of HOG-Dot with the quadrant folding, which is called modified HOG-Dot.
Compared with Figure 2.10, the comparison candidate is reduced from six to four, and
the number of the hardware resource is two adders, a comparator, and five multiplexers.
The hardware architecture for HOG-Dot with quadrant folding is similar to that of DV-
HOG in that dot product calculations for u0 and u3 are omitted.

3.4 Evaluation
The evaluation compares the hardware implementations for DV-HOG, InterHOG,
NaiveHOG, ChenHOG, HOG-Dot, and modified HOG-Dot, where HOG-Dot is a
comparison baseline to distinguish the effect of the proposed quadrant folding. Each

3.4. EVALUATION 37

Figure 3.8: DET curves of fixed-point ACF classifiers.

HOG algorithm is evaluated in fixed-point arithmetic from the aspect of the algorithm
and the hardware. First, fixed-point ACF software implementation is used for detection
accuracy evaluation. Then, for logic synthesis and FPGA implementation, each HOG
module is implemented using Verilog hardware description language (HDL).

Because the ACF classifier [36] uses floating LUV values in the range of [0, 1] as
the input of the HOG calculation, floating LUV values are converted into integers in the
range of [0, 255] as follows:

Iint = bIfloat × 255 + 0.5c, (3.25)

where Ifloat and Iint are floating and integer values, respectively. Prewitt filtering is used
in the detection accuracy evaluation, but it is not included in hardware implementations
since all HOG methods use it. As a result, each hardware implementation uses two 9-bit
fixed-point signed input signals for gx and gy. The following equation is used for the
fixed-point number representation of the parameters:

mk(x) = bx × 2k + 0.5c, (3.26)

where k is the bit width of the fractional part.

3.4.1 Detection Accuracy Evaluation with Fixed-point Arithmetic
A software implementation is used for evaluating the detection accuracy with fixed-
point arithmetic. The evaluation uses the 4-bit fixed-point arithmetic. To compare the

38 CHAPTER 3. DECOMPOSED VECTOR HOG

Table 3.9: Log-average MR comparison with fixed-point representation.

Method
Log-avg. Diff. from

MR Table 3.4
ACF-Exact [36] + DV-HOG (INT) 17.06% +0.82%
ACF-Exact [36] + InterHOG [24] (INT) 17.49% -0.41%
ACF-Exact [36] + HOG-Dot [10] (INT) 20.24% +2.67%
ACF-Exact [36] + ChenHOG [8] (INT) 20.45% -0.97%
ACF-Exact [36] + NaiveHOG [24] (INT) 21.88% +1.28%

Table 3.10: Logic synthesis settings.
Logic synthesis tool Design Compiler Version I-2013.12

Cell library NanGate 45nm Open Cell Library (typical)
Target frequency 200 MHz

result with the floating-point arithmetic shown in Table 3.4, the floating-point classifiers
are converted to the fixed-point classifiers based on the quantization method which will
be proposed in Chapter 4.

Figure 3.8 shows the DET curves for each fixed-point implementation and DV-
HOG’s floating-point implementation. Fixed-point DV-HOG shows better log-average
MR compared with other fixed-point HOG implementations. Also, the difference of
detection accuracy of floating-point DV-HOG and that of fixed-point is less than 1%:
DV-HOG is robust to the conversion from floating-point to fixed-point. Table 3.9 shows
the detailed log-average MRs for each fixed-point implementation and the log-average
MR difference from Table 3.4. HOG calculations without information loss, which are
DV-HOG and InterHOG, achieve more than 2.7% lower log-average MR than other
methods.

Table 3.11: Cell-based synthesis comparison of DV-HOG and conventional methods.
Method Cell Area (µm2) # of Nand Gates

ChenHOG [8] 479.60 601
Modified HOG-Dot 572.43 717

DV-HOG 685.48 859
HOG-Dot [9] 1,194.07 1,496

NaiveHOG [24] 1,606.64 2,014
InterHOG [24] 9,724.43 12,186

NAND2_X1: 0.798 µm2

3.4. EVALUATION 39

0.16

0.18

0.20

0.22

0.24

 1000 10000

Lo
g-

av
er

ag
e

M
R

Cell area (um2)

DV-HOG
NaiveHOG
InterHOG

Modified HOG-Dot
ChenHOG
HOG-Dot

Figure 3.9: Log-average MR and the circuit area of HOG algorithms.

3.4.2 Area Evaluation with Logic Synthesis
Verilog HDL implementation of each HOG module was synthesized to the gate level
by using a logic synthesis tool to compare the circuit scales. Table 3.10 describes the
synthesis settings. The results shown in Table 3.11 indicate that ChenHOG had the
smallest cell area, as expected. In the InterHOG hardware, the large cell area results
from its complex modules, such as CORDIC and Newton-Raphson, and the registers for
reducing critical path and synchronizing output signals. The comparison between two
HOG-Dot hardware implementations shows that the quadrant folding reduces the cell
area to around half. Although HOG-Dot with quadrant folding has a similar hardware
structure to that of DV-HOG, HOG-Dot with quadrant folding is slightly smaller than
DV-HOG because the calculation in HOG-Dot uses unsigned numbers while DV-HOG
uses signed numbers.

Figure 3.9 plots the correlation between cell area reported in Table 3.11 and log-
average MR shown in Table 3.9. In the figure, the closer the point gets to the bottom left
corner, the better the result is. Figure 3.9 indicates that DV-HOG achieves equivalent
log-average MR to InterHOG with 14.2 times smaller cell area. Although the modified
HOG-Dot with quadrant folding and ChenHOG are better in terms of the cell area, DV-
HOG shows better detection accuracy with a slight increase in cell area. This improved
trade-off could be an advantage for practical applications.

3.4.3 FPGA Implementation
The HOG algorithms described in Sections 2.3.2 and 3.3 were also implemented in
an FPGA. Although some of the algorithms reported in the literature provide FPGA

40 CHAPTER 3. DECOMPOSED VECTOR HOG

Table 3.12: FPGA implementation settings.
Target device Xilinx xc7k325t-2ffg900
Synthesis tool Vivado 2015.4.2

Target frequency 100MHz

Table 3.13: FPGA implementation results.
Method Slice LUTs Slice registers

ChenHOG [8] 128 (0.06%) 15 (<0.01%)
Modified HOG-Dot 152 (0.07%) 19 (<0.01%)

DV-HOG 194 (0.10%) 33 (<0.01%)
NaiveHOG [24] 269 (0.13%) 95 (0.02%)

HOG-Dot [9] 356 (0.17%) 19 (<0.01%)
InterHOG [24] 1,060 (0.52%) 447 (0.11%)

implementations, their evaluations were carried out with different settings, making a
comparison difficult. Thus, this section compares each algorithm in an FPGA with the
settings described in Table 3.12. Table 3.13 shows the results. The result shows that DV-
HOG requires only 18% of LUTs and 7% of slice registers compared with InterHOG.
The number of LUTs used in the FPGA implementation shows a similar tendency in the
cell area as the logic synthesis evaluation.

3.4.4 Discussion

For many object detection hardware implementations, high detection accuracy is the
primary requirement. However, the cell area is also important because it influences
on the power consumption of the system. Although this chapter discussed a single
HOG module, it is necessary to use multiple HOG modules in parallel for practical
applications. Figure 3.10 shows a hardware architecture for multi-scale object detection
based on [64]. This hardware adopts a hybrid pyramid generation approach for image
and classifier scaling: an input image is scaled to octave images and multiple classifiers
are applied to each image, where each classifier finds the different size of target objects.
This approach enables to reduce the number of feature extraction for fast detection and
the number of classifiers for small memory requirements. The hardware consists of
scalers, feature extractors, classifiers of boosted decision trees, and an NMS module.
Each scaler resizes an image to a quarter, and each classifier module applies multiple
sizes of classifiers to features in order, where each classifier uses a sliding-window
approach. Finally, NMS converges detection results from each classifier.

To evaluate the influence of HOG hardware implementation to the object detection
system, the number of required HOG modules, NHOG is calculated. Consider an object
detection system for Wimg × Himg images in Nfps fps video streams at an operation

3.4. EVALUATION 41

Scaler

NMS

Input image

Detection
results

Scaler

Scaler

Feature
extractor

Classifier

Classifier

Classifier

Classifier

Feature
extractor

Feature
extractor

Feature
extractor

Controller

w × h

w
2
× h

2

w
4
× h

4

w
8
× h

8

Figure 3.10: Outline of hardware architecture for object detection.

frequency f . In object detection using a sliding-window method, the number of pixels
computed in HOG modules for a w × h image is

Npixel(w, h) = whNch (3.27)

where Nch is the number of channels in the image. Then, NHOG is calculated by the
summation of the number of required modules for each scaled image:

NHOG =

Nscale−1∑
i=0

⌈
Npixel(wi, hi)Nfps

f

⌉
(3.28)

Table 3.14: Notation for object detection.
Notation Description

Wimg width of input images
Himg height of imput images
Nch # channels of input images
Nfps frame per second

f operating frequency
S scale scale factor
Nscale # scaled images
Npixel # pixels computed in HOG modules
NHOG # required HOG modules

42 CHAPTER 3. DECOMPOSED VECTOR HOG

WimgHimg

WimgHimg

S2
scale

Nscale

WimgHimg

S
2(Nscale−1)

scale

pixels

Figure 3.11: The number of pixels for multi-scale object detection.

Table 3.15: Estimation of LUT utilization for f = 100 MHz, color image on FPGA
implementation.

Video
Nscale S scale NHOG

LUT utilization
stream DV-HOG InterHOG [24]
480p30 3 2 37 2.59% 19.24%

1080p30 4 2 249 17.43% 129.48%
1080p60 4 2 498 34.86% 258.96%

where wi and hi defined in the following equations are the width and height of a scaled
image

wi =
Wimg

(S scale)i , hi =
Himg

(S scale)i , (3.29)

S scale is the scale factor of the scaler, and Nscale is the number of scaled images as shown
in Figure 3.11. Table 3.14 summarizes the notations.

Table 3.15 shows LUT utilization in FPGA implementations estimated for various
video streams. The estimation indicates that there is a limitation regarding the LUT
utilization on InterHOG adoption for high-resolution video streams. For example,
it is impossible to apply a detection system with InterHOG for 1080p30 streams.
Considering that video resolutions and frame rates are increasing nowadays, the cell
area of a single HOG module is becoming a more critical concern. From the result that
DV-HOG occupies only 34.86% LUT even for 1080p60 video streams, DV-HOG is a
promising HOG method to use in hardware systems.

3.5. SUMMARY 43

3.5 Summary
The primary concern of many studies on visual object detection is how to implement an
existing visual object detection algorithm in hardware without accuracy degradation.
Since most of the existing algorithms are not hardware oriented, their detection
performance has been spoiled by the simplifications introduced in their hardware
implementations.

As a solution to this issue, this chapter proposed a hardware-oriented HOG-
based feature extraction method, which is called DV-HOG. The proposed DV-HOG
feature descriptor can be calculated with low computational complexity while it has
equivalent or better representation capability compared with the conventional HOG
feature descriptors. Also, DV-HOG achieved stable detection accuracy for fixed-point
calculation, and its circuit scale is close to that of a highly simplified implementation of
ChenHOG.

44 CHAPTER 3. DECOMPOSED VECTOR HOG

Chapter 4

Aggressive Quantization Method
for Boosted Decision Trees

This chapter explains an aggressive quantization method for a BDT classifier to reduce
memory requirement [65]. First, a preliminary evaluation compares three conventional
machine learning algorithms in terms of the influence of numerical precision on
classification accuracy. Then, based on the result, this chapter proposes a quantization
method for a BDT classifier which focuses on the range of threshold values. The
evaluation result shows the relationship between the detection accuracy and numerical
precision.

