
Title
An Architecture Design Space Exploration Method
of System-on-a-Chip for CNN-based Artificial
Intelligence Platform

Author(s) Sombatsiri, Salita

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72587

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

An Architecture Design Space Exploration Method

of System-on-a-Chip for

CNN-based Artificial Intelligence Platform

Salita SOMBATSIRI

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2019

Publications

Journal Article (Refereed)
[J1] Salita Sombatsiri, Yoshinori Takeuchi, and Masaharu Imai: An Efficient

Performance Estimation Method for Configurable Multi-Layer Bus-based
SoC, IPSJ Transaction on System LSI Design Methodology, vol.8, pp.26–37,
2015.

[J2] Salita Sombatsiri, Seiya Shibata, Yuki Kobayashi, Hiroaki Inoue, Takashi
Takenaka, Takeo Hosomi, Yu Jaehoon, and Yoshinori Takeuchi: Parallelism-
flexible Convolution Core for Sparse Convolutional Neural Networks on
FPGA, IPSJ Transaction on System LSI Design Methodology, 2019. (To
appear)

International Conference Papers (With review)
[I1] Napat Luevisadpaibul, Salita Sombatsiri, and Krerk Piromsopa, "An FPGA

Implementation of ATA Host Controller toward Scalable iATA NAS," In
proceedings of the 8th International Joint Conference on Computer Science
and Software Engineering (JCSSE 2011), pp. 229–233, Bangkok, Thailand,
2011.

[I2] Salita Sombatsiri, Keishi Sakanushi, Yoshinori Takeuchi, and Masaharu
Imai, "On-chip Communication Buffer Architecture Optimization Consid-
ering Bus Width," Proceedings of IEEE 6th International Symposium on
Multicore SoCs (MCSoC2012), pp. 29–36, Aizu-Wakamatsu, Japan, 2012.

[I3] Salita Sombatsiri, Kazuhiro Kobashi, Keishi Sakanushi, Yoshinori Takeuchi,
and Masaharu Imai, "An AMBA Hierarchical Shared Bus Architecture De-
sign Space Exploration Method considering Pipeline, Burst and Split Trans-
action", Proceedings of IEEE 10th International Conference in Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON2013), pp. 1-6, Krabi, Thailand, 2013.

ii

[I4] Salita Sombatsiri, Seiya Shibata, Yuki Kobayashi, Hiroaki Inoue, Takashi
Takenaka, and Takeo Hosomi: "Parallelism-flexible Convolution Core for
Sparse Convolutional Neural Networks," Proceedings of 21th Workshop
on Synthesis and System Integration of Mixed Information Technologies
(SASIMI 2018), pp. 188-193, Matsue, Japan, 2018.

[I5] Salita Sombatsiri, Yu Jaehoon, Yoshinori Takeuchi, and Masaharu Imai:
"EMG-based Thai Tone Recognition using Convolution Neural Networks
and Spectrograms," BHI-2017 International Conference on Biomedical and
Health Informatics, FrRAF.16, Feb. 16-19, 2017, Orlando, USA. [Short
Paper]

Abstract

Recent advancement of artificial intelligence (AI) algorithms and computing plat-
forms enables various cutting-edge applications, such as image/video analytics,
speech recognition, and autonomous driving. In order to achieve a real-time re-
sponse for these applications, the edge computing, which locates between the end-
point devices and the cloud, has become more compelling in the paradigm of an
AI platform. Designing an AI-based edge computing device is very complicated
and time-consuming since the edge computing devices have strict constraints in
high-performance, yet compact and low-power. Therefore, the following three
requirements are involved in designing optimal architectures for edge comput-
ing: (1) quickly evaluate the design quality of an architecture; (2) accelerate deep
learning algorithms; (3) efficiently explore the design space to find optimal archi-
tectures. This thesis proposes an efficient method in designing edge system-on-
a-chip (SoC) architecture for AI applications to fulfill the above-mentioned three
requirements.

First, to quickly estimate the execution time of an application on each archi-
tecture, this thesis proposes an efficient performance estimation method for con-
figurable multi-layer bus-based SoC. Design quality estimation, specifically, per-
formance estimation, is time-consuming since it analyzes the behavior of the ar-
chitecture. The speed of the estimation method is often more critical than the
estimation accuracy in the early design stage because there is a massive amount
of architectures to evaluate during the architecture exploration process. The pro-
posed performance estimation method provides a fast and accurate method to eval-
uate the execution time of each architecture. It analyzes system behavior based on
system-level profiling, speculates dynamic bus contention and predicts bus behav-
ior with graph analysis. The experimental results show that the proposed method
has achieved 25.6x speedup over the register-transfer level (RTL) simulation in
evaluating the execution time of eight architectures. The error of the estimation
results is within 8% compared to the conventional RTL simulation. Hence, the
proposed method is efficient and suitable for architecture exploration process.

Second, a parallelism-flexible convolution core for sparse Convolutional Neu-
ral Network (CNN) is proposed in order to accelerate the deep learning algo-
rithm, specifically a CNN, as a high-performance intellectual property (IP). A

iv

computation-intensive CNN becomes critical for real-time inference processing
on edge devices for many applications. The proposed parallelism-flexible convo-
lution core achieves high-performance by maximizing calculation-skip and paral-
lel calculation in all convolutional layers of a CNN. It skips multiply-accumulates
(MACCs) related to zero-valued weights efficiently with the use of the compressed
CNN model together with the output-stationary scheme. It alternates dataflow and
schedules MACCs flexibly according to the specification of each convolutional
layer to improve multiplier utilization. The results have shown that the integra-
tion of both techniques improves performance by 4x speedup over the baseline
architecture and 3x in effective GMACS over prior arts of CNN accelerator.

Third, an architecture exploration of SoCs for CNN-based AI platform is pro-
posed to efficiently explore the design space with IP-based design and system-
level design. The complexity of finding optimal architectures in the early de-
sign stage lies in IP selection and bus selection because there is a vast amount of
IPs, bus architectures, and their parameters. In the proposed architecture explo-
ration method, the IPs and bus architecture are parameterized and explored using
a parameter set search tree. The proposed method consists of process mapping,
channel mapping, bus protocol mapping, functional block’s parameter mapping,
functional block’s and bus’ execution frequency mapping, bus width mapping,
and the number of buffer mapping. In the process mapping, a process is mapped
to an IP. In the channel mapping, the data transfers are mapped onto either a hier-
archical shared bus or configurable multi-layer bus by mapping the data transfers
into clusters, each of which is connected to a bus matrix. Then, the functional
block’s parameters, i.e. the number of instances of each functional block and
the number of processing elements (PEs) within each functional block, are se-
lected considering data tiling in order to distribute and parallelize the workload
of computation-intensive processes. This parameterization allows the MACCs to
be parallelized on multiple instances of functional blocks. The results show that
the proposed method discovers varieties of architecture having various functional
blocks and multi-layer bus configurations.

This thesis contributes to designing SoCs for CNN-based AI platform at the
edge, especially architecture design and optimization in the early design stage. It
provides an efficient method to explore the architecture candidates, including a
parameterized IPs and multi-layer bus, and evaluate their design qualities. The
method can find architectures with superior design qualities within a short time.
Hence, it is suitable for discovering good architecture candidates in the early stage
of designing an SoC.

Acknowledgment

This thesis is possible with the valuable insights, supports, and efforts of all the
persons and institutions who have supported and encouraged me not only in this
research, but also in living in Japan.

First and foremost, I would like to express my heartfelt gratitude and sincere
appreciation to my advisors, Professor Masanori Hashimoto, Osaka University,
Professor Yoshinori Takeuchi, Kindai University, and Emeritus Professor Masa-
haru Imai, for not only invaluable guidance in research, but also sincere support
in living in Japan. Thank you for giving me countless opportunities since my first
day in Integrated System Design Laboratory and encouraging me to grow as a
good researcher. I am honored to be their student. This thesis would not have
been possible without their kind supports and efforts.

I am grateful to the committee members of my thesis, Professor Takao Onoye,
Osaka University, and Associate Professor Ittetsu Taniguchi, Osaka University,
for investing their invaluable time giving useful comments towards improving this
thesis.

I am thankful for my supervisors at NEC Corporation, Dr. Yuichi Nakamura,
Mr. Takeo Hosomi, Dr. Hiroaki Inoue, Dr. Takashi Takenaka, Dr. Yuki Kobayashi,
and Dr. Seiya Shibata for their support and understanding in my pursue of PhD.
Thank you for their invaluable advice towards a part of this thesis.

I am grateful for Assistant Professor Jaehoon Yu, Osaka University, and Dr.
Keishi Sakanushi (my former Assistant Professor), for their valuable guidance in
the experiments and research.

I would like to express my appreciation to the current and former members of
Integrated System Design Laboratory for their insights. I am especially grateful
to Mr. Kazuki Ohya and Mr. Yuji Kamata, my tutors who have made their support
in a number of ways.

Last but not least, I would like to express my special thanks to my family,
especially my father, my mother, my sister and my brother, who have always been
supportive of me in both good times and hard times, and embraced me whenever
I fall. I am grateful for Dr. Pavadee Saisuwan and Dr. Songpol Chaunchaiyakul
for her advice in English. I would like to thank Mr. Nuttee Woramongkol, Dr.
Kamalas Udomlamlert, and Dr. Nattapong Thammasan for helping me get back
on my feet during challenging moments in the writing of this thesis. Also, I would
like to express my thanks to my friends from my home country, who are dear to

vi

me since before I came to Japan, and also those who I have met in Osaka and
Tokyo, for being more than ready to comfort me when I feel down, even from a
distance.

It might be a simple word, but I sincerely want to say "Thank you."

Contents

1 Introduction 1
1.1 Background . 1
1.2 Design Flow of AI-based Edge Computing Devices 4

1.2.1 AI Application Design 4
1.2.2 Hardware Design . 5

1.3 Requirements in Designing AI-based Edge Computing Devices . . 9
1.3.1 Quickly Evaluate the Design Quality of an Architecture . 9
1.3.2 Accelerate Deep Learning Algorithms 9
1.3.3 Efficiently Explore the Design Space to Find Optimal Ar-

chitectures . 9
1.4 Objective of this Thesis . 10

2 Related Work 13
2.1 Performance Estimation . 13

2.1.1 Simulation-based Performance Estimation 13
2.1.2 Static Performance Estimation 16
2.1.3 Hybrid Performance Estimation 17

2.2 CNN Accelerators . 19
2.2.1 Data-reuse Maximization 19
2.2.2 Data Precision Minimization 20
2.2.3 Calculation-skip Maximization 21
2.2.4 Parallel Calculation Maximization 22

2.3 Architecture Design Space Exploration 23
2.3.1 Architecture Exploration 23
2.3.2 Communication Architecture Exploration 26
2.3.3 Architecture Exploration for CNN-based Platform 29

3 An Efficient Performance Estimation Method for Configurable Multi-
layer Bus-based SoCs 31
3.1 Motivation and Objective . 31
3.2 Bus Architecture . 32

3.2.1 Hierarchical Shared Bus Architecture 33
3.2.2 Multi-layer Bus Architecture 35

viii CONTENTS

3.3 Definitions . 37
3.3.1 Model of Computation (MoC) 37
3.3.2 Architectural Model . 38
3.3.3 Definition of the Proposed Efficient Performance Estima-

tion Method . 40
3.4 Performance Estimation Method for Configurable Multi-layer Bus-

based SoC . 40
3.4.1 System-level Profiling using SystemC 41
3.4.2 SL-EDG Construction 41
3.4.3 AL-EDG Construction 42
3.4.4 AL-EDG Analysis . 44
3.4.5 Computational Complexity 48

3.5 Case Study . 49
3.5.1 Modeling of Multi-layer AHB and APB Protocol 49
3.5.2 Experimental Environment Setup 52
3.5.3 Accuracy Measurement 53
3.5.4 Tool Runtime and Speedup 56
3.5.5 Discussion . 57

3.6 Conclusion . 59

4 Parallelism-flexible Convolution Core for Sparse Convolutional Neu-
ral Network 61
4.1 Motivation and Objective . 61
4.2 Convolutional Neural Network (CNN) 63

4.2.1 Terminology of CNN . 63
4.2.2 Parallelism in CNN . 64

4.3 Compressed CNN Model . 64
4.4 Overview of The Proposed Parallelism-flexible Convolution Core 65
4.5 Parallelism-flexible Convolution Core for Sparse CNN 67

4.5.1 Flexible Parallelism Concept 68
4.5.2 Operations of the Convolution Core 68
4.5.3 Architecture Organization 70
4.5.4 Determination of Parallelism in Effect and Degree of Par-

allelism . 76
4.6 Experimental Methodology . 76

4.6.1 Workload . 78
4.6.2 Architecture Configuration 78
4.6.3 Evaluation Method . 79

4.7 Evaluation Results on VGG-16 80
4.7.1 Performance . 80
4.7.2 Resource Usage and Power Consumption on FPGA 83

4.8 Comparison with Prior CNN Accelerators 84
4.9 Applicability to Modern State-of-the-art CNNs 88

CONTENTS ix

4.9.1 Evaluation . 88
4.9.2 Discussion . 90

4.10 Conclusion and Future Work . 93

5 An Architecture Exploration of SoCs for CNN-based AI Platform 95
5.1 Motivation and Objective . 95
5.2 Modeling CNN . 96

5.2.1 Modeling Granularity . 97
5.2.2 Nature of Data Tiling in CNN 98

5.3 Model Definitions . 99
5.3.1 Model of Computation (MoC) 100
5.3.2 Architectural Model . 100

5.4 Problem Formulation of a Multi-objective Architecture Exploration 100
5.4.1 Input . 100
5.4.2 Objective functions of Architecture Exploration 102
5.4.3 Output . 102

5.5 Design Quality Evaluation . 102
5.5.1 Performance Estimation 102
5.5.2 Hardware Area Estimation 111

5.6 Architecture Exploration of SoCs for CNN-based AI Platform . . 115
5.6.1 SoC Architecture Parameterization 116
5.6.2 Parameter Set Search Tree 117
5.6.3 Pruning Parameter Set Search Tree 127
5.6.4 Order of Parameter Mapping Trees 128

5.7 Case Study . 129
5.7.1 Modeling Parallelism-flexible Convolution Core 130
5.7.2 Experiment 1 : Validity of the Proposed Architecture Ex-

ploration Method . 131
5.7.3 Experiment 2 : Architecture Exploration for Large CNN

Application . 137
5.8 Conclusion . 145

6 Conclusion and Future Work 147
6.1 Conclusion . 147
6.2 Future Work . 149

6.2.1 Extension of Communication Architecture 149
6.2.2 Statistical Performance Estimation Approach 149
6.2.3 Constrained Neural Network Sparsification 149
6.2.4 Process and Communication Scheduling 149
6.2.5 Energy Consumption Estimation Model 150
6.2.6 Acceleration of Design Space Exploration 150

x CONTENTS

List of Figures

1.1 Paradigm of AI platform: (a) conventional internet of things (IoT)
and AI platform; (b) cutting-edge IoT and AI platform. 2

1.2 Application design flow of AI-based applications. 4
1.3 SoC design flow of deep learning-based applications. 5
1.4 Flow of deep learning model compression. 6
1.5 Flow of architecture design: (a) conventional approach; (b) IP-

based approach; (c) system-level approach. 8
1.6 Contribution of this thesis to hardware design of SoCs for CNN-

based AI platform. 11

2.1 A basic structure of hardware-software co-simulator. 14
2.2 An example of model for system-level simulation. 15
2.3 System implementation for system-level profiling in SystemC. . . 18
2.4 An example of process mapping. 24
2.5 An example of functional block’s execution frequency mapping. . 25
2.6 An example of bus’ execution frequency mapping. 25
2.7 Three types of bus architecture (M refers to master, S refers to

slave, BB refers to bus bridge): (a) hierarchical shared bus; (b)
multi-layer bus; (c) cascaded multi-layer bus. 27

3.1 AHB bus model. 33
3.2 Waveform of AHB’s four-beat incrementing burst operation. . . . 33
3.3 Specification of APB: (a) APB bus model; (b) waveform of APB’s

write transfer; (c) waveform of APB’s read transfer. 34
3.4 Waveform of transfer via AHB and APB: (a) waveform of write

transfer; (b) waveform of read transfer. 35
3.5 Bus matrix topology of multi-layer bus: (a) a full bus matrix topol-

ogy; (b) a maximally connected bus matrix topology. 35
3.6 Multi-layer AHB bus configuration. Layer1 connects to a single-

master cluster. Layer2 connects to a multiple-master cluster. Layer3
connects to a local-slave cluster. Layer4 connects to a subsystem
cluster. Layer5 connects to a single-slave cluster. Layer6 connects
to a multiple-slave cluster. 37

3.7 An example of SLM. 38

xii LIST OF FIGURES

3.8 An example of ALM. 39
3.9 An example of SL-EDG. 42
3.10 An example of AL-EDG. 44
3.11 The flow of AL-EDG analysis. 45
3.12 An example of AL-EDG analysis. 51
3.13 An SLM of JPEG encoder. 52
3.14 Performance results estimated by the proposed method, the method

w/o considering dynamic bus contention and RTL simulation (1, 024×
1, 024-pixel image). 54

3.15 ALM of architectures in the experiments: (a) arch1; (b) arch2; (c)
arch3; (d) arch4; (e) arch5; (f) arch6; (g) arch7; (h) arch8. 55

3.16 Error bar shows the error of the estimation. 56
3.17 Runtime for profiling and construction of SL-EDG. 57
3.18 Average speedup in estimating performance of eight architectures. 58
3.19 The proposed method’s overall speedup. 59
3.20 AL-EDG analysis’ runtime of individual architecture. 60

4.1 The computation of convolutional layers and their parallelism: (a)
inter-layer parallelism; (b) inter-output, intra-output, and operation-
level parallelism. 63

4.2 An example of compressing a convolutional layer to a compressed
CNN model. 65

4.3 Architecture of the proposed parallelism-flexible convolution core:
(a) an overall architecture; (b) architecture of the proposed parallelism-
flexible convolution core for sparse CNN. 66

4.4 The flexible parallelism concept: (a) exploitation of intra-output
parallelism; (b) exploitation of intra- and inter-output parallelism. 69

4.5 Example of weight arrangement of four kernels in weight mem-
ory, so that BCUs can broadcast weights from different kernels at
the same time. 71

4.6 Architecture of a PE bank: (a) an overview architecture of a PE
bank; (b) data layout of the local input buffer (IN_BUF). 73

4.7 The data layout in partial sum buffer assuming the number of out-
put activations in an OFM equals to the total number of PEs: (a)
when P = 1, all output activations of one OFM are stored in the
same address and Co addresses are required; (b) when P > 1, all
output activations of P OFMs in one tile are stored in the same
address and Co

P addresses are required. 75
4.8 Timing of data loading, computing, and storing data of the convo-

lution core using double buffering. 77
4.9 The estimated PE utilization when P = 1, 2, 4, 8 for conv1_1,

conv2_1, conv3_1, conv4_1, and conv5_1 of VGG-16. 79
4.10 Speedup of the proposed parallelism-flexible convolution core by

layer of VGG-16 compared to the baseline architecture. 80

LIST OF FIGURES xiii

4.11 Active multiplier utilization of the proposed parallelism-flexible
convolution core for each layer of VGG-16 compared to the base-
line architecture. 82

4.12 Active multiplier utilization of Caffeine, NEURAghe, and the pro-
posed parallelism-flexible convolution core by layer of VGG-16:
(a) in computing dense CNN; (b) in computing sparse CNN. . . . 85

4.13 Performance in GMACS of Caffeine, NEURAghe, and the pro-
posed parallelism-flexible convolution core by layer of VGG-16. . 86

4.14 Speedup of the proposed parallelism-flexible convolution core by
kernel size and stride compared to the baseline architecture. 88

4.15 Active multiplier utilization of the proposed parallelism-flexible
convolution core by kernel size compared to the baseline archi-
tecture when stride is 1. The active multiplier utilization is the
same when stride is 2. 89

4.16 Speedup of the proposed parallelism-flexible convolution core by
layer of VGG-16 in ideal execution scenario. 91

4.17 Active multiplier utilization of the proposed parallelism-flexible
convolution core by layer of VGG-16 in ideal execution scenario. . 91

5.1 The relationship between the ability to leverage intra-layer par-
allelism and complexity in architecture exploration of modeling
granularity. 97

5.2 An example of mapping data tiles of a convolutional layer onto
multiple instances of CNN accelerator functional block. 99

5.3 Overview of the proposed architecture exploration method. 101
5.4 An example of an SLM containing a process of a convolutional

layer and its associated processes. 103
5.5 An example of an SL-EDG of SLM in Fig. 5.3: (a) convolutional

layer modeled with IFM-major scheme; (b) convolutional layer
modeled with OFM-major scheme. 104

5.6 An example of AL-EDG construction in step 2 of the SLM in
Fig. 5.5(a), which is implemented with IFM-major scheme. 106

5.7 An example of AL-EDG construction in step 3 of The SLM in
Fig. 5.5(a), which is implemented with IFM-major scheme. 108

5.8 Architecture model in this research: (a) model of a DMAC; (b)
model of a memory. 113

5.9 Architecture model of a bus bridge. 115
5.10 An example of channel-to-port mapping tree. 118
5.11 An example of channel-to-cluster mapping tree. 118
5.12 An example of channel-to-bus mapping tree, where a channel is

mapped on to a bus in the same cluster or a new bus. 119
5.13 An example of cluster-to-bus matrix mapping tree. 120
5.14 An example of bus matrix protocol mapping tree. 122
5.15 An example of bus protocol mapping tree. 123

xiv LIST OF FIGURES

5.16 An example of port protocol mapping tree. 123
5.17 An example of the number of functional block instance mapping

tree. 124
5.18 An example of the number of PE mapping tree. 125
5.19 An example of the number of memory’s storage block mapping tree.125
5.20 An example of bus matrix’s bus width mapping tree. 126
5.21 An example of shared bus width mapping tree. 126
5.22 An example of bus matrix’s execution frequency mapping tree. . . 127
5.23 An example of the number of buffer mapping tree. 128
5.24 An SLM of Lenet-5. 132
5.25 Pareto-optimal architectures resulted from experiment 1. 137
5.26 An SLM of VGG-16. 138
5.27 The trade-off relationship between area and execution time of the

Pareto-optimal architectures discovered by the proposed method. . 143
5.28 Example of architectures discovered by the proposed method. . . . 144

List of Tables

3.1 List of protocol’s parameters . 50
3.2 List of protocol related variable values 50
3.3 Information of data in channels 52
3.4 Information of functional blocks and its ports 53
3.5 The number of vertices in SL-EDG and AL-EDG 54

4.1 Parameters of the implemented convolution core 78
4.2 The parallelism in effect and degree of parallelism for convolu-

tional layers of VGG-16 . 79
4.3 Resource usage of the implementation of the proposed convolu-

tion core with 1,024 PEs optimized for VGG-like convolutional
layers on Intel’s Arria10 GX1150 84

4.4 Comparison with prior FPGA work 87
4.5 Resource usage of the extended implementation of the proposed

convolution core with 1,024 PEs on Intel’s Stratix10 GX2800 . . . 90

5.1 direct memory access controller (DMAC) and memory placement
to suffice master-slave communication scheme of a multi-layer bus 121

5.2 Environment of the experimental platform 130
5.3 Estimation parameter value for CMOS 0.18 µm. process technology133
5.4 IP database in experiment 1 . 133
5.5 Bus database in experiment 1 . 133
5.6 Functional block constraint in experiment 1 134
5.7 Port constraint in experiment 1 134
5.8 Time for architecture exploration 135
5.9 Parameters of f b5 of the Pareto-optimal architecture 137
5.10 IP database in experiment 2 . 139
5.11 IP functionality (mappable processes) in experiment 2 140
5.12 Bus database in experiment 2 . 141
5.13 Functional block constraint in experiment 2 141
5.14 Port constraint in experiment 2 142

xvi LIST OF TABLES

Abbreviations

AHB advanced high-performance bus
AI artificial intelligence
AL-EDG architecture-level execution dependency graph
ALM architecture-level model
AMBA advanced microcontroller bus architecture
APB advanced peripheral bus
ASIC application-specific integrated circuit
BCA bus cycle accurate
CA cycle accurate
CNN Convolutional Neural Network
DCNN deep convolutional neural network
DMAC direct memory access controller
ESL electronic system level
FIFO first in first out
FPGA field programmable gate array
GPU graphic processing unit
HDL hardware description language
IFM input feature map
IoT internet of things
IP intellectual property
MACC multiply-accumulate
MoC model-of-computation
NN neural network
OFM output feature map
PE processing element
RTL register-transfer level
SLDL system-level design language
SL-EDG system-level execution dependency graph
SLM system-level model
SoC system-on-a-chip
SPL software programming language
TLM transaction-level modeling

Chapter 1

Introduction

First, this chapter introduces the current Artificial Intelligence (AI) applications
and its computing paradigm. The paradigm is shifting from the cloud platform to
cutting-edge Internet of Things (IoT) and AI platform in order to provide a real-
time response. Then, this chapter overviews the design flow of AI-based edge
computing devices. Next, the requirements for designing the edge computing
devices are described. Finally, the contribution and organization of this thesis are
described.

1.1 Background
Over the past decades, AI has gained an extensive academic and industrial pop-
ularity in various fields of applications. It has been integrated into linguistics,
healthcare, image/video analytics, and etc., comprising interdisciplinary practical
applications. In linguistics, AI is widely applied to language modeling tasks like
speech recognition [1–3], speech synthesis [4, 5], and natural language process-
ing [6, 7], which enable automatic translation, chat bot, and so on. AI is trans-
forming healthcare in many ways, such as detecting disease early with a fast and
precise diagnosis [8–10] and supporting clinical decision making and treatment
[11]. In image and video analytics, AI involves object detection and classification
[12–15] that analyze the environment for surveillance systems and autonomous
driving applications. The usage of AI is increasing dramatically every year since
it shows a remarkable outcome, e.g. recognition accuracy, in various tasks that
enable applications in broader fields.

The popularity of AI comes from three key factors: the emerging of big data,
advanced AI algorithms, and high-performance computing platform. First, the
emerging of big data provides a vast amount of data for AI to learn useful in-
formation effectively. Second, the advanced AI algorithms in recent years exhibit
practical usability with remarkable improved accuracy. For example, the accuracy
of image recognition task has risen dramatically with the use of deep convolutional
neural network (DCNN) [16–18]. Third, the rapid improvement of computing

2 Introduction

EDGE

INTERNET

LOCAL
NETWORK

INTERNET

(a)

(b)
Figure 1.1: Paradigm of AI platform: (a) conventional IoT and AI platform; (b)
cutting-edge IoT and AI platform.

1.1 Background 3

platform, such as graphic processing unit (GPU) and field programmable gate ar-
ray (FPGA), enables the massive computation of AI algorithms especially deep
learning [19]. These factors empower AI so that AI is effective in terms of both
accuracy and reasonable computation time.

A cutting-edge paradigm of an AI platform is evolving from the conventional
IoT platform paradigm with the inclusion of edge computing layer between the
cloud and endpoint devices. Figure 1.1(a) shows the conventional IoT platform
where the endpoint devices, such as mobile devices and cameras, collect and up-
load data to the cloud directly via internet. In cutting-edge IoT and AI platform,
the edge computing is introduced to perform data computation near the devices
where the data originates as shown in Fig. 1.1(b). The edge is connected to the
endpoint devices through the local network and to the cloud via the internet con-
nection. Data processing at the edge usually includes, but not limited to, data
analysis and actuation of AI applications.

IoT and AI platform requires computation at the edge for three main reasons.
First, the concern for users’ privacy is rising because more and more data that
could identify users are transmitted over the internet. Computation at the edge
analyzes user’s data collected via local network and filters-out identity-related
data before uploading extracted knowledge to the internet. Second, it is crucial to
conserve internet bandwidth because the amount of data is increasing. Edge com-
puting devices send only a small amount of extracted knowledge to save the band-
width. Third, many applications, such as surveillance systems and autonomous
driving, require real-time response. Edge computing reduces latency in respond-
ing to endpoint devices since data processing takes place near the data origins.
Therefore, computing at the edge is crucial to IoT and AI platform.

Requirements for edge computation of AI platform are as follows.

• High-performance computing devices and accelerators that can process in-
ference phase of AI algorithms, especially deep learning, in real time.

• Compact computing devices since edge computing is located near endpoint
devices, such as surveillance cameras, where device installation space is
limited.

• Low-power computing devices because of the limited power supplies at the
edge.

Such computing devices can be FPGAs, GPUs for edge, system-on-a-chips (SoCs),
embedded systems and etc.

4 Introduction

Application
specification

Model selection/refinement

Model training

Functional verification

Application design

Design of functionalities

Data

Application
functionalities

AI model

Figure 1.2: Application design flow of AI-based applications.

1.2 Design Flow of AI-based Edge Computing De-
vices

Conventionally, the design of AI-based edge computing devices is divided into
two major phases: AI application design and hardware design. Given an appli-
cation that includes analysis or prediction tasks, software engineer designs the
functionalities of the application, selects and refines a model, such as deep learn-
ing model, Support Vector Machine (SVM), and etc., that represents the given
data in the AI algorithm design phase, and then, hardware engineer optimizes the
model and develops the hardware that is the most suitable for the application in
the hardware design phase. This thesis focuses on algorithm and hardware de-
sign of deep learning-based applications since a vast amount of recent AI-based
applications employ deep learning models [1–7, 9, 10, 12, 14, 15].

1.2.1 AI Application Design
Figure 1.2 shows the design flow of AI-based applications. Application design is
an iterative process. Given an application specification and a set of data, first, de-
sign of functionalities determines processing procedures, including pre-processing,
processing for recognition or detection tasks, and post-processing of the applica-
tion. Then, for the recognition or detection tasks, a model is selected from a
wide variety of AI algorithms, as well as model’s hyperparameters (configura-
tion of the model). Major deep learning models include neural networks (NNs),

1.2 Design Flow of AI-based Edge Computing Devices 5

Architecture exploration

Architecture design

Design quality evaluation

SoC design

Application
functionalities AI model

Deep-learning model
compression

Architecture Candidates

Data

Figure 1.3: SoC design flow of deep learning-based applications.

Convolutional Neural Networks (CNNs), a variety of Recurrent Neural Networks
(RNNs), and etc. Hyperparameters include, but not limited to, the number of lay-
ers, the number of hidden nodes within a layer and learning rate for training. Next,
model training adjusts the model with the given set of data, so that it can repre-
sent and analyze the characteristics of the data, and make accurate predictions of
the incoming unseen data after the model deployment. Finally, the functionali-
ties are verified, which also includes a model evaluation using metrics, such as
prediction accuracy. If the model evaluation result satisfies the application speci-
fication, the AI application design yields application functionalities and AI model
in software programming language (SPL), and proceeds to the hardware design
phase. Otherwise, the flow repeats design of functionalities, model selection or
hyperparameters refinement.

1.2.2 Hardware Design

AI-based applications are accelerated on heterogeneous computing platforms, in-
cluding GPUs, FPGAs, SoCs, and embedded systems. Hardware designer deter-
mines the suitable hardware based on application constraints, such as response
time, installation space, and power supply. GPUs provide easy programming in-
terface, but the GPU servers are bulky and power-hungry. FPGAs provide another
option for low-power platform, but their performance can be limited by their avail-
able resources. This thesis mainly focuses on an SoC since it offers the highest
power efficiency. Here, single-chip heterogeneous computing platform consisting
of CPU, GPU and FPGA are gaining popularity since various computations can
be allocated to each component depending on the compatibility between individ-

6 Introduction

AI Model

Deep-learning
model compression

Model optimization

Model retraining

Model encoding

Compressed AI Model

Data

Figure 1.4: Flow of deep learning model compression.

ual computations and hardware components. Such platforms might be included
in our target since they could provide power-efficient computing exploiting the
heterogeneousness. This thesis addresses the design flow of SoC in details since
it is subjected to a wide variety of customization and consumes long period for
hardware design.

A flow of SoC design for AI-based applications, specifically, deep learning-
based applications, is comprised of deep learning model optimization procedure
and architecture exploration procedure as shown in Fig. 1.3. Deep learning model
compression analyzes and compresses the deep learning model in order to fully
utilize hardware for both data processing and communication. For example, a
VGG-16 [17] contains as much as 154.7G multiply-accumulates (MACCs) and
138.36M model parameters (weights) in total to be transferred and stored on the
chip. Many studies have shown that through weight pruning and quantization
techniques to compress the model, the VGG-16 requires only 32.5% of MACCs
to achieve the same results and the compressed model reduces 92% of the weight’s
off-chip communication and 95% of on-chip memory size related to weights [20].
Architecture exploration searches the design space for optimal architectures that
satisfy all the design constraints in an early design stage.

Deep Learning Model Compression

Two objectives of deep learning model compression are to reduce the number of
computations and the total size of a model. This is possible because many state-of-
the-art studies have shown that in model deployment, aka inference phase, many
MACCs of a dense and full-precision deep learning model are redundant [20–23].
Generally, the model compression consists of model optimization, retraining, and
encoding as shown in Fig. 1.4. It iterates model optimization and model retraining

1.2 Design Flow of AI-based Edge Computing Devices 7

process to obtain an optimal model while preserving the equivalent accuracy.
Two main approaches to optimize deep learning model are quantizing arith-

metic precision and pruning weights. Quantizing arithmetic precision of kernels,
input feature maps (IFMs), and output feature maps (OFMs) from floating point
to a few bits of fixed-point precision [21, 22, 24, 25] saves hardware resources for
computing one MACC. Pruning weight process eliminates redundant MACCs by
zeroing out some weight values within the deep learning model [20, 23, 26, 27],
which results in a sparse model. Skipping these zero-operand MACCs reduces
computation time by the degree of sparsity. Model optimization can reduce the
number of MACCs.

Model retraining is the key in maintaining equivalent accuracy after the model
is optimized. It is natural that the model loses accuracy due to the reduced preci-
sion and zeroed-out weights. Retraining the optimized model benefits in recover-
ing the accuracy.

Model encoding aims to reduce the total number of bits for representing the
model. Many conventional compression techniques are applied to compress the
optimized model, such as entropy coding [20] and lossless source coding [25].
This can reduce the total size of the model, and hence save off-chip bandwidth in
transferring the model from external memory onto SoCs.

Architecture Exploration

The advancement of semiconductor process technology has made it feasible to
fabricate a large scale integrated (LSI) circuit on an SoC. A high-performance re-
quirement has never been more compelled for operations of multifunction devices
in an AI platform. While the multifunction dilates the complexity of the systems,
strict constraints of design qualities, including high-performance, small area, and
low energy consumption, are raised at the same time to further complicate the SoC
design with trade-off relations between design qualities.

An architecture exploration methodology is introduced to search the combina-
tion of components comprising an SoC in the design space. The design space
includes all possible combinations of the components, organization, as well as
bus architectures. The architecture exploration determines the components for
each functionality of an application and evaluates architecture’s design quality.
Typically, it is an iterative process between determining the components and eval-
uating design qualities to explore a vast amount of architectures. The architecture
exploration finds optimal architectures considering the constraints of design qual-
ities.

As illustrated in Fig. 1.3, the flow of architecture exploration in designing SoC
for AI-based application includes architecture design and design quality evalua-
tion steps. First, architecture design step decides hardware for data processing
and communication architecture, aka bus architecture. Next, the design qualities,
such as performance, area and energy consumption, of each decided architecture

8 Introduction

HW/SW partitioning

HW design
(HDL)

SW design
(SPL)

Bus architecture design
(HDL)

Application functionalities
and model (SPL)

Architecture (HDL and SPL)

(a)

Bus architecture design
(HDL)

Application functionalities
and model (SPL)

Architecture (HDL and SPL)

(b)

HW/SW partitioning

HW design
(SLDL)

SW design
(SLDL)

Bus architecture design
(SLDL)

Application functionalities
and model (SLDL)

Architecture (SLDL)

(c)

IP selection (HDL and SPL)

Figure 1.5: Flow of architecture design: (a) conventional approach; (b) IP-based
approach; (c) system-level approach.

are evaluated. Both steps are performed repeatedly in order to find optimal archi-
tecture candidates, aka Pareto solutions.

A conventional approach designs architecture and evaluates design qualities us-
ing hardware description language (HDL). Architecture design step of the conven-
tional method is shown in Fig. 1.5(a). It starts with hardware/software (HW/SW)
partitioning, in which application functionalities described in SPL are mapped
onto either hardware or software. Then, the hardware parts are designed as func-
tional blocks using HDL, while the software parts are designed using SPL. Next,
bus architecture, including bus topology, protocol, and connection among func-
tional blocks and software parts, are designed in HDL. Finally, design quality
evaluation is performed using hardware-software co-simulation. Designer should
repeat these steps for various architectures to find the optimal architecture. How-
ever, designing and evaluating architectures with the conventional approach are
costly in the early design stage because it takes long time and large human re-
sources.

To reduce the period for architectural design, IP-based approach is introduced
as shown in Fig. 1.5(b). It selects previously designed functional blocks, called
intellectual property (IP), from IP database for each partitioned hardware and soft-
ware parts, as well as bus architecture. This approach shortens the design time of
an architecture by reusing existing IPs since the designers do not have to design the
architecture from scratch. However, HDL-based hardware-software co-simulation
remains as a time-consuming task.

Figure 1.5(c) shows the flow of system-level approach for architecture design.
In this approach, application functionalities are described with an architecture-
independent system-level model using system-level design language (SLDL). The
SLDL can describe both parallel data processing and data transfer, so it is ca-

1.3 Requirements in Designing AI-based Edge Computing Devices 9

pable of simulating application functionalities in both system-level model and
architecture-level model. After HW/SW partitioning, this approach implements a
system-level model and architecture-level model with the same SLDL-based ap-
plication functionality description, which saves the design time. Design qualities
are evaluated based on the simulation of an architecture-level model in SLDL,
which is faster than the HDL-based hardware-software co-simulation. Further-
more, the architecture design space is explored before the HDL/SPL implementa-
tion. The system-level approach shortens both design and evaluation time. Nev-
ertheless, the cost for preparing and simulating SLDL model repeatedly for each
architecture is still large.

1.3 Requirements in Designing AI-based Edge Com-
puting Devices

Designing an AI-based edge computing devices has several design constraints.
Hence, designing optimal architecture candidates becomes very complicated and
time-consuming.

1.3.1 Quickly Evaluate the Design Quality of an Architecture

Design quality estimation, specifically, performance estimation, is time-consuming
since it analyzes the behavior of the architecture. Furthermore, in the architecture
exploration process, there are a massive amount of architectures to evaluate, and
hence the speed of design quality estimation method is critical. To empower archi-
tecture exploration and shorten the design time, a fast and accurate design quality
estimation method is required.

1.3.2 Accelerate Deep Learning Algorithms

Processing deep learning algorithms, even in inference phase, is usually critical
in terms of performance since they are either computation-intensive (CNNs) or
memory-intensive (Deep Neural Networks, Long Short-term Memory RNNs). To
efficiently accelerate the deep learning, high-performance and specific accelera-
tors are needed.

1.3.3 Efficiently Explore the Design Space to Find Optimal Ar-
chitectures

To find optimal architectures, it is crucial to explore among an enormous design
space. That includes HW/SW partitioning and IP selection, bus architecture se-
lection, and parameters of the architecture, such as execution frequency and bus

10 Introduction

width. All of the selections affect design qualities. Hence, the architecture explo-
ration must be able to find and evaluate optimal architectures quickly in order to
shorten the design time.

1.4 Objective of this Thesis
In designing an optimal edge SoC architecture for AI applications, there are two
major concerns. First, the processing of deep learning model usually involves a
massive amount of data transferring between functional blocks on the chip. Sec-
ond, deep learning algorithms include billions of MACCs that might become the
bottleneck of the system. IPs and bus architecture comprising the optimal archi-
tecture must be selected carefully from a variety of candidates in order to achieve
real-time performance in the model deployment phase.

The objective of this thesis is to provide an efficient method in designing edge
SoC architecture for AI applications. This thesis copes with the requirement of
quickly estimating design qualities, accelerating deep learning algorithms, and
efficiently exploring architecture design space since they contribute to achieving
real-time performance in the model deployment phase. Figure 1.6 shows the con-
tributions of this thesis.

This thesis first deals with the requirement of quickly estimating the design
qualities with an efficient performance estimation method based on the analysis
of bus behavior and system-level profiling. Even though an accurate simulation-
based performance evaluation is necessary in the final design procedure, but in
the early design stage which explores potential architectures, a quick estimation
method is more crucial than the highly-accurate but slow ones in order to evaluate
a vast number of architectures. However, the quick estimation methods, specifi-
cally, static performance estimation methods [28–33], suffer low accuracy prob-
lem. One of the causes is that they fail to capture the dynamic bus contention
during system execution. This thesis proposes an efficient performance estima-
tion method for configurable multi-layer bus-based SoCs. It analyzes system be-
havior based on system-level profiling, speculates dynamic bus contention and
predicts bus behavior with graph analysis, called the architecture-level execution
dependency graph (AL-EDG) analysis. The experimental results show that it can
estimate execution time of multiple bus architecture accurately, even while it gains
speedup over the simulation-based performance evaluation. Hence, it is suitable
as a part of the architecture exploration method in the early stage of SoC design.

Next, this work proposes a parallelism-flexible convolution core for sparse
CNN in order to fulfill the requirement of accelerating deep learning algorithms
with a high-performance IP. CNN is one of the most vigorous AI algorithms es-
pecially in image and video analytic domains, such as surveillance systems and
autonomous driving. CNN’s processing usually takes place at the edge in order to
achieve real-time response. Unfortunately, CNN involves an excessive computa-
tion that becomes critical for real-time inference processing on both edge devices.

1.4 Objective of this Thesis 11

A
rc

hi
te

ct
ur

e
ex

pl
or

at
io

n

A
rc

hi
te

ct
ur

e
de

si
gn D
es

ig
n

qu
al

ity
 e

va
lu

at
io

n

So
C

de
si

gn

A
pp

lic
at

io
n

fu
nc

tio
na

lit
ie

s
A

I
m

od
el

D
ee

p-
le

ar
ni

ng

m
od

el
 c

om
pr

es
si

on

A
rc

hi
te

ct
ur

e
C

an
di

da
te

s

D
at

a

B
us

 a
rc

hi
te

ct
ur

e
de

si
gn

IP
 s

el
ec

tio
n

IP
 D

at
ab

as
e

C
N

N

IP IP
1

IP
2

…

C
h

ap
te

r
5

A
rc

hi
te

ct
ur

e
D

es
ig

n
Sp

ac
e

E
xp

lo
ra

ti
on

 o
f

S
oC

s
fo

r
C

N
N

-
ba

se
d

A
I

P
la

tf
or

m
-

A
rc

hi
te

ct
ur

e
de

si
gn

 m
et

ho
d

-
A

re
a

E
st

im
at

io
n

M
et

ho
d

of

S
oC

s
fo

r
C

N
N

-b
as

ed
 A

I
P

la
tf

or
m

C
h

ap
te

r
3

A
n

E
ff

ic
ie

nt
 P

er
fo

rm
an

ce

E
st

im
at

io
n

M
et

ho
d

fo
r

M
ul

ti
-

la
ye

r
B

us
-b

as
ed

 S
oC

s

C
h

ap
te

r
4

P
ar

al
le

li
sm

-f
le

xi
bl

e
C

on
vo

lu
ti

on
 C

or
e

fo
r

S
pa

rs
e

C
N

N

Figure 1.6: Contribution of this thesis to hardware design of SoCs for CNN-based
AI platform.

12 Introduction

Most CNN accelerators [34–36] fall behind their peak performance because they
fail to maximize parallel calculation in some of the convolutional layers due to
the fixed dataflow and computation scheduling. The proposed parallelism-flexible
convolution core alternates dataflow and schedules MACCs flexibly according
to the specification of each convolutional layer to improve multiplier utilization.
Furthermore, it efficiently leverages sparsity by skipping MACCs related to zero-
valued weight easily with the use of the compressed CNN model. The result
shows that it outperforms the prior arts of CNN accelerator in total performance.

Finally, this thesis resolves the requirement to efficiently explore the design
space with IP-based design and system-level design. Finding optimal architec-
tures in the early design stage can shorten the design time. The complexity lies in
IP selection and bus selection. First, the modeling granularity (level in modeling
MACCs of deep learning algorithms) regulates IP selection. Typically, a process
is mapped to an IP, which may introduce imbalance workload in deep learning
application because the process of the deep learning algorithm is usually heavier
than other processes. Second, there are a vast amount of bus architectures, in-
cluding hierarchical shared bus and various configurations of a multi-layer bus.
In the proposed exploration method, the IPs and bus architecture are parameter-
ized. After the designer models a deep learning application with SystemC [37],
the proposed architecture exploration method selects IPs via process mapping. It
explores hierarchical shared bus and configurable multi-layer bus architecture via
channel mapping and mapping the clusters, which is a groups of hardware compo-
nents, onto the bus matrix. Then, it selects other specifications such as execution
frequency and bus width via parameter mapping. The number of instances of pro-
cess’s functional block and the number of processing elements (PEs) within each
functional block is also parameterized in order to allow the MACCs of coarse-
grained modeling to be parallelized on multiple instances. Furthermore, data tiling
is handled as a part of coping with granularity. The proposed method can dis-
cover architectures with varieties of functional block parameters and multi-layer
bus configurations. Hence, the proposed architecture exploration method can find
optimal architectures quickly in the early design stage.

The rest of this thesis is organized as follows. Chapter 2 presents related work.
Chapter 3 proposes an efficient performance estimation method for configurable
multi-layer bus-based SoCs, which considers the behavior of standard bus pro-
tocols and dynamic bus contention. In chapter 4, a parallelism-flexible convolu-
tion core for sparse CNN that leverages multiple types of parallelism and weight
sparsity is proposed. Chapter 5 proposes an architecture exploration of SoCs for
CNN-based AI Platform based on the performance estimation method in chapter
3 and the parallelism-flexible convolution core in chapter 4. Finally, chapter 6
concludes this thesis and describes future work.

