
Title
Designing Adaptive and Evolvable Software-
defined Infrastructure Inspired by Biological
Behaviors

Author(s) 井上, 昴輝

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72589

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Designing Adaptive and Evolvable

Software-defined Infrastructure

Inspired by Biological Behaviors

Koki INOUE

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2019

List of publication

Journal papers

1. Koki Inoue, Shin’ichi Arakawa and Masayuki Murata, “A biological approach to physi-

cal topology design for plasticity in optical networks,”Optical Switching and Networking,

vol. 25, pp. 124–132, July 2017.

2. Koki Inoue, Shin’ichi Arakawa, Satoshi Imai, Toru Katagiri and Masayuki Murata, “Noise-

induced VNE method for software-defined infrastructure with uncertain delay behaviors,”

Computer Networks, vol. 145, pp. 118–127, November 2018.

Refereed Conference Papers

1. Koki Inoue, Shin’ichi Arakawa and Masayuki Murata, “Achieving plasticity in WDM net-

works: Application of biological evolutionary model to network design,” inProceedings of

IEEE GLOBECOM 2015, December 2015.

2. Koki Inoue, Shin’ichi Arakawa, Satoshi Imai, Toru Katagiri and Masayuki Murata, “Adaptive

VNE method based on Yuragi principle for software defined infrastructure,” inProceedings

of IEEE HPSR 2016, pp. 188–193, June 2016.

. i .

Non-Refereed Technical Papers

1. Koki Inoue, Shin’ichi Arakawa and Masayuki Murata, “A design method of WDM networks

based on biological evolution model,”Technical Report of IEICE (PN2014-8), vol. 114,

no. 109, pp. 41–46, June 2014.

2. Koki Inoue, Shin’ichi Arakawa, Satoshi Imai, Toru Katagiri, Motoyoshi Sekiya and Masayuki

Murata, “Yuragi-based approach with delay profile for virtual network embedding in software

defined infrastructure,”Technical Report of IEICE (IN2015-148), vol. 115, no. 484, pp. 235–

240, March 2016.

3. Koki Inoue, Shin’ichi Arakawa and Masayuki Murata, “An evolvable network resource plan-

ning for adaptive virtual network control in software defined infrastructure,”Technical Report

of IEICE (NS2017-160), vol. 117, no. 385, pp. 93–98, January 2018.

. ii .

Preface

Software-defined infrastructure (SDI) is a promising framework to enable flexible and rapid deploy-

ment of new services on information networks by providing virtualized infrastructure to customers

by slicing computing resources and network resources. That contributes shortening time-to-market

of customers’ services. Also, for network service providers, it is expected that there will be a merit

of both capital and operating expense (CAPEX and OPEX) reduction by deploying a SDI frame-

work.

However, several problems remain in virtual network control and physical network design to-

wards enjoying the SDI framework. First, a resource control which can immediately response

to demand fluctuations is required. The softwarized user interface in SDI enables responding to

resource demands from various customers in short-term. Second, related to the above problem,

a resource controller is required to work without a full knowledge of the whole network situa-

tion. Conventional approaches intend to solve a certain optimization problem, where a centralized

network controller needs to collect precise information before calculating an optimized solution.

However, this process will be difficult for a larger number of multiplexed virtual networks, and

that disables the on-demand network operation. Third, drastic and unexpected demand fluctuations

should be considered. With short-term and customized requests, demand fluctuations become dif-

ficult to predict. Then adaptation by a softwarized VNE control becomes more important in SDI,

but an improper physical resource arrangement may course degradation of the performance of VNE

controls.

The target of this thesis is to construct a virtual network embedding (VNE) control method for

solving the first and the second problems, and physical resource planning for the third problem. In

. iii .

this thesis, we present an adaptive VNE method that works with only a little information for large,

complicated, and uncertain SDI frameworks. The method is based on a biological attractor selection

model, which our research group has been adopting for virtual network topology control in optical

networks. As a preliminary study for physical resource design, we examine a biological approach

to physical topology design for plasticity in optical networks. The design considers plasticity just as

better link utilization rate obtained through an evolutionary process. However, it does not consider a

diverse set of potential virtual network topologies, so evolvability will not be obtained. Thus for the

SDI framework, we consider physical resource design to increase a diversity of solutions reached

by a VNE control. It is expected that providing candidates of more various VNE solutions will

enhance adaptability of VNE control against various future environmental fluctuations.

We first propose a physical resource design method for optical networks, e.g., wavelength di-

vision multiplexing (WDM) networks, as a prior inspection for physical resource design method

in SDI frameworks. We propose a design method for adding transceivers to IP routers in IP-over-

WDM networks. The method defines correspondence between an evolution model and a WDM

network, and simulates a process of biological evolution (i.e., mutation and selection of gene reg-

ulatory networks through generations) where transceivers arrangement is reflected by modifying

the gene regulatory network. Then it measures performance of the VNT control method (i.e., aver-

age link utilization rate). Evaluation results show that our method accommodates more patterns of

traffic fluctuation with lower link utilization than ad-hoc design methods do. Thus we confirm our

approach is promising for physical resource design.

Second, we present a VNE method that works with limited information for large, compli-

cated, and uncertain SDI frameworks. To achieve this, the proposed method applies the biological

“Yuragi” principle. Therefore, we develop a Yuragi-based VNE method that deals with node at-

tributes, has the generality to set a performance objective, and runs in multi-slice environments. We

examine a complicated model of end-to-end delay and show that the proposed method can sustain

its adaptability under various types of delay conditions. Simulation results show that the Yuragi-

based method can decrease VN migrations by about 29% relative to a heuristic method to adapt to

fluctuations in resource requirements.

Finally, we propose an SDI resource design strategy that increases diversity of VNE solutions,

. iv .

which is derived by a variation of regulatory matrices under demand fluctuations. Our design strat-

egy for the SDI system aims to achieve adaptability in the face of unpredictable environmental

changes by increasing the diversity of considered VNE states. As a successful biological model, we

consider the evolution of populations of organisms to better fit changing environments. The strategy

imitates the evolvability of biological populations, adopting an evolutionary model that treats each

VNE solution characterized as a biological phenotype. We use the proposed strategy to construct

a method for reinforcing the computational capacity of physical nodes, and conduct experiments

by computer simulation. Our results show that the probability of convergence with VNE control

is improved by using the proposed physical-resource reinforcement, achieving a gain of up to 19%

relative to a basis reinforcement method which optimizes an expected performance under predicted

demand fluctuations.

. v .

Acknowledgments

I would like to express my sincere appreciation to everyone who supported me in various ways

throughout my Ph.D. This thesis could not have been accomplished without their assistance.

First of all, I express my grate gratitude to my supervisor, Professor Masayuki Murata of Gradu-

ate School of Information Science and Technology, Osaka University, for his insightful suggestions

and valuable discussions. He brought me to an attractive research field, and made my research life

fruitful.

I am heartily grateful to the members of my thesis committee, Professor Takashi Watanabe, Pro-

fessor Toru Hasegawa, and Professor Teruo Higashino of Graduate School of Information Science

and Technology, Osaka University, and Professor Morito Matsuoka of Cyber Media Center, Osaka

University, for their multilateral reviews and perceptive comments.

Furthermore, I would like to owe my special thanks to Associate Professor Shin’ichi Arakawa

of Graduate School of Information Science and Technology, Osaka University, for his continuous

support and encouragement. He taught me the fun of thinking about and solving problems.

Also, I would like to express my sincere appreciation to Dr. Motoyoshi Sekiya, Dr. Toru

Katagiri and Dr. Satoshi Imai of Fujitsu Laboratories Ltd. for their helpful comments and fruitful

discussions.

Moreover, I am deeply grateful to Assistant Professor Yuichi Ohsita, Specially Appointed Assis-

tant Professor Tatsuya Otoshi of Graduate School of Information Science and Technology, Osaka

University, Assistant Professor Daichi Kominami of Graduate School of Economics, Osaka Uni-

versity, and Assistant Professor Naomi Kuze of Graduate School of Engineering Science, Osaka

university, for their valuable comments on my study.

. vii .

I am really thankful to all of past and present colleagues, friends, and secretaries of the Ad-

vanced Network Architecture Research Laboratory, Graduate School of Information Science and

Technology, Osaka University.

I express my special appreciation to Yoshimura Foundation for offering me a scholarship sup-

port.

Finally, I express my thanks to my family for invaluable supports throughout my life.

. viii .

Contents

List of publication i

Preface iii

Acknowledgments vii

1 Introduction 1

1.1 Background . 1

1.1.1 Virtual network control . 3

1.1.2 Physical resource planning . 4

1.2 Outline of thesis . 6

2 A Biological Approach to Physical Topology Design for Plasticity in Optical Networks 11

2.1 Introduction . 11

2.2 Adaptive VNT control and physical network design method 13

2.3 Method for designing optical networks to have plasticity 14

2.3.1 Biological model . 14

2.3.2 Applying our method to add transceivers 19

2.3.3 Time scale of VNT control and network reinforcement 22

2.3.4 Possible extension . 23

2.4 Evaluation . 23

2.4.1 Methods for comparison . 25

. ix .

2.4.2 Simulation environments . 28

2.4.3 Simulation results . 32

2.5 Conclusions . 39

3 Noise-induced VNE Method for Software-defined Infrastructure with Uncertain Delay

Behaviors 41

3.1 Introduction . 41

3.2 Virtual Network Services in SDI Frameworks . 44

3.2.1 SDI . 44

3.2.2 The Virtual Network Embedding Problem 45

3.2.3 Centralized Approaches for VNE . 48

3.3 Yuragi-based Virtual Network Embedding Method 49

3.3.1 Yuragi Principle . 50

3.3.2 Performance Objectives . 51

3.3.3 Yuragi-based VNE Method . 52

3.3.4 VN calculation . 54

3.3.5 VN migration . 55

3.4 Evaluation by Computer Simulation . 55

3.4.1 Simulation Environment . 55

3.4.2 Delay Profile . 56

3.4.3 Heuristic Method for Comparison . 59

3.4.4 Simulation Results . 60

3.5 Conclusion . 66

4 Network resource planning for evolvability in software-defined infrastructure 71

4.1 Introduction . 71

4.2 Physical resource design in SDI . 75

4.2.1 Virtual network service in an SDI framework 75

4.2.2 Physical resource planning problem . 75

. x .

4.3 Resource planning strategy to increase evolvability 78

4.3.1 Resource planning strategy required in SDI 78

4.3.2 Adaptation strategy for environmental change by biological evolution . . . 78

4.4 Computational resource reinforcement method for increasing evolvability 80

4.4.1 ADD algorithm . 81

4.4.2 How to calculate the evolvability index 82

4.5 Performance evaluation . 89

4.5.1 Simulation environment . 89

4.5.2 Basis method for comparison . 92

4.5.3 Simulation results . 93

4.6 Conclusions . 95

5 Conclusion 97

Bibliography 101

. xi .

List of Figures

2.1 VNT control and network design to prepare for traffic growth 15

2.2 Genetic model forM = 20, kinp = 4 . 17

2.3 Example of applying our model to a WDM network 19

2.4 Relation between VNT control and network reinforcement 24

2.5 Topology used in the computer simulation: EON 29

2.6 Topology used in the computer simulation: USNET 30

2.7 Topology used in the computer simulation: JBN 31

2.8 Distribution of average link utilization: Histogram on EON (Proposal - MILP) . . . 33

2.9 Distribution of average link utilization: Histogram on EON (MILP - Heuristic) . . 34

2.10 Distribution of average link utilization: Histogram on USNET 35

2.11 Distribution of average link utilization: Histogram on JBN 35

2.12 Distribution of average link utilization: complementary cumulative distribution

function (CCDF) on EON . 36

2.13 Distribution of average link utilization: complementary cumulative distribution

function (CCDF) on USNET . 36

2.14 Distribution of average link utilization: complementary cumulative distribution

function (CCDF) on JBN . 37

2.15 VNT control success rate . 38

2.16 Distribution of average link utilization against differentσnoise 39

3.1 Service model in software-defined infrastructure 46

. xiii .

3.2 Comprehension of VNE problem with a simple example 48

3.3 An illustration of the Yuragi mechanism . 51

3.4 Environmental fluctuations over elapsed time . 58

3.5 Delay models used for computer simulation . 58

3.6 Maximum delay and activity on a VN . 62

3.7 Average of maximum delay for 20 VNs . 63

3.8 Embedding ratio of VN requests . 63

3.9 The number of VN migrations . 64

3.10 Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 1 65

3.11 Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 2 66

3.12 Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 3 66

3.13 Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 1 67

3.14 Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 2 67

3.15 Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 3 68

3.16 Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 1 68

3.17 Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 2 69

3.18 Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 3 69

4.1 Service model in SDI . 76

4.2 Problem of planning resource reinforcement . 77

4.3 Biological evolution model at each generation . 80

4.4 An example of VNE solution by phenotypeX . 84

4.5 Concept of evolvability: Appearance probability distribution for VNE solutions at

each resource reinforcement stage . 86

4.6 Procedure of calculating the evolvability index . 87

4.7 An example of a mutation operation for the control matrix 88

4.8 Delay profile . 91

4.9 The number of VNE solutions reached by the VNE control 94

4.10 Number of VNE solutions: comparison with the basis reinforcement 95

. xiv .

4.11 Convergence probability of the VNE control . 96

. xv .

List of Tables

2.1 Correspondence between evolution model and WDM network 20

2.2 Numbers of nodes and links . 30

2.3 Calculation results (transceivers are added to the following nodes) 33

3.1 List of variables and values in the simulation . 57

. xvii .

Chapter 1

Introduction

1.1 Background

Information networks are faced with new emerging services, such as mobile services, cloud com-

puting services, and social services. Such services are now part of the social infrastructures and

indispensable in people’s lives. In the coming future, it is also anticipated that wider variety of ser-

vices and applications utilizing network infrastructures are produced. For example, many concep-

tions are under development for various services such as smart grid [1], vehicular communication

systems [2], Ultra-high-definition video delivery [3], telemedicine and health-care [4,5], augmented

reality (AR) applications with edge computing [6], etc. Requirements and priorities for a network

are different among the services, e.g., some services seek low latency while others requires a large

capacity of data transportation, or many number of connections must be accommodated even with

low processing power. It is also required within the rapidly changing society and economy that a

service should be started with minimum implementation, scalable deployment should be accepted

and the time-to-market should be shorten. Therefore, it is required that the network infrastruc-

ture be provided flexibly and quickly. Software-defined infrastructure (SDI) [7, 8] is a promising

framework to enable flexible and rapid deployment of new services on information networks. An

SDI framework, which is realized by orchestrating software-defined computing, software-defined

storage, and software-defined network, provides virtualized infrastructure to customers with any

– 1 –

1.1 Background

required capacities by slicing computing resources, storage and network resources.

A key to leveraging an SDI framework is network virtualization technologies and orchestration

of them. Network virtualization technologies are in the research and development phase. In recent

years, software-defined networking (SDN) and network-function virtualization (NFV) technologies

have been expected to replace the conventional network management systems, and standardization

of SDN/NFV technologies is being promoted. SDN/NFV technologies enable programmable and

automated network control, while conventional systems require the network operator to configure

various kinds of network devices [9–15]. The customers can order virtualized computational re-

sources and network resources to their network service providers by making customized requests

via a certain softwarized API, e.g., a graphical user interface (GUI) application on the Web. Then,

a sliced virtual network is immediately assigned to the requesting customer by automated resource

control. That contributes shortening time-to-market of customers’ services. Also, for network

service providers, it is expected that there will be a merit of both capital and operating expense

(CAPEX and OPEX) reduction by deploying a SDI framework. CAPEX will be reduced by shar-

ing infrastructure among different customers and services, and by flexibly scaling the amount of

resources provided in response to demand fluctuation. OPEX will be reduced by replacing manual

operations with automated operations, that also leads cutting of human error.

However, several problems remain in virtual network control and physical network design to-

wards enjoying the SDI framework. First, a resource control which can immediately response to

demand fluctuations is required. The softwarized user interface in SDI enables responding to re-

source demands from various customers in short-term. Second, and this is related to the above

problem, a resource controller is required to work without a full knowledge of the whole network

situation. Although virtual network embedding (VNE) problem has been addressed to obtain a

proper assignment of resources satisfying demands [16–22], most of existing methods dissatisfy

those requirements. Their approaches intend to solve a certain optimization problem, where a cen-

tralized network controller needs to collect precise information before calculating an optimized

solution. However, this process will be difficult for a larger number of multiplexed virtual net-

works, and that disables the on-demand network operation. Third, drastic and unexpected demand

fluctuations should be considered. With short-term and customized requests, demand fluctuations

– 2 –

Chapter 1. Introduction

become difficult to predict. Then adaptation by a softwarized VNE control becomes more important

in SDI, but an improper physical resource arrangement may course degradation of the performance

of VNE controls.

The target of this thesis is to construct a VNE control method for solving the first and the second

problems, and physical resource planning for the third problem.

1.1.1 Virtual network control

The VNE problem is a placement problem in which virtual resources are to be allocated to the

physical network with optimization of some performance objectives. In the VNE problem, service

demands from customers are translated to virtual network requests. A virtual network consists of

virtual nodes and virtual links. Each of the virtual nodes is hosted on a physical node as a form of

virtual machine. Then, the virtual nodes are connected through a path of physical nodes, forming

virtual links. The VNE problem is divided into two sub-problems: virtual node mapping and virtual

link mapping. Virtual node mapping decides the location of the physical node for each virtual node.

Note that each virtual node must be allocated to a physical node supporting its “node attribute.”

The node attribute allows classification of nodes in ways defined by the supported operating system

(OS), storage type, or node use (e.g., computing, storage, or packet switching). Virtual link mapping

decides the path on the physical network for virtual links between virtual nodes.

In [19–22], a centralized calculation was assumed to solve virtual node mapping and virtual

link mapping. That is, a centralized component gathers traffic information and resource utilization

for each virtual network and identifies the current situation (i.e., the current traffic demand and/or

the current service demand) of the networks. Then, the component solves the optimization prob-

lem that optimizes some metric, such as maximizing revenue or minimizing resource utilization.

However, when the network size gets larger and the number of multiplexed virtual networks in-

creases, the identification of the current situation becomes complicated by the enormous amount of

network information. As the network operators want to know the current situation more accurately

and precisely, more information is necessary to collect. This will lead to increased used of link

bandwidth, increased delay, and a bottleneck on network scalability [15]. Note that the calculation

– 3 –

1.1 Background

time to obtain a solution of the optimization problem also gets larger. However, the calculation

time is not crucial because it may be relaxed by some heuristic algorithms with some sacrifice of

the quality of the solution. Our concern in adopting the centralized approach is the overhead of

collecting information, and this overhead gets larger as the size of the infrastructure and number of

virtual network requests increase. Moreover, the environments surrounding the Internet today are

continuously changing, thus, adaptive control of VNE is required to handle uncertain changes in

the environments. Although precise modeling of the end-to-end delay in SDI environment is diffi-

cult, it would be required to suppress the maximum delay in order to guarantee a specific quality of

experience (QoE) for applications on virtual networks. There are several models of network delay

proposed, which are constructed generally and disregard the data contexts of packets [23]. How-

ever, the processing delay on servers depends on multiple factors, including server specification;

CPU and memory utilization (on virtual machines); and details of processing, which depend on the

context of the data.

In this thesis, we present an adaptive VNE method that works with only a little information for

large, complicated, and uncertain SDI frameworks. A process of the VNE method is executed for

each virtual network request. Different from optimizing problems and related heuristics, our VNE

method can avoid the necessity of collecting detailed information about the entire network. The

process for a virtual network request needs only enough information for performance objective and

does not need any information related to other virtual network requests.

1.1.2 Physical resource planning

Virtual network embedding (VNE) control is expected to allow properly configuring virtual resource

allocation in response to environmental fluctuations, such as changes in virtual resource demands,

but a VNE control may not result in good virtual network performance. Such failure is caused

mainly by two factors. The first factor is the VNE algorithm itself, and many VNE algorithms have

been studied with the aim of achieving better allocation of virtual resources [18–20,22,24–27]. The

second factor is related to the physical resource design. When resource utilization levels become

high, processing delays and data transfer delays will increase, resulting in worse performance of

– 4 –

Chapter 1. Introduction

services running on a virtual network. Despite the extensive research on VNE algorithms, the

design of physical infrastructure for SDN/NFV applications has been scarcely considered to date.