4.1 Introduction
Two essential issues of machine learning are representation capability and efficiency. In
terms of representation capability, it had been proved that an MLP [53], an early neural
network, is a universal approximator and enough to approximate any complicated target
function [66]. The problem is a representational inefficiency that the MLP requires
infeasible computational resources to approximate the target function. The recent
machine learning algorithms successfully reduced the required computational resources
to a feasible level, but it does not change the fact that they require a massive amount of
computational cost.

To address this issue, multiple researches have explored the numerical precision
required for the training process [67, 68] because the amount of computational
resources depends on numerical precision. For accelerating training, various methods
based on hardware have been proposed such as NVIDIA’s GPU acceleration, IBM’s
SyNAPSE [69], Manchester University’s SpiNNaker [70], and Google’s Tensor
Processing Unit 1. The consensus of these researches is that the training process of

1https://cloudplatform.googleblog.com/2016/05/Google-supercharges-machine-
learning-tasks-with-custom-chip.html

45

46 CHAPTER 4. AGGRESSIVE QUANTIZATION METHOD FOR BDT

Table 4.1: Format of IEEE 754 double-precision floating point.
Bit range 63 62–52 51–0

Representation s e m
Description sign exponent mantissa

neural networks requires at least half-precision floating point or 16-bit wide fixed point
representation. However, from the perspective of embedded systems using machine
learning techniques for detection or classification, this issue is not thoroughly discussed
at all because no research clarifies necessary and sufficient numerical precision for
the classification process or the impact the numerical precision on the classification
accuracy of each machine learning algorithm.

This chapter analyzes the classification accuracy under numerical precision changes
on three conventional machine learning algorithms: an MLP [53], an SVM [29], and
an AdaBoost [30], and elucidates which machine learning algorithm is suitable for
embedded systems. Also, based on the analysis, this chapter proposes an aggressive
approximation method that can be used for practical applications of embedded systems
and evaluates it on ACF object detection [36].

The rest of this chapter is organized as follows. Section 4.2 analyzes the relationship
between numerical precision and classification accuracy on an MLP, an SVM, and
an AdaBoost. Section 4.3 presents the proposed aggressive approximation method
for embedded systems and Section 4.4 evaluates the proposed method on pedestrian
detection benchmark. Finally, Section 4.5 concludes this chapter.

4.2 Influence of Numerical Precision on Classification
Accuracy

This section compares three types of machine learning algorithms, MLP, SVM, and
AdaBoost, in terms of the representation capability in a fixed-point representation in
order to make clear which machine learning algorithm is suited for embedded systems.
Many hardware implementations use fixed-point representations because hardware
architectures of fixed-point require less resources than those of floating-point.

To examine the classification accuracy with limited numerical precision, each
machine learning algorithm is modified to constrain the bit width of each parameter.
The format of IEEE 754 double-precision floating point [75] consists of three parts:
sign s, exponent e, and mantissa m as shown in Table 4.1, and a floating point value vflt

can be represented as

vflt = (−1)s

1 +

52∑
i=1

b52−i2−i

 2e−1023, (4.1)

4.2. INFLUENCE OF NUMERICAL PRECISION ON CLASSIFICATION ACCURACY47

Input layer

Hidden layer

Output layer

Group

Group

Group

Group

Group

x0 x1 x2 xN

w
(1)
0,1 w

(1)
N,M

w
(2)
1,1 w

(2)
M,1

hσhσhσhσhσ

hσ

sign

b(3)

b(2)

(a) Multilayer perceptron (MLP).

Group

Group
x0 x1 x2 xN

w1 w2w0 wN

sign

(b) Support vector machine (SVM).

Decision stump

Yes No

Group

Group

Group

Group

α1,{0,1}

x1, x2, . . . , xN

αT,0 αT,1

xi ≥ tT

h1 hTh2

sign

αT,{0,1}

(c) AdaBoost.

Figure 4.1: Basic structure of machine learning algorithms.

where bi represents the i-th bit. In this analysis, sets of IEEE 754 double-
precision floating-point parameters are converted into sets of a pseudo n-bit fixed-point
parameters, which is a floating point that can be represented by an n-bit fixed point. Each
set of parameters is surrounded by a dotted box labeled with “Group” in Figure 4.1. A
floating point vflt of each set is converted into a pseudo fixed point vfix as follows:

vfix =
bvflt · fscalec

fscale
, (4.2)

fscale = 2n−(emax−1023)−2, (4.3)
emax = max

j
e j, (4.4)

where e j is the exponent of the j-th floating-point value.
For the evaluation, both floating-point and fixed-point machine learning algorithms

are implemented based on the OpenCV library 2 and parameters shown in Table 4.2.
Each implementation is evaluated on Gisette [73] and Madelon [74] datasets from
LIBSVM dataset [76]. Gisette is a two-class handwritten digit recognition dataset of ‘4’
and ‘9,’ which are confusing digits, and this dataset is generated from a well-known digit

2https://opencv.org

48 CHAPTER 4. AGGRESSIVE QUANTIZATION METHOD FOR BDT

Table 4.2: Parameters and settings of each machine learning algorithm.
Algorithm Parameter Setting

MLP
nodes in hidden layer Gisette: 100, Madelon: 32

Learning algorithm RPROP [71]

SVM
Kernel Linear

Learning algorithm Quadratic programming

AdaBoost
weak learners 100

Learning algorithm Real AdaBoost [72]

Table 4.3: Details of classification datasets.
Dataset # of features # of training data # of test data

Gisette [73] 5,000 6,000 1,000
Madelon [74] 500 2,000 6,000

dataset, MNIST [77]. Madelon is an artificially generated non-linear dataset. Table 4.3
describes the quantitative details of both datasets.

Figures 4.2(a) and 4.2(b) show the evaluation results, where the initial accuracies at
1-bit width are decided only by the number of positive and negative data because 1-bit
width represents only the sign bit and has no representation capability. In both figures,
as the bit width increases, each fixed-point implementation converged to the accuracy of
the corresponding floating-point implementation. Especially, the fixed-point AdaBoost
achieved equivalent accuracy with a smaller bit width than others: 5-bit and 8-bit widths
in Figures 4.2(a) and 4.2(b), respectively.

This result can be explained by the fact that each machine learning algorithm
requires a different value range for classification. As shown in Figure 4.3(a), AdaBoost
stores threshold values and the range of threshold values is highly limited. On the

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16

Ac
cu

ra
cy

Bit width

MLP (fixed)
SVM (fixed)

AdaBoost (fixed)
MLP (float)
SVM (float)

AdaBoost (float)

(a) Gisette dataset.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 10 15 20 25 30

Ac
cu

ra
cy

Bit width

MLP (fixed)
SVM (fixed)

AdaBoost (fixed)
MLP (float)
SVM (float)

AdaBoost (float)

(b) Madelon dataset.

Figure 4.2: Experimental results of classification accuracy with limited numerical
precision.

4.3. AGGRESSIVE APPROXIMATION FOR FIXED-POINT ADABOOST 49

Narrow ROI

xi

αj,0

αj,1

hj(x)

tj

(a) Decision stump h j(x) of AdaBoost.

Wide ROI

xi

wixi

(b) Inner product wixi of SVM and MLP.

Figure 4.3: Region of interest (ROI) comparison.

Table 4.4: Range of non-zero frequency of a pedestrian classifier for ACF.
Feature type Channel # Threshold range Feature range Occupancy (%)

HOG

0 0.266–7.71 0–14.4 51.9
1 0.346–5.21 0–12.3 39.4
2 0.244–3.94 0–12.7 29.1
3 0.159–5.09 0–14.7 33.6
4 0.179–4.37 0–12.6 33.3
5 0.276–4.39 0–12 34.2

Magnitude 6 5.92–14 0–17.7 45.7

LUV
7 1.84–5.34 0–5.94 59.0
8 4.76–6.95 2.19–14.9 17.2
9 7.05–9.62 1.69–13.9 21.1

contrary, in MLP and SVM using inner production, the weight values spread widely as
shown in Figure 4.3(b).

4.3 Aggressive Approximation for Fixed-Point
AdaBoost

Based on the analysis that AdaBoost is less sensitive to limited numerical precision, this
section proposes an aggressive approximation method for the AdaBoost. The proposed
aggressive approximation method mainly focuses on the narrow value range around
thresholds used in BDT and quantizes the threshold values with small bits. To apply
the proposed method into an ACF classifier, it is necessary to examine thresholds of a
floating-point ACF classifier in advance. As mentioned in Chapter 2, the ACF classifier
for pedestrian detection uses ten aggregated channels, and Table 4.4 shows the value

50 CHAPTER 4. AGGRESSIVE QUANTIZATION METHOD FOR BDT

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10 12 14 16

F
re

qu
en

cy

Feature value

Channel 0

(a) HOG (Ch. 0).

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10 12 14 16

F
re

qu
en

cy

Feature value

Channel 6

(b) Magnitude (Ch. 6).

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12 14 16

F
re

qu
en

cy

Feature value

Channel 7

(c) L component of LUV (Ch. 7).

Figure 4.4: Histograms of thresholds.

 0
 1
 2
 3
 4
 5
 6
 7

 0 5 10 15

Value range (threshold)
Value range (feature)

Q
ua

nt
iz

ed
 v

al
ue

Feature value

Min-Max threshold
Min-Max feature

Figure 4.5: 3-bit quantization of features on ACF channel 0.

range of each channel, where threshold and feature ranges represent the value ranges of
thresholds and entire features, respectively. As shown in Table 4.4, the threshold ranges
occupy only 17.2% to 59.0% of the feature ranges. Moreover, as shown in Figure 4.4,
each distribution shows a mountain-shaped graph, and it represents the possibility
that the middle of distribution is more important than both ends of distribution for
classification.

To verify this hypothesis, two types of approximation methods are examined: one is
to quantize features based on feature ranges, and the other is to quantize features based
on threshold ranges. Both quantizations are defined as follows:

vfix =

⌊
2n ·

min (rmax,max (rmin, vflt)) − rmin

rmax − rmin + ε

⌋
, (4.5)

where rmin and rmax respectively represent the minimum and the maximum of the
range and ε represents a small positive infinitesimal quantity. For the convenience of

4.4. EVALUATION ON PEDESTRIAN DETECTION 51

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 2 3 4 5 6 7 8

Lo
g-

av
er

ag
e

m
is

s
ra

te

Bit width

Float
Min-Max feature

Min-Max threshold

Figure 4.6: Comparison of classification performances.

explanation, both methods are referred to as Min-Max feature and Min-Max threshold,
respectively. An example of each quantization method is described in Figure 4.5 using
channel 0 of the aggregated channel. As shown in Figure 4.5, Min-Max threshold has
a higher resolution around the thresholds than Min-Max feature and ignores the outside
of the region, which does not affect the comparison result.

4.4 Evaluation on Pedestrian Detection
This section evaluates the proposed method on an ACF classifier used in practical
applications. The evaluation uses INRIA Person Dataset [24] and Caltech Pedestrian
Detection Benchmark [25]. To show the influence of numerical precision, Figure 4.6
plots the change of log-average MR. The proposed Min-Max threshold showed better
classification accuracy than the Min-Max feature and achieved 19.2% log-average miss
rate at only 2-bit width; the accuracy 19.2% is only 2% worse than the original ACF
classifier. For a detailed comparison, Figure 4.7 shows DET curves at 2-bit width.
As shown in Figure 4.7, the proposed method outperforms the Min-Max feature and
achieves almost equivalent accuracy to the original ACF classifier over the entire range
of false positive per image. Also, the classification accuracy can be confirmed from
actual detection results shown in Figures 4.8, 4.9, and 4.10, in which false positives and
false negatives are labeled with “FP” and “FN” respectively. The proposed method’s
insensitivity to numerical precision can be useful for both software and hardware
implementations. The reduction of bit width reduces memory size, circuit area, and
power consumption, which is significantly helpful in embedded systems. For instance,
as shown in Table 4.5, pedestrian detection using a Full HD image requires 39.6 Mbit

52 CHAPTER 4. AGGRESSIVE QUANTIZATION METHOD FOR BDT

Figure 4.7: Comparison of DET curves.