Chapter 2

Related Work

This chapter reviews related studies. First, it explains three approaches for per-
formance estimation and their trade-offs. Second, it reviews prior arts of CNN
accelerators in terms of techniques for acceleration. Third, the chapter describes
an architecture design space exploration methodology, including communication
architecture exploration and design space exploration for CNN-based platform.

2.1 Performance Estimation
There are three main approaches in performance estimation: simulation-based,
static and hybrid performance estimation. These approaches have a trade-off be-
tween speed and estimation accuracy. Simulation-based approach achieves high
accuracy, but usually consumes a lot of time for analyzing the behavior of each ar-
chitecture. Furthermore, since the performance obtained from simulation depends
on and varies by the input data, the selection of input data for simulation affects
the accuracy of performance estimation. On the other hand, a static approach is
fast and independent of input data, but less accurate than the former one. The
hybrid approach is the compromise between the two approaches. It collects exe-
cution traces from simulation to enhance the accuracy of the fast static approach.
This section describes each approach in details.

2.1.1 Simulation-based Performance Estimation

Hardware-software Co-simulation

Traditionally, hardware-software co-simulation, e.g. register-transfer level (RTL)-
based simulation method, is the most common way to evaluate the performance
of an architecture. It simulates the behavior of the target architecture with co-
simulation environment [38–43]. These co-simulators provide two major func-
tionalities: (1) multiple simulators for various levels of abstraction, including an
HDL simulator for hardware model evaluation, an instruction set simulator (ISS)

14 Related Work

HW Simulator ISS System C

Interface Interface Interface

Inter-process communication manager

Figure 2.1: A basic structure of hardware-software co-simulator.

for software model evaluation, and simulators for other modeling languages, such
as SystemC [37]; (2) interfaces and manager for inter-process (inter-simulator)
communications. Figure 2.1 shows the basic structure of these co-simulators. De-
spite the fact that there are several studies that accelerate these simulators [44,
45] and these co-simulators can evaluate every architectural platform, including
various bus architectures, it takes an unacceptably long time because a complete
behavior of the architecture is simulated. Furthermore, the detailed of all compo-
nents and signals within the architecture must be implemented in the RTL model,
which requires not only a long time but also a lot of human resources. Therefore,
hardware-software co-simulation approach is not suitable for performance esti-
mation in the early stage of the design, where a vast amount of architecture must
be evaluated.

Architecture-level Simulation

Architecture-level simulation approach provides a more efficient way to evaluate
performance than the conventional co-simulation approach in terms of modeling
and time for simulation. In terms of modeling, each architecture is abstracted
with a model of its architectural elements and behavior. A model is composed
of functionality description including data processing and data transfer, which are
synchronized from time to time according to the abstraction level. Hence, it is
easier to describe a model for architecture-level simulation than co-simulation.
In terms of time for simulation, architecture-level simulation is faster than the
co-simulation since architectural details, e.g. synchronize signals, are ignored.

Describing an architecture with a model for architecture-level simulation en-
ables modeling and simulation in several abstraction levels. In Metropolis sim-
ulation environment, metamodel describes an architecture as processes, which
represent sequential data processing, and media, which represents data transfer
path [46]. A model in Ptolemy II simulation environment describes an archi-
tecture with networks of actors, which are components executing concurrent data
processing and sharing data via message passing, and directors, which specify
model-of-computations (MoCs), such as process networks, discrete-events, syn-
chronous dataflow models, of the actors [47, 48]. In addition, fast co-simulation

2.1 Performance Estimation 15

ChannelProcess

Read / Write interface

Port

Process

Port

Figure 2.2: An example of model for system-level simulation.

models describe HW/SW platform at an arbitrary abstraction level and provide
HW/SW co-simulation interface [49–51].

These models are efficient for performance estimation of various architectures
before detailed design. They can accelerate the simulation by the orders of magni-
tude. Even though the estimation is less accurate than the co-simulation approach,
the obtained estimation accuracy remains acceptable in most cases. However, em-
ploying architecture-level simulation in the architecture exploration suffers from
two problems. First, the models must be rebuilt and simulated for each of the
architectures. Second, the simulation speed is still slow. The simulation of an
architecture-level model is approximately 1.5 times slower than the system-level
simulation [52]. For that reason, the architecture-level simulation is too slow to
evaluate a large number of architecture candidates in the design space.

System-level Simulation

System-level simulation achieves faster performance estimation of various hardware-
software systems than RTL simulation by abstracting data transfers, aka transac-
tions, at several abstraction levels. Typically, functionality of architectural ele-
ments, including functional blocks and bus architecture, are modeled as modules
and data transfers are modeled as channels using high-level languages, such as
SpecC [53] and SystemC [37], as shown in Fig. 2.2. The detailed signals of data
transfers are abstracted in various levels of abstraction, i.e. cycle accurate (CA),
bus cycle accurate (BCA), and transaction level model (TLM) [37]. The higher
abstraction provides faster simulation trading estimation accuracy.

CA- and BCA-level simulation approach achieves an extremely accurate esti-
mation at the cost of simulation speed and modeling effort. Several studies provide
fast simulation platforms that model the multi-processor systems using SystemC
at the cycle-accurate and signal accurate level of simulation timing [54–57]. With
these methods, standard bus protocols of on-chip communication architecture can
be modeled in terms of arbiter, decoder and protocol’s cycles so that dynamic be-
havior of bus according to bus contention and bus protocol is captured precisely,
which results in an accurate performance estimation [58–60]. The speed of CA-
and BCA-level simulation is likely to be 10-100 times faster than the speed of
RTL simulation and requires 3-10 times less modeling effort [61, 62].

TLM-based approach accelerates system-level simulation by using read and
write function calls to capture the beginning and the end of transactions. The ar-

16 Related Work

chitectures are modeled at timed- and untimed-transaction level to enable both fast
functional verification and performance evaluation [63–65]. TLM-based methods
enable a fast evaluation of several bus architectures, i.e. topology and protocols,
because they abstract the details of transactions with read and write interface of
channels [66, 67]. Additionally, an AMBA standard bus protocol modeled in [68]
is capable of capturing arbitration behavior and bus contention. Pasricha et al.
propose a novel cycle count accurate method at transaction boundaries (CCATB)
in evaluating AMBA shared bus protocols [69, 70] and multi-layer bus protocols
[71] . The CCATB maintains cycle-count accuracy at the beginning and the end
of transactions without updating system’s state at every cycle. Similarly, another
cycle count accurate model is proposed for modeling bus components, such as
arbiter and decoder, and approximating bus’ arbitration and decoding cycles in
order to obtain the accuracy close to the cycle-accurate simulation [72, 73]. The
timed TLM simulation based on the system modeling in SystemC language, is
about 10-20 times faster and requires approximately 2 times less than the BCA’s
[61, 70].

System-level simulation is further improved with several techniques. In terms
of simulation capability, since simulators of system-level languages provide sim-
ulation environment at multiple abstraction levels, CA, BCA, and TLM model,
which are described in SystemC are leveraged simultaneously to compromise sim-
ulation speed and estimation accuracy [74, 75]. In terms of simulation speed,
threads are exploited to accelerate the simulation. Time-decoupling technique is
deployed to reduce synchronization between modules so that SystemC kernels
can simulate the behavior of components in the model in parallel with multiple
threads [76, 77]. Parallel SystemC kernel technique analyzes SystemC code to
find available independent threads in order to leverage multi-core host machine
[78–81].

System-level simulation method is accurate enough for evaluating the perfor-
mance of various bus architecture at an early design stage because it can cap-
ture dynamic behavior of bus. However, there exist two problems in deploying
SystemC-based simulation into the architecture exploration. First, the speed of
high-level simulations, e.g. simulating timed-model, BCA model, or CA model
using system-level languages, is still slow to evaluate a vast amount of architec-
tures. Second, the performance estimation of each architecture requires an indi-
vidual high-level abstraction model, which takes up to 3 and 4 days of modeling
effort to create timed- and BCA model for each architecture, respectively [69].

2.1.2 Static Performance Estimation

Most fast estimation methods employ a static MoC to describe data processing
and data transfers. They analyze system execution using a graph-like MoC, such
as Petri Nets, synchronous data flow (SDF), and time marked graph. In addition,
static approach is capable of verifying deadlock [28, 29] and modeling pipeline

2.1 Performance Estimation 17

behavior [30, 82, 83]. For a more accurate estimation of time-varying application,
some static performance estimation methods apply statistical concept to obtain
a performance estimate based on statistical distribution rather than a worst-case
timing [31, 84, 85].

In evaluating communication architecture, static performance analysis also of-
fers analytic properties in modeling latency and detecting deadlock. The work in
[86] aims to analyze and reduce the number of on-chip sharing buffer with integer
linear programming. In [28], a formal model is used for approximating the perfor-
mance of AMBA shared bus and detecting a deadlock. In [87], the architecture-
specific overhead and latency of hierarchical shared bus are analyzed using SDF.
The work in [88] predicts bus arbitration’s stall cycle due to bus contention using
a statistical model. Cho et al. estimate system bus latency for both shared bus and
multi-layer shared bus [32]. While these studies focus on hierarchical shared bus,
the work in [33, 89] study multi-layer bus, aka crossbar bus. The work [89] pro-
poses an analytical model and predicts performance distribution using tasks’ time
variation for crossbar bus-based multi-processor SoC (MPSoC). The method in
[33] analyzes performance of multi-layer bus considering single-master clusters
and slave clusters.

Even though performance estimation methods using static MoC provide a very
fast estimation, they suffer from low estimation accuracy. That is because they
fail to capture and predict dynamic bus behavior due to bus contention and bus
protocols. Furthermore, most studies do not consider several popular configura-
tions of multi-layer bus, such as multiple-master cluster or hierarchical shared bus
subsystem cluster, which attaches to a port of multi-layer bus.

2.1.3 Hybrid Performance Estimation

Hybrid performance estimation approach between simulation and static estima-
tion is accurate and fast. It is divided into two categories: (1) static trace-based
simulation and (2) dynamic trace-based performance analysis.

Static trace-based simulation collects events from static functionality analysis.
TAPES simulation framework generates resource traces from system’s function-
ality profiling and translates them as transactions on each architecture during sim-
ulation [90]. A dynamic trace-based method constructs temporal order of exe-
cution as concurrent execution traces on given resources, and then, emulates the
traces on a hierarchical shared bus-based architecture. In [91], a simulation lever-
ages dynamic cost of shared bus arbitration predicted by a statistical model using
workload trace in order to save time from simulating arbitration on every bus
access. Nevertheless, these methods require lengthy simulation for every archi-
tecture.

Dynamic trace-based performance analysis consists of two steps: data process-
ing and data transfer event trace extraction from simulation and static performance
estimation considering traces. SystemBuilder generates event traces based on

18 Related Work

Read

Write

Write

Read

Channel
(Monitor_channel) Process

(Monitor_process)Channel
(Monitor_channel)

Process
(Monitor_process)

Monitor_channel_out Monitor_channel_in

Monitor_channel_in Monitor_channel_out

Profile file
execution timing

Profile file
execution timing

Profile file
Data size, transfer timing

Profile file
Data size, transfer timing

Figure 2.3: System implementation for system-level profiling in SystemC.

FPGA simulation and analyzes the traces according to each architecture template
to estimate execution time [92]. The hybrid analysis of SystemC model col-
lects execution traces of an application based on dynamic simulation and analyzes
the trace for race condition and rescheduling [93]. Nevertheless, they consider
neither bus topology nor bus protocols. Takahashi et al. propose a bus architec-
ture independent simulation model that collects communication traces including
transactions’ start time, quantity of data and destination [94]. Lahiri et al. pro-
pose a method that collects data processing and transfers event by cosimulation
and constructs a communication analysis graph (CAG), which describes data pro-
cessing and transfers as nodes and execution dependencies as edges [95]. Then,
it analyzes the CAG according to bus architectures to obtain execution time. The
method proposed in [96] performs timed-functional simulation to gather the or-
der of processing and communication events as traces, and repeatedly analyzes
bus arbitrations, preemption and overhead based on bus protocol for various bus
architectures using the traces. The latter three methods are sufficient for timing
analysis of various bus architectures because the lengthy simulation take place
only once for the same set of functional blocks and various bus architectures.
However, remodeling and simulation for trace extraction are still needed to col-
lect the traces for architectures that contain different functional block set and they
focus only on hierarchical shared bus platform. Yet, the overall estimation for
architecture exploration takes too long.

A performance estimation method based on system-level profiling [52], our
preceding study, consists of four steps. First, a system-level profiling is per-
formed by a SystemC simulation of a loosely-timed system-level model, called
system-level model (SLM), where data processing and transfers are described as
processes and channels, respectively. To profile the execution timing, processes
and channels are encapsulated with monitor_process and monitor_channel class,
respectively, as shown in Fig. 2.3. The system-level profiling then generates pro-
filing information including traces of data processing timings from monitor_pro-
cess class, and traces of the amount of transferred data and transfer timings from
monitor_channel class. It is at least 20 times faster than BCA model’s simulation.

2.2 CNN Accelerators 19

Second, the method constructs System-Level Execution Dependency Graph (SL-
EDG) according to the profiling information, in which vertices represent data pro-
cessing and transfers, and edges represent execution dependencies. The system-
level profiling and SL-EDG construction take place only once because they are ar-
chitecture independent. Third, Architecture-Level Execution Dependency Graph
(AL-EDG) is constructed by adding edges representing dependencies raised by
the availability of buffer resources. Finally, the AL-EDG is analyzed to estimate
system execution time. Although the method is effective in terms of time spent
for the estimation process, it has three main limitations. First, the analyzable bus
model is limited to shared bus and a data transfer must be conducted by only
one bus. Consequently, each system-level channel must occupy a dedicated func-
tional block’s port that is connected to a bus. Second, the assumption regarding
data communication does not satisfy master-slave communication concept, which
exists in most high-speed bus protocols. Third, it does not consider bus proto-
col. The performance analysis models neither dynamic bus behavior nor deadlock
state. For that reason, actual bus operations are ignored and deadlock cannot be
detected.

In this thesis, the multi-layer bus architecture and bus protocols are studied and
modeled in order to efficiently estimate performance of SoC architecture. The
architectural model is extended so that it can also represent configurable multi-
layer bus, memory, and direct memory access controller (DMAC) engaged in data
communication. Communication port model is also improved to indicate master-
slave roles of ports on the connecting bus and specify port sharing among multi-
ple channels. The AL-EDG is constructed according to data communication path
including memories and DMAC specified by the architectural model. In the anal-
ysis procedure, master or slave roles of communication ports and buffer status are
also considered when analyzing bus requests. Furthermore, bus contention is rec-
ognized in order to predict probable dynamic bus behavior, i.e. split, retry and
preemption operation. With the proposed method, the performance of SoC can be
evaluated quickly and accurately, which will be discussed in Chapter 3.

2.2 CNN Accelerators

This section explains the prior-art CNN accelerators in terms of four techniques:
data-reuse maximization, data precision minimization, calculation-skip maximiza-
tion and parallel computation maximization. The CNN accelerators exploit one
or more of these techniques to achieve real-time performance.

2.2.1 Data-reuse Maximization

Recent CNN accelerators exploit the weight sharing property and data locality
within a convolutional layer to maximize data-reuse. They reuse input feature

20 Related Work

maps (IFMs), kernels, and output feature maps (OFMs) in on-chip memory to re-
duce high-latency and energy-consuming external memory access through dataflow
pattern and data tiling. Hence, data reuse improves performance and reduces
power consumption.

Efficient dataflow promotes data reuse in four major patterns. First, weight-
stationary dataflow pattern maximizes weight reuse in the processing elements
(PEs), and shifting IFMs and OFMs to the neighboring PEs [97–100]. Second, the
output-stationary dataflow pattern maximizes output data reuse by accumulating
the OFMs locally in the PEs, while circulating the weights and/or IFMs during the
computation [101–104]. Third, global reuse dataflow pattern reuses both weights
and IFMs from the global on-chip memory [34, 105–107]. Fourth, row-stationary
dataflow maximally reuses weights, IFMs, and OFMs locally in a row unit [108].

Data tiling partitions and processes IFMs in small tiles [34, 105, 109] to reuse
IFMs with all the kernels. The SCNN [110] maps data tiles onto its PEs in order
to reuse both IFMs and OFMs locally without inter-layer external memory access.

The proposed parallelism-flexible convolution core in chapter 4 exploits data
tiling and output-stationary dataflow pattern to distribute kernels and reuse IFMs
and OFMs locally. Both techniques enable calculation-skip without complex
dataflow control to access IFMs or sparse weights, where the execution time is
reduced by the degree of sparsity.

2.2.2 Data Precision Minimization

Data precision minimization is achieved through a quantization method that re-
duces the number of required bits for CNN computation without the loss of ac-
curacy. Several techniques quantize arithmetic precision of kernels, IFMs, and
OFMs from floating point to a few bits of fixed-point precision. Several stud-
ies quantize the values of kernels, IFMs, and OFMs into a dynamic fixed-point
precision, in which each layer of the CNN uses its layer-wise precision for the
convolution [22, 36, 111]. The method in [22] analyzes the activation values
from inferencing a large set of input images with a floating-point CNN and de-
termines a fixed-point precision for the kernels, IFMs, and OFM layer by layer.
Similarly, the method in [36] analyzes the values and quantizes the CNN with
singular value decomposition technique. The method in [111] employs approx-
imation approach to reduce bit width layer by layer. The study in [20] encodes
the kernels into a codeword that represents a value by weight sharing technique to
further reduce the total size of the kernels.

Another key success in quantization is fine-tuning. The study in [111] pro-
poses a framework that reduces the bit width of kernels, IFMs, and OFMs layer
by layer, and fine-tunes the CNN to assure the accuracy. The quantized CNN
method quantizes the weights of the CNN using k-mean clustering to minimize
the estimation error of each layer’s response and proposes a training scheme to
suppress the accumulative quantization error by paying a layer-wise training cost

2.2 CNN Accelerators 21

for correcting errors in each layer [21].
This optimization lowers both computational resource per one MACC and stor-

age requirement of the customized hardware. The study in [112] has shown that
16-bit fixed point precision is required to preserve the accuracy of ImageNet clas-
sification [113]. Furthermore, the SCNN computes a sparse CNN with 16 bits for
multiplication and 24 bits for accumulation [110].

The above-mentioned studies have shown that 16-bit fixed-point precision for
multiplication and 32-bit fixed-point precision for accumulation are sufficient for
image recognition without sacrificing recognition accuracy. Therefore, the pro-
posed parallelism-flexible convolution core performs the computation of CNN
using 16 bits for multiplication and 32 bits for accumulation. The 32-bit ac-
cumulation is implemented instead of 24 bits like the SCNN for preventing the
accumulation overflow.

2.2.3 Calculation-skip Maximization

Calculation-skip maximization omits zero-operand MACC from the sparsity in
IFMs and weights of the kernels. It reduces the number of MACCs involved with
non-zero weights and can accelerate CNN inference computation by the degree
of sparsity. Sparsity in IFMs comes from activation functions such as Rectified
Linear Units (RELU), which rectifies the values less than zero into zero. Weight
pruning process introduces sparsity in weights by zeroing out weight values with
the trade-off between the number of remaining weights and recognition accuracy.
Many state-of-the-art studies have shown that more than 80% of weight sparsity
is possible without jeopardizing the accuracy [20, 23].

Unlike dense CNN, accessing weights and IFMs of sparse CNN has irregular
patterns that may incur complex control. Recent accelerators exploit weight spar-
sity or activation sparsity or both. The ones that exploit weight sparsity usually
use kernels in sparse format to access non-zero weights and skip MACCs having
zero-valued weights efficiently with the output-stationary dataflow pattern [109,
114]. The architectures that leverage IFM sparsity usually include a zero-detection
mechanism to dynamically skip zero-operand multiplication [110, 112]. As a re-
sult, these architectures achieve performance improvement over the dense CNN
accelerator.

The proposed parallelism-flexible convolution core computes the sparse CNN
because the above-mentioned studies have shown that the weight sparsity at a cer-
tain level does not degrade the recognition accuracy while it is capable of reducing
the number of calculation. The proposed convolution core leverages weight spar-
sity from a compressed CNN model, which is a format of representing a sparse
model, in a straightforward way. Hence, the proposed convolution core skips the
computation related to the zero-valued weights efficiently.

22 Related Work

2.2.4 Parallel Calculation Maximization

To maximize parallel calculation, CNN accelerators schedule MACCs exploiting
various types of parallelism onto their vast amount of multipliers. The reconfig-
urable processor array maps intra-output parallelism onto its PEs [101]. Many
high-performance architectures schedule multiple types of parallelism onto mul-
tipliers by rows, columns, or groups of PEs [34–36]. The types of parallelism
are (1) intra-output parallelism, which is the parallelism in computing the out-
put pixels of the same OFM; (2) inter-output parallelism, which is the parallelism
in computing several OFMs; (3) operation-level parallelism, which is the fine-
grained parallelism in computing multiple multiplications of one output pixel.
However, they cannot achieve high performance in terms of giga operations per
second (GOPS) in all the layers because the scheduling is fixed, while the domi-
nant parallelism of in each layer usually varies across the CNN with the different
layer specification, such as the size and number of OFMs.

To further increase parallel calculation in every layer, the architecture should
flexibly schedule MACCs onto the multipliers according to the dominant paral-
lelism of each layer. The FlexFlow architecture [115] adjusts its scheduling of
multiple types of parallelism to improve multiplier utilization layer by layer. Even
though it achieves near peak performance, it neither supports the compressed
CNN model nor exploits sparsity efficiently because it exploits operation-level
parallelism. It is difficult to skip zero-operand MACCs while exploiting multiple
types of parallelism, especially operation-level parallelism, without either com-
plex dataflow control mechanism or wasting a vast number of multiplier cycles.
That is because irregular sparsity pattern disarranges non-deterministic weight,
IFM, and OFM access.

The proposed parallelism-flexible convolution core in chapter 4 integrates the
above-mentioned acceleration techniques. Namely, it employs output stationary
dataflow in order to reuse output OFMs locally. At the same time, output station-
ary dataflow benefits in leveraging weight sparsity by broadcasting only non-zero
weights to the PEs. The sparse memory access to the IFMs is simplified by us-
ing the indices of the non-zero weights as an address to access the consecutive
IFM pixels located in the PE’s local buffer. Likewise, the indices are used to ac-
cess the OFMs in the partial sum buffer. With our partial sum buffer layout, all
or groups of the PEs can access to the same address, which reduces the irregular
memory access patterns. The proposed convolution core alternates dataflow to
exploit multiple parallelisms, i.e. intra- and inter-output parallelism, according to
convolutional layers’ specification. It leverages all the techniques to accelerate the
computation of convolutional layers effectively.

2.3 Architecture Design Space Exploration 23

2.3 Architecture Design Space Exploration

This section explains related studies regarding architecture design space explo-
ration. First, it overviews architecture exploration frameworks in general. Then,
the studies about the communication architecture exploration are reviewed. The
communication architecture includes bus architecture, memories, and DMACs.
Finally, this section describes the studies that propose architecture exploration
frameworks for CNN.

2.3.1 Architecture Exploration

Heuristic architecture exploration methods are proposed to search optimal SoC
architectures within the design space. Since the design space becomes extremely
huge as the choices of architecture, such as IPs and communication architecture,
grow, exhaustive search takes unacceptably long time. Therefore, heuristic archi-
tecture exploration methods employ algorithms to efficiently eliminate architec-
ture candidates in the design space, aka design space pruning. These heuristic
architecture exploration methods and their algorithms are divided into two cate-
gories: structured architecture exploration methods and randomized architecture
exploration methods.

The structured architecture exploration methods refer to the methods that ex-
plore and prune the design space systematically. They traverse the design space
through a data structure, such as search tree [116], using search algorithms like
tabu search [117]. To fasten the exploration, the design space is pruned by con-
straints and results of previous search [118–120]. Some methods additionally
employ machine learning algorithm in assisting design space pruning. The ma-
chine learning model is trained with the past architecture configuration and design
quality pairs, and either predicts non-pareto elimination for pruning [121] or sam-
ples high quality architectures [122, 123]. However, these methods do not focus
on communication architecture. They either assume virtual bus architecture or
hierarchical shared bus. Furthermore, the prediction of machine learning model is
not accurate enough to guarantee Pareto solutions.

On the other hand, the randomized architecture exploration methods refer to the
methods that search the design space through architecture transformation. These
methods employ optimization algorithms such as genetic algorithm (GA), simu-
lated annealing algorithm (SA) and evolutionary algorithm. GA is often used in
improving search behavior to find Pareto-optimal architectures through crossover
or mutation operations on the genes to generate architecture candidates [124,
125]. SA is employed for hardware/software partitioning because of its abil-
ity in escaping local minima [126, 127]. The work in [128] evaluates multi-
objective evolutionary algorithm (MOEA) in solving mapping problem and shows
that MOEA finds optimal architectures within a reasonable amount of time. How-
ever, these randomized architecture exploration methods do not guarantee optimal

24 Related Work

p1 → fb1(I1,1) p1 → fb1(I2,1)

p2 → fb1(I1,1) p2 → fb2(I1,2) p2 → fb2(I3,1) p2 → fb2(I1,1) p2 → fb2(I3,1)
fb1(I1,1)

p1

p2

fb1(I1,1)

p1

fb1(I1,2)

p2

fb1(I1,1)

p1

fb2(I3,1)

p2

fb1(I2,1)

p1

fb2(I1,1)

p2

fb1(I2,1)

p1

fb2(I3,1)

p2

Figure 2.4: An example of process mapping.

solutions and are sensitive to initial solution.
In terms of finding optimal parameters, the architecture exploration method pa-

rameterizes SoC architecture and explores parameter values of functional blocks
and communication architecture. Givargis et al. propose a parameter exploration
method for an SoC architecture [129]. It is very useful for exploring parameters
for a specific functional block set and a bus architecture, e.g. the cache size and
the bus width. However, it is not suitable for exploring the functional blocks and
communication architecture themselves. Matai et al. provide a method that com-
poses previously designed components in SoC design for a new application and
optimizes the design by selecting parameters of the components [130]. It resem-
bles the proposed method in this thesis in terms of IP (component) mapping and
IPs’ parameter mapping. However, they do not consider communication mapping
to multi-layer bus.

Ueda et al. propose an architecture exploration framework based on system-
level modeling [131], which is our preceding study. From an SLM which de-
scribes data processing and data transfers in an application, it explores the design
space of the target architecture to find Pareto-optimal solutions in terms of perfor-
mance, area, and power consumption. The target architecture includes functional
blocks, hierarchical shared bus, and buffers. There are five inputs to the explo-
ration systems, which are IP database, bus database, design constraints, SLM, and
profiling information.

Given design constraints and parameter candidates of the architecture to be
explored with the user-defined values, the method explores the design space by
traversing through the parameter set search tree to construct an architecture can-
didate and explore its parameters. The procedures of the method are as follows.

1. Process mapping selects a functional block for the data processing of each
process as shown in Fig. 2.4. In the figure, pi → f b j = (Ik, l) denotes that
the process pi is mapped to functional block f b j, which is the lth instance
of IP Ik. It is assumed that p1 can be executed on I1 and I2, and p2 can be
executed on I1 and I3. First, p1 is mapped on to the first instance of either I1

2.3 Architecture Design Space Exploration 25

ffb1→ f1

ffb2→ f1 ffb2→ f2

ffb1→ f2

ffb2→ f1 ffb2→ f2

Figure 2.5: An example of functional block’s execution frequency mapping.

fb1→ f1

fb2→ f1 fb2→ f2

fb1→ f2

fb2→ f1 fb2→ f2

Figure 2.6: An example of bus’ execution frequency mapping.

or I2, constructing the first functional block f b1 to the architecture. Then,
p2 can be mapped on to a new instance of I1 or a new instance of I3. It can
also be mapped to the first functional block f b1 if f b1 is an instance of I1. In
the case that a new instance is constructed, f b2 is added to the architecture.

2. Channel mapping selects a bus for each channel.

3. Functional block’s execution frequency mapping determines the execu-
tion frequency of each functional block. The execution frequency candi-
dates of each functional block are registered in the IP database. Figure 2.5 is
an example of functional block’s execution frequency mapping when there
are two functional blocks, f b1 and f b2, and there are two execution fre-
quency candidates, f1 and f2.

4. Bus’ execution frequency mapping determines the execution frequency
of each bus. The bus’ execution frequency is selected from a set of user-
defined bus’ execution frequency candidates. Figure 2.6 is an example of
bus frequency mapping when there are two buses, b1 and b2, and there are
two execution frequency candidates, f1 and f2.

5. Bus width mapping determines the width of each bus in the architecture.
The parameter value is selected from a user-defined candidate set.

6. Number of buffer mapping determines the number of buffers for storing
data in each channel. The candidates of number of buffers are user-defined.

26 Related Work

To quickly search the design space, Ueda et al. prune the parameter set search
tree. The descendants of the parameter set search tree are pruned when one of the
following conditions is met.

• One or both lower bounds of the execution time and the hardware area of
the current search node exceed the user-defined design constraints.

• The lower bound and upper bound of the execution time are equal.

• Both lower bound of the execution time and the hardware area of the cur-
rent search node exceed those of the explored optimal architecture at that
moment.

2.3.2 Communication Architecture Exploration
The design space of on-chip communication architecture broadens with the evolv-
ing topologies of bus architecture. Several high-performance and low-power bus
topologies, such as hierarchical shared bus, multi-layer bus (aka crossbar bus), and
network-on-chip (NoC), have been developed in order to support the communica-
tion between the increasing number of functional blocks within an SoC. Figure 2.7
illustrates three types of bus architecture: a hierarchical shared bus, multi-layer
bus, and cascaded multi-layer bus. The hierarchical shared bus includes multiple
shared buses which are connected with bus bridges. The multi-layer bus includes
a bus matrix fabric, aka crossbar, which contains multiple buses to parallelize the
data communication from different master-slave layer. The cascaded multi-layer
bus is a hierarchy of multiple bus matrix fabrics which are connected with bus
bridges.

Communication architecture exploration finds optimal bus architecture and com-
ponents, i.e. DMAC and memories, associated with the data transfer between
functional blocks. To efficiently explore communication architecture, including
buses, memories, and DMAC, fast communication architecture exploration meth-
ods have been proposed.

Hierarchical Shared Bus-based Communication Architecture Exploration

The communication architecture exploration based on bus templates provides fast
and systematic way to explore the communication architecture design space. Gong
et al. develop a method that transforms functional specification to an implemen-
tation model and explore communication architecture using four fixed templates
[132]. Lahiri et al. automate a bus architecture exploration by mapping the data
transfer to the selected bus template [133]. It determines an initial bus architec-
ture and iteratively optimizes the bus architecture protocols to maximize system
performance. However, it is not suitable for exploring various bus architectures
because a large amount of bus templates must be prepared for various bus archi-
tectures, and hence, the available bus templates limit the design space.

2.3 Architecture Design Space Exploration 27

M0 S2

M1 S0

S1

M2 M3

S3

crossbar

M0 S0

• • • • • •

(a) (b)

crossbar0

M00

M0n

S00

S0n

BB02

• • •

• • •

S10

S1ncrossbar1

• • •
M10

M1n

• • •

(c)

BB01 BB12

BB1

M1 S2

Mn Sn

crossbar2

M20

M2n

S20

S2n

• • •
• • •

Figure 2.7: Three types of bus architecture (M refers to master, S refers to slave,
BB refers to bus bridge): (a) hierarchical shared bus; (b) multi-layer bus; (c) cas-
caded multi-layer bus.

28 Related Work

Bus synthesis methods generate both bus topologies and parameters. Parischa
et al. propose a bus architecture synthesis method aiming to find the optimal-area
design under performance constraints [69–71]. This method can effectively gen-
erate parameters of a bus architecture, which include the number of buses, bus
width, bus frequency, etc. Pandey et al. synthesize the communication architec-
ture topology and optimize the architecture in terms of bus width and number of
buses [134]. These methods widen the design space in terms of bus architecture,
but they are not suitable for the functional block set exploration.

Exploring communication also includes other components along the communi-
cation path of a data transfer, e.g. bus bridges and memories. Kim et al. develop a
method that explores bus bridge and memory allocation in addition to bus topolo-
gies and other parameters, such as bus arbitration scheme, frequency, and bus
width [135]. It starts with one bus and then, scatters communication traffics into
multiple buses to reduce bus contention and maximizes concurrency. The method
in [136] considers distributed memory system and explores bus architectures.

Bus architecture is optimized through three major techniques based on the map-
ping of data transfer to communication architecture. The first technique is bus
merging to minimize the data transfer between multiple buses because more buses
cause more power and performance penalties [137]. The second technique is bus
splitting or partitioning to maximize communication parallelism [138, 139]. The
third technique involves moving memories or functional blocks between buses
[140]. The work in [141] develops new communication architecture using these
bus transformations [141]. These techniques aim to achieve high performance
with less physical cost. Nevertheless, all of the above-mention methods are lim-
ited to hierarchical shared bus architecture, which is shown in Fig. 2.7(a).

Multi-layer Bus-based Communication Architecture Exploration

To obtain a higher performance platform through communication architecture,
several design space exploration methods focus on various kinds of multi-layer
bus architectures. A flat multi-layer bus architecture as shown in Fig. 2.7(b), re-
ferred to as multi-layer bus or crossbar bus, includes one bus matrix fabric, aka
crossbar. Each master and slave are connected to each port of the crossbar. A cas-
caded multi-layer bus as shown in Fig. 2.7(c), referred to as cascaded multi-layer
bus or cascaded crossbar bus, includes more than one crossbar connected with
each other via bus bridges. Most studies optimize the topology of multi-layer bus
by clustering master and slave hardware components in the system.

Murali et al. propose an application-specific on-chip crossbar generation method
considering floorplanning [142]. It clusters the master and slave cores based on a
pair-wise overlap traffic trace among different cores of the full crossbar. Although
the method can generate many crossbar topologies with multiple master clusters,
multiple slave clusters, and subsystem clusters, it does not explore the parameters
of the crossbar, which have a large impact on the design quality.

2.3 Architecture Design Space Exploration 29

Pasricha et al. propose a bus matrix generation method based on AMBA ad-
vanced high-performance bus (AHB) [143] and AXI [144] that explores optimal
bus matrix architecture [71, 145]. It optimizes bus topology using a static branch
and bound-based slave clustering and explores its parameters e.g. bus frequency.
The method uses static bandwidth analysis to prevent exploration in an invalid
design space. In addition, it minimizes wire congestion by removing unnecessary
buses on the bus matrix fabric. Even though the method successfully finds the
topology and parameters of the bus matrix, the optimization is limited to only a
fixed set of functional blocks.

Lee et al. develop a bus matrix synthesis method that determines bus matrix
topology via an interface selection [146]. The method optimizes multi-layer bus
by systematically selecting master or slave interface for each hardware compo-
nent. Then, it clusters the master and slave components into multiple master and
AHB subsystem clusters by analyzing communication conflicts of the hardware
components that are merged into the same cluster. However, it does not consider
grouping multiple slaves in the same cluster to further reduce physical cost of bus
matrix fabric.

The studies on cascaded multi-layer bus aim to simplify each crossbar. Joo et
al. explore cascaded crossbar in terms of topology, frequency, arbitration, and off-
chip memory allocation [147]. Jun et al. exploit locality principle to merge cross-
bars in order to reduce bus matrix [148]. The target architectures of both studies
are different from this thesis. They focus only on cascaded crossbar switches.
However, this thesis focuses on optimizing a multi-layer bus architecture shown
in Fig. 2.7(b) by clustering components attached to the bus matrix fabric.

Cilardo et al. propose a communication architecture synthesis method includ-
ing hierarchical shared bus, multi-layer bus, and cascaded multi-layer bus [33].
The method determines crossbar topology by clustering master-slave components
and optimizes scheduling to satisfy temporal bounds. This work comes closest
to the research in this dissertation. Nevertheless, there are two differences: (1) it
does not consider multiple master clusters; (2) it does not mention about how to
choose bus protocols and parameters.

This thesis focuses on exploring the topology and parameters of a flat multi-
layer bus. It partitions master and slave components into multiple master, multiple
slave, and AHB subsystem clusters in order to determines the topology. It selects
parameters, such as protocols, frequency, and bus width, through a mapping using
parameter set search tree.

2.3.3 Architecture Exploration for CNN-based Platform

DeepBurning automation tool provides a platform to implement NN in FPGA
and application-specific integrated circuit (ASIC) [149]. It analyzes NN model,
maps the NN’s computation onto the hardware building blocks in its NN com-
ponent library to leverage several parallelisms, and generates RTL, control flow

30 Related Work

and memory image for input data and weights. The output architectures are opti-
mized for each NN. However, the method focuses on only the NN itself, and does
not consider other processing within an application, such as pre-processing and
post-processing.

Hong et al. propose a dataflow modeling method for applications that con-
tain loop structure like NN [150]. It specifies loop structures in an SDF graph
and maps them on to the hardware in order to maximize usage of the given ar-
chitecture. This allows the exploitation of multiple parallelisms within an NN.
Nevertheless, this method targets only the multi-core platform.

Tsimpourlas et al. develop a design space exploration framework for CNN tar-
geting edge devices [151]. Given a CNN-based application and task mapping,
this method explores the parameters of the architecture, e.g. the number of PEs,
to optimize the architecture in terms of execution time and energy consumption.
However, it does not mention application tasks’ mapping. It optimizes the ar-
chitecture of existing platform, such as Intel’s Movidius Myriad2. In addition, it
does not consider accelerating the CNN computation with the concurrency of data
transfer. In other words, it does not take multi-layer bus into account.

Chapter 3

An Efficient Performance
Estimation Method for Configurable
Multi-layer Bus-based SoCs

Chapter 3 describes the proposed efficient performance estimation method for
configurable multi-layer bus-based SoC. It is suitable for evaluating system perfor-
mance in an early stage of the design process because it is both fast and accurate.
First, this chapter explains bus architecture and standard bus protocol. Second, it
defines the MoC and the architectural model. Then, the problem formulation and
procedures of the proposed performance estimation method are explained in de-
tails. Next, the experiments are conducted by modeling advanced microcontroller
bus architecture (AMBA) advanced high-performance bus (AHB) and advanced
peripheral bus (APB), and applying the proposed method to JPEG encoder appli-
cation. Finally, this chapter is summarized.

3.1 Motivation and Objective
When the number of processing cores grows from tens to hundreds, a multi-layer
bus architecture is introduced in addition to hierarchical shared bus architecture
that becomes systems’ bottleneck due to a massive amount of data communi-
cations. Standard specifications for the multi-layer bus are developed such as
AMBA’s multi-layer AHB [143] and AXI [144]. However, a full bus matrix con-
tains a massive amount of wires, which leads to routing and power consumption
problems. Therefore, apart from the regulations and communication methods, the
specifications also define configurations of the multi-layer bus as well as the model
of the bus matrix, which represents the interconnect of the multi-layer bus. The
configurations reduce the number of wires on the bus matrix because they merge
some master and slave layers and the buses on the bus matrix that do not conduct
any data transfer are removed. This wire reduction eases the routing and power
problems. Nevertheless, the performance of the communication might degrade

32 Performance Estimation Method for Multi-layer Bus-based SoCs

depending on the selected configurations. Therefore, it is important to evaluate
the multi-layer bus configurations and find an optimal architecture that can satisfy
SoC design constraints because the topology, configuration, and protocol of the
bus architecture affect the design quality of SoC.

In architecture exploration, performance evaluation is one of the critical parts
of the exploration process because system performance, aka execution time, is
one of the most important metrics of design quality and performance evaluation
consumes a lot of time. Furthermore, an enormous design space of IP selection
and bus architectures, including hierarchical shared bus and configurable multi-
layer bus, must be evaluated. Therefore, a fast performance estimation approach
that can evaluate various architectures accurately is desired.

This chapter proposes an efficient performance estimation method for config-
urable multi-layer bus-based SoC. The proposed method acquires data flow infor-
mation from a system-level profiling and constructs a system-level execution de-
pendency graph (SL-EDG). Then, it constructs and analyzes an architecture-level
execution dependency graph (AL-EDG) of each architecture to estimate execution
time. During the performance analysis, the behavior details of shared buses and
multi-layer bus are determined based on the analyzed dynamic bus contention and
bus protocols’ features.

The key features of the proposed method are as follows:

1. predicting the behavior of shared buses and multi-layer bus during the per-
formance estimation according to the analyzed dynamic bus contention and
bus protocols’ features;

2. estimating the performance of various architectures according to the spec-
ulated buses’ behavior by analyzing an architecture-dependent execution
graph;

3. by defining the protocol’s specific parameters and behavior, the proposed
method is applicable to estimate the performance of various bus protocols.

The proposed method estimates the performance of SoC accurately within a short
time compared to the RTL simulation.

3.2 Bus Architecture

This section explains the target bus architectures, which includes hierarchical
shared bus and multi-layer bus. Their architectures and an example of a standard
bus protocol, specifically, AMBA AHB and APB [143, 152, 153], are described
in terms of bus model and communication method.

3.2 Bus Architecture 33

HRDATA

HWDATA

HADDR

HRDATA

HWDATA

HADDR

HRDATA

HWDATA

HADDR

HRDATA

HWDATA

HADDR

Master#1

Master#2

Slave#1

Slave#2

arbiter

decoder

Figure 3.1: AHB bus model.

HADDR[31:0]

HBURST[2:0]

HWDATA[31:0]

HCLK

HREADY

HRDATA[31:0]

T1 T2 T3 T4 T5 T6 T7

Addr1

Data1 Data2 Data3

Data1 Data2 Data3 Data4

INCR4

Addr2 Addr3 Addr4

Data4

Address Phase Data Phase

Figure 3.2: Waveform of AHB’s four-beat incrementing burst operation.

3.2.1 Hierarchical Shared Bus Architecture
A hierarchical shared bus architecture consists of multiple shared buses. On a
shared bus, multiple masters share the same bus to communicate with the target
slave and one communication is active at a time. These shared buses are connected
to each other with a bus bridge, forming a bus hierarchy in the architecture as
shown in Fig. 2.7(a). Two examples of a standard hierarchical shared bus are
AMBA AHB and APB [152, 153].

Advanced High-speed Bus (AHB)

The AHB is a multi-master high-performance interconnect. It is comprised of one
address bus and two data buses as shown in Fig. 3.1 and operates in half-duplex
mode at the high clock frequency. The data transfer takes place between a pair of
master and slave when the master’s bus request is granted by the arbiter. An AHB
bus can handle up to 16 masters.

To accelerate the consecutive data transfer, the AHB enables the pipeline and
the burst transfer mode. Figure 3.2 shows a four-beat incrementing burst transfer.
The address phase consumes one clock cycle and the data phase consumes at least
one clock cycle per one data depending on the slave’s status. The pipeline mode
allows the last data cycle to overlap with the address cycle of the next transfer in
consecutive data transfer.

34 Performance Estimation Method for Multi-layer Bus-based SoCs

Data1

T1 T2 T3 T4 T5

PWRITE

PSEL

PADDR

PENABLE

Addr1

PWDATA Data1

T1 T2 T3 T4 T5

PWRITE

PSEL

PADDR

PENABLE

PWDATA

PCLK

Addr1

Bus
BridgeHRDATA

HWDATA

HADDR
Slave
#1PRDATA

PWDATA

PADDR

Slave
#2

(a) (b) (c)

Figure 3.3: Specification of APB: (a) APB bus model; (b) waveform of APB’s
write transfer; (c) waveform of APB’s read transfer.

The AHB provides a split-retry mechanism in the case that slave is unable to
complete the request immediately. The mechanism allows the bus to be released
for other transfers while the slave is preparing for the request.

This thesis models AHB’s behavior with three assumptions. First, the data
phase takes one cycle for transferring one data because it is assumed that the data
transfer takes place when both master and slave are ready. Second, the arbitration
scheme is assumed to be a fixed priority. Third, each transaction is executed with
a defined-length incrementing burst protocol.

Advanced Peripheral Bus (APB)

The APB connects low bandwidth peripherals to separate them from the backbone
AHB. Figure 3.3(a) illustrates the APB bus model. Any incoming transfer to the
APB must go through a bus bridge, which operates as the only bus master. A
transfer on the APB bus takes two clock cycles per one data as shown in Fig. 3.3(b)
for the write operation and Fig. 3.3(c) for the read operation.

Data Transfer via Multiple Buses

A transfer via two buses goes through a bus bridge. For a transfer via an AHB and
an APB, the bus bridge converts between AHB and APB protocol. The waveform
of a write operation in Fig. 3.4(a) shows that the operation consumes two cycles
on the AHB for the first address and data, and two cycles per data on the APB.
Similarly, the waveform of a read operation in Fig. 3.4(b) shows that the operation
consumes one cycle on the AHB for the first address and two cycles per data
on the APB. Although a transfer through two AHB buses is not defined in the
specification, the AMBA design kit [154] provides an AHB-to-AHB bus bridge
with zero-cycle overhead.

3.2 Bus Architecture 35

Data1

Data1

HWRITE
HDATA

HADDR

HREADY

T1 T2 T3 T4 T5 T6 T7

Addr1 Addr2

Data1 Data2

PWRITE
PSEL

PADDR

PENABLE

Addr1 Addr2

PWDATA Data1 Data2

HWRITE
HDATA

HADDR

HREADY

T1 T2 T3 T4 T5 T6

Addr1 Addr2

PWRITE
PSEL

PADDR

PENABLE

Addr1 Addr2

PWDATA

Data2

Data2

(a) (b)

Figure 3.4: Waveform of transfer via AHB and APB: (a) waveform of write trans-
fer; (b) waveform of read transfer.