Although physical network resource designs have been considered in traditional communication

systems, such systems aim to have adequate capacity for future states as predicted from long-term

traffic observation. Indeed, physical network designs have been studied to optimize performance

on the basis of current demand or a predicted future demand. For example, in IP-optical networks,

ref. [28] describes the design of an optical-cross-connect topology in which the number of distinct

wavelengths is minimized by knowledge of the optical path demands. Reference [29] describes a

design for an optical layer network with the capacity to accommodate a predefined IP-layer topol-

ogy, decided on the basis of predicted future traffic and possible failure scenarios. However, such

conventional methods of designing for capacity are unsuited to SDI frameworks. A fundamental

difference between capacity planning in conventional frameworks and in the SDI framework is the

time granularity of changes in demand. That is, with SDI, the resource demands from various users

may change over short periods. This is inherent to SDI frameworks, where virtual network configu-

rations are executed by a softwarized control instead of by conventional manual operation. Because

of this, adaptation by a softwarized VNE control becomes more important in SDI frameworks for

achieving rapid provisioning of resources to meet fluctuating demands, and physical resource de-

sign is an important factor in the adaptability of VNE control. As mentioned above, algorithms for

finding better VNE solutions under given resource constraints have been considered, but a strategy

for choosing a physical network design that promotes VNE adaptability has not been discussed.

In contrast with virtual resource allocation, which is nearly instant, installing physical resources

in an SDI framework takes considerable time and manual work. It is thus not practical to adjust the

physical resources in response to every demand fluctuation. Physical resource planning requires

that short-term fluctuations be managed by a dynamic VNE control. Note that drastic fluctuations

should be expected to occur in the future for SDI because user requests frequently arrive through

user-friendly interfaces (e.g., GUI) and applications are customized to be suitable for their intended

purpose. A promising way to enhance the ability of the VNE control to adapt to unexpected fluctu-

ations is to reinforce the physical resources so that the VNE control can draw on this more robust

infrastructure, which makes a higher number of VNE solutions feasible.

– 5 –

1.2 Outline of thesis

Therefore, we consider which physical resource designs will increase the diversity of feasible

solutions considered by a VNE control. It is expected that providing more varied candidates for

VNE solutions will enhance the robustness of VNE control against environmental fluctuations (i.e.,

will enhance its adaptability). Even in situations where it is difficult to predict demand changes,

our design strategy aims to deploy physical resources such that the VNE control can accommodate

various fluctuations in future demand.

1.2 Outline of thesis

A Biological Approach to Physical Topology Design for Plasticity in Optical Networks

[30–32]

We first propose a physical resource design method for optical networks, e.g., wavelength division

multiplexing (WDM) networks, as a prior inspection for physical resource design method in SDI

frameworks.

We have an idea of applying biological evolution to physical resource design in SDI frame-

works for adaptability against drastic demand fluctuations. The design approach intend to simulate

a biological characteristic that biological evolution allows species to survive unexpected environ-

mental changes with adaptively expressing phenotypes suitable for each novel environment. While

adaptive virtual resource control is required to enjoy such the physical resource design, there is no

specific adaptive VNE methods in SDI frameworks. As for in WDM networks, our research group

has previously developed a virtual network topology (VNT) control method that works with only a

little information [33]. The VNT control method has been experimented through actual implemen-

tation, and adaptability to traffic changes is demonstrated. We construct a physical resource design

based on a biological evolutionary model with presupposing the adaptive VNT control, and confirm

whether our approach can be promising for physical resource design.

One important characteristic of biological evolution isplasticity, which describes the change-

ability against environmental changes [34]. In Ref. [34], the authors develop a gene expression

– 6 –

Chapter 1. Introduction

dynamics model to explain how organisms can obtain both short-term (on the order of hours) ro-

bustness and long-term (on the order of days to years) plasticity. In an optical network capable of

plasticity, it is expected that adaptive VNT control can enjoy plasticity of the physical infrastructure,

and so network performance can avoid being degraded under various patterns of future traffic fluc-

tuation, even unknown patterns. We propose a design method for adding transceivers to IP routers

in IP-over-WDM networks. The method defines correspondence between an evolution model and a

WDM network, and simulates a process of biological evolution (i.e., mutation and selection of gene

regulatory networks through generations) where transceivers arrangement is reflected by modifying

the gene regulatory network. Then it measures performance of the VNT control method (i.e., aver-

age link utilization rate). Evaluation results show that our method accommodates more patterns of

traffic fluctuation with lower link utilization than ad-hoc design methods do.

Noise-induced VNE Method for Software-defined Infrastructure with Uncertain De-

lay Behaviors [27,35,36]

Second, we present a VNE method that works with limited information for large, complicated, and

uncertain SDI frameworks. To achieve this, the proposed method applies the biological “Yuragi”

principle. Yuragi is a Japanese word whose English translation is a small perturbation, both exter-

nally and internally generated, to the system. Yuragi is a mechanism that provides adaptability to

organisms and is often expressed as an attractor selection model. Our research group has developed

a virtual network control based on attractor selection for optical networks. Our results showed that

our control mechanism has high adaptability to environmental fluctuations with restricted informa-

tion. Unlike a virtual network on an optical network, a virtual network on an SDI framework has

to consider various matters such as node attribute, computational performance of servers, and VN

multiplexing. Therefore, we develop a Yuragi-based VNE method that deals with node attributes,

has the generality to set a performance objective, and runs in multi-slice environments. One pro-

cess of the method is executed for each VN slice, and each process needs information about only

its own VN requests. Each of the processes behaves so as to improve its own performance function,

– 7 –

1.2 Outline of thesis

considering other VNs as a part of an external perturbation (i.e., Yuragi). We examine a compli-

cated model of end-to-end delay and show that the proposed method can sustain its adaptability

under various types of delay conditions. Simulation results show that the Yuragi-based method

can decrease VN migrations by about 29% relative to a heuristic method to adapt to fluctuations in

resource requirements.

A network resource planning for evolvability in software-defined infrastructure [37]

Finally, we propose an SDI resource design strategy that increases diversity of VNE solutions,

which is derived by a variation of regulatory matrices under demand fluctuations. Our design strat-

egy for the SDI system aims to achieve adaptability in the face of unpredictable environmental

changes by increasing the diversity of considered VNE states. As a successful biological model,

we consider the evolution of populations of organisms to better fit changing environments. One

key to obtaining evolutionary adaptability is to increase genotypic evolvability (i.e., the phenotypic

diversity that can arise from a genetic distribution) [34,38]. Even when the environment drastically

changes, genotypic evolvability lets the system produce phenotypes that are much different from the

previously dominant phenotype and ultimately settle on a phenotype that is suitable for the changed

environment. In this thesis, we propose an SDI resource design strategy that increases VNE solution

diversity, which originates from control system variation under demand fluctuations. The strategy

imitates the evolvability of biological populations, adopting an evolutionary model that treats each

VNE solution characterized a biological phenotype.

As a preliminary work, we considered a method based on biological evolution that can increase

the number of transceivers of IP routers in a WDM network. However, the method given in our ear-

lier study, which incorporates the state of resource reinforcement into the gene regulatory network,

is specific to the combination of a virtual network control method and increases in the number of

IP transceivers in a WDM network. In addition, that method does not consider a diverse set of po-

tential virtual networks, so evolvability is not obtained. In the SDI framework, demands of virtual

resources become more complicated including node computing servers and network bandwidths.

– 8 –

Chapter 1. Introduction

Against fluctuations of such the demands, adaptation for a variety of situations by a virtual net-

work control is prior to obtaining better performances for several estimated situations. We instead

focus on improving evolvability (in the form of phenotype diversity caused by genetic mutation)

and thereby contributing to improvement of environmental adaptability, analogous with biological

evolution. For this, we develop an evolvability index to characterize the diversity of a VNE solution

set in an SDI framework. This index is independent of the type of resource to be reinforced (e.g.,

node resources and link resources are treated the same), thus constructing a more general method

of resource design.

We use the proposed strategy to construct a method for reinforcing the computational capacity

of physical nodes, and conduct experiments by computer simulation. Our results show that the

probability of convergence with VNE control is improved by using the proposed physical-resource

reinforcement, achieving a gain of up to 19% relative to a reinforcement method which optimizes

an expected performance under predicted demand fluctuations.

– 9 –

Chapter 2

A Biological Approach to Physical

Topology Design for Plasticity in Optical

Networks

2.1 Introduction

In wavelength division multiplexing (WDM) networks, optical cross connects (OXCs) switch op-

tical signals without optical-electrical-optical (OEO) conversion by using wavelength routing. A

wavelength channel, called a lightpath, is established between nodes. Since the upper-layer’s traf-

fic, such as IP traffic, can change its nature, much research has examined the construction of a

virtual network topology (VNT) on top of a WDM network [39, 40]. A VNT is a logical network

composed of lightpaths, and the connectivity among routers can be easily reconfigured by establish-

ing or tearing down lightpaths. When the traffic demand changes and certain performance metrics

degrade to the point where they are no longer acceptable, the VNT is changed to a new VNT that

exhibits optimal or near-optimal performance under the network environment as it exists at that

time.

The environment of the Internet is rapidly changing. With the appearance of new web services

such as video streaming and cloud computing, traffic volumes have increased rapidly and fluctuate

– 11 –

2.1 Introduction

drastically. Some VNT control methods have been studied for countering traffic fluctuations, show-

ing good performance on metrics such as keeping link utilization lower by adaptively reconfiguring

the VNT in accordance with traffic changes [33, 41]. However, when the traffic volume increases,

VNT control methods may fail to find a suitable VNT. That is, there may be no solution that can

provide good performance because of a lack of network resources or because of other problems. In

such situations, network operators must reinforce the physical network resources. Much considera-

tion has gone into physical network design [28,42–44]. In Ref. [42], the authors consider designing

a physical topology in which logical rings can be established for survivability while minimizing

the number of physical links. In Ref. [28], the authors address both physical and logical topology

design, and formulate the problem as an integer linear programming problem of minimizing the

number of wavelengths used. In Ref. [43], the authors consider a routing and wavelength assign-

ment problem in optical networks with the aim of minimizing the cost over the long term under

a restricted budget. In Ref. [44], the authors consider designing a mixed-line-rates network with

minimum cost. Most of these works solve optimization problems against predicted traffic demand.

However, when the environment changes drastically, it is natural that future traffic demand cannot

be estimated accurately. Even if we are able to ‘specify’ future traffic demand by incorporating en-

vironmental uncertainty and use it in the design method, the designed network is specialized to the

pre-specified situation, which may lose adaptability against unexpected traffic changes. Therefore,

a new design approach that can accommodate various patterns of future traffic in conjunction with

the VNT control method is needed.

In order to develop a new design approach, we consider biological evolution, which allows

species to survive environmental changes over the long term. One important characteristic of bi-

ological evolution isplasticity, which describes the changeability against environmental changes

[34]. In Ref. [34], the authors develop a gene expression dynamics model to explain how organ-

isms can obtain both short-term (on the order of hours) robustness and long-term (on the order of

days to years) plasticity. Following the gene expression dynamics model, we propose a method for

designing physical networks and develop a design method for adding transceivers to IP routers in

optical networks, e.g., IP-over-WDM networks. The number of transceivers is equal to the degree

of virtual links, i.e., lightpaths, connected to the node. Our method determines a set of nodes to

– 12 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

which transceivers should be added in order to give plasticity to the optical network. In an optical

network capable of plasticity, it is expected that adaptive VNT control can enjoy plasticity of the

physical infrastructure, and so network performance can avoid being degraded under various pat-

terns of future traffic fluctuation, even unknown patterns. Through computational simulation, we

confirm that our design method offers plasticity.

A preliminary version of this work has been presented in [31]. In our previous chapter, we have

introduced a concept of plasticity in designing optical networks and have compared with a heuristic

method on the European optical network (EON) [45]. In the current chapter, we introduce a mixed

integer linear programming (MILP) solution for comparison and show the effects of the plasticity

on the EON, the US nationwide network (USNET) and the Japan backbone network (JBN).

The rest of this chapter is organized as follows. In Sec. 2.2, we describe the purpose of our

research. We then propose a method of optical network design capable of plasticity in Sec. 2.3 and

show evaluation results in Sec. 2.4. We finally conclude this chapter and mention future work in

Sec. 2.5.

2.2 Adaptive VNT control and physical network design method

When traffic changes drastically, a dynamic VNT control method that can adapt to various changes

in traffic is needed. We previously proposed a VNT control method based on attractor selection

that exhibits high adaptability to unexpected changes in traffic demand [33]. In this VNT control

method, lightpath reconfiguration is driven by the following expression:

dxi
dt

= α · f(x) + η, (2.1)

wherexi is a variable indicating that a lightpath between the node-pairi is configured when it

exceeds a certain threshold. The functionf(x) represents deterministic behavior that causes the

VNT to converge to one of the equilibrium point, that is, to an attractor. The activityα represents

feedback of the network condition. Whenα is high, the system stays at an attractor that offers good

conditions. When the network condition worsens due to traffic fluctuations,α decreases towards

– 13 –

2.3 Method for designing optical networks to have plasticity

zero until stochastic behavior dominates the system. That is, lightpaths are reconfigured at random

in the search for another attractor. After a while, the VNT again converges on a new attractor

thereby adapting to the traffic fluctuation.

Although our VNT control method is more successful in terms of obtaining robustness against

traffic changes than other existing methods are, it fails to obtain a good VNT when the network

resources are insufficient for the increased traffic. This is a fundamental limit that also applies to

other methods. The aim of this chapter is therefore to consider a physical network design method

for accommodating future unknown traffic demand as much as possible while keeping the adapt-

ability of the attractor-based VNT control method. Figure 2.1 illustrates the relation between VNT

reconfiguration and our physical network design method. VNT control reconfigures the VNT over

the physical network and adapts to traffic fluctuations. When traffic volume increases, we might

not able to find a good VNT because of a shortage of network resources. We then need to add

network resources such as physical links, IP routers, optical switches, and transceivers. Since the

adaptability of VNT control depends on the underlying physical network, an improperly designed

physical network may reduce the ability of VNT control to adapt to traffic fluctuations. We also

note that our proposed design method is easily extended to incorporate other network resources.

This proposal is applicable to not only our VNT control methods but also other existing dynamic

VNT control methods.

2.3 Method for designing optical networks to have plasticity

In this chapter, we apply a biological evolution model that mimics the robustness and plasticity of

biological systems. This is introduced in the next subsection. Note that while we understand it is a

rather lengthy explanation, it is necessary for readers to understand how biological plasticity can be

applied to our case.

2.3.1 Biological model

Organisms adapt to the environment through the evolution of a genetic network. Robustness and

plasticity are thought to be basic characteristics in evolutionary biology. Robustness is the capacity

– 14 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity
B

ad
n

es
s

o
f

n
et

w
o

rk
 p

er
fo

rm
an

ce

Time

Reinforcement of

physical resources

VNT control

Traffic growth with traffic fluctuation

Proper designImproper design

Figure 2.1: VNT control and network design to prepare for traffic growth

of an organism to maintain its own state and function against disturbances. In contrast, plasticity

is changeability or flexibility in response to environmental fluctuations [34]. Organisms are able

to adapt to new and/or unexperienced environments by greatly changing state as the external en-

vironment changes. Plasticity expresses sensitivity to external perturbations, and is an important

characteristic for adaptive evolution.

In Ref. [34], the author formulates a model of the evolution process by taking account both

biological robustness and plasticity. In the model, an organism optimizes the value of fitness against

various kinds of environmental changes by changing gene expression (phenotype), in which the

dynamics are governed by activation/inhibition between genes (genotype). The model consists of

several elements (Fig. 2.2), each of which is explained below.

gene: There areM genes. Each genei has its own expression levelxi(−1 ≤ xi ≤ 1). Whenxi

exceeds some thresholdθi, genei is expressed. Otherwise, genei is not expressed.

input gene: kinp genes among theM genes are input genes, and their gene expression levels are

given initially and do not change regardless of the gene expression dynamics. Without loss of

generality, we regard genesxi(1 ≤ i ≤ kinp) as the input genes. Changes in the expression

levels of these input genes represents a change in the environment.

– 15 –

2.3 Method for designing optical networks to have plasticity

phenotype: As a result of the gene expression dynamics, the gene expression levelsxi(kinp <

i ≤ M) converge to some set of values. Note that the input gene expression levels are

independent of the gene expression dynamics. Some genes are expressed and others are not

expressed, thus forming a pattern of expressed genes. This pattern is called a phenotype. In

Fig. 2.2, expressed genes are represented by filled circles and have a phenotypic value of 1,

while non-expressed genes are represented by open circles and have a phenotypic value of 0.

genotype: Genes are related to each other. These mutual relations are defined by a gene regulatory

network. In Fig. 2.2 each solid arrow represents an activating relation from one gene to an-

other, and each dashed arrow represents an inhibiting relation.Jij(= {−1, 0, 1}) represents

the activation/inhibition relation between genei and genej. WhenJij = 1, genei receives

an activation effect from genej. WhenJij = −1, genei receives an inhibition effect from

genej. WhenJij = 0, there is no relation between genesi andj. A matrix J with elements

Jij is a gene regulatory network and is called a genotype.J determines the gene expression

dynamics.

fitness: Fitness represents the adaptability to the present environment or condition of the system,

and is calculated by a functionF (phenotype). That is, the fitness value is determined by the

pattern of gene expression, which is governed by the genotype. From a biological perspec-

tive, a typical example of the functionF is the number of expressed target genes. We select

the target genes for this example from the perspective of a biological context.F (phenotype)

becomes the highest when the expression pattern of target genes consists of all 1s. From a

network design perspective, introducing target genes is not necessary. We simply use tra-

ditional performance metrics to calculate the fitness value. In this chapter, we will use the

average link utilization of the VNT for calculating the fitness.

The dynamics of gene expression levels is then described by the following equation,

dxi/dt = γ

{
f

(
M∑
j

Jijxj

)
− xi

}
+ σηi, (2.2)

where the first term represents the deterministic behavior driven by the gene regulatory networkJij ,

– 16 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

Genotype ���

Phenotype

Genes

Input genes
Inhibition

Activation

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �� � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �� �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � �

Expressed

Function F

Fitness value

Figure 2.2: Genetic model forM = 20, kinp = 4

– 17 –

2.3 Method for designing optical networks to have plasticity

γ is a constant. Here,f(z) is a sigmoid function defined by

f(z) =
1

1 + exp−β(z−θi)
+ δ, (2.3)

whereβ is a parameter that determines the gradient in the neighborhood of the thresholdθi andδ

is a small positive number that represents a spontaneous expression level. The second term of Eq.

(2.2) represents stochastic behavior caused by noise from the environment. In this,ηi is a random

value that follows a normal distribution with a mean of zero and variance ofσ2.

The evolution model repeats a selection-mutation process for each generation. We start withK

individuals, each of which has slightly different gene regulatory networks{J1
ij , . . . , J

K
ij }. In each

generation, each individual updates its gene expression levels,xi, by calculating the differential

equation (2.2) for its ownJij . The pattern of gene expression levels (i.e., the phenotype) determines

the value of the fitness,F (phenotype). That is, we obtainK fitness values that depend on the

gene regulatory networks. The selection-mutation process is then applied to theK gene regulatory

networks. Among theK gene regulatory networks, theKs gene regulatory networks that show the

highest fitness values are selected and kept for the next generation. The unselected gene regulatory

networks are excluded from further calculations.Ks is a tunable parameter which we set toK/4 in

the following. Each of the selectedKs gene regulatory networks is then mutated into 4 individuals

by randomly choosing a few components in the matrices and changing the values to a random value

from {−1, 0, 1}. This calculation of gene expression dynamics and selection-mutation process are

repeated over many generations.

We can now explain how biological systems exhibit both robustness and plasticity. When the

environment changes, that is, when the expression levels of the input genes change, the biological

system first reacts through an increase in phenotypic variance. This reaction gives the biological

system plasticity, which represents changeability in response to environmental changes. Robustness

is obtained through the selection-mutation process. Once a genotype that produces a phenotype with

higher fitness is found, its progeny will account for a large majority of individuals. The phenotypic

variance thus decreases again.

– 18 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

2

2

1

2

2

2

2

2

2

2

1

3

3

2

1

2

2

3

1

2

Transceivers

Adding a transceiver

Select

Possible reinforcement

Figure 2.3: Example of applying our model to a WDM network

2.3.2 Applying our method to add transceivers

In this chapter, we consider optical transceivers as a target device for increasing the resources in

a WDM network. Figure 2.3 shows a simple example of our application. A lightpath can be

established only when transceivers are present at both end-nodes. Adding a transceiver may then

result in making a new lightpath available. In this situation, the key is the selection of nodes to

which we should add transceivers. Our proposed method determines the set of nodes (IP routers)

to which transceivers should be added in order to give plasticity to the network by applying the

biological evolution model.