Table 4.5: Memory usage comparison for a Full HD image.
Method Representation Bit width Memory usage

ACF [36] Floating point 32 39.6 Mbit
Proposed Fixed point 2 2.47 Mbit

and 2.47 Mbit in the original ACF and the proposed method respectively, and this
memory usage directly affects the computational cost for implementation.

4.5 Summary

This chapter analyzed the influence of numerical precision on the classification accuracy
of three representative machine learning algorithms and clarified that the AdaBoost is
less sensitive to limited numerical precision due to the narrow value range required
for classification. Also, even though it is a common practice to use fixed-point
representation in embedded systems, the proposed method based on the analysis
achieved remarkable bit-width reduction with a slight degradation of classification
accuracy: the proposed method reduced memory requirements to a one-sixteenth level
required by the ACF classifier in a test case. So far, it has been difficult to realize novel
machine learning algorithms on embedded systems due to the severe computational
resource requirement. However, the proposed method makes it possible to significantly

4.5. SUMMARY 53

(a) person_056.png. (b) person_076.png. (c) person_190.png. (d) person_200.png.

Figure 4.8: Detection results using floating point (log-average MR = 16.9%).

(a) person_056.png. (b) person_076.png. (c) person_190.png. (d) person_200.png.

Figure 4.9: Detection results using 2-bit wide fixed point (Min-Max feature, log-average
MR = 32.2%).

(a) person_056.png. (b) person_076.png. (c) person_190.png. (d) person_200.png.

Figure 4.10: Detection results using 2-bit wide fixed point (Min-Max threshold, log-
average MR = 19.2%).

reduce the computational resources required by the algorithms, so that the proposed
method can contribute to popularizing embedded systems for machine learning. In
this chapter, the proposed method focused only on the computational resource of the
classification process, but the experimental result also implies the possibility that feature
extraction can be aggressively approximated because the AdaBoost classification does
not require high numerical precision.

54 CHAPTER 4. AGGRESSIVE QUANTIZATION METHOD FOR BDT

Chapter 5

Hardware Architecture for Parallel
Boosted Decision Trees Classification

This chapter proposes a hardware architecture for parallel BDT classification [78].
The proposed hardware architecture utilizes the parallelism for three dimensions for
speed-up like a SIMD manner. Also, to avoid memory access conflict originating
from parallel classification, a task scheduling algorithm that fixes the memory access
order is proposed. The evaluation on FPGA implementation shows that the proposed
hardware architecture of 1,024 parallel classifications is implementable on FPGA and it
contributes to speed up.

5.1 Introduction
As mentioned in Chapter 1, object detection methods using BDT have multiple
advantages in hardware implementation: low computational cost with soft cascade
and multiplier-free operations in classification. Even with these attractive features,
only a few studies on decision tree hardware architectures are reported [40], because
conditional branches of decision stumps composing BDT require random memory
accesses, which prevents efficient parallel processing.

As a solution, this chapter proposes a hardware architecture for BDT. The proposed
architecture processes object detection in a SIMD-like homomorphic manner even while
BDT are adopted as a classifier. The proposed architecture has two following distinctive
features, which improves processing performance. First, it supports three-dimensional
parallel memory access, 1-D for feature channels and 2-D for image space, achieving
multiple times higher processing performance than conventional hardware architectures.
Second, it takes advantage of algorithmic acceleration by using soft cascade, which
improves processing performance by over one to two orders of magnitude. Then,
this chapter proposes a task scheduling algorithm to control memory accesses from
multiple modules to avoid memory access conflict. For evaluating the proposed BDT

55

56 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

decisionNodeCube

accumMatrix

leafNodeCube

A A A

A A A

A A A

ctrl

L L L

L L L

L L L

leafNodeMatrix

rin
gS

hi
ftR

eg

leafMem

L L L

L L L

L L L

leafNodeMatrix

rin
gS

hi
ftR

eg

leafMem

L L L

L L L

L L L

leafNodeMatrix

rin
gS

hi
ftR

eg

leafMem

Lval

D D D

D D D

D D D

decisionMem

featureMem

decisionNodeMatrix

featureMem

featureMem
D D D

D D D

D D D

decisionMem

featureMem

decisionNodeMatrix

featureMem

featureMem
D D D

D D D

D D D

decisionMem

featureMem

decisionNodeMatrix

Dres
Fin Ares

chSelMem

decisionNodeD

leafNodeL

accumA

sc, sn, sl

cl, ca, cs

as

cd

M

ldx, dy dt

f

C

dy
dx

Wnode
Wnode

Hnode Hnode

Figure 5.1: Hardware architecture overview.

hardware architecture, ACF [36] features are assumed, and classification using multi-
scale classifiers with octave-wise feature maps [37] are used.

The rest of this chapter is organized as follows. Section 5.2 provides a hardware
architecture for BDT, and Section 5.3 proposes a task scheduling algorithm to resolve
memory access conflict. Section 5.4 describes the evaluation results and provides an
analysis of the proposed hardware architecture. Section 5.5 concludes the chapter.

5.2 Parallel Implementation of Boosted Decision Trees
using Multiple Memory Banks

The proposed hardware architecture is a single-node architecture, which is explained
in Section 2.4.1 devised for exploiting multiple memory banks with a small amount of
routing resources. This section explains its overview and details in order.

5.2.1 Architecture Overview

ACF has multiple types of features and requires sophisticated memory access patterns.
Considering the parallel feature extraction before classification, it is necessary to
allocate a dedicated memory bank for each channel. In this case, the threshold network
and the single-path architecture explained in Section 2.4 are not suitable because they
require a massive amount of routing resources for supporting random memory access
to all the banks. On the other hand, the single-node architecture can resolve the
routing resource problem by assigning a universal node to each channel and merging
the responses of decision nodes belonging to each DT.

The proposed architecture is designed based on the idea mentioned above.
Figure 5.1 shows an overview of the proposed hardware architecture, and Table 5.1
lists the notations used in Figure 5.1. The proposed architecture mainly consists
of three sub-modules: decisionNodeCube, leafNodeCube, and ctrl, where they
are a 3-D array of decision nodes, a 3-D array of leaf nodes, and a control unit,
respectively. The decisionNodeCube consists of C decisionNodeMatrix modules,

5.2. PARALLEL IMPLEMENTATION OF BDT USING MULTIPLE MEMORY BANKS57

Table 5.1: Notation and description of each module.
Module Notation Description

Top Module

Fin A set of input features
Dres A set of decision responses
Lval A set of leaf values
Ares A set of accumulated responses

Wnode #horizontal D/L/A nodes of a matrix
Hnode #vertical D/L/A nodes of a matrix

C #decision node matrices
M #leaf node matrices

decisionMem
dx Feature x position
dy Feature y position
dt Decision node threshold

featureMem f All feature values of a block
leafMem l All leaf values of a DT

accumMatrix as Sign bit for soft cascade

chSelMem
sc Channel index
sn Node index
sl Last node flag

ctrl

cs Address control signal
cd decisionNodeCube control signal
cl leafNodeCube control signal
ca accumMatrix control signal

Misc.
dres A decision response
lval A leaf value
ares An accumulated response

and the leafNodeCube consists of M leafNodeMatrix modules, an accumMatrix
module, and a chSelMem module, where M is less or equal to C due to the non-
uniformity of the channel usage described in Section 5.3. The decisionNodeCube
receives feature input Fin and outputs decision responses Dres. The leafNodeCube
selects corresponding leaf values Lval from a part of the decision responses Dres and
accumulates the leaf values to calculate the final responses Ares.

This architecture enables a 3-D parallel classification, and the hardware handles a
massive amount of data. Thus, in hardware design, the scalability of the architecture for
each sub-module, decisionNodeMatrix, leafNodeMatrix, and accumMatrix needs
to be carefully considered, which will be discussed in Section 5.2.2.

58 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

Port A Port B

horShiftReg

F2

F1

F1

F2

lineBuffer

f

F2

F1

D D D

D D D

D D D

dy

Data Alignment

dx dxWnode Wnode

Hnode

Feature Map Width

Hnode

Wnode

(a) featureMem.

C
om

p.

dres

dt

f

(b) decisionNode.

FF
FF

FF

le
af

N
od

eS
el

l valdres

sn sll,

(c) leafNode.

FFs
Offset

l val
ares

asca

(d) accum.

Figure 5.2: Block diagrams of processing elements.

5.2.2 Details of Sub-modules

In the proposed architecture, its processing flow completely depends on the ctrl and
the chSelMem modules. The ctrl observes the states of all the sub-modules and
dynamically provides control signals, and the chSelMem provides static task schedules
generated by the proposed scheduling algorithm described in Section 5.3. Therefore,
the proposed architecture can handle any BDT by updating task schedules.

Each of C decisionNodeMatrix modules composing the decisionNodeCube
corresponds to one of C input feature channels: HOG channels, LUV channels, and
a gradient magnitude channel described in Section 2.2. Each decisionNodeMatrix
consists of three sub-modules: a decisionMem, a featureMem, and a 2-D array
of Wnode × Hnode decisionNode modules. In the decisionNodeMatrix, the
decisionMem is the only module controlled by the signal cd from the control unit,
and the data, dx, dy, and dt, loaded from decisionMem controls the others. The
featureMem provides Wnode × Hnode feature values, f , of the block at the (dx, dy)
position to decisionNodemodules. To support loading the feature block at an arbitrary
position, featureMem uses Hnode dual-port line buffers, lineBuffer, and Hnode shift
registers, horShiftReg, for location adjustment as shown in Figure 5.2(a). The dual-
port line buffers enable to load malaligned data at any vertical position in a single cycle,
and shift registers enable to extract the target data columns at any horizontal position.

5.3. TASK SCHEDULING FOR PARALLEL IMPLEMENTATION 59

Each decisionNode generates a 1-bit comparison result as the decision response
between a feature value of f and a threshold dt as shown in Figure 5.2(b), where dt

is the threshold shared in all decisionNode modules of a decisionNodeMatrix.
Each of M leafNodeMatrix modules composing the leafNodeCube consists

of three sub-modules: a leafMem, a ringShiftReg, and a 2-D array of Wnode ×

Hnode leafNode modules. The leafMem provides all the leaf values of each DT to
leafNodeMatrix, the ringShiftReg vertically and horizontally rotates the Wnode ×

Hnode × C 1-bit decision responses to correct positions, and leafNode selects a leaf
value from l based on each series of decision responses. Figure 5.2(c) shows the details
of the leafNode for depth-two BDT. As shown in Figure 5.2(c), the leafNode includes
a demultiplexer for rearranging the order of decision responses, three flip-flops (FFs) for
storing the decision responses of a depth-two DT, a leafNodeSel for selecting a leaf
value based on the responses. This structure enables the leafNode to handle the random
input order of decision responses and to improve the processing performance by task
scheduling technique. Also, a simple modification of the leafNode allows to handle
BDT deeper than depth-two BDT: for processing depth-three BDT, the leafNode
requires 7-bit FFs to store seven decision responses, and the leafNodeSel requires
an extension to select a leaf value of eight leaf values.

The accumMatrix consists of Wnode×Hnode accummodules. Figure 5.2(d) describes
the details of the accum. The accum accumulates the leaf values of each BDT by using
an adder and FFs, where the FFs are initialized with the offset, and the offset is used for
soft cascade rejection. When the static threshold of the soft cascade is −s, the offset is
set to s, so that the control unit can decide soft cascade rejection only with the sign bit
of the accumulated value, as.