Master
#1

Master
#2

Slave
#1

Slave
#2

Slave
#3

Input
Stage

Decoder

Input
Stage

Decoder

Bus matrix

Arbiter

Output
Stage

Arbiter

Output
Stage

Arbiter

Output
Stage

Bus
matrix
fabric

Master
#1

Master
#2

Slave
#1

Slave
#2

Slave
#3

Input
Stage

Decoder

Input
Stage

Decoder

Bus matrix

Arbiter

Output
Stage

Arbiter

Output
Stage

Arbiter

Output
Stage

Bus
matrix
fabric

(a) (b)

Figure 3.5: Bus matrix topology of multi-layer bus: (a) a full bus matrix topology;
(b) a maximally connected bus matrix topology.

3.2.2 Multi-layer Bus Architecture

A multi-layer bus increases multiple-master system’s bandwidth by parallelizing
multiple communications on the bus matrix architecture. Masters and slaves are
connected to master and slave layers of the bus matrix, respectively. Consequently,
multiple communications can be active at a time. However, if a shared slave serves
more than one master, the bus matrix ought to arbitrate those masters which can
access the slave layer of the bus matrix that the slave resides.

The AMBA specification offers a multi-layer AHB with the bus matrix topol-
ogy to handle a system that requires the high-bandwidth [143]. It consists of five
components. First, an input stage buffers address and control signals of an in-
coming transfer when the slave is busy. Second, a decoder generates slave select
signals, and selects response and read data signals. Third, an output stage selects

36 Performance Estimation Method for Multi-layer Bus-based SoCs

address, control and write data signals and send the signals to each slave layer.
Fourth, an arbiter determines which master can get an access to each slave layer.
The arbitration is distributed to the arbiter at each slave layer. Fifth, a bus matrix
fabric contains buses that are paths for data transfer.

Figure 3.5(a) shows the full bus matrix topology, where every master layer is
connected with every slave layer by buses on the bus matrix fabric. In the case that
the buses are not used, they can be removed. Such topology is called a maximally
connected bus matrix shown in Fig. 3.5(b).

In this thesis, the arbitration scheme of a bus matrix is assumed to be a fixed
burst priority. Since the hierarchical shared bus employs a preemptive fixed pri-
ority arbitration while the multi-layer bus employs a non-preemptive fixed burst
priority arbitration, each transaction through the multi-layer bus must be a lock
transaction on the hierarchical shared bus. To sum up, each transaction using a
bus matrix is assumed to be a locked defined-length incrementing burst transfer.

Configurable Multi-layer Bus Architecture

To further optimize the multi-layer bus that accommodates many masters and
slaves, several bus matrix configurations are introduced [62, 143]. The bus ar-
chitecture with these configurations is referred to as a configurable multi-layer
bus architecture and a group of masters and slaves connected to a master layer
or a slave layer is referred to as a cluster.

In addition to a single-master (Layer 1 of Fig. 3.6) or single-slave (Layer 5 of
Fig. 3.6) configuration, each layer of bus matrix can connect to a cluster with one
of the following configurations:

• Multiple masters on one master layer : A multiple-master cluster includes
more than one master as shown in Layer 2 of Fig. 3.6, in which assumes that
two masters share the same master Layer 2 of the bus matrix. An arbiter on
the master layer determines which master gains a bus access at a time.

• Multiple slaves on one slave layer : A multiple-slave cluster combines
more than one slave as shown in Layer 6 of Fig. 3.6, where two slaves are
merged into one cluster and the slaves appear as one slave to the bus matrix.

• Local slave : When a slave is accessed by only one master or multiple
masters in the same cluster, the slave can be made local to those masters
by attaching it to the master layer as shown in Layer 3 of Fig. 3.6. This is
advantageous in terms of reducing bus matrix complexity.

• Subsystems : A subsystem integrates masters and slaves into the same clus-
ter and constructs a subsystem as shown in Layer 4 of Fig. 3.6.

In this thesis, the bus matrix configuration is customized through port, direct
memory access controller (DMAC) and memory clustering. The configuration

3.3 Definitions 37

Layer 2 Multi-
layer
Bus
(Bus

Matrix)

Layer 1Master
#1

Master
#2

Master
#3

Master
#4

Slave
#4

Master
#5

Slave
#5Master

#6
Slave

#6

Layer 3

Layer 4

Layer 6

Slave
#1

Slave
#2

Slave
#3

Layer 5

Figure 3.6: Multi-layer AHB bus configuration. Layer1 connects to a single-
master cluster. Layer2 connects to a multiple-master cluster. Layer3 connects to
a local-slave cluster. Layer4 connects to a subsystem cluster. Layer5 connects to
a single-slave cluster. Layer6 connects to a multiple-slave cluster.

depends on the type of components residing in each cluster. Furthermore, the local
slave configuration and the subsystem configuration are considered as subsystems
for simplicity in modeling.

3.3 Definitions

First, this section explains MoC, architectural model of the configurable multi-
layer bus-based SoC, and defines the proposed performance estimation method.

3.3.1 Model of Computation (MoC)

A Kahn-Process Network-based acyclic directed graph called system-level model
(SLM) is used as our MoC to specify the behavior of a target system in terms
of sequential data computation processes and unbounded first in first out (FIFO)
communication channels. An SLM is described as a loosely-timed model accord-
ing to the transaction-level modeling (TLM) 2.0 specification [37]. The processes
that represent data processing are untimed, while the entry points and exit points
of channels that represent data transfers are explicitly noted by event triggers.

An SLM is represented by Msl = (P,C), which means that SLM Msl is com-

38 Performance Estimation Method for Multi-layer Bus-based SoCs

c1

c2

c3

p1 p2

p3 p4

Figure 3.7: An example of SLM.

posed of a process set P = {pi|i = 0, 1, 2, ...} and a channel set C = {c j| j =
0, 1, 2, ...}. c j = (pm, pn) represents the channel from process pm ∈ P to pn ∈ P.
The data to be used in a process is received through the input channels, executed
inside the process and the result is transmitted via the output channels. A write
operation to an output channel is a non-blocking operation, while a read operation
from an input channel is a blocking one. Additionally, s j and pc j represent the
data size and the execution priority of channel c j, respectively.

Figure 3.7 shows an example of an SLM, Msl, consisting of four processes and
three channels. An arrow represents the direction of data flow in each channel.
For instance, channel c1, c2 and c3 are data communications from process p1 to
p2, p1 to p4 and p3 to p4, respectively.

3.3.2 Architectural Model
A configurable multi-layer bus-based architecture consists of IP modules, DMACs,
memories, shared buses and/or a multi-layer bus. A multi-layer bus is composed
of a bus matrix and the buses on it, which allow parallel communications in a
system with multiple masters and slaves. An architecture may contain heteroge-
neous configurations of a multi-layer bus [143], such as multiple masters, mul-
tiple slaves, local slave, and subsystems. Some of the configurations degrade
performance, but removing unnecessary buses on the bus matrix and optimizing
the bus matrix with these configurations give a benefit in area and ease of routing.

The configurable multi-layer bus-based architectural platform is formalized as
an architectural model called architecture-level model (ALM). An ALM describes
the components and organization of an architecture, including the information
about the process-to-functional-block and channel-to-port mapping decisions. One
channel is accounted for the point that the data flows into it, called source of chan-
nel, and the point that the data flows out of it, called destination of channel, to be
mapped on to the ports that are responsible for the transfers. An ALM is defined
with a 7-tuple, (F, PT,D,M, B, BM, BB), each of which has the following charac-
teristics:

• F is a set of IP modules’ instances, called functional blocks, that undertake
the execution of the system-level processes. f bi = (j, P f bi , f f bi , e(pk , f bi)) ∈ F

3.3 Definitions 39

d1

fb1

fb4

b1

Bus Matrix

m1

fb2

fb3

c1 c2

c3

b2

b3

b4

b5

b6

pt1

pt2

pt3

pt4

p1

p2

p3

p4

 : master port : slave port

bbm5

bbm2

bbm3

bbm4

bbm1

Figure 3.8: An example of ALM.

indicates that functional block i is an implementation of IP j and undertakes
the processes in set P f bi . f f bi and e(pk , f bi) represent the execution frequency
of f bi and execution cycle of process pk ∈ P f bi on functional block f bi,
respectively.

• PT is a set of ports pti = (f b j, bk, nq, nr). A port connects a functional block
f b j to a shared bus bk and functions as a master or a slave on the connecting
bus. A port contains nq receive buffers and nr transmit buffers for multiple
buffering.

• D is a set of DMACs, di = (Cdi). Cdi refers to a set of source and destina-
tion of channels that require di to initiate the transfer. A DMAC controller
functions as a bus master to transfer data from a requesting slave, store data
in its buffer temporarily and send data to another slave upon request.

• M is a set of memories, mi = (Cmi , nci). Cmi refers to the set of source and
destination of channels that are conducted via a memory, which serves as a
slave in the system. The memory space is divided into storage blocks, and
the number of storage blocks to store data of ci is represented by nci .

• B is a set of shared buses, bi = (wbi , fbi , prbi , bmpbi), where wbi , fbi and prbi

are bi’s data bus width, frequency and protocol. bmpbi indicates the port of
bus matrix that bi is connected.

• BM represents multi-layer bus’ bus matrix, which is defined with a 4-tuple,
(wbm, fbm, prbm, BBM), where wbm, fbm and prbm are data bus width, fre-
quency and protocol, respectively. BBM is a set of buses, bbmi, that route
bus matrix’s master layers to slave layers on the fabric of multi-layer bus.

• BB is a set of bus bridges. bbi = (b j, bk), represents the bus bridge that

40 Performance Estimation Method for Multi-layer Bus-based SoCs

connects its master interface to b j and its slave interface to bk, implying that
bbi functions as a bus master on b j and as a slave on bk.

Figure 3.8 shows an example of an ALM, Mal, which is composed of four func-
tional blocks, four ports, a DMAC, a memory, six shared buses and five buses
on bus matrix of multi-layer bus. Processes and channels of Msl in Fig. 3.7 are
mapped onto components in Mal. The process-to-functional block mapping infor-
mation specifies that p1, p2, p3 and p4 are mapped onto f b1, f b2, f b3 and f b4,
respectively. Similarly, the channel-to-port mapping indicates that the sources of
c1 and c2, symbolized with c1s and c2s, are mapped onto master port pt1, the source
of c3, c3s, is mapped onto slave port pt3, the destination of c1, c1d, is mapped onto
master port pt2, while the destinations of c2 and c3, c2d and c3d, are mapped onto
slave port pt4.

From the channel-to-port mapping, Cdi and Cmi , the communication path of
each channel is determined considering the master-slave communication regula-
tion of bus protocols. In Fig. 3.8, channel c2’s communication path is "pt1 → pt4".
In the case of c1, Cm1 = {c1s} because memory is necessary as an intermediate
slave of the communication between two master ports. Therefore, the communi-
cation path of c1 becomes "pt1 → m1 → pt2", meaning that the data transfer is
conducted from pt1 to m1 and from m1 to pt2. Likewise, Cd1 = {c3s} because a
DMAC is needed as a master in the communication of c3 and the communication
path becomes "pt3 → d1 → pt4". A communication path may traverse more than
one DMAC or memory due to the placement of ports on the buses connected to
the bus matrix. Besides, a transfer in a sub-path, e.g. "pt1 → m1", may involve
multiple buses and buses on bus matrix.

3.3.3 Definition of the Proposed Efficient Performance Estima-
tion Method

• Input

1. Msl : An SLM describing behavior of a system.

2. Mal : An ALM specifying components and mappings of an architec-
ture.

• Output
Total execution time of a system described by Msl when executed on archi-
tecture Mal, considering concurrent data processing and transfers.

3.4 Performance Estimation Method for Configurable
Multi-layer Bus-based SoC

There are four procedures in the proposed efficient performance estimation method.

3.4 Performance Estimation Method for Multi-layer Bus-based SoC 41

1. System-level profiling - The SLM is simulated in order to gather profiling
information, which includes data processing timings, transfer timings and
the amount of transferred data.

2. SL-EDG construction - A graph representing execution dependencies in
system level between data processing and transfers is constructed from the
profiling information.

3. AL-EDG construction - A graph representing architecture-dependent exe-
cution orders between data processing and transfers is constructed from the
SL-EDG and the ALM.

4. AL-EDG analysis - Performance of each ALM is estimated by analyzing
corresponding the AL-EDG to obtain the architecture-dependent data pro-
cessing and transfer timings.

Since both time-consuming profiling procedure and SL-EDG construction pro-
cedure are architecture-independent, they are done only once for all ALMs of the
same SLM and input data. Therefore, it is possible to quickly estimate the perfor-
mance of various architectures by iteratively constructing and analyzing AL-EDG
without simulating individual architectures.

3.4.1 System-level Profiling using SystemC
To gather system information, the system is profiled using SystemC simulation
as the method of Ueda et al. [52]. Monitor_process class and monitor_channel
class are extended from SystemC’s sc_module and sc_prim_channel, respectively,
because SystemC can model hardware’s parallel execution [37]. Each process of
SLM is implemented with the monitor_process class to capture timings of data
processing. Likewise, each channel is implemented with the monitor_channel
class to monitor the amount of transferred data and data transfer timings, which
are recorded when there are both read access and write access to the channel.

System-level profiling is proceeded by compiling the SLM’s code and executing
its binary, meaning that it is done in a loosely-timed manner. Consequently, all
profiling information is quickly gathered using SystemC simulator.

3.4.2 SL-EDG Construction
An SL-EDG is a graph that represents data processing, data transfers and their
execution dependencies in system-level. It is constructed based on the profiling
information in the same way as the method of Ueda et al. [52]. Its construction
is independent of hardware architecture, so does the number of its vertices. The
SL-EDG is represented by Gsl = (Vsl, Esl). It is comprised of the set of system-
level vertices Vsl = {vp(i,k) ∨ vc(j,l) | i, j, k, l ∈ N}, and the set of system-level edges
Esl = {(vp(i,k) , vp(i,k+1)) ∨ (vc(j,l) , vc(j,l+1)) ∨ (vp(i,k) , vc(j,l)) ∨ (vc(j,l) , vp(i,k)) | i, j, k, l ∈ N}.

42 Performance Estimation Method for Multi-layer Bus-based SoCs

vp(1,1)

vc(1,1)
vp(2,1)

vp(4,1)

vc(2,1)

vc(3,1)
vp(3,1)

vp(1,2)

vc(1,2)
vp(2,2)

vp(4,2)

vc(2,2)

vc(3,2)
vp(3,2)

 : Execution Order

 : R/E Dependency

 : E/S Dependency

Figure 3.9: An example of SL-EDG.

Figure 3.9 illustrates the example of SL-EDG corresponding to SLM in Fig. 3.7.
Assuming that each process executes its data processing twice and each channel
transfers data twice. The circular nodes denoted by vp(i,k) represent the vertex of
pi’s k-th data processing and the octagonal nodes denoted by vc(j,l) represent the
vertex of c j’s l-th data transfer. The solid arrows represent execution orders. The
dashed arrows represent R/E dependency-edges, indicating that the execution of
data processing starts after the data has been received, and the dotted arrows rep-
resent E/S dependency-edges, indicating that the data transmission starts after the
execution of data processing is over.

3.4.3 AL-EDG Construction
An AL-EDG is a graph that represents data processing, data transfers, and their
execution dependencies according to components of the architecture specified by
an ALM. In addition to the vertices and edges of SL-EDG, AL-EDG also consists
of vertices and edges involving DMACs and memories that fulfill bus protocol’s
regulation about master-slave communication of each data transfer. The number
of its vertices depends on the components and organization of the ALM. AL-EDG
is represented by Gal = (Val, Eal), where Val and Eal are AL-EDG’s vertex set and
edge set, respectively.

The AL-EDG is constructed by the following steps;

1. Copy SL-EDG as AL-EDG. Let Val be Vsl and Eal be Esl.

2. Alter Val and Eal so that the AL-EDG also includes the dependencies of data
transfers raised by communication paths. For every channel ci = (pu, px) ∈
C, do as follows;

3.4 Performance Estimation Method for Multi-layer Bus-based SoC 43

(a) If cis ∈ Cdk , meaning that DMAC dk initiated ci’s transfer to a port
mapped to the source of channel ci, do as follows;

i. Make vertices vd(k,l) representing processing on dk, and vertices
vc′′′(i, j)

representing additional data transfers of ci. Then, add them
to Val. Make edges (vc′′′(i, j)

, vc′′′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
ii. Delete edges (vc(i, j) , vp(x,y)) from Eal and add edges (vc(i, j) , vd(k,l)),

(vd(k,l) , vc′′′(i, j)
) and (vc′′′(i, j)

, vp(x,y)), which represent execution dependen-
cies in ci’s communication path traversing dk, to Eal.

(b) If cis < Cdk and cis ∈ Cmq , meaning that a port mapped to the source of
channel ci establishes ci’s transfer to memory mq, do as follows;

i. Make vertices vm(q,r) representing processing on mq, and vertices
vc′′′(i, j)

representing additional data transfers of ci. Then, add them
to Val. Make edges (vc′′′(i, j)

, vc′′′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
ii. Delete edges (vc(i, j) , vp(x,y)) from Eal and add edges (vc(i, j) , vm(q,r)),

(vm(q,r) , vc′′′(i, j)
) and (vc′′′(i, j)

, vp(x,y)), which represent execution depen-
dencies in ci’s communication path traversing mq, to Eal.

(c) If cis ∈ Cdk and cis ∈ Cmq , meaning that the communication of ci

traverses memory mq after DMAC dk, do as follows;

i. Make vertices vm(q,r) representing processing on mq, and vertices
vc′(i, j)

representing additional data transfers of ci. Then, add them
to Val. Make edges (vc′(i, j)

, vc′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
ii. Delete edges (vd(k,l) , v

′′′
c(i, j)

) from Eal and add edges (vd(k,l) , v
′
c(i, j)

),
(v′c(i, j)
, vm(q,r)) and (vm(q,r) , vc′′′(i, j)

), which represent execution depen-
dencies in ci’s communication path traversing mq after dk, to Eal.

(d) If cid ∈ Cds , meaning that the transfer of ci traverses DMAC ds after
memory mq, do as follows;

i. Make vertices vd(s,t) representing processing on ds, and vertices
vc′′(i, j)

representing additional data transfers of ci. Then, add them
to Val. Make edges (vc′′(i, j)

, vc′′(i, j+1)
) representing execution orders

between data transfers of ci, and add them to Eal.
ii. Delete edges (vm(q,r) , v

′′′
c(i, j)

) from Eal and add edges (vm(q,r) , v
′′
c(i, j)

),
(v′′c(i, j)
, vd(s,t)) and (vd(s,t) , vc′′′(i, j)

), which represent execution dependen-
cies in ci’s communication path traversing ds after mq, to Eal.

3. Divide the vertices into groups of functional blocks V f bi , buses Vbi , buses
on bus matrix Vbbmi , DMACs Vdi , and memories Vmi , that undertake their
executions. The channel vertices must be included in the groups of all buses
undertaking their executions.

44 Performance Estimation Method for Multi-layer Bus-based SoCs

bbm4

vp(1,1)

vc(1,1)
vp(2,1)

vp(4,1)

vc(2,1)

vc(3,1)

vp(3,1)

vp(1,2)

vc(1,2)

vp(2,2)

vp(4,2)

vc(2,2)

vc(3,2) vp(3,2)

vc’’’(1,1)

vc’’’(1,2)

vc’’’(3,1)

vc’’’(3,2)

vm(1,1)
vm(1,2)

vd(1,1)
vd(1,2)

 : Execution Order

 : R/E Dependency

 : E/S Dependency

3(a)i 3(a)i

3(a)i

3(a)i
3(a)i

3(a)ii
3(a)ii

3(a)ii
3(a)ii

3(a)ii

3(a)ii

2(a)i

fb1

m1

d1

b5

b2 fb4

Figure 3.10: An example of AL-EDG.

In the following, the AL-EDG shown in Fig. 3.10 is constructed for the ALM
shown in Fig. 3.8. First, the SL-EDG in Fig. 3.9 is copied as an initial AL-
EDG. Since Cd1 = {c3s}, vd(1,1) , vd(1,2) , vc′′′(3,1)

and vc′′′(3,2)
are generated into the graph in

step 2(a)i. Then, in step 2(a)ii, edges (vc(3,1) , vp(2,1)) and (vc(3,2) , vp(2,2)) are removed,
and edges (vc(3,1) , vd(1,1)), (vc(3,2) , vd(1,2)), (vd(1,1) , vc′′′(3,1)

), (vd(1,2) , vc′′′(3,2)
), (vc′′′(3,1)

, vp(2,1)) and
(vc′′′(3,2)

, vp(2,2)) are added to the AL-EDG. Similarly, because Cm1 = {c1s}, the graph
is modified according to steps 2(b)i and 2(b)ii as marked. Finally, the vertices are
grouped. vp(1,1) and vp(1,2) are put into V f b1 , the group of process vertices under-
taken by f b1. Similarly, vd(1,1) and vd(1,2) are grouped into Vd1 , the group of DMAC
vertices undertaken by d1. Vb2 , the group of channel vertices undertaken by b2,
includes vertices vc(3,1) , vc(3,2) , vc′′′(3,1)

and vc′′′(3,2)
. Likewise, Vb5 includes vertices vc(2,1) ,

vc(2,2) , vc′′′(3,1)
and vc′′′(3,2)

. In the example, vc′′′(3,1)
and vc′′′(3,2)

, also in Vbbm4 , the group of
bbm4, are included in three groups because the transfer from DMAC to f b4 uses
b2, b5 and bbm4.

3.4.4 AL-EDG Analysis

AL-EDG analysis estimates the performance by predicting the behavior of the tar-
get system on a specified architecture. This research aims to speculate multi-layer
and shared bus behavior based on the analyzed dynamic bus contention arising
from arbitration, traffic congestion, advanced bus features and communication
protocols. Therefore, the general concepts of bus protocols and advanced bus
features of both multi-layer bus and shared bus are modeled so that the AL-EDG

3.4 Performance Estimation Method for Multi-layer Bus-based SoC 45

Start

Initialize system time
variable, Tsys

Search executable
vertices

Order the vertices
by priority

Determine a vertex
whose execution is to

be analyzed

Predict bus behavior–
preemption, data

transfer, split, error

Initialize shortest
remaining time

variable, Tshort, as -1
End

Assign Tshort as the
shortest remaining time

of analyzing vertices

Advance system time
Tsys = Tsys + Tshort

Analyze execution of
vertices and bus

behavior

Finalize the
current iteration

All vertices
analyzed?

Tshort < 0 Yes

No

Yes

No

D
ea

dl
oc

k
de

te
ct

ed

Figure 3.11: The flow of AL-EDG analysis.

46 Performance Estimation Method for Multi-layer Bus-based SoCs

analysis recognizes dynamic bus contention. As a result, the proposed method
earns an advantage in terms of accuracy and performance estimation speed.

The AL-EDG analysis flow, shown in Fig. 3.11, begins with system time vari-
able initialization. Then, the analysis steps are iterated to execute data processing
and transfers until every vertex in Val exhausts or the deadlock is detected.

First, the analysis finds the executable vertices of the current iteration. A vertex
in V f bi , Vd j and Vmk is classified as executable when it have no edge from other
vertices, and added to executable vertex set Vexe f bi

, Vexed j
and Vexemk

, respectively.
In order to model the regulation of bus protocol that bus master initiates a com-
munication to a slave, a channel vertex is considered as executable based on the
master’s request. That is, a channel vertex whose transfer is initiated by a master
port becomes executable when the status of one of the master port’s receive buffers
is empty for a read transaction or the vertex has no edge from other vertices for a
write transaction. A channel vertex whose transfer is initiated by a DMAC is exe-
cutable when it has no edge from other vertices and for a write transfer, the status
of one of the slave port’s receive buffers is empty. Then, the vertices are added to
executable vertex set Vexebi

and Vexebbm j
. The existence of multiple vertices within

an executable vertex set of bus or bus on bus matrix implies simultaneous bus re-
quests and activities. For that reason, together with the current bus activity, bus
contention is detected.

In the next step, the vertices in each executable vertex set are reordered by
priority, which is decided according to scheduling and arbitration policy at anal-
ysis time. Priorities of process vertices are determined from user-defined process
priorities on each functional block. Priorities of channel vertices in Vexebi

of the
shared buses on the master layer side of bus matrix and in Vexebbm j

of the buses
on the bus matrix are determined based on the priorities of bus master and bus
bridge’s master interface designated by the system designer. On the other hand,
priorities of those in Vexebi

of the bus connected to the slave layer of bus matrix
depend on priorities of the bus matrix’s master layer.

Then, a vertex whose execution will be analyzed is selected from each exe-
cutable vertex set. The analysis program selects the process vertex that has the
highest priority and the status of one of the target port’s transmit buffers is empty
from Vexe f bi

, and the channel vertex that has the highest priority and the master is
not banned by bus’ arbiter from Vexebi

and Vexebbm j
. However, some channel vertices

in Vexebi
and Vexebbm j

depend on the selected vertices of other Vexebi
and Vexebbm j

. For
instance, the channel vertex whose transfer involves bus bridge bbq = (br, bs) can
be selected from Vexebr

only when it holds the highest priority among the vertices
in Vexebs

.
The analysis predicts the dynamic behavior of bus architecture from the se-

lected channel vertices and the speculated bus contention. Bus activity is deter-
mined when a channel vertex is selected from every executable vertex set of buses
and bus on bus matrix that the vertex belongs to. Split or retry response is the
mechanism that allows the shared bus and bus on bus matrix to be released when

3.4 Performance Estimation Method for Multi-layer Bus-based SoC 47

the slave cannot conduct normal data transfer immediately. The split or retry re-
sponse’s operation is diagnosed when the status of slave’s receive buffer is not
empty for the write operation or there exist incoming edges to the channel ver-
tex for the read operation. In the analysis of such cases, the slave is assumed to
response with retry when the transfer traverses bus on bus matrix, and with split
otherwise. Bus preemption is detected if the selected vertex of a bus’ executable
set holds a higher priority than the one analyzed as executing on the bus and the
transfer on the bus is not analyzed as a lock transfer. Otherwise, the occurrence of
normal data transfer is determined.

Next, after initializing the shortest remaining time variable, Tshort, as −1, the re-
maining operation time of each analyzing vertex is computed by deducting elapsed
time from estimated total operation time of the vertex and bus activity, and the
shortest time is assigned to Tshort. The system time is advanced by the time as-
signed to Tshort. However, since there is a chance that the analyzing system falls
in a deadlock state, the analysis program detects the deadlock if Tshort is less than
0, terminates immediately and reports the deadlock condition to the user. In this
case, the user may modify the channel priority description and run the analysis
again in order to resolve the deadlock.

Total time of each vertex is determined according to its type. Total data process-
ing time of each process vertex is calculated in advance by the following equation;

tp =
e(pi, f b j)

f f b j

(3.1)

The total processing time of DMAC and memory vertices are assumed to be 0
since both components only temporarily store data in their internal storage. On
the other hand, total bus usage time is determined based on the predicted bus
activity in every iteration so that dynamic bus contention effects are recognized.
The time for split operation is determined as in Eq. (3.2).

ts =
S +Cc +Ca

min(fbi)
(3.2)

S and Cc are the overhead of split operation and protocol conversion, respectively,
while Ca is the number of address cycles and min(fbi) represents the lowest bus
frequency among the frequency of buses that the split operation takes place. The
time for retry operation is determined similarly as in Eq. (3.3), where R denotes
the overhead of retry operation.

tr =
R +Cc +Ca

min(fbi)
(3.3)

Finally, the calculation of data transfer time is shown in Eq. (3.4),

td =
D ×Cd × B +Cc +Ca

min(fbi)
(3.4)

48 Performance Estimation Method for Multi-layer Bus-based SoCs

D =
wci

min(wbi)
(3.5)

where Cd and B are the number of clock cycles in one data cycle and the number
of burst beats, respectively. D is the number of data cycles required to transfer
one data, determined by Eq. (3.5), where wci is the number of bits of one data
transferred by the analyzing channel vertex, and wbi represents the width of the
narrowest data bus among the buses and bus matrix that the transfer takes place.
The number of address cycles implies the pipeline nature of the bus. It is counted
as 0 if the new data transfer is consecutive to the previous one or as the number
of protocol’s address cycles, otherwise. The number of burst beats is determined
according to the number of remaining data to be analyzed and bus preemption.

By analyzing the selected vertices and the speculated bus behavior, the analysis
program advances elapsed time of the analyzing vertices and bus activities by
Tshort and keeps track of system’s resource status. For the process and channel
vertices analyzed for the first time, the IDs of the vertices are registered to models
of the target storage to track the status of buffers in ports, DMACs and storage
blocks in memories. An ID is unregistered from the storage model when the
dependent vertices are analyzed as completed, implying that the data is processed
or transferred. The storage model with no ID registered implies that the status
is empty. Since data transfer of a channel vertex might be separated into several
burst transfer’s analysis, the number of remaining transfer data is deducted by the
number of burst beats, B, when elapsed time becomes equal to total operation
time. The vertices are recognized as completed when their elapsed time becomes
equal to the total operation time except for the channel vertices that the number
of remaining data must also become 0. In each channel vertex’s analysis, the bus
bridge in use is marked as active. Shared bus and bus on bus matrix resources
are marked as active, lock, split and retry to represents the data transfer, lock
transfer, split and retry operation on the bus, respectively. Additionally, the bus
master whose transfer is split is marked as banned from arbitration. Lastly, the
completed vertices and related edges are removed from the Gal.

Finally, the status of each resource is finalized according to the bus protocol at
the end of each iteration, e.g. unban bus master, etc. If there are no vertices left
in the Gal, the analysis returns Tsys as system time. Otherwise, the analysis loops
from searching the executable vertices step.

3.4.5 Computational Complexity
The computational complexity of the AL-EDG analysis is derived from the flow
explained previously and the program implemented to estimate the performance
of multi-layer AHB bus-based SoC, which is described thoroughly in section 3.5.

The asymptotic notation O(n3) expresses the proposed AL-EDG analysis’s com-
putational complexity as a function of the number of AL-EDG vertices, n. The
analysis repeats from searching executable vertices to finalizing iteration for at

3.5 Case Study 49

most kn iterations, where k is a constant indicating the number of loops spent for
analyzing a vertex. In each iteration, the most complex step in the computational
time aspect is ordering the executable vertices, where the worst case consumes
n2 time complexity. Therefore, the complexity of the proposed analysis in the
worst-case is cubic w.r.t. the number of AL-EDG vertices.

However, the computational complexity becomes O(n2) in most cases that the
processes execute iteratively and each of the components in an architecture un-
dertakes only a few numbers of processes and channels. Consequently, a few
executable vertices exist in the executable vertex sets at a time and ordering the
executable vertices consumes only n order of time complexity. The O(n2) com-
plexity of most cases will be presented in section 3.5.5.

The complexity applies to the situation that the application size, e.g. the size of
an image in the image processing, causes both the number of vertices in SL-EDG
and AL-EDG to grow. In other words, AL-EDG analysis runtime increases by
O(n3) when estimating the performance of various-sized applications executed on
the same architecture.

3.5 Case Study
To show that the proposed method is efficient in architecture exploration of elec-
tronic system level (ESL), the proposed analysis flow is applied for performance
analysis of multi-layer AHB bus-based SoC. The proposed method is also ap-
plicable to shared bus-based architecture and not limited to AHB and APB bus
protocol.

The efficiency of the proposed performance estimation method is investigated
in two aspects. The first one is the accuracy of the performance estimated by the
proposed method when compared with the performance obtained from the RTL
simulation. The second one is the speedup of the proposed method over the RTL
simulation, which is measured from the runtime of both tools.

3.5.1 Modeling of Multi-layer AHB and APB Protocol
In order to apply the proposed flow to analyze the performance of a multi-layer
AHB bus-based system, protocol’s parameters and protocol related variable values
are defined based on AHB and APB protocol of the AMBA specification [152] as
shown in Table 3.1 and Table 3.2. The split and retry responses of AHB requires
two cycles as the overhead, and therefore, both overhead of split operation S and
overhead of retry operation R are set to 2. The values for protocol related vari-
ables are determined according to system status during the analysis but restricted
to a certain set of values. The number of clock cycles in one AHB and APB data
cycle Cd is 1 and 2 under the assumption that there is no wait cycle. The over-
head of protocol conversion differs by protocol pairs and direction of data flow.
For AHB-APB protocol conversion, CC is 1 for a write transfer and 0 for a read

50 Performance Estimation Method for Multi-layer Bus-based SoCs

Table 3.1: List of protocol’s parameters

Parameter Value
S 2
R 2

Table 3.2: List of protocol related variable values

Variable Value
Cd 1,2
Cc 0,1
Ca 0,1
B 1,2,4,8,16

transfer, split response and retry response. The number of address cycles Ca can
be either 0 when pipelined, otherwise, the 1 with no wait cycle. The number of
burst beats B is typically 1, 2, 4, 8 and 16. However, if bus preemption occurs, B
can be any integer no more than 16.

There are three additional multi-layer AHB protocol conditions. Firstly, every
communication via bus matrix must be locked because the arbiters of multi-layer
bus do not allow preemption. Consequently, the shared buses used for the transfer
must be marked as lock. Secondly, 1-cycle-idle phase exists between two bus
requests due to the state machine of AHB master interface. Therefore, a channel
vertex is removed from executable vertex sets for one clock after the analysis of
the previous operation has finished. Finally, the arbitration policy of buses and
buses on bus matrix is restricted to fixed-priority policy.

The following describes the analysis of the Gal in Fig. 3.10. Let the priorities
of f b1, f b2 and d1 be 3, 2, 1, respectively, so do the priorities of c1, c2 and c3.
Assume that the mapped functional blocks of p1, p2, p3 and p4 spend 100, 80,
120 and 140 ns for data processing calculated by Eq. (3.1) and the amount of data
transferred in c1, c2 and c3 are 16, 16 and 32, respectively. The system operates
at 50 MHz, and there is one receive and one transmit buffer in each port. The
execution Gantt chart is shown in Fig. 3.12.

After Tsys is initialized, the executable vertices are searched throughout Gal. In
the first iteration, vp(1,1) and vp(3,1) have no source edge, so they are added to Vexe f b1

and Vexe f b3
, respectively. Moreover, since pt2 has an empty receive buffer, v′′′c(1,1)

is
analyzed to have a bus request raised, and is added to Vexeb3

, Vexeb6
and Vexebbm5

.
Then, vp(1,1) , vp(3,1) and v′′′c(1,1)

are selected to be analyzed. Next, the analysis predicts
the bus activity of b3, b6 and bbm5 to be retry response because there exists an
edge to v′′′c(1,1)

.
The shortest remaining time of analyzing vertices is determined. The remaining

3.5 Case Study 51

tsys [ns]

fb1 vp(1,1) vp(1,2)

fb2 vp(2,1)

fb3 vp(3,1) vp(3,2)

fb4

d1

m1

b1 vc(1,1) vc(2,1)

b2 vc(3,1) vc(3,1) v'''c(3,1)

b3 v'''c(1,1)

b4 vc(3,1) vc(3,1)

b5 vc(2,1) v'''c(3,1)

b6 vc(1,1) v'''c(1,1)

bbm1 vc(2,1)

bbm2 vc(1,1)

bbm3 vc(3,1) vc(3,1)

bbm4 v'''c(3,1)

bbm5 v'''c(1,1)

600 700 800100 200 300 400 500

Memory

Execution

DMA

controller

Execution

Retry

v'''
C(1,1)

Retry

v'''
C(1,1)

Retry

v'''
C(1,1)

Retry

v'''
C(1,1)

Retry

v'''
C(1,1)

Retry

v'''
C(1,1)

Retry

v'''
C(1,2)

Retry

v'''
C(1,2)

Retry

v'''
C(1,2)

Figure 3.12: An example of AL-EDG analysis.

time of vp(1,1) and vp(3,1) are 100 and 120 ns, respectively, while the retry response
of v′′′c(1,1)

takes 60 ns according to Eq. (3.3) computed with one address cycle. For
that reason, Tshort becomes 60 and Tsys is advanced.

The vertices and bus behavior are analyzed. The ID of vp(1,1) and vp(3,1) are reg-
istered in the model of pt1’s and pt3’s transmit buffer. At the same time, the retry
response finishes.

To finalize this iteration, v′′′c(1,1)
is excluded from the analysis for 1 cycle due to

AHB interface’s idle phase. Consequently, Tsys is advanced by 20 ns in the second
iteration.

In the third iteration, v′′′c(1,1)
is reconsidered and analyzed to be responded with

retry. Tshort becomes 20 ns because the analysis of vp1,1 has ended, and therefore,
vertex vp(1,1) , edges (vp(1,1) ,vc(1,1)) and (vp(1,1) ,vc(2,1)) are removed from Gal.

In the fourth iteration, vc(1,1) becomes executable and is added into Vexeb1
, Vexeb6

and Vexebbm2
, so does vc(2,1) which is added into Vexeb1

, Vexeb5
and Vexebbm1

. Since both
channel vertices are initiated from the same port, but c1 holds a higher priority,
vc(1,1) is selected on b1, b6 and bbm2, while vc(2,1) is selected on only b5 and bbm1.
Consequently, vc(2,1) is ignored in this iteration. Unfortunately, because b6 is occu-
pied with retry response operation, vc(1,1) is not analyzed. Tsys is advanced to 120

52 Performance Estimation Method for Multi-layer Bus-based SoCs

BS CT DCT ZZ Q VLC WRT C0 C1 C2 C3 C4 C5

Figure 3.13: An SLM of JPEG encoder.

Table 3.3: Information of data in channels

width [bit] #data
c0 24 64
c1 8 64
c2 12 64
c3 12 64
c4 12 64
c5 8 256

ns, and vertex vp(3,1) and edges (vp(3,1) ,vc(3,1)) are removed from Gal.
Then, vc(3,1) is analyzed to transfer data for 16 burst beats, which takes 340 ns

for one address cycle and 16 data cycles in the fifth iteration. However, the second
retry operation of vc(1,1) remains only 20ns, so Tsys becomes 140 ns.

In the sixth iteration, The analysis of vc(1,1)’s transfer starts and lasts for 340 ns.
At Tsys = 460, transfer of the first 16 data of vc(3,1) finishes, but since there are
16 data left to be transferred, the vertex has to be considered again after 20 ns of
1-clock-cycle idle phase. At the same time, the analysis of vc(1,1) remains 20 ns
too, so Tshort becomes 20 ns.

At Tsys = 480, the seventh iteration takes place to analyze the execution of
memory vertex vm(1,1) . Tshort equals 0 ns and the eight iteration begins at the same
point of time. The executable vertex vc(2,1) is selected to be analyzed and its exe-
cution time is 320 ns because the address cycle overlaps with the last data cycle
of vc(1,1) . Meanwhile, vc(3,1) is analyzed again and the transfer time becomes 340 ns.
The analysis proceeds in the same fashion until Gal exhausts.

3.5.2 Experimental Environment Setup

The effectiveness of the proposed performance estimation method is studied through
a JPEG encoder application. Figure 3.13 shows an SLM of JPEG encoder, consist-
ing of seven processes and six channels. The processes are Block Splitting (BS),
Color Transformation (CT), Discrete Cosine Transformation (DCT), Quantiza-
tion (Q), ZigZag ordering (ZZ), Variable Length Coding (VLC) and file WRiTing
(WRT). The data width and the amount of data in one system-level transaction
of each channel are shown in Table 3.3. The images used in the experiments are
processed in an 8 × 8-pixel block unit and without downsampling.

3.5 Case Study 53

Table 3.4: Information of functional blocks and its ports

FB name∗ Exe.cycle [cycle] Port
BS 67 1 Slave
CT 68 1 Master

DCT 368 1 Slave
ZZ 67 1 Slave
Q 68 1 Master

VLC 200-265 1 Master
WRT 258 1 Slave

The experiments were conducted on a 3.60 GHz Intel Xeon, 32 GB memory and
64-bit CentOS5 machine. The estimation method is implemented in C language
and the SLM was implemented with SystemC 2.3.0 [37]. The source code of the
proposed method and the SLM was compiled with gnu gcc 4.1.2. RTL simulation
tool is ModelSim SE-64 10.3.

3.5.3 Accuracy Measurement

The results of the AL-EDG analysis for performance estimation method are com-
pared with the performance results of the RTL simulation to measure the accuracy
of the analysis. The performance of eight architectures, each of which executes
the same aforementioned seven processes of JPEG encoder, are evaluated. The
execution cycle shown in Table 3.4 is the worst-case execution cycle. Moreover,
each architecture is comprised of the same set of functional blocks and ports,
whose information is shown in Table 3.4, a DMAC, and a memory. The DMAC
functions as a master to initiate the communication between DCT and ZZ func-
tional block. The memory stores data transferring between Q and VLC functional
block. The width of the buses, shared bus and bus matrix is 32 bits and each ar-
chitecture is operated at 50MHz. The architectures contain the same functional
blocks, DMAC, and memories, but their ports are attached to the bus architecture
differently and various configurable multi-layer bus architectures are represented.
Therefore, the difference in performance of the architectures is solely affected by
the communication architecture.

The performance estimation by the proposed method proceeds as follows; First,
the encoding of an image was profiled to collect the data processing timing, data
transfer timing and the amount of transferred data, and the SL-EDG was con-
structed accordingly. For each ALM of the architectures under evaluation, an
AL-EDG was constructed and analyzed to obtain the estimated performance. Ta-
ble 3.5 shows the number of vertices in the SL-EDGs and AL-EDGs. Normally,
the number of vertices in an AL-EDG depends on the components and commu-
nication path of every channel, but the number of vertices of AL-EDGs in the

54 Performance Estimation Method for Multi-layer Bus-based SoCs

Table 3.5: The number of vertices in SL-EDG and AL-EDG

Image size 256 × 512 512 × 512 512 × 1,024 1,024 × 1,024
SL-EDG 59,542 118,972 238,234 476,628
AL-EDG 84,118 168,124 336,538 673,236

400

450

500

550

600

650

700

arch1 arch2 arch3 arch4 arch5 arch6 arch7 arch8

Ex
ec

ut
io

n
tim

e
of

 J
PE

G
 e

nc
od

er
 [m

s] Estimation result (w/ dynamic contention)
Estimation result (w/o dynamic contention)
RTL Simulation results

Figure 3.14: Performance results estimated by the proposed method, the method
w/o considering dynamic bus contention and RTL simulation (1, 024×1, 024-pixel
image).

experiments are equal because the only difference is the architecture organization.
However, the vertices are divided into the groups of components that undertake
them differently. The experiments were conducted with four images of different
sizes.

Figure 3.14 shows the performance results yielded from RTL simulation, the
proposed method considering dynamic bus contention and the method that does
not consider dynamic bus contention. The results of the proposed method are
represented in the graph as estimation results (w/ dynamic contention) and those
of the method that does not consider dynamic bus contention is represented as
estimation results (w/o dynamic contention).

The performance results of the proposed method considering dynamic bus con-
tention are compared with the results of RTL simulation in order to evaluate the
estimation error. Architectures noted as arch3 and arch7, respectively illustrated in
Fig. 3.15(c) and Fig. 3.15(g), contain multi-layer bus with heterogeneous configu-
rations and incur the smallest error of 1.5%. On the other hands, arch8, illustrated
in Fig. 3.15(h), is the shared bus-based architecture and incurs the biggest error
of 7.6%. When bus contention is detected to occur on a shared bus, the analy-

3.5 Case Study 55

(a)

C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ

 Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix

C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM

Bus

Matrix
C0

C1

C2

CT

DMAC

CT

DCT

 DCT

ZZ

ZZ

 Q
Q

VLC

VLC

WRT

WRT

C3

C4

C5

BS
BS

MEM B
1
 (

A
H

B
)

Master port

Slave port

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.15: ALM of architectures in the experiments: (a) arch1; (b) arch2; (c)
arch3; (d) arch4; (e) arch5; (f) arch6; (g) arch7; (h) arch8.

sis program speculates a bus activity as well as the operation time, which raises
communication-related timing errors of each bus. These errors are accumulated
especially when bus contention arises repeatedly. For that reason, the accuracy of
the proposed method becomes worse in the case of a single shared bus-based ar-
chitecture, arch8. In the case of multi-layer bus-based architecture, the errors are
distributed to several shared buses and affect the estimated system time parallelly.
According to the timing results, a larger amount of bus contention is found when
analyzing the performance of arch6, arch5, and arch4, respectively, so the errors
of these architectures are bigger than those of the other architectures that contain
multi-layer bus.

Figure 3.16 illustrates the mean values and the ranges of errors in eight ar-
chitectures. The proposed method evaluates system performance with only 1-8%
difference from the RTL simulation and the mean error appear as 3.8%. Its overes-
timation is due to the fact that the longest execution time of VLC functional block,
aka the Worst-Case Execution Time (WCET), is constantly used in the estimation.
On the other hand, the execution cycle of VLC varies because its execution be-
havior depends on the processed data.

During the performance analysis, taking dynamic bus contention, i.e. bus re-
quests and current bus activity, and dynamic bus behavior, i.e. dynamic address
phase calculation, split, retry and preemption operation, into account benefits the
estimation results in many aspects. Figure 3.14 also illustrated the estimation re-

56 Performance Estimation Method for Multi-layer Bus-based SoCs

0

2

4

6

8

10

256x512 512x512 1,024x512 1,024x1,024

Er
ro

r (
%

)

Image size

Figure 3.16: Error bar shows the error of the estimation.

sults when neither dynamic bus contention nor probable dynamic bus behavior is
recognized. They are labeled as estimation results (w/o dynamic contention). The
first benefit is that analyzing system performance without considering dynamic
bus contention and behavior may cause underestimation in arch8 because it as-
sumes too optimistic bus contention. On the contrary, the address phase is not
recognized dynamically when ignoring bus requests and current activity, so more
errors incur in the estimation results of arch1, arch2, arch3, and arch4. This leads
to a wider error range of -5.2% to 5.2%, which reduces the reliability of the esti-
mation, and insufficient design, which is unacceptable because it might not satisfy
the design constraints. The second benefit is that the proposed method’s estima-
tion results are 1-2% more accurate than the results when bus contention and be-
havior are ignored. For instance, the estimation errors of arch1 from the method
with and without the consideration regarding dynamic contention are 2.5% and
4.0%, respectively. However, since data processing of JPEG encoder application
dominates data communications between IPs, the impact of considering dynamic
bus contention and behavior is not so large.

