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Abstract

The worldwide movement toward increasing availability and usability enhancement of Wi-Fi in public

areas has become more active. Several companies and governments have deployed outdoor public

Wi-Fi access points (APs) to promote Wi-Fi communication environment improvement. Also, Wi-Fi

is expected to be utilized for cellular traffic offloading, smart city platform, wireless sensor network

in the Internet of Things (IoT) context etc. Therefore, Wi-Fi becomes one of the most important

infrastructures and is expected to be penetrated to support our social life.

On the other hand, since the number of APs is steadily increasing and they compete for the limited

bandwidth, 2.4GHz unlicensed band becomes more congested particularly in urban areas. This leads to

chaotic and disorderly channel competition, and results in critical performance degradation. As many

APs with existing architectures such as IEEE802.11a/g/n have already been installed, interference

mitigation techniques that operate on them with few modifications are required for efficient frequency

reuse in the current urban environment.

To assure a certain level of communication quality even in such circumstances, Wi-Fi channel

selection is a simple but promising technology. However, considering Wi-Fi-specific features, the best

quality channel is not easily estimated only from the monitored traffic in each channel. This is mainly

because there are several factors that cause interference and noise. Wi-Fi traffic in adjacent channels

may become noise signals like non-Wi-Fi devices since Wi-Fi channels are not completely separated in

terms of the spectrum they use, particularly in 2.4GHz band (IEEE802.11b/g). Therefore, IEEE802.11

frames in one channel may become noise for another channel. We call it inter-channel interference

problem. This is very significant in such a situation like urban areas where many Wi-Fi systems use

different and uncoordinated channels. Additionally, traffic and RSSI diversity within each channel

makes the inter-channel interference problem more complex.

Our research goal is to identify the best quality channel with less interference based on simple pas-

sive frame monitoring. For this, we build a numerous number of simulation scenarios to understand

the effect of inter-channel interference from adjacent channels, traffic volume and RSSI, and the com-

bination inter-channel interference problem as well as the diversity of traffic and RSSI. Our proposed

approach falls into the category of interference prediction. Compared with the previous approaches

that pursue the similar goals, we take an approach of leveraging simulation-based big data in model-

ing and analyzing the performance of Wi-Fi under interference from the traffic in both the same and
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different channels with various RSSIs. As far as we know, this is the first approach to assessing Wi-Fi

channel quality based on such simple measurement, using simulation-based big data analysis.

Firstly, we present an algorithm to estimate each channel performance by multiple regression func-

tions. As it is often hard to identify the channel with less interference in the urban situation, we present

a channel scoring function that estimates the performance level of each channel based on the concept of

interference environment sensing. We apply the IEEE802.11 MAC frame monitoring in each channel,

which can be obtained by the off-the-shelf devices with low-cost. In order to build the scoring function

based on the observations, we conduct exhaustive simulations with a large number of scenarios, and

multiple regression analysis is applied where channel occupancy patterns, traffic volumes and RSSI

in those channels are used as explanatory variables. To evaluate our method, this scoring function is

examined in two kinds of general and realistic scenario (typical and dense scenario) where several APs

interfere with the AP of interest in a 150m × 150m region. We confirm that the scores and the actual

performance are well-matched where the Spearman’s rank correlation coefficient was over 0.8 and can

identify the top-ranked channel as well.

Secondly, we present an improved approach to predict each channel performance for channel selec-

tion at the target AP. In order to let APs not select erroneous channels, it is quite essential to provide

an estimation function for APs to correctly estimate the channel status without actually moving into

it. Therefore, we prepare more than 10,000 scenarios and conducted simulations which are assumed

that the own traffic of the target AP moves to the new channel to simulate “channel state change”. We

apply a machine learning based classification algorithm to estimate the channel saturation due to the

traffic movement in channel migration and multiple regression analysis to build a prediction function

of channel performance under saturation. We confirm that our function can classify the channel state

accurately and estimate the frame delivery ratio with less than 10% error in average with additional

2,000 simulations.

Thirdly, we design the realistic urban scenario based on the actual measurement in Osaka city to

evaluate our proposed approach in more realistic environment. We monitored Wi-Fi traffic at ten loca-

tions including shopping malls, cafes, commercial buildings and stations around Osaka station on both

weekdays and holidays to understand the current traffic situation in such typical urban environment.

Also, we obtain the actual AP locations and their corresponding channels from Wi-Fi Radio Map of

Osaka City which has been built by our group. We match this information with OpenStreetMap in

the network simulator, and then we constructed three real geographical scenarios for this evaluation

experiment. In these evaluation scenarios, we demonstrate that it is possible to predict and select

the best channel with the highest communication quality and to predict the trend over all channels

by our proposed method in all the scenarios. In the subsequent validity evaluation experiment, the

experimental result shows that the throughput of the target AP becomes about 1.73 times higher than

the value by a random channel selection strategy.

Through these contributions, it will be shown that our channel management mechanism offers
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efficient frequency reuse by passive frame monitoring at the point of interest. In particular, we focus

on the inter-channel interference issue in urban environment where many APs in different systems are

densely deployed. This dissertation has established the foundation of prediction-based autonomous

channel management with few modification of the current Wi-Fi AP mechanism for reducing the

unnecessary interference in urban environment.
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Chapter 1

Introduction

Japan is the host country for the Tokyo Olympic and Paralympic in 2020. Since foreign tourists tend

to use Wi-Fi to avoid the monetary cost of using LTE, the Ministry of Internal Affairs and Communi-

cations issued an action plan, called “SAQ2 JAPAN Project”, which promotes Wi-Fi communication

environment improvement and realizes the world’s highest level ICT environment in June 2014 [4].

A cellular company, Softbank, has also provided nationwide 400,000 Wi-Fi access points (APs) for

foreigners [5]. As a result, it is reported that the percentage of users explicitly turning on their Wi-Fi

interface of their smartphone during the day increases from 50% to 60% to offload 3G or 4G traffic [6].

Also, outdoor public APs have been deployed by AT&T [7], Time Warner Cable etc. in large cities

of US. The worldwide movement toward increasing availability and usability enhancement of Wi-Fi in

public areas has become more active.

In addition, Wi-Fi has also been important as an alternative infrastructure of mobile networks

in case of disasters as well as low-cost smart city platform. In Barcelona, the urban environmen-

tal information such as street lights, human flows, parking, temperature, air quality and noise levels

are aggregated through a Wi-Fi-based platform [8, 9]. Such Wi-Fi-based wireless sensor network has

been investigated in the Internet of Things (IoT) context [10, 11] and several applications have been

proposed [12–14]. Also, Audi has developed a vehicular Wi-Fi system called Audi Connect [15] and

the other companies are now focusing on on-board Wi-Fi devices for intra-vehicle (V2V) communi-

cation [16]. In the field of Intelligent Transportation System (ITS), applying Wi-Fi infrastructure

to Roadside-to-Roadside (R2R), Roadside-to-Vehicle (R2V) and Vehicle-to-X (V2X) communication

has been investigated [17–22]. This tread will promote Wi-Fi-based communication in the future ITS

systems due to its low cost and high-penetration features. Therefore Wi-Fi becomes one of the most

important infrastructures and is expected to be penetrated to support our social life.

On the other hand, congestion in an unlicensed band (especially 2.4GHz band) becomes severer in

urban areas as Wi-Fi devices are more and more popular in a variety of infrastructures and services [23].

Cisco Meraki reported the average number of interfering APs was about 55 in 2.4GHz band and has

doubled from July 2014 to January 2015 [24]. This is because Wi-Fi APs for private/home use are
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densely installed and more users have become to hold mobile APs called mobile routers. Therefore

the number of Wi-Fi devices is steadily increasing and they compete for the limited bandwidth. In

5G of cellular mobile communications which faces a similar problem, integrated multi radio access

technology (RAT) solutions are proposed [25–28]. In an unlicensed band, IEEE802.11ax task group

(TGax) addresses such a dense Wi-Fi problem with the goal of enhancing throughput-per-area [29].

For example, TGax reports that Wi-Fi throughput can nearly be doubled using Dynamic Sensitivity

Control (DSC) and Transmit Power Control (TPC) in dense networks [30]. However, since many

APs with existing architectures such as IEEE802.11a/g/n have been already installed, autonomous

interference mitigation techniques that operate on them with few modifications are required for efficient

frequency reuse in the current urban environment.

As we believe that this frequency is still the significant frequency that can maximize the num-

ber of potential participants to the services, we focus on 2.4GHz band interference problems in this

dissertation. In order to assure a certain level of communication quality even in such circumstances,

intelligent Wi-Fi channel selection is a simple but promising technology due to low modification cost.

To select the best quality channel, a naive but straightforward approach is to directly examine the

performance by active probing of each channel [31]. However, it needs the target system to be tuned

into each channel and run probing, which is a time-consuming task. In addition, such probe packets

may cause severe degradation in performance of Wi-Fi networks [32]. Another possibility is (passive)

traffic monitoring of channels to seek interference-free channels [33]. We may estimate the quality of

channels based on the traffic information monitored in each channel.