5.3 Task Scheduling for Parallel Implementation
The proposed hardware architecture can process decision nodes of a DT in arbitrary
order, and its processing performance depends on the efficiency of the parallel memory
access. For further acceleration, this section proposes a task scheduling algorithm
dedicated to the proposed architecture. This task scheduling is an optimization problem
considering each decision node as a task subject to constraints derived from the
architecture design. This section explains how to formulate the task scheduling problem,
describes the proposed algorithm, and analyzes its effectiveness.

5.3.1 Boosted Decision Trees Scheduling Problem
Memory accesses resulting from conditional branches may cause memory conflict when
processing multiple DTs at once. The purpose of task scheduling is to avoid this
memory conflict by processing all the decision nodes of a DT in a fixed order as shown in
Figure 5.3 and controlling parallel memory accesses from multiple DTs. Given a BDT

60 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

Possible pathsDT Fixed order

or

or

or d11

d11
d11

d11

d11

d13

d13

d13 d13
d12

d12

d12

d12

Figure 5.3: Input dependency removal of DT by visiting all nodes.

Exclusive channel access
(constraint 2)

No preemption
(constraint 1)

Module M

Module 2

Module 1

Completion time
minimization

d11 d12 d13

d33d31 d32

d22d21 d23

dK2dK1 dK3

tcomp

t

m

Figure 5.4: Target scheduling problem.

classifier, this scheduling algorithm determines a task schedule in an offline manner, and
classification requires no additional computation for scheduling. The task scheduling is
an optimization problem finding the minimum completion time t∗comp and its assignment
matrix A∗ for M modules defined as

t∗comp := min tcomp(A), A∗ := argmin
A

tcomp(A), (5.1)

where tcomp(A) = max{t | ∃m ∈ {1, . . . ,M}, amt , 0}, in which tcomp(A) is the completion
time using an assignment matrix A, and amt is the (m, t)-th entry of A representing
the decision node processed on the m-th module at the t-th cycle. If there is no task
assignment, amt will be zero. Figure 5.4 shows two constraints for task scheduling
derived from the hardware architecture. The first constraint is that each leafNode
needs to process all the decision nodes belonging to a DT in consecutive cycles. This
is because each response to a decision node is not shared between modules, and there
is no room for storing responses of multiple DTs. The second constraint is that each
leafNodeMatrix exclusively uses decision responses from a decisionNodeMatrix
at each time to avoid memory access conflict. The two constraints of this scheduling
problem are defined as follows. When a decision node dks, which is the s-th decision
node of the k-th DT, is assigned to the mks-th module at the tks cycle, i.e., amkstks = dks,
the first constraint is

∀k ∈ {1, . . . ,K},∀s1, s2 ∈ {1, . . . , S },mks1 = mks2 , (5.2)

5.3. TASK SCHEDULING FOR PARALLEL IMPLEMENTATION 61

Algorithm 5.1 Task scheduling of BDT.
Input:

H := {hk | hk = {dk1, . . . , dkS }, 1 ≤ k ≤ K},
M := parallel degree

Output:
A = Assignment matrix
t∗comp = completion time of A

1: c← SortAndMergeChannels(H)
2: Tmax ← S T
3: A← O ∈ NM×Tmax

+

4: for n = 1 to M do
5: Hn ← {hn | ∃ j, c(dks) = n}
6: for all h ∈ Hn do
7: (m∗, t∗tgt, t

∗)← (0,Tmax,Tmax)
8: P(h): a set of tuples consisting of permutation of h
9: for all P ∈ P(h) do

10: (m, t)← SearchWithConstraint(A, P)
11: ttgt ← t + max{i | c(pi) = n}
12: if ((ttgt < t∗tgt) ∨ ((ttgt = t∗tgt) ∧ (t < t∗))) then
13: (m∗, t∗tgt, t

∗)← (m, ttgt, t), P∗ ← P
14: end if
15: end for
16: for s = 1 to S do
17: am∗,t∗+s ← p∗s
18: end for
19: end for
20: H ← H \ Hn

21: end for
22: t∗comp ← max{t | ∃m ∈ {1, . . . ,M}, amt , 0}

where S is the number of decision nodes in a DT, and for any k, each tks needs to be a
consecutive number. The second constraint is

∀t ∈ {1, . . . ,Tmax},∀m1,m2 ∈ {1, . . . ,M},m1 , m2,

c(am1t) , 0, c(am2t) , 0, c(am1t) , c(am2t), (5.3)

where c(dks) represents the channel used in dks, and Tmax is the possible maximum
completion time. Then, the scheduling problem can be defined as an offline problem.
This scheduling problem can be considered as an extension of the NP-hard job shop
scheduling problem, and then it is NP-hard.

62 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

Algorithm 5.2 Procedures used in Algorithm 5.1.

1: procedure SortAndMergeChannels(H)
2: Chist ← calculate channel histogram from H
3: x← |Chist|

4: while x > M do
5: (c1, . . . , cx−1, cx)← sort Chist in descending order
6: Chist ← (c1, . . . , cx−2, cx−1 + cx): merge channels
7: Update c(dks)
8: x← x − 1
9: end while

10: (c1, . . . , cx−1, cx)← sort Chist in descending order
11: Update c(dks)
12: return c
13: end procedure

14: procedure SearchWithConstraint(A, P)
15: (m∗, t∗)← (0,Tmax − |P|)
16: for (m, t) ∈ {1, . . . ,M} × {1, . . . , t∗} do
17: if (∀(m′, t′) ∈ {1, . . . ,M} × {1, . . . , |P|},

am,t+t′ = 0 ∧ c(am′,t+t′) , c(pt′)) then
18: if ((t < t∗)) then
19: (m∗, t∗)← (m, t)
20: end if
21: end if
22: end for
23: return (m∗, t∗)
24: end procedure

5.3.2 Proposed Heuristic Scheduling Algorithm
As mentioned above, the target scheduling problem isNP-hard, and it is difficult to find
the optimal solution t∗comp. Then, the proposed algorithm aims to find a solution which
is close to the lower bound, where the lower bound is equal to the maximum number of
frequency in channel histogram. The proposed algorithm adopts a greedy approach and
focuses on the frequency of channels in BDT. The assignment is performed such that the
frequency of channels represents the priority, which reduces the number of assignment
candidates and reduces the amount of computation. Also, for improving the completion
time, it is a promising approach to make a flat histogram by reducing the number of
channels considering the variations of the frequency in the channel histogram.

Algorithm 5.1 shows the proposed algorithm. As a preprocessing, the proposed
method merges the input C channels to M channels, where the two channels of lowest

5.3. TASK SCHEDULING FOR PARALLEL IMPLEMENTATION 63

Table 5.2: Detailed scheduling result on M = 8.
Depth Lower bound / tcomp Occupancy cneg

2 936 / 936 82.1% 50.9
3 1,820 / 1,820 80.4% 59.4

Figure 5.5: Detection error trade-off curves on INRIA Person Dataset.

frequencies are merged in each iteration as described in lines 1–13 of Algorithm 5.2.
The assignment process consists of M iterations of the merged channels, and in its n-th
iteration, DTs containing the channel n, represented as Hn, are assigned. For each DT h
in Hn, the proposed algorithm searches the assignment position satisfying the constraint
described in Eqs. (5.2) and (5.3) for all the patterns of processing orders as described
in lines 14–24. From all of the processing orders, the one with the earliest completion
time and the channel n is selected using the condition in line 12, and it is assigned to an
assignment matrix.

5.3.3 Analysis of Scheduling Algorithm
In the analysis, the target classifiers are depth-two and depth-three ACF classifiers
trained in the same manner as [36], consisting of 2,048 and 1,673 DTs. Caltech
Pedestrian Detection Benchmark [25] is used to evaluate detection accuracy. The
log-average MRs on INRIA Person Dataset [24] are 16.5% and 16.3%, respectively.
Figure 5.5 shows the detection error trade-off curves of these two classifiers and the

64 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6 7 8 9 10

de

ci
si

on
 n

od
es

Channel index

(a) Depth-two classifier.

 0

 500

 1000

 1500

 2000

 1 2 3 4 5 6 7 8 9 10

de

ci
si

on
 n

od
es

Channel index

(b) Depth-three classifier.

Figure 5.6: Histograms of input channels.

 0

 2

 4

 6

 1 2 3 4 5 6 7 8 9 10

K
cy

cl
es

Parallelism

Depth-two
Lower bound

(a) Depth-two classifier.

 0

 4

 8

 12

 1 2 3 4 5 6 7 8 9 10

K
cy

cl
es

Parallelism

Depth-three
Lower bound

(b) Depth-three classifier.

Figure 5.7: Scheduling results for the different number of modules.

classifier reported in [36], where the classifiers mentioned above achieve equivalent
detection accuracy to the original ACF classifier. Figure 5.6 shows the histograms of
input channels for these classifiers, which indicates that there exists large variance of
frequencies between channels in both histograms. Taking into account the memory
access exclusiveness, the lower bound for this problem is equal to the maximum number
of decision nodes in a channel. Figure 5.7 shows the relationship between the parallel
degree M and the number of the cycles required for processing the classifiers based
on the task schedules. For both classifiers, the number of processing cycles decreases
as M increases until 8. When M is equal to 8, both numbers of processing cycles
reach the lower bound drawn in dotted lines. Compared with serial classification, the
proposed scheduling achieves 6.6 and 6.4 times speed up for the depth-two and depth-
three classifiers, respectively. For more details, Table 5.2 lists the number of processing
cycles and the occupancy of the leafNodeCube. The result shows that the proposed
scheduling reduces the number of cycles to the lower bound. Also, using soft cascade
enables to accelerate the processing performance of negative windows. In Table 5.2,

5.3. TASK SCHEDULING FOR PARALLEL IMPLEMENTATION 65

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8 9 10

de

ci
si

on
 n

od
es

 (
x1

03)

Channel index

(a) Histogram of input channels.

 0

 50

 100

 150

 1 2 3 4 5 6 7 8 9 10

K
cy

cl
es

Parallelism

Depth-six
Lower bound

(b) Scheduling results.

Figure 5.8: Result of depth-six ACF classifier.

cneg represents the average number of processing cycles for negative windows, and
Table 5.2 shows that combining the proposed task scheduling and soft cascade can
reduce both average cycles of depth-two and depth-three ACF classifiers to 3.3% and
5.4% of processing cycles required for a positive window.

5.3.4 Scheduling under Deeper Boosted Decision Trees

Recent work [79] reports that deeper DTs show good detection performance. To analyze
the relationship between the task scheduling performance and the depth of DTs, the
proposed task scheduling is applied to a deep BDT classifier. The evaluation uses a
depth-six classifier provided by the authors1, which is trained for Caltech Pedestrian
Detection Benchmark [25]. The classifier consists of 3,324 DTs, and the number of
decision nodes in the classifier is 137,043. The number of available permutations
calculated in line 8 in Algorithm 5.1 is exponentially proportional to the depth of a
DT, and then it is necessary to reduce the number of candidates for deep DTs. For
mitigating this, the processing order is fixed to the order of channel frequency in this
experiment. Figures 5.8(a) and 5.8(b) show its channel histogram and the scheduling
results, respectively. The result shows the similar convergence curve to the shallow BDT
and achieves 4.1 times speed-up compared with the serial implementation when M is
equal to 8. However, the processing cycles do not reach the lower bound even when the
parallelism is equal to the channel since the constraint of the exclusive channel access,
as in Eq. (5.3), is difficult to satisfy for all the decision nodes. Improving the task
scheduling for deeper DTs is included in future work.

1https://eshed1.github.io/code/BoostICPR.zip

66 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

(a) person_191. (b) person_217.

Figure 5.9: Detection results from INRIA Person Dataset.