3.5.4 Tool Runtime and Speedup
Figure 3.17 illustrates the time spent for system-level profiling and SL-EDG con-
struction w.r.t. the number of pixels in the sample images. The procedures are
done as fast as within two minutes for the image as large as total 2,359,296 pixels
(1,536×1,536 pixels) because the profiling is conducted in a loosely-timed TLM
manner. However, the time spent for the two procedures tends to grow linearly for
the bigger size of image.

The AL-EDG construction and analysis achieved much faster in evaluating the
performance of an individual architecture, which is proven by the runtime speedup
value as high as 152.6 times over the simulation. Figure 3.18 shows the relation-

3.5 Case Study 57

0

20

40

60

80

100

120

0 10 20 30

Ti
m

e
sp

en
t f

or
 p

ro
fil

in
g

an
d

SL

-E
D

G
 c

on
st

ru
ct

io
n

(s
)

The number of pixels (105 pixels)

Figure 3.17: Runtime for profiling and construction of SL-EDG.

ship between the number of pixels and the tool runtime in estimating the perfor-
mance of each architecture candidate. The circles and squares represent the tool
runtime of the proposed estimation method and the RTL simulation, respectively.
The stars show the average speedup of the architecture w.r.t. the number of pixels
and the relevant error bar indicates the range of speedup values. The experiments
demonstrate that the speedup varies from 17.4-152.6 times by the combination and
organization of functional blocks, DMACs, memories and buses as well as the size
of the sample image. The bigger the image is, the less the average speedup be-
comes. This is because the runtime of the analysis program grows by a quadratic
function as the image becomes bigger, while the RTL simulation runtime grows
linearly in our case study.

Figure 3.19 draws the relationship between tools’ runtime and the number of
pixels. It shows that the overall procedure of the efficient performance estimation
method has achieved the maximum speedup of 25.6 times over the overall RTL
simulation in evaluating the performance of eight architectures. A bigger speedup
value can be gained when evaluating a larger number of architectures due to the
fact that the proposed method conduct the profiling and SL-EDG construction
procedure only once for one image. On the other hands, the speedup slightly
drops when approximating the performance of architectures encoding the bigger
image. However, the proposed method is able to evaluate the performance of a
large number of architectures within a much shorter time that the RTL simulation
which takes an unbearably long time.

3.5.5 Discussion
The abstraction level of the proposed method is between untimed- and timed-
model. The reason is that a loosely-timed simulation takes place in the system-
level profiling procedure, and then, the static analysis is executed repeatedly to

58 Performance Estimation Method for Multi-layer Bus-based SoCs

0
20
40
60
80
100
120
140
160
180

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 2 4 6 8 10 12

Sp
ee

du
p

To
ol

 R
un

tim
e

(s
)

The number of pixels (105 pixels)

Proposed estimation runtime
RTL simulation runtime
Speed upSpeedup

Figure 3.18: Average speedup in estimating performance of eight architectures.

estimate the performance of architectures. Therefore, one of the most obvious ad-
vantages of the proposed method over the dynamic simulation methods, e.g. RTL,
cycle accurate (CA) and bus cycle accurate (BCA) simulation, is that it requires
less modeling effort. Unlike dynamic simulations, in which models for each ar-
chitecture must be implemented, the SLM in the proposed method is created and
profiled only once and the information can be utilized for performance estima-
tion of every ALM. Consequently, days of modeling effort can be saved because
inferior architectures are discriminated in an early design stage.

Figure 3.20 illustrates the natural logarithm relationship between the number of
AL-EDG vertices, n, and the runtime of the proposed method spent on AL-EDG
analysis for eight individual architectures encoding the 512×512 pixel-image. The
slopes of lines in the graph shows that the runtime of the experiments increases
by only O(n1.65). The reason is that in the conducted estimations, the number of
executable vertices in each executable vertex set of the functional blocks, DMACs,
memories, shared buses and buses on the bus matrix of the multi-layer bus in an
architecture is scheduled to as few as no more than five process or channel vertices
during each iteration. Consequently, the complexity of the most complex step,
ordering the executable vertices, is reduced to n and then, the overall complexity
becomes n2.

The scalability of the proposed method in terms of tool runtime depends on
the number of AL-EDG vertices as shown in section 3.4.5, and the computational
complexity is O(n3). For AI applications, which have a larger number of AL-EDG
vertices than the JPEG encoder, the tool runtime is expected to show a similar
trend as in Fig. 3.20. Nevertheless, it is worth noting that the tool runtime also
depends on the architecture itself.

3.6 Conclusion 59

0
5
10
15
20
25
30
35
40

0
5000

10000
15000
20000
25000
30000
35000
40000

0 2 4 6 8 10 12

Sp
ee

du
p

To
ol

 R
un

tim
e

(s
)

The number of pixels (105 pixels)

Proposed method runtime
RTL simulation runtime
Speed upSpeedup

Figure 3.19: The proposed method’s overall speedup.

As you can see in Fig. 3.18 and Fig. 3.19, the proposed method is faster than
the conventional RTL simulation. The proposed method uses a small amount of
memory because it does not use the real image data. It uses only the execution
order and the amount of the transferred data obtained from system-level profiling.
In the experiments, the proposed method uses less memory than the RTL simula-
tion. Therefore, the proposed method is able to evaluate the performance of the
architecture encoding a larger image in a short time even when the RTL simulation
takes too much time.

In section 3.5.3 and section 3.5.4, experiments were conducted only to the ar-
chitectures with the same set of functional blocks, DMACs, and memories. The
proposed estimation method achieves 25.6 times faster estimation compared to
RTL simulation with small error. Furthermore, the proposed method also works
well with different sets of components by repeating only the AL-EDG analysis
procedures.

The runtime of the proposed method is roughly compared with the CA simula-
tion time in order to estimate the speedup. The experiments were conducted again
on the Pentium4 workstation, running at 3.4 GHz. Then, the results are evaluated
against the CA simulation time results presented by Martin et al. [155]. It is
found that the proposed method has gained 30-35 times of runtime speedup over
the CA simulation.

3.6 Conclusion
This chapter proposed an efficient performance estimation method for a config-
urable multi-layer bus-based architecture by utilizing system-level data flow infor-

60 Performance Estimation Method for Multi-layer Bus-based SoCs

0

1

2

3

4

5

6

7

11 12 13 14 15

ln
 (R

un
tim

e
of

 th
e

pr
op

os
ed

es
tim

at
io

n
m

et
ho

d
(s

))

ln (Number of AL-EDG vertices)

arch1 slope=1.16
arch2 slope=1.16
arch3 slope=1.20
arch4 slope=1.22
arch5 slope=1.18
arch6 slope=1.18
arch7 slope=1.25
arch8 slope=1.65

Figure 3.20: AL-EDG analysis’ runtime of individual architecture.

mation. The flow of performance analysis takes the outstanding behavior details
of bus protocol into account so that it can recognize the dynamic bus contention.
The proposed method is fast and accurate. It estimates the performance within
8% of error compared to the conventional RTL simulation. Furthermore, the AL-
EDG construction and analysis have achieved the speedup of 152.6 times over
RTL simulation in estimating the performance of one architecture. The exper-
imental results also show that the proposed performance estimation method in-
cluding system-level profiling, SL-EDG construction, and AL-EDG construction
and analysis of eight architectures has achieved the overall speedup of 25.6 times
over eight RTL simulations. When evaluating more architectures, the proposed
method repeats only the AL-EDG construction and analysis procedures. There-
fore, the larger the number of architectures becomes, the bigger overall speedup
value is gained. In the future, the statistical analysis shall be applied to the pro-
posed method to assure the estimated performance statistically.

Chapter 4

Parallelism-flexible Convolution
Core for Sparse Convolutional
Neural Network

Chapter 4 proposes a parallelism-flexible convolution core for sparse CNN that
leverages multiple types of parallelism flexibly and weight sparsity efficiently to
achieve high performance. First, this chapter describes CNN and the prior arts of
CNN accelerators. Next, it introduces flexible parallelism concept and explains
architecture organization and operations of the proposed parallelism-flexible con-
volution core in alternating dataflow to exploit multiple types of parallelism, and
eliminating redundant operations due to weight sparsity. Then, the proposed con-
volution core was evaluated on 13 convolutional layers in a sparse VGG-16 bench-
mark. Finally, this chapter is summarized.

4.1 Motivation and Objective
In modern AI platforms, data processing at the edge and embedded systems re-
quires high-performance computing devices. CNN, which is one of the most vig-
orous AI algorithms, evolves day-by-day for a vast number of applications espe-
cially in image and video analytic domains, such as surveillance systems and au-
tonomous driving, because of their remarkable classification performance shown
in several image recognition studies [16–18] on ImageNet benchmark [113]. The
processing of these applications usually takes place at the edge (near sensor, such
as camera) or on embedded systems in order to achieve a real-time response. Un-
fortunately, CNN comes with the cost of an excessive computation that becomes
critical for real-time and low-power inference processing on both edge and em-
bedded systems. Most processing time of CNN is consumed by the convolutional
layers. In order to accelerate its computation, CNN requires high-performance
and low-power accelerator to deliver its superior ability.

High-performance CNN accelerators bring about real-time ability with the ex-

62 Parallelism-flexible Convolution Core for Sparse CNN

ploitation of four major techniques. First, data-reuse maximization focuses on
reusing input feature maps (IFMs), kernels and output feature maps (OFMs). It is
employed by several low-power architectures [34, 101, 108, 110] because it re-
duces high-latency and energy-consuming external memory access. Second, data
precision minimization aims to reduce data bit width while the recognition accu-
racy is maintained [21, 22]. Third, calculation-skip maximization reduces the cal-
culation by omitting zero-operand MACC, which is the result from weight prun-
ing process [20, 23]. This allows several architectures to achieve performance
improvement by the degree of sparsity [110, 112]. Fourth, parallel calculation
maximization leverages various types of parallelism in CNN. Recent publications
exploit specific types of parallelism and schedule the computation accordingly to
maximally utilize the multipliers in PEs [34, 36, 101]. Typically, the accelerators
exploit multiple techniques.

There exist two main problems that prevent CNN accelerators from achieving
superior performance. First, most CNN accelerators fail to maximize parallel cal-
culation of all the convolutional layers due to the fact that the type of fruitful
parallelism varies by the size and number of IFMs and OFMs, while the dataflow
and computation scheduling (mapping parallel operations to the multipliers) re-
main fixed throughout all the layers. Specifically, the accelerator has difficulty
in adjusting its dataflow and scheduling according to layer specification, which
results in low multiplier utilization and low performance in some layers. For ex-
ample, even though the architecture proposed in [34] exploits various types of
parallelism, it cannot achieve high multiplier utilization in the first layer because
of the fixed dataflow and scheduling. To resolve this problem, flexible schedul-
ing, aka flexible parallelism, is required to improve the low multiplier utilization
with various types of parallelism according to the layer specification. The sec-
ond problem addresses the difficulty of effectively employing the calculation-skip
maximization and parallel calculation maximization techniques, specifically flex-
ible parallelism, at the same time. For example, parallelizing multiplications com-
prising one output may occupy more multipliers, but it cannot fully leverage zero-
skipping without complicating data control because the scheduling is regulated
by the pre-defined dataflow. As a consequence, the dataflow to exploit flexible
parallelism may reduce calculation-skip ability.

This chapter includes the following contributions:

1. it introduces a flexible parallelism concept to maximize multiplier utiliza-
tion;

2. it proposes a parallelism-flexible convolution core for sparse CNN that effi-
ciently exploits weight sparsity by skipping zero-operand computation;

3. to show the effectiveness, the parallelism-flexible convolution core for sparse
CNN was implemented and evaluated using RTL simulations, and synthe-
sized for Intel’s Arria10 FPGA and Stratix10 FPGA.

4.2 Convolutional Neural Network (CNN) 63

0 0 0
00

2 3 3
21

3 3 3
21

1 0 0
11

0 0 0
00

Ci
W

H

010
021

001
013
000

101

0

0
01
02

0-13
120

100

0

0
01
02

000
00-1

10-1

…

K

K

Ci

Input Kernels

0 0 0
00

2 3 3
21

3 3 3
21

1 0 0
11

0 0 0
00

000
221

111
002
221

111

���

Output

Intra-output
parallelism scheme

Inter-output
parallelism scheme

X

Y0 0 0
00

2 3 3
21

3 3 3
21

1 0 0
11

0 0 0
00

0

0
01
02

000
12-1

100

0

0
01
02

003
100

10-1

���

���

���

���

Channel 1 Channel Ci

Co

S

Operation-level
parallelism scheme

0 0
00

2 3
21

3 3
21

1 0
11

Input

000
221

111
002
221

111

���

OFMs of
layer CONV1

0 0 0
00

2 3 3
21

3 3 3
21

1 0 0
11

0 0 0
00

���

Layer CONV1 Layer CONV2

���

Inter-layer parallelism

0 0
00

2 3
21

3 3
21

1 0
11

(b)

(a)

OFMs of
layer CONV2

Figure 4.1: The computation of convolutional layers and their parallelism: (a)
inter-layer parallelism; (b) inter-output, intra-output, and operation-level paral-
lelism.

4.2 Convolutional Neural Network (CNN)

4.2.1 Terminology of CNN

Typically, a CNN consists of four kinds of layers: (1) convolutional layer, which
functions as a feature extractor; (2) pooling layer, which subsamples the ex-
tracted features; (3) normalization layer, which normalizes feature correlations;
(4) fully-connected layer, which produces non-linear activations for regression
or classification problems. This paper focuses on accelerating the multi-channel
two-dimensional convolution of the convolutional layers, which is computation-
intensive and time-consuming.

Figure 4.1(a) illustrates the terminology of a convolutional layer, where H and
W are height and width of an IFM, Ci is the number of input channels, S is the
stride (the number of pixels to shift the kernel in convolution), K is the kernel size

64 Parallelism-flexible Convolution Core for Sparse CNN

(a kernel includes Ci × K × K weights), X and Y are height and width of an OFM,
and Co is the number of output channels, which is equal to the number of kernels.
Each activation of the OFMs is computed by a deep nested loop according to the
following MACC equations:

Av
o(x, y) = f (Fv

o(x, y)) (4.1)

Fv
o(x, y) = bv +

Ci∑
t=1

K∑
m=1

K∑
n=1

kt
v(m, n) × F t

i(x × S + m, y × S + n) (4.2)

where Av
o(x, y) is the activation at position (x, y) of the OFM v, f is an activation

function, Fv
o(x, y) is the result of convolution at position (x, y) between IFMs and

kernel v, bv is a bias of kernel v, kt
v(m, n) is the weight at position (m, n) in channel t

of kernel v, and F t
i(x×S+m, y×S+n) is the activation at position (x×S+m, y×S+n)

of IFM t.

4.2.2 Parallelism in CNN
There are four types of parallelism incorporated with convolutional layers: inter-
layer, inter-output, intra-output, and operation-level parallelism. Inter-layer par-
allelism is the parallelism that executes the convolution of multiple layers in a
pipeline manner as shown in Fig. 4.1(b). The latter three types comprise an intra-
layer parallelism, in which the MACCs within the same layer are computed in
parallel. The inter- and intra-output parallelisms are the parallelism between mul-
tiple OFMs (the Co axis in Fig. 4.1(a)) and output activations within an OFM
(the X-Y plane in Fig. 4.1(a)), respectively. The operation-level parallelism is the
most fine-grained type that parallelizes the multiplications of the same output ac-
tivation. It occupies most multipliers when accelerating a typical dense CNN, in
which all weights are non-zero.

Enjoyable type of parallelism in each layer varies throughout the CNN by layer
specification, such as size and number of OFMs. When the size of OFMs is large,
the intra-output parallelism is efficient in terms of multiplier utilization. However,
multiplier utilization decreases as the OFMs become smaller. In this case, inter-
output parallelism can complement the small amount of intra-output parallelism,
and hence, increase multiplier utilization.

4.3 Compressed CNN Model
To reduce the required bandwidth in reading CNN model to CNN accelerator and
simply exploit weight sparsity, kernels of a sparse CNN model from quantiza-
tion and weight pruning is compressed into a channel-major modified compressed
sparse column format [112] layer by layer. Each channel of kernels in each con-
volutional layer is compressed as a non-zero weight vector, w, which includes

4.4 Overview of The Proposed Parallelism-flexible Convolution Core 65

Figure 4.2: An example of compressing a convolutional layer to a compressed
CNN model.

non-zero weight elements, and a leading-zero vector, z, which includes the num-
ber of zero-valued weights preceding the non-zero weight at the same vector index
as w.

For example, a convolutional layer that contains three kernels, each of which
includes two channels of 3 × 3-weights, is compressed as shown in Fig. 4.2. The
notation wi represents the ith non-zero weight. The kernels are compressed channel
by channel. The non-zero weight vector of channel 1, wc1 , includes non-zero
weights in order as shown by the bold arrow (written in channel 1 of kernel 1)
from kernel 1 to kernel 3. The corresponding leading-zero vector, zc1 , includes
the number of leading zeros of w1, w2, w3, and so on, respectively. The number
of leading zeros is counted continuously regardless of the change of kernels. For
that reason, the number of leading zeros of w8 is 3 since there is one 0 after w7 in
kernel 2 and two 0 before w8 in kernel 3. The weights of channel 2 are compressed
similarly.

4.4 Overview of The Proposed Parallelism-flexible
Convolution Core

Figure 4.3(a) illustrates an overall architecture of the proposed parallelism-flexible
convolution core, which includes five key components. The memory controller
reads and writes data from/to external memory, such as DRAM, through a DDR
memory interface. It forwards incoming data, including compressed CNN model,
layer specification, parallelism in effect and degree of parallelism (denoted as Par-

66 Parallelism-flexible Convolution Core for Sparse CNN

Figure 4.3: Architecture of the proposed parallelism-flexible convolution core:
(a) an overall architecture; (b) architecture of the proposed parallelism-flexible
convolution core for sparse CNN.

4.5 Parallelism-flexible Convolution Core for Sparse CNN 67

allelism eff. in the figure; see section 4.5.3 for detail), and IFMs, to the CNN
controller. Parallelism in effect and degree of parallelism refer to types of paral-
lelism that the proposed convolution core exploits in computing a certain layer and
degree of inter-output parallelism (the number of OFMs to be computed simulta-
neously), respectively. To perform convolution in a layer-wise manner, the CNN
controller controls the execution of the accelerator from the layer specification
and parallelism in effect, forwards the compressed CNN model to the convolu-
tion core, and manages the incoming IFMs using line buffer. The convolution
core performs convolution and stores the intermediate results in the partial sum
buffer in Fig. 4.3(b). The pooling and f unit include multiple arithmetic logic
units (ALUs), which subsample and apply activation function to the OFMs, and
activation buffer, which stores the output activations. Finally, the activations are
either moved to external memory or reused as IFMs of the next layer.

Since convolutional layers consume most CNN computation time, this work
focuses on the convolution core that accelerates the convolutional layers. It ef-
ficiently leverages both multiple types of parallelism and weight sparsity of the
compressed CNN model according to the size of OFMs. The proposed convo-
lution core is applicable to various sizes of IFMs, sizes of OFMs, numbers of
input channels, numbers of output channels, kernel sizes and strides. Other CNN
processing, i.e. activation function, pooling layers, and fully-connected layers, are
lightweight processing, and hence they can be computed on either general purpose
processors or specialized hardware such as EIE [112].

4.5 Parallelism-flexible Convolution Core for Sparse
CNN

To overcome the problems in exploiting multiple types of parallelism and its in-
tegration with calculation-skip technique, the proposed convolution core flexibly
adjusts its dataflow and scheduling to multiple types of parallelism, i.e. intra- and
inter-output parallelism, with various degrees of parallelism layer by layer, and
eliminates the operations related to zero-valued weights through output-stationary
data- flow pattern. Compared to the conventional accelerators, the proposed con-
volution core uses the weight broadcaster and the parallelism controller to enable
such abilities. The weight broadcaster and parallelism controller compensate the
decreased multiplier occupancy due to reduced intra-output parallelism by broad-
casting different kernels and assigning repeated OFM coordinates to the PE grid,
respectively, to increase inter-output parallelism according to the degree of par-
allelism, P. At the same time, the weight broadcaster distributes only non-zero
weights and their indices, which are calculated from the leading-zero vector, to the
PE grid. The irregular access to IFMs due to weight sparsity is made simple with
local indexing to the addresses in local input buffer near PEs. Hence, the output-
stationary dataflow pattern that is regulated by the weight broadcaster and the par-

68 Parallelism-flexible Convolution Core for Sparse CNN

allelism controller efficiently integrates flexible parallelism and calculation-skip
techniques.

4.5.1 Flexible Parallelism Concept

To maximize parallel calculation (multiplier utilization) in every convolutional
layer throughout the CNN, flexible parallelism changes dataflow and scheduling
of the convolution layer by layer. Figure 4.4 illustrates an example of MACC
scheduling. A PE bank means a group of PEs that convolute the IFM pixels with
the same kernel. The scheduling in which the architecture exploits only intra-
output parallelism as parallelism in effect with P = 1 is shown in Fig. 4.4(a).
All the PEs convolute IFM’s sliding windows with the same kernel to compute
distinct OFM pixels simultaneously and convolute with all the kernels consecu-
tively to compute all the OFMs. The scheduling in which the architecture exploits
both intra- and inter-output parallelism simultaneously, aka multi-parallelism, as
parallelism in effect with P > 1 is shown in Fig. 4.4(b). PEs within a PE bank
compute distinct OFM pixels with the same kernel at the same time to realize
intra-output parallelism, while different PE banks compute distinct OFMs with
P different kernels at the same time to realize inter-output parallelism and each
PE bank computes OFMs with Co

P kernels sequentially. Depending on P, several
PE banks convolute distinct OFM pixels with the same kernel to increase intra-
output parallelism when P is small, and convolute IFM with more distinct kernels
to increase inter-output parallelism when P is large.

The parallelism in effect and degree of parallelism are determined in advance
in order to maximize multiplier utilization (see section 4.5.4). In addition, if the
size of OFMs or P is large, IFMs and OFMs are partitioned into tiles (data tiling)
so that multipliers and buffer can accommodate parallel MACCs and data, respec-
tively. For example, let us assume that there are 50 PEs. If an OFM consists of
100 output activations, the OFM is partitioned into two tiles to be able to map on
50 PEs in case of P = 1. As P grows larger, the OFM is further partitioned into
four tiles in case of P = 2 and so on. The PEs process one tile at a time.

4.5.2 Operations of the Convolution Core

The OFMs of each layer are computed as shown in Algorithm 1. First, IFMs and
OFMs are divided into T equal data tiles. Then, the algorithm loops through all
Ci IFMs of each tile in the second loop in order to maximally reuse each IFM. To
implement multi-parallelism, the proposed convolution core flexibly unrolls the
third and fourth loop layer by layer according to P. Unrolling the third loop par-
allelizes the convolution of P different kernels to realize inter-output parallelism.
Hence, P different OFMs are computed on PEs in P different PE banks simulta-
neously. Each PE is assigned to compute dCo

P e kernels. The fourth loop iterates
all the outputs at different OFM coordinates, Fo(x, y) of tile Ts. Unrolling this

4.5 Parallelism-flexible Convolution Core for Sparse CNN 69

PE Bank

PE PE PE PE

PE Bank

PE PE PE PE

IFM

OFMs

PE Bank

PE PE PE PE

PE Bank

PE PE PE PE

Kernel Co

Kernel 1

(a)

(b)

IFM

OFMs

…

……

…

…… …

Kernel 1
…

Time

Kernel Co/P

Kernel nCo/PKernel Co

Time

…

…

…

…

Figure 4.4: The flexible parallelism concept: (a) exploitation of intra-output par-
allelism; (b) exploitation of intra- and inter-output parallelism.

70 Parallelism-flexible Convolution Core for Sparse CNN

Algorithm 1: Processing of a convolutional layer on the proposed
parallelism-flexible convolution core

Input: IFMs: Fi, Non-zero weights of kernels: k, Bias vector: b
Output: OFMs: Fo

1 Initialize Fo with b;
2 for s←1 to T do

// Loop all Tiles
3 for t←1 to Ci do

// Loop all IFMs
4 for u←1 to P do

// Loop all degree of parallelism
5 for Fo(x, y) ∈ Ts do

// Loop all outputs in tile
6 for Kt

v ∈ Ku do
// Loop dCo

P e kernels
7 for kt

v(m, n) ∈ Kt
v and kt

v(m, n) > 0 do
// Loop all non-zero weights in kernel

8 Fv
o(x, y)+ = kt

v(m, n) × F t
i(x × S + m, y × S + n);

9 end
10 end
11 end
12 end
13 end
14 end

loop and mapping each output on different PEs realize intra-output parallelism.
Next, in line 5, the algorithm iterates over each kernel, Kt

v, in the set of kernels as-
signed to sequentially compute within one PE in the third loop, which is denoted
as Ku. Finally, the most inner loop sequentially accumulates the result at coor-
dinate (x, y) of OFM v, Fv

o(x, y), with the multiplication results of the non-zero
weight elements, kt

v(m, n), and the corresponding IFM, F t
i(x × S + m, y × S + n).

4.5.3 Architecture Organization

The architecture of the proposed convolution core is illustrated in Fig. 4.3(b).
It receives compressed CNN model, Parallelism Eff., and IFMs as input. The
layer specification includes the size and number of kernels, IFMs, and OFMs.
Parallelism Eff. includes parallelism in effect and degree of parallelism.

4.5 Parallelism-flexible Convolution Core for Sparse CNN 71

Figure 4.5: Example of weight arrangement of four kernels in weight memory, so
that BCUs can broadcast weights from different kernels at the same time.

Parallelism Controller

The parallelism controller is responsible for alternating the dataflow on the con-
volution core. It is composed of a broadcast controller and a data sequencer. Both
work according to the parallelism in effect and the degree of parallelism, P.

The broadcast controller forwards P to the weight broadcaster to control the
dataflow of kernels. It forwards 1 as P if the parallelism in effect is intra-output
parallelism and P, where P > 1, if the parallelism in effect is multi-parallelism
with the degree of parallelism P.

The data sequencer alternates the dataflow of IFMs through the assignment
of OFM coordinates to be computed by each PE. For intra-output parallelism
(P = 1), the data sequencer assigns different coordinates to all the PEs. For
multi-parallelism, the data sequencer assigns different OFM coordinates to PEs
in bM

P c PE banks, where M is the number of PE banks, and duplicates the same
coordinates P times. For example, assuming that P = 2, the OFM coordinates
assigned to PE bank #1 to PE bank #(M

2) are different, but are the same as the
ones assigned to PE bank #(M

2 + 1) to PE bank #M. If data tiling is necessary, the
data sequencer repeats the coordinate assignment process for all the tiles after the
convolution of the previous tile has completed.

Weight Broadcaster

The weight broadcaster is composed of a weight memory, an index memory, a
broadcast manager, and multiple broadcast units (BCUs). First, the compressed

72 Parallelism-flexible Convolution Core for Sparse CNN

CNN model of each layer is loaded into the weight memory and index memory
(Weight mem. and Index mem. in Fig. 4.3(b), respectively) channel by channel.
Next, upon the completion of storing IFM into the local input buffer, the broadcast
manager reads w and z of a channel from the memories and distributes them to
BCUs according to P. Finally, each BCU decompresses the compressed CNN
model from w and z, and broadcasts them consecutively to a PE bank.

For ease of distributing the compressed CNN model to BCUs in order to exploit
multi-parallelism, w and z are re-ordered in advance according to P in such a way
that weights and indices from P different kernels can be read at the same time.
When P = 1, all the BCUs broadcast the same weight value, so the weights and
indices in one channel of all the kernels are ordered contiguously. On the other
hand, when P > 1, the weights and indices from different kernels that must be
broadcasted at the same time are ordered in the same memory word. Figure 4.5
illustrates an example of weight arrangement in the weight memory and weight
distribution to BCUs when assuming that there are four BCUs, one memory word
stores four weights, and P equals to 1, 2, and 4. The weights are re-ordered and
distributed as follows:

• When P = 1 : the first memory word contains k1#1, k1#2, k1#3, and k1#4.
First, the weight k1#1 is distributed to all the BCUs, then, followed by k1#2,
and so on.

• When P = 2 : the first memory word contains k1#1, k3#1, k1#2, and k3#2.
First, the weight k1#1 is distributed to BCU#1 and BCU#2 and the weight
k3#1 is distributed to BCU#3 and BCU#4 at the same time, then followed
by k1#2 and k3#2, and so on.

• When P = 4 : the first memory word contains k1#1, k2#1, k3#1, and k4#1.
The weight k1#1, k2#2, k3#3, and k4#4 are distributed to BCU#1 through
BCU#4, respectively.

Consequently, multiple kernels can be convoluted simultaneously when P > 1.
Hence, the weight broadcaster can alter the dataflow of kernels to enable multi-
parallelism.

To leverage sparsity, each BCU decompresses the compressed CNN model by
extracting only non-zero weights from w and accumulates their indices from z in
order. Then, non-zero weights and indices are broadcasted to a PE bank consec-
utively so that the PEs continuously perform MACCs related to non-zero weights
while the ones related to zero-valued weights are skipped.

Processing Element Grid

A PE grid consists of multiple PE banks that perform MACCs and a partial sum
buffer that stores accumulation results of the previous input channels. One PE
bank is connected to one BCU, so the number of PE banks and the number of

4.5 Parallelism-flexible Convolution Core for Sparse CNN 73

Figure 4.6: Architecture of a PE bank: (a) an overview architecture of a PE bank;
(b) data layout of the local input buffer (IN_BUF).

74 Parallelism-flexible Convolution Core for Sparse CNN

BCUs are equal. Each PE bank receives IFMs from CNN controller, OFM coor-
dinates from data sequencer, and pairs of weight and index from the corresponding
BCU.

As shown in Fig. 4.6(a), a PE bank includes G groups of PE, aka PE groups,
that compute different OFM pixels. Every PE group within a PE bank consumes
the same pair of weight and index but unique OFM coordinates.

A PE group consists of a forward register, an address calculator unit, a local
input buffer, a local data sequencer and PEs, which are denoted as Fwd. register,
Address Cal., IN_BUF, D_SEQ and PEi in Fig. 4.6(a), respectively. The forward
register receives IFMs and forwards them to the neighbor PE group in order to
reduce physical wire delay. The address calculator determines the address of the
required IFM pixels from the OFM coordinate assigned to the PE group. The
target IFM pixels of one channel are stored in the local input buffer in order to
reuse them for the computation of all kernels. Assuming that there are N PEs in
one PE group, (N − 1) × S + K consecutive OFM pixels of the same row starting
from the assigned OFM coordinate are computed within a PE group. The local
input buffer is registers that store K rows of N overlapping IFM windows, where
K is the kernel size and S is the stride. Specifically, it stores input pixels x to
x + (N − 1) × S + K of row y to y + K − 1 in total of K × (N − 1) × S + K IFM
pixels as shown in Fig. 4.6(b) when the assigned OFM coordinate is (x, y). The
local data sequencer selects data from the local input buffer and passes them to
PEs. Each PE is composed of a multiplier, an adder, and an accumulation register.
It multiplies the selected data with the broadcasted non-zero weight and accumu-
lates the result with the partial sum result from either the partial sum buffer if the
weight is the first one of a kernel or the local accumulation register otherwise. The
accumulation result is stored in the accumulation register, denoted as Acc reg in
Fig. 4.6(a), and it is written to the partial sum buffer after the PE finishes the ac-
cumulation of all the weights within one channel of each kernel. These operations
are pipelined in order to compute MACC in every clock cycle and achieve high
frequency.

Figure 4.7 illustrates data layout in the partial sum buffer. When P = 1, all
output activations of one OFM in one tile are stored in the same address of the
partial sum buffer, and then Co addresses are required. On the other hand, when
P > 1, all the output activations of P OFMs in one tile are stored in the same
address of the partial sum buffer and Co

P addresses are used. Note that a tile is
smaller when P grows larger. Partial sum buffer is divided into M banks to store
the results from each PE bank. That is because PE banks may perform convolution
on different kernels, so they may access M different addresses at the same time,
while PEs within a PE bank do the convolution with the same kernel and they
store the results to the same address.

To handle irregularity in accessing IFM pixels caused by weight sparsity, the
irregular data access is made local in the PE groups. The local data sequencer se-
lects IFM pixels in the local input buffer using the index of each non-zero weight

4.5 Parallelism-flexible Convolution Core for Sparse CNN 75

Figure 4.7: The data layout in partial sum buffer assuming the number of output
activations in an OFM equals to the total number of PEs: (a) when P = 1, all
output activations of one OFM are stored in the same address and Co addresses
are required; (b) when P > 1, all output activations of P OFMs in one tile are
stored in the same address and Co

P addresses are required.

for addressing. Since the local input buffer is register array, the irregular access
is simple and fast. The PE computes only the MACCs related with the non-zero
weights. The accumulation result of the previous channels is read from the partial
sum buffer when the first non-zero weight of a kernel is received. The accumula-
tion result up to the current channel is written to the partial sum buffer when the
last non-zero weight of a kernel is received.

To hide the latency of data transfer from external memory, weight memory
(Weight mem.), index memory (Index mem.), local input buffer (IN_BUF), and
partial sum buffer are implemented with double buffer. Here, double buffer is
introduced because it enables continuous convolution by providing the second
buffer to prefetch the next input data while the first input data is being computed.
Figure 4.8 illustrates data load, compute, and store timing of the proposed convo-
lution core. First, the compressed CNN model and IFMs of input channel 1 of the
first tile are pre-fetched from external memory to weight mem.#0 and IN_BUF#0,
respectively. Then, the PE grid performs MACCs on the pre-fetched data and
stores the results in partial sum buffer#0. At the same time, the compressed CNN
model and IFM pixels of input channel 2 of the first tile are loaded into weight
mem.#1 and IN_BUF#1, respectively. While the PE grid is computing the last
channel of the tile, the first input channel of IFM pixels of the next tile is loaded
into the next available IN_BUF and the first input channel of compressed CNN

76 Parallelism-flexible Convolution Core for Sparse CNN

model is re-loaded to the next available Weight mem. The results of the second
tile will be stored in partial sum buffer#1 so that the result of the first tile in par-
tial sum buffer#0 is transferred to the external memory or fed back to the CNN
controller as IFMs of the next layer.

4.5.4 Determination of Parallelism in Effect and Degree of Par-
allelism

The parallelism in effect and the degree of parallelism, P, of a layer, which are
the value that maximizes PE utilization, U, are determined in advance based on
the layer specification, the number of BCUs, and the number of PEs in layer-wise.
In this context, PE utilization means the percentage between the total number of
MACCs of a sparse layer and the total available PE cycles, and it is defined as
follows:

U =
X × Y ×Co × K × K ×Ci × R × 100

N ×G × M × E
, (4.3)

where X, Y , Co, K, Ci are the same as defined in Fig. 4.1(a), R is the ratio of
number of non-zero weights and the number of all weights, N, G, M refers to
architecture’s parameter in section 4.5.3, and E is the estimated number of cycles
in computing the convolutional layer as follows:

E = d
Co × K × K ×Ci × R × T

P
e + H × T ×Ci, (4.4)

T = dd
X
N
e ×

Y
G × bM

P c
e, (4.5)

The first term of E is the theoretical time for computing the layer with P, and the
second term is the total overhead for decompressing and broadcasting the com-
pressed CNN model.

The overhead, H, incurs once for one loop of all the IFMs (see Algorithm 1)
as illustrated in Fig. 4.8, and it is constant regardless of layer specification. The
existence of the overhead term means that larger P incurs more decompressing
overhead even though inter-output parallelism improves multiplier utilization the-
oretically.

4.6 Experimental Methodology

To demonstrate the merits of the proposed parallelism-flexible convolution core
for sparse CNN, performance, resource usage on FPGA, and power consumption
are evaluated. This section explains the workload, architecture configuration and
evaluation method in the experiments.

4.6 Experimental Methodology 77

Figure 4.8: Timing of data loading, computing, and storing data of the convolution
core using double buffering.

78 Parallelism-flexible Convolution Core for Sparse CNN

Table 4.1: Parameters of the implemented convolution core

Parameter Value
M 16
G 4
N 16
Total PE (multiplier) 1,024

4.6.1 Workload
In the experiment, the execution time in computing the convolutional layers of
VGG-16 [17] is measured. It was chosen because of three reasons. First, VGG-16
includes convolutional layers with various sizes of IFMs, sizes of OFMs, numbers
of input channels, and numbers of output channels, which means that it possesses
different dominant parallelism within the same network. For example, the domi-
nant parallelism of the shallow layers, such as conv1_1 or conv1_2, is intra-output
parallelism because their size of OFMs is as large as 224 × 224 pixels. On the
contrary, the inter-output parallelism is dominant in the deep layers like conv5_1,
conv5_2, and conv5_3 because the number of kernels is larger than the size of
OFMs. Second, VGG-16 serves as the backbone of many CNNs, such as SSD
[156]. Third, VGG-16 is sparsified by several techniques and its state-of-the-art
sparsity is published in [20].

The sparse VGG model was generated by removing the small-valued weights
according to the sparsity reported in [20]. The model was compressed into the
compressed CNN model using 16-bit and 4-bit for each weight and index, respec-
tively. The arithmetic precision is 16-bit and 32-bit fixed-point for multiplication
and accumulation, respectively.

4.6.2 Architecture Configuration
The proposed convolution core is implemented with parameters as shown in Ta-
ble 4.1. A forward register is inserted every one other PE groups in order to save
registers. A PE is implemented with one 16x16-bit multiplier, one 32-bit adders,
and one 32-bit register for accumulating the results.

In the evaluation, the proposed convolution core executes the convolution layer
by layer. The compressed CNN model, IFMs, and OFMs of each layer are trans-
ferred between the proposed convolution core and external memory.

The proposed convolution core executes the convolution in accordance to the
determination of parallelism in effect and degree of parallelism, P, as described
in section 4.5.4. This experiment considers P as 1, 2, 4, 8 or 16. Figure 4.9
shows the relationship between P and the estimated PE utilization of VGG-16’s
conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 layers. The rest of the layers
exhibits similar relationship as the layer computing the same size of OFMs. The

4.6 Experimental Methodology 79

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

PE
 U

til
iz

at
io

n
(%

)

P

conv1_1 conv2_1
conv3_1 conv4_1
conv5_1

Figure 4.9: The estimated PE utilization when P = 1, 2, 4, 8 for conv1_1, conv2_-
1, conv3_1, conv4_1, and conv5_1 of VGG-16.

Table 4.2: The parallelism in effect and degree of parallelism for convolutional
layers of VGG-16

Layer Parallelism in effect Degree of parallelism (P)
conv1_1 ∼ conv1_2 Intra-output parallelism 1
conv2_1 ∼ conv2_2 Multi-parallelism 2
conv3_1 ∼ conv3_3 Multi-parallelism 4
conv4_1 ∼ conv4_3 Multi-parallelism 8
conv5_1 ∼ conv5_3 Multi-parallelism 4

overhead of decompressing the compressed CNN model, H, is 16 cycles in the
implementation that is designed to achieve high frequency. As a result, increasing
P incurs more overhead cycles, and hence the PE utilization may degrade. For
conv1_1, intra-output parallelism occupies all the PEs since the size of OFMs is
large. The utilization is less than 100% due to the decompressing overhead. For
conv2_1, conv3_1, and conv4_1, even though the size of OFMs is large, there ex-
ist a small amount of idle PEs when employing only intra-output parallelism. The
size of conv5_1’s OFMs is very small compared to the number of PEs. Therefore,
intra-output parallelism is not utilized to its full capacity. Therefore, employing
multi-parallelism by increasing P for conv2_1 through conv5_3 improves multi-
plier utilization. According to the estimated PE utilization based on Eq. (4.3),
Table 4.2 summarizes the parallelism in effect and degree of parallelism, P.

4.6.3 Evaluation Method

Performance The execution cycles and giga MACCs per second (GMACS) were
measured using RTL simulation.

80 Parallelism-flexible Convolution Core for Sparse CNN

0
2
4
6
8
10
12

co
nv
1_
1

co
nv
1_
2

co
nv
2_
1

co
nv
2_
2

co
nv
3_
1

co
nv
3_
2

co
nv
3_
3

co
nv
4_
1

co
nv
4_
2

co
nv
4_
3

co
nv
5_
1

co
nv
5_
2

co
nv
5_
3

A
ll

Sp
ee
du
p

Baseline Proposed-Flexible Proposed-Sparse Proposed-Both

Figure 4.10: Speedup of the proposed parallelism-flexible convolution core by
layer of VGG-16 compared to the baseline architecture.

Resource usage on FPGA The resource usage was reported from the HDL
synthesis results using Quartus Prime software.

Power consumption on FPGA The power consumption was reported from the
power analysis tool of Quartus Prime software.

4.7 Evaluation Results on VGG-16

4.7.1 Performance

To illustrate the effectiveness of flexible parallelism and weight sparsity, the per-
formance of the proposed convolution core that exploits only flexible parallelism,
only weight sparsity, and both techniques were compared with the baseline archi-
tecture. The baseline architecture is the architecture that exploits only intra-output
parallelism and does not skip zero-operand MACC. The parallelism in effect and
P is shown in Table 4.2.

Speedup

The speedup of the proposed convolution core over the baseline architecture in
computing VGG-16’s convolutional layers is shown in Fig. 4.10. The results
of the baseline architecture are denoted by Baseline, and the results of the pro-
posed convolution core that employs only flexible parallelism, only weight spar-
sity, and both techniques are denoted by Proposed-Flexible, Proposed-Sparse, and
Proposed-Both, respectively.

By exploiting flexible parallelism, the Proposed-Flexible achieves 1.42x speedup
over the Baseline in the total of all the layers. For layer group conv1_x, the
Proposed-Flexible does not gain speedup because the intra-output parallelism al-
ready occupies all the PEs. On the other hand, the intra-output parallelism in
layer conv2_1 through conv5_3 leaves some PEs idle. By occupying them with

4.7 Evaluation Results on VGG-16 81

inter-output parallelism, the Proposed-Flexible gains speedup over the Baseline.
In the layer groups of conv2_x, conv3_x and conv4_x, 5%, 23% and 23% of
the PEs, respectively, are idle in the dense CNN computation with the Baseline.
The Proposed-Flexible gains 1.13x speedup in average by occupying those idle
PEs. Layer group conv5_x takes advantage of the flexible parallelism the most
because there are as much as 81% of idle PEs when only intra-output parallelism
is exploited. It gains 3.96x speedup compared to the Baseline. Such speedup is
achieved because the proposed convolution core can flexibly alternate the dataflow
to the degree of parallelism of multi-parallelism that is the most beneficial for each
convolutional layer.

The performance of Proposed-Sparse achieves 2.96x speedup in the total of all
layers over the Baseline. By leveraging weight sparsity, it can reduce the execution
cycles by the degree of sparsity and gain speedup in every layer. Thus, skipping
zero-operand MACCs is highly effective in acceleration.

The Proposed-Both achieves 3.73x speedup in the total of all the layers since
it leverages flexible parallelism and weight sparsity with simple dataflow control.
The speedup of layer group conv1_x comes from the weight sparsity only, while
the speedup of other layers comes from both techniques. In layer group conv5_-
x, the speedup mainly comes from flexible parallelism. The maximum speedup
of 11.95x is achieved in layer conv5_2. On the other hand, it is noticeable that
the Proposed-Both gains less speedup than the Proposed-Sparse in some layers,
such as layer group conv4_x. Furthermore, considering 1.42x and 2.96x speedup
in the total of all the layers from both techniques, higher total speedup at 4.17x
was expected. Such speedup was not achieved because of two reasons: (1) the
imbalance workload of sparse CNN leaves some PEs idle in order to wait for the
others to finish their workload of the same channel when inter-output parallelism
is leveraged; (2) the decompressing overhead exists and becomes larger when
the exploitation of higher P requires data tiling. These insufficiencies will be
discussed in section 4.9.2.

Active Multiplier Utilization

To confirm that the proposed convolution core can improve PE utilization in com-
puting sparse CNN, active multiplier utilization, which is defined as the percent-
age of the number of MACCs incorporated with non-zero weights and the total
available multiplier cycles, was examined. Since a PE includes one multiplier and
one adder in the proposed convolution core, multiplier utilization and PE utiliza-
tion are the same in this context.

Figure 4.11 shows active multiplier utilization, which is calculated as in Eq.
(4.3) with E as the number of execution cycles from the simulation. The active
multiplier utilization results of the Baseline and the Proposed-Flexible are quite
low in all the layers because they compute a sparse CNN in the same way as a
dense CNN. In other words, they compute zero-operand MACCs.

Compared to the Baseline, active multiplier utilization of the Proposed-Flexible

82 Parallelism-flexible Convolution Core for Sparse CNN

0

20

40

60

80

100

co
nv

1_
1

co
nv

1_
2

co
nv

2_
1

co
nv

2_
2

co
nv

3_
1

co
nv

3_
2

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

co
nv

5_
3

A
ll

A
ct

iv
e

M
ul

tip
lie

r
U

til
iz

at
io

n
(%

)

Baseline Proposed-Flexible Proposed-Sparse Proposed-Both

Figure 4.11: Active multiplier utilization of the proposed parallelism-flexible con-
volution core for each layer of VGG-16 compared to the baseline architecture.

improves in layer conv2_1 through conv5_3, where multi-parallelism is applied.
In layer group conv5_x, the utilization increases by approximately 4x as expected
when exploiting multi-parallelism with P equals to 4 and the utilization of the
Baseline is under 100

P %. The improvement is less than the degree of P in layer
conv2_1 to conv4_3 because 77% to 95% of multipliers are occupied considering
that they execute as dense CNN, which leaves only a small room for improvement.