However, considering Wi-Fi-specific features, real performance is not easily estimated only from

the monitored traffic in each channel. This is mainly because there are several factors that cause

interference and noise. Wi-Fi traffic in adjacent channels may become noise signals like non-Wi-Fi

devices since Wi-Fi channels are not completely separated in terms of the spectrum they use, partic-

ularly in 2.4GHz band (IEEE802.11b/g). Therefore, IEEE802.11 frames in one channel may be noise

for another channel. We call it inter-channel interference problem. This is very significant in such a

situation like urban areas where many Wi-Fi systems use different and uncoordinated channels. Addi-

tionally, traffic and RSSI diversity within each channel makes the inter-channel interference problem

more complex. More concretely, it is not easy to assess the impact of both signal strength and traffic

volume in the same channel or in a different channel on the performance of the target system. It seems

that Wi-Fi channel selection issues have been well investigated, but it has not been discussed how

the inter-channel interference affects the performance, how it is closely related with RSSI and traffic

volume, and how we should choose a channel in an open, uncoordinated situation.

This dissertation presents a novel approach to select interference-free channels with simple passive

frame monitoring in the current 2.4GHz Wi-Fi systems. The goal of this dissertation is to identify the

best quality channel with less interference based on the knowledge about the effect of inter-channel

interference from adjacent channels, the effect of traffic volume and RSSI, and the combination inter-
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channel interference problem and the diversity of traffic and RSSI. We address the issue by introducing

a simple monitoring scheme to the target AP and predicting each channel performance for channel

selection based on exhaustive simulation dataset. In this dissertation, we make the following three

primary contributions to embody this idea.

Firstly, we present an algorithm to estimate each channel performance by multiple regression func-

tions. As it is often hard to identify the channel with less interference in the urban situation, we present

a channel scoring function that estimates the performance level of each channel based on the concept

of interference environment sensing. To cope with the problem, our approach for ranking function de-

rives a relative indicator of channel quality based on realistic, observable parameters like inter-channel

distance, RSSI and traffic volume. We apply the IEEE802.11 MAC frame monitoring in each channel,

which can be obtained by the off-the-shelf devices with low-cost. In order to build the scoring function

based on the observations, we conduct exhaustive simulations with a large number of scenarios, and

multiple regression analysis is applied where channel occupancy patterns, traffic volumes and RSSI

in those channels are used as explanatory variables. Relying on exhaustive simulations but with a

reduced number of simulation cases, our model built by regression analysis achieves sufficient accuracy

to estimate better Wi-Fi channels. To evaluate our method, this scoring function is examined in two

kinds of general and realistic scenario (typical and dense scenario) where several APs interfere with

the AP of interest in a 150m × 150m region. We confirm that the scores and the actual performance

are well-matched where the Spearman’s rank correlation coefficient was over 0.8 and can identify the

top-ranked channel as well.

Secondly, we present an improved approach to predict each channel performance for channel selec-

tion at the target AP. In order to let APs not select erroneous channels, it is quite essential to provide

an estimation function for APs to correctly estimate the channel status without actually moving into

it. Therefore, we prepare more than 10,000 scenarios and conducted simulations which are assumed

that the own traffic of the target AP moves to the new channel to simulate “channel state change”. We

analyze the interference dataset for understanding the relationship between the observed parameters

and interference effect to build our proposed function. We apply machine learning based classification

algorithm to estimate the channel saturation due to the traffic movement in channel migration and

multiple regression analysis to build a prediction function of channel performance under saturation.

We confirm that our function can classify the channel state accurately and estimate the frame delivery

ratio with less than 10% error in average with additional 2,000 simulations. Moreover, we demonstrate

that our estimator can capture the tendency of overall channel performance in a more general scenario

for channel selection. The experimental result shows the correlation coefficient between our estimator

output and the groundtruth is above 0.85.

Thirdly, we design realistic urban scenarios based on the actual measurement in Osaka city to

evaluate our proposed approach in these scenarios. We conduct the traffic monitoring at ten locations

including shopping malls, cafes, commercial buildings and stations around Osaka station on both
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weekdays and holidays to understand the current traffic situation in such typical urban environments.

Then we analyze this actual measurement results and designed the traffic parameters from the future

traffic prediction based on the distribution on the number of APs in each channel. Also, we obtain the

actual AP locations and their corresponding channels from Wi-Fi Radio Map of Osaka City which has

been built by our group. We match this information with OpenStreetMap in the network simulator,

and then we constructed three real geographical scenarios for this evaluation experiment. In these

evaluation scenarios, we demonstrate that it is possible to predict and select the best channel with the

highest communication quality and also predict the trend over all channels by our proposed method

in all scenarios. In the subsequent validity evaluation experiment, the experimental result shows that

the throughput of the target AP becomes about 1.83 times as compared with the expected value when

the target AP select a channel randomly.

Through these contributions, it will be shown that our channel management mechanism offers effi-

cient frequency reuse by passive frame monitoring at the point of interest. In particular, we focus on

the inter-channel interference issue in an urban environment where many APs in different systems are

densely deployed. This dissertation has established the foundation of prediction-based autonomous

channel management with few modifications of the current Wi-Fi AP mechanism for reducing unnec-

essary interference in the urban environment.

The rest of this dissertation is organized as follows. Chapter 2 reviews related work on Wi-Fi

channel management techniques. Chapter 3 describes the design and performance of the simulation-

based channel performance estimator by simple MAC frame monitoring. Chapter 4 proposes the

improved approach for taking into account “channel state change” due to own channel migration

without actual moving. Chapter 5 shows the evaluation result of our channel management approach

in realistic scenarios based on the actual observations. Finally, Chapter 6 summarizes and concludes

this dissertation.
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Chapter 2

Related Work

2.1 Interference Mitigation Algorithm

To avoid interference in cellular networks, inter-cell interference avoidance has been well-investigated

[34–42]. For example, Fractional Frequency Reuse (FFR), which allocates different frequencies to

users around cell boundaries and the same frequency to those near base stations, has been developed

so far [43]. Cooperative network control mechanisms such as cell clustering are also effective for

such (closed) cellular networks [44, 45], but cannot be applied to uncontrolled Wi-Fi systems directly.

Ref. [46] presents the various analysis of resources and performance with time, frequency and spatial-

division multiplexing. Ref. [47] presents an autonomous power and resource control mechanism for

efficient spatial reuse.

Also, in the fifth generation of cellular mobile communications (5G), integrated multi-radio access

technology (RAT) solutions are proposed [25–28]. 5G focuses on the typical ultra dense wireless

networks as shown in Ref. [23]. Ref. [25] shows the relationship between access point density and

bandwidth partitioning in such environment. Ref. [27] presents the downlink interference statics in a

dense deployed scenario simulating Tokyo. Ref. [28] mentions that the offloading from cellular network

to Wi-Fi network is shifting towards a true integration of both technology families. Therefore, Wi-Fi

has also been important as an alternative infrastructure of mobile networks.

As smartphone users increase, the interference mitigation approaches from client side are proposed.

Since the traffic of video streaming application which smartphone users often use is significant, several

approaches focus on to improving the video bitrate by adopting to network dynamics. Ref. [48]

presents a channel-aware video streaming mechanism. This approach is based on a lightweight channel

characterization method that can provide an accurate airtime estimation by the observation of Wi-

Fi management packets. Ref. [49] provide the efficient AP channel scanning mechanism for real-

time streaming and they focus on the handover environment. In the ITS field, smartphone users in

vehicular also try to offload the cellular traffic to Wi-Fi networks. Ref. [17] proposed auction game-

based offloading mechanism to avoid unnecessary interference. We focus on the interference mitigation

17



approach of the AP at the location of interest.

In an unlicensed band, IEEE802.11ax task group (TGax) addresses such a dense Wi-Fi problem with

the goal of enhancing throughput-per-area [29]. For example, TGax reports that Wi-Fi throughput

can nearly be doubled using Dynamic Sensitivity Control (DSC) and Transmit Power Control (TPC)

in dense networks [30]. On the other hand, Ref. [6] shows that the percentage of users explicitly turning

on their Wi-Fi interface of their smartphone during the day increases from 50% to 60% to offload 3G

or 4G traffic. However, the nearly 40% of all clients remain 2.4GHz only and the most of APs are

running in 2.4GHz. Moreover, the overall delivery ratio of 2.4GHz links have degraded over the past

six months.

Therefore, since many APs with existing architectures such as IEEE802.11a/g/n have been already

installed, autonomous interference mitigation techniques that operate on them with few modifications

are required for efficient frequency reuse in the current urban environment. Cisco Meraki reported the

average number of interfering APs was about 55 in 2.4GHz band and has doubled from July 2014 to

January 2015 [24]. In the existing IEEE802.11ac, Ref. [50] proposed the measurement-based practical

approach to improve the performance. They applied the dynamic channel assignment algorithm and

the sophisticated ACK mechanism to improve the IEEE802.11ac performance. Ref. [51] proposed a

framework to measure and characterize Wi-Fi latency at large scale and investigated the result in

Tsinghua campus. Ref. [52] investigated the relationships between 802.11n physical layer transmis-

sion features. They focused on PHY parameters such as rate and channel width adaptation, frame

aggregation, and MIMO settings.