Applying the biological evolution model to WDM network design

Table 2.1 shows the correspondence between the genetic evolution model and the design method

for WDM networks. When the number of nodes in the WDM network topology isN , the number

– 19 –

2.3 Method for designing optical networks to have plasticity

Table 2.1: Correspondence between evolution model and WDM network

Biological evolution WDM network
Dynamics of gene expression level VNT control

Phenotype VNT
Genotype Regulatory matrix
Fitness Average link utilization

Environmental change Change in traffic demand

of candidates for lightpaths is equal to the number of node-pairs,N2. Each genei corresponds with

a lightpathli, wherei = 1, 2, .., N2, and this correspondence is one-to-one. In each generation,

the gene expression levelsxi are determined from the results of the expression dynamics (2.2). In

the phenotype, that is, the pattern of gene expression levels that determines the VNT, the light-

pathli is switched on (established) ifxi exceeds the thresholdθi, and otherwise the lightpathli is

switched off. Some constraints, such as wavelength-continuity constraints, that restrict the lightpath

establishment can be easily incorporated by restricting this phenotype-to-VNT conversion. In this

chapter, we will establish a lightpath only when there are available transceivers at the both source

and destination IP routers. Note that,xi wherei equals ton2
∗(n∗ = 1, .., N), which represents a

lightpath from one node to itself, is fixed to 0 to avoid a self-loop.

We use the average link utilization of the VNT to characterize the fitness. In the biological

model, fitness is calculated on basis of the expression pattern of some of the genes. In our model,

we instead substitute the average link utilization for the value of fitness. Note that lower values of

average link utilization are more desirable. We therefore define fitness as the multiplicative inverse

of average link utilization.

We treat changes to the physical network as an environmental change. In the biological model,

the environment is represented by the expression of input genes with environmental changes given

by modifying the values of input-gene expression levels. In our WDM design method, we assign

the progress of adding transceivers as the values of the input genes. The number of input genes is

equal to the number of WDM nodes,N . Therefore, there areN2 ordinary genes (i = 1, 2, .., N2)

andN input genes (i = N2 + 1, N2 + 2, .., N2 + N), giving N2 + N genes in total. The gene

N2 + i represents the nodei. Initially, the expression levels of all input genes are zero. Each

– 20 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

time a transceiver is added to nodei, the expression level of geneN2 + i is incremented by 1 to

express the effect of the physical network change, even though this may violate the allowable range

of expression levels. This is one way to take changes to the WDM network into account in terms of

the effect on expression dynamics and the way the VNT is constructed.

Evaluation of the plasticity of the WDM network

Our proposed method aims to determine the set of nodes (IP routers) to which transceivers should

be added in order to give plasticity to the network. For this purpose, the degree of plasticity of a

physical network needs to be evaluated. We thus examine the evolution process via the following

steps.

Step 1 Observe the traffic demand.

Step 2 Repeat the selection-mutation process overG(= 15) generations. In each generation, de-

termine a VNT by using Eq. (2.2). The fitness value is then calculated given the observed

traffic demand.

Step 3 Execute the following sub-stepsL times.

Step 3.1 Change the traffic demand.

Step 3.2 Repeat the selection-mutation process overG generations. Calculate the fitness with

the changed traffic demand.

Step 4 Calculate the degree of plasticity by using theL fitness values obtained in Step 3.

At the beginning of reinforcement, we first obtain the traffic demand (Step 1). In Step 2, we

examine the selection-mutation process for the observed traffic demand and obtain a set of gene

regulatory networksJij that are suitable for the observed traffic demand. In Step 3, we examine

various patterns of traffic fluctuations in a random manner. Note that a single pattern of traffic

fluctuation is not sufficient for estimating the plasticity. We obtainL(= 16) fitness values as a

result of Step 3. In this chapter, the degree of plasticity is chosen as the median fitness value.

– 21 –

2.3 Method for designing optical networks to have plasticity

Proposed design method

Our aim is to give plasticity to a WDM network as a result of adding transceivers. We evaluate

the plasticity by computational simulation in which some transceivers are added to a certain set

of nodes. However, it is difficult to estimate the plasticity in order to select the locations for the

transceivers since the number of possible combinations of locations increases exponentially as the

number of transceivers increases. We therefore apply a simple heuristic, called the ADD algorithm

[46], to determine the locations for the transceivers. Given the number of transceivers to add, the

ADD algorithm works as follows.

Step 1 Select a node at which to add a transceiver by calculating the plasticity when a transceiver

is added to the node.

Step 1.1 Temporarily add a transceiver to each node.

Step 1.2 Evaluate the plasticity of the WDM network as explained in Sec. 2.3.2.

Step 1.3 Select the node that gives the highest value of plasticity in Step 1.2.

Step 2 Add a transceiver to the selected node. If there are more transceivers to add, go back to

Step 1.

In this chapter, we consider a situation in which traffic demands keep on increasing, and ap-

ply the ADD algorithm to decide where to add transceivers. In practice, the traffic demands may

possibly be decreased, but we can again apply our method to decide which transceivers should be

removed by replacing “add” with “remove” in the algorithm.

2.3.3 Time scale of VNT control and network reinforcement

The biological evolution model explains how organisms obtain plasticity. When we apply the bio-

logical evolution model to network design methods, the question arises of when transceivers should

be added. Organisms may have their own cycle for applying the evolutionary processes discussed

above. In the case of our network design problem, we assume that network reinforcement is per-

formed when the VNT control method cannot find a good VNT. Note that we define the goodness of

– 22 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

a VNT according to link utilization under the current traffic demand. Thus, network reinforcement

is performed when the VNT control cannot achieve a link utilization that is lower than a certain

threshold.

Figure 2.4 illustrates the time scale of VNT control, network reinforcement, and traffic changes.

In the figure, the horizontal axis represents the time step of traffic changes, and the volume of traffic

demand increases at each time step. At each step, if necessary, the VNT control method tries to find

a good VNT for the traffic demand. If the VNT control method finds a good VNT, then it keeps the

existing VNT until the next time step (see time steps 0, 1, and 2 in the figure). If the VNT control

method cannot find a good VNT at time-stept, then we treat the VNT control as having failed att.

Network reinforcement is then performed as soon as we know that the VNT control has failed, and

the VNT control method is again applied at time-stept+ 1. In this illustration, we assume that the

solution of the reinforcement is calculated within a time-step for simplicity. When the algorithm

takes several time-steps to find the solution, the network operator should execute the reinforcement

method more conservatively so as not to take a high link utilization during the calculation. Note that

VNT control method works every time-step even when our design algorithm is under calculation.

Thus, it is necessary for our design approach to prevent lack of resources during the calculation.

2.3.4 Possible extension

In this chapter, we treat the transceivers in IP routers as physical network resources. Our basic

idea can easily be extended to the deployment of other network resources such as physical links

and/or nodes. For example, when considering the deployment of physical links, we could assign

input genes to the node-pairs between which links can be connected instead of the nodes to which

transceivers can be added.

2.4 Evaluation

We evaluated the performance of the proposed method by computer simulation. The performance

is measured in terms of the adaptability of the attractor-based VNT control method [33] on a WDM

network that has been reinforced by the design method.

– 23 –

2.4 Evaluation

Time

0 1 2 t t+1

Average link utilization

Threshold
Attractor-based VNT control

Traffic demand

on a certain node-pair

Add transceivers

L
in

k
 u

ti
li

za
ti

o
n

T
ra

ff
ic

 d
em

an
d

Figure 2.4: Relation between VNT control and network reinforcement

– 24 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

2.4.1 Methods for comparison

We consider an ad-hoc design approach for comparison purposes. Constructing a general design

method as a method for comparison is unreasonable. This is because the design principle depends

on the situation, such as the business scenario, available traffic information, or user demand.

The ad-hoc design approach here is intended to decide an effective placement of resources to

achieve the best VNT performance. To do this, a VNT configuration method which intends to

minimize the link utilization is applied, supposing resource reinforcement was done at a certain

place. The above process is then repeated until reinforcement at all possible places is examined.

For the VNT configuration method, mixed integer linear programming (MILP) methods of lightpath

assignment [47] have been used, and heuristic methods have also been used. These methods collect

the present traffic demand information, or predict future traffic demand in some cased, and then

attempt to minimize the network load as characterized here by link utilization.

We construct the ad-hoc design by both MILP and heuristic methods. The formulation of the

MILP is introduced in Sec. 2.4.1. The heuristic method, I-MLTDA, is introduced in Sec. 2.4.1. The

flow of the ad-hoc design process is as follows.

Step 1 For each candidate, do the following sub-steps.

Step 1.1 Temporarily add transceivers to the node.

Step 1.2 Execute{MILP|Heuristic} against the traffic demands at the time of reinforcement.

Step 1.3 Evaluate the average link utilization for the VNT obtained in Step 1.2.

Step 2 Determine a node at which to add transceivers. We select the node that shows the lowest

value of average link utilization and then add transceivers to that node. Go back to Step 1 if

there are more transceivers to add.

These design approaches are expected to show good performance in cases where the environ-

ment changes slowly and moderately. Traffic prediction may also help the designs. However, they

are expected to show a severe degradation on performance in cases where traffic demand changes

drastically and traffic prediction is not feasible. Our proposed design aims to accommodate various

types of traffic change rather than to minimize the present link utilization.

– 25 –

2.4 Evaluation

MILP

We use the following formulation of MILP to obtain lightpath assignment that minimizes the link

utilization.

Notation:

V : Set of physical nodes.

N : Number of physical nodes.N = |V |.

u, v, s, d: Node ID.

Given:

du: Number of transmitters and receivers at nodeu.

Tuv: Traffic demand from nodeu to nodev, collected in some way and assumed to be known.

Variables:

xuv: Binary variable that takes the value 1 if a lightpath is established from nodeu to node

v, and 0 otherwise.

fuv
d : Amount of traffic demand toward noded via the lightpath from nodeu to nodev.

Constraint 1: The number of transceivers on each node limits the number of lightpaths that can be

established. ∑
v

xuv ≤ du ∀u ∈ V (2.4)

∑
u

xuv ≤ dv ∀v ∈ V (2.5)

Constraint 2: A lightpath from nodeu to nodev must be established if there is some traffic demand

to go through it. Note that traffic demand values are scaled so that the sum does not exceed

1.0.

xuv ≥
∑
d

fuv
d ∀u, v ∈ V (2.6)

– 26 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

Constraint 3: Consistency of traffic accommodation and injection.

∑
u

fud
d =

∑
s

Tsd ∀d ∈ V (2.7)

∑
v

fkv
d =

∑
u

fuk
d + Tkd ∀k, d ∈ V (k ̸= d) (2.8)

Constraint 4: Connectivity of physical topology.

xuv = 1 ∀(u, v) s.t. u and v are physically connected. (2.9)

Objective: Minimizing traffic load on links of VNT.

minimize
∑
d

∑
u

∑
v

fuv
d (2.10)

Heuristic method (I-MLTDA)

The increasing multi-hop logical topology design algorithm (I-MLTDA) [41] is a heuristic method

of designing a quasi-optimal VNT by using traffic demand and hop lengths. I-MLTDA establishes

lightpaths between node-pairs(s, d) in order from those that show the largest values of∆sd ×

(Hsd − 1), where∆sd is the traffic demand from nodes to noded andHsd is the hop length along

the shortest path froms to d. The details of I-MLTDA are as follows.

Step 1 Establish a lightpath between every node-pair that has a physical connection. Go to Step 2.

Step 2 Calculate the shortest path and determine the value ofHsd for eachs andd. Go to Step 3.

Step 3 Determine the node-pair(s, d) that exhibits the maximum value of∆sd × (Hsd − 1). If

∆sd × (Hsd − 1) is 0, stop. Otherwise, go to Step 4.

Step 4 If available transceivers remain on nodes and noded, then establish a lightpath from node

s to noded. Otherwise, set the value of∆sd to 0. Go to Step 2.

– 27 –

2.4 Evaluation

In this chapter, we use I-MLTDA for the heuristic algorithm. Although various design methods

have been proposed, our purpose for introducing the ad-hoc design method is to examine the failure

of design methods that are optimized and specialized to an environment as it exists at one point in

time. We believe that our results in Sec. 2.4.3 are also valid for other heuristic algorithms.

2.4.2 Simulation environments

This section explains the environments used in our simulation.

Topology

We evaluated our proposed method on three physical topologies: the European Optical Network

(EON) model [45], the USNET model [48], and the Japan telecommunication network model

(which we call the JBN model) [49]. Figure 2.5, 2.6 and 2.7 show these topologies, and Table

2.2 shows the number of nodes and links in each topology. Each node is composed of an IP router

and an OXC. Each OXC is connected to other OXCs by links, as shown in Fig. 2.5, 2.6 and 2.7.

Each link is a single optical fiber. Establishing lightpath between an IP router and another IP router

uses one transceiver of the source node and one transceiver of the destination node. A lightpath

can be established when there are available transceivers at both source and destination routers. The

initial number of transceivers at each node is set to 2 plus the degree of the node in the physical

topology.

We execute computer simulations on the three physical topologies. For the EON topology, we

compare our proposed method with the MILP-based method and the heuristic-based method. For

the USNET topology and the JBN topology, we perform comparisons with only the heuristic-based

method because the computation time needed for MILP becomes enormous for large topologies.

However, from the results obtained for the EON topology, the distribution of the average link uti-

lization in the MILP-based design is much the same as that in the heuristic-based design. Similar

trends are also expected to be obtained for the USNET and JBN topologies.

– 28 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

15

17
18

16

8

74

5

6
10

9

11

0

14

1213

1

2

3

Figure 2.5: Topology used in the computer simulation: EON

Traffic demand model

Each node-pair has its own traffic demand. The initial values follow a lognormal distribution ac-

cording to [50]; specifically, each traffic demand is set to a random number followingLN(µ =

1, σ2 = 0.52). The traffic demand is then increased or decreased at each time-step. TakingT i,j
act(t)

to represent the traffic demand from nodei to nodej at time-stept, the traffic demand model [51]

is defined by the following expression

T i,j
act(t) = T i,j

exp(t) +N(0, (σnoise × T i,j
exp(t))

2), (2.11)

whereT i,j
exp(t) is the expected value of traffic demand from nodei to nodej at time-stept. The

second term represents unexpected traffic fluctuations and is set to a random value, following a

– 29 –

2.4 Evaluation

23

15

17

18

16

8

7

4

5

6

10

9

11

0

14

12

13

1

2

3

19

20

21

22

Figure 2.6: Topology used in the computer simulation: USNET

Table 2.2: Numbers of nodes and links

Topology # of nodes # of links
EON 19 39

USNET 24 42
JBN 49 91

normal distributionN(0, (σnoise × T i,j
exp(t))2). Higher values ofσnoise represent sharper changes

in traffic demand. In contrast, whenσnoise takes a lower value, the noise term has less effect and

T i,j
act(t) is close toT i,j

exp(t). The valuesT i,j
exp(t) are calculated from the following recurrence formula:

T i,j
exp(t) = m+ T i,j

act(t− 1). (2.12)

The expected value increases bym at each time step. Therefore, traffic demands continue to in-

crease on average, but the trends in traffic fluctuation are different for each node-pair. The traffic in

the VNT is assumed to be forwarded along the path with the minimum-hop path.

– 30 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

Figure 2.7: Topology used in the computer simulation: JBN

Attractor-based VNT control method

We use the attractor-based VNT control method in the evaluation. We again apply I-MLTDA as

the VNT control method as well. However, our primary purpose is to design a WDM network that

– 31 –

2.4 Evaluation

maximizes the adaptability of VNT control, and so we also use our attractor-based VNT control

method for evaluation.

Our VNT control method is driven by activity, which is a feedback of network status. When

activity is low, the random behavior tries to seek a better VNT. In this chapter, the activity is given

by the following equation

activity =
γ

1 + eδ(Laverage−θ)
, (2.13)

whereLaverage is the average link utilization and other literals are parameters. With this definition,

the activity rapidly approaches zero when the average link utilization exceedsθ. That is, the VNT

control method attempts to reduce the average link utilization to less than the threshold. The activity

value is always in the range(0, 1) since we setγ = 1. The condition of the IP network is assumed

to be poor whenever the average link utilization is greater thanθ. In this work, we set the threshold

θ to 0.25 for the EON topology and to 0.50 for the USNET and JBN topologies. The gradientδ of

the activity function is set to 50, following Ref. [33].

2.4.3 Simulation results

Evaluation against future traffic changes

We setσnoise in Eq. (2.11) to 0 at the beginning of the simulation and apply attractor-based VNT

control. Following Eqs. (2.11) and (2.12), the traffic demand eventually increases over time. At

this point, we setm to 0.01. At time-steptreinforce, the VNT control method fails to find a good

VNT among 400 reconfigurations. Our design method and the ad-hoc design method then calculate

the node at which to add transceivers. The methods select three nodes to reinforce transceivers, and

4 transceivers are added to each selected node. Table 2.3 shows the results of the calculations for

each topology. For example, in the EON topology, the VNT control method fails at time-step 140,

and our proposed method then adds transceivers to nodes{6, 6, 11}, where the repetition of node6

indicates it is chosen multiple times.

Since the proposed method has higher computational complexity than the heuristic-based method

does, it takes much longer to execute the simulation with this method. However, the computational

– 32 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

Table 2.3: Calculation results (transceivers are added to the following nodes)

Topology treinforce Proposed MILP-based Heuristic-based
EON 140 {6, 6, 11} {13, 6, 18} {11, 12, 18}

USNET 214 {6, 6, 6} - {18, 23 ,3}
JBN 118 {24 ,24 ,24} - {37 ,46 ,19}

 0

 100

 200

 300

 400

 500

 0.2 0.22 0.24 0.26 0.28

C
o
u
n
t

Average Link Utilization

Proposal
MILP-based

Figure 2.8: Distribution of average link utilization: Histogram on EON (Proposal - MILP)

time is not a significant problem here because physical network designs are not expected to be exe-

cuted over short intervals but, instead, over the long term. Note that we stop the MILP execution of

Step 1.2 in Sec. 2.4.1 after 10 minutes and then use the results obtained by then as an approximate

solution.

We evaluate the adaptability of the reinforced WDM network against unexpected traffic in-

creases. After the reinforcement, we set the parameterσnoise to 0.10 and examine the various

patterns of traffic fluctuation to check whether the attractor-based VNT control method can find a

good VNT.

Figure 2.8 and 2.9 show the distribution of average link utilization at time-steptevaluatefor

1000 patterns of traffic fluctuation on the EON topology. We definetevaluate= treinforce+ 70.

Note that the traffic increases and fluctuates in different ways from time-steptreinforceto tevaluate.

– 33 –

2.4 Evaluation

 0

 100

 200

 300

 400

 500

 0.2 0.22 0.24 0.26 0.28

C
o
u
n
t

Average Link Utilization

MILP-based
Heuristic-based

Figure 2.9: Distribution of average link utilization: Histogram on EON (MILP - Heuristic)

Therefore, Fig. 2.8 and 2.9 show the performance of the VNT control method against various

patterns of traffic fluctuation. The threshold of the activity is set to 0.25, that is, the VNT control

method is assumed to be successful if the average link utilization is less than 0.25. First, Fig.

2.8 shows the comparison between the proposed design and the MILP-based design. Both the

proposed design and the MILP-based design succeed in accommodating most traffic patterns with

admissible values. However, more traffic patterns are accommodated with lower link utilization

by the proposed method than are accommodated by the MILP-based design method. In addition,

the proposed design fails for fewer traffic patterns than the MILP-based design does. Second, Fig.

2.9 shows the comparison between the MILP-based design and the heuristic-based design. The

heuristic-based design for the EON topology adds transceivers to nodes{11, 12, 18}, different

from the decision of the MILP-based design. However, looking at Fig. 2.9, the distributions of link

utilization by both of the ad-hoc designs are almost the same. Thus, we use the heuristic-based

design as an ad-hoc design for the examination on the USNET and JBN topologies, since they are

large topologies and are difficult for the MILP calculation.