The active multiplier utilization rises dramatically when exploiting weight spar-
sity because all the MACCs that take place when using the Proposed-Sparse
and the Proposed-Both are meaningful. The active multiplier utilization of the
Proposed-Both reaches almost 70% in every layer and as high as 77% in total. It is
higher than the Proposed-Sparse except for the layers that achieve lower speedup
because of multi-parallelism. Here, the multipliers of Proposed-Both are not fully
utilized from two causes.

1. Architectural fragmentation refers to the fact that PEs are idle because the
parameters in Table 4.1 limit scheduling. There exist two types of fragmen-
tation. First, fine-grained fragmentation refers to the case that some PEs
within a PE group are idle when the number of the dimension X of OFM is
indivisible by N because the local input buffer limits that all the PEs in the
same PE group must process the OFM pixels from the same row. Second,
medium-grained fragmentation refers to the situation that some PE groups
are idle when the number of OFM pixels in one tile is indivisible by N ×G
because the BCUs and PE banks are connected one-to-one, so inter-output
parallelism cannot be scheduled within the same PE bank to occupy the idle
PE groups. This issue will be explained further in section 4.9.2;

2. Imbalance workload as mentioned above.

4.7 Evaluation Results on VGG-16 83

Required External Memory Bandwidth

The maximum bandwidth of the proposed convolution core for VGG-16 is 100
Gbps (512 bits data bus operating at 200 MHz), which is achievable in most FPGA
boards [157, 158]. The required bandwidth of each VGG-16’s convolutional layer
is calculated as follows:

bandwidth =
total bits f rom external memory

ideal computation time
, (4.6)

where total bits f rom external memory includes total bits of compressed CNN
model, Bitmodel, and total bits of IFMs, BitIFM. The Bitmodel is calculated as follows:

Bitmodel = #weightnz × T × (Bitw + Bitz), (4.7)

where #weightnz is the number of non-zero weights in a layer, T is number of tiles
as in Eq. (4.5) (the compressed CNN model is reloaded for every tiles), Bitw is the
number of bits per one weight, which is 16 bits, and Bitz is the number of bits per
one leading-zero value, which is 4 bits. The BitIFM is calculated as follows:

BitIFM = W × H ×Ci × Bitdata, (4.8)

where W, H, Ci are as in Fig. 4.1(a), and Bitdata is the number of data bits, which
is 16 bits. The ideal computation time is the time for computing MACCs of the
sparse CNN with 1,024 PEs at 200 MHz.

The result of the calculation shows that the required bandwidth is 29.2 Gbps,
which is low compared to the maximum bandwidth. Therefore, data transfer time
can be hidden by double buffering, and hence, does not affect the performance of
the proposed convolution core.

4.7.2 Resource Usage and Power Consumption on FPGA
Table 4.3 shows the Arria10 GX1150 FPGA’s resource usage of the implementa-
tion of the proposed convolution core with 1,024 PEs that is optimized for VGG-
like convolutional layers (kernel size is 3 × 3 and stride is 1). The resource usage
for the parallelism controller and the weight broadcaster (Parallelism Cntl and
Broadcaster in Table 4.3) is 5, 2, 3, and 3% of LUTs, registers, DSPs, and M20K
block RAM (BRAM), respectively. It shows that the proposed convolution core
can leverage both flexible parallelism and weight sparsity of sparse CNN simply
by adjusting the dataflow with a very small resource usage.

The result shows that BRAM, which is used up to 65%, is the bottleneck. It is
used for storing the compressed CNN model of each layer and the partial sum of
OFMs. A large BRAM usage comes from two reasons. First, the design requires a
wide bit width memory. The weight and index memory for storing the compressed
CNN model consumes 104 blocks of BRAM (52 blocks each for each memory). It
requires wide bit width to support the maximum degree of inter-output parallelism

84 Parallelism-flexible Convolution Core for Sparse CNN

Table 4.3: Resource usage of the implementation of the proposed convolution core
with 1,024 PEs optimized for VGG-like convolutional layers on Intel’s Arria10
GX1150

Module LUTs Registers DSPs M20K

Parallelism Cntl 10,719 (2%) 16,892 (1%) 49 (3%) 0 (0%)

Broadcaster 27,725 (3%) 17,156 (1%) 1 (0%) 104 (3%)

PE Grid 202,309 (24%) 344,416 (20%) 576 (38%) 1,664 (61%)

Core (Total) 240,753 (29%) 378,543 (22%) 626 (41%) 1,768 (64%)

according to the number of BCUs. The number of BRAMs can be reduced when
the number of BCUs decreases. Likewise, the partial sum buffer, which consumes
1,664 blocks of BRAM (26 blocks for each PE groups), requires wide bit width
because the bit width of the partial sum is as high as 32 bits. Second, the BRAMs
for partial sum buffer for 1,024 PEs is prepared for the worst-case scenario that
P equals to 1 in the 512-kernel layers. In that case, it requires 32, 024 bits with
512 × 2 addresses in total to accommodate the data with double buffer. However,
flexible parallelism technique employed by the proposed convolution core may
reduce the required BRAMs when computing VGG-16. This issue is discussed in
section 4.9.2.

The power consumption of the proposed convolution core is 25 Watts. It is con-
sidered efficient for edge processing platform or embedded systems considering
its deliverable performance.

4.8 Comparison with Prior CNN Accelerators
The design quality of the proposed convolution core was compared with prior
FPGA-based CNN accelerators. First, a comparison is made in terms of perfor-
mance, i.e. active multiplier utilization and effective GMACS, to demonstrate
that the proposed convolution core can increase multiplier utilization, and conse-
quently, improve the GMACS performance. Then, a comparison with the prior
arts at their best performance is made to show the efficiency of the proposed
convolution core. Since the definition of PE is different among FPGA-based
CNN accelerators, the resource for convolution means multiplier in this section.
Noted that prior accelerators report giga operations per second (GOPS), where
one GMACS is equivalent to two GOPS.

To make a fair comparison, the prior accelerators are selected based on types of
parallelism that they exploit and whether they provide their results on VGG-16.
Their description is as follows:

• Caffeine [34] implements inter-output and operation-level parallelism of
multiple IFMs with the factor of 32 × 32 for unrolling the parallelism of

4.8 Comparison with Prior CNN Accelerators 85

0
20
40
60
80

100

co
nv
1_
1

co
nv
1_
2

co
nv
2_
1

co
nv
2_
2

co
nv
3_
1

co
nv
3_
2

co
nv
3_
3

co
nv
4_
1

co
nv
4_
2

co
nv
4_
3

co
nv
5_
1

co
nv
5_
2

co
nv
5_
3

A
ll

A
ct

iv
e

M
ul

tip
lie

r
U

til
iz

at
io

n
(%

)
Dense CNN

Caffeine NEURAghe Proposed-Flexible

0
20
40
60
80
100

co
nv
1_
1

co
nv
1_
2

co
nv
2_
1

co
nv
2_
2

co
nv
3_
1

co
nv
3_
2

co
nv
3_
3

co
nv
4_
1

co
nv
4_
2

co
nv
4_
3

co
nv
5_
1

co
nv
5_
2

co
nv
5_
3

A
ll

A
ct

iv
e

M
ul

tip
lie

r
U

til
iz

at
io

n
(%

)

Sparse CNN
Caffeine NEURAghe Proposed-Both

(a)

(b)

Figure 4.12: Active multiplier utilization of Caffeine, NEURAghe, and the pro-
posed parallelism-flexible convolution core by layer of VGG-16: (a) in computing
dense CNN; (b) in computing sparse CNN.

OFMs and IFMs in total of 1,024 multipliers. Its operating frequency is 200
MHz on Xilinx’s Ultrascale KU060.

• NEURAghe [35] implements intra-output and operation-level parallelism.
It includes 16 SoP modules, each of which contains 54 multipliers, in total
of 864 multipliers. It was not scaled to 1,024 multipliers due to architecture
constraints. Their reported performance at 140 MHz operating frequency is
scaled to the performance at 200 MHz as follows:

GMACS 200MHz =
GMACS 140MHz ∗ 200

140
, (4.9)

where GMACS 200MHz and GMACS 140MHz are GMACS at 200 MHz and 140
MHz, respectively.

Active Multiplier Utilization To show that the proposed convolution core can
efficiently utilize multipliers, the active multiplier utilization is illustrated in two

86 Parallelism-flexible Convolution Core for Sparse CNN

0
200
400
600
800

1000

co
nv

1_
1

co
nv

1_
2

co
nv

2_
1

co
nv

2_
2

co
nv

3_
1

co
nv

3_
2

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

co
nv

5_
3

A
ll

Pe
rf

or
m

an
ce

(G

M
A

C
S)

Caffeine NEURAghe Proposed-Both (Effective)

Figure 4.13: Performance in GMACS of Caffeine, NEURAghe, and the proposed
parallelism-flexible convolution core by layer of VGG-16.

aspects: (1) in computing a dense CNN; (2) in computing a sparse CNN. In this
context, the active multiplier utilization is not equivalent to PE utilization since
the definition of PE varies between the chosen accelerators. For Caffeine and
NEURAghe, the active multiplier utilization, UEst., is calculated from the perfor-
mance in GMACS as follow:

UEst. =
GMACS 200MHz × 100

#MUL × f
, (4.10)

where #MUL and f are the number of multipliers and operating frequency, re-
spectively.

First, Fig. 4.12(a) shows active multiplier utilization of the Caffeine, NEURAghe,
and Proposed-Flexible in computing a dense CNN to demonstrate the utilization
improvement from flexible parallelism. Note that the utilization of Proposed-
Flexible here is different from the previous section because the one in the previous
section is the utilization in computing a sparse CNN, so the number of meaningful
MACCs is less than that of a dense CNN. The figure shows that the Proposed-
Flexible utilizes the multipliers better than both Caffeine and NEURAghe in al-
most all the layers and in the total across all the layers. That is because the
Proposed-Flexible alternates the parallelism in effect and P to use the parallelism
that theoretically results in the highest active multiplier utilization. However, the
utilization of layer group conv4_x is slightly lower than Caffeine and NEURAghe
due to the effect of decompressing overhead and fine-grained PE fragmentation.

Second, Fig. 4.12(b) shows active multiplier utilization in computing a sparse
CNN. The superior active multiplier utilization of the proposed convolution core
shows that most multiplier cycles are spent on meaningful MACCs, unlike the ar-
chitectures that exploit operation-level parallelism and waste time on zero-operand
MACCs. Furthermore, the results also imply that flexible parallelism works well
with weight sparsity since the utilization of all layers is relatively high.
GMACS In Fig. 4.13, the performance in GMACS is illustrated. The Proposed-
Both (Effective) refers to the equivalent effective GMACS that is achievable from

4.8 Comparison with Prior CNN Accelerators 87

Table 4.4: Comparison with prior FPGA work

[34] [35] [36] [109] Proposed

Device Zynq Zynq Zynq Arria10 Arria10

KU060 XC7Z045 XC7Z045 SX660 GX1150

Exploited Fixed Fixed Fixed Fixed Flexible

parallelism operation-level, operation-level, operation-level, operation-level, intra-output,

inter-output intra-output intra-output, intra-output, inter-output

inter-output inter-output

Frequency 200 MHz 140 MHz 150 MHz 120 MHz 200 MHz

#Multiplier 1,024 864 1,152 - 1,024

(#DSPs) (1,058) (864) (780) - (626)

Power (Watt) 26 10 9.63 - 25

Effective GOPS 310 170 188 53 960

Resource 0.31 0.20 0.16 - 0.94

Efficiency

Power Efficiency 12.4* 17.0* 19.50* - 38.4**

Resource Efficiency is GOPS/Multiplier and Power Efficiency is GOPS/Watt

*The power consumption is measured for the entire system of the CNN accelerator

**The power consumption is measured when there is only the convolution or core on FPGA

leveraging weight sparsity. Since the proposed convolution core skips all zero-
operand MACCs, it can achieve a superior GMACS compared to other accelera-
tors. The effective GMACS of the proposed convolution core in computing all 13
convolutional layers of VGG-16 is 480.7 GMACS.

To understand the usability of the proposed convolution core, a comparison with
prior FPGA-based accelerators is made according to the reported implementation.
In addition to the above-mentioned accelerators, the proposed convolution core is
also compared to the accelerators in [36] and [109] (512-opt-pr variant). While
Caffeine [34], NEURAghe [35] and the work in [36] compute a dense CNN,
the work in [109] and the proposed convolution core can skip MACCs related to
zero-valued weights.

Table 4.4 presents the comparison of the proposed convolution core with prior
FPGA-based CNN accelerators, which are implemented for 16-bit fixed-point
arithmetic precision. #Multiplier refers to the number of multipliers for MACCs
on the design, which is calculated based on the parameters described in each pa-
per. #DSP refers to the number of DSPs utilized on each accelerator as reported.
Note that a Xilinx’s DSP and an Intel’s DSP can accommodate one and two 16-bit

88 Parallelism-flexible Convolution Core for Sparse CNN

0
2
4
6
8

10
12

kernel 1x1
stride 1

kernel 1x1
stride 2

kernel 3x3
stride 1

kernel 3x3
stride 2

kernel 5x5
stride 1

kernel 5x5
stride 2

kernel 7x7
stride 1

kernel 7x7
stride 2

Sp
ee

du
p

Baseline Proposed-Flexible Proposed-Sparse Proposed-Both

Figure 4.14: Speedup of the proposed parallelism-flexible convolution core by
kernel size and stride compared to the baseline architecture.

fixed-point MACCs, respectively. The GOPS is evaluated from 13 convolutional
layers of VGG-16.

Compared to other CNN accelerators, the proposed convolution core outper-
forms them in terms of effective GOPS performance, effective resource efficiency
and effective power efficiency. It achieves 3x, 5x, 5x and 18x better performance
than the Caffeine, NEURAghe, the work in [36], and the work in [109], re-
spectively. In the case of [109], the low performance despite the fact that it can
leverage sparsity is partially due to a relatively low frequency, which might be
the results from high-level synthesis. It seems that the high effective GOPS of
the proposed convolution core is the result of high frequency. However, when
the NEURAghe is scaled as they claim to a larger FPGA, which may bring the
frequency up to 200 MHz and double its performance, the proposed convolution
core still outperforms in terms of effective GOPS. Similarly, the proposed convo-
lution core achieved the highest effective resource efficiency. The high effective
power efficiency of the proposed convolution core implies that the architecture
is capable of processing one image with a lower power budget. This means that
the proposed convolution core is efficient for being a platform at the edge or on
embedded systems.

4.9 Applicability to Modern State-of-the-art CNNs

4.9.1 Evaluation
Based on our survey, the convolutional layer specification of modern state-of-the-
art CNNs varies by kernel size and stride in addition to the size of IFMs, the
size of OFMs, the number of input channels and the number of output channels.
Except for AlexNet [16] which contains kernel size of 11 and stride 4 in the first
layer, most modern state-of-the-art CNNs, such as YOLOv2 [13], FCN [159]
and ResNet [18], contain convolutional layers with kernel size between 1 × 1 to
7 × 7 and stride of 1 to 2.

The concept of the proposed convolution core is effective for not only vari-
ous sizes of IFMs, sizes of OFMs, numbers of input channels, and numbers of

4.9 Applicability to Modern State-of-the-art CNNs 89

0
10
20
30
40
50
60
70
80
90

100

kernel 1x1 kernel 3x3 kernel 5x5 kernel 7x7

A
ct

iv
e

M
ul

tip
lie

r
U

til
iz

at
io

n
(%

)

Baseline Proposed-Flexible
Proposed-Sparse Proposed-Both

Figure 4.15: Active multiplier utilization of the proposed parallelism-flexible con-
volution core by kernel size compared to the baseline architecture when stride is
1. The active multiplier utilization is the same when stride is 2.

output channels as shown in the experiment on VGG-16, but the proposed con-
volution core also gains speedup and multiplier utilization despite various kernel
sizes and strides. To show that the proposed convolution core can handle a wide
range of modern CNNs, the implementation of the proposed convolution core was
extended to various kernel sizes and strides by (1) adding logic for model decom-
pression for various kernel sizes in the weight broadcaster; (2) enlarging local
input buffer of each PE group to accommodate data for kernel size up to 7× 7 and
stride up to 2; (3) adding logic for selecting IFM pixels from local input buffer ac-
cording to the index of sparse weights. The kernel size up to 7×7 and stride up to 2
were chosen because larger kernel size and stride are rare (no such CNN hyperpa-
rameters in YOLOv2, FCN or ResNet) although they can be handled by extending
the implementation in a similar manner. In the evaluation of the extended imple-
mentation, a sparse model of convolutional layers was generated by zeroing out
small values from a randomly generated kernels. The layer specification, i.e. X, Y ,
Ci, Co and R, are fixed according to the conv5_1 of VGG-16 because its speedup
is achieved from both sparsity and flexible parallelism. Likewise, P is chosen as
4 since it is independent of kernel size and stride.

The speedup and active multiplier utilization are shown in Fig. 4.14 and Fig. 4.15,
respectively. Despite different strides, the speedup and active multiplier utiliza-
tion are the same because the total number of MACCs is equal for the same
size of OFMs and kernel size. For different kernel sizes, the Proposed-Flexible,
Proposed-Sparse, and Proposed-Both achieve similar speedup and active mul-
tiplier utilization since performance improvement comes from sparsity and P,
which are not affected by kernel size. Nevertheless, as the kernel size grows,
more speedup and active multiplier utilization are achieved because they suffer
less from imbalance workload. The performance improvement in both VGG-16

90 Parallelism-flexible Convolution Core for Sparse CNN

Table 4.5: Resource usage of the extended implementation of the proposed con-
volution core with 1,024 PEs on Intel’s Stratix10 GX2800

Module LUTs Registers DSPs M20K

Parallelism Cntl 12,750 (1%) 20,143 (1%) 49 (1%) 0 (0%)

Broadcaster 30,804 (2%) 18,934 (1%) 1 (0%) 104 (1%)

PE Grid 328,430 (18%) 736,013 (20%) 576 (10%) 1,664 (15%)

Core (Total) 374,208 (21%) 774,782 (21%) 626 (11%) 1,768 (16%)

benchmark and this experiment is achieved by the concept of the parallelism-
flexible convolution core, and hence they are not affected by the extension of the
implementation.

The synthesis results in Table 4.5 shows the required resources. The increased
resources in PE Grid originate from a larger local input buffer and IFM pixel se-
lection from the local input buffer. The increased resources in weight broadcaster
and parallelism controller comes from accumulating the index of sparse weight
during model decompression and assigning OFM coordinates for a larger size of
OFMs, respectively. The extended implementation of the proposed convolution
core is synthesized for Intel’s Stratix10 GX2800 FPGA. We have tried to eval-
uate the extended implementation on Arria10, but the required resources exceed
the capacity of Arria10 GX1150 FPGA, whereas the numbers in Table 4.5 seems
likely to accommodate in the capacity of Arria10. This probably comes from the
architectural difference between Arria10 and Stratix10; for instance, Stratix10 has
special registers on routing network called HyperFlex. For kernel size of 7×7 and
stride of 2, the size of input buffer increases by 4.8 times compared to the case of
the kernel size of 3× 3 and stride of 1. Consequently, the LUTs for selecting IFM
pixels from input buffer also increase despite the simple and fast access.

As the state-of-the-art CNNs, such as YOLOv2 and ResNet, have as much as 1k
or 2k output channels in a convolutional layer, a large number of output channels
can be handled by either increasing the size of output buffer or using P > 1. In the
extended implementation, the output buffer size is kept as 512 addresses because
such a large number of output channels usually occurs in deep layers, where the
size of OFMs is small and degree of parallelism P is more than 1.

The results have shown that the proposed convolution core is useful for various
layer specifications. It is applicable to accelerating the convolutional layers for
various state-of-the-art CNNs, such as YOLOv2, FCN, ResNet.

4.9.2 Discussion

This section analyzes the insufficiencies and bottleneck of the proposed convolu-
tion core. Then, it discusses possible solutions and improvement.

4.9 Applicability to Modern State-of-the-art CNNs 91

0
3
6
9
12
15

co
nv
1_
1

co
nv
1_
2

co
nv
2_
1

co
nv
2_
2

co
nv
3_
1

co
nv
3_
2

co
nv
3_
3

co
nv
4_
1

co
nv
4_
2

co
nv
4_
3

co
nv
5_
1

co
nv
5_
2

co
nv
5_
3

A
ll

Sp
ee
du
p

Proposed-Sparse Proposed-Both
Proposed-Both-Balance Proposed-Both-Balance-noOverhead

Figure 4.16: Speedup of the proposed parallelism-flexible convolution core by
layer of VGG-16 in ideal execution scenario.

0
20
40
60
80

100

co
nv

1_
1

co
nv

1_
2

co
nv

2_
1

co
nv

2_
2

co
nv

3_
1

co
nv

3_
2

co
nv

3_
3

co
nv

4_
1

co
nv

4_
2

co
nv

4_
3

co
nv

5_
1

co
nv

5_
2

co
nv

5_
3

A
ll

A
ct

iv
e

M
ul

tip
lie

r
U

til
iz

at
io

n
(%

)

Proposed-Sparse Proposed-Both
Proposed-Both-Balance Proposed-Both-Balance-noOverhead

Figure 4.17: Active multiplier utilization of the proposed parallelism-flexible con-
volution core by layer of VGG-16 in ideal execution scenario.

Performance

There exist three insufficiencies that prevent the proposed convolution core from
bringing about its peak performance. First, idle PE cycles arise from the imbal-
ance workload. Second, decompressing the compressed CNN model incurs the
decompressing overhead. Third, the architectural fragmentation constraints the
scheduling of parallelism.

The first insufficiency is that the imbalance workload of sparse kernels in-
creases idle PE cycles when the proposed convolution core exploits inter-output
parallelism. That is because the proposed convolution core unrolls the degree-of-
parallelism loop in line 3 in Algorithm 1 to implement inter-output parallelism.
If the total number of non-zero weights in all the kernels (loop in line 5 and 6)
that belong to each iteration of line 3 is not equal, PEs are idle in order to wait
for PEs in other iterations to finish their workload. To investigate the effect of the
imbalance workload, an artificial sparse VGG-like CNN which makes the work-
load in every kernel equal is generated. The performance is measured and shown

92 Parallelism-flexible Convolution Core for Sparse CNN

as Proposed-Both-Balance in Fig. 4.16. The result shows that the overall perfor-
mance is improved by 9%. In addition, the Proposed-Both-Balance outperforms
the Proposed-Sparse in every layer, which implies that the flexible parallelism can
improve the performance of every layer. Figure 4.17 illustrates active multiplier
utilization, which shows that the Proposed-Both-Balance utilizes PEs better be-
cause no PE waits for the others. This problem can be solved in either hardware
or software. In hardware, the kernels should be divided into P partitions with an
arbitrary number of kernels per partition in such a way that the workload is bal-
anced. However, this may cause complication in storing the results to the partial
sum buffer because the partitioning may vary in every input channel. In software,
the CNN sparsification process should constraint the number of non-zero weights
of each kernel so that it results in a balanced workload.

Second, the existence of decompressing overhead degrades both performance
and active multiplier utilization because the PEs are idle during those cycles. As
shown in Fig. 4.8, the overhead occurs once every input channel as a pipeline la-
tency. This means that more data tiles due to a large P incur more overhead, which
degrades the advantage of flexible parallelism. Figure 4.16 and Fig. 4.17 show
that the speedup and utilization of the ideal execution (Proposed-Both-Balance-
noOverhead) improve and the effect of overhead is illustrated with the difference
of Proposed-Both-Balance and Proposed-Both-Balance-noOverhead. A 16-cycle
decompressing overhead comes from the pipeline for decompressing the com-
pressed CNN model that aims to achieve high frequency. As a consequence,
decreasing this overhead may degrade the operating frequency, which results in
longer execution time despite the reduced execution cycles.

Third, the proposed convolution core suffers from architectural fragmentation
that prevents PE occupancy during convolution cycles. As mentioned above, there
are two types of fragmentation: fine-grained and medium-grained. The example
of fine-grained fragmentation is layer group conv4_x, where 28 pixels in one row
of OFM leave four idle PEs out of 32 PEs in two PE groups, each of which con-
tains 16 PEs. It adds up to at least 12.5% of all PEs. They cannot be occupied due
to the local input buffer limitation. Medium-grained fragmentation occurs in layer
group conv5_x, where 14 × 14 output pixels of one OFM occupy only 196 PEs
out of 256 PEs in four PE banks. The effect is as large as 24% of all PEs, which
is the main reason for no more than 76% of active multiplier utilization. The ar-
chitecture is unable to schedule neither inter- nor intra-output parallelism due to
the limitation in one-to-one connection to the BCU and dimension of OFM. The
effect of this problem can be mitigated by choosing the parameter that is suitable
for certain CNN.

Resource Usage

In the implementation, the partial sum buffer is designed to support the worst case.
However, the number of words can be reduced by the factor of P when executing
the proposed convolution core with P > 1 in the layers that contain a large number

4.10 Conclusion and Future Work 93

of kernels. In other words, the required number of words can be reduced to the
maximum of Co

P across the CNN.

4.10 Conclusion and Future Work
To achieve high performance, the proposed parallelism-flexible convolution core
for sparse CNN accelerator exploits multiple types of parallelism flexibly layer
by layer to maximize multiplier utilization and skips redundant MACCs due to
weight sparsity. The integration of both techniques with parallelism controller
and weight broadcaster that are not complicated in terms of dataflow control and
resource usage improves performance significantly by 4x speedup over the base-
line architecture and 3x in effective GMACS over prior arts of CNN accelerator.
To maximally take advantage of the proposed convolution core, the constrained
sparsification process remains as the future work.

94 Parallelism-flexible Convolution Core for Sparse CNN

Chapter 5

An Architecture Exploration of
SoCs for CNN-based AI Platform

Chapter 5 proposes an architecture design space exploration method of SoCs for
CNN-based AI platform concerning a configurable multi-layer bus with hierar-
chical shared bus subsystems. First, the CNN modeling is described in terms
of modeling granularity and data tiling. Next, the model is defined and the multi-
objective architecture exploration problem is formulated. Then, the design quality
evaluation method and architecture exploration method are proposed. Finally, the
experiments show the validity and design space coverage.

5.1 Motivation and Objective
The advancement of semi-conductor process technology has made it feasible to
fabricate a large scale integrated (LSI) circuit on a chip. The chip becomes pow-
erful as it has acquired multi-functional processing capability, while the multi-
function dilates the complexity of the designing a system. In addition, strict con-
straints of design quality, which are high-performance, small area and low energy
consumption, are raised at the same time to further complicate the SoC design.

Exploring the enormous design space is cumbersome, but crucial in finding op-
timal architecture. Since IP and bus architecture combination generates a vast
amount of architecture, finding optimal design in an early design stage (before
proceeding to low-level design, such as RTL) can shorten design time. The com-
plexity lies in an efficient way to select and evaluate IP, bus architecture and their
parameters.

The problems in exploring an SoCs design for CNN-based AI Platform are
two folds: efficiently discover architecture that parallelizes computation-intensive
convolutional layer and determine bus architecture that is capable of transferring
a massive amount of data incorporated with CNN processing. The first problem
relates to granularity of system-level modeling. A CNN is usually modeled layer
by layer (one layer as one process; coarse-grained modeling granularity), which

96 Architecture Exploration of SoCs for CNN-based AI Platform

regulates the parallelization of data computation to process-level. For that reason,
when the workload of processes in the system is imbalanced, for instance, the
amount of computation of a convolutional layer is much more than the amount
of computation of a pooling layer, intra-layer parallelism is not considered for
performance improvement with the IP selection. On the other hand, modeling
the data computation in finer granularity, such as OFM-wise (the computation of
one OFM as a process) or operation-wise (one MACC as a process) granular-
ity, allows the parallelization of intra-layer MACCs with the price of designer’s
system-level modeling effort and unnecessarily large design space. The second
problem discloses the difficulty in discovering high-performance communication
architecture, aka bus architecture, between components within the SoC. Standard
specifications for the multi-layer bus are developed such as AMBAs multilayer
AHB [143] and AXI [144]. Since a full bus matrix contains a massive amount
of wires, which leads to routing problems, the specifications also define config-
urations of the multi-layer bus and the model of bus matrix in addition to the
regulations and communication methods in order to reduce the number of wires
on the bus matrix. Therefore, it is important to find a multi-layer bus configu-
ration that can satisfy design constraints because the topology, configuration and
protocol of the communication architecture affect the design quality.

This chapter proposes an architecture exploration method to find Pareto-optimal
SoC architectures for CNN-based AI Platform. The proposed method solves
multi-objective design space exploration with traversal through parameter trees.
This chapter includes the following contributions:

1. in addition to parameterizing SoC architecture itself, the IPs are also pa-
rameterized and explored, so that a computation-intensive process, such as
convolutional layers, can be scheduled on multiple instances and variable
number of PEs. This allows the exploration to consider the paralleliza-
tion of intra-layer MACCs within a process with a coarse-grained modeling
granularity, which reduces the cumbersome of hand-crafted medium- and
fine-grained modeling and IP selection;

2. both topology and specification, e.g. bus width and execution frequency,
of hierarchical shared bus and multi-layer bus architecture are parameter-
ized in terms of three-step channel mapping, mappings related to bus matrix
and bus parameter mappings. With this method, multiple configurations of
multi-layer bus can be easily explored.

5.2 Modeling CNN
As mentioned in section 4.2.1, a typical CNN is composed of convolutional, pool-
ing, normalization and fully-connected layers. In application design and system-
level modeling, a CNN is usually modeled layer by layer because layer-wise mod-
eling is provided by most deep learning libraries, such as caffe [160]. However,

5.2 Modeling CNN 97

Coarse-grain

Fine-grain

A
bi

lit
y

to
 le

ve
ra

ge
 in

tra
-la

ye
r p

ar
al

le
lis

m

Complexity in architecture exploration

Medium-grain

High

Low

Ideal

High

Low

Proposed

Figure 5.1: The relationship between the ability to leverage intra-layer parallelism
and complexity in architecture exploration of modeling granularity.

modeling granularity of CNN has two effects in architecture exploration: the abil-
ity to leverage intra-layer parallelism and complexity in architecture exploration.
The ability to leverage intra-layer parallelism means the ability of the architecture
exploration to realize the parallelization of intra-layer MACCs within one layer.
The complexity in architecture exploration means the effort to model and explore
the design space. In concrete, it implies the number of processes and channels
within an SLM. The larger the number is, the more modeling effort it requires,
and the larger set of processes and channels in IP and bus architecture selection it
has, respectively.

5.2.1 Modeling Granularity

Figure 5.1 shows the relationship between the ability to leverage intra-layer paral-
lelism and complexity in architecture exploration when employing coarse-grained,
medium-grained, and fine-grained granularity. The higher ability to leverage intra-
layer parallelism and the less complexity are desired.

In coarse-grained modeling granularity, each process models the behavior of
each CNN’s layer and is mapped onto an IP in system-level design. Modeling
CNN with this granularity is convenient for designers since it conforms with deep
learning frameworks in application design. It also introduces low complexity in
architecture exploration because the number of processes to map to IPs is not
more than the number of CNN’s layers. However, due to the fact that some lay-
ers, such as convolutional layers, include more operations than the other, mapping
process to IP introduces unbalance workload to the system, which may degrade
the capability of the architecture. In other words, modeling with coarse-grained

98 Architecture Exploration of SoCs for CNN-based AI Platform

granularity restricts the ability to leverage intra-layer parallelism during the archi-
tecture exploration.

In medium-grained modeling granularity, each of the computation-intensive
layers like convolutional layers is modeled into several processes by OFMs or
IFMs or even output pixels. The finer modeling granularity enables intra-layer
parallelism to be mapped onto multiple IPs, and hence, increases the ability to
leverage intra-layer parallelism. On the other hand, the increased number of pro-
cesses complicates the architecture exploration, especially if the processes of the
same layer are mapped to IPs non-systematically.

The fine-grained modeling granularity models CNN’s layers in an operation-
wise manner. It allows the architecture exploration to leverage intra-layer par-
allelism in several levels, i.e. inter-output, intra-output and operation-level par-
allelism. However, there can be a vast number of processes, which increases
complexity in architecture exploration.

Ideally, the modeling granularity should enable the architecture exploration to
leverage high intra-layer parallelism and low exploration complexity. The green
rectangle labeled with Ideal in Fig. 5.1 represents the ideal relationship between
the two properties of the exploration.

The proposed architecture exploration method achieves two desired properties
through modeling the CNN with the coarse-grained SLM and parameterized IPs.
Each process of the coarse-grained SLM is mapped onto the IPs that is parame-
terized in terms of the number of instances and PEs, especially CNN accelerators.
The coarse-grained SLM enables low complexity in the exploration, while IP pa-
rameterization increases the ability to leverage intra-layer parallelism by taking
advantage of multiple instances or PEs. Nonetheless, to obtain both properties, it
is necessary to model data tiling behavior in order to analyze parallel computation
on multiple instances of functional blocks.

5.2.2 Nature of Data Tiling in CNN

In the processing of CNN, specifically convolutional layers, many CNN accelera-
tors partition IFMs and OFMs into multiple blocks, aka tiles, to take advantage of
data locality [34, 105, 109]. They reuse IFMs, OFMs and kernels within the same
layer, and reuse OFMs as IFMs of the next layer [110]. The benefits include small
on-chip memory and reducing external memory access.

In the processing of convolutional layer, data tiling divides the IFMs and weight
into multiple tiles by unrolling the loops of convolution algorithm. A design space
exploration searches the tiling factor space using a roofline model [161], which
is an analytical model, in order to select the tiling factor that maximizes com-
putational throughput and external memory access [105, 162, 163]. It offers
multi-dimensional data tiling.

This research models the behavior of data tiling in the H and W dimension
(in Fig. 4.1(a)) of IFMs to take advantage of intra-layer parallelism. Figure 5.2

5.3 Model Definitions 99

(a)

IFM

Instance 1
of fb

IFM

Instance 1
of fb

Instance 2
of fb

IFM

Instance 1
of fb

Instance 2
of fb

Instance 3
of fb

Instance 4
of fb

Tile1

Tile1

Tile2

Tile1 Tile2

Tile3 Tile4

(b) (c)

Figure 5.2: An example of mapping data tiles of a convolutional layer onto multi-
ple instances of CNN accelerator functional block.

illustrates the example of mapping a convolutional layer onto multiple instances
of CNN accelerator functional block. Assuming that the layer is mapped onto one,
two and four instances. In Fig. 5.2(a), since there is only one instance, the IFM is
divided into one tile and is mapped to instance 1. In Fig. 5.2(b) and Fig. 5.2(c), the
IFM is divided into two and four tiles, respectively. Each tile is mapped on to one
instance. Every instance can operate simultaneously, hence computing intra-layer
MACCs in parallel. The intra-layer parallelism is leveraged more as the number
of instances grows. Tiling dimensions that incorporate the dimension of weights
are not considered because the number of MACCs varies depending on sparsity
in the model.

5.3 Model Definitions

This section defines the MoC and architectural model employed by the proposed
architecture exploration method, which is extended from section 3.3.1 and section
3.3.2, respectively. The extension of MoC includes the layer specification of deep
learning model, e.g. type of layer, the number of hidden nodes of NNs or the
number and size of CNN kernels. The extension of architectural model includes
the parameterization of IP.

100 Architecture Exploration of SoCs for CNN-based AI Platform

5.3.1 Model of Computation (MoC)
Based on the model of SLM, Msl, discussed in section 3.3.1, a process pi ∈ P is
described further in terms of the layer-wise description of deep learning model.
Assuming that a process related to the deep learning model in an application de-
scribes data computation of one layer, it is represented with pi = (tp, Li), where
tp refers to the type of layer of pi, e.g. convolutional layer, pooling layer or etc.,
and Li refers to the layer specification. For example, for convolutional layer, Li

includes H, W, Ci, S , K, X, Y and Co as described chapter 4.

5.3.2 Architectural Model
Based on the architectural model, Mal, that describes the parameterized SoC archi-
tecture, the IP modules in the architectural model are further parameterized into
the number of module instances and number of PEs. Each functional block is rep-
resented with f bi = (j,N f bi ,Npe, P f bi , f f bi , e(pk , f bi)) ∈ F, which indicates that the
functional block i, f bi, is N f bi instances of IP j and each instance consists of Npei

PEs. In this way, an intra-layer computations within a process can be parallelized
using multiple instances without modeling those vast amount of intra-layer com-
putations as individual processes. Since processes of convolutional layers con-
sume most processing time, this thesis applies N f bi and Npei to only the functional
blocks of CNN accelerators. For other functional blocks, both N f bi and Npei are
accounted as 1. Furthermore, memory IP is additionally defined as the IP for stor-
ing data. It can be either on-chip memory or interface of off-chip memory. Its
model has a unique characteristic that the memory IP does not contain buffer and
can store all the data within the same frame. In addition, bus width is considered
as address bus width, wa,bi and data bus width, wbi for shared bus, and address bus
width, wa,bm and data bus width, wbm for multi-layer bus.

5.4 Problem Formulation of a Multi-objective Ar-
chitecture Exploration

Figure 5.3 shows the overview of the proposed architecture exploration method.
This section describe the inputs, output and objective functions in details.

5.4.1 Input
There are five inputs to the architecture exploration as follows.

1. IP database keeps the information about IPs registered by the designer. It
includes following IP information.

• IP gate count : the number of logic gate used for the IP implementa-
tion

5.4 Problem Formulation of a Multi-objective Architecture Exploration 101

IP selection

Output Candidates Update

Architecture Exploration

IP database

Bus database

SLM

Profiling info.

Design
constraints

Bus architecture design

ALM

Performance
estimation

Area
estimation

ALMALMALM candidates

Input

Output

Figure 5.3: Overview of the proposed architecture exploration method.

• Execution frequency candidate : the candidates of execution fre-
quency at which the IP can operate

• Executable process : the processes that can be executed on each IP

• Execution cycle : the execution cycle spent for each executable pro-
cess on the IP.

• The number of master ports and slave ports : the number of ports
of each standard protocol, consisting of the number of AHB master
ports, the number of AHB slave ports and the number of APB slave
ports.

• Other IP parameters : the list and candidates of IP’s parameter, such
as the number of instances and the number of PEs.

2. Bus database specifies the information of bus protocols, which consists of
the bus protocol name, the data bus width candidates, the address bus width
candidates, the execution frequency candidates and the maximum number
of master and slave interfaces.

3. SLM (Msl) defines system level behavior of the target system. It is de-
scribed in SystemC [37], where the process represents the data processing
and the channel represents the data communication.

4. Profiling information (Profiling info. in Fig. 5.3) includes the execution
order and the amount of transfer data. It is extracted from the system level
profiling of the SLM using the loosely-timed transaction level simulation
explained in section 3.4.1.

102 Architecture Exploration of SoCs for CNN-based AI Platform

5. Design constraints are raised to the architecture exploration by system de-
signer. The necessary constraints are the maximum number of buses in each
cluster, the maximum number of buffers, the maximum number of storage
blocks, and the maximum number of bus bridges. Additionally, a designer
can also raise the execution time constraint and the area constraint.

5.4.2 Objective functions of Architecture Exploration
This thesis considers two design quality metrics as objective functions for archi-
tecture exploration.

1. Performance function is described in terms of execution time. The execu-
tion time is estimated by the AL-EDG analysis method explained in chapter
3 and section 5.5.1.

2. Hardware area function is the function of hardware area. It is estimated
in the architecture level and its estimation method is described in section
5.5.2.

5.4.3 Output
Output of the proposed architecture exploration method is ALM candidates that
represent all Pareto solutions. Each ALM candidate, Mal, includes an ALM as de-
scribed in section 3.3.2 and section 5.3.2, estimated execution time, and hardware
area. Each Pareto solution holds the design trade-off between the execution time
and the area of the multi-objective architecture exploration.

5.5 Design Quality Evaluation
The proposed architecture exploration method evaluates two design qualities: per-
formance and hardware area. Performance is estimated in terms of execution time
using an efficient performance estimation method based on chapter 3 and con-
sidering the behavior related to data tiling. Area is estimated from the hardware
components comprising an architecture described by ALM.

5.5.1 Performance Estimation
This work estimates performance of each architecture using the method proposed
in section 3.4, which is consisted of four procedures. The system-level profiling
and SL-EDG construction are proceeded as the method of Ueda et al. [52]. The
AL-EDG is constructed and analyzed considering data tiling.

Figure 5.4 shows an example of an SLM containing a process of a convolutional
layer and its associated processes. The Data1 (p0) and Data2 (p5) processes store

5.5 Design Quality Evaluation 103

Data1 c0

LoadW

CONV ReLU POOL Data2

p0

c1

c2 c3 c4

p1

p2 p3 p4 p5

Figure 5.4: An example of an SLM containing a process of a convolutional layer
and its associated processes.

OFMs and fetch them as IFMs of the next layer. The LoadW (p1) process loads
weights (kernels) of the following convolutional layer, CONV . The CONV (p2),
ReLU (p3) and POOL (p4) processes are the processes of convolutional, ReLU
and pooling layer, respectively.

SL-EDG is represented by Gsl = (Vsl, Esl) as defined in 3.4.2. An example of
SL-EDG of the above SLM is illustrated in Fig. 5.5. Two schemes for modeling
convolutional layers are (1) IFM-major scheme, which models one data process-
ing using one IFM channel and (2) OFM-major scheme, which models one data
processing for computing one OFM channel. Assuming that a convolutional layer
uses 2-channel IFMs to produce 3-channel OFMs. The circular node denoted by
vp(i,k) represents the vertex of pi’s kth data processing and the octagonal node de-
noted by vc(j,l) represents the vertex of c j’s lth data transfer. p1 and p2 consist of two
vertices (2-channel IFMs) as in Fig. 5.5(a) in the modeling with the IFM-major
scheme, while they consist of three vertices (3-channel OFMs) as in Fig. 5.5(b)
in the modeling with the OFM-major scheme. p3 and p4 consist of three vertices
(3-channel OFMs from p2 as input), and p0 and p5 consist of one vertex since they
are process for storing data. The processes that are not loading weights, convolu-
tional, activation, and pooling layers are referred to as typical processes.

Applying data tiling behavior to processes of convolutional layers also affects
the processes and channels associated with convolutional layers. The processes
associated with a convolutional layer include (1) process of loading weights of the
convolutional layers that precedes the process of convolutional layer, e.g. LoadW
process in Fig. 5.4; (2) process of activation layer, such as ReLU layer, that follows
the process of convolutional layer, e.g. ReLU process; (3) process of pooling layer
that follows the process of convolutional layer or the activation layer in (2), e.g.
POOL process. The associated channels include (1) channel that transfers IFMs
data to convolutional layer, e.g. channel c0; (2) channel that transfers weights to
convolutional layer, e.g. channel c1; (3) channels between the mentioned associ-
ated processes, e.g. channel c2 and c3; (4) channel that transfers OFMs data to
memory or the next convolutional layer, e.g. channel c4. In order to analyze data
tiling behavior, the AL-EDG construction partitions the mentioned processes and
channels according to tiles of data and the ALM described in section 5.3.2.

104 Architecture Exploration of SoCs for CNN-based AI Platform

vc(2,0)

vc(2,1)

vc(2,2)

vp(3,0)

vp(3,1)

vp(3,2)

vc(3,0)

vc(3,1)

vc(3,2)

vp(4,0)

vp(4,1)

vp(4,2)

vc(4,0)

vc(4,1)

vc(4,2)

vp(2,0)

vp(2,1)

vc(0,0)

vc(0,1)

vc(1,0)

vc(1,1)

vp(0,0)

vp(1,0)

vp(1,1)

vp(5,0)

: Execution order
: R/E dependency
: E/S dependency

(a)

vp(0,0)

vp(1,0)

vc(2,0)

vc(2,1)

vc(2,2)

vp(3,0)

vp(3,1)

vp(3,2)

vc(3,0)

vc(3,1)

vc(3,2)

vp(4,0)

vp(4,1)

vp(4,2)

vc(4,0)

vc(4,1)

vc(4,2)

vc(0,1)

vc(0,2)

vc(1,0)

vc(1,1)

vp(5,0)

: Execution order
: R/E dependency
: E/S dependency

vp(2,0)

vp(2,1)

vp(2,2)

vc(0,0)

vc(1,2)

vp(1,1)

vp(1,2)

(b)

Figure 5.5: An example of an SL-EDG of SLM in Fig. 5.3: (a) convolutional layer
modeled with IFM-major scheme; (b) convolutional layer modeled with OFM-
major scheme.

AL-EDG Construction

In addition to the vertices and edges of SL-EDG and vertices and edges associated
with DMAC and memories as explained in section 3.4.3, AL-EDG also consists
of the additional vertices and edges due to data tiling and the number of instances
of functional blocks. AL-EDG is represented by Gal = (Val, Eal), where Val and
Eal are AL-EDG’s vertex set and edge set, respectively. In the AL-EDG, vp(i_q,k_r)

represents the vertex of the rth partition of pi’s kth data processing, which is sched-
uled on the qth instance of the functional block and vc(j,l_s) represents the vertex of
c j’s sth partition of the lth data transfer. The AL-EDG is constructed as follows;

1. Copy vertices and edges of SL-EDG as those of AL-EDG as follows:

5.5 Design Quality Evaluation 105

(a) Copy vp(i,k) ∈ Vsl as vp(i_0,k_0) and add to Val.

(b) Copy vc(j,l_0) ∈ Vsl as vc(j,l_0) and add to Val.

(c) Copy (vp(i,k) , vp(i,k+1)) ∈ Esl as (vp(i_0,k_0) , vp(i_0,k+1_0)) and add to Eal.

(d) Copy (vc(j,l_0) , vc(j,l+1_0)) ∈ Esl as (vc(j,l_0) , vc(j,l+1_0)) and add to Eal.

(e) Copy (vp(i,k) , vc(j,l_0)) ∈ Esl as (vp(i_0,k_0) , vc(j,l_0)) and add to Eal.

(f) Copy (vc(j,l_0) , vp(i,k)) ∈ Esl as (vc(j,l_0) , vp(i_0,k_0)) and add to Eal.