Frequency Hopping (FH) is another approach to mitigate interference effect in Wi-Fi network.

Many FH systems like Bluetooth use static subchannel hopping sequences and they continue hopping

along the sequences. However, FH systems move over subchannels regardless of subchannel status, and

this often causes serious performance degradation in a new subchannel. Moreover, it causes a certain

overhead in hopping, and in particular, Wi-Fi system is not designed for frequent hopping among

channels due to its association overhead between APs and clients. Although some work like Ref. [53]

considers dynamic channel sequences, it needs channel status estimation by monitoring or some other

techniques.

Besides channel selection techniques, adaptive carrier sense threshold control and transmission rate

control has been considered for densely-deployed Wi-Fi APs. Interestingly, from the research results

in [54], Ref. [55] addresses the fact that the transmission power of most Wi-Fi APs is configured to

maximum in the factory settings, which often induces unnecessary interference, but self-control of

transmission power by APs may cause unidirectional links. Therefore, cross-layer control is recom-

mended where the carrier-sense threshold is coordinately controlled with transmission power and the

transmission power of APs with heavy traffic load should be larger. Ref. [56] presents a distributed

channel selection algorithm and an AP selection strategy for clients. However, the goal of this approach

is fairness among clients while ours is to identify such channels with the least interference effect. It is
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worth noting that both [55,56] predict performance by the Gibbs sampling method and this principle

can be used for online learning and building of our function.

2.2 Channel Management Technique

Cisco Meraki reported the importance of channel planning using a utilization measure [24]. To select

the best quality channel, a naive but straightforward approach is to directly examine the performance

by active probing of each channel. However, it needs the target system to be tuned into each channel

and run probing, which is a time-consuming task. Ref. [31] found that up to 90% of probe responses

carry redundant information. Moreover, the probe traffic can be as high as 60% of the management

traffic. They proposed an algorithm to control the probe traffic for reducing unnecessary active scans.

Also, Ref. [32] shows that such probe packets may cause severe degradation in performance of Wi-Fi

networks. Then, we decided to apply only passive monitoring for our proposed channel management.

Ref. [33] proposed CSpy to find the best quality channel without probing in 5GHz band. They reported

CSpy improved the performance by up to 100% in comparison to channel agnostic schemes.

Some researches have focused on channel control of Wi-Fi APs in an autonomous environment where

cooperation can not be expected. Ref. [57] provides an survey on some of proposed approaches. The

research direction can be divided into three categories (i) centralized [58], (ii) decentralized approach

[56], (iii) channel hopping [53]. However, in these works, the methods are mainly designed to utilize

only non-overlapping channels. Interference can be reliably avoided if all the APs are under control

and use only non-overlapping channels, but it is not realistic considering urban environments. On the

other hand, the availability of partially overlapping channels has been attracted attention in recent

works [59–62]. In other words, it is promising to increase network capacity and network throughput

by allowing inter-channel interference. [63] mentions the interference relationship between the inter-

channel distance (the distance of the center frequency) and the physical distance of the AP in the

2.4GHz band. Also, based on the interference relationship in [63], [60,61,64] reports that the channel

assignment converges to the Nash equilibrium when each access point repeats dynamic channel selection

in an autonomously decentralized manner. In this method, assuming that each node acts to reduce

the number of adjacent interference nodes, convergence is shown by grasping the behavior of the entire

network as a potential game. In [60, 61, 64], it is decided based on the interference graph mentioned

above, but more advanced operation becomes possible by incorporating the interference quantification

part of our proposed method.

It is difficult to balance communication and monitoring with only one interface, considering the

monitoring cost. Ref. [49] provide the efficient AP channel scanning mechanism for real-time streaming

which is combined passive scan with active scan. It is possible to aim for reduction of switching overhead

by using multiple interfaces and optimizing configuration parameters while switching monitoring and

communication interfaces [65]. In this research as well, we will implement monitoring module on the
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premise of this system.

2.3 Passive Channel Monitoring Method

As stated earlier, active scanning may cause severe communication performance degradation [32].

Therefore, passive channel monitoring methods have been proposed for various purposes. Ref. [33]

proposed CSpy to find the best quality channel without probing in 5GHz band. CSpy predicts the

strongest channel by probing only a single channel based on channel impulse response (CIR) which

can be obtained from some Wi-Fi chipsets. For Wi-Fi performance prediction, Ref. [66] presents an

approach of estimating frame collision and loss rates in IEEE 802.11 MAC. It employs probabilistic

models to infer backoff occurrence due to carrier-sense operations.

RSSI monitoring is often utilized for wireless devices detection and its merits and demerits have

been discussed in the past. For example, [67] has pointed out SNR and RSSI do not provide sufficient

information to estimate L2 performance, but recent work [68] presents a novel method to accurately

identify the presence of non-Wi-Fi machines using information obtained through off-the-shelf Wi-Fi

cards. This is done by machine learning where RSSI variation is modeled as pulse waves.

RSSI information is also used for localization of wireless devices. Some recent work deals with

positioning Wi-Fi access points with mobile phones [69,70]. On the contrary, Wi-Fi fingerprinting [71–

73] is popularly used for positioning mobile devices. Ref. [74] investigates the AP position estimation

error that comes from the difference of the Wi-Fi devices used for Wi-Fi scanning. The method

proposed in Ref. [75] gets radio wave incoming direction using the directional antennas and estimates

AP location. Ref. [76] localize roadside AP from moving vehicles using beam directional antennas. Ref.

[77,78] estimate the direction of arrival of radio wave from the change of the receive signal strength with

the movement of the observer, and Ref. [79] estimates the direction of arrival using a smartphone by

rotating the observer at the observation points. Ref. [80] uses Channel State Information (CSI) which

is information including the phase of Wi-Fi radio waves, which is difficult for ordinary smartphones to

obtain.

In summary, RSSI measurement has been used in a variety of methods since it does not require

extra hardware dedicated for the measurement. In these works, RSSI measurements is the primary

means to estimate the distance between devices. With these developments, the creation of Wi-Fi maps

based on smartphone users’ crowdsensing is thriving. Participatory sensing and crowdsourcing are

considered to be effective methods for constructing a spatial database aggregating Wi-Fi information.

Ref. [81] investigate the load of APs in the campus wireless network using Wi-Fi channel scan dataset

collected by cooperative smartphone users, and shows that channel scans by ordinary smartphones are

useful in monitoring enterprise Wi-Fi network. There are some methods to survey large scale Wi-Fi

radio status by crowdsourcing, war-walking and war-driving [82]. Radio maps generated by these

methods are mainly used for smartphone localization in an indoor environments [83]. Place Lab [84]
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collects Wi-Fi fingerprints for client localization by war-driving. Ref. [85] uses crowdsourcing and

users’ motions to construct the indoor radio map of a floor plan. The difference between scan data by

war-driving and war-walking is addressed in Ref. [86]. A localization method as well as an indoor and

radio map construction indoor is proposed in Ref. [87], which estimates the relative positions of APs

using multidimensional scaling. MCNet [85] demonstrates Wi-Fi performance measurement system

using crowdsourcing. They aggregate performance data directly measured by mobile Wi-Fi client and

delect problems in Wi-Fi networks. There are some crowdsensing system for collecting Wi-Fi beacon

data such as Wigle [1]. However, it is basically difficult to rely solely on observational data from

war-walking or wa-driving for constructing radio maps covering a wide range of cities, because the

number of collaborators and behavior patterns have a large influence on observation density. Although

interpolation methods such as Kriging mainly used in Geographic Information System (GIS) have been

applied to the radio map construction [88–90], it is difficult to consider reflection of radio waves by

buildings with those methods in urban areas.

2.4 Cross Technology Interference in 2.4GHz band

In the unlicensed band, effective avoidance of “cross technology interference” should be considered for

better performance of wireless communication [91–93]. This is because different wireless technologies

(i.e. Wi-Fi, Bluetooth, game controllers and ZigBee devices) follow different protocols and most of

them are not designed with the coexistence of multiple technologies. For example, Ref. [10] presents

the network interface between ZigBee and Wi-Fi in the IoT context. Interference between Wi-Fi and

Bluetooth has been discussed so far [94, 95], and recent work [96] presents a new Wi-Fi MAC design

for the coexistence of Wi-Fi and Bluetooth.