Figure 2.10 and 2.11 show the results on the USNET topology and the JBN topology, respec-

tively. In Fig. 2.10 and 2.11, the threshold of the activity is set to 0.5. In these situations, the VNT

– 34 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

 0

 50

 100

 150

 200

 250

 0.35 0.4 0.45 0.5 0.55

C
o
u
n
t

Average Link Utilization

Proposal
Heuristic-based

Figure 2.10: Distribution of average link utilization: Histogram on USNET

 0

 20

 40

 60

 80

 100

 0.42 0.44 0.46 0.48 0.5

C
o
u
n
t

Average Link Utilization

Proposal
Heuristic-based

Figure 2.11: Distribution of average link utilization: Histogram on JBN

control succeeds for almost all traffic patterns, and more traffic patterns are accommodated with

lower link utilization by the proposed design as with the EON topology. We can conclude that the

proposed method makes the optical network more flexible, that is, our method improves the ability

– 35 –

2.4 Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.2 0.22 0.24 0.25 0.26 0.28

Proposal

MILP-based

C
C

D
F

Average Link Utilization

0.25

Figure 2.12: Distribution of average link utilization: complementary cumulative distribution func-
tion (CCDF) on EON

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.35 0.4 0.45 0.5

Proposal

Heuristic-based

C
C

D
F

Average Link Utilization

0.50

Figure 2.13: Distribution of average link utilization: complementary cumulative distribution func-
tion (CCDF) on USNET

to accommodate various traffic fluctuations with lower link utilization.

Figure 2.12, 2.13 and 2.14 show the complementary cumulative distribution function (CCDF)

– 36 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.42 0.44 0.46 0.48 0.5

Proposal

Heuristic-based

C
C

D
F

Average Link Utilization

0.50

Figure 2.14: Distribution of average link utilization: complementary cumulative distribution func-
tion (CCDF) on JBN

for each network, using the same data as before. In Fig. 2.12, the CCDF of the intersection points

with the vertical line at 0.25 are 0.143 and 0.339 respectively. This indicates that the proposed

method accommodates 857 patterns of traffic fluctuation, the MILP based design method accom-

modates 661 on the EON topology. Consequently, the proposed method raises the success rate,

which is a rate of the traffic patterns where the attracted-based VNT control method makes the

average link utilization lower than the threshold, by about 29% (0.857/0.661 ≈ 1.297) compared

with the ad-hoc design methods.

Evaluation with respect to noise strength

We evaluated additional simulations on the EON topology by changing the noise strengthσnoise of

traffic fluctuations to see whether the network suggested by our design method can accommodate

various patterns of traffic fluctuation. Figure 2.15 shows the success rate of the VNT againstσnoise.

We examine 100 patterns of traffic fluctuation and calculate the success rate for eachσnoise, and the

average/minimum/maximum of success rates over 10 examinations are plotted. We observe that the

proposed design improves the success rate when traffic fluctuates strongly. When the noise level

– 37 –

2.4 Evaluation

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.01 0.03 0.05 0.07 0.09

V
N

T
 C

o
n
tr

o
l

S
u
cc

es
s

R
at

e

σnoise

Proposal
MILP-based

Figure 2.15: VNT control success rate

is low, both the proposed design achieve an almost 100% success rate, and the MILP-based design

also achieves a success rate of over 95%. This is because the networks from the ad-hoc design

are optimized and specialized to the traffic-demand matrix at the time of reinforcement, and the

traffic demand matrix does not change drastically with lower levels ofσnoise. However, as the noise

level increases, the traffic changes more drastically and the VNT control using the ad-hoc design

cannot handle the traffic fluctuations. In comparison, the proposed design with VNT control can

accommodate more traffic patterns, even whenσnoise is high.

Figure 2.16 shows the distribution of average link utilization against differentσnoise. The upper

bar indicates the maximum value of average link utilization against 1000 patterns of traffic fluctua-

tion. In the same way, the lower bar indicates the minimum value and the center bar indicates the

median value. The box region indicates the range of the average link utilizations for 80% traffic

patterns, which excludes the worst 10% and the best 10%. Focusing on the upper bound of the box

for each value ofσnoise, it can be seen that the proposed design keeps the values smaller than the

ad-hoc design does. Therefore, the proposed design is able to maintain the adaptability of the VNT

control against most traffic fluctuations. However, the box ranges of the proposed design are larger,

and the maximum value sometimes exceeds that obtained with the ad-hoc design. This is caused

– 38 –

Chapter 2. A Biological Approach to Physical Topology Design for Plasticity

 0.2
 0.21
 0.22
 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.3

 0.04 0.05 0.06 0.07 0.08

A
v
er

ag
e

L
in

k
 U

ti
li

za
ti

o
n

σnoise

Proposal
MILP-based

Figure 2.16: Distribution of average link utilization against differentσnoise

by the stochastic behavior of the attractor-based VNT control. When the average link utilization

exceeds the threshold 0.25 (or 0.5) and the activity is reduced to 0, the system continues to search

for a new VNT due to the stochastic termη. Hence, the final VNT after 400 iterations may be

worse. However, this problem is not particularly critical and can also be mitigated by dynamically

reconfiguring the activity [52].

2.5 Conclusions

We proposed a design method for optical networks with a concept of plasticity. The method deter-

mines the set of nodes where transceivers should be added and is inspired by biological evolution

with the aim of network plasticity. Computer simulation for some WDM networks showed that our

method makes attractor-based VNT control methods more adaptive to unexpected traffic fluctua-

tions and reduces degradation of the adaptability under strong traffic fluctuations.

In the future, we intend to extend our method so that it can not only add transceivers to nodes

but also add links between nodes.

– 39 –

Chapter 3

Noise-induced VNE Method for

Software-defined Infrastructure with

Uncertain Delay Behaviors

3.1 Introduction

Information networks are faced with new emerging services, such as mobile services, cloud com-

puting services, and social services. Software-defined infrastructure (SDI) enables rapid deploy-

ment of new services on information networks and/or information systems by providing virtualized

infrastructure to customers by slicing computing resources and network resources.

In an SDI framework, thanks to the advance of virtualization technologies combined with soft-

ware technology, customers order resource by making requests to service providers and the sliced

virtualized resource is immediately assigned to the requesting customer.

A key to leveraging an SDI framework is network virtualization technologies and their con-

trol. Network virtualization technologies are in the research and development phase. In recent

years, software-defined networking (SDN) and network-function virtualization (NFV) technologies

have been expected to replace the conventional network management systems, and standardization

of SDN/NFV technologies is being promoted. SDN/NFV technologies enable programmable and

– 41 –

3.1 Introduction

automated network control, while conventional systems require the network operator to configure

various kinds of network devices [11–15]. That is, SDI frameworks realized by SDN/NFV tech-

nologies have the potential to support rapid and flexible deployment of services, such as on-demand

resource allocation, self-service provisioning, and secure cloud services [12].

Although SDN/NFV technologies and their standardization are important for deploying SDI,

another important problem is to control the assignment of physical resources to a virtual network

under changes in traffic demand and service demand. For this problem, the virtual network embed-

ding (VNE) problem has been addressed [16–22]. The VNE problem is a placement problem in

which virtual resources are to be allocated to the physical network with optimization of some per-

formance objectives. In the VNE problem, service demands from customers are translated to virtual

network (VN) requests. A VN consists of virtual nodes and virtual links. Each of the virtual nodes

is hosted on a physical node as a form of virtual machine. Then, the virtual nodes are connected

through a path of physical nodes, forming virtual links.

The VNE problem is divided into two sub-problems: virtual node mapping and virtual link

mapping. Virtual node mapping decides the location of the physical node for each virtual node.

Note that each virtual node must be allocated to a physical node supporting its “node attribute.”

The node attribute allows classification of nodes in ways defined by the supported operating system

(OS), storage type, or node use (e.g., computing, storage, or packet switching). Virtual link mapping

decides the path on the physical network for virtual links between virtual nodes.

In [19–22], a centralized calculation was assumed to solve virtual node mapping and virtual

link mapping. That is, a centralized component gathers traffic information and resource utilization

for each VN and identifies the current situation (i.e., the current traffic demand and/or the current

service demand) of the networks. Then, the component solves the optimization problem that op-

timizes some metric, such as maximizing revenue or minimizing resource utilization. However,

when the network size gets larger and the number of multiplexed VNs increases, the identification

of the current situation becomes complicated by the enormous amount of network information. As

the network operators want to know the current situation more accurately and precisely, more in-

formation is necessary to collect. This will lead to increased used of link bandwidth, increased

delay, and a bottleneck on network scalability [15]. There is also proposed an on-demand VNE

– 42 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

control with using predicted demands [53]. Although the method achieves high prediction accuracy

of future service chain requests based on deep learning, adaptability for unexpected situation is not

concerned. Note that the calculation time to obtain a solution of the optimization problem also gets

larger. However, the calculation time is not crucial because it may be relaxed by some heuristic

algorithms with some sacrifice of the quality of the solution. Our concern in adopting the central-

ized approach is the overhead of collecting information, and this overhead gets larger as the size of

the infrastructure and number of VN requests increase. Moreover, the environments surrounding

the Internet today are continuously changing, thus, adaptive control of VNE is required to handle

uncertain changes in the environments. Although precise modeling of the end-to-end delay in SDI

environment is difficult, it would be required to suppress the maximum delay in order to guarantee a

specific quality of experience (QoE) for applications on VNs. There are several models of network

delay proposed, which are constructed generally and disregard the data contexts of packets [23].

However, the processing delay on servers depends on multiple factors, including server specifica-

tion; CPU and memory utilization (on virtual machines); and details of processing, which depend

on the context of the data.

In this chapter, we present a VNE method that works with only a little information for large,

complicated, and uncertain SDI frameworks. To achieve this, the proposed method applies the bi-

ological “Yuragi” principle. Yuragi is a Japanese word whose English translation is a small pertur-

bation, both externally and internally generated, to the system. Yuragi is a mechanism that provides

adaptability to organisms and is often expressed as an attractor selection model. Our research group

has developed a virtual network control based on attractor selection for optical networks. Our re-

sults showed that our control mechanism has high adaptability to environmental fluctuations with

restricted information. Unlike a virtual network on an optical network, a virtual network on an SDI

framework has to consider various matters such as node attribute, computational performance of

servers, and VN multiplexing. Therefore, this chapter develops a Yuragi-based VNE method that

deals with node attributes, has the generality to set a performance objective, and runs in multi-slice

environments. One process of the method is executed for each VN slice, and each process needs

information about only its own VN requests. Each of the processes behaves so as to improve its own

performance function, considering other VNs as a part of an external perturbation (i.e., Yuragi). We

– 43 –

3.2 Virtual Network Services in SDI Frameworks

have presented a preliminary version of this work in [27] and have demonstrated the basic behavior

of the Yuragi-based VNE method with a simple queueing model for delay behavior. However, de-

lay behavior is more complicated and difficult to identify in SDI. Thus, the system needs to operate

under uncertain situations. In this chapter, we examine a more complicated model of end-to-end

delay and show that the proposed method can sustain its adaptability when several delay behaviors

are present.

The rest of this chapter is organized as follows. In Sec. 3.2, a service model for SDI frameworks

is introduced and related works on VNE are referenced. The method based on the Yuragi principle

is proposed in Sec. 3.3, and the results of performance evaluation are shown in Sec. 3.4. Finally,

the conclusion of this chapter and future work are presented in Sec. 3.5.

3.2 Virtual Network Services in SDI Frameworks

In this section, we describe SDN frameworks and explain a service model for SDI frameworks.

First, a whole system of the virtual network service is explained. Next, VNE, one of the important

problems for SDI service, is described.

3.2.1 SDI

Figure 3.1 shows a service model of SDI frameworks. In the model, customers request a VN

from their service providers. The VN request includes topology information, which is a set of

virtual nodes and virtual links. Then, the provider assigns computing resources for the virtual

nodes by preparing virtual machines. Then, the provider configures the packet forwarding rules on

the network switches via SDN controller to form virtual links.

The customers can specify the performance and capacity requirements, such as the CPU power

of a virtual node and the bandwidth of a virtual link. They may also specify memory capacity

(RAM), storage capacity (HDD), and in some cases, specify the detail of restrictions: the operating

system (OS) of the virtual machine, the RAID type of storage, and the RAM type of a switching

device. We call these specifications of virtual nodes the “node attributes”. Note that node attributes

do not correspond one-to-one to server resources but do correspond one-to-one to a combination

– 44 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

of server resources and some specific constraints. For example, node attributeA might express a

requirement for a high-performance computing server (with a high number of CPUs and a large

amount of memory), attributeB might express the need for a cloud file server (with big storage

disks), and attributeC might express the need for several kind of servers with other specific con-

straints (e.g., required some geographical restriction).

The service provider has a network manager to handle VN requests. The network manager

plays three roles. First, the network manager receives VN requests from customers and pushes

them into a queue. Second, the network manager executes a certain VNE algorithm for each VN

request in the queue in first-in-first-out (FIFO) order. The VNE algorithm decides a VN mapping

(i.e., a virtual node mapping and virtual link mapping). Virtual node mapping decides the location

of the physical node for each virtual node. Then, the virtual node is hosted on the physical node

as a virtual machine. Virtual link mapping decides the path on the physical network for virtual

links between virtual nodes. Then, the virtual nodes are connected through the path. When the

VNE algorithm fails to find a VN mapping due to a shortage of physical resources, the VN request

is rejected. Next, the network manager offers the mapping request to the SDN controller. Note

that the SDN controller might be managed by other organizations, such as infrastructure providers,

rather than the service provider. Then, the service provider installs virtual machines into physical

servers and allocates the requested computing resources. Then, the SDN controller accesses the

substrate nodes via some protocol (such as OpenFlow) and reconfigures the forwarding rules to

establish the virtual links.

3.2.2 The Virtual Network Embedding Problem

VNE is one of the important problems in allocating physical resources in response to a VN re-

quest. The physical resources, including resources of the physical network and resources of physical

servers, form a substrate network. OpenStack, which is one of the most general infrastructure-as-

a-service (IaaS) frameworks, defines virtualized resource components [20]. The substrate node is

classified into three types: computing servers, network switches, and storage. Each virtual node

may have individual features, such as supported OS, protocols, and storage types. It is necessary

– 45 –

3.2 Virtual Network Services in SDI Frameworks

Virtual Network

Requests

VN Req. 1 VN Req. 2

…

Network Manager

Substrate Network

VN Req. 3

SDN Controller

VNE

Algorithm

for Req. 1

…

Request Queue

ex) Cloud App.

ex) OpenFlow

:Virtual Machine

:Physical Server

VNE

Algorithm

for Req. 2

VNE

Algorithm

for Req. 3

Figure 3.1: Service model in software-defined infrastructure

– 46 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

to strictly check the consistency of the node features when embedding a virtual node to a substrate

node. That is, the requested features of the virtual node must be supported by the substrate node. To

simplify the service model, this chapter abstracts the classifications of features of OpenStack into

“node attributes.”

The mapping of the virtual network has an effect on many aspects, such as resource utiliza-

tion, blocking rate, revenue, QoE, energy efficiency, and migration cost. That is why the VNE

problem deserves consideration. Figure 3.2 shows an illustrative example of how the experienced

delay of VNs differs depending on the mapping of the virtual network. Figure 3.2(a) shows a sub-

strate network including resource capacities. Figure 3.2(b) shows VN requests including resource

requirements. The numerical valuesc(·) andd(·) in the figure represent the number of CPUs on

the node and the bandwidth of the link, respectively. Figures 3.2(c) and 3.2(d) show two patterns

of VN mapping, denoted as mappingA andB, respectively. In general, the delay of a server is

longer when the CPU utilization is higher, and the delay of a link is longer when the link utilization

is higher. In the case of mappingA, the CPU utilization on one of the substrate nodes reaches 80%

and the calculation delay gets longer. However, in the case of mappingB, the CPU utilizations are

at most 50%. As for the delay on a link, the maximum link utilization of the substrate link is 90% in

the case of mappingA. In the case of mappingB, the link utilizations of the substrate links are low,

and so no additional delay will be introduced. Therefore, the experienced delay under mappingB

is expected to be shorter than that under mappingA. Thus, between the two mappings, mappingB

is the preferred solution of the VNE problem.

Generally, the VNE problem is divided into two phases: virtual node mapping (VNoM) and

virtual link mapping (VLiM). The goal of VNoM is to obtain a matching between virtual nodes and

substrate nodes under the constraint that the substrate node must support the node attribute of the

matched virtual node. The goal of VLiM is to obtain a set of links in the substrate network that

connects one virtual node to another virtual node.

– 47 –

3.2 Virtual Network Services in SDI Frameworks

b(10)

b(20) b(20)

b(20)

b(20)b(20)

b(20)

c(10)

c(20)

c(10) c(20)

c(10) c(10)

(a) Substrate network

VN Req. 1 VN Req. 2

b(5)

c(6)

c(8)

c(4)

b(9)

b(9) c(5)

b(9)

c(3)

(b) VNs

90%
25%

25%0%
20%

80%

45% 45%

45%

50%

30%

30%

(c) VN mapping A

50%
45%

45%45%
40%

40%

45% 45%

45%

50%

30%

30%

(d) VN mapping B

Figure 3.2: Comprehension of VNE problem with a simple example

3.2.3 Centralized Approaches for VNE

A number of approaches to coping with VNE problem have been proposed. Most of them try to

formulate and solve optimization problems and maximize/minimize some performance objectives.

However, existing VNE formulations typically use integer linear programing (ILP), and the VNE

problem is known to be anNP-hard problem. Thus, some heuristic methods are also developed.

Note that both the ILP methods and heuristic methods assume information of the network is col-

lected in advance.

Chowdhury et al. deal with VNE problem of embedding multiple VN requests onto a substrate

network [19]. They give a formulation as mixed integer linear programing (MILP) to minimize

embedding cost while achieving a balance of resource utilization. Guerzoni et al. formulate a

MILP that considers node attributes to maximize the revenue while minimizing resource utilization

[20]. Chen et al. present a virtual node mapping method to optimize energy efficiency, and also

– 48 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

propose a heuristic algorithm for this [21]. Fajjari et al. minimize the running cost of the network

infrastructure by releasing the unused bandwidth of a VN for other VNs [22].

To handle the VNE problem, it has been widely considered to take optimization approaches such

as ILP and its heuristic methods. It is expected that those methods will give the solution with the best

objective function value. However, to compute the best performance, these optimization methods

examine the detailed situation of the whole infrastructure, and in the worst cases, the network will be

congested with an increasing volume of traffic related to control messages for collecting the details

of the situation [15]. The overhead of gathering such global information becomes a fundamental

limitation to adopting the optimization approach in SDI because the orchestrater needs to manage

a huge number of multiplexed VNs and highly dynamic requests. To avoid this problem, control

methods driven by a small amount of knowledge of the situation are required.

3.3 Yuragi-based Virtual Network Embedding Method

This section proposes a Yuragi-based VNE method for SDI frameworks. The Yuragi principle,

which is often called an attractor selection model, explains the biological adaptability. The key

concept of attractor selection models is that systemic behavior is governed by a single value, called

“activity,” and a small perturbation, which we call “Yuragi”. The activity is a kind of “comfortable-

ness” for the system, and via feedback of the activity and small perturbations, the control state of

the system falls into a comfortable state. When activity is high, the control state of the system is in

a good condition and stays in that state. Such an equilibrium point is called an “attractor”. When

activity becomes low or the condition becomes uncomfortable due to environmental changes, the

system gets out of the attractor, i.e., escapes the basin of attraction (hereinafter, the attractor struc-

ture), and then looks for another attractor via feedback of the activity and small perturbations.

The proposed VNE method is expected to enjoy the adaptability of Yuragi to environmental

changes. That is, VN migrations are driven according to experienced performance and the new

VN mapping is obtained by means of attractor selection. A process of the Yuragi-based method

is executed for each VN request. Thus, multiple processes are executed in parallel to deal with

multiple VN slices. Different from optimizing problems and related heuristics, the Yuragi-based

– 49 –

3.3 Yuragi-based Virtual Network Embedding Method

method can avoid the necessity of collecting detailed information about the entire network. The

process for a VN request needs only enough information for comfortableness and does not need

any information related to other VN requests.

3.3.1 Yuragi Principle

The Yuragi principle is the principle that biological organisms use to adapt to environmental fluctu-

ations. Attractor selection is a model that represents the Yuragi principle. The model describes the

dynamics of state variablesxi (i = 1, 2,. . ., n) through environmental fluctuations as

dx

dt
= α× f(x) + η, (3.1)

wherex = (x1, . . ., xi, . . ., xn) represents the system state, activityα is the comfortableness of the

present system state,f(x) defines deterministic behavior governed by the attractor structure, and

η represents stochastic behavior. When the system is in a comfortable state, and hence activityα

is high, the deterministic termf(x) controls the dynamics while the noiseη is almost negligible.

When the system condition gets worse andα gets close to zero,f(x) is no longer influential and the

stochastic termη becomes relatively dominant. Therefore, the system changes its state at random

and searches for another attractor. Once the system reaches an attractor with a comfortable activity

level (though not necessarily the best possible activity level), the system will stay in the new good

state. When the system reaches a state with a high activity that has not been defined by the attractor

structuref(x), the system also stays in the state andf(x) is reconstructed to register the state as a

new attractor.