Table 5.3: FPGA implementation settings.
Target device Xilinx xc7z045t-2ffg900
Synthesis tool Vivado 2015.4.2

Simulation tool ModelSim SE-64 10.3
Target frequency 100MHz

Parallelism 1,024 (channel: 8, block size: 8x16)

5.4 Evaluation
This section explains how to generate a fixed-point classifier and implementation
settings, used in the evaluation, and evaluates the FPGA implementation based on the
proposed hardware architecture regarding resource usage and processing performance.

5.4.1 Evaluation Settings

For the hardware implementation, the depth-two BDT described in Section 5.3 is
converted into a classifier in fixed-point representation by using the method explained in
Chapter 4. Figure 5.9 shows the detection results of the converted fixed-point classifier.
The proposed hardware architecture is implemented using Verilog HDL at register
transfer level (RTL). Table 5.3 shows the implementation settings. The target device
is Xilinx xc7z045t-2ffg900, the target operating frequency is 100MHz, and the degree
of parallelism is 1,024: parallel degree 8 from feature channels and 128 from image
blocks, respectively. Feature extraction uses three types of feature descriptors, i.e.,
HOG, gradient magnitude, and RGB color channels. The evaluation uses RGB channels
instead of LUV channels because the difference of color channels does not cause
notable accuracy loss and converting to LUV channels is computationally intensive [62].
Also, for hardware implementation efficiency, the classification procedure proposed
by Benenson et al. [37] is assumed, which uses multiple classifiers corresponding to

5.4. EVALUATION 67

Table 5.4: FPGA resource utilization.
Module Slice LUT (Logic) LUT (Memory)
decisionNodeCube 7,796 (14.3%) 23,891 (10.9%) 0 (0.0%)
→ 10 featureMem 5,649 (10.3%) 15,609 (7.1%) 0 (0.0%)
→ 10 decisionMem 163 (0.3%) 252 (0.1%) 0 (0.0%)
leafNodeCube 10,822 (19.8%) 35,143 (16.1%) 1 (0.0%)
→ 8 leafMem 476 (0.9%) 1,114 (0.5%) 0 (0.0%)
→ chSelMem 1,090 (2.0%) 2,086 (1.0%) 0 (0.0%)
→ accumMatrix 1,952 (3.6%) 5,541 (2.5%) 0 (0.0%)
ctrl 286 (0.7%) 503 (0.2%) 0 (0.0%)
→ decisionNodeCtrl 194 (0.4%) 396 (0.2%) 0 (0.0%)
→ leafNodeCtrl 92 (0.2%) 107 (0.0%) 0 (0.0%)
Total 18,904 (34.6%) 59,537 (27.2%) 1 (0.0%)
Module LUT (FF) 32Kb BRAM DSP
decisionNodeCube 24,420 (11.2%) 170 (31.2%) 0 (0.0%)
→ 10 featureMem 15,602 (7.1%) 160 (29.4%) 0 (0.0%)
→ 10 decisionMem 262 (0.1%) 10 (1.8%) 0 (0.0%)
leafNodeCube 36,839 (16.9%) 16 (2.9%) 0 (0.0%)
→ 8 leafMem 1,125 (0.5%) 8 (1.5%) 0 (0.0%)
→ chSelMem 2,086 (1.0%) 8 (1.5%) 0 (0.0%)
→ accumMatrix 5,557 (2.5%) 0 (0.0%) 0 (0.0%)
ctrl 420 (0.2%) 0 (0.0%) 1 (0.1%)
→ decisionNodeCtrl 315 (0.1%) 0 (0.0%) 1 (0.1%)
→ leafNodeCtrl 105 (0.0%) 0 (0.0%) 0 (0.0%)
Total 61,679 (28.2%) 186 (34.1%) 1 (0.1%)

different window sizes and feature maps extracted from scaled images, instead of the
genuine ACF classification procedure using a classifier and FFP proposed in [36].
Although FFP shows efficient memory usage and higher processing performance for
software implementation, it is not suitable for hardware implementation because FFP
needs to generate each layer of feature pyramid sequentially.

5.4.2 Resource Usage

For the evaluation of resource utilization, the RTL implementation is synthesized
with Vivado 2015.4.2. Table 5.4 shows the resource utilization of the proposed
implementation. As in Table 5.4, it occupies less than 35% of both slice and block
RAM resources of the target FPGA for processing 1,024 decision nodes in parallel.
Also, from the details of LUT usage, the balanced use of both LUTs and FFs can be
confirmed. Therefore, the proposed BDT hardware architecture is suitable for the object

68 CHAPTER 5. HW ARCHITECTURE FOR PARALLEL BDT CLASSIFICATION

detection system explained in Chapter 6.

5.5 Summary
For practical applications using visual object detection, the improvement of the trade-
offs between hardware resources, processing performance, and detection accuracy has
been a critical issue, and the proposed architecture successfully resolved this issue by
improving classification speed without detection accuracy degradation. The proposed
architecture adopted a hardware and software cooperative design, which is distinctive
from other existing architectures. The hardware implementation based on the single-
node architecture exploits its resources by using the proposed task scheduling method.
Since the task schedules are static within BDT, once one fixed the task schedules of
BDT, there is no processing overhead in the detection phase. Also, the task schedule
focusing on the lower bound of required cycles clarified that the efficient parallel degree
is less than the number of feature channels used in ACF, and made it possible to reduce
the hardware resource for leaf nodes without lowering processing performance.

Chapter 6

Hardware Accelerator for Aggregated
Channel Features

So far, this dissertation has explained algorithms and hardware architectures for ACF
hardware implementation in Chapters 3, 4, and 5. Based on these, this chapter constructs
a hardware accelerator for ACF and evaluates its performance on FPGA [80].

6.1 Introduction

In object detection hardware implementation, it has been difficult to satisfy the
requirements of detection accuracy and detection speed simultaneously. As mentioned
in Chapter 1, this work uses ACF as a baseline to exploit its reasonably high accuracy
and low computational cost. For enhancing throughput and minimizing hardware
cost, this work has performed algorithm-hardware co-optimization and improved the
compatibility of ACF with the hardware implementation explained in Chapters 3, 4, and

ACF
extraction Classification Detection

result
Input
image

245 fps 1-class: 170 fps

6-class: 78 fps

112M windows/sec.
Speed-up without
accuracy degradation

Speed-up by
1. High parallelization
2. Load time hiding

FPGA
board

ACF: aggregated channel features

Full HD
stream

(Pedestrian)

(Pedestrian, Vehicle,
 Traffic light)

Figure 6.1: Proposed object detection system overview.

69

70 CHAPTER 6. HARDWARE ACCELERATOR FOR ACF

Input
image

Feature extraction

Channel aggregation

Classification Detection
result

Large
HW resources
for sqrt, atan

HW resources:
adder and
multiplier

Large memory
for features

Memory conflict
in parallel

implementation

1

2

3

Problems

Solutions
Soft cascade

HOG

Octave-wise
parallel

implementation

Multi-scale

x2 x2.2

Long processing
time for negative

samples

x1/16 x 1/8

Multiplier-free
classifier

Area Speed

Large
computation

in classification

Large memory
for scaled
features

Speed x38 SpeedMem. Mem.

Boosted decision treesAggregation &
Quantization

DV-HOG

Area x 1/4.7

Removing input
data dependency

x24

Reject negative
samples early

SIMD-like
processing

1

2 3

f > t ?

(Pro#1) (Con#2)(Con#1) (Con#3)(Pro#2) (Pro#3)(Con#3)

Memory

Area
Speed

x1/601
x24

Accuracy ACF

√
x

θ

×
+

Figure 6.2: Problems and solutions for ACF hardware implementation.

FeatGen

AggCube
ImageBuf

line0
line1
line2

ColorArray

DVHOGArray

DVHOG DVHOG DVHOG

DVHOG DVHOG DVHOG

DVHOGDVHOG DVHOG

(registers only)

aggregator9
aggregator2aggregator1aggregator0

line

ACFCube

m
ag

_m
ax

acf_matrix9

acf_matrix1
acf_matrix0

acf_array00

acf_array01

acf_array02

acf_array15

LeafCube

ac
c_

m
at

rix

leaf_matrix7

leaf_matrix1
leaf_matrix0

leaf_array00

leaf_array01

leaf_array02

leaf_array15

OutputBuf

Figure 6.3: ACF-Core hardware architecture.

5. Based on those proposed in the previous chapters, this chapter proposes a general
object detection system shown in Figure 6.1 and presents its FPGA implementation.
Feature extraction of ACF is speeded up by adopting a hardware-oriented feature
descriptor which extracts equivalent information in a small amount of computation
as explained in Chapter 3. BDT classification is speeded by parallel implementation
and hiding load time of coefficients, which was proposed in Chapter 5, and 112M
windows/sec. is attained. In addition, a quantization method which is robust to accuracy
degradation explained in Chapter 4 is adopted for memory saving and power reduction.
Consequently, the proposed system can detect multi-objects of pedestrians, vehicles,
and traffic signals in 1080p60, which satisfies the requirement for the automatic braking
system.

The rest of this chapter is organized as follows. Section 6.2 explains the proposed
hardware accelerator for ACF. Sections 6.3 and 6.4 evaluate the proposed hardware
accelerator, and Section 6.5 concludes this chapter.

6.2 Proposed Hardware Accelerator Architecture

This section presents the proposed architecture for ACF-based object detection.
Figure 6.2 summarizes the problems of object detection accelerator and their solutions.
Each solution contributes to at least either of area reduction, speed-up, or memory
reduction. The advantages of ACF (Pro#1) to (Pro#3) provide memory reduction in
channel aggregation, area reduction and fast classification in classification, respectively.
(Con#1) to (Con#3), on the other hand, are resolved by the proposed architecture. As

6.3. EVALUATION USING LOGIC SIMULATOR 71

1920x1080
ACF-Core 0

ACF-Core 1

ACF-Core 2

960x540

480x270

Down sample

Down sample

Line buffer

Classifiers

Figure 6.4: Multi-scale ACF hardware architecture.

a result, the proposed accelerator achieves area reduction, 24- and 83.6-times speed-up
in feature extraction and classification, respectively, and memory reduction to 1/601
while keeping the detection accuracy almost identical to the original software ACF
implementation.

Figure 6.3 shows an ACF object detection core module named ACF-Core. It mainly
consists of five modules and a control module. First, the ImageBuf module stores
the input image. The FeatGen module extracts DV-HOG, magnitude, and three color
channels. DV-HOG feature extraction is parallelized in 3-D: 2-D for image and 1-D for
color channels. Then, AggCubemodule aggregates the features extracted in the previous
module. AggCube has ten channels of memory. Then, ACFCube and LeafCubemodules
explained in Chapter 5 process BDT classification. Finally, the positive detection result
is output via OutputBuf module. In the case of multi-class detection, all the classes
share the same aggregated channel features, whereas the classifiers are different. ACF
computation for all the classes is performed followed by classification for each class,
where the hardware implementation benefits in reducing hardware resources and the
computations for feature extraction thanks to sharing features between all the classes.

Thanks to the hardware solutions explained so far, the feature extraction and
classification are implemented in parallel for fast detection. For detecting multiple sizes
of objects, on the other hand, multi-scale detection, which scales the input image or
applies classifiers of different window sizes, must be implemented. In this case, the
processing time for the feature extraction would become the bottleneck compared with
that of classification. To reduce the feature extraction time, this architecture adopts
an approach proposed by Benenson et al. [37]. Figure 6.4 shows the overview, where
the scale octave is 1/2 and classifiers dedicated for each scaled image are applied to
ACF-Core 0 to 2 in parallel. Although a Full HD image has four octaves, the smallest
octave image is omitted because it is rare for ADAS to appear large objects. For the
convenience of the explanation, this module is named ACF-HW module.