For more general coexistence problems, Ref. [97] presents TIIM, a Technology-Independent In-

terference Mitigation solution that detects and reacts to cross technology interference in realtime in

IEEE 802.15.4. To detect and identify the type of cross technology interference, TIIM applies the link

quality indicator value, used in ZigBee networks. If TIIM detects the interference, countermeasures

are automatically determined by the classifier made using a decision tree algorithm. To cope with the

issue of coexistence in ISM band, IEEE 802.19 Wireless Coexistence Working Group [98] is working

for standardization.
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Chapter 3

An Algorithm for Estimating
Channel Performance by Multiple
Regression Analysis

3.1 Introduction

Unlicensed band becomes more congested particularly in an urban environment as Wi-Fi devices are

more and more popular in a variety of infrastructures and services. For example, as illustrated in

Figure 3.1, public Wi-Fi services at shops, cafeteria and convenience stores as well as private Wi-Fi

utilization in offices and homes compete for the limited bandwidth. Although another band (such as

5GHz band) is available in many countries for Wi-Fi, 2.4GHz is still significant frequency that can

maximize the number of potential participants to the services.

Therefore, in order to assure a certain level of communication quality even in such circumstances,

it is necessary for APs to fully utilize the available channels although neighboring 4 channels are

overlapped in 2.4GHz Wi-Fi. In order to observe the status of 13 channels, a naive but straightforward

approach is to directly examine the performance by active probing of each channel. However, it needs

the target AP to be tuned into each channel, to ask a client to participate in the probing procedure

and finally to run probing, which is a time-consuming task. Another possibility is (passive) traffic

monitoring of channels. We may estimate the quality of channels based on the traffic information

monitored in each channel. However, considering Wi-Fi-specific features, real performance is not easily

estimated only from the monitored traffic in each channel. This is mainly because there are several

factors that cause interference and noise. Not only noise from non-Wi-Fi systems, but Wi-Fi traffic in

adjacent channels may also become noise signals like non-Wi-Fi devices since Wi-Fi channels are not

completely separated in terms of the spectrum they use, particularly in 2.4GHz band (IEEE802.11b/g).

Therefore, IEEE802.11 frames in one channel may be noise for another channel. We call it inter-channel

interference problem, which is referred to as ICI problem hereafter. This is very significant in such a
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Figure 3.1: Wi-Fi concentration in urban environment

situation like an urban environment where many Wi-Fi systems use different channels. Additionally,

traffic and received signal strength (RSSI) diversity within each channel makes the ICI problem more

complex. More concretely, it is not easy to assess the impact of both signal strength and traffic volume

in the same channel or in a different channel on the performance of the target system.

In this chapter, we present a novel strategy to choose Wi-Fi channels in an urban environment.

As stated earlier, adjacent channels interfere with each other in the current Wi-Fi systems. This

often makes it very complex to estimate the performance of the target system in presence with other

Wi-Fi systems at different locations, which use different channels with different traffic volume. In

our method, we build a function to predict how much the target system is affected by interference

from the other systems, by taking inter-channel distance, RSSI levels and traffic volumes into account.

This function is built based on a number of data with different parameter values, and the dataset has

been obtained by exhaustive simulations using realistic network simulator called Scenargie 1.7 [99],

which can simulate the complete protocol stack from the PHY level (OFDM subchannel spectrum

spread) to the application layer, as well as the IEEE802.11 family. Finally, multiple regression analysis

is employed to represent the performance metrics (delay and frame delivery ratio) by the observed

values.

To evaluate our method, this scoring function was examined in two kinds of general scenarios

where several APs interfere with the AP of interest in a 150m × 150m region. In the first scenario, we

assumed the target AP in a typical ITS scenario where the several interference nodes affect the target

AP to confirm the basic performance of our designed function. The second scenario was designed

like an urban dense environment. We deployed 50 AP-client pairs as the interference sources in a
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150m × 150m region randomly. In both scenarios, we have confirmed that the scores and the actual

performance are well-matched where the Spearman’s rank correlation coefficient was sufficiently high

and can identify the top-ranked channel as well.

3.2 Approach Design

This section presents our approach of proposed method to cope with the urban interference problem.

We firstly describe the overview of our approach and the problem which we focus on. Secondly, we

define our target scenario in urban environment and assume the situation. Finally, we describe the

design of explanatory parameters obtained from simple MAC frame monitoring. We note that this is

a unique approach to the urban Wi-Fi problem, and as far as we know, this is the first approach to

ranking channel quality based on simple measurement of inter-channel distance, RSSI and traffic.

3.2.1 Overview

As we have discussed earlier, we focus on (i) inter-channel interference where adjacent channels interfere

with each other in Wi-Fi systems and (ii) urban situations where many APs in different systems are

deployed in an uncoordinated way. To cope with the problem, our approach for ranking function

derives relative indicator of channel quality based on realistic, observable parameters like inter-channel

distance, RSSI and traffic volume. We predict how much channel is affected by interference compared

with the other channels for channel selection. We monitor the IEEE802.11 data frames in each channel,

which can be obtained by the off-the-shelf devices with low-cost. However, it is difficult to gather such

information in real urban environment to quantify the effect of the inter-channel interference and

the diversity of RSSI and traffic volume. Then we decide to use the network simulator Scenargie

[99] to model such interference effect and build the exhaustive dataset. Scenargie is a commercial

network simulator that supports the IEEE802.11 specification [100] such as IEEE802.11a/g/n/ac and

can simulate the complete protocol stack from the PHY level (OFDM subchannel spectrum spread)

to the application layer. Since the implementation is accurate and reliable, the simulation results are

sufficiently dependable [101]. As the relative indicator, we have built a function that anticipates the

performance level in each channel from a given set of traffic and RSSI information in the channels. In

order to build the function, we have applied multiple regression analysis to the exhaustive simulation

dataset. We selected the linear function to estimate the channel performance level by considering the

computational cost.

3.2.2 Preliminaries

We consider a target system is an IEEE802.11g AP with clients (the AP is referred to as target AP

in this chapter) and propose a method to rate its performance (L2 delay simply called delay and L2

frame delivery ratio (we use the term FDR to refer to the ratio without confusion) for each channel
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as a channel selection algorithm. Basically we assume urban situation where a number of APs and

their clients of different systems or mobile routers exist among the target AP. In indoor environment,

building administrators constitute operational policy of utilization of Wi-Fi channels and in such

a coordinated environment, static allocation is much better. Instead, in urban outdoor, a number of

public APs are deployed each of which is not under control, i.e. highly uncoordinated situation needs to

be considered. Our collaborator Sumitomo Electric Industries LTD. is now investigating possibilities

to exploit 2.4GHz ISM band devices for ITS roadside units for V2R and P2R communication. A

typical scenario is that roadside CCTVs and IR-beacon transmitters detect vehicles driving through

the streets, and these information is aggregated to the AP at the intersection.

We assume that target APs have an IEEE802.11MAC monitoring function as well as RSSI detec-

tion. It is worth noting that IEEE MAC level information is easy to be captured using off-the-shelf

devices and tuned drivers. For example, using Atheros WLAN chips, such information is available in

promiscuous mode. The target AP monitors the traffic of other systems (interference source) that use

the same or other channels.

As we have discussed earlier, it is not easy to estimate interference effect in a “chaos” environment

like urban environment. As an example, we will show in the experiment section the following scenarios

where channels 1, 7 and 11 have been used by IEEE802.11g APs of different systems. In this case, it is

not easy to assess which channels are better than others due to the ICI problem and due to different

traffic volume and RSSI from those APs. The detailed results will be presented later in Section 3.4,

but channel 1 is the best in the case. We design the rating function that determines the levels of

channel status for given information about traffic and RSSI in each channel.

3.2.3 Channel Monitoring and Explanatory Parameters Definition

We denote the set of all APs and their clients (except the target AP and its clients) that use a channel

k as I(k). Each AP or client in I(k) is called interference source. For each channel k, we obtain

the following information about interference sources by IEEE802.11MAC frame monitoring and some

additional information.

(a) Normalized received interference signal strength

This is called RSSI indicator of channel k and denoted as s(k). We define s(k) as the normalized

averaged RSSI (SSave(k)) of data-frames transmitted by interference sources in I(k) as follows.

s(k) =

{
SSave(k)−θmin

θmax−θmin
θmax ≥ SSave(k)

1 θmax < SSave(k)
(3.1)

where θmin and θmax represent the minimum RSSI threshold of data frame reception (-90dBm in

IEEE802.11g) and expected maximum RSSI (usually -50dBm or around), respectively. From my

preliminary experiments of channel monitoring in urban outdoor with the wireless traffic packet
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capture AirPcap [102] and the network tool iperf [103], the expected SSave(k) value is lower

than -50 dBm. But, in the case of SSave(k) > −50 dBm, we define s(k) value dose not exceed 1.

(b) Normalized traffic volume

This is called traffic indicator of channel k and denoted as t(k). We define t(k) as the normalized

data bytes transmitted by interference sources in I(k) as follows.

t(k) =
8 · d(k) + b · q(k) · Tpreamble

b
(3.2)

where d(k) is the byte amount of data frames per second and b is the transmission rate of IEEE

802.11b/g. Control information of the PHY layer is transmitted, but in MAC frame monitoring

this cannot be observed. In equation3.2, the occupancy duration of PHY control information is

added to t(k). For this purpose, we define q(k) and Tpreamble. q(k) denotes the total received

count of data frame per second from all interference sources in I(k) and Tpreamble denotes the

length of time that the control information of the PHY layer is transmitted (i.e. the length of

Tpreamble in IEEE 802.11g is 20µs).