A system driven by the Yuragi principle achieves adaptability to environmental changes. The

adaptability has two aspects. First, the system is robust to small fluctuations in the surrounding

environment. As long as activity remains higher than a certain level, the system keeps staying at an

equilibrium point even though the noise term is still present (see the right-hand side of Fig. 3.3).

Second, the system has flexibility in responding to drastic changes in the environment. When the

system falls into an uncomfortable state, the activity decreases immediately and the dynamics of

the system behavior escapes from the attractor structure (see the left-hand side of Fig. 3.3).

– 50 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

���� relative to �

Activity � is high

Activity � is low

Attractor A Attractor B Attractor C

System state

Attractor A Attractor B Attractor C

Solution space �

System state

Figure 3.3: An illustration of the Yuragi mechanism

3.3.2 Performance Objectives

We can select various definitions of the activity when the Yuragi principle is applied to the VNE

problem. The Yuragi-based VNE method tries to find a system state that maintains high activity.

The high activity should be designed so that the performance objective does not violate a required

threshold.

Conventional works usually consider link utilization [54] and/or energy consumption [55] as

performance objectives because these can be described as a linear function of traffic load. Note that

linearity in a mathematical sense is one of the key factors to solving the optimization problem. In

this chapter, we focus on experienced delay, which is the end-to-end delay on the VNs, consisting of

the communication delays between VMs and processing delays on VMs. Experienced delay is thus

not necessarily a linear function of the performance objective (comfortability) because experienced

delay is one of the simplest and most fundamental performance objectives in networking. It is true

that link utilization is often used as the performance objective of VN control. However, experienced

delay is a more important measure in networking and is especially important for SDI frameworks. A

longer delay can cause considerable degradation in QoE of an application running on the VN. Thus,

customers of SDI services want to require a low delay to the infrastructure provider. Nevertheless,

conventional approaches usually have to minimize utilization or workload instead of delay for the

objective function because of the difficulty of modeling the experienced end-to-end delay, which is

composed of complicated factors. Moreover, under virtualization environments, the delay is caused

– 51 –

3.3 Yuragi-based Virtual Network Embedding Method

by not only utilization of the network bandwidth but also workloads on the VMs, and the delay

becomes extremely long under heavy workloads [56,57]. The end-to-end delay in SDI frameworks

comprises delays in networks and delays on servers. The processing delays on servers depend on

multiple factors. Thus, exact analyses and estimation of the software processes are indispensable

for calculating optimization problems, but these are difficult in general [58]. Even when we have a

good model, the network manager may deal with non-linear optimization problems that are tough

to solve even by offline computation. Therefore, it is difficult to deal with delay requirements in

conventional approaches. Instead of applying optimization with some sort of delay model, an online

control approach is needed. The online approach measures the actual delay continuously. When

the measured delay does not satisfy requirements, the network manager reconstructs the VN map-

ping immediately. In this way, the online approach avoids calculation of complicated optimization

problems. Of course, the network manager must obtain a VN mapping solution quickly enough to

control the VN. In this chapter, we consider the end-to-end delay with applying the Yuragi princi-

ple, and confirm by simulation (with a topology of 50 nodes) that the calculation of the proposed

Yuragi-based method terminates within a few seconds.

3.3.3 Yuragi-based VNE Method

This section explains our Yuragi-based VNE method. Our proposed method consists of two phases:

attribute-aware virtual node mapping and shortest-path virtual link mapping. The relation between

state variables in the Yuragi principle and the VNE problem are explained first.

Our method decides where to allocate a virtual node with attributea. In other words, the method

finds a coupling between attributea and physical noden. Let the number of attributes beA and the

number of physical nodes beN . We prepare variablesx = (x1, . . ., xan, . . ., xAN). A variablexan

is a decision variable that designates whether physical noden is a candidate for virtual node with

attributea. Then, the dynamics of eachxi (i = 1, 2,. . ., AN) is described as

dxi
dt

= α

{
ς

(∑
j

Wijxj

)
− xi

}
+ η, (3.2)

– 52 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

whereς
(∑

j Wijxj

)
− xi represents a deterministic term andη is a stochastic term. In the first

term, the matrixW represents an attractor structure (discussed later). The functionς(z) is a sigmoid

function defined as

ς(z) = tanh(
µ

2
z), (3.3)

whereµ represents the gradient in the vicinity of the threshold. Here, the threshold is0, and the

output value ofς(z) gets close to1 or−1. Note that the range ofxi is [−1, 1]. The second termη in

Eq. (3.2) is a random value following a normal distribution. Ifxi > 0 andi’s corresponding node

(resp., attribute) isn (resp.,a), then physical noden is a candidate for a virtual node with attribute

a. If xi (= xan) < 0, the virtual node with attributea is not embedded to physical noden. Each of

the virtual nodes with attributea is allocated onto one of the candidate nodes in descending order of

xa∗ values. Note that, when physical noden is not compatible with attributea due to the attribute

restriction,xan is set to0 without calculating the differential equation (3.2).

Finally, our method assigns the shortest path for each virtual link request. In this chapter, we

consider shortest-path routing to minimize hop length on the physical topology. Other routing

policies can be applied, but this is not examined in the evaluation in Sec. 3.4.

Activity Function with Performance Profile

Activity α is feedback from the system and reflects the comfortableness of the VN. Letp be an

objective metric, expected to be small. Activity is described as,

α =
γ

1 + exp(δ(p− θ))
, (3.4)

whereγ represents the scale of the activity value andδ represents the gradient around the threshold

θ. Let γ be 1, to which the activity value gets close ifp < θ. Otherwise, the activity becomes

0. Note that the activity is subject to be reduced to0 regardless of Eq. (3.4). LettingVa be the

number of virtual node requests with attributea, the activityα is reset to be0 when the number of

candidates|xa∗| (s.t. xa∗ > 0) is less thanVa. This is necessary because the system state found by

Yuragi does not have a sufficient number of candidate nodes. Also, when the available capacity of

– 53 –

3.3 Yuragi-based Virtual Network Embedding Method

a physical resource is not enough to embed the found system state,α is forced to0.

In our method, the objective metricp can be directly monitored. However, when the monitoring

incurs some overhead or it is difficult to monitorp directly, the activity should be calculated by esti-

matingp rather than findingp exactly. For the estimation, we consider making use of a performance

profile. The profile database consists of the correspondences between delay and resource utilization

based on a history and is maintained in some form (typically, as a table).

Attractor Structure

The matrixW in Eq. (3.2) represents an attractor structure. It stores some equilibrium points of a

virtual node mapping, and the equilibrium point is called an attractor. Each attractor is defined as

y = (y1, . . ., yi, . . ., yAN), whereyi ∈ {-1, 0, 1}. If physical noden is one of the candidates for

a virtual node with attributea, thenyan is set to1. If noden cannot allocate attributea due to the

node attribute restriction, thenyan is set to0. Otherwise,yan is set to−1. LettingM be the number

of attractors stored inW, a set of attractorsY = (y1, y2, . . ., yM) can be stored by

W = Y+Y, (3.5)

whereY+ is the pseudo inverse matrix ofY. This way of storing attractors uses the knowledge

of Hopfield neural network of associative memory [59]. When the present state is in one of the

attractors,dx/dt in Eq. (3.2) becomes close to0 and stays in the attractor.

3.3.4 VN calculation

When the activity gets extremely low, that is, when the observed end-to-end delay exceeds the

performance objective valueθ, the network manager executes then Yuragi-based VNE method in

an offline calculation by using a performance profile. The performance profile enables estimating

performance without running the services on actual infrastructure. Thus, the service continues to

run with the extant VN while calculating a new VN. Once the Yuragi system converges to a good

VN mapping, the network manager is ready to enter the VN migration phase.

– 54 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

3.3.5 VN migration

The network manager migrates each VM that needs to be transferred for a new VN mapping. The

process is executed according to the “make-before-break” principle to reduce service downtime:

Step 1 Copy the VM image from the source node to the destination node. Note that the service is

still running on the source node.

Step 2 Boot a VM on the destination node.

Step 3 Copy the state differences between VMs (typically implemented as “dirty pages”) to the

destination node recurrently.

Step 4 Suspend the VM at the source node and copy the remaining state differences from source

to destination.

Step 5 Switch the traffic flow to the destination node and resume the VM on the destination node.

Then, the service is running on the destination node.

Step 6 Delete the VM on the source node.

The service may be suspended during the time to copy the state differences in Step 4. Thus, the

service downtime is shortened to only hundreds of milliseconds [60]. Note that, the system needs

to make particular provision to guarantee the user experience of specific types of applications, such

as more real-time oriented services (e.g., as voice or video).

3.4 Evaluation by Computer Simulation

This section presents the results of evaluating the Yuragi-based VNE method by computer simula-

tion.

3.4.1 Simulation Environment

The substrate network consists of physical servers and links. The number of physical servers (phys-

ical nodes) is50. Each node has the capability to host virtual nodes with one of the node attributes.

– 55 –

3.4 Evaluation by Computer Simulation

In this environment, each node has three kinds of resource capacities for required virtual machines:

CPU, memory and storage capacity. These are determined uniformly within[50, 100] for each

node. For each pair of physical nodes, a physical link is randomly established between the nodes

with probability 50%. As a result, we obtained a physical topology with 50 nodes and 617 links.

The (integer) capacity of physical links is determined uniformly randomly within[50, 100]. During

the simulation, the substrate network is fixed.

Several requests of virtual network are generated and arrive. During the simulation, the number

of VN requests is set to 20 and the number of node attributesA is set to 4. Each VN request

is generated as follows. The number of virtual machines (virtual nodes) is determined uniformly

randomly within[2, 5]. Each virtual node belongs to an attribute, and each virtual node requires

capacities for CPU, memory, and storage. Each of the required capacities is determined uniformly

randomly within[1, 10]. Virtual links are undirected, and each pair of virtual nodes is randomly

connected through a virtual link with probability 50%. The number of virtual links is within[1, 10]

because the number of virtual nodes is 2 to 5. Each virtual link has a required bandwidth, and the

required capacity is determined uniformly randomly within[1, 25].

Every 100 time steps, all 20 VN requests are regenerated in the same way as described above.

In addition, at every 10 time steps, each VN request fluctuates with relatively small changes: we

change the requested capacities by a random integer, which is obtained by rounding a value follow-

ing the normal distribution withµ = 0 andσ2 = 1 (see Fig. 3.4). The service downtime caused by

VN migration is regarded as negligible in the following simulation.

Table 3.1 summarizes the parameters in the simulation environment.

3.4.2 Delay Profile

We use end-to-end delay as the objective metric. In an actual environment, the experienced delay

may be available by monitoring of packet arrivals. However, when the monitoring incurs some

overhead or it is difficult to monitor directly for some reason, the activity should be calculated

by an estimatedp rather than actually measuringp. For the estimation, we consider the use of a

performance profile. For the performance profile, we prepare several delay models as a function

– 56 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

Table 3.1: List of variables and values in the simulation
Variable Value
Substrate network:
- Number of nodesN 50
– Number of attributeA 4
– CPU number [50, 100]
– Memory capacity [50, 100]
– Storage capacity [50, 100]
- Number of links 617
– Link capacity [50, 100]
VN requests:
- Number of VN 20
Each VN request:
- Number of nodes [2, 5]
– CPU number [1, 10]
– Memory capacity [1, 10]
– Storage capacity [1, 10]
- Number of links [1, 10]
– Link capacity [1, 25]
Delay weight:
- (wc, wm, ws, wb) (0.25, 0.25, 0.25, 0.25)

in §3.4.4.
{(0.6, 0.2, 0.0, 0.20),
(0.2, 0.6, 0.0, 0.20), (0.2,
0.2, 0.0, 0.60)} in §3.4.4.

Yuragi parameters:
- (µ, γ, δ, θ) (20.0, 1.0, 2.0, 5.0)

of resource utilization, referring to bandwidth on links and the tuple (memory, CPU, storage) on

servers. Figure 3.5 shows the delay models. The first model simulates delay caused by bandwidth

utilization in a link. A basic M/M/1-based model of delay in networks is used. The second delay

model simulates memory utilization on the server and imitates the response time of an Apache

web server. As shown in Fig. 3.5, the second model is characterized by the multi-stage elevations

of delay. In the case of web service, such elevations are caused by swapping memory pages and

storage disks. The last model simulates CPU utilization. The delay increases linearly as the resource

utilization becomes high, except at extremely high utilization, where the delay increases rapidly.

Such an increase in delay is caused by conflicts among VMs demanding more calculation power

– 57 –

3.4 Evaluation by Computer Simulation

Time

5

3

4

6

2

4

5

3

4

4

6

3

5

5

3

4

7

3

Resource

requirements

fluctuation

Topological

Change

100

10 10 1010 10

100

Figure 3.4: Environmental fluctuations over elapsed time

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

D
el

ay

Resource Utilization

Bandwidth
Memory

CPU

Figure 3.5: Delay models used for computer simulation

than the CPUs can provide.

In the following simulation,dij , which represents the delay from virtual nodei to virtual node

j, is calculated as,

dij = wc

∑
n∈Rij

dcn + wm

∑
n∈Rij

dmn + ws

∑
n∈Rij

dsn + wb

∑
l∈Lij

dbl , (3.6)

– 58 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

where the setRij consists of the physical nodes along the route fromi to j, and the setLij consists

of the physical links. Thendcn, dmn , anddsn are the computing delay in virtual machinen according

to CPU, memory and storage, respectively. In this,dbl is the delay through physical linkl, andwc,

wm, ws, andwb are weight parameters. Eachd∗n anddbl follows the delay model and has a value

calculated by its own utilization of physical resources.

Network managers maintain delay profiles in which correspondences between resource utiliza-

tion and actually measured delays are recorded. Referring to a delay profile makes it possible for

the manager to estimate delays in the VN when consider a VN request to be embedded. In the sim-

ulation environment, delays are calculated with the same delay models as the delay profile. Note

that, in actual usage, the delay can be easily obtained by referring to the timestamps of packets.

3.4.3 Heuristic Method for Comparison

As for the benchmark of our method, a heuristic VNE method is also simulated in the same en-

vironments. The heuristic method has two phases: virtual node mapping based on a greedy algo-

rithm [61] and virtual link mapping on shortest paths. Note that we do not aim to obtain a better

end-to-end delay than that provided by the greedy algorithm. We intend to obtain a reference delay

to confirm that our method can find a comfortable state by using the noise-induced search, rather

than simply by using low-traffic settings. The VNE method executes the following algorithm for

VN requests, acting sequentially.

(1) Execute the following processes for each virtual nodev.

(1.1) Find the setP (v) of physical nodes that accept the attribute ofv and have enough

unreserved resource capacities to embedv. WhenP (v) is null, reject the VN request

and finish.

(1.2) Find the physical node that indicates the highest value ofI amongP (v), whereI is

defined as Eq. (3.7). Then reserve the resources of that physical node.

(2) Embed the virtual nodes according to the reservation taken in (1).

– 59 –

3.4 Evaluation by Computer Simulation

(3) For each virtual link between virtual nodes embedded in (2), find a path that is the minimum

hop in physical topology. Embed the virtual links onto the paths. When a shortage of link

bandwidth occurs, reject the VN request.

The greedy method aims to minimize the utilization of node and link resources. The heuristic

method calculates an available resource indicatorI for each physical noden, defined as

I(n) = Cn ×Mn × Sn ×
∑

l∈L(n)

Bl, (3.7)

and avoids embedding a virtual node onto bottleneck resources. The valuesCn, Mn, andSn repre-

sent the available capacity of CPU, memory, and storage, respectively, on physical noden. The set

L(n) represents a set of physical links attached to noden, andBl represents the available capac-

ity of physical link l. The computational complexity isO(n log n) for sortingL(n), assuming the

shortest path between every node pairs is available in advance.

3.4.4 Simulation Results

In the simulation, the Yuragi-based method calculates the VN mapping at each time step and mi-

grates the VN until the system state converges to an attractor. The threshold of activityθ in Eq.

(3.4) is set to5.0, regarding the metricp as the maximum ofdij for every pair of virtual nodesi and

j. The greedy method executes VN migration according to the demand changes at every 10 time

steps.

Performance of Yuragi-based VNE method

We first show the performance of Yuragi-based VNE method with a simple M/M/1-based delay

model. We explorer its adaptability to fluctuations of VN requests by evaluating the end-to-end

delay, the embedding ratio, and the number of VN migrations. Here, the weight values in Eq. (3.6)

are set aswc = wm = ws = wb = 0.25 with an M/M/1-based delay model. We will examine other

weight values in Sec. 3.4.4.

Figure 3.6(a) shows the maximum delay on a VN request out of the20 requests. The activity

– 60 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

of each VN is also shown in Fig. 3.6(b). In the figure, the region denoted as “Failure” represents

a failure of embedding the VN caused by a shortage of physical resources or violation of other

restrictions. Note that the demands of VN requests fluctuate with relatively small changes at every

10 time steps and the demands fluctuate greatly at every 100 time steps. Thus, the maximum delays

for the Yuragi-based method exceed the threshold drastically at every100 time steps owing to the

topological changes in VN requests. The activities drop sharply, and then the VN migration starts.

Within a few steps, the activities are recovered and converge to another system state. Against a

small fluctuation of required capacities, occurring at every10 time steps, VN migrations occurs

only if the activities decrease sharply as seen, for instance, in time step320 in Fig. 3.6(a). Figure

3.7 shows the mean of the maximum delay of 20 VN requests. Considering the mean of maximum

delay of the 20 VN requests, the Yuragi-based method does not achieve a delay as short as that

obtained by the greedy method in general. This is because the Yuragi-based method does not aim

to minimize the delay or the resource utilization but, rather, to keep them smaller than a certain

threshold. Making the threshold smaller might achieve a smaller delay but will result in a longer

convergence time for finding an attractor.

Figure 3.8 shows the embedding ratio, indicating how many VN requests are accepted out of the

20 requests. The topological changes occurring at every100 time steps cause a temporary decrease

in the embedding ratio, but both of the methods keep almost95% to 100% acceptances outside

those periods.

Figure 3.9 shows the number of VN migrations, defined as the number of VNs whose location

has been changed from the previous operation. Note that the operations are performed at every step

by the Yuragi-based method and at every 10 steps by the greedy method. When the VN requests

are regenerated at every100 steps, almost all VNs are migrated for both methods. The simula-

tion result shows that the Yuragi-based method takes fewer VN migrations in response to small

fluctuations to maintain the performance objective, and therefore our method costs less in terms of

VM migration. The greedy method migrates2 to 11 VNs at each change to maintain the required

capacity. This is because the greedy method tries to achieve better objective values, even when

the improvement in delay is marginal. Note that we may develop a greedy method that requires

fewer VN migrations with some additional constraints or considerations. The key point is that the

– 61 –

3.4 Evaluation by Computer Simulation

 0
 1
 2
 3
 4
 5
 6
 7
 8

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

(a) Maximum delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400

A
ct

iv
it

y

Time

Failure

(b) Activity

Figure 3.6: Maximum delay and activity on a VN

greedy method makes drastic changes due to the nature of the optimization, whereas the Yuragi-

based method does not. The total number of VN migrations required by the Yuragi-based method

is 153 for the 250 time steps of simulation, and 215 by the greedy method. This result indicates that

the Yuragi-based method adapts to demand fluctuations with about 29% fewer VN migrations than

– 62 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

 0
 1
 2
 3
 4
 5
 6
 7
 8

 200 250 300 350 400A
ve

ra
ge

 o
f

m
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.7: Average of maximum delay for 20 VNs

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 250 300 350 400

E
m

be
dd

in
g

ra
ti

o

Time

Yuragi
Greedy

Figure 3.8: Embedding ratio of VN requests

the greedy method. For the small fluctuations occurring at every 10 time steps, the number of VN

migrations with the Yuragi-based method is 33, against 156 with the greedy method.

Adaptability to different delay behaviors

In the previous section, we used the simple M/M/1 delay model where the delays on CPU, memory,

and storage are all estimated by their resource utilization. However, in actual SDI environments,

– 63 –

3.4 Evaluation by Computer Simulation

 0

 5

 10

 15

 20

 200 250 300 350 400

M

ig
ra

ti
on

Time

Yuragi
Greedy

Figure 3.9: The number of VN migrations

the end-to-end delay behaves in a more complicated way, depending on multiple factors such as the

processing delay (which also depends on the server specification) and memory utilization on virtual

machines. Here, we demonstrate that the Yuragi-based VNE method has adaptability under various

types of delay behaviors. We run computer simulations with distinct sets of weight parameters

(wc, wm, ws, wb). The simulation results show that our proposed VNE method can achieve its

performance objective even in a situation where the heuristic method fails to obtain acceptable

performance.