2. Alter Val and Esl so that the AL-EDG includes vertices and edges involving
data tiling. It is assumed that a convolutional layer receives Ci-channel
IFMs as input and generates Co-channel OFMs as output. For every process
pi, do as follows;

(a) If pi is a process of convolutional layer that is mapped onto Q instances
of CNN accelerator IP’s functional block and is divided into R tiles per
one instance of functional blocks, which means that data of the layer
is divided into Q × R tiles, do as follows;

i. For each vertex vp(i_0,k_0) , make vertices vp(i_q,k_r) , where q = 0, ...,Q−
1 and r = 0, ...,R−1, and add them to Val. Each of them represents
the processing of each data tile on each instance of the mapped
functional block. The amount of computation of each new vertex
vp(i_q,k_r) is 1

Q×R times of the amount of computation of the original
vertex vp(i_0,k_0) .

ii. For each edge (vc j,l_0 , vp(i_0,k_0)), add edges (vc j,l_0 , vp(i_q,k_r)), which rep-
resent R/E dependencies of each data tile, to Eal.

iii. For each edge (vp(i_0,k_0) , vc(j,l_0)), add edges (vp(i_q,k_r) , vc j,l_0), which
represent E/S dependencies of each data tile, to Eal.

iv. Make edges that represent execution orders between data pro-
cessing, which depends on modeling scheme. For IFM-major
scheme, make edges (vp(i_q,k_r) , vp(i_q,k+1_r)) and (vp(i_q,Ci−1_r) , vp(i_q,0_r+1)).
For OFM-major scheme, make edges (vp(i_q,k_r) , vp(i_q,k_r+1)) and
(vp(i_q,k_R−1) , vp(i_q,k+1_0)).

Figure 5.6 (a) shows these steps for vertices of p2 when Q = 2 and
R = 2. Each vertex of p2 is partitioned into four vertices, for example,
the vp(2_0,0_0) is partitioned into vp(2_0,0_0) , vp(2_0,0_1) , vp(2_0,0_2) , and vp(2_0,0_3) ,
each of which is responsible for each data tile. The vertices of p2

become eight vertices of four data tiles undertaken by two instances of
the functional block.

(b) If pi is a process of loading weights of the following convolutional
layers, which is mapped onto Q instances of functional block of CNN
accelerator IP, and the modeling scheme is IFM-major scheme, do as
follows;

106 Architecture Exploration of SoCs for CNN-based AI Platform

vp(2-1,0-1)

vp(2-0,1-0)

vp(2-1,0-0)
vc(0,0)

: 2(a)ii
: 2(a)iii
: 2(a)iv

vp(2-0,0-0)

vc(0,1)

vc(1,0)

vp(2-0,0-1)

vc(1,1)

vp(2-0,1-1)

vp(2-1,0-1)

vp(2-1,1-1)

vc(2,0)

vc(2,1)

vc(2,2)

: 2(a)iTile0

Instance0

Instance1 : 2(a)iTile1

(a)

vp(1-0,0-0)

: 2(b)ii
: 2(b)iii

vp(1-0,1-0)

vc(1,0_0)

vc(1,1_0)

: 2(b)iTile0

: 2(b)iTile1

vp(1-0,0-1)

vp(1-0,1-1)

(b)

vp(3-0,1-0)

vp(3-0,0-1)
vc(2,0_0)

vp(3-0,0-0)

vc(3,2_0)

vp(3-0,1-1)

vc(2,2_0)

vc(2,1_0)

vp(3-0,2-1)

vp(3-0,2-0)

vp(3-0,0-3)

vp(3-0,0-2)

vp(3-0,1-3)

vp(3-0,1-2)

vp(3-0,2-3)

vp(3-0,2-2)

vc(3,1_0)

vc(3,0_0)

: 2(c)ii
: 2(c)iii
: 2(c)iv

: 2(c)iTile0

: 2(c)iTile1

(c)

Figure 5.6: An example of AL-EDG construction in step 2 of the SLM in
Fig. 5.5(a), which is implemented with IFM-major scheme.

5.5 Design Quality Evaluation 107

i. For each vertex vp(i_0,k_0) , duplicate it as vertices vp(i_0,k_r) where r =
0, ...,R − 1, and add them to Val. Each of them represents the
processing of loading weights for each tile.

ii. For each edge (vp(i_0,k_0) , vc(j,l_0)), add edges (vp(i_0,k_r) , vc j,l_0) to Eal.
iii. Make edges (vp(i_0,k_r) , vp(i_0,k+1_r)) and (vp(i_0,Ci−1_r) , vp(i_0,0_r+1)) to repre-

sent execution orders between data processing.

Figure 5.6 (b) shows these steps for vertices of p1. Each vertex of p1

is duplicated into two vertices, for example, the vp(1_0,0_0) is duplicated
as vp(1_0,0_0) and vp(1_0,0_1) . Each vertex of p1 is responsible for loading
weights for each data tile.

(c) If pi is a process of activation layer, such as ReLU layer, or pooling
layer, or normalization layer, the preceding process of convolutional
layer is mapped onto Q instances of functional block of CNN acceler-
ator IP, do as follows;

i. For each vertex vp(i_0,k_0) , make vertices vp(i_0,k_r) where r = 0, ..., (Q−
1) × (R − 1), and add them to Val. Each of them represents the
processing of each data tile. The amount of computation of each
new vertex vp(i_0,k_r) is 1

Q×R times of the amount of computation of
the original vertex vp(i_0,k_0) .

ii. For each edge (vc j,l_0 , vp(i_0,k_0)), add edges (vc j,l_0 , vp(i_0,k_r)) to Eal.
iii. For each edge (vp(i_0,k_0) , vc(j,l_0)), add edges (vp(i_0,k_r) , vc j,l_0) to Eal.
iv. Make edges that represent execution orders between data process-

ing, which differs by modeling scheme.
For IFM-major scheme, make edges (vp(i_0,k_r) , vp(i_0,k_r+1)) to repre-
sent the order of process vertices of the same tile and input chan-
nel from different instances of functional block of CNN acceler-
ator IP, edges (vp(i_0,k_r) , vp(i_0,k+1_r−Q+1)) to represent the order of pro-
cess vertices of the same tile but different input channels, and
edges (vp(i_q,Co−1_r) , vp(i_q,0_r+1)) to represent the order of process ver-
tices from different tiles.
For OFM-major scheme, make edges (vp(i_0,k_r) , vp(i_0,k_r+1)) and
(vp(i_0,k_((Q−1)×(R−1))) , vp(i_0,k+1_0)).

Figure 5.6 (c) shows these steps for vertices of p3. Each vertex of p3

is partitioned into four vertices, each of which is responsible for each
data tile. The vertices of p3 become twelve vertices from two instances
of the functional block.

3. Alter Val and Esl so that the AL-EDG includes channel vertices and edges
involving data tiling. For every channel c j = (pu, px) ∈ C, do as follows;

(a) If pu is a process of loading weights and px is a process of convo-
lutional layer mapped onto Q instances of functional block of CNN

108 Architecture Exploration of SoCs for CNN-based AI Platform

vp(2-0,1-0)

vp(2-1,0-0)
vc(1,0_0)

vp(2-0,0-0)

Instance0

Instance1

vp(1-0,0-0)

vp(2-1,0-1)

vp(2-0,0-1)

vp(2-1,0-1)

vp(2-0,1-1)

vp(2-1,1-1)

vc(1,1_0)
vp(1-0,1-0)

vc(1,0_1)
vp(1-0,0-1)

vc(1,1_1)
vp(1-0,1-1)

:3(a)ii :3(a)iii :3(a)iv
:3(a)iTile0 :3(a)iTile1

(a)

vp(2-0,1-0)

vp(2-1,0-0)
vc(0,0_1)

vp(2-0,0-0)

Instance0

vp(2-1,0-1)

vc(2,2_0)

vc(0,1_1)

vp(2-1,0-1)

vp(2-0,0-1)

vp(2-1,1-1)

vp(2-0,1-1)

Instance1
vc(0,0_0)

vc(0,1_0)

vc(0,0_2)

vc(0,1_2)

vp(0-0,0-0)

vc(2,2_0)

:3(b)ii :3(b)iii :3(b)iv:3(b)iTile0 :3(b)iTile1

(b)

vp(2-1,0-1)

vp(2-0,0-1)

vp(2-0,1-0)

vp(2-1,0-0)

vc(2,0_1)

vp(2-0,0-0)

Instance0

vp(2-1,0-1)
vc(2,2_1)

vc(2,1_1)

vp(2-0,1-1)

Instance1

vc(2,0_0)

vc(2,1_0)

vc(2,2_0)

vc(2,0_2)

vc(2,0_3)

:3(c)ii :3(c)iii :3(c)iv:3(c)iTile0 :3(c)iTile1

vc(2,1_3)

vc(2,1_2)

vc(2,2_2)

vc(2,1_3)

vp(3-0,1-0)

vp(3-0,0-1)

vp(3-0,0-0)

vp(3-0,2-0)

vp(3-0,0-2)

vp(3-0,1-2)

vp(3-0,2-2)

vp(3-0,1-1)

vp(3-0,2-1)

vp(3-0,0-3)

vp(3-0,1-3)

vp(3-0,2-3)

vp(2-1,1-1)

(c)

Figure 5.7: An example of AL-EDG construction in step 3 of The SLM in
Fig. 5.5(a), which is implemented with IFM-major scheme.

5.5 Design Quality Evaluation 109

accelerator IP, and the modeling scheme is IFM-major scheme, do as
follows;

i. For each vertex vc j,l_0 , duplicate it as vertices vc j,l_s , where s =
0, ...,R − 1, and add them to Val. The number of data to trans-
fer of each vc j,l_s is equal to the number of data of vc j,l_0 .

ii. For each (vp(u_0,k_r) , vc j,l_0) edge, alter it to be (vp(u_0,k_r) , vc j,l_s), where
r = s, to represent the E/S dependencies.

iii. For each (vc j,l_0 , vp(x_q,k_r)), alter it to be (vc j,l_s , vp(x_q,k_r)), where r = s,
to represent the R/E dependencies.

iv. Make edges (vc j,l_s , vc j,l+1_s) and (vc j,Ci−1_s , vc j,0_s+1) to represent execu-
tion orders between data transfers.

Figure 5.7 (a) shows these steps for vertices of c1. Each vertex of c1

is duplicated into two vertices, for example, the vc(1,0_0) is duplicated
as vc(1,0_0) and vc(1,0_1) . Each vertex of c1 is responsible for transferring
weights for each data tile.

(b) If pu is a typical process and px is a process of convolutional layer
mapped onto Q instances of functional block of CNN accelerator IP,
do as follows;

i. For each vertex vc j,l_0 , make vertices vc j,l_s , where s = 0, ..., (Q−1)×
(R − 1), and add them to Val. The number of data to transfer of
each vc j,l_s is 1

Q×R times of the number of data of vc j,l_0 . It is assumed
that each tile is considerably large compared to the overlapping
data of sliding window, so the overlapping data is ignored in the
estimation.

ii. For each (vp(u_0,k_0) , vc j,l_0) edge, alter it to be (vp(u_0,k_0) , vc j,l_s).
iii. For each (vc j,l_0 , vp(x_q,k_r)) edge, alter it to be (vc j,l_s , vp(x_q,k_r)), where

s = (r × Q) + q.
iv. Make edges that represent execution orders between data trans-

fers, which differs by modeling scheme.
For IFM-major scheme, make edges (vc(i,k_r) , vc(i,k_r+1)) to represent
the order of channel vertices of the same tile and input channel
to different instances of functional block of CNN accelerator IP,
make edges (vc(i,k_r) , vc(i,k+1_r−Q+1)) to represent the order of channel
vertices of the same tile but different input channels, and make
edges (vc(i,Co−1_r) , vc(i,0_r+1)) to represent the order of channel vertices
from different tiles.
For OFM-major scheme, make edges (vc j,l_s , vc j,l_s+1) and
(vc j,l_((Q−1)×(R−1)) , vc j,l+1_0).

Figure 5.7 (b) shows these steps for vertices of c0. Each vertex of c0

is partitioned into four vertices, for example, the vc(0,0_0) is partitioned
into vc(0,0_0) , vc(0,0_1) , vc(0,0_2) and vc(0,0_3) . Each vertex of c0 is responsible
for transferring weights for each data tile.

110 Architecture Exploration of SoCs for CNN-based AI Platform

(c) If pu is a process of convolutional layer mapped onto the Q instances of
functional block of CNN accelerator IP or activation layer or pooling
layer, and px is a typical process or activation layer or pooling layer,
do as follows;

i. For each vertex vc j,l_0 , make vertices vc j,l_s , where s = 0, ..., (Q −
1) × (R − 1), and add them to Val. The number of data to transfer
of each vc j,l_s is 1

Q×R times of the number of data of vc j,l_0 .

ii. If pu is a process of convolutional layer, for each (vp(u_q,k_r) , vc j,l_0)
edge, alter it to be (vp(u_q,k_r) , vc j,l_s), where s = (r × Q) + q. If pu

is a process of activation or pooling layer, for each (vp(u_0,k_r) , vc j,l_0)
edge, alter it to be (vp(u_0,k_r) , vc j,l_s), where r = s.

iii. If px is a typical process, for each (vc j,l_0 , vp(x_0,k_0)), add edges
(vc j,l_s , vp(x_0,k_0)). If px is a process of activation layer or pooling
layer, for each (vc j,l_0 , vp(x_0,k_r)), alter it to be (vc j,l_s , vp(x_0,k_r)), where
s = r.

iv. Make edges that represent execution orders between data trans-
fers, which depends on modeling scheme.
For IFM-major scheme, make edges (vc(i,k_r) , vc(i,k_r+1)) to represent
the order of channel vertices of the same tile and input channel
to different instances of functional block of CNN accelerator IP,
make edges (vc(i,k_r) , vc(i,k+1_r−Q+1)) to represent the order of channel
vertices of the same tile but different input channels, and make
edges (vc(i,Co−1_r) , vc(i,0_r+1)) to represent the order of channel vertices
from different tiles.
For OFM-major scheme, make edges (vc j,l_s , vc j,l_s+1) and
(vc j,l_((Q−1)×(R−1)) , vc j,l+1_0).

Figure 5.7 (c) shows these steps for vertices of c2. Each vertex of c2

is partitioned into four vertices, for example, the vc(2,0_0) is partitioned
into vc(2,0_0) , vc(2,0_1) , vc(2,0_2) and vc(2,0_3) .

4. Alter Val and Eal so that the AL-EDG also includes the dependencies of data
transfers raised by communication paths as explained in step 2 of section
3.4.3. On the other hand, in step 2(a)ii and 2(b)ii, if there are multiple
(vc(j,ls) , vp(iq ,kr)) edges, one (vc(j,ls) , vc′′′(j,ls)

) and multiple (vc′′′(j,ls)
, vp(iq ,kr)) edges will

be added.

5. Divide the vertices into groups. The vertices of functional blocks are di-
vided by functional blocks and instances. The group V f bi_q represents the
vertex group that are undertaken by instance q of functional block i. The
vertices of other components are divided as explained in step 3 of section
3.4.3.

5.5 Design Quality Evaluation 111

AL-EDG Analysis

The AL-EDG is analyzed to estimate execution time of the system given as the
ALM. The analysis proceeds with similar procedures as explained in section 3.4.4.
Two additional points are applied in order to analyze the behavior of intra-layer
parallelism due to data tiling.

First, to analyze the intra-layer parallelism undertaken by different instances of
the same functional block, the analysis finds the executable vertices and deter-
mines a vertex whose execution will be analyzed on each instance of each func-
tional block. For each instance, a vertex in V f bi_q is classified as executable when
it has no edge from other vertices. It is added to executable vertex set, Vexe f bi_q

, and
then, the analysis chooses a vertex in Vexe f bi_q

to analyze its execution in each iter-
ation. Consequently, vertices of the same process that are undertaken by multiple
instances can be analyzed at the same time, which corresponds to the analysis of
intra-layer parallelism.

Second, total data processing time of each process vertex is calculated in accor-
dance to data tiling. It is calculated by the following equation:

tp =
α × e(p j, f bi)

f f bi

, (5.1)

where α is the processing time factor and depends on the IP, e(p j, f bi) is the execu-
tion cycle of process p j on functional block f bi, and f f bi is the execution frequency
of f bi. For typical processes, α is 1. For processes involved in convolutional lay-
ers, α is set in accordance with IP.

5.5.2 Hardware Area Estimation
Area of an architecture, A(Mal), is the summation of areas of all the hardware
components within an ALM, Mal. It is estimated as shown in Eq. (5.2).

A(Mal) =
∑
f bi∈F

A(f bi) +
∑

pti∈PT

A(pti) +
∑
di∈D

A(di) +
∑
mi∈M

A(mi)+

A(BM) +
∑
bi∈B

A(bi) +
∑

bbi∈BB

A(bbi),
(5.2)

where A(f bi), A(pti), A(di), A(mi), A(BM), A(bi), and A(bbi) represent the area
function of functional blocks, ports, DMACs, memories, a bus matrix, shared
buses, and bus bridges, respectively.

Area of Functional Block

Assuming that functional block i that is an implementation of IP j, the area of
functional block i, A(f bi), is estimated as follows:

A(f bi) = gip j × gnand, (5.3)

112 Architecture Exploration of SoCs for CNN-based AI Platform

where gip j is the gate count of IP j that is registered in the IP database and gnand is
the area of one NAND gate of the target process technology. For CNN accelerator
IP, the area is estimated as follows:

A(f bi) = (gip j + gpe × Npei) × gnand, (5.4)

where gip j is the gate count of IP j that is registered in the IP database, which
excludes the gate count of PE, and gpe is the gate count of PE of IP j.

Area of Port

The area of each port, A(pti), is the summation of the area of protocol interface of
port, Ain f (pti), and the buffer area within port, Abu f (pti), as follows:

A(pti) = Ain f (pti) + Abu f (pti), (5.5)

The area of protocol interface is the product of the IP’s protocol interface gate
count of the connecting functional block and the area of one NAND gate. The
protocol interface gate count is registered in the IP database.

The buffer area is the summation of the area of receive buffers and transmit
buffers in each port. The area of receive buffer is the product of SRAM area that
is large enough to store the biggest amount of data for a process execution and
the number of receive buffer. Likewise, the area of transmit buffer is the product
of SRAM area that is large enough to store the biggest amount of generated data
and the number of transmit buffer. The SRAM area is obtained from the SRAM
library, which is prepared in advance. However, it is accounted that the port that
is connected to functional block of memory IP does not contain buffer.

Area of DMAC

Figure 5.8 (a) shows the model of a DMAC, which is composed of a master inter-
face, an internal control logic circuit and a data buffer. It is assumed that the con-
trol program is included as part of the control circuit and the protocol of DMAC’s
master interface is the same protocol as of the connecting bus. The area of DMAC,
di, is estimated with the following equation:

A(di) = Ain f (di) + Alogic(di) + Abu f (di), (5.6)

where Ain f (di), Alogic(di) and Abu f (di) are the area of the master interface, the in-
ternal control logic circuit and the data buffer, respectively. Here, the buffer area
is assumed to be significantly larger than the others. Therefore, this research con-
siders the area of a DMAC the area of buffer, which is derived from the above
mentioned SRAM library.

5.5 Design Quality Evaluation 113

Control
Logic

Buffer
(SRAM)

M
aster Interface

Address bus

Write data bus

Read data bus

(a)

Storage Block#1 for Ci

Slave Interface

Address bus

Write data bus

Read data bus

Memory Space

Storage Block#1 for Cj

Storage Block#2 for Ci…

(b)

Figure 5.8: Architecture model in this research: (a) model of a DMAC; (b) model
of a memory.

Area of Memory

The model of memory associated with data transfer is shown in Fig. 5.8 (b). It
consists of a slave interface and a memory space, which is divided into storage
blocks. It is assumed that a storage block is specific to a channel and the slave
interface of a memory is the same protocol as of the connecting bus. The area of
memory, mi, is estimated with the following equation:

A(mi) = Ain f (mi) +
∑

c j∈Cmi

Asb(c j) × nc j , (5.7)

where Ain f (mi) is the slave interface area, Cmi refers to the set of channels that
are conducted via a memory, Asb(c j) is the area of storage block for c j and nc j is
the number of storage blocks for c j. Similar to DMAC, the size of storage blocks
is considered significantly larger than the interface area. Therefore, this research
estimates the area of memory as the area of storage blocks, which is derived from
the SRAM library mentioned earlier.

Area of Bus Matrix

Figure 3.5 illustrates the multi-layer matrix model. It consists of a decoder for
each master layer, an arbiter and a bus matrix fabric, which includes input stages
and output stages that select the signals for each master and slave layer.

The bus matrix area is estimated according to the model by summing the area
of all the components as follows:

A(BM) =
∑

Adec +
∑

Aarb + A f abric, (5.8)

where
∑

Adec is the summation of the area of all the decoders,
∑

Aarb is the sum-
mation of the area of all the arbiters, and A f abric is the area of bus matrix fabric.
The areas of input stages and output stages are included in the area of bus matrix
fabric.

114 Architecture Exploration of SoCs for CNN-based AI Platform

The areas of decoder, arbiter, and bus matrix fabric are derived from the linear
equation of the areas extracted from the logic synthesis result of each component.
The area of decoder at each master layer varies by the number of bus matrix’s
slave layers and the number of slaves in each master layer. The area of arbiter at
each slave layer varies by the number of master layers that need to access each
slave layer. Finally, the area of bus matrix fabric varies by the number of buses on
the bus matrix and the bus width.

Area of Shared Bus

The area of shared bus, A(bi), is basically the summation of the wire area, Awire(bi),
and the bus logic area, Alogic(bi), as shown in Eq. (5.9).

A(bi) = Awire(bi) + Alogic(bi), (5.9)

It differs by bus protocol according to protocol models in Fig. 3.1 and Fig. 3.3(a).
The area of shared bus containing bus masters, such as AHB, comes from wire
area and bus logic area. The area of peripheral bus containing only bus slaves,
such as APB, includes only the wire area.

The wire area of each bus is calculated from wire length, lbi , wire pitch, Wpitch,
and bus width, wbi . Wire length is derived based on the method of [131] and [164]
as shown in Eq. (5.10).

lbi = (0.9 + 0.55
√

npini)
√

Abi , (5.10)

where npini is the number of pins to which the bus connects and Abi represents the
summation of area of all the modules connecting to the target bus as follows.

Abi =
∑

f b j∈Fbi

A(f b j) +
∑

pt j∈PTbi

A(pt j)+∑
d j∈Dbi

A(d j) +
∑

m j∈Mbi

A(m j) +
∑

bb j∈BBbi

A(bb j),
(5.11)

where Fbi , PTbi , Dbi , Mbi and BBbi are the function blocks, ports, DMACs, mem-
ories and bus bridges that are connected to bus bi. Then, wire area is estimated as
follows:

Awire(bi) = lbi ×Wpitch × (wa,bi + 2 × wbi) × (1 − Rover), (5.12)

where Wpitch and Rover represent wiring pitch and rate of over-the-cell wires, both
of which are specified by the designer.

The bus logic area of an AHB is the summation of the area of three multiplexers,
one arbiter and one decoder. The area of a multiplexer comes from the multiplexer
library prepared in advance from the logic synthesis result. The areas of arbiter
and decoder are obtained in the same way as the areas of arbiter and decoder of
bus matrix.

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 115

Control
Logic

Buffer
(Register)

M
aster

Interface

Slave Interface

Address bus2

Write data bus2

Read data bus2

Address bus1

Write data Bus1

Read data bus1

Figure 5.9: Architecture model of a bus bridge.

Area of Bus Bridge

The model of bus bridge is shown in Fig. 5.9. Its area, A(bbi), is estimated as the
summation of area of its components as follows:

A(bbi) = Ain f m(bbi) + Ain f s(bbi) + Alogic(bbi) + Abu f (bbi), (5.13)

where Ain f m(bbi), Ain f s(bbi), Alogic(bbi) and Abu f (bbi) are the area of master inter-
face, slave interface, control logic circuit and buffer. The interface area and the
control logic circuit area are obtained from the bus bridge library, which is created
by synthesizing the interface area and the control logic circuit area. The area of
buffer is derived from the register area which equals to the widest bus width con-
nected to the bus bridge. The register area is calculated from the linear equation
extracted from the synthesized register area.

5.6 Architecture Exploration of SoCs for CNN-based
AI Platform

Exploring SoCs architecture for CNN-based AI platform concerns four important
points below.

1. The exploration that finds the architecture that leverage the intra-layer par-
allelism even though the system is modeled in coarse-grained granularity

2. Ports, buses, buses on bus matrix, bus bridges, DMACs and memories com-
posing a communication path from the source port to the destination port of
each channel

3. The architecture’s port clustering, and the placement of DMACs and mem-
ories for the cluster organization of the bus matrix topology

4. The selection of bus protocols and their parameters for both shared buses
and the multi-layer bus

Point 1 considers leveraging intra-layer parallelism capability through the param-
eterization of functional blocks. This saves human and time resource in imple-
menting a medium- or fine-grained SLM and exploring the design space from a

116 Architecture Exploration of SoCs for CNN-based AI Platform

cumbersome SLM. Point 2 and 3 together determine the communication path of
each channel, which is crucial for the ALM organization of the target architecture.
Point 4 focuses on exploring bus protocols and the parameters of bus architecture
based on the selected bus protocols because bus protocols determine not only the
valid parameter values of a bus, e.g. bus width, but also its characteristics.

This research explores the architecture design space in two folds. First, it deter-
mines IPs and bus architecture on the SoCs by mapping processes and channels of
the SLM to IPs and bus architecture. It determines the functional blocks and com-
munication path, such as ports, DMACs and memories, and then, organizes ports,
DMACs and memories in each cluster of bus matrix via channel mapping and the
automatic placement of DMACs and memories. Second, it maps parameters of
SoC architecture to the available candidates. The parameters for parallelizing the
MACCs of intra-layer parallelism are determined, and the parameters for shared
buses and multi-layer bus are selected based on bus protocols. Both are done by
the traversal through a parameter set search tree as described in section 5.6.2.

5.6.1 SoC Architecture Parameterization
In addition to selecting the IPs and bus architecture on the SoCs by mapping SLM
to the architecture, the proposed method also explores parameters that describe
both architectural and operational properties of the components. The components
on the SoC for CNN-based AI platform are parameterized for mapping as follows:

1. Parameters of functional blocks

• The number of instances of IP j that is implemented as functional
block i (N f bi)

• The number of PEs within an instance of functional block i (Npei)

• Execution frequency of functional block (f f bi)

2. Parameters of shared buses

• Bus protocol (prbi)

• Data bus width (wbi)

• Address bus width (wa,bi)

• Execution frequency of shared bus (fbi)

3. Parameters of multi-layer bus

• Multi-layer bus protocol (prbm)

• Data bus width of bus matrix (wbm)

• Address bus width of bus matrix (wa,bm)

• Execution frequency of bus matrix (fbm)

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 117

4. Parameters of buffers in ports

• The number of receive buffers (nq)

• The number of transmit buffers (nr)

5. Parameters of memory that is associated with data transfer

• The number of storage blocks (nci)

5.6.2 Parameter Set Search Tree
The proposed architecture exploration method explores the design space by travers-
ing through a parameter set search tree with depth-first search. The parameter set
search tree is composed of multiple parameter mapping trees by concatenating the
leaf of the preceding tree to the root of the following tree.

IPs and Bus Architecture Selection Trees

1. Process mapping
The process mapping determines a functional block instance of an IP to
undertake the execution of each process. The functional blocks are selected
from the IPs in the IP database that can execute each process in the same
fashioned as in the method of Ueda et al. as shown in Fig. 2.4. The depth
for this search tree is |P|.

2. Channel mapping
The channel mapping determines the communication path for interprocess
communication. Sources and destinations of channels are mapped on to
ports, clusters and buses. The depth of the three channel mapping trees is
2 × |C|.

(a) Channel-to-port mapping
First, the source of a channel is mapped on to a port for data trans-
mission from a functional block that generates the data. Then, the
destination of the channel is mapped on to a port for data reception
from the functional block. The mapped port is selected from a master
port or a slave port of the functional block according to the number of
ports of the IP registered in the IP database. A channel-to-port map-
ping tree is shown in Fig. 5.10. It is assumed that p1 is mapped on to
f b1(I2, 1), p2 is mapped on to f b2(I1, 1), and both IP I1 and I2 have
a master port and a slave port. In Fig. 5.10, the source of channel
c1, remarked by c1s, is mapped on to either a master port or a slave
port of f b1. Then, the destination of channel c1, remarked by c1d, is
mapped on to either a master port or a slave port of f b2. ptiM and ptiS

represent the ith master port and the ith slave port, respectively. The

118 Architecture Exploration of SoCs for CNN-based AI Platform

c1s → pt1M of fb1 c1s → pt1S of fb1

c1d → pt2M of fb2 c1d → pt2S of fb2 c1d → pt2M of fb2 c1d → pt2S of fb2
fb2(I1,1)

c1dc1s
p1 p2

fb1(I2,1) fb2(I1,1)

c1dc1s
p1 p2

fb1(I2,1) fb2(I1,1)

c1dc1s
p1 p2

fb1(I2,1) fb2(I1,1)

c1dc1s
p1 p2

fb1(I2,1)

Master port Slave port

Figure 5.10: An example of channel-to-port mapping tree.

c2d
fb2(I1,1) fb2(I1,1)

Cluster1

c1 → Cluster1

c1d → Cluster1 c1d → Cluster2

c2s → Cluster1 c2s → Cluster2

c2d → Cluster1 c2d → Cluster1

fb3(I3,1)

c2s

c1dc1s
p1 p2

p3

fb1(I2,1) fb2(I1,1)

fb3(I3,1)

c2s

c1dc1s
p1 p2

p3

c2d
fb1(I2,1)

Cluster1

Cluster1

Cluster2

c2s → Cluster1

c2d → Cluster2

fb3(I3,1)

c2s

c1dc1s
p1 p2

p3

c2d
fb1(I2,1)

Cluster2

c2s → Cluster2 c2s → Cluster3 . . .

Figure 5.11: An example of channel-to-cluster mapping tree.

black dot represents a master port and the white dot represents a slave
port. The maximum number of ports is 2× |C| and is reached when the
source and destination of each channel are mapped to its own port.

(b) Channel-to-cluster mapping
The channel-to-cluster maps the source and the destination of each

channel into clusters. It represents the selection of a port’s cluster.
Each cluster is a group of ports, DMACs and memories connected to
either a master layer or a slave layer of the bus matrix. As a result of
channel-to-cluster mapping, a cluster with one or more master ports
is considered a master cluster and connected with the bus matrix as a
master layer, while a cluster that has no master port is recognized as a
slave cluster and connected with the bus matrix as a slave layer. Fig-
ure 5.11 shows an example of the channel-to-cluster mapping of a sys-
tem with two channels, which are mapped on to three ports. First, the
source of channel c1, c1s, is mapped on to Cluster1. Then, the desti-

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 119

b1

fb2(I1,1)

c1s → b1

c1d → b2

c2s → b1 c2s → b3

c2d → b2 c2d → b2

fb3(I3,1)

c1dc1s
p1 p2

p3

c2dfb1(I2,1)

c2s

b2 b1

fb2(I1,1)

fb3(I3,1)

c1d
p1 p2

p3

c2dfb1(I2,1)

c2s

b2

b3

c1s

Figure 5.12: An example of channel-to-bus mapping tree, where a channel is
mapped on to a bus in the same cluster or a new bus.

nation of channel c1, c1d, is mapped on to the existing cluster Cluster1
or a new cluster Cluster2. Likewise, the next source of channel c2,
c2s, can be in the existing clusters or a new cluster. Finally, since the
destination of channel c2, c2d, is mapped on to the same port as c1d, it
is mapped on to the same cluster as c1d.

(c) Channel-to-bus mapping
The source and destination of each channel are mapped on to buses,

representing those that are connected to each mapped port. A channel
can be mapped only on to a bus that is in the same cluster or a new
bus. The number of buses in a cluster that contains only slave ports,
i.e. a slave cluster, is limited to one because only one master accesses a
slave layer at a time. Consequently, more buses would not relieve any
bus contention. An example of the channel-to-bus mapping proposed
in this research is illustrated in Fig. 5.12. In the figure, the source
of channel c1, c1s, is first mapped on to a new bus b1. Then, since
the destination of channel c1, c1d, is in a different cluster from c1s, it
cannot be mapped on to b1. Therefore, it is mapped on to a new bus b2.
The next source of channel c2, c2s, is in the same cluster as c1s is, so
it can be mapped on to either bus b1 or a new bus b3. Finally, because

120 Architecture Exploration of SoCs for CNN-based AI Platform

Cluster1 → b1

Cluster2 → b2 Cluster2 → b2

Cluster1 → b3

b1

fb2(I1,1)

fb3(I3,1)

c1dc1s
p1 p2

p3

c2dfb1(I2,1)

c2s

b2 b1

fb2(I1,1)

fb3(I3,1)

c1d
p1 p2

p3

c2dfb1(I2,1)

c2s

b2

b3

c1s

BM

Cluster1 Cluster2

BM

Cluster1 Cluster2

Figure 5.13: An example of cluster-to-bus matrix mapping tree.

the destination of channel c2, c2d, is mapped on to the same port as c1d

is, it is also mapped on to bus b2.

3. Cluster-to-bus matrix mapping
In the multi-layer architecture, one bus in each cluster is connected to the
bus matrix. The cluster-to-bus matrix mapping selects a shared bus in each
cluster to connect to a port of bus matrix. Figure 5.13 illustrates the cluster-
to-bus matrix mapping tree. Cluster1, a master cluster, consists of two
buses while Cluster2, a slave cluster, contains one bus. First, the mapping
proceeds by selecting either bus b1 or bus b3 of Cluster1 to connect with
the bus matrix, BM. Then, bus b2 is chosen to connect with the bus matrix
because it is the only bus in Cluster2. The depth of this search tree equals
to the number of clusters.

4. DMAC and memory placement
Since most bus specifications provide a master-slave communication scheme,
the communication of channels that both source and destination are mapped
on to two master ports or two slave ports cannot take place. A memory or
a DMA controller must be inserted as part of the communication path. In
a hierarchical shared bus architecture, either a DMAC or a memory would
suffice the master-slave regulation. However, a multi-layer bus architecture
also regulates that the communication must occur within the same master
layer or between a master and a slave layer. For example, when a master
in a master cluster communicates with a slave in another master cluster, an

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 121

Table 5.1: DMAC and memory placement to suffice master-slave communication
scheme of a multi-layer bus

Port and cluster type Same
DMAC or memory insertion

pts ptd cluster?

M (MC) M (MC)
Yes A memory on a bus in pts’s MC
No One memory in one of the SCs

M (MC) S (MC) Yes No insertion
M (MC) S (SC) No No insertion
S (MC) M (MC) Yes No insertion
S (SC) M (MC) No No insertion
S (MC) S (MC) Yes A DMAC on a bus in pts’s MC
S (MC) S (SC) No A DMAC on a bus in pts’s MC
S (SC) S (MC) No A DMAC on a bus in ptd’s MC

S (SC) S (SC)
Yes A DMAC on a bus in one of the MCs
No A DMAC on a bus in one of the MCs

memory is needed in one of the slave clusters and a DMAC is needed for
data transfer between the memory and the target slave port.

The DMAC and memory placement explores the placement of DMACs and
memories that are inserted as a communication path of the channels accord-
ing to the result of channel mapping. Since insertion adds latency to the
communication path, the DMAC and memory placement inserts no more
than one component for each channel as shown in Table 5.1. It disregards
the result of channel mapping that requires two or more additional compo-
nents for one of the channels. In the table, pts and ptd refer to the port of
the source and the destination of a channel, respectively. The symbols M,
S, MC, and SC stand for a master port, a slave port, a master cluster, and
a slave cluster, respectively. For example, the M (MC) in the column pts

means that pts is a master port in a master cluster.

The clusters resulting from the DMAC and memory placement are inter-
preted as follows.

• A cluster with a single master port or a single DMAC is a single mas-
ter cluster.

• A cluster with more than one master ports or DMAC but no slave port
or memory is a multiple master cluster.

• A cluster with at least one master port or DMAC and at least one slave
port or memory is a shared bus or hierarchical shared bus subsys-
tem.

122 Architecture Exploration of SoCs for CNN-based AI Platform

prbm→ Protocol1 prbm → Protocol2

Figure 5.14: An example of bus matrix protocol mapping tree.

• A cluster with a single slave port or a single memory is a single slave
cluster.

• A cluster with more than one slave ports or memories but no master
port or DMAC is a multiple slave cluster.

Upon the completion of the placement, the necessary bus bridges and buses
on the bus matrix fabric are automatically placed into the architecture. A
bus bridge is required when a master (master port or DMAC) and a slave
(slave port or memory) reside on different buses or the bus of a master or
a slave is not connected to the bus matrix. The necessary buses on the bus
matrix fabric are determined to form a maximally connected bus matrix of
a partial bus matrix.

The depth of this tree varies according to the result of channel mapping.
The maximum depth is 3 × |C|, which means that every channel is mapped
to slave ports in different master clusters that need two DMAC and one
memory insertion.

5. Bus matrix protocol mapping
The bus matrix protocol mapping determines a multi-layer bus protocol for
a bus matrix, prbm. Figure 5.14 illustrates an example when there are two
protocols for bus matrix. This tree is organized with nodes that map bus
matrix to each protocol. In this research, the protocol for a multi-layer bus
and its limitation is as follows.

• Multi-layer AHB
The bus matrix of multi-layer AHB can connect with at most 16 master
clusters and 16 slave clusters.

If the architecture includes only hierarchical shared buses, this tree is skipped.
For multi-layer bus-based architecture, the depth of this search tree is |BM|.

6. Shared bus protocol mapping
The shared bus protocol mapping determines a protocol for each shared
bus in the constructing architecture. The bus connection regulations are
different depending on bus protocol. In order to map a bus on to a bus
protocol, all of the following conditions must be satisfied.

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 123

prb1 → Protocol1prb2 → Protocol1 prb2 → Protocol2

prb3 → Protocol1 prb3 → Protocol2 prb3 → Protocol1 prb3 → Protocol2

Figure 5.15: An example of bus protocol mapping tree.

prpt1M→ Protocol1 prpt1M→ Protocol2

prpt2S→ Protocol3 prpt2S→ Protocol3

prpt3M→ Protocol2
prpt3M→ Protocol1 prpt3M→ Protocol2

Figure 5.16: An example of port protocol mapping tree.

• AHB
The bus must connect to no more than 16 masters.

• APB
The bus has a bus bridge as its only master. Additionally, it must not
connect to the bus matrix unless it is a bus in the slave cluster.

Figure 5.15 illustrates an example when there are two bus protocols: Protocol1
as AHB and Protocol2 as APB, respectively. Let us assume that b1 resides
in master clusters and is connected to master ports, while b2 and b3 are in
a slave cluster. b1 can only be mapped to Protocol1 because it does not
satisfy the condition of Protocol2, while b2 and b3 can be mapped to both
protocols. The depth of this tree is |B|.

7. Port protocol mapping
The port protocol mapping selects a protocol for a port of functional block

from one of the port protocols that are registered for each IP in the IP
database. Figure 5.16 illustrates an example of port protocol mapping. As-
suming that an IP of functional block f b1 that is connected to pt1M has
one master port of Protocol1, two master port of Protocol2 and one slave
port of Protocol3. The protocol of pt1M, prpt1 M, is selected to be either
Protocol1 or Protocol2, which are protocols for master port. Then, an IP
of functional block f b2 that is connected to pt2S has one master port of

124 Architecture Exploration of SoCs for CNN-based AI Platform

Nfb1
= g1

(ூ1)

Nfb2
= g1

(ூ1) Nfb2
= g2

(ூ1) Nfb2
= g2

(ூ1) Nfb2
= g2

(ூ1)
N

fb
3

=
 g

1(ூ
2)

N
fb

3
=

 g
2(ூ

2)

N
fb

3
=

 g
1(ூ

2)

N
fb

3
=

 g
2(ூ

2)

N
fb

3
=

 g
1(ூ

2)

N
fb

3
=

 g
2(ூ

2)

N
fb

3
=

 g
1(ூ

2)

N
fb

3
=

 g
2(ூ

2)

Nfb1
= g2

(ூ1)

Figure 5.17: An example of the number of functional block instance mapping tree.

Protocol2 and one slave port of Protocol3. The protocol of pt2S , prpt2S , is
mapped to Protocol3, since it is the only slave port’s protocol of f b2. Next,
assume that pt3M is connected to f b1. Its protocol, prpt3 M can be mapped
to only Protocol2 if prpt1 M is Protocol1 because there is no master port of
Protocol1 left, and prpt3 M can be mapped to either Protocol1 or Protocol2
if prpt1 M is Protocol2. In this research, the port protocol is either an AHB
master port, an AHB slave port or an APB slave port. The depth of this
search tree is |PT |

Parameter Mapping Trees

1. Number of functional block instance mapping
This mapping selects the number of functional block instances, N f bi , for
each functional block, f bi. The number of instance candidates of each func-
tional block is raised in the IP database. Figure 5.17 shows the example of
the mapping, where g(Ii)

j represents the jth candidate of the number of in-
stances of IP Ii. It is assumed that (1) there are two candidates for each IP;
(2) f b1 and f b2 is implemented from IP I1; (3) f b3 is implemented from IP
I2. Generally, the depth of this tree is |F|. However, since this thesis applies
N f bi to only the functional blocks of CNN accelerators, the depth equals to
the number of CNN accelerators.

2. Number of PE mapping
This mapping selects the number of PEs, Npei , for each functional block,
f bi. The number of PE candidates of each functional block is raised in
the IP database according to the IP that the functional block implemented.
Figure 5.18 shows an example of the mapping, where h(Ii)

j represents the
jth candidate of the number of PEs of IP Ik. Assume that there are three
functional blocks. The depth of this tree is the same as the depth of the
number of functional block instance mapping tree.

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 125

Npe1
= h1

(ூ1) Npe1
= ℎ2

(ூ1)

Npe2
= ℎ1

(ூ1) Npe2
= ℎ2

(ூ1) Npe2
= ℎ2

(ூ1) Npe2
= ℎ2

(ூ1)

N
pe

3
=

 ℎ
1(ூ

2)

N
pe

3
=

 ℎ
2(ூ

2)

N
pe

3
=

 ℎ
1(ூ

2)

N
pe

3
=

 ℎ
2(ூ

2)

N
pe

3
=

 ℎ
1(ூ

2)

N
pe

3
=

 ℎ
2(ூ

2)

N
pe

3
=

 ℎ
1(ூ

2)

N
pe

3
=

 ℎ
2(ூ

2)

Figure 5.18: An example of the number of PE mapping tree.

nc2s
= s1 nc2s

= s2

nc4d
= s1 nc4d

= s2 nc4d
= s1 nc4d

= s2

nc0s
= s1 nc0s

= s2 nc0s
= s1 nc0s

= s2 nc0s
= s1 nc0s

= s2 nc0s
= s1 nc0s

= s2

Figure 5.19: An example of the number of memory’s storage block mapping tree.

3. Number of memory’s storage block mapping
For each memory inserted during the DMAC and memory placement, the
number of its storage blocks for each channel is determined by the num-
ber of memory’s storage block mapping. The candidates for the number of
memory’s storage block is raised by the designer. The depth of this tree is
the number of channels that require memory for data transfer as inserted in
step DMAC and memory placement. The maximum depth of this tree is
|C| when all channels require a memory. Figure 5.19 illustrates the num-
ber of memory’s storage block mapping tree. Assume that there are three
candidates of the number of memory’s storage block is si and there are two
memories in the system, where memory m1 undertakes the communication
of channel c2s and c4d (Cm1 = {c2s, c4d}) and memory m2 undertakes channel
c0s (Cm2 = {c0s}). In the figure, nc2s , nc4d , and nc0s are the number of storage
block of c2s of m1, c4d of m1, and c0s of m2, respectively.

4. Bus matrix’s bus width mapping
The bus matrix’s bus width mapping selects a bus width for the buses on
bus matrix. The data bus width and the address bus width are mapped sep-
arately and the bus width is selected from the bus width candidates of the
bus protocol in the bus database. For example, the protocol of bus matrix

126 Architecture Exploration of SoCs for CNN-based AI Platform

wa,bm→ pwa1 wa,bm→ pwa2

wbm→ pwd1 wbm→ pwd2 wbm→ pwd3 wbm→ pwd1 wbm→ pwd2 wbm→ pwd3

Figure 5.20: An example of bus matrix’s bus width mapping tree.

wa,b1
→ pwa1 wa,b1

→ pwa2

wb1
→ pwd1 wb1

→ pwd2 wb1
→ pwd3 wb1

→ pwd1 wb1
→ pwd2 wb1

→ pwd3

Figure 5.21: An example of shared bus width mapping tree.

specifies two address and three data bus width candidates. Figure 5.20 il-
lustrates the bus matrix’s bus width mapping tree, where wa,bm denotes the
address bus width and wbm denotes the data bus width. In the figure, pwai

and pwd j denote the address and data bus width candidates of the mapped
protocol, respectively. For hierarchical shared bus-based architecture, this
tree is skipped. For multi-layer bus-based architecture, the depth of this
search tree is 2 × |BM|.

5. Shared bus width mapping
The shared bus width mapping chooses a bus width for each shared bus,
which is selected from the candidates of the bus protocol. This tree resem-
bles the bus width mapping tree in Fig. 5.21, but the data bus width and
the address bus width are mapped separately like bus matrix’s bus width
mapping. Therefore, the depth of this tree equals to 2 × |B|

6. Functional block’s execution frequency mapping
Each functional block operates at the execution frequency determined by
functional block’s execution frequency mapping as shown in Fig. 2.5. The
frequency is selected from the execution frequency candidates registered in
the IP database. The depth of this tree is |F|.

7. Bus matrix’s execution frequency mapping
The bus matrix, including all the buses on bus matrix, operates at the exe-
cution frequency determined in bus matrix’s execution frequency mapping.