(c) Inter-channel distance

This is called inter-channel distance indicator and denoted as c(ct, k). We define c(ct, k) as the

normalized inter-channel distance between the channel ct of the target AP and channel k used

by at least one interference source;

c(ct, k) =
|ct − k|
cmax

(3.3)

where cmax is the maximum channel distance within which two nodes interfere. From our pre-

liminary experiments, two nodes with inter-channel distance larger than 3 do not significantly

interfere with each other with any RSSI and traffic. Therefore, we set cmax = 3 and interference

source with |ct − k| > cmax is ignored.

As briefly stated earlier, SSave(k) and b are parameters from the PHY layer, but off-the-shelf WLAN

devices (e.g. those using Atheros chips) can obtain this information through normally-provided drivers.

For example, the above information can be displayed by iwconfig command.

3.3 Design of a Rating Function by Multiple Regression Anal-
ysis

This section presents how to build our rating function to quantify the inter-channel interference effect.

In order to investigate the interference effect with different traffic volume, RSSI and channel distance,

we have built the exhaustive simulation scenario. In following section, we describe the design of the

simulation scenario and how to model the function.

26



3.3.1 Basic Strategy

In order to estimate the performance of the target AP in each channel, it is required to understand

how RSSI, traffic volume and inter-channel distance indicators affect the performance. Furthermore,

usually multiple channels are occupied by interference sources. For example, let us consider a scenario;

the target AP scanned all the channels and observed that (a) some APs use channels 2 and 8 with

heavy traffic and weak RSSI and (b) some others use channels 5 and 11 with marginal traffic and

strong RSSI. The question is which channel is the best for the target AP, and a naive answer is to

choose one without any APs (such as channel 3, 4, 6, 7· · · ). However, traffic from channels 2 and 8

may become noise signal in those channels and it is not easy to estimate their effect. Therefore, we

conducted exhaustive simulations to obtain the model to estimate the interference effect.

Before addressing exhaustive simulations and multiple regression analysis, we investigate the num-

ber of cases that we need for the exhaustive simulations. We let ns and nt denote the number of

“levels” that are contained in s(k) and t(k), respectively. We also let K denote the set of all the

possible channel occupation patterns. In order to completely explore all the possible cases, we need∑
h∈1..2cmax+1

{
(2cmax+1)Ch · (ns · nt)

h
}

(3.4)

cases where C denotes a combination. In the above, (2cmax+1)Ch denotes the number of occupancy

patterns of h channels, (ns · nt)h denotes the number of RSSI and traffic patterns for each occupancy

pattern of h channels. For example, in case that nrs = ntr = 30 and cmax = 3 (the settings used

later), totally we need 4.8 × 1020 cases. As this number is not realistic even in an offline process, we

try to reduce the number of combinations by taking the symmetry of occupancy pattern of channels

into account. For instance, if the target AP uses channel 6 and interference sources use channel 3, 5,

7, occupancy pattern of channels is (-3, -1, 1). I consider the result of pattern(-1, 1, 3) is the same of

pattern(-3, -1, 1). Therefore, the number of occupancy patterns of h channels is as follows.

(2cmax+1)Ch + cmax
Cbh2 c

2
(3.5)

In addition, I also try to reduce the cases by taking the following strategy.

(1) For each c(ct, k), we conduct simulations for all the combinations of s(k) and t(k).

(2) We apply linear regression analysis to obtain the regression model of the performance for given

s(k) and t(k). Linear multiple regression analysis is one of the analytical methods which is

used for multivariate analysis. This prepares a polynomial formula consisting of a linear sum of

independent variable groups that explain observation values. In this analysis, we calculate and

determine a linear coefficient that best explains the observation value. In our method, this is

called single ICI model (ICI denotes inter-channel interference) and denoted as fc(ct,k)(s(k), t(k)).

This represents how RSSI and traffic affect the performance if only channel k is occupied by

interference sources.
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(3) For each set {k1, k2, ..., kL} ∈ K of channels occupied by interference sources, we conduct simula-

tions for limited combinations of s(k1), t(k1), s(k2), t(k2), ... , s(kL) and t(kL).

(4) We apply linear regression analysis to obtain the regression model of the performance for given

fc(ct,k1)(s(k1), t(k1)), fc(ct,k2)(s(k), t(k)), ... and fc(ct,kL)(s(k2), t(k2)) as well as c(ct, k1), c(ct, k2),

... and c(ct, kL) to obtain the final function for given RSSI, traffic and inter-channel distance

indicator values. This is called aggregated ICI model and denoted as fmulti. Our channel selection

algorithm uses fmulti to choose a channel.

3.3.2 Single ICI Model

We have built the single-ICI model by analysis of simulation results. Simulation settings are defined

by generalizing the situation of Section 3.2. The client uploads obtained information to the AP

periodically, and the physical distance between them is set to 100m. In the scenario, the nodes are

static and deployed the fixed location. The interference sources are a pair of AP and its client, and

traffic between them is created by iperf implemented on the Scenargie simulator [99] with changing

the parameter iperf-udp-rate-bps, in order to arrange different t(k) values. For different s(k) values,

the distance between the target AP and interference source AP is changed from 10m to 300m with

step 10m. We have measured (i) the frame delivery ratio (which we call FDR) from the client to the

target AP and (ii) the MAC layer transmission duration (which we call delay) which is obtained as

time duration from the moment that a frame is queued at the client till the moment that the frame is

queued at the target AP. The simulation scenario is illustrated in Figure 3.2 and the setting is shown

in Table 3.1. The APs and clients follow IEEE802.11g standards and work in 2.4GHz. The clients

is associated the determined APs and works at the same channel number as the AP’s initial channel

setting. In this scenario, every nodes use the fixed data rate BPSK 3/4 in IEEE802.11g.

In this scenario, we have 30 s(k) values and 30 t(k) values (ns = nt = 30). In addition, we have 4

c(ct, k) (= cmax + 1) values for an interference source pair of AP and client. Therefore, we have 3600

simulation cases as a total. Each case was simulated for 30 seconds.

We have used the following linear function for regression analysis.

fc(ct,k)(s(k), t(k)) = c1 + c2 · s(k) + c3 · t(k) + c4 · s(k) · t(k) (3.6)

We designed the above function which contains t(k) ,s(k) and the interaction term as the descriptive

variables. We have built this function with different 4 c(ct, k) from 0 to 1.

3.3.3 Determining Parameters of Single ICI Model

The result of the analysis is summarized in Tables 3.2 and 3.3.

With c(ct, k) = 0, the target AP and interference sources reside in the same channel. In this

case, the target AP can hear the preamble of the other APs’ frame transmission, which may explicitly
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Figure 3.2: Simulation scenario for single ICI model

prevent the target AP’s frame transmission. Therefore, t(k) is more significant than s(k). Meanwhile,

with c(ct, k) = 1/3 or larger, s(k) as well as t(k) also affects the performance since the traffic from the

interference sources becomes “noise” for the target AP, which affects the AP’s carrier-sense behavior

and SNR (this causes frame error, i.e., FCS is likely to be false). It seems that s(k) is more tightly

related with the performance than t(k), which supports our hypothesis. As a total, the adjusted R2 is

mostly above 0.8 in all the cases except c(ct, k) = 3/3, and around 0.75 even in case of c(ct, k) = 3/3.

The adjusted R2 value is an index which shows the explanation accuracy of the linear expression

constructed by the regression analysis. As this value is closer to 1, it is judged that the tendency of

the objective variable is better grasped. This shows that our linear regression successfully represents

the effects of s(k) and t(k) for each inter-channel distance (0, 1, 2 and 3). Based on this result, we

move to the step (3) to analyze the effect of multiple k’s.

Here, we describe the preliminary experiment about cmax. In the same scenario in Figure 3.2 and

3.1, we have conducted 900 scenario where the interference AP’s channel number is configured as 10,

that is, the inter-channel distance is 4. In this scenario, we have 30 s(k) values and 30 t(k) values

(ns = nt = 30). The simulation result are shown in Figure 3.3. From these figures, we confirmed that

there was no interference effect for the 98% results in the sight of the simulated value of delay and the

frame delivery ratio. We also confirmed that the remaining 2% results are very limited cases where the

target AP and the interference source are the nearest among the set values of 10m. Since the proposed

method assumes an outdoor environment such as an intersection in the major cities, we ignore these

cases where the inter-channel distance is 4.
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Table 3.1: Simulation settings for single ICI model

Common Parameter Values
Area Size 400m×400m
Target AP - its STA Distance 100m
Interference AP - its STA Distance 5m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Target AP’s Channel 6
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Antenna Height 1.5m
Tpreample 20µs
Propagation Model Free Space
L7 application iperf-udp-data-rate
L7 traffic (Target AP) 9Mbps
Payload Size 1470byte

for Single ICI Model Values

Target Pair - Interference Pair Distance [10m, 300m] step=10m
Interfernece AP’s Channel {6,7,8,9,10}
L7 traffic (Interference AP) Iperf [0.3Mbps, 9Mbps] step=0.3Mbps

Table 3.2: Regression analysis result with fc(ct,k)(s(k), t(k)) (delay)

c(ct, k) Coefficient adjusted R2

c1 c2 c3 c4 (delay)

0 -0.38498 -0.86602 5.89684 1.27298 0.905
1/3 1.3917 -3.7342 -12.7026 35.1980 0.9029
2/3 1.5988 -3.8891 -16.6614 40.9565 0.8895
3/3 0.4015 -0.9238 -11.2069 25.4772 0.7379

3.3.4 Aggregated ICI Model

Based on the strategy in the Basic Strategy section, we prepare the following regression function fmulti.