6.3 Evaluation using Logic Simulator
This section evaluates the hardware architecture of ACF explained so far.

72 CHAPTER 6. HARDWARE ACCELERATOR FOR ACF

Table 6.1: Processing performance comparison with conventional implementations.
Method ACF [36] ACF [40] DPM [51] This work
Platform CPU FPGA ASIC FPGA

Image size Wimg × Himg 640× 480 640× 480 1,920× 1,080 1,920× 1,080
Window size Wwin × Hwin 48× 96 32× 64 64× 128 48× 96

Scale step S scale 21/8 21/6 21/3 21/8

Pixel step S pixel 4 4 8 4
fps Nfps 31.9 30 60 350

#window/sec. Nwps 2,181k 1,972k 3,975k 229,079k
(1/105.0) (1/116.1) (1/57.6) (1.0)

6.3.1 Processing Performance
For the evaluation of processing performance, the RTL implementation is simulated
with actual input images on ModelSim SE-64 10.3. In the simulation, the classification
process takes 45,809 cycles or 0.46 milliseconds for a Full HD image without scaling.
Since processing time is linearly proportional to the image resolution, when the
processing time tsingle represents the required cycle or time for a single-scale Full HD
image, the entire processing time tall for full search detection with sliding-window
sampling is defined as follows:

tall =

Nscale∑
i=1

tsingle

S 2i
scale

, (6.1)

where Nscale is the number of scale images. Given tsingle of 0.46 and the parameters
shown in Table 6.1, the processing time tall becomes 2.86 milliseconds. Thus, the
proposed hardware enables to process Full HD images at 350 fps.

Table 6.1 provides a processing performance comparison between the proposed
method and three conventional methods: an ACF software implementation [36], an
ACF hardware implementation [40], and a deformable part model (DPM) hardware
implementation [51]. The DPM hardware implementation is the fastest hardware
implementation so far, using a deformable part model [51]. Evaluation based on frame
rate does not provide precise result because it does not use detailed implementation
settings [81]. Therefore, window-based evaluation is suitable for a fair comparison,
and it is adopted here. The processing performance is evaluated by recalculating to
processed windows per second, Nwps, using the following equation:

Nwps =
Nfps

S 2
pixel

Nscale∑
i=1

(
Wimg

S i
scale

−Wwin

) (
Himg

S i
scale

− Hwin

)
. (6.2)

As shown in Table 6.1, the proposed implementation is 105.0 and 116.1 times faster
than the software and the hardware implementations of ACF, respectively. Also, it is

6.3. EVALUATION USING LOGIC SIMULATOR 73

Table 6.2: Resource usage of feature extraction with 32 degrees of parallelism.
Feature Slice LUTs Slice registers Throughput

HOG [8] 12,288 (5.6%) 1,440 (0.3%) 32 features/cycle
RGB 6,144 (2.8%) 6,144 (1.4%) 32 features/cycle

Magnitude 2,272 (1.0%) 1,764 (0.4%) 32 features/cycle

Figure 6.5: FPGA implementation environment.

57.6 times faster compared with the DPM hardware implementation, which was the
fastest implementation.

6.3.2 Discussion

The processing performance of practical applications depends on both feature extraction
and classification. So far, this section has shown the proposed BDT hardware
architecture can process 350 fps for Full HD images. Now, let us discuss the processing
performance of the feature extraction part. Suppose three feature descriptors mentioned
above. Table 6.2 summarizes the implementation result with 32 degrees of parallelism,
where the parallelism comes from eight channels and four scaled images from a Full HD
image. As shown in Table 6.2, the entire utilization of feature extraction modules is less
than 10% of slices. With 32 degrees of parallelism, the feature extraction modules can
achieve 60 fps processing performance for Full HD images. However, it does not seem
to be enough for providing feature maps to the proposed BDT classifier that can achieve
350 fps. Besides, to realize N-class object detection, the proposed BDT classifier needs
to process N times faster than the feature extraction modules. In this case, the proposed
BDT classifier with the assumed feature extraction modules can classify five classes of
objects simultaneously.

74 CHAPTER 6. HARDWARE ACCELERATOR FOR ACF

DDR3 SDRAM

ACF-HW HDMI

HDMI

Memory
Interface

Video-in

Video-out
VDMA

Controller
Processor

(Zynq)

AXI4

AXI4Stream

On-chip

Off-chip

Figure 6.6: FPGA implementation overview.

Table 6.3: Parameters used in the evaluation.
Module Parameter Value

Feature extraction
Parallelism 24
Bit-width 4bit

ACF-Core0 8x16x8
Classification ACF-Core1 Parallelism 8x4x8

ACF-Core2 8x2x8

6.4 FPGA Implementation

The proposed hardware architecture is implemented on FPGA. The evaluation uses a
Xilinx ZC706 evaluation board and two FMC cards for HDMI input and output as shown
in Figure 6.5. The FPGA board has programmable logic (PL) and ARM core. Figure 6.6
shows an overview of FPGA implementation. The ACF-HW module is implemented
in register transfer level using Verilog HDL in PL, and it is wrapped as a custom IP
which is controllable via AXI interfaces. The FMC cards used in the evaluation supports
1080p60 at most, and the object detection system is designed to support object detection
for this speed. To handle the 1080p60 input stream and overlay the bounding boxes on
the output stream, the implementation used the Vivado IPs of a video input, a video
output, and a video timing controller. The trained classifier is stored in an SD card, and
software running on the ARM core loads it.

Table 6.3 shows the parameters used in the implementation, and the target frequency
for the ACF-HW module is 100MHz. Table 6.4 summarizes the resource utilization,
which shows the balanced usage of resources. It can be seen that DV-HOG modules
occupy 8% of LUTs in total. It should be noted, on the other hand, that the original

6.4. FPGA IMPLEMENTATION 75

Table 6.4: FPGA resource utilization.
Module Slice LUT (Logic) LUT (Memory)
ACF-HW 124,770 (57%) 124,476 (57%) 294 (0%)
→ ACF-Core0 70,755 (32%) 70,657 (32%) 98 (0%)
→ ImageBuf 195 (0%) 195 (0%) 0 (0%)
→ FeatGen 6,928 (3%) 6,831 (3%) 97 (0%)
→ DV-HOG 6,168 (3%) 6,168 (3%) 0 (0%)

→ AggCube 2,021 (1%) 2,021 (1%) 0 (0%)
→ ACFCube 23,891 (11%) 23,891 (11%) 0 (0%)
→ LeafCube 35,144 (16%) 35,143 (16%) 1 (0%)
→ OutputBuf 39 (0%) 39 (0%) 0 (0%)

→ ACF-Core1 26,127 (12%) 26,119 (12%) 98 (0%)
→ ACF-Core2 18,859 (9%) 18,761 (9%) 98 (0%)
Total 139,215 (64%) 137,939 (63%) 1,276 (2%)
Module LUT (FF) 32Kb BRAM DSP
ACF-HW 128,626 (59%) 356.5 (65%) 122 (14%)
→ ACF-Core0 72,719 (33%) 204.5 (38%) 41 (5%)
→ ImageBuf 601 (0%) 9 (2%) 0 (0%)
→ FeatGen 8,215 (4%) 0 (0%) 0 (0%)
→ DV-HOG 7,457 (3%) 0 (0%) 0 (0%)

→ AggCube 2,878 (1%) 8.5 (2%) 40 (4%)
→ ACFCube 24,420 (11%) 170 (31%) 0 (0%)
→ LeafCube 36,839 (17%) 16 (3%) 0 (0%)
→ OutputBuf 1,086 (0%) 1 (0%) 0 (0%)

→ ACF-Core1 27,158 (12%) 84.5 (16%) 41 (5%)
→ ACF-Core2 19,686 (9%) 64.5 (12%) 40 (4%)
Total 149,129 (68%) 389 (71%) 128 (14%)

computation requires 14x resources, and the corresponding resource reaches 112%,
which makes a single FPGA implementation infeasible. Taking into account that 64%
of BRAM are used for ACF memory in total, it is impossible to store the aggregated
channel features without the quantization method, which requires 512% of memory. In
terms of BDT classification, the 1,024 parallel classification contributes to 845-times
speed up with only 27% of slices usage, which significantly improved the trade-off

between hardware resources and detection speed of BDT.

6.4.1 Performance Evaluation on Pedestrian Detection

The evaluation uses twelve classifiers whose window size ranges from 48x96 to
92x184, and each classifier consists of 2,048 depth-two decision trees. Training

76 CHAPTER 6. HARDWARE ACCELERATOR FOR ACF

(a) Pedestrian detection. (b) Traffic object detection.

Figure 6.7: Detection results.

Table 6.5: Detection performance comparison.
Method Speed Method log-avg. MR #win. / sec.

Suleiman et al. [13] Full HD 60 fps SVM 46% 6,284k
Suleiman et al. [51] Full HD 60 fps DPM 20% 3,975k

Song et al. [40] VGA 30 fps ACF 17% 1,972k
This work Full HD 170 fps ACF 17% 112,501k

process uses INRIA Person Dataset [24]. Figure 6.7(a) shows the detection result.
For quantitative analysis, software simulation is used to count clock cycles for each
step. The result shows that feature extraction and classification consume 4.08 and 1.80
(= 0.15×12(scales)) milliseconds, respectively. Consequently, the proposed accelerator
can process 170 fps of Full HD. In the implemented system, the bottleneck of the
processing performance is the input part that receives images of the 1080p60 video
stream from HDMI. The speed of the input stream is fixed, and it restricts the maximum
parallelism of feature extraction.

Table 6.5 shows the processing performance comparison. [13] and [51] achieve Full
HD 60 fps processing. However, they suffer from the higher log-average MR of 46%
and 20% on INRIA Person Dataset, respectively, whereas the accuracy of the proposed
architecture is 17%. For a fair comparison in terms of the processing speed of these
detection systems, the evaluation uses the number of processing windows in a second

Table 6.6: Classifiers for traffic objects.

Target Pedestrian
Vehicle Traffic light

(Front, Rear) (Green, Yellow, Red)
Depth 2 2 2

#weak classifier 2,048 512 512
Window size [48, 96], ..., [92,184] [48, 48], ..., [92,92] [48, 16], ..., [84,28]

#classifier 12 12 4
Total #classifier 12 24 12

Area Lower 2/3 Lower 2/3 Upper half

6.4. FPGA IMPLEMENTATION 77

(a) Detection result. (b) Detection result of the (a)’s next frame.

Figure 6.8: Unstable detection results of traffic objects.

Table 6.7: Classification speed evaluation.
cycle

Speed-upSoft cascade
Off On

Vehicle
Front 148,677 13,626 10.9x
Rear 153,143 15,193 10.1x

Pedestrian 575,037 14,996 38.3x
Traffic Green 156,133 9,481 16.5x
Light Yellow 116,308 10,716 10.9x

Red 140,734 9,403 15.0x
Total 1,290,032 73,415 17.6x

as an evaluation metric. This is because the evaluation based on frame rates does not
reflect parameters such as the number of images in an octave and the detection window
stride, which largely influences the detection performance. For accurate evaluation, the
evaluation metric is calculated by using the parameters reported in each paper. Table 6.5
indicates that the proposed accelerator achieves 57 times speed-up compared with the
existing ACF hardware [40].

6.4.2 Traffic Object Detection
This section aims to analyze the processing performance of the proposed detection
system to the traffic objects in the urban areas of Japan supposing the practical ADAS.
Multi-class detection for pedestrian, vehicle, and traffic light, which are fundamental
traffic objects, are performed on FPGA. To the best of my knowledge, there exists no
public traffic object dataset recorded in Japan. Although traffic datasets taken outside
Japan such as KITTI [63], Cityscapes [82], and urban object detection dataset [83] are
available, it is not suitable to apply them to the evaluation because the appearances
of traffic objects differ in countries. Thus, for training and testing traffic lights and

78 CHAPTER 6. HARDWARE ACCELERATOR FOR ACF

vehicles, this evaluation uses a private dataset recorded in Japan. As for the pedestrian
detection, the evaluation uses the same classifier explained in Section 6.4.1, which is
trained by INRIA Person Dataset. Aiming to the quantitative evaluation, this research is
constructing a Japanese traffic object dataset by annotating the three traffic objects from
images taken in the Japanese traffic environment. Table 6.6 summarizes the classifiers
used in the evaluation. The detection candidate area is limited as shown in Table 6.6 to
reduce the number of false positives and speed-up.