5.6 Architecture Exploration of SoCs for CNN-based AI Platform 127

fbm→ pf1 fbm→ pf2 fbm→ pf3
Figure 5.22: An example of bus matrix’s execution frequency mapping tree.

The execution frequency is selected from the candidates of the mapped bus
protocol in the bus database. Figure 5.22 illustrates the execution frequency
mapping of bus matrix, where p fi denotes the execution frequency can-
didates of bus matrix’s mapped protocol and it is assumed that there are
three candidates. For hierarchical shared bus-based architecture, this tree
is skipped. For multi-layer bus-based architecture, the depth of this search
tree is |BM|.

8. Shared bus’ execution frequency mapping
Each shared bus in the architecture operates at the execution frequency de-
termined in shared bus’ execution frequency mapping. The execution fre-
quency of a bus is selected from the candidates of the bus protocol in the
bus database and is mapped in similar manner as in Fig. 2.6. The depth of
this tree is |B|.

9. Number of buffer mapping
The number of buffer mapping determines the number of buffers in each
port of a functional block, except for functional blocks of memory IP. The
number of buffer candidates is raised by the designer. The number of re-
ceive buffers and the number of transmit buffers are mapped separately.
Figure 5.23 illustrates the number of buffer mapping tree, where nqi and
nri refer to the number of receive buffers and transmit buffers in port pti,
respectively, assuming that there are two candidates represented by ni. The
depth of this search tree is 2 × |PT |.

5.6.3 Pruning Parameter Set Search Tree

Pruning non-optimal architecture in the early stage can accelerate the exploration,
which results in a short exploration time. The parameter set search tree pruning
eliminates tree branches that do not produce Pareto solutions using the branch and
bound algorithm. As a result, all of the descendants of the search tree from the
pruned node are eliminated. The parameter set search tree is pruned when one of
the following conditions is met.

128 Architecture Exploration of SoCs for CNN-based AI Platform

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

n r
2

=
 n

1

n r
2

=
 n

2

nq2
= n1 nq2

= n2 nq2
= n1 nq2

= n2 nq2
= n1 nq2

= n2 nq2
= n1 nq2

= n2

nr1
= n1 nr1

= n2 nr1
= n1 nr1

= n2

nq1
= n1 nq1

= n2

Figure 5.23: An example of the number of buffer mapping tree.

• One or both lower bounds of the execution time and the hardware area of
the current search node exceed the design constraints.

• If the lower bound and the upper bound of the execution time are equal, the
smallest hardware area architecture is selected for evaluation as one of the
architecture candidates.

• Both lower bounds of the execution time and the hardware area of the cur-
rent search node exceed the explored optimal architecture.

• A deadlock incurs in the lower and upper bound estimation.

The first three conditions eliminate architecture search nodes by the design
quality. The forth one eliminates architecture candidates by a deadlock, which
occurs at the execution time estimation of the architecture. Although the descen-
dants of the node that incur deadlock may or may not incur deadlock, all of them
are also eliminated in the pruning process since there are high possibility that the
mapping causes the deadlock in all the descendants.

5.6.4 Order of Parameter Mapping Trees
IPs and bus architecture selection trees determine the organization of the hard-
ware components within an architecture. Parameter mapping trees determine the
parameters, such as functional blocks’ frequency, bus frequency, bus width, and
etc. Therefore, the parameters cannot be explored before the organization of the
hardware components is decided.

The hardware components include functional blocks, ports for data transfer,
buses, DMACs, memories, and bus bridges. Since channel mapping, specifically
channel-to-port mapping, depends on the IP specification of the functional blocks,
channel mapping cannot proceed before process mapping. Likewise, cluster-to-
bus matrix mapping depends on channel mapping, specifically channel-to-cluster

5.7 Case Study 129

mapping, it cannot proceed before channel mapping. The objective of DMAC
and memory placement is to fulfill the master-slave communication scheme, so it
proceeds after the communication path of each channel is decided. Therefore, its
exploration takes place after channel mapping and cluster-to-bus matrix mapping.
Next, bus matrix protocol mapping, shared bus protocol mapping, and port pro-
tocol mapping depend on the bus matrix, buses, and ports, respectively, so they
must be done after channel mapping and cluster-to-bus matrix mapping. There is
not preference regarding the order of these three mapping.

To take advantage of the pruning based on the lower bound of the hardware area,
the parameter trees that affect more on the area should be explored before the exe-
cution frequency because pruning early in the exploration leads to a smaller num-
ber of search nodes. From the observation, the CNN accelerator consumes more
area that other components, so the number of functional block instance mapping
and the number of PE mapping should be explored first. The number of mem-
ory’s storage blocks, the number of buffers, bus matrix’s bus width, and shared
bus width affect the area in order. However, exploring the number of buffers early
may lead to a larger number of nodes because its tree tends to be the highest, and
hence, it has the largest number of leaves. Therefore, it is explored last. There
is no preference in the order of functional block’s, bus matrix’s, bus’ execution
frequency mapping.

Based on these findings, the proposed method explores parameters in the fol-
lowing order. First, IPs and bus architecture selection trees are ordered as follows:
(1) process mapping; (2) channel mapping; (3) cluster-to-bus matrix mapping; (4)
DMAC and memory placement; (5) bus matrix protocol mapping; (6) shared bus
protocol mapping; (7) port protocol mapping. Second, parameter trees are ordered
as follows: (1) number of functional block instance mapping; (2) number of PE
mapping; (3) number of memory’s storage block mapping; (4) bus matrix’s bus
width mapping; (5) shared bus width mapping; (6) functional block’s execution
frequency mapping; (7) bus matrix’s execution frequency mapping; (8) shared
bus’ execution frequency mapping; (9) number of buffer mapping. The proposed
method explores based on the larger values first to take advantage of pruning by
constraints on design qualities and the explored optimal architecture.

5.7 Case Study
This section evaluates the benefits of the proposed architecture exploration method.
To apply the proposed method to exploring SoC architecture for CNN-based AI
platform, first, the parallelism-flexible convolution core is modeled as a param-
eterized IP for supporting multiple types of parallelism of convolutional layers.
Then, the experiments show that the proposed method can discover Pareto-optimal
architectures with parameterized IP and several configurations of multi-layer bus.
The environment of the experimental platform is set as shown in Table 5.2. In
this experiment, the estimation parameters are based on a CMOS 0.18 µm process

130 Architecture Exploration of SoCs for CNN-based AI Platform

Table 5.2: Environment of the experimental platform

Hardware
Machine
CPU Intel Xeon CPU E7-8880 2.30GHz
Memory 1 TB
OS 64 bits CentOS 6.10
Software
SystemC version 2.3.1a
C compiler GNU GCC compiler 4.4.7

technology. Here, it should be noted that the design space of the proposed method
is significantly extended for CNN-based AI platform with multi-layer bus and
data tiling, and it is incompatible with other methods such as [131]. Therefore,
quantitative comparisons are not performed.

5.7.1 Modeling Parallelism-flexible Convolution Core

In order to apply the proposed method for CNN-based AI platform, this section
models the proposed parallelism-flexible convolution core in terms of modeling
scheme, behavior and architecture. The modeling scheme relates to modeling the
CNN-based application in SLM. The behavioral modeling relates to estimating
the design quality, specifically execution time, of the system. The architectural
modeling relates to parameterizing the architecture for architecture exploration.

First, a process of a convolutional layer is modeled with the IFM-major scheme
in the SLM. According to Algorithm 1, the proposed convolution core computes
all OFMs of a tile from each IFM first as the IFM loop locates outer than the
OFM loop. This conforms with the IFM-major modeling scheme, which models
the processing of an IFM as one process execution vertex in the SL-EDG.

Second, in terms of behavior modeling, the processing time factor, α, equals to
1
P , where P is the degree of parallelism explained in Chapter 4. From Algorithm
1, the processing time for one IFM depends on the number of non-zero weights
of that channel and P. Since the proposed convolution core increases inter-output
parallelism by the degree P, the processing time of each convolutional layers’
process vertex in the AL-EDG is defined as follows:

tp =
1
P
×

e(p j, f bi)

f f bi

, (5.14)

where e(p j, f bi) is equivalence to the number of non-zero weights of that channel.
In the proposed method, P is determined as the value that maximizes the PE uti-
lization, U in Eq. (4.3). However, the utilization also considers the number of

5.7 Case Study 131

instance of IP implemented as functional block i, N f bi . For that reason, the utiliza-
tion is redefined as follows:

U =
X × Y ×Co × K × K ×Ci × R × 100

N f bi × N ×G × M × E
, (5.15)

where X, Y , Co, K, Ci, R, N, G, and M are the same as defined in Chapter 4. The
estimated number of cycles in computing the convolutional layer, E, is calculated
in a similar way as Eq. (4.4), but T is replaced with the number of tiles calculated
on one instance of f bi, T ′, which is defined as follows:

T ′ = ddd
X
N
e ×

Y
G × bM

P c
e ×

1
N f bi

e. (5.16)

In the experiments, P is considered as one of the following candidates: 1, 2, 4, 8, 16.
Third, in terms of architecture, the proposed convolution core is parameterized

according to the N, G, and M described in Chapter 4. The product of N, G,
and M is the total number of PEs. For that reason, the number of PE mapping
tree is replaced with three mapping trees: the number of PE bank mapping tree
(NMi mapping tree), the number of PE groups in one PE bank mapping tree (NGi

mapping tree), and the number of PEs in one PE group mapping tree (NNi mapping
tree). The area is calculated as follows:

A(f bi) = (gip j + (gM + (gG + gN × NNi) × NGi) × NMi) × gnand, (5.17)

where gM, gG, and gN are the area of a PE bank (excluding PE groups), a PE group
(excluding PEs), and a PE, respectively. In addition, in order to take advantage of
a large-bit width bus, multiple data are merged for transferring in the same cycle
to maximally use the bus capacity.

5.7.2 Experiment 1 : Validity of the Proposed Architecture Ex-
ploration Method

This experiment shows results to confirm the validity of the proposed architecture
exploration method. Two types of architecture exploration were conducted: ex-
haustive exploration and exploration with pruning. The results were compared in
terms of time for architecture exploration and exploration coverage.

Objective

• To show that the search with pruning effectively explores the architecture
design space and discovers Pareto-optimal candidates.

• To show that the proposed method can explore varieties of architectures by
customizing the number of instances and architectural parameter of func-
tional blocks

132 Architecture Exploration of SoCs for CNN-based AI Platform

pLdImg

pData1

pLdW1

pCONV1

pRELU

pLdW2

pData2

pPOOL1 pCONV2

pDataFC1

pFC1

pDataFC2

pLdWFC2

pFC2 pSM

c0

c1

c2

c3

c4

c5

c7

c8

c6

c15 c20

c13 c17

pPOOL2 pReshape

pLdWFC1

c21

c9

c10

c11

c12

c14
c16

c18

c19

Figure 5.24: An SLM of Lenet-5.

Target System

The target system is a LeNet-5 CNN [165], which is illustrated in Fig. 5.24. The
SLM is composed of 18 processes and 22 channels. The input is an one-channel of
28×28 pixels image and the output is ten softmax values indicating the probability
of the image being ten classes.

The input image data is read from external memory (pLdImg) and written to a
storage (pData1). Likewise, the weights of the first convolutional layer are read
from external memory (pLdW1). Then, the image data and the weights are convo-
luted (pCONV1). Next, pooling operation is performed on the convoluted results
(pPOOL1) and written to a storage (pData2). The pLdW2, pCONV2, and pPOOL2 oper-
ate similarly. Before writing the pooling results to a storage (pDataFC1), they are
reshaped into a vector (preshape). For the fully-connected layers, the weights of
each layer are loaded (pLdWFC1, pLdWFC2) and the matrix multiplication of fully-
connected layers takes place (pFC1, pFC2). The results of pFC1 are activated with
RELU function (pRELU) and stored to a storage (pDataFC2). The results of pFC2 are
activated with softmax function and written to external memory (pS M).

The channels perform inter-process data transfers. Noted that c1, c5, c10, c16,
and c21 are one-bit signals, each of which indicates that the preceding convolu-
tional layer or fully-connected layer is done, and hence, the weights of the next
layer can start loading. These channels are mapped to a dedicated one-bit port and
signal. They are irrelevant to multi-layer bus.

Experimental Settings

Here, three experimental settings are described: estimation parameters, the candi-
dates for architecture exploration, and the design constraints. First, the estimation

5.7 Case Study 133

Table 5.3: Estimation parameter value for CMOS 0.18 µm. process technology

Parameter Parameter NotesName Value
Area per gate 9.8 µm2 NAND gate area
Wire pitch 0.56 µm. METAL3 layer wire pitch
Over-the-cell ratio 0.95 -

Table 5.4: IP database in experiment 1

IP Area Freq. Ports Mappable Other
(gate) Cand. processes parameters

(MHz) [name(cycle)] [name(cand.)]
IP1 3,294 200 1 AHB Master LdImg(20)
IP2 45,553 200 1 AHB Slave Data1(1)

Data2(1)
DataFC1(1)
DataFC2(1)

IP3 300 200 1 AHB Slave LdW1(20)
LdW2(20)
LdWFC1(20)
LdWFC2(20)

IP4 10,000 (gip) 200 3 AHB Master CONV1(330) N f bi(1,2)
3,000 (gM) CONV2(150) NMi(8,16)

500 (gG) NGi(4)
30 (gN) NNi(8,16)

IP5 2,000 200 1 AHB Master POOL1(3)
POOL2(1)

IP6 500 200 1 AHB Slave Reshape(1)
IP7 3,294 200 1 AHB Master FC1(16)

FC2(10)
IP8 1,500 200 1 AHB Master RELU(16)
IP9 3,000 200 1 AHB Slave SM(10)

Table 5.5: Bus database in experiment 1

Protocol Bus Type Bus Width Frequency Max. Master Max.
Name Candidate Candidate Master Slave

[bit] [MHz] Number Number
AHB Shared 256 200 16 -
AHB Multi-layer 256 200 8 8

134 Architecture Exploration of SoCs for CNN-based AI Platform

Table 5.6: Functional block constraint in experiment 1

Functional Block Mapped Processes
f b1 = (IP1, 1) LdImg
f b2 = (IP2, 1) Data1, DataFC1
f b3 = (IP2, 2) Data2, DataFC2
f b4 = (IP3, 1) LdW1, LdW2, LdWFC1, LdWFC2
f b5 = (IP4, 1) CONV1, CONV2
f b6 = (IP5, 1) POOL1, POOL2
f b7 = (IP6, 1) Reshape
f b8 = (IP7, 1) FC1, FC2
f b9 = (IP8, 1) RELU
f b10 = (IP9, 1) SM

Table 5.7: Port constraint in experiment 1

Port Protocol Connected f bi Cluster nq nr Mapped Channels
pt1 AHB (M) f b1 1 0 1 c0s

pt2 AHB (S) f b2 2 1 1 c0d, c2s, c12d, c13s

pt3 AHB (S) f b3 3 1 1 c17d, c18s, c6d, c7s

pt4 AHB (S) f b4 4 1 1 c19s, c3s, c14s, c8s

pt5 AHB (M) f b5 5 2 0 c2d, c7d

pt6 AHB (M) f b5 6 2 0 c3d, c8d

pt7 AHB (M) f b5 7 0 2 c4s, c9s

pt8 AHB (M) f b6 8 1 1 c4d, c6s, c9d, c11s

pt9 AHB (S) f b7 9 1 1 c11d, c12s

pt10 AHB (M) f b8 - 1 1 c20s, c19d, c15s, c18d,
c14d, c13d

pt11 AHB (M) f b9 - 1 1 c15d, c17s

pt12 AHB (S) f b10 - 1 0 c20d

5.7 Case Study 135

Table 5.8: Time for architecture exploration

Method # of leaves # of estimation Total time for expl.
Exhaustive expl. 2,140,577 2,139,768 14.5 hours
Expl. with pruning 917,893 1,657,035 11.5 hours

parameters are process technology-specific parameters used in the area estima-
tion. Second, the candidates for architecture exploration are user-defined, such
as IP candidates and bus candidates. Third, the design constraints include design
quality constraints and architectural constraints.

The parameters are shown in Table 5.3.
The candidates for architecture exploration include IPs in IP database, bus pro-

tocols in bus database, candidates of the number of buffers, and candidates of the
number of memory’s storage blocks. The IP database and bus database used in
experiment 1 are shown in Table 5.4 and Table 5.5, respectively. The IP4 is the
parallelism-flexible convolution core proposed in chapter 4.

This experiment raises three types of design constraints: (1) functional block
constraint, which indicates the IP instances and their mapped processes; (2) port
constraint, which indicates the ports used for each channel; (3) bus constraint,
which indicates the maximum number of buses. First, Table 5.6 shows the func-
tional block constraint, where f bi = (IP j, k) means f bi is the kth instance of the
IP j. The IPs undertake processes of the same processing but locates in different
CNN layers because the experiment processes only one image so they can operate
without the effect in performance. The functional block set is fixed, but the func-
tional blocks’ parameter, i.e. N f bi , NMi , NGi , andNNi , are not constrained. Second,
Table 5.7 lists the port constraint in terms of connected functional block, protocol,
cluster, the number of buffers (nq and nr), and the mapped channels. The M and
S after the port’s protocol indicate that the port is either a master or a slave. Note
that the dedicated ports, which are mapped to the channels of 1-bit signals, are
omitted since they are not clustered to be mapped onto the bus matrix. Third, the
bus constraint specifies that the maximum number of buses in one cluster is 1. The
candidate for the number of buffers and the number of memory’s storage blocks is
set to 1. However, this experiment does not raise any constraints about the design
qualities.

Time for Architecture Exploration

Table 5.8 shows the experimental results for exploring the architecture of the
LeNet-5 with the proposed method. Exhaustive expl. denotes the exhaustive ex-
ploration that traverses every node in the parameter set search tree. Expl. with
pruning denotes the exploration that traverses the parameter set search tree with
candidate pruning. In the table, "# of leaves", "# of estimation", and "Total time

136 Architecture Exploration of SoCs for CNN-based AI Platform

for expl." refer to the number of visited leaves, the number of design quality esti-
mation, and the total time for architecture exploration, respectively.

The experimental results show that the exhaustive exploration takes a longer
time to discover the same Pareto-optimal architectures as the exploration with
pruning. That is because the exhaustive exploration searches and estimates the
design qualities for every leaves, while the exploration with pruning disregards
the leaves in the branches of the tree that does not yield Pareto-optimal solutions.
However, the number of estimation in the exploration with pruning is more than
the number of leaves because the exploration also performs the estimation at the
nodes of the tree for pruning. The experiment shows only 21% of time reduction
thanks to pruning because this test case gives only a few candidates for the explo-
ration and a lot of design constraints, which limit the design space. However, the
time reduction will be significant when exploring a large number of candidates
and less design constraints.

Since a strict port constraint in Table 5.7 is raised for this experiment, the de-
sign space is small and takes only less than 15 hours. However, when the ports are
not constrained to any cluster (removing the numbers in column "Cluster" in Ta-
ble 5.7), the design space contains 33.8 million architectures, which is 15.7 times
larger than the size of the design space shown with the column "# of leaves" of ex-
haustive exploration in Table 5.8. Consequently, considering the design space of
the same set of ports and mapped channels without constraining ports to clusters,
it may take up to 9.5 days and 7.6 days with the exhaustive exploration and the
exploration with pruning, respectively. The design space is even larger and its ex-
ploration consumes longer exploration time when the port constraint is removed.
Furthermore, when the AI system grows larger, the exploration time takes even
longer with the larger number of functional blocks and ports.

Even though the proposed method can explore and evaluate each architecture
very quickly compared to the low-level design, this experiment shows that the
proposed method may consume weeks or months to explore a huge design space
of the AI applications. However, such an exploration time in the early stage of
the design is too long and barely acceptable considering the tight time-to-market.
Therefore, the proposed method still needs improvements in terms of the time to
explore a large design space. The improvements can be achieved by introduc-
ing incremental computation for successive architectures with a small difference,
more aggressive pruning, and parallel traversal of the parameter set search tree.

Varieties of the Explored Architectures

Figure 5.25 shows the 17 explored Pareto-optimal architectures plotted in a trade-
off relationship between application’s execution time and area. The proposed ar-
chitecture exploration method explored various parameters of functional blocks.
The architectures which contain a larger number of PEs consume more area, but
execute the LeNet-5 faster. Table 5.9 shows the parameters of f b5, which includes
N f b5 , NM5 , NG5 , andNN5 . It shows that the proposed method can customize the pa-

5.7 Case Study 137

18

20

22

24

26

28

30

2 3 4 5 6

Ex
ec

ut
io

n
tim

e
(m

s)

Area (mm2)

Total PE = 2048
Total PE = 1024
Total PE = 512
Total PE = 256

Figure 5.25: Pareto-optimal architectures resulted from experiment 1.

Table 5.9: Parameters of f b5 of the Pareto-optimal architecture

Arch. N f b5 NM5 NG5 NN5

Total PE = 2,048
arch1, arch2, arch3, arch4 2 16 4 16
Total PE = 1,024
arch5, arch6, arch7 1 16 4 16
Total PE = 512
arch8, arch9, arch10 1 8 4 16
Total PE = 256
arch11, arch12, arch13, arch14 1 8 4 8
arch15, arch16, arch17

rameters of functional blocks, and hence, it provides varieties of Pareto-optimal
architectures with different parameter combinations. The architectures containing
the same combination of parameters have different area and execution time be-
cause of the results from clustering port pt10, pt11, and pt12 into different clusters,
which leads to a different multi-layer bus configuration.

5.7.3 Experiment 2 : Architecture Exploration for Large CNN
Application

This experiment shows the Pareto-optimal architectures found by the proposed
architecture exploration method in terms of execution time and hardware area.
This experiment explores the design space with pruning.

138 Architecture Exploration of SoCs for CNN-based AI Platform

c58

pLdIMG pData1_1
c0

pLdW1_1 pCONV1_1

pLdW1_2 pCONV1_2

pLdW5_1 pCONV5_1

pLdW5_2 pCONV5_2

pLdW5_3 pCONV5_3

pLdWFC6 pFC6

pRELU1_1

pRELU1_2

pRELU5_1

pRELU5_2

pRELU5_3

pRELU6

pData1_2

pPOOL1

pData5_2

pData5_3

pPOOL5

pDataFC7

pData2_1

pReshape pDataFC6

pLdWFC8 pFC8 pSM8

c1 c2
c3 c4

c5 c7
c8 c9

c6

c11
c10

c12

c13
c53 c56

c57 c60

c59
c63 c65
c61

c62

c64
c68 c70
c66

c67

c69
c75 c77
c73

c74

c71 c72

c76

c81

c78

c85

c83
c84

c86

Figure 5.26: An SLM of VGG-16.

5.7 Case Study 139

Table 5.10: IP database in experiment 2

IP Area Freq. Ports Other
(gate) Cand. parameters

(MHz) [name(cand.)]
IP1 6,588 400 1 AHB Master
IP2 60,000 200 1 AHB Slave
IP3 300 200 1 AHB Slave
IP4 10,000 (gip) 200 3 AHB Master N f bi(1,2,4)

3,000 (gM) NMi(16)
500 (gG) NGi(4)
30 (gN) NNi(16)

IP5 2,500 400 1 AHB Slave
IP6 3,000 200 1 AHB Master
IP7 500 200 1 AHB Slave
IP8 20,000 1,000 1 AHB Master
IP9 7,500 400 1 AHB Slave

Objective

• To show that the proposed method can explore architectures including vari-
ous number of instances of functional blocks

• To show that the proposed method can explore varieties of multi-layer bus
configurations.

Target System

The target system is a VGG-16 CNN [17], which is illustrated in Fig. 5.26. The
SLM is composed of 71 processes and 87 channels. The input is a three-channel
of 224 × 224 pixels image and the output is a 1,000 softmax values indicating the
probability of the image being 1,000 classes of ImageNet [113]. The operations
are similar to the LeNet-5, but the VGG-16 contains more layers in different order.
Figure 5.26 omits some layers of the VGG-16 since they order in similar way as
the ones shown in the figure. The channels indicating that the preceding convolu-
tional layer or fully-connected layer is done, such as c1, c5, c53, c59, c64, c69, and
c81 in Fig. 5.26, are mapped to dedicated one-bit ports and signals.

Experimental Settings

Similar to the experiment 1, there are three experimental settings. The estimation
parameters are the same as described in Table 5.3.

140 Architecture Exploration of SoCs for CNN-based AI Platform

Table 5.11: IP functionality (mappable processes) in experiment 2

IP Mappable Process (cycle)
IP1 LdIMG(500)
IP2 Data1_1(1), Data1_2(1), Data2_1(1), Data2_2(1), Data3_1(1),

Data3_2(1), Data3_3(1), Data4_1(1), Data4_2(1), Data4_3(1),
Data5_1(1), Data5_2(1), Data5_3(1), DataFC6(1), DataFC7(1),
DataFC8(1)

IP3 LdW1_1(34),LdW1_2(25), LdW2_1(36), LdW2_2(37), LdW3_1(68),
LdW3_2(42), LdW3_3(58), LdW4_1(78), LdW4_2(69), LdW4_3(82),
LdW5_1(83), LdW5_2(73), LdW5_3(85), LdWFC6(20),
LdWFC7(20), LdWFC8(20)

IP4 CONV1_1(351), CONV1_2(143), CONV2_1(408), CONV2_2(431),
CONV3_1(1238),CONV3_2(569), CONV3_3(984), CONV4_1(1491),
CONV4_2(1261), CONV4_3(1583), CONV5_1(1629),
CONV5_2(1353), CONV5_3(1675)

IP5 RELU1_x(196), RELU2_x(49), RELU3_x(13), RELU4_x(4),
RELU5_x(1), RELU6(16), RELU7(16)

IP6 POOL1(98), POOL2(25), POOL3(7), POOL4(2), POOL5(1)
IP7 Reshape(1)
IP8 FC6(25088), FC7(4087), FC8(1000)
IP9 SM8(400)

5.7 Case Study 141

Table 5.12: Bus database in experiment 2

Protocol Bus Type Bus Width Frequency Max. Master Max.
Name Candidate Candidate Master Slave

[bit] [MHz] Number Number
AHB Shared 1,024 400 16 -
AHB Multi-layer 1,024 400 8 8

Table 5.13: Functional block constraint in experiment 2

Functional Block Mapped Processes
f b1 = (IP1, 1) LdImg
f b2 = (IP2, 1) Data1_1, Data2_1, Data3_1, Data3_3, Data4_2,

Data5_1, Data5_3, DataFC7
f b3 = (IP2, 2) Data1_2, Data2_2, Data3_2, Data4_1, Data4_3,

Data5_2, DataFC6, DataFC8
f b4 = (IP3, 1) LdW1_x, LdW3_x, LdW3_x, LdW4_x, LdW5_x,

LdWFC6, LdWFC7, LdWFC8
f b5 = (IP4, 1) CONV1_x, CONV2_x, CONV3_x, CONV4_x,

CONV5_x
f b6 = (IP5, 1) RELU1_x, RELU2_x, RELU3_x, RELU4_x, RELU5_x,

RELU6,RELU7
f b7 = (IP6, 1) POOL1, POOL2, POOL3, POOL4, POOL5
f b8 = (IP7, 1) Reshape
f b9 = (IP8, 1) FC6, FC7, FC8
f b10 = (IP10, 1) SM8

The IP database in this experiment is shown in Table 5.10 and the list of map-
pable processes of each IP is shown in Table 5.11. The IP4 is the parallelism-
flexible convolution core proposed in chapter 4. The proposed method considers
data tiling, so the number of cycles is the number per one tile. The bus database
is shown in Table 5.12. The candidate for the number of buffers and the number
of memory’s storage blocks are fixed to 1.

This experiment raises similar design constraints as the experiment 1. Ta-
ble 5.13 and Table 5.14 show the functional block constraint and port constraint,
respectively. The port constraint is given to the three ports connected to f b5 so that
it conforms to the parallelism-flexible convolution core except for that the ports
are not constrained to any cluster. The bus constraints of the proposed method are
the same as experiment 1.

142 Architecture Exploration of SoCs for CNN-based AI Platform

Table 5.14: Port constraint in experiment 2

Port Protocol Connected Cluster nq nr Mapped Channels
f bi

pt1 AHB (M) f b1 - 0 1 c0s

pt2 AHB (S) f b2 - 1 1 c0d, c2s, c12d, c13s, c23d, c24s,
c33d, c34s, c44d, c45s, c55d,
c56s, c65d, c66s, c77d, c78s

pt3 AHB (S) f b3 - 1 1 c6d, c7s, c17d, c18s, c28d, c29s,
c39d, c40s, c49d, c50s, c60d,
c61s, c72d, c73s, c82d, c83s

pt4 AHB (S) f b4 - 1 1 c3s, c8s, c14s, c19s, c25s, c30s,
c35s, c41s, c46s, c51s, c57s,
c62s, c67s, c74s, c79s, c84s

pt5 AHB (M) f b5 0 2 0 c3d, c8d, c14d, c19d, c25d, c30d,
c35d, c41d, c46d, c51d, c57d,
c62d, c67d

pt6 AHB (M) f b5 1 2 0 c2d, c7d, c13d, c18d, c24d, c29d,
c34d, c40d, c45d, c50d, c56d,
c61d, c66d

pt7 AHB (M) f b5 2 0 2 c4s, c9s, c15s, c20s, c26s, c31s,
c36s, c42s, c47s, c52s, c58s,
c63s, c68s

pt8 AHB (S) f b6 - 1 1 c4d, c6s, c9d,c11s, c15d, c17s,
c20d,c22s, c26d, c28s, c31d,
c33s, c36d, c38s, c42d, c44s,
c47d, c49s, c52d, c54s, c58d,
c60s, c63d, c65s, c68d, c70s,
c75d, c77s, c80d, c82s

pt9 AHB (M) f b7 - 1 1 c11d, c12s, c22d, c23s, c38d,
c39s, c54d, c55s, c70d, c71s

pt10 AHB (S) f b8 - 1 1 c71d,c72s

pt11 AHB (M) f b9 - 1 1 c73d, c74d, c75s, c78d, c79d,
c80s, c83d, c84d, c85s

pt12 AHB (S) f b10 - 1 0 c85d

5.7 Case Study 143

0

10

20

30

40

50

60

0 20 40 60 80

E
xe

cu
ti

on
 ti

m
e

(s
)

Area (mm2)

Nfb5=1

Nfb5=2

Nfb5=4

Figure 5.27: The trade-off relationship between area and execution time of the
Pareto-optimal architectures discovered by the proposed method.

Pareto-optimal Architectures

Figure 5.27 shows the trade-off relationship between area and execution time of
the Pareto-optimal architectures discovered by the proposed method. All of these
architectures are multi-layer bus-based architectures. They are divided into three
groups by the number of instances of f b5, N f b5 . The circle, triangle, and rectangle
marks represent the architectures that N f b5 is 4, 2, and 1, respectively. Multiple
instances of f b5 parallelize intra-layer MACCs of the CONV process.

The Pareto-optimal architectures exploit the following three characteristics for
achieving high performance. First, multiple instances of f b5 parallelize intra-layer
MACCs of the CONV processes, which results in a short time for computing
a convolutional layer. Second, the multi-layer bus parallelizes the data transfer.
Third, the proposed method considers data tiling so that the data transfer and data
processing of a process are partitioned and can be paralleled. Additionally, the
data tiling concept of the proposed method also reduces the size of buffer for each
functional block.

Varieties of Explored Architectures

Figure 5.28 shows an example of the architectures from the proposed method, in-
dicating that the proposed method can explore varieties of architectures in terms

144 Architecture Exploration of SoCs for CNN-based AI Platform

b4

b1

d1

d2

fb9

fb7

fb1

b2

b3

b4

b5

b6

b7

b8

L1

L2

L3

L4

L5

L6

L7

L8

fb6

fb8

fb4

fb3

fb2

fb10

L9

L10

L11

L12

L13

L14

fb5

2
3

4

1

b9

b10

b11

b12

b13

b14

b1

fb9

d1

fb7

d3

fb1

b2

b3

b5

b6

b7

L1

L2

L3

L4

L5

L6

L7

fb6

fb8

fb4

fb3

fb2

fb10

L9

L10

L11

L12

L13

L14

fb5

2
1

b9

b10

b11

b12

b13

b14

d2
b8 L8

(a) (b)

b1

d1

d2

fb9

fb7

fb1

b2

b3

b4

b5

b6

b7

b8

L1

L2

L3

L4

L5

L6

L7

L8

fb6

fb8

fb4

fb3

fb2

fb10

L9

L10

L11

L12

L13

L14

fb5

1

b9

b10

b11

b12

b13

b14

(c)

Figure 5.28: Example of architectures discovered by the proposed method.

5.8 Conclusion 145

of the number of instances of functional blocks and the multi-layer bus configura-
tions. The three architectures are multi-layer bus-based architectures.

In terms of the number of instances of functional blocks, the architecture in
Fig. 5.28(a) contains four instances of f b5 for processing convolutional layers,
while Fig. 5.28(b) and Fig. 5.28(c) contain two and one instances, respectively.
The variety in the number of instance affects the area and execution time signifi-
cantly as shown by the circle, triangle, and rectangle marks in Fig. 5.27.

In terms of multi-layer bus configurations, Fig. 5.28(a) shows an architecture
that connects each port to a layer of multi-layer bus. In Fig. 5.28(b), both the
master port of f b1 and a DMAC d3 are connected to bus b4 and layer L4 of the bus
matrix. The cluster of the master port of f b1 and d3 constructs a multiple master
configuration on the bus matrix. Other configurations including multiple slave and
AHB-subsystem configurations are also explored by the proposed method.

5.8 Conclusion
This chapter proposed an architecture design space exploration method with two
major features that are suitable for discovering high-performance SoC architecture
for CNN-based AI platform. First, it parameterizes and explores optimal parame-
ter values so that it finds architectures that well leverage intra-process parallelism,
specifically multiple types of parallelism in convolutional layers. Second, it parti-
tions hardware components in the architecture into clusters to explore optimal bus
architecture, i.e. configurable multi-layer bus, so that it finds bus architecture that
is capable of conducting a vast amount of parallel data transfers. The results show
that the proposed method discovers varieties of architecture including varieties of
functional blocks and multi-layer bus configurations. The future works include
energy consumption estimation because it is one of the most important design
qualities, additional techniques that accelerate the design space exploration, and
the exploration of other types of communication architecture, such as Network-
on-chip (NoC).

146 Architecture Exploration of SoCs for CNN-based AI Platform

Chapter 6

Conclusion and Future Work

This chapter concludes the discussion in this thesis and describes future work.

6.1 Conclusion
The need for high-performance AI-based edge computing devices brings about a
grand challenge in designing an optimal SoC under the strict design quality con-
straints. To effectively design such edge devices, there are three requirements: (1)
quickly evaluate the design quality of each architecture in the design space; (2)
accelerate the computation of deep learning algorithms; (3) efficiently explore the
design space to find optimal architectures. This thesis contributes to the method
of designing an SoC architecture for CNN-based AI applications from a system-
level description so that the architecture achieves high-performance in perform-
ing the inference processing at the edge. The target architecture consists of IP
modules, including CNN accelerators, DMACs, memories, shared buses and/or
a configurable multi-layer bus. The difficulties lie upon the fact that the design
space of the target architecture is extremely large, the architectures are compli-
cated, and consequently, the design quality estimation is time-consuming. This
thesis tackled with these problems in order to fulfill the requirements by propos-
ing (1) an efficient performance estimation method for a configurable multi-layer
bus-based architecture with system-level profiling; (2) a parallelism-flexible con-
volution core to accelerate the convolutional layers of CNN; (3) an architecture ex-
ploration method that effectively finds the architectures that leverage parallelisms
in both computation and data communication.

Chapter 3 proposes an efficient performance estimation method for a config-
urable multi-layer bus-based architecture. The proposed method estimates the ex-
ecution time of an application on several architectures by profiling the execution
behavior of the application, constructing an SL-EDG, constructing an AL-EDG
for each architecture, and estimates the execution time by analyzing the AL-EDG.
This method is fast for estimating a large number of architectures because the first
two procedures, which are time-consuming, take place only once for an applica-

148 Conclusion and Future Work

tion, and the latter two procedures, which are fast, repeat for various architectures.
The performance analysis considers bus protocol behavior and dynamic bus con-
tention so that it can accurately estimate the execution time. The experiments have
shown that the proposed method can estimate the execution time within 8% of er-
ror and achieve 25.6 times tool-runtime speedup compared to the conventional
RTL simulation. To sum up, the proposed performance estimation method is both
fast and accurate, so it is efficient as a design evaluation method for architecture
exploration.

Chapter 4 proposes a parallelism-flexible convolution core for sparse CNN to
accelerate the convolutional layers of CNN with two techniques. First, it max-
imizes parallel calculation by leveraging multiple types of parallelism with the
parallelism controller and the weight broadcaster that alternate dataflow layer
by layer. Second, it skips MACCs related to zero-valued weights to reduce the
amount of computation with the weight broadcaster that broadcasts only non-zero
weights to the PEs. The results show that it achieves 4x speedup over the baseline
architecture and 3x in effective GMACS over prior arts of CNN accelerator on
a VGG-16 benchmark. The proposed convolution core can accelerate the CNN
effectively.

An architecture design space exploration method proposed in chapter 5 consid-
ers parallelism in intra-process computation, inter-process computation, and data
transfers to search Pareto-optimal architecture candidates. It takes intra-process
and inter-process computation into account by exploring parameterized IPs that
allow one process to be executed on multiple instances of functional blocks. It
parallelizes data transfers through clustering and mapping the transfers to the
configurable multi-layer bus. The results show that the proposed method discov-
ers varieties of architectures, including varieties of functional block parameters
and multi-layer bus configurations. Hence, the proposed architecture exploration
method is suitable for discovering SoC architectures for CNN-based AI platform.

To design a high-performance SoC for CNN-based AI platform, this thesis pro-
poses a fast architecture design space exploration method that searches hardware
components, organization, and parameters of the SoC. First, the efficient perfor-
mance estimation method enables the execution time evaluation of a large num-
ber of architecture candidates. Second, the parallelism-flexible convolution core
provides a high-performance CNN accelerator. Third, a fast architecture explo-
ration method systematically explores and prunes the design space of varieties of
architectures including parameterized IPs, specifically CNN accelerator, and con-
figurable multi-layer bus. Hence, the fast design quality evaluation method, the
high-performance CNN accelerator, and the systematic exploration lead to the dis-
covery of superior architectures for CNN-based AI platform within a short time.

6.2 Future Work 149

6.2 Future Work

To further enhance the proposed architecture design space exploration method of
an SoC for a CNN-based AI platform, the following topics remain as future work.

6.2.1 Extension of Communication Architecture

In this thesis, the bus architecture is limited to only hierarchical shared bus and
multi-layer bus, but there are more high-performance bus architectures used in the
embedded systems, such as NoC. These bus architectures provide high parallelism
capability with unique specifications such as routing and switching functions of
the NoC. Such bus architectures can be supported by (1) modeling their specific
functions in order to analyze parallel data transfer behavior; (2) extending the
parameter set search tree to explore the bus architecture-specific parameters.

6.2.2 Statistical Performance Estimation Approach

The performance of many applications, such as encoding and decoding, varies by
the given data that the worst-case estimation proposed in this thesis may provide
a too pessimistic design quality evaluation. For that reason, applying a statistical
analysis to the proposed performance estimation method is a promising direction.
It can be employed by analyzing performance distribution and it can assure the
estimated performance with confidence.

6.2.3 Constrained Neural Network Sparsification

In order to maximally take advantage of the proposed parallelism-flexible convo-
lution core, a constrained neural network sparsification process should be devel-
oped. The sparsification technique should consider a balanced distribution of the
zero-valued weights across all channels or kernels so that all PEs are responsible
for an equal amount of workload. As a result of a balanced workload, there exists
a minimum number of idle PE cycles because the PEs do not have to wait for the
others to finish their workload.

6.2.4 Process and Communication Scheduling

This thesis schedules the execution of process and communication by priority.
However, other scheduling schemes are also widely used in the SoC design, such
as round robin, which is a dynamic priority mechanism. The scheduling has a
great effect on the system performance. Therefore, considering the scheduling
can lead to the improvement of the architectures found in the design space.

150 Conclusion and Future Work

6.2.5 Energy Consumption Estimation Model
Another significant design quality that should be evaluated is the energy consump-
tion of multi-layer bus architecture. Nowadays, in the SoC industry, the power and
energy problem have become significant because high-performance systems pro-
duce heat and consume a lot of energy. Finding a low energy design is highly
demanded. Therefore, an energy consumption estimation model should be devel-
oped.

6.2.6 Acceleration of Design Space Exploration
To further accelerate the exploration of a huge design space, additional techniques
can be introduced to the proposed architecture exploration method, such as in-
cremental computation for successive architectures with a small difference, more
aggressive pruning, and parallel traversal of the parameter set search tree.

Bibliography

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal Processing Magazine, vol. 29, no.
6, pp. 82–97, Nov. 2012.

[2] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A
neural network for large vocabulary conversational speech recognition,” in
Proceedings of 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Mar. 2016, pp. 4960–4964.

[3] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R.
Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep speech:
Scaling up end-to-end speech recognition,” ArXiv:1412.5567 [cs.CL], Dec.
2014.

[4] H. Zen and H. Sak, “Unidirectional long short-term memory recurrent
neural network with recurrent output layer for low-latency speech synthe-
sis,” in Proceedings of 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Apr. 2015, pp. 4470–4474. doi:
10.1109/ICASSP.2015.7178816.

[5] H. Zen, Y. Agiomyrgiannakis, N. Egberts, F. Henderson, and P. Szczepa-
niak, “Fast, compact, and high quality LSTM-RNN based statistical para-
metric speech synthesizers for mobile devices,” in Proceedings of INTER-
SPEECH, 2016.

[6] T. Wen, M. Gasic, N. Mrksic, P. Su, D. Vandyke, and S. J. Young, “Se-
mantically conditioned LSTM-based natural language generation for spo-
ken dialogue systems,” in Proceedings of 2015 Conference on Empirical
Methods in Natural Language Processing, Sept. 2015, pp. 1711–1721.

[7] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken lan-
guage understanding using long short-term memory neural networks,” in
Proceedings of 2014 IEEE Spoken Language Technology Workshop (SLT),
Dec. 2014, pp. 189–194. doi: 10.1109/SLT.2014.7078572.

http://dx.doi.org/10.1109/ICASSP.2015.7178816
http://dx.doi.org/10.1109/SLT.2014.7078572

152 BIBLIOGRAPHY

[8] B. E. Bejnordi, M. Veta, P. J. van Diest, and et al, “Diagnostic assessment
of deep learning algorithms for detection of lymph node metastases in
women with breast cancer,” JAMA, vol. 318, no. 22, pp. 2199–2210, 2017.
doi: 10.1001/jama.2017.14585.

[9] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with deep
neural networks,” Nature, vol. 542, pp. 115–, Jan. 2017.

[10] J. Powles and H. Hodson, “Google deepmind and healthcare in an age
of algorithms,” Health and Technology, vol. 7, no. 4, pp. 351–367, Dec.
2017. doi: 10.1007/s12553-017-0179-1.

[11] IBM Watson Health, https://www.ibm.com/watson/health/.

[12] Y. Cheng, G. Li, H. Chen, S. X. Tan, and H. Yu, “DEEPEYE: A compact
and accurate video comprehension at terminal devices compressed with
quantization and tensorization,” ArXiv:1805.07935 [cs.CV], 2018.

[13] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” ArXiv:
1612.08242 [cs.CV], 2016.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in Neu-
ral Information Processing Systems 28, Curran Associates, Inc., 2015,
pp. 91–99.

[15] T. Lin, P. Dollár, R. B. Girshick, K. He, B. Hariharan, and S. J. Belongie,
“Feature pyramid networks for object detection,” ArXiv:1612.03144 [cs.CV],
2016.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proceedings of the 25th In-
ternational Conference on Neural Information Processing Systems - Vol-
ume 1, Lake Tahoe, Nevada, 2012, pp. 1097–1105.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” ArXiv:1409.1556 [cs.CV], 2014.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” ArXiv:1512.03385 [cs.CV], 2015.

[19] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[20] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
Proceedings of International Conference on Learning Representations (ICLR),
2016.

http://dx.doi.org/10.1001/jama.2017.14585
http://dx.doi.org/10.1007/s12553-017-0179-1
https://www.ibm.com/watson/health/

BIBLIOGRAPHY 153

[21] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016,
pp. 4820–4828. doi: 10.1109/CVPR.2016.521.

[22] D. D. Lin, S. S. Talathi, and V. S. Annapureddy, “Fixed point quantization
of deep convolutional networks,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume
48, New York, NY, USA: JMLR.org, 2016, pp. 2849–2858.

[23] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse con-
volutional neural networks,” in Proceedings of 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 806–
814.

[24] A. Polino, R. Pascanu, and D. Alistarh, “Model compression via distilla-
tion and quantization,” ArXiv:1802.05668 [cs.NE], 2018.

[25] Y. Choi, M. El-Khamy, and J. Lee, “Universal deep neural network com-
pression,” ArXiv:1802.02271 [cs.CV], 2018.

[26] Y. He and S. Han, “ADC: Automated deep compression and acceleration
with reinforcement learning,” ArXiv:1802.03494 [cs.CV], 2018.

[27] B. D. Rouhani, A. Mirhoseini, and F. Koushanfar, “Deep3: Leveraging
three levels of parallelism for efficient deep learning,” in Proceedings of
2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Jun.
2017, pp. 1–6. doi: 10.1145/3061639.3062225.

[28] G. Madl, S. Pasricha, L. A. D. Bathen, N. Dutt, and Q. Zhu, “Formal per-
formance evaluation of AMBA-based system-on-chip designs,” in Pro-
ceedings of the 6th ACM & IEEE International Conference on Embedded
Software, Seoul, Korea, 2006, pp. 311–320.