For simplicity, we have dealt with the case that the number of occupied channels is 2 in this chapter.

Then using the scenario of Figure 3.4, we have conducted 1,134 simulations where we have 7

c(ct, k1) values, 54 fc(ct,k1)(s(k1), t(k1)), 7 c(ct, k2) values and 54 fc(ct,k2)(s(k2), t(k2)). In case of

multiple channel occupancy, two sides should be taken into account, i.e. 7 = 1 + 2 ∗ cmax. The

simulation setting is shown in Table 3.4 and the common parameter is also shown in Table 3.1. As

the same as the simulation for single ICI model, the target client uploads obtained information to the

AP periodically, and the physical distance between them is set to 100m. The nodes are also static and

deployed the fixed location. In order to reduce the simulation cases, we pick up some fc(ct,k)(s(k), t(k))

values. For different s(k1) and s(k2) values, the distance between the target AP and interference source
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Table 3.3: Regression analysis result with fc(ct,k)(s(k), t(k)) (Frame Delivery Ratio)

c(ct, k) Coefficient adjusted R2

c1 c2 c3 c4 (FDR)

0 0.86200 0.17056 -0.51439 -0.48568 0.8413
1/3 0.80081 0.14843 0.94830 -2.86823 0.8223
2/3 0.81915 0.07458 1.12194 -2.93707 0.8339
3/3 0.81033 0.05432 1.06558 -2.44258 0.7635

(a) Delay (b) Frame Delivery Ratio

Figure 3.3: Simulation result with inter-channel distance 4

Table 3.4: Simulation settings for aggregated ICI model

Parameters for Aggregated ICI Model Values
Interference AP1’s Channel {3,4,5,6,7,8,9}
Interference AP2’s Channel {3,4,5,6,7,8,9} which is not selected by AP1
Target Pair - Interference Pair 1 Distance [10m, 100m, 300m]
Target Pair - Interference Pair 1 [10m, 100m, 300m] which is not selected by AP1
L7 traffic (Interference AP1) [1Mbps, 3Mbps, 9Mbps]
L7 traffic (Interference AP2) [1Mbps, 3Mbps, 9Mbps]

AP is changed from 10m, 100m and 300m. When the interference pair 1 select 10m, the interference

pair 2 can not select 10m at the same time. As well as s(k1), the interference pair 1 and 2 select the

different setting about the channel number.

31



Figure 3.4: Simulation scenario for aggregated ICI model

We designed the aggregated ICI model as following equation 3.7.

fmulti

= d1 + d2 · c(ct, k1) + d3 · fc(ct,k1)(s(k1), t(k1))

+d4 · c(ct, k2) + d5 · fc(ct,k2)(s(k2), t(k2))

+d6 · c(ct, k1) · fc(ct,k1)(s(k1), t(k1))

+d7 · c(ct, k2) · fc(ct,k2)(s(k2), t(k2)) (3.7)

We designed the above function which contains both channel distances c(ct, k1), c(ct, k2), and the func-

tion outputs fc(ct,k1)(s(k1), t(k1)) ,fc(ct,k2)(s(k2), t(k2)) as the descriptive variables. In addition, the in-

teraction terms between c(ct, k1) and fc(ct,k1)(s(k1), t(k1)) and between c(ct, k2) and fc(ct,k2)(s(k2), t(k2))

are introduced as the descriptive variables. This decision is based on the indicator AIC (Akaike’s

Information Criterion) which is used for model selection on multiple regression analysis. As a re-

sult, we ignore the interaction terms between c(ct, k1) and fc(ct,k2)(s(k2), t(k2)), between c(ct, k2) and

fc(ct,k1)(s(k1), t(k1)) and others. This result is very reasonable because the inter-channel distance be-

tween the target pair and the interference pair 1 and fc(ct,k2)(s(k2), t(k2)) value influence independently

on the target AP.

3.3.5 Determining Parameters of Aggregated ICI Model

The multiple regression results of our proposed linear function 3.7 are shown in Tables 3.5. Similarly

with the single ICI cases, the both values of adjusted R2 is above 0.8, and for the case of delay, it is
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Table 3.5: Regression analysis result for aggregated ICI model

Coefficient
d1 d2 d3 d4 d5 d6 d7 adjusted R2

delay 2.24359 -1.10688 0.70291 -2.66502 0.05354 0.54053 1.63336 0.8685
FDR -0.09109 -0.29729 0.44932 -0.34902 0.34982 0.48801 0.56516 0.8064

(a) Delay (b) Frame Delivery Ratio

Figure 3.5: Indicator values by fmulti and simulations

close to 0.85. Therefore, we can say that the linear function fmulti successfully models the delay and

frame delivery ratio performance with derived coefficients.

We note that for reference, we have plotted the values of delay and frame delivery ratio indicators

obtained by the models and simulations in Figure 3.5. The 1,134 cases are sorted along X-axis by the

simulation values. We can also confirm that our multiple regression-based models for delay and frame

delivery ratio well-represent the treads of the values by simulations.

In the next section, we conducted experiments to confirm that our aggregated ICI model can be

used for general scenarios.

3.4 Performance Evaluation in Typical Scenario

We have examined using more general scenarios the ability of fmulti to find out the “best” channel in

terms of expected delay and frame delivery ratio. In particular, when the currently-chosen channel

does not provide expected quality due to traffic situation changes, our rating scheme provides useful

information for the target AP to move to another channel (the target AP may examine one by one

from the top-ranked channel to the bottom, which extensively reduce the overhead of channel selection
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Figure 3.6: Typical simulation scenario

in dynamic situations).

3.4.1 Typical Scenario Setting

For the target AP and its client, we have deployed four AP-client pairs as interference sources in a

150m × 150 area with crossed roads (Figure 3.6). Table 3.6 shows the coordinates of those interference

sources. We assume that the target AP-client pairs is in an ITS roadside unit system that generates

iperf-udp-rate-bps with 5Mbps. Interference sources are those in a convenience store (AP1), public Wi-

Fi AP (AP2) and APs in office buildings (AP3 and AP4). Each client is at 5m north from the location

of its associated AP, and their rates are 1.5Mbps, 3Mbps 2Mbps and 3Mbps, respectively. They employ

BPSK 3/4 (thus bitrate = 9Mbps). Other parameters are configured as the same as the simulation

for model building in Table 3.1. The target AP monitors the 13 channels for 30 seconds each. We

have compared the ranking of fmulti values by the proposed models and that of the real performance

metrics by the simulations to examine the accuracy of rating. In order to see the performance in each

channel, we have run simulations changing the target AP’s channels from 1 to 13.

3.4.2 Evaluation Result

We have summarized the results in Figure 3.4.2 and in Table 3.7. From the figures, the treads of

fmulti values over 13 channels well-match the actually simulated performance. The tables show the

ranking results. In both cases, the Spearman’s rank correlations are 0.965035 (delay) and 0.9352028

(frame delivery ratio), which mean very high correlation between the models and the real performance.

Therefore, we confirmed that our model could estimate the top-ranked channel and the whole ranking
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Table 3.6: Node coordinates and channels in typical scenario

Node Coords. Channel
Target AP ( 75.000, 25.000) to be determined
Target Client ( 75.000,125.000) to be determined
Interference AP 1 ( 87.220,105.632) 1
Interference AP 2 (148.151, 14.946) 7
Interference AP 3 ( 18.433, 20.508) 7
Interference AP 4 (139.297, 85.083) 11

(a) Delay (b) FDR

Figure 3.7: fmulti values (Y1-axis with boxes) and simulated value (Y2-axis with Lines) over 13 channels
in typical scenario

with reasonable accuracy.