Figure 6.7(b) shows the detection result, which was obtained without object
tracking. Table 6.7 summarizes the processing time. It can be seen that soft cascade
contributes to 17.6 times speed-up on average. The system can process 78 fps of Full
HD frames, which is enough for the driving assistance system. It should be noted
that the proposed accelerator does not use any domain-specific knowledge and hence
it is applicable to any object detection applications, whereas the required frame rate for
the driving assistance system is exemplified above. Figure 6.8 compares the detection
results of consecutive frames. Although most objects are correctly detected on average,
missed objects and incorrect results in terms of positions and sizes are observed in some
frames as shown in the right vehicle of Figure 6.8(b) and the left vehicle of Figure 6.8(a),
respectively. These unstable results originate from a slight movement of the object and
luminance change. These detection misses can be overcome by using the object tracking
that interpolates detection results between consecutive frames. This will be discussed
in Chapter 7 as future work.

6.5 Summary
Embedded object detection systems need to simultaneously achieve high detection
accuracy, fast detection, and low power consumption, and its design is highly
challenging. To solve the issue, this chapter proposed a hardware architecture for
general multi-class object detection using ACF. The proposed hardware architecture
makes use of the advantages of the ACF algorithm itself and incorporates multiplier-
free DV-HOG, aggressive quantization and BDT parallel computation architecture with
the overall accelerator architecture. In total, the system is speed-up by 24 and 83
times for feature extraction and classification, and reduced memory to 1/600. FPGA
implementation result showed that the proposed system could detect pedestrians in 170
fps for a Full HD image, and 6-class traffic objects in 78 fps for Full HD, which satisfied
the requirement for the automatic braking system.

Chapter 7

Conclusion

7.1 Summary and Conclusions

In object detection hardware, achieving both high detection accuracy and fast detection
is a challenging issue. This dissertation has proposed a hardware architecture for
object detection, which improves the trade-off of speed and detection accuracy. This
dissertation has focused on the information-preservation in architecture design for
ensuring no accuracy degradation and efficient hardware resource utilization for speed-
up. The FPGA implementation result shows that for a Full HD input video stream, the
system can process 170 fps for pedestrian detection, and 78 fps for 6-class traffic object
detection.

Chapter 3 discusses an information-preserved HOG algorithm and its hardware
architecture. The proposed DV-HOG algorithm is based on linear algebra and requires
only additions and multiplications with constant. The analysis and the evaluation result
validate the information-preservation. The proposed hardware architecture utilizes
the symmetry of x and y-axes to reduce hardware resources. The implementation
result shows that the required hardware resources are reduced to 1/12 without accuracy
degradation. The proposed DV-HOG improved the trade-off between detection accuracy
and power consumption.

Chapter 4 provides an analysis of the influence of numerical precision on
classification accuracy. The preliminary evaluation result shows that AdaBoost is robust
to limited numerical precision because of its narrow region of interest compared with
MLP and SVM. Based on this analysis, Chapter 4 presents an aggressive quantization
method for BDT. The quantization method focuses only on the range of the threshold
values. The evaluation result shows that aggressive quantization from 32-bit to 2-bit
degrades only 2% log-average MR on INRIA Person Dataset. The proposed method
contributes to reducing the memory requirement of classifiers on embedded systems.

Chapter 5 describes a hardware architecture for parallel BDT classification. The
proposed hardware architecture utilizes the three-dimensional parallelism: 2-D for

79

80 CHAPTER 7. CONCLUSION

image resolution, and 1-D for feature channels. For high dimensional parallel
classification, this chapter also proposes a task scheduling algorithm to avoid memory
access conflict. The task scheduling algorithm determines the memory access order by
the clock cycle level. The 1,024-parallelly implemented hardware architecture achieves
6.6 times speed-up. The evaluation result also shows that the task scheduling algorithm
is effective for negative samples because it is compatible with soft cascade.

Chapter 6 explains a hardware accelerator for ACF. The system uses the algorithms
and hardware architectures as key components proposed in Chapters 3, 4, and 5, which
resolves the difficulties of implementing ACF hardware. The synthesis result on FPGA
shows the balanced resource utilization, and the proposed system enables to operate
object detection in high parallelism. The implemented system achieves both reasonably
high detection accuracy and fast speed for multi-class classification.

This dissertation proposed the DV-HOG feature descriptor and a quantization
method for a BDT classifier based on information preserved algorithms, and a BDT
hardware architecture for efficient object detection hardware implementations. The
information preserved algorithm focuses only on the data required for classification
and uses only hardware orientations computations. This information preservation
approach makes it possible to improve the hardware implementation efficiency. The
BDT hardware architecture and the task scheduling approach enhanced the hardware
resource utilization and contribute to fast classification.

7.2 Future Works
The implemented system achieves high detection speed enough for practical
applications with limited hardware resources. However, there still remains room for
improving the detection accuracy. For example, the single shot detector (SSD) [18],
which is one of the state-of-the-art detection method based on deep neural network,
achieves less than 10% log-average MR on INRIA Person Dataset. The difference
in log-average MR between SSD and ACF is more than 5%. This section discusses
two promising approaches to improve detection accuracy: one is to improve detection
accuracy of a classifier itself, and the other is to complement detection accuracy by
combining with object tracking.

Many novel object detection algorithms based on deep neural networks achieve
state-of-the-art detection accuracy. The representation capability of deep learning is
derived from deeply accumulated network structures. Some recent researches propose
deep decision tree classifiers for both making use of representation capability and
reducing computations [43, 84, 85]. Deep forest [43] consists of multiple layers of
decision tree based classifier, and it achieves the equivalent detection accuracy to
deep neural networks. The proposed hardware architecture is compatible with any
binary decision trees. Thus, updating classifiers or modifying the BDT structure for
increasing representation capability is one promising approach for detection accuracy

7.2. FUTURE WORKS 81

improvement. Especially for time-critical embedded systems, the small amount of
computations of decision trees is a significant benefit.

Use of time continuity for object detection is also a promising approach to detection
accuracy improvement. Object tracking aims to find the correspondence of objects in
consecutive frames of an input video. Object tracking is able to trace objects correctly
even when detection fails such as occlusion and changing light condition. Combining
object tracking and object detection is called detection-by-tracking and tracking-by-
detection and many researchers have proposed such methods [86–90]. [90] reports a
BDT-based object tracking method, which uses the similarity of BDT’s selected path as
a feature for object tracking. This tracking method uses only the index of the selected
leaf node, and it is highly compatible with the proposed hardware architecture. In
applying this method to the proposed hardware, more memory resources are required for
storing the selected index of BDT. This increase has a significant effect, especially for
on multi-class classification. Future work includes updating the object tracking method
using BDT for memory reduction and hardware implementation.

82 CHAPTER 7. CONCLUSION

Bibliography

[1] Z. Sun, G. Bebis, and R. Miller, “On-road vehicle detection: a review,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp.
694–711, May 2006.

[2] T. Gandhi and M. M. Trivedi, “Pedestrian protection systems: Issues, survey,
and challenges,” IEEE Transactions on Intelligent Transportation Systems, vol. 8,
no. 3, pp. 413–430, Sep. 2007.

[3] D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf, “Survey of pedestrian
detection for advanced driver assistance systems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1239–1258, Jul. 2010.

[4] S. Sivaraman and M. M. Trivedi, “Looking at vehicles on the road: A
survey of vision-based vehicle detection, tracking, and behavior analysis,” IEEE
Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1773–1795,
Dec. 2013.

[5] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshimoto,
“Architectural study of HOG feature extraction processor for real-time object
detection,” in Proceedings of IEEE Workshop on Signal Processing Systems, Oct.
2012, pp. 197–202.

[6] K. Mizuno, K. Takagi, Y. Terachi, S. Izumi, H. Kawaguchi, and M. Yoshimoto,
“A sub-100 mW dual-core HOG accelerator VLSI for parallel feature extraction
processing for HDTV resolution video,” IEICE Transactions on electronics,
vol. 96, no. 4, pp. 433–443, Apr. 2013.

[7] M. Hiromoto and R. Miyamoto, “Hardware architecture for high-accuracy real-
time pedestrian detection with CoHOG features,” in Proceedings of IEEE
International Conference on Computer Vision Workshops, Sep. 2009, pp. 894–
899.

[8] P.-Y. Chen, C.-C. Huang, C.-Y. Lien, and Y.-H. Tsai, “An efficient hardware
implementation of HOG feature extraction for human detection,” IEEE

83

84 BIBLIOGRAPHY

Transactions on Intelligent Transportation Systems, vol. 15, no. 2, pp. 656–662,
Apr. 2014.

[9] L. Maggiani, C. Bourrasset, F. Berry, J. Sérot, M. Petracca, and C. Salvadori,
“Parallel image gradient extraction core for FPGA-based smart cameras,” in
Proceedings of International Conference on Distributed Smart Cameras, Sep.
2015, pp. 128–133.

[10] L. Maggiani, C. Bourrasset, M. Petracca, F. Berry, P. Pagano, and C. Salvadori,
“HOG-Dot: A parallel kernel-based gradient extraction for embedded image
processing,” IEEE Signal Processing Letters, vol. 22, no. 11, pp. 2132–2136, Nov.
2015.

[11] S. Lee, H. Son, J. C. Choi, and K. Min, “HOG feature extractor circuit for real-
time human and vehicle detection,” in Proceedings of IEEE Region 10 Conference,
Nov. 2012, pp. 1–5.

[12] M. Hemmati, M. Biglari-Abhari, S. Berber, and S. Niar, “HOG feature extractor
hardware accelerator for real-time pedestrian detection,” in Proceedings of
Euromicro Conference on Digital System Design, Aug. 2014, pp. 543–550.

[13] A. Suleiman and V. Sze, “An energy-efficient hardware implementation of HOG-
based object detection at 1080HD 60 fps with multi-scale support,” Journal of
Signal Processing Systems, vol. 84, no. 3, pp. 325–337, Sep. 2016.

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jul. 2006.

[15] R. Salakhutdinov and G. Hinton, “Deep boltzmann machines,” in Proceedings of
International Conference on Artificial Intelligence and Statistics, Apr. 2009, pp.
448–455.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object
detection with region proposal networks,” in Proceedings of Advances in Neural
Information Processing Systems, Dec. 2015, pp. 91–99.

[17] L. Zhang, L. Lin, X. Liang, and K. He, “Is faster R-CNN doing well for pedestrian
detection?” in Proceedings of European Conference on Computer Vision, Oct.
2016, pp. 443–457.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“SSD: Single shot multibox detector,” in Proceedings of European Conference on
Computer Vision, Oct. 2016, pp. 21–37.

BIBLIOGRAPHY 85

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,
real-time object detection,” in Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, Jun. 2016, pp. 779–788.

[20] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
pyramid networks for object detection,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Jul. 2017, pp. 936–944.

[21] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proceedings
of IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Jul. 2017, pp. 6517–6525.

[22] G. Brazil, X. Yin, and X. Liu, “Illuminating pedestrians via simultaneous detection
and segmentation,” in Proceedings of IEEE International Conference on Computer
Vision, Oct. 2017, pp. 4960–4969.

[23] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, “Optimizing CNN-based object
detection algorithms on embedded FPGA platforms,” in Applied Reconfigurable
Comput., Apr. 2017, pp. 255–267.

[24] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
in Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Jun. 2005, pp. 886–893.

[25] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An
evaluation of the state of the art,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 34, no. 4, pp. 743–761, Apr. 2012.