[29] C. Shih, Y. Lai, and J. R. Jiang, “SPOCK: static performance analysis
and deadlock verification for efficient asynchronous circuit synthesis,” in
Proceedings of 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Nov. 2015, pp. 442–449. doi: 10.1109/ICCAD.
2015.7372603.

[30] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asynchronous
concurrent systems using petri nets,” IEEE Transactions on Software En-
gineering, vol. SE-6, no. 5, pp. 440–449, Sep. 1980. doi: 10.1109/TSE.
1980.230492.

[31] M. Li, T. Achteren, E. Brockmeyer, and F. Catthoor, “Statistical perfor-
mance analysis and estimation for parallel multimedia processing,” En-
glish, Journal of Signal Processing Systems, vol. 58, no. 2, pp. 105–116,
2010.

http://dx.doi.org/10.1109/CVPR.2016.521
http://dx.doi.org/10.1145/3061639.3062225
http://dx.doi.org/10.1109/ICCAD.2015.7372603
http://dx.doi.org/10.1109/ICCAD.2015.7372603
http://dx.doi.org/10.1109/TSE.1980.230492
http://dx.doi.org/10.1109/TSE.1980.230492

154 BIBLIOGRAPHY

[32] Y.-S. Cho, E.-J. Choi, and K.-R. Cho, “Modeling and analysis of the sys-
tem bus latency on the SoC platform,” in Proceedings of the 2006 In-
ternational Workshop on System-level Interconnect Prediction, Munich,
Germany, 2006, pp. 67–74.

[33] A. Cilardo, E. Fusella, L. Gallo, and A. Mazzeo, “Exploiting concurrency
for the automated synthesis of MPSoC interconnects,” ACM Trans. Em-
bed. Comput. Syst., vol. 14, no. 3, 57:1–57:24, Apr. 2015. doi: 10.1145/
2700075.

[34] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards uni-
formed representation and acceleration for deep convolutional neural net-
works,” in Proceedings of 2016 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov. 2016, pp. 1–8.

[35] P. Meloni, A. Capotondi, G. Deriu, M. Brian, F. Conti, D. Rossi, L. Raffo,
and L. Benini, “NEURAghe: Exploiting CPU-FPGA synergies for effi-
cient and flexible CNN inference acceleration on Zynq SoCs,” ArXiv:1712.
00994 [cs.NE], 2017.

[36] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N.
Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate Ar-
rays, Monterey, California, USA: ACM, 2016, pp. 26–35. doi: 10.1145/
2847263.2847265.

[37] Accellera Systems Initiative, IEEE Standard for Standard SystemC Lan-
guage Reference Manual,
[Online] Available : http://standards.ieee.org, Jan. 2012.

[38] D. Verkest, K. Rompaey, I. Bolsens, and H. Man, “CoWare–A design envi-
ronment for heterogeneous hardware/software systems,” English, Design
Automation for Embedded Systems, vol. 1, no. 4, pp. 357–386, 1996.

[39] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada, “RTOS-centric
hardware/software cosimulator for embedded system design,” in Proceed-
ing of International Conference on Hardware/Software Codesign and Sys-
tem Synthesis 2004 (CODES+ISSS ’04), 2004, pp. 158–163.

[40] P. Gerin, S. Yoo, G. Nicolescu, and A. A. Jerraya, “Scalable and flexible
cosimulation of SoC designs with heterogeneous multi-processor target
architectures,” in Proceedings of the Asia and South Pacific Design Au-
tomation Conference 2001 (ASP-DAC), Feb. 2001, pp. 63–68. doi: 10.
1109/ASPDAC.2001.913282.

http://dx.doi.org/10.1145/2700075
http://dx.doi.org/10.1145/2700075
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1145/2847263.2847265
http://dx.doi.org/10.1109/ASPDAC.2001.913282
http://dx.doi.org/10.1109/ASPDAC.2001.913282

BIBLIOGRAPHY 155

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, et al., “The Gem5 simulator,” SIGARCH
Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011. doi: 10.1145/
2024716.2024718.

[42] B. Kleinert, S. WeiSS, F. Schäfer, J. Bakakeu, and D. Fey, “Adaptive syn-
chronization interface for hardware-software co-simulation based on Sys-
temC and QEMU,” in Proceedings of the 9th EAI International Confer-
ence on Simulation Tools and Techniques, Prague, Czech Republic, 2016,
pp. 28–36.

[43] F. Cucchetto, A. Lonardi, and G. Pravadelli, “A common architecture for
co-simulation of SystemC models in QEMU and OVP virtual platforms,”
in Proceedings of 2014 22nd International Conference on Very Large
Scale Integration (VLSI-SoC), Oct. 2014, pp. 1–6. doi: 10.1109/VLSI-
SoC.2014.7004154.

[44] S. Kyle, I. Böhm, B. Franke, H. Leather, and N. Topham, “Efficiently par-
allelizing instruction set simulation of embedded multi-core processors
using region-based just-in-time dynamic binary translation,” SIGPLAN
Not., vol. 47, no. 5, pp. 21–30, Jun. 2012. doi: 10 . 1145 / 2345141 .
2248422.

[45] O. Matoussi and F. Pétrot, “Loop aware IR-level annotation framework
for performance estimation in native simulation,” in Proceedings of 2017
22nd Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan. 2017, pp. 220–225. doi: 10.1109/ASPDAC.2017.7858323.

[46] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, Y. Watan-
abe, and G. Yang, “Concurrent execution semantics and sequential sim-
ulation algorithms for the metropolis meta-model,” in Proceedings of the
Tenth International Symposium on Hardware/Software Codesign (CODES
2002), Estes Park, Colorado, 2002, pp. 13–18.

[47] J. Buck, S. Ha, E. Lee, and D. Messerschmitt, “Ptolemy: A framework
for simulating and prototyping heterogeneous systems,” Int. Journal of
Computer Simulation, vol. 4, Apr. 1994.

[48] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation using Ptolemy
II. Ptolemy.org, 2014.

[49] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya, “Automatic generation
of fast timed simulation models for operating systems in SoC design,” in
Proceedings 2002 Design, Automation and Test in Europe Conference and
Exhibition (DATE), Mar. 2002, pp. 620–627. doi: 10.1109/DATE.2002.
998365.

http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/VLSI-SoC.2014.7004154
http://dx.doi.org/10.1109/VLSI-SoC.2014.7004154
http://dx.doi.org/10.1145/2345141.2248422
http://dx.doi.org/10.1145/2345141.2248422
http://dx.doi.org/10.1109/ASPDAC.2017.7858323
http://dx.doi.org/10.1109/DATE.2002.998365
http://dx.doi.org/10.1109/DATE.2002.998365

156 BIBLIOGRAPHY

[50] A. Bouchhima, S. Yoo, and A. Jerraya, “Fast and accurate timed execu-
tion of high level embedded software using HW/SW interface simulation
model,” in Proceedings of Asia and South Pacific Design Automation Con-
ference 2004 (ASP-DAC), Jan. 2004, pp. 469–474.

[51] S. Yoo and A. Jerraya, “Hardware/software cosimulation from interface
perspective,” Computers and Digital Techniques, IEE Proceedings -, vol.
152, no. 3, pp. 369–379, May 2005.

[52] K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai, “Architecture-level per-
formance estimation method based on system-level profiling,” Computers
and Digital Techniques, IEE Proceedings -, vol. 152, no. 1, pp. 12–19,
Jan. 2005.

[53] R. Domer, “The SpecC language,” in Tutorial Guide of IEEE International
Symposium on Circuits and Systems (ISCAS 2001), May 2001, pp. 5.1.1–
5.1.12. doi: 10.1109/TUTCAS.2001.946956.

[54] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “Analyz-
ing on-chip communication in a MPSoC environment,” in Proceedings of
2004 Design, Automation and Test in Europe Conference and Exhibition
(DATE), Feb. 2004, 752–757 Vol.2. doi: 10.1109/DATE.2004.1268966.

[55] D. Kim, S. Ha, and R. Gupta, “CATS: cycle accurate transaction-driven
simulation with multiple processor simulators,” in Proceedings of 2007
Design, Automation Test in Europe Conference Exhibition (DATE), Apr.
2007, pp. 1–6. doi: 10.1109/DATE.2007.364685.

[56] G. Schirner, A. Gerstlauer, and R. Dömer, “Fast and accurate processor
models for efficient mpsoc design,” ACM Trans. Des. Autom. Electron.
Syst., vol. 15, no. 2, 10:1–10:26, Mar. 2010. doi: 10.1145/1698759.
1698760.

[57] O. Bringmann, W. Ecker, A. Gerstlauer, A. Goyal, D. Mueller-Gritschneder,
P. Sasidharan, and S. Singh, “The next generation of virtual prototyping:
Ultra-fast yet accurate simulation of HW/SW systems,” in Proceedings of
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2015, pp. 1698–1707. doi: 10.7873/DATE.2015.1105.

[58] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. A. Jerraya,
“Flexible MPSoC platform with fast interconnect exploration for optimal
system performance for a specific application,” in Proceedings of 2006
Design, Automation and Test in Europe (DATE): Designers’ Forum, Mu-
nich, Germany, 2006, pp. 166–171.

[59] S. M. Aziz, “A cycle-accurate transaction level SystemC model for a serial
communication bus,” Comput. Electr. Eng., vol. 35, no. 5, pp. 790–802,
Sep. 2009. doi: 10.1016/j.compeleceng.2008.11.029.

http://dx.doi.org/10.1109/TUTCAS.2001.946956
http://dx.doi.org/10.1109/DATE.2004.1268966
http://dx.doi.org/10.1109/DATE.2007.364685
http://dx.doi.org/10.1145/1698759.1698760
http://dx.doi.org/10.1145/1698759.1698760
http://dx.doi.org/10.7873/DATE.2015.1105
http://dx.doi.org/10.1016/j.compeleceng.2008.11.029

BIBLIOGRAPHY 157

[60] C. K. Lo and R. S. Tsay, “Automatic generation of Cycle Accurate and
Cycle Count Accurate transaction level bus models from a formal model,”
in Proceedings of 2009 Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), Jan. 2009, pp. 558–563. doi: 10.1109/ASPDAC.2009.
4796539.

[61] A. Baganne, I. Bennour, M. Elmarzougui, R. Gaiech, and E. Martin, “A
multi-level design flow for incorporating IP cores: Case study of 1D wavelet
IP integration,” in Proceedings of 2003 Design, Automation and Test in
Europe Conference and Exhibition (DATE), Mar. 2003, 250–255 suppl.
doi: 10.1109/DATE.2003.1253837.

[62] S. Pasricha and N. Dutt, On-Chip Communication Architectures: System
on Chip Interconnect. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2008.

[63] J. Cornet, F. Maraninchi, and L. Maillet-Contoz, “A method for the effi-
cient development of timed and untimed transaction-level models of systems-
on-chip,” in Proceedings of 2008 Design, Automation and Test in Europe
(DATE), Mar. 2008, pp. 9–14. doi: 10.1109/DATE.2008.4484652.

[64] R. B. Atitallah, S. Niar, S. Meftali, and J.-L. Dekeyser, “An MPSoC per-
formance estimation framework using transaction level modeling,” in Pro-
ceedings of the 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA ’07), 2007, pp. 525–
533. doi: 10.1109/RTCSA.2007.21.

[65] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable per-
formance estimation at the transaction level,” in Proceedings of 2008 De-
sign, Automation and Test in Europe (DATE), Munich, Germany, 2008,
pp. 3–8. doi: 10.1145/1403375.1403380.

[66] M. Caldari, M. Conti, M. Coppola, S. Curaba, L. Pieralisi, and C. Turchetti,
“Transaction-level models for AMBA bus architecture using SystemC 2.0
[SOC applications],” in Proceedings of 2003 Design, Automation and Test
in Europe Conference and Exhibition (DATE), Mar. 2003, 26–31 suppl.
doi: 10.1109/DATE.2003.1186667.

[67] O. Ogawa, S. B. de Noyer, P. Chauvet, K. Shinohara, Y. Watanabe, H.
Niizuma, T. Sasaki, and Y. Takai, “A practical approach for bus archi-
tecture optimization at transaction level,” in Proceedings of 2003 Design,
Automation and Test in Europe Conference and Exhibition (DATE), Mar.
2003, 176–181 suppl. doi: 10.1109/DATE.2003.1253825.

[68] G. Schirner and R. Domer, “Quantitative analysis of transaction level
models for the AMBA bus,” in Proceedings of 2006 Design Automation
Test in Europe Conference (DATE), Mar. 2006, pp. 1–6. doi: 10.1109/
DATE.2006.244108.

http://dx.doi.org/10.1109/ASPDAC.2009.4796539
http://dx.doi.org/10.1109/ASPDAC.2009.4796539
http://dx.doi.org/10.1109/DATE.2003.1253837
http://dx.doi.org/10.1109/DATE.2008.4484652
http://dx.doi.org/10.1109/RTCSA.2007.21
http://dx.doi.org/10.1145/1403375.1403380
http://dx.doi.org/10.1109/DATE.2003.1186667
http://dx.doi.org/10.1109/DATE.2003.1253825
http://dx.doi.org/10.1109/DATE.2006.244108
http://dx.doi.org/10.1109/DATE.2006.244108

158 BIBLIOGRAPHY

[69] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Fast exploration of bus-
based communication architectures at the CCATB abstraction,” ACM Trans.
Embed. Comput. Syst., vol. 7, no. 2, 22:1–22:32, Jan. 2008.

[70] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Using TLM for explor-
ing bus-based SoC communication architectures,” in Proceedings of 2005
IEEE International Conference on Application-Specific Systems, Architec-
ture Processors (ASAP’05), Jul. 2005, pp. 79–85. doi: 10.1109/ASAP.
2005.65.

[71] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “BMSYN: Bus matrix com-
munication architecture synthesis for MPSoC,” IEEE Transaction on Computer-
aided Design of Integrated Circuits and Systems, vol. 26, no. 8, pp. 1454–
1464, Aug. 2007.

[72] M. Li, C. Lo, L. Chen, J. Yeh, and R. Tsay, “A cycle count accurate TLM
bus modeling approach,” in Proceedings of 2013 International Symposium
on VLSI Design, Automation, and Test (VLSI-DAT), Apr. 2013, pp. 1–4.
doi: 10.1109/VLDI-DAT.2013.6533807.

[73] C.-K. Lo, M.-L. Li, L.-C. Chen, Y.-S. Lu, R.-S. Tsay, H.-Y. Huang, and
J.-C. Yeh, “Automatic generation of high-speed accurate TLM models for
out-of-order pipelined bus,” ACM Trans. Embed. Comput. Syst., vol. 13,
no. 1s, 37:1–37:25, Dec. 2013. doi: 10.1145/2536747.2536759.

[74] H. Javaid, Y. Yachide, S. M. M. Shwe, H. Bokhari, and S. Parameswaran,
“FALCON: A framework for hierarchical computation of metrics for component-
based parameterized SoCs,” in Proceedings of 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), Jun. 2014, pp. 1–6. doi: 10.1145/
2593069.2593138.

[75] L.-C. Chen, H.-I. Wu, and R. Tsay, “Automatic timing-coherent transactor
generation for mixed-level simulations,” in Proceedings of The 20th Asia
and South Pacific Design Automation Conference (ASP-DAC), Jan. 2015,
pp. 588–593. doi: 10.1109/ASPDAC.2015.7059072.

[76] J. H. Weinstock, C. Schumacher, R. Leupers, G. Ascheid, and L. Toso-
ratto, “Time-decoupled parallel SystemC simulation,” in Proceedings of
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2014, pp. 1–4. doi: 10.7873/DATE.2014.204.

[77] J. H. Weinstock, R. Leupers, G. Ascheid, D. Petras, and A. Hoffmann,
“SystemC-link: Parallel SystemC simulation using time-decoupled seg-
ments,” in Proceedings of 2016 Design, Automation Test in Europe Con-
ference Exhibition (DATE), Mar. 2016, pp. 493–498.

http://dx.doi.org/10.1109/ASAP.2005.65
http://dx.doi.org/10.1109/ASAP.2005.65
http://dx.doi.org/10.1109/VLDI-DAT.2013.6533807
http://dx.doi.org/10.1145/2536747.2536759
http://dx.doi.org/10.1145/2593069.2593138
http://dx.doi.org/10.1145/2593069.2593138
http://dx.doi.org/10.1109/ASPDAC.2015.7059072
http://dx.doi.org/10.7873/DATE.2014.204

BIBLIOGRAPHY 159

[78] E. P, P. Chandran, J. Chandra, B. P. Simon, and D. Ravi, “Paralleliz-
ing SystemC kernel for fast hardware simulation on SMP machines,” in
Proceedings of 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Ad-
vanced and Distributed Simulation, Jun. 2009, pp. 80–87. doi: 10.1109/
PADS.2009.25.

[79] I. M. Pessoa, A. Mello, A. Greiner, and F. Pêcheux, “Parallel TLM sim-
ulation of MPSoC on SMP workstations: Influence of communication lo-
cality,” in Proceedings of 2010 International Conference on Microelec-
tronics, Dec. 2010, pp. 359–362. doi: 10.1109/ICM.2010.5696160.

[80] N. Ventroux and T. Sassolas, “A new parallel SystemC kernel leveraging
manycore architectures,” in Proceedings of 2016 Design, Automation Test
in Europe Conference Exhibition (DATE), Mar. 2016, pp. 487–492.

[81] T. Schmidt, G. Liu, and R. Dömer, “Exploiting thread and data level paral-
lelism for ultimate parallel SystemC simulation,” in Proceedings of 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2017,
pp. 1–6. doi: 10.1145/3061639.3062243.

[82] Y. Lai, C. Chuang, and J. R. Jiang, “A general framework for efficient
performance analysis of acyclic asynchronous pipelines,” in Proceedings
of 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov. 2015, pp. 736–743. doi: 10.1109/ICCAD.2015.7372643.

[83] C. Shih, C. Shih, and J. R. Jiang, “Closing the accuracy gap of static
performance analysis of asynchronous circuits,” in Proceedings of 2017
54th ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2017,
pp. 1–6. doi: 10.1145/3061639.3062211.

[84] H.-Y. Liu, M. Petracca, and L. P. Carloni, “Compositional system-level de-
sign exploration with planning of high-level synthesis,” in Proceedings of
2012 Design, Automation Test in Europe Conference Exhibition (DATE),
Mar. 2012, pp. 641–646. doi: 10.1109/DATE.2012.6176550.

[85] X. Zheng, L. K. John, and A. Gerstlauer, “Accurate phase-level cross-
platform power and performance estimation,” in Proceedings of 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), Jun. 2016, pp. 1–
6. doi: 10.1145/2897937.2897977.

[86] Y. Cho, G. Lee, S. Yoo, K. Choi, and N.-E. Zergainoh, “Scheduling and
timing analysis of HW/SW on-chip communication in MPSoC design,” in
Proceedings of the Conference on Design, Automation and Test in Europe
(DATE): Designers’ Forum - Volume 2, 2003, pp. 20 132–.

[87] C. Lee, S. Kim, and S. Ha, “A systematic design space exploration of
MPSoC based on synchronous data flow specification,” Journal of Signal
Processing Systems, vol. 58, no. 2, pp. 193–213, 2010.

http://dx.doi.org/10.1109/PADS.2009.25
http://dx.doi.org/10.1109/PADS.2009.25
http://dx.doi.org/10.1109/ICM.2010.5696160
http://dx.doi.org/10.1145/3061639.3062243
http://dx.doi.org/10.1109/ICCAD.2015.7372643
http://dx.doi.org/10.1145/3061639.3062211
http://dx.doi.org/10.1109/DATE.2012.6176550
http://dx.doi.org/10.1145/2897937.2897977

160 BIBLIOGRAPHY

[88] F. Shafiq, T. Isshiki, D. Li, and H. Kunieda, “A fast trace aware statistical
based prediction model with burst traffic modeling for contention stall in
a priority based MPSoC bus,” IPSJ Transactions on System LSI Design
Methodology, vol. 9, pp. 37–48, 2016. doi: 10.2197/ipsjtsldm.9.37.

[89] S. Kim and S. Ha, “System-level performance analysis of multiprocessor
system-on-chips by combining analytical model and execution time vari-
ation,” Microprocessors and Microsystems, vol. 38, no. 3, pp. 233–245,
2014. doi: https://doi.org/10.1016/j.micpro.2014.02.003.

[90] T. Wild, A. Herkersdorf, and G.-Y. Lee, “TAPES—Trace-based architec-
ture performance evaluation with SystemC,” Design Automation for Em-
bedded Systems, vol. 10, no. 2, pp. 157–179, Sep. 2005. doi: 10.1007/
s10617-006-9589-4.

[91] F. Shafiq, T. Isshiki, and D. Li, “An accurate and fast trace-aware perfor-
mance estimation model for prioritized MPSoC bus with multiple interfer-
ing bus-masters,” IPSJ Transactions on System LSI Design Methodology,
vol. 10, pp. 13–27, 2017. doi: 10.2197/ipsjtsldm.10.13.

[92] S. Shibata, Y. Ando, S. Honda, H. Tomiyama, and H. Takada, “A fast
performance estimation framework for system-level design space explo-
ration,” IPSJ Transactions on System LSI Design Methodology, vol. 5,
pp. 44–54, 2012. doi: 10.2197/ipsjtsldm.5.44.

[93] T. Schmidt, G. Liu, and R. Dömer, “Hybrid analysis of SystemC models
for fast and accurate parallel simulation,” in Proceedings of 2017 22nd
Asia and South Pacific Design Automation Conference (ASP-DAC), Jan.
2017, pp. 226–231. doi: 10.1109/ASPDAC.2017.7858324.

[94] M. Takahashi, H. Miyajima, and M. Fukui, “An efficient power and per-
formance evaluation method with reconfigurable bus architecture model,”
in Proceedings of the Workshop on Synthesis And System Integration of
Mixed Information technologies (SASIMI 2003), Apr. 2003, pp. 345–350.

[95] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance anal-
ysis for designing on-chip communication architectures,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 20, no. 6, pp. 768–783, Nov. 2006.

[96] K. Kim and D. D. Gajski, “Trace-driven performance estimation of multi-
core platforms,” in Proceedings of 2014 IEEE 57th International Midwest
Symposium on Circuits and Systems (MWSCAS), Aug. 2014, pp. 627–630.
doi: 10.1109/MWSCAS.2014.6908493.

[97] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic,
E. Cosatto, and H. P. Graf, “A massively parallel coprocessor for con-
volutional neural networks,” in Proceedings of 2009 20th IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Pro-
cessors, Jul. 2009, pp. 53–60.

http://dx.doi.org/10.2197/ipsjtsldm.9.37
http://dx.doi.org/https://doi.org/10.1016/j.micpro.2014.02.003
http://dx.doi.org/10.1007/s10617-006-9589-4
http://dx.doi.org/10.1007/s10617-006-9589-4
http://dx.doi.org/10.2197/ipsjtsldm.10.13
http://dx.doi.org/10.2197/ipsjtsldm.5.44
http://dx.doi.org/10.1109/ASPDAC.2017.7858324
http://dx.doi.org/10.1109/MWSCAS.2014.6908493

BIBLIOGRAPHY 161

[98] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynami-
cally configurable coprocessor for convolutional neural networks,” SIGARCH
Comput. Archit. News, vol. 38, no. 3, pp. 247–257, Jun. 2010.

[99] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
G-ops/s mobile coprocessor for deep neural networks,” in Proceedings
of 2014 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, Jun. 2014, pp. 696–701. doi: 10.1109/CVPRW.2014.106.

[100] L. Cavigelli and L. Benini, “A 803 GOp/s/w convolutional network accel-
erator,” IEEE Transactions on Circuits and Systems for Video Technology,
2016.

[101] K. Ando, K. Orimo, K. Ueyoshi, M. Ikebe, T. Asai, and M. Motomura,
“Reconfigurable processor array architecture for deep convolutional neu-
ral networks,” in Proceedings of the Workshop on Synthesis And System
Integration of Mixed Information technologies (SASIMI 2016), 2016.

[102] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and
O. Temam, “ShiDianNao: Shifting vision processing closer to the sensor,”
in Proceedings of 2015 ACM/IEEE 42nd Annual International Symposium
on Computer Architecture (ISCA), Jun. 2015, pp. 92–104.

[103] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep learn-
ing with limited numerical precision,” in Proceedings of the 32nd Inter-
national Conference on International Conference on Machine Learning -
Volume 37 (ICML’15), Lille, France, 2015, pp. 1737–1746.

[104] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in Proceed-
ings of 2013 IEEE 31st International Conference on Computer Design
(ICCD), Oct. 2013, pp. 13–19.

[105] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA’15), Monterey, California, USA, 2015,
pp. 161–170.

[106] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Dian-
Nao: A small-footprint high-throughput accelerator for ubiquitous machine-
learning,” SIGPLAN Not., vol. 49, no. 4, pp. 269–284, Feb. 2014.

[107] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N.
Sun, and O. Temam, “DaDianNao: A machine-learning supercomputer,”
in Proceedings of 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec. 2014, pp. 609–622.

http://dx.doi.org/10.1109/CVPRW.2014.106

162 BIBLIOGRAPHY

[108] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural networks,”
IEEE J. of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017.

[109] J. H. Kim, B. Grady, R. Lian, J. Brothers, and J. H. Anderson, “FPGA-
based CNN inference accelerator synthesized from multi-threaded C soft-
ware,” in Proceedings of 2017 30th IEEE International System-on-Chip
Conference (SOCC), Sep. 2017, pp. 268–273.

[110] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for compressed-
sparse convolutional neural networks,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA’17), Toronto,
ON, Canada, 2017, pp. 27–40. doi: 10.1145/3079856.3080254.

[111] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approximation
of convolutional neural networks,” ArXiv:1604.03168 [cs.CV], 2016.

[112] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J.
Dally, “EIE: Efficient inference engine on compressed deep neural net-
work,” in Proceedings of 2016 ACM/IEEE 43nd Annual International Sym-
posium on Computer Architecture (ISCA), 2016, pp. 243–254.

[113] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of 2009 IEEE
Conference on Computer Vision and Pattern Recognition, Jun. 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848.

[114] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and
Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Proceedings of 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct. 2016, pp. 1–12.

[115] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “FlexFlow: A flexible
dataflow accelerator architecture for convolutional neural networks,” in
2017 IEEE International Symposium on High Performance Computer Ar-
chitecture (HPCA), Feb. 2017, pp. 553–564. doi: 10.1109/HPCA.2017.
29.

[116] K. Neubauer, C. Haubelt, P. Wanko, and T. Schaub, “Utilizing quad-trees
for efficient design space exploration with partial assignment evaluation,”
in Proceedings of 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), Jan. 2018, pp. 434–439. doi: 10.1109/ASPDAC.
2018.8297362.

[117] J. Wu, P. Wang, S.-K. Lam, and T. Srikanthan, “Efficient heuristic and
tabu search for hardware/software partitioning,” J. Supercomput., vol. 66,
no. 1, pp. 118–134, Oct. 2013. doi: 10.1007/s11227-013-0888-9.

http://dx.doi.org/10.1145/3079856.3080254
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1109/HPCA.2017.29
http://dx.doi.org/10.1109/HPCA.2017.29
http://dx.doi.org/10.1109/ASPDAC.2018.8297362
http://dx.doi.org/10.1109/ASPDAC.2018.8297362
http://dx.doi.org/10.1007/s11227-013-0888-9

BIBLIOGRAPHY 163

[118] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis, “Rapid design space
exploration of heterogeneous embedded systems using symbolic search
and multi-granular simulation,” SIGPLAN Not., vol. 37, no. 7, pp. 18–27,
Jun. 2002. doi: 10.1145/566225.513835.

[119] Z. J. Jia, A. Núñez, T. Bautista, and A. D. Pimentel, “A two-phase design
space exploration strategy for system-level real-time application mapping
onto mpsoc,” Microprocess. Microsyst., vol. 38, no. 1, pp. 9–21, Feb.
2014. doi: 10.1016/j.micpro.2013.10.005.

[120] Á. Hegedüs, Á. Horváth, I. Ráth, and D. Varró, “A model-driven frame-
work for guided design space exploration,” in Proceedings of 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), Nov. 2011, pp. 173–182. doi: 10.1109/ASE.2011.
6100051.

[121] P. Meng, A. Althoff, Q. Gautier, and R. Kastner, “Adaptive threshold non-
Pareto elimination: Re-thinking machine learning for system level design
space exploration on FPGAs,” in Proceedings of 2016 Design, Automation
Test in Europe Conference Exhibition (DATE), Mar. 2016, pp. 918–923.

[122] H.-Y. Liu and L. P. Carloni, “On learning-based methods for design-space
exploration with high-level synthesis,” in Proceedings of the 2013 50th
Annual Design Automation Conference (DAC), Austin, Texas, 2013, 50:1–
50:7. doi: 10.1145/2463209.2488795.

[123] D. Li, S. Yao, Y. Liu, S. Wang, and X. Sun, “Efficient design space explo-
ration via statistical sampling and AdaBoost learning,” in Proceedings of
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Jun.
2016, pp. 1–6. doi: 10.1145/2897937.2898012.

[124] M. Palesi and T. Givargis, “Multi-objective design space exploration us-
ing genetic algorithms,” in Proceedings of the Tenth International Sym-
posium on Hardware/Software Codesign (CODES’02), Estes Park, Col-
orado, 2002, pp. 67–72. doi: 10.1145/774789.774804.

[125] M. Thompson and A. D. Pimentel, “Exploiting domain knowledge in
system-level MPSoC design space exploration,” J. Syst. Archit., vol. 59,
no. 7, pp. 351–360, Aug. 2013. doi: 10.1016/j.sysarc.2013.05.023.

[126] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hardware/-
software partitioning based on simulated annealing and tabu search,” De-
sign Automation for Embedded Systems, vol. 2, no. 1, pp. 5–32, Jan. 1997.
doi: 10.1023/A:1008857008151.

[127] L. Zhang, C.-Z. Xu, Z. Tian, and T. Li, “Hardware/software partitioning
based on greedy algorithm and simulated annealing algorithm,” Journal
of Computer Applications, vol. 33, no. 07, 1898, p. 1898, 2013. doi: 10.
11772/j.issn.1001-9081.2013.07.1898.

http://dx.doi.org/10.1145/566225.513835
http://dx.doi.org/10.1016/j.micpro.2013.10.005
http://dx.doi.org/10.1109/ASE.2011.6100051
http://dx.doi.org/10.1109/ASE.2011.6100051
http://dx.doi.org/10.1145/2463209.2488795
http://dx.doi.org/10.1145/2897937.2898012
http://dx.doi.org/10.1145/774789.774804
http://dx.doi.org/10.1016/j.sysarc.2013.05.023
http://dx.doi.org/10.1023/A:1008857008151
http://dx.doi.org/10.11772/j.issn.1001-9081.2013.07.1898
http://dx.doi.org/10.11772/j.issn.1001-9081.2013.07.1898

164 BIBLIOGRAPHY

[128] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimiza-
tion and evolutionary algorithms for the application mapping problem in
multiprocessor system-on-chip design,” IEEE Transactions on Evolution-
ary Computation, vol. 10, no. 3, pp. 358–374, Jun. 2006. doi: 10.1109/
TEVC.2005.860766.

[129] T. Givargis, F. Vahid, and J. Henkel, “System-level exploration for Pareto-
optimal configurations in parameterized system-on-a-chip,” IEEE Trans.
VLSI Syst., vol. 10, no. 4, pp. 416–422, Aug. 2002.

[130] J. Matai, D. Lee, A. Althoff, and R. Kastner, “Composable, parameteriz-
able templates for high-level synthesis,” in Proceedings of 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), Mar. 2016,
pp. 744–749.

[131] K. Ueda, “An embedded system design methodology based on system-
level profiling,” PhD thesis, Graduate School of Information Science and
Technology, Osaka University, 2006.

[132] J. Gong, D. D. Gajski, and S. Bakshi, “Model refinement for hardware-
software codesign,” in Proceedings of ED TC European Design and Test
Conference, Mar. 1996, pp. 270–274. doi: 10.1109/EDTC.1996.494312.

[133] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no.
6, pp. 952–961, Jun. 2004. doi: 10.1109/TCAD.2004.828127.

[134] S. Pandey, M. Glesner, and M. Muhlhauser, “Performance aware on-chip
communication synthesis and optimization for shared multi-bus based ar-
chitecture,” in Proceedings of 2005 18th Symposium on Integrated Cir-
cuits and Systems Design, Sep. 2005, pp. 230–235. doi: 10.1109/SBCCI.
2005.4286862.

[135] S. Kim and S. Ha, “Efficient exploration of bus-based system-on-chip ar-
chitectures,” IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 7,
pp. 681–692, Jul. 2006. doi: 10.1109/TVLSI.2006.878260.

[136] T. van Meeuwen, A. Vandecappelle, A. van Zelst, F. Catthoor, and D.
Verkest, “System-level interconnect architecture exploration for custom
memory organizations,” in Proceedings of International Symposium on
System Synthesis, Sep. 2001, pp. 13–18. doi: 10.1145/500001.500005.

[137] Y. Niu, J. Bian, H. Wang, K. Tong, and L. Zhu, “SLCAO: An effective
system level communication architectures optimization methodology for
system-on- chips,” in Proceedings of 2005 6th International Conference
on ASIC, vol. 1, Oct. 2005, pp. 33–36. doi: 10.1109/ICASIC.2005.
1611263.

http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/TEVC.2005.860766
http://dx.doi.org/10.1109/EDTC.1996.494312
http://dx.doi.org/10.1109/TCAD.2004.828127
http://dx.doi.org/10.1109/SBCCI.2005.4286862
http://dx.doi.org/10.1109/SBCCI.2005.4286862
http://dx.doi.org/10.1109/TVLSI.2006.878260
http://dx.doi.org/10.1145/500001.500005
http://dx.doi.org/10.1109/ICASIC.2005.1611263
http://dx.doi.org/10.1109/ICASIC.2005.1611263

BIBLIOGRAPHY 165

[138] T. Seceleanu, V. Leppanen, J. Suomi, and O. Nevalainen, “Resource al-
location methodology for the segmented bus platform,” in Proceedings of
2005 IEEE International SOC Conference, Sep. 2005, pp. 129–132. doi:
10.1109/SOCC.2005.1554479.

[139] S. Srinivasan, F. Angiolini, M. Ruggiero, L. Benini, and N. Vijaykrish-
nan, “Simultaneous memory and bus partitioning for SoC architectures,”
in Proceedings of 2005 IEEE International SOC Conference, Sep. 2005,
pp. 125–128. doi: 10.1109/SOCC.2005.1554478.

[140] B. H. Meyer and D. E. Thomas, “Simultaneous synthesis of buses, data
mapping and memory allocation for MPSoC,” in Proceedings of 2007 5th
IEEE/ACM/IFIP International Conference on Hardware/Software Code-
sign and System Synthesis (CODES+ISSS), Sep. 2007, pp. 3–8. doi: 10.
1145/1289816.1289822.

[141] L. Chiou, Y. Chen, and C. Lee, “System-level bus-based communication
architecture exploration using a pseudoparallel algorithm,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 8, pp. 1213–1223, Aug. 2009. doi: 10.1109/TCAD.2009.
2021733.

[142] L. B. S. Murali and G. D. Micheli, “An application-specific design method-
ology for on-chip crossbar generation,” IEEE Transaction on Computer-
aided Design of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1283–
1296, Jul. 2007.

[143] ARM, Multi-layer AHB overview,
[Online] Available : http://infocenter.arm.com, 2004.

[144] ARM, AMBA AXI and ACE protocol specification,
[Online] Available : http://www.arm.com/products/system-ip/amba/
amba-open-specifications.php, 2011.

[145] S. Pasricha, Y. Park, F. J. Kurdahi, and N. Dutt, “CAPPS: A framework
for powerperformance tradeoffs in bus-matrix-based on-chip communi-
cation architecture synthesis,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 18, no. 2, pp. 209–221, Feb. 2010. doi:
10.1109/TVLSI.2008.2009304.

[146] G. Lee, Y. Ahn, S. Lee, J. Son, K. Yoon, and K. Choi, “Communication
architecture design for reconfigurable multimedia SoC platform,” Design
Automation for Embedded System, vol. 14, no. 1, pp. 1–20, Mar. 2010.

[147] Y.-P. Joo, S. Kim, and S. Ha, “Efficient hierarchical bus-matrix architec-
ture exploration of processor pool-based MPSoC,” Design Automation for
Embedded Systems, vol. 16, no. 4, pp. 293–317, Nov. 2012. doi: 10.1007/
s10617-013-9110-9.

http://dx.doi.org/10.1109/SOCC.2005.1554479
http://dx.doi.org/10.1109/SOCC.2005.1554478
http://dx.doi.org/10.1145/1289816.1289822
http://dx.doi.org/10.1145/1289816.1289822
http://dx.doi.org/10.1109/TCAD.2009.2021733
http://dx.doi.org/10.1109/TCAD.2009.2021733
http://dx.doi.org/10.1109/TVLSI.2008.2009304
http://dx.doi.org/10.1007/s10617-013-9110-9
http://dx.doi.org/10.1007/s10617-013-9110-9

166 BIBLIOGRAPHY

[148] M. Jun, D. Woo, and E.-Y. Chung, “Partial connection-aware topology
synthesis for on-chip cascaded crossbar network,” IEEE Trans. Comput.,
vol. 61, no. 1, pp. 73–86, Jan. 2012. doi: 10.1109/TC.2010.211.

[149] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “DeepBurning: Automatic gener-
ation of FPGA-based learning accelerators for the neural network family,”
in Proceedings of 2016 53nd ACM/EDAC/IEEE Design Automation Con-
ference (DAC), Jun. 2016, pp. 1–6. doi: 10.1145/2897937.2898002.

[150] H. Hong, H. Oh, and S. Ha, “Hierarchical dataflow modeling of iterative
applications,” in Proceedings of 54th Annual Design Automation Confer-
ence 2017 (DAC), Austin, TX, USA: ACM, 2017, 39:1–39:6. doi: 10.
1145/3061639.3062260.

[151] F. Tsimpourlas, L. Papadopoulos, A. Bartsokas, and D. Soudris, “A de-
sign space exploration framework for convolutional neural networks im-
plemented on edge devices,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2212–2221,
Nov. 2018. doi: 10.1109/TCAD.2018.2857280.

[152] ARM, AMBA specification (rev 2.0), [Online] Available : http://infocen-
ter.arm.com, 1999.

[153] ARM, ARM AMBA5 AHB protocol, [Online] Available : http://infocen-
ter.arm.com, 2015.

[154] ARM, AMBA design kit : Technical reference manual,
[Online] Available : http://infocenter.arm.com, 2013.

[155] G. Martin, “Overview of the MPSoC design challenge,” in Proceedings
of 2006 43rd ACM/IEEE Design Automation Conference (DAC), 2006,
pp. 274–279.

[156] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in Proceedings of the 14th
European Conference on Computer Vision (ECCV 2016), 2016, pp. 21–
37.

[157] Intel programmable acceleration card with intel arria 10 gx fpga, www.al-
tera.com/products/boards_and_kits/dev-kits/altera/acceleration-card-arria-
10-gx.html.

[158] Nallatech 510t compute acceleration card, www.nallatech.com/store/fpga-
accelerated-computing/pcie-accelerator-cards/nallatech-510t-fpga-computing-
acceleration-card.

[159] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 39, no. 4, pp. 640–651, Apr. 2017.

http://dx.doi.org/10.1109/TC.2010.211
http://dx.doi.org/10.1145/2897937.2898002
http://dx.doi.org/10.1145/3061639.3062260
http://dx.doi.org/10.1145/3061639.3062260
http://dx.doi.org/10.1109/TCAD.2018.2857280

BIBLIOGRAPHY 167

[160] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast
feature embedding,” ArXiv:1408.5093 [cs.CV], 2014.

[161] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful vi-
sual performance model for multicore architectures,” Commun. ACM, vol.
52, no. 4, pp. 65–76, Apr. 2009. doi: 10.1145/1498765.1498785.

[162] M. Motamedi, P. Gysel, V. Akella, and S. Ghiasi, “Design space explo-
ration of FPGA-based deep convolutional neural networks,” in Proceed-
ings of 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC), Jan. 2016, pp. 575–580. doi: 10 . 1109 / ASPDAC . 2016 .
7428073.

[163] P. Meloni, G. Deriu, F. Conti, I. Loi, L. Raffo, and L. Benini, “Curbing
the roofline: A scalable and flexible architecture for CNNs on FPGA,” in
Proceedings of the ACM International Conference on Computing Fron-
tiers (CF’16), Como, Italy, 2016, pp. 376–383. doi: 10.1145/2903150.
2911715.

[164] P. Zarkesh-Ha, J. A. Davis, and J. D. Meindl, “Prediction of net-length dis-
tribution for global interconnects in a heterogeneous system-on-a-chip,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
8, no. 6, pp. 649–659, Dec. 2000. doi: 10.1109/92.902259.

[165] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, Nov. 1998. doi: 10.1109/5.726791.

http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1109/ASPDAC.2016.7428073
http://dx.doi.org/10.1109/ASPDAC.2016.7428073
http://dx.doi.org/10.1145/2903150.2911715
http://dx.doi.org/10.1145/2903150.2911715
http://dx.doi.org/10.1109/92.902259
http://dx.doi.org/10.1109/5.726791

	1 Introduction
	1.1 Background
	1.2 Design Flow of AI-based Edge Computing Devices
	1.2.1 AI Application Design
	1.2.2 Hardware Design

	1.3 Requirements in Designing AI-based Edge Computing Devices
	1.3.1 Quickly Evaluate the Design Quality of an Architecture
	1.3.2 Accelerate Deep Learning Algorithms
	1.3.3 Efficiently Explore the Design Space to Find Optimal Architectures

	1.4 Objective of this Thesis

	2 Related Work
	2.1 Performance Estimation
	2.1.1 Simulation-based Performance Estimation
	2.1.2 Static Performance Estimation
	2.1.3 Hybrid Performance Estimation

	2.2 CNN Accelerators
	2.2.1 Data-reuse Maximization
	2.2.2 Data Precision Minimization
	2.2.3 Calculation-skip Maximization
	2.2.4 Parallel Calculation Maximization

	2.3 Architecture Design Space Exploration
	2.3.1 Architecture Exploration
	2.3.2 Communication Architecture Exploration
	2.3.3 Architecture Exploration for CNN-based Platform

	3 An Efficient Performance Estimation Method for Configurable Multi-layer Bus-based SoCs
	3.1 Motivation and Objective
	3.2 Bus Architecture
	3.2.1 Hierarchical Shared Bus Architecture
	3.2.2 Multi-layer Bus Architecture

	3.3 Definitions
	3.3.1 Model of Computation (MoC)
	3.3.2 Architectural Model
	3.3.3 Definition of the Proposed Efficient Performance Estimation Method

	3.4 Performance Estimation Method for Configurable Multi-layer Bus-based SoC
	3.4.1 System-level Profiling using SystemC
	3.4.2 SL-EDG Construction
	3.4.3 AL-EDG Construction
	3.4.4 AL-EDG Analysis
	3.4.5 Computational Complexity

	3.5 Case Study
	3.5.1 Modeling of Multi-layer AHB and APB Protocol
	3.5.2 Experimental Environment Setup
	3.5.3 Accuracy Measurement
	3.5.4 Tool Runtime and Speedup
	3.5.5 Discussion

	3.6 Conclusion

	4 Parallelism-flexible Convolution Core for Sparse Convolutional Neural Network
	4.1 Motivation and Objective
	4.2 Convolutional Neural Network (CNN)
	4.2.1 Terminology of CNN
	4.2.2 Parallelism in CNN

	4.3 Compressed CNN Model
	4.4 Overview of The Proposed Parallelism-flexible Convolution Core
	4.5 Parallelism-flexible Convolution Core for Sparse CNN
	4.5.1 Flexible Parallelism Concept
	4.5.2 Operations of the Convolution Core
	4.5.3 Architecture Organization
	4.5.4 Determination of Parallelism in Effect and Degree of Parallelism

	4.6 Experimental Methodology
	4.6.1 Workload
	4.6.2 Architecture Configuration
	4.6.3 Evaluation Method

	4.7 Evaluation Results on VGG-16
	4.7.1 Performance
	4.7.2 Resource Usage and Power Consumption on FPGA

	4.8 Comparison with Prior CNN Accelerators
	4.9 Applicability to Modern State-of-the-art CNNs
	4.9.1 Evaluation
	4.9.2 Discussion

	4.10 Conclusion and Future Work

	5 An Architecture Exploration of SoCs for CNN-based AI Platform
	5.1 Motivation and Objective
	5.2 Modeling CNN
	5.2.1 Modeling Granularity
	5.2.2 Nature of Data Tiling in CNN

	5.3 Model Definitions
	5.3.1 Model of Computation (MoC)
	5.3.2 Architectural Model

	5.4 Problem Formulation of a Multi-objective Architecture Exploration
	5.4.1 Input
	5.4.2 Objective functions of Architecture Exploration
	5.4.3 Output

	5.5 Design Quality Evaluation
	5.5.1 Performance Estimation
	5.5.2 Hardware Area Estimation

	5.6 Architecture Exploration of SoCs for CNN-based AI Platform
	5.6.1 SoC Architecture Parameterization
	5.6.2 Parameter Set Search Tree
	5.6.3 Pruning Parameter Set Search Tree
	5.6.4 Order of Parameter Mapping Trees

	5.7 Case Study
	5.7.1 Modeling Parallelism-flexible Convolution Core
	5.7.2 Experiment 1 : Validity of the Proposed Architecture Exploration Method
	5.7.3 Experiment 2 : Architecture Exploration for Large CNN Application

	5.8 Conclusion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work
	6.2.1 Extension of Communication Architecture
	6.2.2 Statistical Performance Estimation Approach
	6.2.3 Constrained Neural Network Sparsification
	6.2.4 Process and Communication Scheduling
	6.2.5 Energy Consumption Estimation Model
	6.2.6 Acceleration of Design Space Exploration