The top-ranked channel number is 1 in this result. However, the interference pairs uses channel 1, 7

and 11. As we have discussed earlier, we can confirmed that the target pair is affected by inter-channel

interference clearly. Especially, we can confirm that channel number 9 is affected from channel 7 and

channel 11. Basically, commodity Wi-Fi AP adjusts its own channel based on the existence of other

APs by beacon frame scanning. From this result, contrary to our expectations, it was better to use the

same channel as the interference APs. Therefore such Wi-Fi APs will be wrong and will be affected by

such interference. Our rating function can determines the levels of channel status for given information

about traffic and RSSI in each channel by taking inter-channel interference effect into account.
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Table 3.7: Experimental results of ranking channel performance in typical scenario

(a) Delay

Channel ID Model Simulation
Indicator Ranking Delay (s) Ranking

1 0.221914 1 0.002356 1
2 0.501899 2 0.002854 2
3 0.512307 3 0.003902 3
11 1.314429 4 1.414476 4
13 1.574846 5 1.916814 6
12 1.683511 6 1.922286 5
7 2.141591 7 2.62581 7
4 2.463841 8 3.129002 8
5 3.337122 9 5.267372 10
6 3.380002 10 6.132739 11
10 3.789207 11 4.306259 9
8 3.808662 12 7.328154 13
9 5.076176 13 6.919489 12

(b) Frame Delivery Ratio

Channel ID Model Simulation
Indicator Ranking FDR (%) Ranking

1 0.827794 1 83.08427 1
2 0.769155 2 83.08427 1
3 0.767343 3 83.06915 3
11 0.69729 4 75.08957 4
13 0.680698 5 62.3103 6
12 0.659767 6 62.61121 5
7 0.593243 7 48.34523 7
4 0.57273 8 40.40192 8
5 0.532401 9 23.92966 10
6 0.500817 10 20.76474 11
8 0.439509 11 18.02075 13
10 0.438814 12 29.57189 9
9 0.385057 13 18.61199 12

3.5 Performance Evaluation in Dense Scenario

In previous section, we have confirmed that our proposed function can capture the trend of overall

channel quality. However, the investigation about the diversity of traffic volume and RSSI of inter-

ference pairs is not enough because the traffic and distance settings of interference pairs are fixed. In

addition, the investigation about the density of interference nodes is not enough because we assumed

that our proposed method was used in urban environment. Therefore, we have examined using more

general 4 urban scenarios the ability of fmulti to find out the “best” ranked channel in terms of expected

delay and frame delivery ratio.
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3.5.1 Dense Scenario Setting

We have designed more 4 scenario which is assumed the urban environment. Comparing the typical

scenario, the node density and the diversity of traffic and RSSI are different. In any scenarios, we

have deployed 50 AP-client pairs as interference sources in a 150m × 150m area for the target AP and

target client. Interference sources are deployed randomly in this area. Figure 3.8 show the coordinates

of those interference sources. The target AP and client are represented as red node (bottom) and red

node (top) respectively. Interference sources are represented as blue node and the AP-client pairs are

located at the same point.

The transmission is one-way from a client to an AP (uplink) which employs IEEE 802.11g. The

payload size for one frame transmission is set to 1470 byte. We assume that the target AP-client pair

is in urban Wi-Fi system that employs UDP protocol and generates iperf-udp-rate-bps with 5 Mbps.

All AP-client pairs employ BPSK 3/4 (thus b = 9Mbps). Other simulation settings are the same as

the common parameters in the simulation for model building in Table 3.1.

The channel of interference sources is selected among 1, 6 and 11 randomly. These channels are

often used as usual if there is a network manager. He/she adjust the AP’s channel to 1, 6 or 11 manually

when he/she has to manage multiple APs because these channels are not overlapped completely. In

these cases, 13, 17 and 20 pairs of interference sources are running in channel 1, 6 and 11 respectively.

The target AP monitors the 13 channels for 30 seconds each. To measure the performance of each

channel, we have run simulations changing the target AP’s channels from 1 to 13.

In the following, we explain the four scenarios (sim1-sim4). The transmission power, the trans-

mission rate and the location of interference sources are different in these scenarios. As a result, the

average RSSI and traffic volume which are monitored at the target AP are different, which means

that the observed s(k) and t(k) are different in these scenario. The settings of interference sources

are determines at random according to Table 3.8. sim1 is the normal scenario and sim2 is different

from the normal scenario in TxPower, which means that the expected s(k) values in sim2 is lower

than in sim1. sim3 is designed for checking whether our proposed method can work in the higher t(k)

environment. Transmission power and data rate are represented by changing the dot11-tx-power-dbm

and iperf-udp-rate-bps in Scenargie simulation. In sim1 and sim4, the setting of the transmission

power and rate is the same, but the location of interference sources is different. Thus, regardless of

the interference sources’ position, we confirm that fmulti can rank all channels exactly. We confirmed

that the target pair can sense all packets of the interference nodes because we used the Free Space

propagation model in these scenario. Therefore The signal of all nodes reaches from end to end and

we did not consider about hidden node problem in our proposed model.

3.5.2 Evaluation Result

We have summarized the results in Figure 3.9 and 3.10. From the figures, the trends of fmulti values

over 13 channels well-match the actually simulated performance. The Table 3.10 and Table 3.11 show
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Table 3.8: Tx Power settings of interference sources

Simulation TxPower (dBm) Transmission Rate (Mbps)

sim1, sim4 20 [0.1,0.5] (uniform distribution)
sim2 [10,20] (uniform distribution) [0.1,0.5] (uniform distribution)
sim3 20 [0.1,0.9] (uniform distribution)

(a) sim1-sim3 (b) sim4

Figure 3.8: Evaluation environment in dense scenario

Table 3.9: Summary of Spearman’s rank correlations in dense scenario

Simulation Delay Frame Delivery Ratio

sim1 0.845 0.840
sim2 0.931 0.820
sim3 0.826 0.853
sim4 0.787 0.801

the ranking results of sim1 - sim4. We can confirm that, in all dense scenario, this function can select

the top-ranked channel. Table 3.9 shows the Spearman’s rank correlations of sim1 are 0.845 (delay)

and 0.840 (frame delivery ratio), which means very high correlation between the models and the real

performance. Moreover, the Spearman’s rank correlations of sim2 and sim3 are above 0.8 and the

correlations of sim4 are about 0.8. Especially, in the scenario sim3, the error of the predicted channel

rank is 3 or less. Therefore, we confirmed that this ranking function could estimate the top-ranked

channel and the whole ranking with reasonable accuracy.
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(a) sim1 (b) sim2

(c) sim3 (d) sim4

Figure 3.9: fmulti values (Y1-axis with boxes) and simulated delay (Y2-axis with lines) over 13 channels
in dense scenario
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Table 3.10: Experimental result of ranking channel performance in dense scenario (Delay)

(a) sim1

Channel ID fmulti Simulation
Indicator Ranking Delay (s) Ranking

1 -0.36543 1 1.244631 1
2 0.005587 2 1.906194 2
3 2.046134 9 3.756066 8
4 2.432525 11 4.466259 11
5 1.723872 5 3.963021 10
6 0.250092 4 2.634693 4
7 1.723872 5 3.945966 9
8 4.189695 13 5.182272 13
9 3.971627 12 4.761439 12
10 1.757880 7 3.478857 7
11 0.192882 3 2.496695 3
12 1.757880 7 3.442613 5
13 2.077132 10 3.454188 6

(b) sim2

Channel ID fmulti Simulation
Indicator Ranking Delay (s) Ranking

1 0.982828 1 2.430742 1
2 3.301078 4 3.87934 2
3 11.03612 10 7.724116 5
4 11.0678 11 9.086685 8
5 6.716086 5 8.836211 6
6 2.056418 2 5.833651 3
7 6.716086 5 9.006583 7
8 15.15444 13 11.37322 12
9 14.06839 12 11.89855 13
10 6.852393 7 10.12858 11
11 2.075302 3 6.373814 4
12 6.852393 7 9.695095 10
13 7.500844 9 9.687548 9

(c) sim3

Channel ID fmulti Simulation
Indicator Ranking Delay (s) Ranking

1 -0.20997 1 0.814904 1
2 0.13705 2 1.34891 2
3 1.42199 5 2.404265 5
4 1.895942 11 3.165355 11
5 1.524706 8 3.049665 8
6 0.456469 4 2.3148 4
7 1.524706 8 3.158945 10
8 3.116167 13 4.3608 13
9 2.948739 12 3.902907 12
10 1.422928 6 3.135849 9
11 0.25539 3 2.272857 3
12 1.422928 6 3.0195 7
13 1.639897 10 2.889659 6

(d) sim4

Channel ID fmulti Simulation
Indicator Ranking Delay (s) Ranking

1 -0.37948 1 1.250785 1
2 0.051725 2 1.973766 2
3 2.227958 10 3.863806 8
4 2.661229 11 4.68657 11
5 1.791085 5 3.87793 9
6 0.255992 4 2.684064 4
7 1.791085 5 4.113609 10
8 4.269861 13 5.099492 13
9 4.094081 12 4.818102 12
10 1.803741 7 3.567336 6
11 0.235959 3 2.393839 3
12 1.803741 7 3.568948 7
13 2.114708 9 3.431979 5
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(a) sim1 (b) sim2

(c) sim3 (d) sim4

Figure 3.10: fmulti values (Y1-axis with boxes) and simulated Frame Delivery Ratio (Y2-axis with
lines) over 13 channels in dense scenario
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Table 3.11: Experimental result of ranking channel performance in dense scenario (Frame Delivery
Ratio)