Figures 3.10 - 3.12, 3.13 - 3.15, and 3.16 - 3.18 correspond to the simulation results for param-

eter sets(wc, wm, ws, wb) = (0.6, 0.2, 0.0, 0.2), (0.2, 0.6, 0.0, 0.2), and(0.2, 0.2, 0.0, 0.6), respec-

tively. Each figure shows the maximum delays on3 VN requests out of the20 requests because

similar tendencies are observed on the other VN requests. In Figs. 3.10 - 3.12, 3.13 - 3.15, and

3.16 - 3.18, the Yuragi-based method mostly keeps the maximum end-to-end delay lower than the

threshold of5.0. Note that sharp increases of the end-to-end delay are observed at time steps200,

300, and400, but these delays are not crucial because they are caused by the change of VN request.

The Yuragi-based VNE method gradually adapts to the VN requests and soon finds a good VN

mapping.

The greedy method sometimes violates the performance threshold in response to some VN

– 64 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.10: Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 1

request fluctuations (see, for example, at time step320 on VN request 1 in Figs. 3.16 - 3.18). The

greedy method, a heuristic for optimization, does not always achieve the lowest end-to-end delay.

More importantly, the violation cannot be solved and may continue for a while because the greedy

method has already optimized its objective and has no way to improve the performance. Those

violations of the threshold occur due to a gap between estimated delays and actual delays (i.e.,

due to the lack of a precise delay model). Note that optimization approaches (including heuristic

approaches) will always have such gaps unless they use a precise delay model. Especially in an

SDI framework, defining a delay model to decrease the gap gets more difficult because the model

depends on complicated factors.

As for the Yuragi-based method, it shows its adaptability under uncertain delay behaviors. An

advantage of the method is that it finds a VNE solution with direct measurements of end-to-end

delay, where the models of delay behaviors are not used in our method and thus no longer necessary.

The delay models used in the simulations may not completely imitate actual delay profiles, but we

believe that the Yuragi-based method is feasible even when the actual end-to-end delay behaves in

more complicated or non-deterministic manner.

– 65 –

3.5 Conclusion

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.11: Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 2

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.12: Maximum delay (wc = 0.6, wm = 0.2, ws = 0, wb = 0.2): VN request 3

3.5 Conclusion

This chapter presented a VNE method based on the Yuragi principle as applied to SDI frameworks.

A system driven by the Yuragi principle achieves adaptability to environmental changes, and the

dynamics is described as an attractor selection model. In attractor selection models, the system

behavior is governed by an activity measure and small perturbations. When activity is high, the

– 66 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.13: Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 1

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.14: Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 2

control state of the system is in a good condition and stays in that state. When activity becomes

low or the condition becomes uncomfortable due to environmental changes, the system looks for

another stable state. The Yuragi-based VNE method decides the mapping of virtual nodes by means

of attractor selection, where the network mapping is regarded as the system state and the activity

is defined as a certain performance objective. The end-to-end delay in SDI frameworks depends

on application processes and other factors. That makes it difficult to pre-estimate experienced

– 67 –

3.5 Conclusion

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.15: Maximum delay (wc = 0.2, wm = 0.6, ws = 0, wb = 0.2): VN request 3

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.16: Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 1

delay accurately and causes degradation of VNE control performance. Nevertheless, our Yuragi-

based method shows its adaptability under such uncertain delay conditions. In the evaluation, we

considered the end-to-end delay as the activity. Simulation results show that the method provides

shorter delays and adapts to the request fluctuations by rearranging the VN mapping in response to

drastic changes in environments. The Yuragi-based method decreases VN migrations by about29%

relative to a heuristic method to adapt to fluctuations in required resource capacities.

– 68 –

Chapter 3. Noise-induced VNE Method for Software-defined Infrastructure

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.17: Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 2

 0

 2

 4

 6

 8

 10

 200 250 300 350 400

M
ax

im
um

 d
el

ay

Time

Yuragi
Greedy

Figure 3.18: Maximum delay (wc = 0.2, wm = 0.2, ws = 0, wb = 0.6): VN request 3

In future work, we will investigate a method of constructing the attractor structure to improve

the convergence time or some other performance measure. We suppose that our proposed method

is performed in a centralized SDN controller. Recently, distributed controllers for a single infras-

tructure are being studied toward wide-area SDN and large-scale SDN. It is worth studying how our

noise-induced method can be extended to account for mutually interfering situations. We should

also demonstrate the behavior of our proposed method in real implementation. Our method will

– 69 –

3.5 Conclusion

cause a delay in the SDN controller, which is not included in the computer simulations. It is worth

analyzing the impact of executing our method.

– 70 –

Chapter 4

Network resource planning for

evolvability in software-defined

infrastructure

4.1 Introduction

Building software-defined infrastructure (SDI) frameworks that can flexibly manage information

network systems at low cost would make it possible to construct virtual networks with finer time

granularity than before. This improvement is expected to allow more immediate response to cus-

tomer requests to increase or decrease the amount of available resources. In contrast with con-

ventional control, in which a network administrator manually configures the settings of various

network devices, software-defined networking (SDN) and network-function virtualization (NFV)

technologies enable flexible and responsive services (e.g., on-demand infrastructure supply and

user-provisioning services) [11–15].

Virtual network embedding (VNE) control is expected to allow properly configuring virtual re-

source allocation in response to environmental fluctuations, such as changes in virtual resource

demands, but a VNE control may not result in good virtual network performance. Such fail-

ure is caused mainly by two factors. The first factor is the VNE algorithm itself, and many

– 71 –

4.1 Introduction

VNE algorithms have been studied with the aim of achieving better allocation of virtual resources

[18–20, 22, 24–27]. The second factor is related to the physical resource design. When resource

utilization levels become high, processing delays and data transfer delays will increase, resulting

in worse performance of services running on a virtual network. Despite the extensive research on

VNE algorithms, the design of physical infrastructure for SDN/NFV applications has been scarcely

considered to date.

Although physical network resource designs have been considered in traditional communication

systems, such systems aim to have adequate capacity for future states as predicted from long-term

traffic observation. Indeed, physical network designs have been studied to optimize performance

on the basis of current demand or a predicted future demand. For example, in IP-optical networks,

ref. [28] describes the design of an optical-cross-connect topology in which the number of distinct

wavelengths is minimized by knowledge of the optical path demands. Reference [29] describes a

design for an optical layer network with the capacity to accommodate a predefined IP-layer topol-

ogy, decided on the basis of predicted future traffic and possible failure scenarios. However, such

conventional methods of designing for capacity are unsuited to SDI frameworks. A fundamental

difference between capacity planning in conventional frameworks and in the SDI framework is the

time granularity of changes in demand. That is, with SDI, the resource demands from various users

may change over short periods. This is inherent to SDI frameworks, where virtual network configu-

rations are executed by a softwarized control instead of by conventional manual operation. Because

of this, adaptation by a softwarized VNE control becomes more important in SDI frameworks for

achieving rapid provisioning of resources to meet fluctuating demands, and physical resource de-

sign is an important factor in the adaptability of VNE control. As mentioned above, algorithms for

finding better VNE solutions under given resource constraints have been considered, but a strategy

for choosing a physical network design that promotes VNE adaptability has not been discussed.

In contrast with virtual resource allocation, which is nearly instant, installing physical resources

in an SDI framework takes considerable time and manual work. It is thus not practical to adjust the

physical resources in response to every demand fluctuation. Physical resource planning requires

that short-term fluctuations be managed by a dynamic VNE control. Note that drastic fluctuations

should be expected to occur in the future for SDI because user requests frequently arrive through

– 72 –

Chapter 4. Network resource planning for evolvability

user-friendly interfaces (e.g., graphical user interfaces) and applications are customized to be suit-

able for their intended purpose. A promising way to enhance the ability of the VNE control to

adapt to unexpected fluctuations is to reinforce the physical resources so that the VNE control can

draw on this more robust infrastructure, which makes a higher number of VNE solutions feasi-

ble. Therefore, we consider which physical resource designs will increase the diversity of feasible

solutions considered by a VNE control. It is expected that providing more varied candidates for

VNE solutions will enhance the robustness of VNE control against environmental fluctuations (i.e.,

will enhance its adaptability). Even in situations where it is difficult to predict demand changes,

our design strategy aims to deploy physical resources such that the VNE control can accommodate

various fluctuations in future demand.

Our design strategy for SDI system aims to achieve adaptability in the face of environmental

changes by increasing the diversity of considered VNE states. As a successful biological model,

we consider the evolution of populations of organisms to better fit changing environments. One

key to obtaining evolutionary adaptability is to increase genotypic evolvability (i.e., the phenotypic

diversity that can arise from a genetic distribution) [34, 38]. Even when the environment drasti-

cally changes, genotypic evolvability lets the system produce phenotypes that are much different

from the previously dominant phenotype and ultimately settle on a phenotype that is suitable for the

changed environment. In this chapter, we propose an SDI resource design strategy that increases

VNE solution diversity, which originates from control system variation under demand fluctuations.

The strategy imitates the evolvability of biological populations, adopting an evolutionary model

that treats each VNE solution as characterizing a biological phenotype. We use this method to con-

struct a method for reinforcing node computational capacity and conduct experiments by computer

simulation to demonstrate that the adaptiveness of the VNE control will improve.

In an earlier chapter, we considered a method, based on biological evolution, that can in-

crease the number of transceivers of IP routers in a wavelength-division multiplexing (WDM)

network [30]. That method defines a correspondence between an evolution model and a WDM

network and simulates the process of biological evolution (i.e., mutation and selection of gene

regulatory networks through generations) with transceiver arrangement reflected in differences in

– 73 –

4.1 Introduction

the gene regulatory network. Fitness is measured according to the performance of the virtual net-

work control [33] (i.e., by average link utilization rate). However, the method given in our earlier

chapter, which incorporates the state of resource reinforcement into the gene regulatory network,

is specific to the combination of a virtual network control method and increases in the number of

IP transceivers in a WDM network. In addition, that method does not consider a diverse set of

potential virtual networks, so evolvability is not obtained. In the present chapter, we instead fo-

cus on improving evolvability (in the form of phenotype diversity caused by genetic mutation) and

thereby contributing to improvement of environmental adaptability, analogous with biological evo-

lution. For this, we develop an evolvability index to characterize the diversity of a VNE solution

set in an SDI framework. This index is independent of the type of resource to be reinforced (e.g.,

node resources and link resources are treated the same), thus constructing a more general method

of resource design.

In brief, this chapter contributes the following. We apply the adaptation strategy of biological

evolution to SDI resource design strategy and conduct a simulation to verify its utility. The proposed

reinforcement method has the following properties.

• Prediction of demand is not needed when determining the reinforcement plan. This makes it

a suitable design strategy for situations in which environmental fluctuations occur frequently.

• The “evolvability” of the target network will improve. That is, the diversity of VNE solutions

that can be constructed by the virtual resource control will increase.

• As a benefit of improved evolvability, the VNE control has a higher probability of adapting

(via reconfiguration) to new states after drastic fluctuations in demand.

The rest of this chapter is organized as follows. In Section 4.2, we introduce a service model

and the physical resource design problem in an SDI framework. In Section 4.3, we then discuss

strategies for adapting to environmental changes in SDI and propose an implementation that applies

biological evolutionary adaptability theory. In Section 4.4, we construct a method that reinforces

the computational resources of nodes to increasing evolvability, and in Section 4.5 we evaluate its

performance. Finally, we summarize the chapter in Section 4.6.

– 74 –

Chapter 4. Network resource planning for evolvability

4.2 Physical resource design in SDI

4.2.1 Virtual network service in an SDI framework

Figure 4.1 shows a service model of SDI frameworks. In the model, customers request a VN from

their network manager via an interface, such as a web application. The network manager executes a

certain VNE algorithm for VN requests. The VNE algorithm decides on a VN mapping (i.e., a vir-

tual node mapping and a virtual link mapping). Then, the manager installs virtual machines within

the chosen physical servers and allocates the requested computational resources. An SDN controller

accesses the substrate nodes via some protocol (such as OpenFlow) and configures forwarding rules

to establish the virtual links.

The physical resources, including the physical nodes and physical links, form the substrate

network. The physical nodes are furnished with computational resources (CPU capacity, memory

capacity, storage resource quantity). The physical links are furnished with link resources (band-

width).

A VN request includes topology information, which is a set of virtual nodes and virtual links.

Virtual node mapping assigns each virtual node to a physical node. Then, each virtual node is

hosted on its assigned physical node as a virtual machine. Virtual link mapping decides the path

through the physical network to be used by virtual links between virtual nodes. The virtual nodes

are connected through these paths.

4.2.2 Physical resource planning problem

Physical nodes and links have limited capacities. Thus, in allocating virtual resources to VNs,

constraints on resource utilization at physical nodes and physical links leads to degradation in the

throughput and service performance of VNs. It may also happen that some VNs cannot be accom-

modated because not enough resources are free. To avoid such situations, it is important to have

appropriate amounts of physical resource capacity at appropriate places in the substrate network.

Physical resource reinforcement (i.e., adding additional computational resources or bandwidth) is a

– 75 –

4.2 Physical resource design in SDI

Virtual network

requests

VN req. 1 VN req. 2

Network

manager

Substrate

network

VN req. 3

SDN controller

VNE

algorithm

Request

queue

ex) Cloud app.

OpenFlow

(example technique)

:Virtual machine:Physical server

VNE

algorithm

VNE

algorithm

Request

queue

Request

queue

Figure 4.1: Service model in SDI

– 76 –

Chapter 4. Network resource planning for evolvability

Additional resources

�

Which node

should receive

the resource?

Figure 4.2: Problem of planning resource reinforcement

necessary part of responding to increases in demand. Figure 4.2 shows a resource planning prob-

lem of the type considered in this chapter. The objective of solutions is to identify where resources

should be reinforced. From the viewpoint of CAPEX, it is necessary to select target nodes in a way

that satisfies constraints on the infrastructure administrator in the form of limits on the amount of

resources that can be newly added. The figure depicts the reinforcement of computational resources

on nodes, but the addition of links and the expansion of bandwidth can be handled in an analogous

way.

General network resource planning attempts to optimize some performance metric for a future

demand level predicted from the current demand level. For example, suppose a performance op-

timization method of the VNE problem (e.g., [21]) is applied against predicted demand. The set

of places to be reinforced will be decided such that the best performance is obtained, subject to

future demand matching predicted demand. Such policies cannot guarantee performance when the

actual demand deviates significantly from the predicted demand. Therefore, it is more practical to

reinforce resources such that the average performance is optimized, considering several patterns of

potential demand and using some lightweight heuristic VNE method (e.g, [61]). This stochastic

– 77 –

4.3 Resource planning strategy to increase evolvability

optimization reinforcement policy will produce better (average) VN performance even when some

demand fluctuation occurs.

4.3 Resource planning strategy to increase evolvability

4.3.1 Resource planning strategy required in SDI

In an SDI framework, customized service must be provisioned to an enormous number of users on

demand. In such a situation, resource demand can fluctuate over a short period as a result of various

factors (e.g., increase or decrease in traffic demand, entry of a new VN slice, and withdrawal of an

existing VN). It is necessary to reinforce the substrate network to improve the adaptability of VNE

control under the assumption that unexpected environmental changes will frequently occur. When

appropriate physical resources are provided in appropriate places, a VNE control can immediately

adapt to minor fluctuations, and VNs can be flexibly constructed even in the face of unpredictable

fluctuations.

For that purpose, a promising strategy is to reinforce resources in a way that allows a VNE

control to construct a diverse set of solutions. This is expected to increase the possibility that the

VNE control can adapt to future environmental fluctuations and cope with more diverse patterns of

demand fluctuation.

4.3.2 Adaptation strategy for environmental change by biological evolution

A phenotype, which is a pattern of expressed traits in an organism, is derived by developmental dy-

namics from an underlying genotype (gene regulatory network) and environmental noise. Fitness,

which indicates adaptability to the environment, is defined by a function taking the phenotype as

an argument. Even among organisms with the same genotype, the phenotypical expression may

differ because of environmental difference, and organisms with a phenotype more suitable to the

environment are said to be more fit. After drastic environmental change, one genotype may not

be able to express a phenotype with good fitness, but an organism with better fit can be recovered

through an evolutionary process (i.e., mutation and selection of the genotype). Genotypic mutation

– 78 –

Chapter 4. Network resource planning for evolvability

is carried out by random changes in small parts of the gene regulatory networks, and this will be ac-

companied by a transformation of the developmental dynamics. As a result, previously unexpressed

phenotypes will appear. During selection, genotypes that give rise to phenotypes more suitable for

the current environment will survive, and other genotypes will be weeded out.

In biological evolution, evolutionary adaptation is promoted (e.g., fitness recovers more rapidly

and reliably) when phenotypic variance increases immediately after a drastic environmental change

[34]. Phenotypic variance is a result of two factors: genotypic mutation and environmental noise.

In particular, a diversity of phenotypes can be induced by genotype mutation, which is called “(ge-

netic) evolvability” [38]. When evolvability is sufficiently high, various phenotypes can appear

through developmental dynamics from genotype mutation, and thus the possibility of expressing a

phenotype suitable for the new environment increases. Conversely, when evolvability is small, it

will be difficult to recover fitness within the new environment. Therefore, evolvability indicates the

degree of potential to adapt to drastic environmental changes.

An evolvability index is defined as a variance form (e.g.,Vg(i) andVg as defined below) in a

biological evolution model [34]. Each ofK individuals is composed ofM genes, and each gene

i(∈ {1 . . .M}) has an expression levelxi. Lettingxk,li indicate the gene expression level of gene

i for individualk in environmentl, the vector of gene expression levels,xk,l, is determined by the

developmental dynamics governed by the genotypeJk
ij and the environmental noiseηl (See Fig.

4.3). The genei is expressed if and only if its expression levelxi is greater than a thresholdθi. The

phenotype is given by the expression pattern of the genesXk,l = {Xk,l
i |Xk,l

i = Sign(xk,li −θi), i =

1, . . . ,M}, whereSign(x) is the signum function, which returns1 whenx > 0, 0 whenx = 0,

and−1 whenx < 0. The fitness value is obtained by a functionF (Xk,l) that takes a phenotype as

input.

The variance of the expression of geneVg(i) due to the genotype mutation is defined as

Vg(i) =
1

K

K∑
k=1

(
Xk

i − ⟨Xi⟩
)2

, (4.1)

whereXk
i = 1

L

∑L
l=1X

k,l
i is the average state of mutantk over L environments and⟨Xi⟩ =

– 79 –

4.4 Computational resource reinforcement method for increasing evolvability

�������

Genotype ����

Developmental dynamics

Phenotype ����

Fitness value�-th environment

������
�� � � 	
����

�

�

����� � ����� � ������

��environments for each isogenic individual

Figure 4.3: Biological evolution model at each generation

1
K

∑K
k=1X

k
i is the average overK mutants, removing the variance due to noise. The variance of

the fitness valueVg is defined in the same way, as

Vg =
1

K

K∑
k=1

(
F (Xk)− ⟨F (X)⟩

)2
. (4.2)

4.4 Computational resource reinforcement method for increasing evolv-

ability

In this chapter, we deal with a planning method to reinforce node computational resources in a

substrate network. Here, we describe the problem design, considering generalized computational

resources. In our specific case, the computational resources are the number of CPU cores, the

memory capacity, and the disk storage capacity. The initial resource levels provided for the substrate

networkG(V s, Es) are described by the computational resource capacity{Cvs |vs ∈ V s}, and the

– 80 –

Chapter 4. Network resource planning for evolvability

link capacity by{Ces |es ∈ Es}. Let the unit of computational resources to be added be∆, and

the total number of nodes to be reinforced beT , where duplicate selection of nodes is allowed and

indicates reinforcing that node multiple times. The solution to the reinforcement planning problem

of node computational resource is to obtain the set of nodes{vst }t=1...T (v
s
t ∈ V s) to which to add

computational resources.

The ultimate goal of resource reinforcement by the proposed method is to simulate evolutionary

adaptability (robustness and plasticity). To achieve this, it is important to increase evolvability, fol-

lowing the strategy of biological evolution. Therefore, we propose an indexH(G) that characterizes

the evolvability of an SDI substrate network. This is used for selecting the node to be reinforced

by calculating the indexH(G) when a computational resource is added. In this section, we first

outline our proposed method, which is based on the ADD algorithm [46]. Next, the formulation

of the evolvability indexH(G) used in the ADD algorithm will be explained. We also introduce a

VNE method that uses a genotype–phenotype structure to characterize evolvability.