[26] ——, “Pedestrian detection: A benchmark,” in Proceedings of IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp.
304–311.

[27] R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Ten years of pedestrian
detection, what have we learned?” in Proceedings of European Conference on
Computer Vision Workshop, Sep. 2015, pp. 613–627.

[28] L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikäinen,
“Deep learning for generic object detection: A survey,” arXiv:1809.02165, Sep.
2018.

[29] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
no. 3, pp. 273–297, Sep. 1995.

[30] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line
learning and an application to boosting,” Journal of Computer and System
Sciences, vol. 55, no. 1, pp. 119–139, Aug. 1997.

86 BIBLIOGRAPHY

[31] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, Jul. 2002.

[32] T. Watanabe, S. Ito, and K. Yokoi, “Co-occurrence histograms of oriented
gradients for pedestrian detection,” in Proceedings of Advances in Image and Video
Technology, Jan. 2009, pp. 37–47.

[33] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of IEEE International Conference on Computer Vision, vol. 2, Sep.
1999, pp. 1150–1157.

[34] W. Nam, P. Dollár, and J. H. Han, “Local decorrelation for improved pedestrian
detection,” in Proceedings of Advances in Neural Information Processing Systems,
Dec. 2014, pp. 424–432.

[35] S. Zhang, R. Benenson, and B. Schiele, “Filtered channel features for pedestrian
detection,” in Proceedings of IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, Jun. 2015, pp. 1751–1760.

[36] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids for object
detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 36, no. 8, pp. 1532–1545, Aug. 2014.

[37] R. Benenson, M. Mathias, R. Timofte, and L. V. Gool, “Pedestrian detection at
100 frames per second,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Jun. 2012, pp. 2903–2910.

[38] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-
scale hierarchical image database,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–255.

[39] S. Zhang, R. Benenson, and B. Schiele, “CityPersons: A diverse dataset for
pedestrian detection,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Jul. 2017, pp. 4457–4465.

[40] H. Song, B. Jeong, H. Choi, T. Cho, and H. Chung, “Hardware implementation
of aggregated channel features for ADAS,” in Proceedings of International SoC
Design Conference, Oct. 2016, pp. 167–168.

[41] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training deep
neural networks with binary weights during propagations,” in Proceedings of
Advances in Neural Information Processing Systems, Dec. 2015, pp. 3123–3131.

[42] F. Li and B. Liu, “Ternary weight networks,” arXiv: 1605.04711, May 2016.

BIBLIOGRAPHY 87

[43] Z.-H. Zhou and J. Feng, “Deep forest: Towards an alternative to deep
neural networks,” in Proceedings of International Joint Conference on Artificial
Intelligence, Aug. 2017, pp. 3553–3559.

[44] L. Bourdev and J. Brandt, “Robust object detection via soft cascade,” in
Proceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2, Jun. 2005, pp. 236–243.

[45] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y. Nakamura,
“Hardware architecture for HOG feature extraction,” in Proceedings of
International Conference on Intelligent Information Hiding and Multimedia Signal
Processing, Sep. 2009, pp. 1330–1333.

[46] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-based
real-time pedestrian detection on high-resolution images,” in Proceedings of
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshop, Jun. 2013, pp. 629–635.

[47] S. Bauer, S. Köhler, K. Doll, and U. Brunsmann, “FPGA-GPU architecture for
kernel SVM pedestrian detection,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition Workshop, Jun. 2010,
pp. 61–68.

[48] J.-F. Wang, C.-S. Choy, T.-L. Chao, K.-C. Kit, K.-P. Pun, W.-L. Ouyang, and
X.-G. Wang, “Simplifying HOG arithmetic for speedy hardware realization,” in
Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, Nov. 2014,
pp. 61–64.

[49] S. Bauer and S. S.-M. U. Brunsmann, “FPGA implementation of a HOG-based
pedestrian recognition system,” in Proceedings of MPC Workshop, Jul. 2009, pp.
49–58.

[50] G.-M. Lozito, A. Laudani, F. Riganti-Fulginei, and A. Salvini, “FPGA
implementations of feed forward neural network by using floating point hardware
accelerators,” Advances in Electrical and Electronic Engineering, vol. 12, no. 1,
pp. 30–39, Mar. 2014.

[51] A. Suleiman, Z. Zhang, and V. Sze, “A 58.6 mW 30 frames/s real-time
programmable multiobject detection accelerator with deformable parts models on
full HD 1920 × 1080 videos,” IEEE Journal of Solid-State Circuits, vol. 52, no. 3,
pp. 844–855, Mar. 2017.

[52] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on FPGAs: A survey and future directions,” ACM
Computing Surveys, vol. 51, no. 3, pp. 56:1–56:39, Jun. 2018.

88 BIBLIOGRAPHY

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel distributed processing:
explorations in the microstructure of cognition. The MIT Press, Jul. 1987, ch.
Learning Internal Representations by Error Propagation.

[54] D. D. Gajski, Principles of digital design. Prentice Hall New York, 1997.

[55] J. E. Volder, “The CORDIC trigonometric computing technique,” IRE
Transactions on Electronic Computers, vol. EC-8, no. 3, pp. 330–334, Sep. 1959.

[56] K. Piromsopa, C. Aporntewan, and P. Chongsatitvatana, “An FPGA
implementation of a fixed-point square root operation,” in Proceedings of
International Symposium on Communications and Information Technologies,
2001, pp. 587–689.

[57] Y. Bengio, O. Delalleau, and C. Simard, “Decision trees do not generalize to new
variations,” Computational Intelligence, vol. 26, no. 4, pp. 449–467, Nov. 2010.

[58] A. Bermak and D. Martinez, “A compact 3D VLSI classifier using bagging
threshold network ensembles,” IEEE Transactions on Neural Networks, vol. 14,
no. 5, pp. 1097–1109, Sep. 2003.

[59] M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable inference of decision
tree ensembles: Flexible design for CPU-FPGA platforms,” in Proceedings of
International Conference on Field-Programmable Logic and Applications, Sep.
2017, pp. 1–8.

[60] R. J. R. Struharik and L. A. Novak, “Hardware implementation of decision tree
ensembles,” Journal of Circuits, Systems and Computers, vol. 22, no. 05, p.
1350032, Jun. 2013.

[61] K. Mitsunari, Y. Takeuchi, M. Imai, and J. Yu, “Decomposed vector histograms
of oriented gradients for efficient hardware implementation,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, vol.
E101A, no. 11, pp. 1766–1775, Nov. 2018.

[62] P. Dollár, Z. Tu, P. Perona, and S. Belongie, “Integral channel features,” in
Proceedings of British Machine Vision Conference, Sep. 2009, pp. 91.1–91.11.

[63] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving?
The KITTI vision benchmark suite,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Jun. 2012, pp. 3354–
3361.

[64] P. Dollár, S. Belongie, and P. Perona, “The fastest pedestrian detector in the west,”
in Proceedings of British Machine Vision Conference, vol. 2, no. 3, Sep. 2010, pp.
68.1–68.11.

BIBLIOGRAPHY 89

[65] K. Mitsunari and J. Yu, “Influence of numerical precision on machine learning
and embedded systems,” in Proceedings of International Workshop on Smart Info-
Media Systems in Asia, Sep. 2016, pp. 164–169.

[66] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press,
2012.

[67] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks with
low precision multiplications,” in Proceedings of International Conference on
Learning Representations Workshop, May 2015.

[68] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learning
with limited numerical precision,” in Proceedings of International Conference on
Machine Learning, Jul. 2015, pp. 1737–1746.

[69] A. Amir, P. Datta, W. P. Risk, A. S. Cassidy, J. A. Kusnitz, S. K. Esser,
A. Andreopoulos, T. M. Wong, M. Flickner, R. Alvarez-Icaza, E. McQuinn,
B. Shaw, N. Pass, and D. S. Modha, “Cognitive computing programming
paradigm: a corelet language for composing networks of neurosynaptic cores,”
in Proceedings of IEEE International Joint Conference on Neural Networks, Aug.
2013, pp. 1–10.

[70] M. M. Khan, D. R. Lester, L. A. Plana, A. Rast, X. Jin, E. Painkras, and S. B.
Furber, “SpiNNaker: mapping neural networks onto a massively-parallel chip
multiprocessor,” in Proceedings of IEEE International Joint Conference on Neural
Networks, vol. 5, Jun. 2008, pp. 2849–2856.

[71] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation
learning: the RPROP algorithm,” in Proceedings of IEEE International
Conference on Neural Networks, vol. 1, Mar. 1993, pp. 586–591.

[72] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical
view of boosting,” The Annals of Statistics, vol. 28, no. 2, pp. 337–407, Apr. 2000.

[73] G.-X. Yuan, C.-H. Ho, and C.-J. Lin, “An improved GLMNET for L1-regularized
logistic regression,” Journal of Machine Learning Research, vol. 13, no. 1, pp.
1999–2030, Jun. 2012.

[74] I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror, “Result analysis of the NIPS 2003
feature selection challenge,” in Proceedings of Advances in Neural Information
Processing Systems, Dec. 2005, pp. 545–552.

[75] IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754-2008, Aug. 2008.

90 BIBLIOGRAPHY

[76] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27,
May 2011.

[77] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov. 1998.

[78] K. Mitsunari, J. Yu, T. Onoye, and M. Hashimoto, “Hardware architecture for
high-speed object detection using decision tree ensemble,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, vol.
E101A, no. 9, pp. 1298–1307, Sep. 2018.

[79] E. Ohn-Bar and M. M. Trivedi, “To boost or not to boost? on the limits of boosted
trees for object detection,” in Proceedings of International Conference on Pattern
Recognition, Dec. 2016, pp. 3350–3355.

[80] K. Mitsunari, J. Yu, and M. Hashimoto, “Hardware architecture for fast general
object detection using aggregated channel features,” in Proceedings of IEEE Asian
Solid-State Circuits Conference, Nov. 2018, pp. 55–58.

[81] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury, “Evaluation and acceleration of
high-throughput fixed-point object detection on FPGAs,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 25, no. 6, pp. 1051–1062, Jun.
2015.

[82] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban
scene understanding,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Jun. 2016, pp. 3213–3223.

[83] A. Dominguez-Sanchez, M. Cazorla, and S. Orts-Escolano, “A new dataset
and performance evaluation of a region-based CNN for urban object detection,”
Electronics, vol. 7, no. 11, Nov. 2018.

[84] P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, “Deep neural decision
forests,” in Proceedings of IEEE International Conference on Computer Vision,
Dec. 2016, pp. 1467–1475.

[85] D. Ignatov and A. Ignatov, “Decision stream: Cultivating deep decision trees,”
in Proceedings of IEEE International Conference on Tools with Artificial
Intelligence, Nov. 2018, pp. 905–912.

[86] M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection and people-
detection-by-tracking,” in Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, Jun. 2008, pp. 1–8.

BIBLIOGRAPHY 91

[87] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. V. Gool, “Robust
tracking-by-detection using a detector confidence particle filter,” in Proceedings of
IEEE International Conference on Computer Vision, Sep. 2009, pp. 1515–1522.

[88] ——, “Online multiperson tracking-by-detection from a single, uncalibrated
camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 9, pp. 1820–1833, Sep. 2011.

[89] E. Moussy, A. A. Mekonnen, G. Marion, and F. Lerasle, “A comparative
view on exemplar ‘tracking-by-detection’ approaches,” in Proceedings of IEEE
International Conference on Advanced Video and Signal Based Surveillance, Aug.
2015, pp. 1–6.

[90] K. Mitsunari, J. Yu, Y. Takeuchi, and M. Imai, “Object tracking based on path
similarity of boosted decision trees,” in Proceedings of International Technical
Conference on Circuits/Systems, Computers and Communications, Jul. 2016, pp.
563–566.