4.4.1 ADD algorithm

The offline simulation procedure based on the ADD algorithm [46] is shown below. The output of

the procedure is the set of nodes to which resources should be added.

Step 1

Let t = 1.

Step 2

Perform the following procedure for each node in the substrate network∀vs ∈ {0, 1, . . . , |V s|−

1}. Calculate the evolvability indexH(Gvs) after trial adding to the nodevs, then choose the

best node from those trials.

Step 2.1

Add the computational resource to nodevs temporarily. Let the node resource capacity be

Cvs = Cvs +∆.

– 81 –

4.4 Computational resource reinforcement method for increasing evolvability

Step 2.2

Calculate the evolvability indexH(Gvs) by the evaluation method explained below in detail.

Step 3

Select the node satisfyingvst = argmaxH(Gvs), and add the resource amount of∆ to the

nodevst .

Step 4

If t ≥ T , then terminate. Otherwise, lett = t+ 1 and return toStep 2.

Note that the method can be converted in the obvious way to network resource reinforcement,

by replacing node computational resources with link bandwidth in Step 2. In this chapter, the

method described above is limited to the problem of capacity reinforcement for node resources as a

first step in designing an SDI substrate network of resources, based on the following idea. A VNE

control consists of two phases: virtual node mapping (VNoM) and virtual link mapping (VLiM).

The VNE solution largely depends on the first phase VNoM, so we regard relaxing the upper limit

of node capacity to be more acceptable than relaxing the link bandwidth when trying to increase the

diversity of VNE solutions.

4.4.2 How to calculate the evolvability index

Evolvability of organisms is defined as the phenotypic diversity that genetic mutation brings. In bi-

ological systems, the phenotypic expression of traits is determined by dynamics ruled by the geno-

type, which is not directly expressed, and by environmental noise. This two-stage structure enables

the system to express a phenotype that fits the current environment while maintaining adaptability

to other environments by permitting expression of other phenotypes from the same genotype. For

small environmental noise, the system adapts instantaneously, providing a phenotype that the single

genotype can express. For drastic environmental changes, adaptation occurs by providing a broader

phenotype through mutation of the genotype via the evolutionary process.

In an SDI framework, we also aim to provide evolutionary adaptability by using such a two-

stage structure mechanism. Here, a VNE solution is regarded as a phenotype in SDI. Then, a

– 82 –

Chapter 4. Network resource planning for evolvability

control mechanism of VNE is regarded as a genotype, and VN demand fluctuations are regarded

as environmental changes. We formulate the evolvability index on the basis of the VNE control

method [27], which has the mechanism above.

VNE control method based on genotype–phenotype system [27]

This VNE method outputs a node mappingf : V r 7→ V s from an input of a substrate network

G(V s, Es) and a virtual network requestG(V r, Er). Let the requested virtual node bevr(∈ V r),

and the substrate node bevs(∈ V s). Then, define the gene expression levelx = {x|V r|,|V s|}, and

the function

f(vr) ≜


argmaxvs xvr,vs (∃xvr,vs ≥ 0)

null (otherwise).

(4.3)

This method determines a node mapping byx, derived from the stochastic differential equation,

which is a mathematical model of attractor selection of the biological gene expression dynamics.

The value ofxvr,vs is in the range[−1, 1]. The gene is expressed whenxvr,vs ≥ 0, and the

correspondingvr 7→ vs becomes a candidate for the node mapping. The stochastic differential

equation is regarded as having converged when the system reaches a state in which enough genes

have been expressed that the value of the functionf can be found. The expression / non-expression

state is called a solution. The phenotypeX = {Xvr,vs |Xvr,vs = Sign(xvr,vs)} is obtained as a

result. For virtual link mapping (routing), the flow for each virtual link request is set to minimize

hop length for each route. An example of a VNE solution based on an obtained phenotype is shown

in Fig. 4.4.

The stochastic differential equation of the attractor selection model,

dxi
dt

= α

{
ς

(∑
j

Wijxj

)
− xi

}
+ η, (4.4)

is ruled by the control matrixW, which is defined by an attractor structure as the genotype. Activity

α, which takes a value in[0, 1), indicates feedback from the system about the comfortableness of

the system state. Here, the indexi in xi indicates the pair(vr, vs) wherei = |V s| ∗ vr + vs),

– 83 –

4.4 Computational resource reinforcement method for increasing evolvability

� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �

13

15

14

6

5
2

3

4
8

7

9
12

10

11

0

1
16

17

18

19

iv

v
i

vii

viii

iii

vi

ii

ix

VNE solution

Substrate network

ivi iiiii

v vi

vii

viii
ix

Phenotype �

VNR�Virtual network request�

Figure 4.4: An example of VNE solution by phenotypeX

{vr|0, 1, 2, . . . , |V r| − 1} and{vs|0, 1, 2, . . . , |V s| − 1}. In the following, bothxvr,vs andxi as

convenient. In the first term of Eq. (4.4),ς
(∑

j Wijxj

)
− xi represents the attractor structure. The

functionς(z) is a sigmoid function defined as,

ς(z) = tanh(
µ

2
z), (4.5)

whereµ represents the gradient in the vicinity of the threshold. This attractor structure is derived

from the genetic interaction, that is, from the genotype. The second termη in Eq. (4.4) is a random

value.

The matrixW in Eq. (4.4) represents an attractor structure. It stores some equilibrium points

of the virtual node mapping; these equilibrium points are called attractors. Each attractor is defined

asy = (y1, . . ., yi, . . ., y|V r||V s|), whereyi ∈ {−1, 1}. If physical nodevs is one of the candidates

for a virtual nodevr, thenyvr,vs is set to1. Otherwise,yvr,v−s is set to−1. LetM be the number

– 84 –

Chapter 4. Network resource planning for evolvability

of attractors stored inW. A set of attractorsY = (y1, y2, . . ., yM) can be stored by letting

W = Y+Y, (4.6)

whereY+ is the pseudoinverse matrix ofY. In Eq. (4.4), this matrix governs the state transition

so that the variablesx will be attracted to one of the retained attractors when the activity level is

sufficiently high. When the present state is at one of the attractors,dx/dt in Eq. (4.4) becomes

close to0 and stays at the attractor.

Formulation of evolvability

In evaluating the evolvability of an SDI substrate network, we interpret the evolvability in the SDI

framework as follows: VNE control expresses various VNEs (phenotypes) by mutation operation

of the control matrix (genotype). Figure 4.5 depicts an image of the diversity of VNE solutions,

showing the appearance probability distribution for obtaining VNE solutions through the VNE con-

trol. Even without any reinforcement, the number of VNE solutions can be increase by repeating

the control matrix mutation operations. By incrementally applying resource reinforcements, an

increasing variety of VNE solutions can be obtained, with a wider search range.

Figure 4.6 shows the procedure of calculating the entropyH(Gvs).

Step 1

Generate control matricesW1, . . . ,WK by the mutation operation of the control matrixW .

An example of the mutation operation is shown in Fig. 4.7. First, randomly select an attractor

from the set of the attractors retained in the control matrix. Second, randomly select a virtual

node from within the selected attractor. Third, randomly select a substrate node and modify

the candidate node for the virtual node to the selected substrate node. Finally, reconstruct the

matrix with the revised attractor.

Step 2

Generate VNR demandD1, . . . , DL in a random fashion. The demand is given in terms of

memory amount for the virtual nodes and bandwidth for the virtual links.

– 85 –

4.4 Computational resource reinforcement method for increasing evolvability
R

ei
n

fo
rc

em
en

t
n

u
m

b
er

1st

None

(initial) VNE solution space

1%

10%

20%

2nd

Figure 4.5: Concept of evolvability: Appearance probability distribution for VNE solutions at each
resource reinforcement stage

– 86 –

Chapter 4. Network resource planning for evolvability

��

��

��

.

.

.

��

��������� ������

��������� ������

.

.

.

��������� ������

� regulatory matrices
VNE solutions

for ����������

	
�� regulatory matrices

V������������

 ���

+

Developmental dynamics

����

Genotype

Mutation

Figure 4.6: Procedure of calculating the evolvability index

Step 3

LetXk,l be the solution obtained at convergence through the gene expression dynamics given

by the control matrixWk for the demandDl. Then, calculate the entropy of appearance

probabilityH(Gvs) = −
∑

X p(X) log p(X), which will explained below in detail.

The VNE method attempts to adapt to a new environment by reconfiguration (mutation) of the

control matrix when it is difficult to adapt with the initial control matrix. Designing the substrate

network so that more types of VNE solutions can be reached by minor changes to the control matrix

makes it easier to adapt to such situations. Also, according to ref. [34], when diverse solutions can

be obtained by minor updates, plasticity is achieved in the evolution process of repeating genotype

mutations. This chapter introduces a phenotypic diversity index related to genetic mutation in

an SDI framework. However, simply applying the indexesVg(i) or Vg, which are defined in the

biological background [34], is not suitable for evaluation of the VNE solution diversity because

those indexes will just reflect the variance of control variables or VN performance value (e.g., end-

to-end delay). Therefore, we define the entropy expressionH(G), which characterizes the various

kinds of VNE solution that can be obtained.

Let control variable vectors beXk,l = {Xk,l
i |i = 1 . . . |V r||V s|}, obtained by offline simula-

tion with control matrix{Wk|k = 1 . . .K} for VN demand{Dl|l = 1 . . . L}. In the simulation,

– 87 –

4.4 Computational resource reinforcement method for increasing evolvability

� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �

� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �

� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �

� 0 1 2 3 4 5 … 18 19

i � � � � � � � � �

ii � � � � � � � � �

iii � � � � � � � � �

iv � � � � � � � � �

v � � � � � � � � �

vi � � � � � � � � �

… � � � � � � � � �

ix � � � � � � � � �

1. Select randomlyAttractor structures (memorized by �)

3. Select randomly & update

2. Select randomly

Figure 4.7: An example of a mutation operation for the control matrix

the initial component values ofxk,l are all set to−1 (unexpressed), and the activity level is fixed

to 0.1 so that the noise-induced search will converge to a solution more likely related to results

from genetic mutation than from an efficient search with activity feedback. Let the number of pairs

(k, l) ben(X) amongKL simulations where the control vector is converged toXk,l = X. For an

evolvability index, the entropyH(G) of appearance probability is defined as

H(G) = −
∑
X

p(X) log p(X), (4.7)

where the appearance probabilityp(X) = n(X)
KL .

– 88 –

Chapter 4. Network resource planning for evolvability

4.5 Performance evaluation

We used computer simulation to evaluate the effectiveness of our proposed method. First, we

verified that the potential of the VNE control to discover solutions is improved by applying the

resource reinforcements suggested via our method. Then, we compared the solution-discovering

potential with resource reinforcement as given by a general stochastic optimization method. We

further demonstrated that the proposed reinforcement improved the convergence probability of the

VNE control when demand was highly variable.

In this simulation, we observe with the end-to-end delay between virtual nodes as the service

performance of a VN, and reinforce (expand) the memory of a certain server as a computational re-

source. The aim of reinforcing memory capacities is to suppress increases in delay time by lowering

the rise of the memory utilization rate. When the memory utilization rate is high, virtual memory

will be used by the host OS, which will cause some of the storage disk to be used for swapping

memory pages. This causes a calculation delay since the speed of access to the storage is much

slower than that of access to the memory. Thus, reinforcing the memory capacity is expected to

reduce the end-to-end delay, assuming some calculations are needed on transit servers. By applying

memory enhancement to appropriate nodes, it is possible to cope with environmental changes such

as fluctuation of computing resource or virtual link requests. That is, the reinforcement promotes

the adaptability of the VNE control, which will more easily find a good solution with a comfortable

delay under the new environment than without reinforcement.

4.5.1 Simulation environment

Substrate network and virtual network requests

The topology of the substrate networkG(V s, Es) used is shown in Fig. 4.4. The number of nodes is

20. The initial computational resource amount available at each node before applying reinforcement

is set as follows. For evaluation of improvement in solution-discovering potential, as in Sec. 4.5.3,

the computational resource (memory) amountCvs of each node is uniformly set to 100. Also, for

evaluation of the VNE control convergence probability, as in Sec. 4.5.3, the initial value of memory

equipped on each node is set to a value chosen uniformly randomly from[60, 140]. When applying

– 89 –

4.5 Performance evaluation

the resource reinforcement method, the additional memory amount∆ for each round in the ADD

algorithm is set to 20. The physical link bandwidthCes is set to 1000 for each link.

A virtual network requestG(V r, Er) consists of 10 virtual nodes. When the VN demand is

generated, the requested memory amountCvr of each virtual node is determined by a number

chosen uniformly randomly from[20, 80]. For each pair of virtual nodes, a virtual link is established

between the virtual nodes with probability50%. When a virtual link exists between the components

of a virtual node pair(vri , v
r
j), the required bandwidthCeri,j

of that virtual link is taken to beCeri,j
=

Cvr
i
+Cvr

j

2 . The virtual linkeri,j is allocated to the shortest path in the substrate network from the

physical node hostingvri to the one hostingvrj , and the amountCeri,j
is reserved from the bandwidth

of the physical links along the path. If one or more physical links along the path has an over-

subscribed bandwidth capacity, the VN request cannot be accommodated and the VNE control

fails.

VNE control method

In this evaluation, the VNE control method (4.4.2) is used. As a threshold for activity, let the

maximum end-to-end delay (the largest delay among the end-to-end delays of each virtual link)

be θ. When the maximum end-to-end delay is suppressed underθ, the activity becomes higher.

Otherwise, when the maximum end-to-end delay exceedsθ, the activity becomes close to zero.

The end-to-end delayderi,j of the virtual link eri,j is calculated according to the memory resource

utilization rate of the physical nodes along the path, as

deri,j =
∑

vs∈V s
er
i,j

dvs , (4.8)

whereV s
eri,j

is the set of physical nodes along the path from the virtual nodevri to vrj , anddvs is the

delay caused by the memory utilization on the physical nodevs. In this chapter, the delaydvs of

the physical nodevs related to its memory resource utilizationuvs =
∑

vr |f(vr)=vs Cvr

Cvs
is defined by

the delay profile shown in Fig. 4.8.

– 90 –

Chapter 4. Network resource planning for evolvability

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

D
el

ay
 d
vs

Resource utilization uvs

Figure 4.8: Delay profile

The activityα is defined as

α =
1

1 + exp(δ(dmax(f)− θ))
, (4.9)

wheredmax(f) = maxeri,j∈Er deri,j is the maximum end-to-end delay of virtual node mappingf . A

converged state withα ≥ 0.5 is regarded as a VNE solution. For the parameters, we useδ = 1.5

andθ = 6 in this chapter.

The number of kinds of solutions converged to by the VNE control is characterized by the

parameter of a mutation ratio of the control matrix. A single mutation operation is defined as

follows. Select one node randomly from among the virtual node mapping candidates retained as

attractors, randomly select one virtual node from the virtual network, and randomly select one of

the physical nodes where the virtual node is to be hosted. Replace the original attractor by the

randomly revised virtual node mapping candidate and reconstruct the control matrix. The mutation

rate of the control matrix is defined as n
M |V r||V s| , wheren is the number of mutation operations

applied,M is the number of attractors retained by the control matrix,|V r| is the number of virtual

nodes, and|V s| is the number of physical nodes. Note that|V r||V s| is the number of dimensions

of the control variable, andM |V r||V s| is the amount of information stored in the control matrix.

– 91 –

4.5 Performance evaluation

The VNE control applies the mutation operation periodically when the solution search does not

converge immediately, thereby spreading the search range to discover a good solution for the current

VN demand. Increasing the mutation rate enables the control method to search for a wider solution

space, although it may cause degradation of the immediate adaptiveness against minor fluctuations.

4.5.2 Basis method for comparison

We construct a basis reinforcement method for comparison with our proposed method. The basis

method aims to improve the average performance over predicted demand fluctuations. Here, we

use a heuristic VNE control [61] that avoids increases in resource utilization on a certain node

by considering the VN demand and the unclaimed resources of the substrate network. The basis

reinforcement method follows the ADD algorithm, given below.

Step 1

Let t = 1.

Step 2

Perform the following procedure for each node in the substrate network∀vs ∈ {0, 1, . . . , |V s|−

1}. Calculate the average value of the maximum end-to-end delayd
(vs)
max when the resource is

trial added to the nodevs, then choose the node resulting in the best of those values.

Step 2.1

In the simulation, add the computational resource to nodevs temporarily. Let the node re-

source capacity beCvs = Cvs +∆.

Step 2.2

Calculated(v
s)

max through the following procedure.

Step 2.2.1

Obtain the maximum end-to-end delayd(v
s)

max(l) by the heuristic VNE control against VN

demandD1, . . . , DL.

– 92 –

Chapter 4. Network resource planning for evolvability

Step 2.2.2

Calculate the average value of the maximum end-to-end delaysd
(vs)
max =

∑L
l=1 d

(vs)
max(l)/L as

a performance index.

Step 3

Select a nodevst = argmin d
(vs)
max and add the resource amount of∆ to the nodevst .

Step 4

If t ≥ T , then terminate. Otherwise, lett = t+ 1 and return toStep 2.

4.5.3 Simulation results

Improving the potential to discover solutions with the VNE control

We implemented the proposed reinforcement method forT = 3 stages withK = L = 100, and the

nodes to be reinforced are determined as{1st: node 11; 2nd: node 8; 3rd: node 3}.

In the substrate network of each reinforcement stage, 1000 VN demands are given. Figure

4.9 shows the number of VNE solutions obtained through the VNE control simulation against the

1000 patterns of VN demand. The number of VNE solutions is plotted on the horizontal axis and

the mutation rate of the control matrix is plotted on the vertical axis. Even before reinforcement (at

“Init”), the number of solutions increases as the mutation rate increases, but the number of solutions

is increased more rapidly by applying reinforcements. Comparing the third-stage reinforcement

with the substrate before-reinforcement, the number of solutions to be found increased by about

[36 − −54]% at a mutation rate of 1% or less, showing that the solution discovery potential of the

VNE control is improved by the proposed resource reinforcements.

Next, for comparative evaluation, we implemented the basis reinforcement method forT = 3

stages withL = 1000. The total amount of additional resources installed by both the proposed and

the basis method is same. The nodes to be reinforced selected by the basis method are nodes 6, 9,

and 14. The number of discovered VNE solutions is shown in Fig. 4.10. When applying reinforce-

ment by the proposed method (H(G)), the number of VNE solutions increases with increasing the

mutation rate, and more solutions are found than before reinforcement (Init) with a higher mutation

– 93 –

4.5 Performance evaluation

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 10 20 30 40 50 60 70 80

M
ut

at
io

n
ra

ti
o

of solutions

3rd
2nd
1st

Init

Figure 4.9: The number of VNE solutions reached by the VNE control

ratio. In the basis method (Basis), the number of solutions increases to only the same level as before

reinforcement (Init), even when the mutation rate was raised. The reinforcement by the proposed

method thus encourages the discovery of a wider variety of VNE solutions than does the basis re-

inforcement, even with the same amount of resources added. The increase in solution diversity is

promoted by the mutation operations of the control matrix, that means evolvability is increased.

Since the proposed reinforcement makes it possible to accept more diverse VNE solutions for the

given substrate network, improvement of the adaptability of the VNE control against environmental

changes is expected.

Improving convergence probability of VNE control

Here, we evaluate whether the convergence probability of the VNE control is improved by rein-

forcing resources. The convergence probability of the VNE control against VN demand variation is

simulated in the initial stage and in reinforcement stages 1 through 10. In the simulation, the search

duration of the VNE control is limited to 1000 control steps. If it does not converge within 50

control steps, the control method applies a mutation operation to the control matrix every 10 steps

thereafter. The convergence probability of the VNE control is shown in Fig. 4.11. The convergence

– 94 –

Chapter 4. Network resource planning for evolvability

 0

 0.05

 0.1

 0.15

 0.2

 0 20 40 60 80 100 120 140 160

M
ut

at
io

n
ra

ti
o

of solutions

H(G)
Basis

Init

Figure 4.10: Number of VNE solutions: comparison with the basis reinforcement

probability is calculated by simulating the VNE control for 1000 patterns of VN demand. The con-

vergence probability before reinforcement (Init) is 70%, and this rate improves as reinforcements

are made, in both cases (by the proposed method and the basis method). The convergence proba-

bility was improved to 94% by the proposed method at the tenth reinforcement stage, while it was

improved to only 75% by the basis method with the same amount of additional resources. In the

basis method, the substrate network may become specialized at avoiding delay against the predicted

demand (ofL = 1000 patterns), but the proposed reinforcement improves the adaptability of the

VNE control against a wider variety of demand patterns than the set considered in the planning

phase (ofL = 100 patterns).

4.6 Conclusions

In this chapter, we consider a problem of planning the capacities of physical network resources

in an SDI framework to deal with difficult-to-predict demand fluctuation. We have proposed a

method of deciding computational resource reinforcement by applying knowledge on evolvability.

The method increases the adaptability against unknown environmental fluctuations, reconstructing

an attractor structure in the VNE control after large changes. The results obtained by computational

– 95 –

4.6 Conclusions

 0.5

 0.6

 0.7

 0.8

 0.9

 1

init 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

C
on

ve
rg

en
ce

 p
ro

ba
bi

li
ty

Reinforcement step #

H(G)
Basis

Figure 4.11: Convergence probability of the VNE control

simulation show that when memory reinforcement of the substrate network is done according to

the proposed strategy, the adaptability in terms of solution discovery by a VNE control in the face

of demand fluctuation is improved relative to a basis reinforcement, which optimizes a expected

performance under predicted demand fluctuations, by the same amount of resources.

Future work remains in order to improve the proposed strategy. We will further examine the

adaptability of the proposed method against additional environmental changes (e.g., faults on node

equipment or links), rather than only demand fluctuation.

– 96 –

Chapter 5

Conclusion

SDI is a promising framework to enable flexible and rapid deployment of new services on informa-

tion networks by providing virtualized infrastructure to customers by slicing computing resources

and network resources. In this thesis, we present an adaptive VNE method that works with only a

little information for large, complicated, and uncertain SDI frameworks. Also, we consider physical

resource design to increase a diversity of solutions reached by a VNE control.

First, we proposed a physical resource design method for optical networks, e.g., wavelength

division multiplexing (WDM) networks, as a prior inspection for physical resource design method

in SDI frameworks. We propose a design method for adding transceivers to IP routers in IP-over-

WDM networks. The method defines correspondence between an evolution model and a WDM

network, and simulates a process of biological evolution (i.e., mutation and selection of gene regu-

latory networks through generations) where transceivers arrangement is reflected by modifying the

gene regulatory network. Then it measures performance of the VNT control method (i.e., average

link utilization rate). Computer simulation for some WDM networks showed that our method makes

attractor-based VNT control methods more adaptive to unexpected traffic fluctuations and reduces

degradation of the adaptability under strong traffic fluctuations, that is, our method accommodates

more patterns of traffic fluctuation with lower link utilization than ad-hoc design methods do. Thus

we confirm the bio-inspired approach is promising for physical resource design. Despite the effec-

tiveness, the method does not consider a diverse set of potential virtual networks, so evolvability

– 97 –

Chapter 5. Conclusion

will not be obtained. Our physical resource design strategy could stand further improvement by

adopting the essence of biological evolvability, which we consider in the physical resource design

method for SDI frameworks.

Second, we presented a VNE method based on the Yuragi principle as applied to SDI frame-

works. A system driven by the Yuragi principle achieves adaptability to environmental changes,

and the dynamics is described as an attractor selection model. In attractor selection models, the

system behavior is governed by an activity measure and small perturbations. When activity is high,

the control state of the system is in a good condition and stays in that state. When activity becomes

low or the condition becomes uncomfortable due to environmental changes, the system looks for

another stable state. The Yuragi-based VNE method decides the mapping of virtual nodes by means

of attractor selection, where the network mapping is regarded as the system state and the activity is

defined as a certain performance objective. The end-to-end delay in SDI frameworks depends on

application processes and other factors. That makes it difficult to pre-estimate experienced delay

accurately and causes degradation of VNE control performance. Nevertheless, our Yuragi-based

method shows its adaptability under such uncertain delay conditions. In the evaluation, we consid-

ered the end-to-end delay as the activity. Simulation results show that the method provides shorter

delays and adapts to the request fluctuations by rearranging the VN mapping in response to dras-

tic changes in environments. The Yuragi-based method decreases VN migrations by about29%

relative to a heuristic method to adapt to fluctuations in required resource capacities.

Finally, we proposed an SDI resource design strategy that increases VNE solution diversity,

which is derived by a control system variation under demand fluctuations. Our design strategy

for SDI system aims to achieve an adaptable characteristic against environmental changes by in-

creasing diversity of VNE states. As a successful model, an evolution system of organisms takes

a similar strategy, where they can evolve fitting to environmental changes. We propose an SDI re-

source design strategy that increases VNE solution diversity, which is derived by a control system

variation under demand fluctuations. The strategy imitates evolvability of a biological evolutionary

adaptation model with regarding a VNE solution as a biological phenotype. Then we construct a

node computational capacity reinforcement method in accordance with the proposed strategy, and

– 98 –

Chapter 5. Conclusion

conduct experiments by computer simulations demonstrating that the adaptiveness of a VNE con-

trol will improve. The result shows convergence probability of a VNE control is improved after

our proposed physical resource reinforcement with an up to 19% gain compared with an ad-hoc

reinforcement.

In summary, we constructed a VNE control method which can immediately response to demand

fluctuations in SDI frameworks where short-term requests must be managed. We also constructed

a strategy for physical resource planning to promote the VNE control adaptability against drastic

demand changes. Both of the methods take bio-inspired approaches. The proposed VNE method is

expected to enjoy the adaptability of Yuragi to environmental changes. VN migrations are driven

according to experienced performance and the new VN mapping is obtained by means of attractor

selection. Different from optimizing problems and related heuristics, the Yuragi-based method can

avoid the necessity of collecting detailed information about the entire network. The process for a

VN request needs only enough information for comfortableness and does not need any information

related to other VN requests. Also, the proposed physical resource reinforcement method is to

acquire the nature of evolutionary adaptation (robustness and plasticity). To achieve that, it is

important to increase evolvability, following the strategy of biological evolution. Therefore, we

propose an indexH(G) which evaluate evolvability of a SDI substrate network. This is used for

selecting the node to be reinforced, by calculating the indexH(G) when a computational resource

is added.

Future work remains in constructing a more feasible scheme based on our proposed strategy in

order to be deployed in practice. First, a method for VNE control is to be investigated that con-

structs the attractor structure to improve the convergence time or some other performance measure.

There is also room for improvement in the random mutation operation strategy, which should be im-

proved with adopting intentional attractor modification based on medium-term traffic observation.

Second, despite our physical resource design strategy succeed in increasing an evolvability feature,

some questions occurred: ”Is there a certain topological characteristic which brings evolvability to

SDI?” or ”How much resources should be reinforced to maintain evolvability?”. Revealing these

obscure traits and constructing a heuristic method will make the implementation of our bio-inspired

strategy be much more systematic and practical. We believe that the whole discussion in this thesis

– 99 –

Chapter 5. Conclusion

and the remained research topics above will contribute to SDI deployment for activating efforts in

development of various ICT services, which bring a prosperous future.

– 100 –

Bibliography

[1] H. Farhangi, “The path of the smart grid,”IEEE Power and Energy Magazine, vol. 8, pp. 18–

28, Jan. 2010.

[2] P. Papadimitratos, A. D. L. Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular

communication systems: Enabling technologies, applications, and future outlook on intelli-

gent transportation,”IEEE Communications Magazine, vol. 47, pp. 84–95, Nov. 2009.

[3] S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa,

M. Nakamura, and K. Oyamada, “Ultrahigh-definition video transmission and extremely

green optical networks for future,”IEEE Journal of Selected Topics in Quantum Electronics,

vol. 17, pp. 446–457, Mar. 2011.

[4] R. S. Weinstein, A. M. Lopez, B. A. Joseph, K. A. Erps, M. Holcomb, G. P. Barker, and E. A.

Krupinski, “Telemedicine, telehealth, and mobile health applications that work: Opportunities

and barriers,”The American Journal of Medicine, vol. 127, pp. 183–187, Mar. 2014.

[5] D. Haluza and D. Jungwirth, “ICT and the future of health care: aspects of health promotion,”

International Journal of Medical Informatics, vol. 84, pp. 48–57, Jan. 2015.

[6] M. Satyanarayanan, “The emergence of edge computing,”Computer, vol. 50, pp. 30–39, Jan.

2017.

[7] G. Kandiraju, H. Franke, M. D. Williams, M. Steinder, and S. M. Black, “Software defined

infrastructures,”IBM Journal of Research and Development, vol. 58, pp. 2:1–2:13, March

2014.

– 101 –

BIBLIOGRAPHY

[8] Y. Jararweh, M. Al-Ayyoub, A. Darabseh, E. Benkhelifa, M. Vouk, and A. Rindos, “Software

defined cloud: Survey, system and evaluation,”Future Generation Computer Systems, vol. 58,

pp. 56–74, May 2016.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,

and J. Turner, “Openflow: Enabling innovation in campus networks,”ACM SIGCOMM Com-

puter Communication Review, vol. 38, pp. 69–74, Mar. 2008.

[10] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig,

“Software-defined networking: A comprehensive survey,”Proceedings of the IEEE, vol. 103,

pp. 14–76, Dec. 2014.

[11] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and R. Shakir, “Segment routing

architecture,”IETF Request for Comments: 8402, July 2018.

[12] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud, “Software-defined net-

working: Challenges and research opportunities for future Internet,”Computer Networks,

vol. 75, Part A, pp. 453–471, Dec. 2014.

[13] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti, “A survey of software-

defined networking: Past, present, and future of programmable networks,”IEEE Communica-

tions Surveys Tutorials, vol. 16, pp. 1617–1634, Feb. 2014.

[14] P. Bhaumik, S. Zhang, P. Chowdhury, S. S. Lee, J. Lee, and B. Mukherjee, “Software-defined

optical networks (SDONs): A survey,”Photonic Network Communications, vol. 28, pp. 4–18,

June 2014.

[15] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen, M. Miller,

and N. Rao, “Are we ready for SDN? Implementation challenges for software-defined net-

works,” IEEE Communications Magazine, vol. 51, pp. 36–43, July 2013.

[16] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang, “Virtual network em-

bedding through topology-aware node ranking,”ACM SIGCOMM Computer Communication

Review, vol. 41, pp. 38–47, Apr. 2011.

– 102 –

BIBLIOGRAPHY

[17] J. Lischka and H. Karl, “A virtual network mapping algorithm based on subgraph isomorphism

detection,” inProceedings of the 1st ACM Workshop on Virtualized Infrastructure Systems and

Architectures, pp. 81–88, Aug. 2009.

[18] A. Fischer, J. Botero, M. Till Beck, H. de Meer, and X. Hesselbach, “Virtual network em-

bedding: A survey,”IEEE Communications Surveys Tutorials, vol. 15, pp. 1888–1906, Feb.

2013.

[19] N. Chowdhury, M. Rahman, and R. Boutaba, “Virtual network embedding with coordinated

node and link mapping,” inProceedings of IEEE INFOCOM, pp. 783–791, Apr. 2009.

[20] R. Guerzoni, R. Trivisonno, I. Vaishnavi, Z. Despotovic, A. Hecker, S. Beker, and D. Soldani,

“A novel approach to virtual networks embedding for SDN management and orchestration,”

in Proceedings of IEEE NOMS, pp. 1–7, May 2014.

[21] X. Chen, C. Li, and Y. Jiang, “Optimization model and algorithm for energy efficient virtual

node embedding,”IEEE Communications Letters, vol. 19, pp. 1327–1330, Aug. 2015.

[22] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Adaptive-VNE: A flexible resource

allocation for virtual network embedding algorithm,” inProceedings of IEEE GLOBECOM,

pp. 2640–2646, Dec. 2012.

[23] L.-S. Peh and W. J. Dally, “A delay model for router micro-architectures,”IEEE Micro, vol. 21,

pp. 26–34, Jan. 2001.

[24] S. Haeri and L. Trajkovíc, “Virtual network embedding via monte carlo tree search,”IEEE

Transactions on Cybernetics, vol. 48, pp. 510–521, Feb. 2018.

[25] N. Shahriar, R. Ahmed, S. R. Chowdhury, A. Khan, R. Boutaba, and J. Mitra, “Generalized

recovery from node failure in virtual network embedding,”IEEE Transactions on Network

and Service Management, vol. 14, pp. 261–274, June 2017.

– 103 –

BIBLIOGRAPHY

[26] H. Zhang, X. Zheng, J. Tian, and Q. Xue, “A virtual network embedding algorithm based

on RBF neural network,” inProceedings of IEEE CSE 2017 and IEEE EUC 2017, vol. 1,

pp. 393–396, July 2017.

[27] K. Inoue, S. Arakawa, S. Imai, T. Katagiri, and M. Murata, “Adaptive VNE method based on

Yuragi principle for software defined infrastructure,” inProceedings of IEEE HPSR, pp. 191–

196, June 2016.

[28] Y. Xin, G. N. Rouskas, and H. G. Perros, “On the physical and logical topology design of

large-scale optical networks,”IEEE Journal of Lightwave Technology, vol. 21, pp. 904–915,

Apr. 2003.

[29] O. Gerstel, C. Filsfils, T. Telkamp, M. Gunkel, M. Horneffer, V. Lopez, and A. Mayoral,

“Multi-layer capacity planning for IP-optical networks,”IEEE Communications Magazine,

vol. 52, pp. 44–51, Jan. 2014.

[30] K. Inoue, S. Arakawa, and M. Murata, “A biological approach to physical topology design for

plasticity in optical networks,”Optical Switching and Networking, vol. 25, pp. 124–132, July

2017.

[31] K. Inoue, S. Arakawa, and M. Murata, “Achieving plasticity in WDM networks: Application

of biological evolutionary model to network design,” inProceedings of IEEE GLOBECOM,

pp. 1–7, Dec. 2015.

[32] K. Inoue, S. Arakawa, and M. Murata, “A design method of WDM networks based on bio-

logical evolution model,”Technical Report of IEICE(PN2014-8), vol. 114, pp. 41–46, June

2014.

[33] Y. Koizumi, T. Miyamura, S. Arakawa, E. Oki, K. Shiomoto, and M. Murata, “Adaptive virtual

network topology control based on attractor selection,”IEEE Journal of Lightwave Technol-

ogy, vol. 28, pp. 1720–1731, June 2010.

– 104 –

BIBLIOGRAPHY

[34] K. Kaneko, “Evolution of robustness and plasticity under environmental fluctuation: Formu-

lation in terms of phenotypic variances,”Journal of Statistical Physics, vol. 148, pp. 687–705,

Sept. 2012.

[35] K. Inoue, S. Arakawa, S. Imai, T. Katagiri, and M. Murata, “Noise-induced VNE method for

software-defined infrastructure with uncertain delay behaviors,”Computer Networks, vol. 145,

pp. 118–127, Nov. 2018.

[36] K. Inoue, S. Arakawa, S. Imai, T. Katagiri, M. Sekiya, and M. Murata, “Yuragi-based approach

with delay profile for virtual network embedding in software defined infrastructure,”Technical

Report of IEICE(IN2015-148), vol. 115, pp. 235–240, Mar. 2016.

[37] K. Inoue, S. Arakawa, and M. Murata, “An evolvable network resource planning for

adaptive virtual network control in software defined infrastructure,”Technical Report of

IEICE(NS2017-160), vol. 117, pp. 93–98, Jan. 2018.

[38] A. Wagner, “Robustness and evolvability: a paradox resolved,” inProceedings of the Royal

Society of London B: Biological Sciences, vol. 275, pp. 91–100, Jan. 2008.

[39] N. Ghani, S. Dixit, and T. Wang, “On IP-over-WDM integration,”IEEE Communications

Magazine, vol. 38, pp. 72–84, May 2000.

[40] A. Kadohata, A. Hirano, F. Inuzuka, A. Watanabe, and O. Ishida, “Wavelength path reconfig-

uration design in transparent optical WDM networks,”IEEE/OSA Journal of Optical Commu-

nications and Networking, vol. 5, pp. 751–761, July 2013.

[41] D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: Linear formulation,

resource budgeting tradeoffs, and a reconfiguration study,”IEEE/ACM Transactions on Net-

working, vol. 8, pp. 598–607, Oct. 2000.

[42] A. Narula-Tam, E. Modiano, and A. Brzezinski, “Physical topology design for survivable

routing of logical rings in WDM-based networks,”IEEE Journal on Selected Areas in Com-

munications, vol. 22, pp. 1525–1538, Oct. 2004.

– 105 –

BIBLIOGRAPHY

[43] C. Meusburger, D. Schupke, and J. Eberspacher, “Multiperiod planning for optical networks

- approaches based on cost optimization and limited budget,” inProceedings of IEEE ICC,

pp. 5390–5395, May 2008.

[44] A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and

multiple modulation formats,”Journal of Lightwave Technology, vol. 28, pp. 466–475, Feb.

2010.

[45] M. Klinkowski, F. Herrero, D. Careglio, and J. Solé-Pareta, “Adaptive routing algorithms for

optical packet switching networks,” inProceedings of IEEE ONDM, pp. 235–241, Feb. 2005.

[46] A. A. Kuehn and M. J. Hamburger, “A heuristic program for locating warehouses,”Manage-

ment Science, vol. 9, pp. 643–666, July 1963.

[47] E. Leonardi, M. Mellia, and M. A. Marsan, “Algorithms for the logical topology design in

WDM all-optical networks,”Optical Networks Magazine, vol. 1, pp. 35–46, Jan. 2000.

[48] S. Gieselman, N. Singhal, and B. Mukherjee, “Minimum-cost virtual-topology adaptation for

optical WDM mesh networks,” inProceedings of IEEE ICC, vol. 3, pp. 1787–1791, June

2005.

[49] S. Arakawa, T. Sakano, Y. Tsukishima, H. Hasegawa, T. Tsuritani, Y. Hirota, and

H. Tode, “Topological characteristic of Japan photonic network model,”Technical Report of

IEICE(PN2013-2), vol. 113, pp. 7–12, June 2013.

[50] A. Nucci, A. Sridharan, and N. Taft, “The problem of synthetically generating IP traffic matri-

ces: Initial recommendations,”SIGCOMM Computer Communication Review, vol. 35, pp. 19–

32, July 2005.

[51] P. Hegyi, T. Cinkler, N. Sengezer, and E. Karasan, “Traffic engineering in case of intercon-

nected and integrated layers,” inProceedings of 13th International Telecommunications Net-

work Strategy and Planning Symposium (NETWORKS 2008), pp. 1–8, Oct. 2008.

– 106 –

BIBLIOGRAPHY

[52] S. Kamamura, Y. Koizumi, D. Shimazaki, T. Miyamura, S. Arakawa, K. Shiomoto, A. Hi-

ramatsu, and M. Murata, “Attractor selection-based virtual network topology control with

dynamic threshold reconfiguration for managed self-organization network,” inProceedings of

the 24th International Teletraffic Congress, pp. 1–6, Sept. 2012.

[53] B. Li, W. Lu, S. Liu, and Z. Zhu, “Deep-learning-assisted network orchestration for on-

demand and cost-effective vNF service chaining in inter-DC elastic optical networks,”

IEEE/OSA Journal of Optical Communications and Networking, vol. 10, pp. D29–D41, Oct.

2018.

[54] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network functions placement and

routing optimization,” inProceedings of IEEE CloudNet, pp. 171–177, Oct. 2015.

[55] L. Nonde, T. El-Gorashi, and J. Elmirghani, “Energy efficient virtual network embedding for

cloud networks,”IEEE Journal of Lightwave Technology, vol. 33, pp. 1828–1849, May 2015.

[56] J. Whiteaker, F. Schneider, and R. Teixeira, “Explaining packet delays under virtualization,”

ACM SIGCOMM Computer Communication Review, vol. 41, pp. 38–44, Jan. 2011.

[57] G. Wang and T. Ng, “The impact of virtualization on network performance of Amazon EC2

data center,” inProceedings of IEEE INFOCOM, pp. 1–9, Mar. 2010.

[58] S. Farokhi, E. B. Lakew, C. Klein, I. Brandic, and E. Elmroth, “Coordinating CPU and mem-

ory elasticity controllers to meet service response time constraints,” inProceedings of IEEE

ICCAC2015, pp. 69–80, Sept. 2015.

[59] Y. Baram, “Orthogonal patterns in binary neural networks,”NASA Technical Memorandum

No. 100060, Mar. 1988.

[60] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. D. Laat, J. Mambretti, I. Monga, B. V.

Oudenaarde, S. Raghunath, and P. Y. Wang, “Seamless live migration of virtual machines over

the MAN/WAN,” Future Generation Computer Systems, vol. 22, pp. 901–907, Oct. 2006.

– 107 –

BIBLIOGRAPHY

[61] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network embedding: Substrate

support for path splitting and migration,”ACM SIGCOMM Computer Communication Review,

vol. 38, pp. 17–29, Mar. 2008.

– 108 –