(a) sim1

Channel ID fmulti Simulation
Indicator Ranking FDR Ranking

1 0.905575 1 77.97019 1
2 0.779163 4 62.6963 2
3 0.532546 10 34.41564 8
4 0.524977 11 29.43684 11
5 0.619962 5 32.99166 10
6 0.824607 3 48.00905 4
7 0.619962 5 33.20000 9
8 0.402955 13 25.69994 13
9 0.407218 12 27.86288 12
10 0.611563 7 37.37542 7
11 0.832017 2 50.51788 3
12 0.611563 7 37.72920 5
13 0.583828 9 37.51464 6

(b) sim2

Channel ID fmulti Simulation
Indicator Ranking FDR Ranking

1 0.860446 1 51.65802 1
2 0.769958 3 33.41523 2
3 0.563978 10 16.8546 5
4 0.553015 11 14.41043 9
5 0.623696 5 15.42628 6
6 0.765651 4 23.64116 3
7 0.623696 5 15.17963 7
8 0.440856 13 12.69411 12
9 0.446858 12 12.59375 13
10 0.613258 7 14.16637 11
11 0.7867 2 21.9735 4
12 0.613258 7 14.7931 8
13 0.601604 9 14.32164 10

(c) sim3

Channel ID fmulti Simulation
Indicator Ranking FDR Ranking

1 0.860446 1 82.1121 1
2 0.769958 3 75.90467 2
3 0.563978 10 51.79418 5
4 0.553015 11 40.03245 11
5 0.623696 5 42.05052 8
6 0.765651 4 53.90625 4
7 0.623696 5 40.43032 10
8 0.440856 13 29.61142 13
9 0.446858 12 33.34396 12
10 0.613258 7 40.94609 9
11 0.7867 2 54.62949 3
12 0.613258 7 42.35375 7
13 0.601604 9 44.14194 6

(d) sim4

Channel ID fmulti Simulation
Indicator Ranking FDR Ranking

1 0.9085 1 78.42636 1
2 0.76787 4 61.4238 2
3 0.515168 10 33.56088 9
4 0.507686 11 28.29132 11
5 0.61268 5 33.68212 8
6 0.823724 3 46.99765 4
7 0.61268 5 31.96655 10
8 0.397411 13 26.07525 13
9 0.401091 12 27.37579 12
10 0.609705 7 36.27089 7
11 0.826305 2 52.41948 3
12 0.609705 7 36.50668 6
13 0.583793 9 36.96734 5

42



3.6 Conclusion

This chapter presents a strategy to choose Wi-Fi channels in urban environment and we have studied

the effect of interference in 2.4GHz Wi-Fi. In particular, we consider (i) inter-channel interference where

adjacent channels interfere with each other in Wi-Fi systems and (ii) urban situations where many APs

in different systems are deployed in an uncoordinated way. It seems that Wi-Fi channel selection issues

have been well-investigated, but it has not been discussed how the inter-channel interference affects

the performance, how it is closely related with RSSI and traffic volume, and how we should choose

a channel in an open, uncoordinated situation. As it is often hard to identify the channel with less

interference in such a situation, we present a channel scoring function that estimates the performance

level of each channel.

To build the scoring function, we have conducted exhaustive simulations with a large number

of scenarios, and multiple regression analysis has been applied where channel occupancy patterns,

traffic volumes and RSS in those channels are used as explanatory variables. Relying on exhaustive

simulations but with a reduced number of simulation cases, our model built by regression analysis

achieves sufficient accuracy to estimate better Wi-Fi channels.

To evaluate our method, this scoring function was examined in two kinds of general and realistic

scenario (typical and dense scenario) where several APs interfere with the AP of interest in a 150m ×
150m region. In the first scenario, we assumed the target AP in a typical ITS scenario where the several

interference nodes affect the target AP to confirm the basic performance of our designed function. The

second scenario was designed like an urban dense environment. We deployed 50 AP-client pairs as the

interference sources in a 150m × 150m region randomly. In both scenario, we have confirmed that the

scores and the actual performance are well-matched where the Spearman’s rank correlation coefficient

was over 0.8 and can identify the top-ranked channel as well.

We note that some contents in this chapter refer our previous publications [104,105].
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Chapter 4

Improvement of the Performance
Estimator for Channel Selection by
Machine Learning Approach

4.1 Introduction

In Chapter 3, we have presented a basic ranking function to estimate relative quality levels of Wi-Fi

channels in urban areas. Taking into account the inter-channel interference, we have built a function

to predict how much the target system is affected by such interference from the other systems. As it

is often hard to identify the channel with less interference in such a situation, we present a channel

scoring function that estimates the performance level of each channel. To build the scoring function,

we have conducted exhaustive simulations with a large number of scenarios, and multiple regression

analysis has been applied where channel occupancy patterns, traffic volumes and RSSI in those channels

are used as explanatory variables. Relying on exhaustive simulations but with a reduced number of

simulation cases, our model built by regression analysis achieves sufficient accuracy to estimate better

Wi-Fi channels.

However, the following significant issue has not been considered yet, that is, estimation of “channel

state change” due to new clients’ participation. Since the function of our previous work is to “rank”

the current channel status (i.e. it is a “diagnosis” function), it is difficult to estimate the channel status

after an AP actually moves from the current channel into that channel to expect quality improvement.

In the worst case, an AP with high volume traffic may move into a channel, which causes serious

congestion and saturation. In order to let APs (some of them may be selfish) behave in more intelligent

ways and to pursue stability in such an autonomous and uncoordinated Wi-Fi environment, it is quite

essential to provide such an estimation function for APs to correctly estimate the status without

actually moving into it.

In this chapter, we propose a channel migration technology that can control congestion among Wi-
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Fi channels based on the concept of interference environment sensing. Given the information about

the other APs’ traffic (volume, signal strength and the channel) and its own traffic (volumes) that

may be moved to a target channel c, the function predicts capacity saturation in channel c caused by

this movement, and then estimates the expected performance under the capacity saturation. Based

on the same policy in Chapter 3, we decided to use the network simulator and build the interference

dataset in order to quantify the interference effect in channel migration. We have prepared more than

10,000 scenarios and conducted simulations using them. In order to build such estimator, we applied

Support Vector Machine (SVM) based machine learning and multiple regression analysis based on the

knowledge of investigating the interference dataset. It is possible to indicate a channel that is expected

to provide the highest quality.

To validate the model accuracy, we have conducted simulation experiments with different realistic

scenarios. For this purpose, we have conducted additional 2,000 simulations. As a result, the function

can estimate the frame delivery ratio with less than 10% error in average. Finally, we demonstrate that

the proposed function can be used in evaluation scenarios for channel selection at each AP. We show

that this function can specify the best channels and APs can increase communication performance

compared with other channels. In addition, we confirmed the correlation coefficient between our

estimator output and the groundtruth is above 0.85 and our estimator can capture the tendency of

overall channel performance.

We note that our proposed method falls into the category of interference prediction based on the

passive monitoring of L2 information and RSSI, both of which can be obtained by the off-the-shelf

Wi-Fi devices. Compared with the previous approaches that pursue the similar goals, we take an

approach of leveraging simulation-based big data in modeling and analyzing the performance of Wi-Fi

under interference from the traffic in both the same and different channels with different RSSIs. As

far as we know, this is the first approach to assessing Wi-Fi channel quality based on such simple

measurement, using simulation-based big data analysis.

4.2 Approach of Improved Method for Channel Performance
Estimation

In this section, we present how to improve our basic function for channel migration. We firstly describe

the improvement strategy to consider the channel migration effect in our proposed method. Secondly,

we mention about the problem formulation and the redesign of monitoring parameters. Finally, we

design and build the simulation dataset for investigating the interference effect in the channel migration.

4.2.1 Consideration of Channel Migration

Our goal is autonomous and efficient frequency reuse at each AP which adopts the existing architecture

like IEEE802.11a/g/n in urban environment. Assuming the urban environment, it is often hard to
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identify the channel with less interference. Therefore, we have proposed a basic strategy of building

ranking function to estimate relative quality levels of Wi-Fi channels in such environment based on

reasonable MAC frame monitoring at the target AP in Chapter 3. In this function, we consider

the effect of the diversity of traffic and RSSI from the other Wi-Fi system, and the inter-channel

interference. To this end, we have conducted exhaustive simulations with a large number of scenarios

because it was not realistic to gather measurement dataset in real environment. In this step, we devised

to reduce the number of simulation cases in the step of building the simulation dataset for building

the function. We took the observed parameters as explanatory variables which are normalized received

interference signal strength, normalized traffic volume and inter-channel distance. Then we applied

multiple regression analysis to build the function. We have confirmed that this function can capture

the overall channel status trend.

However, “channel state change” has not been considered in this function yet, which means that

this function is not suitable for autonomous and dynamic channel migration at the target AP. Since

the function is to “rank” the current channel status (i.e. it is a “diagnosis” function), it is difficult to

estimate the channel status after an AP actually moves from the current channel into that channel to

expect quality improvement. In the worst case, for example, an AP with high volume traffic may move

into a channel, which may cause serious congestion and saturation. As a result, the AP would make

an erroneous channel selection. In order to let APs (some of them may be selfish) behave in more

intelligent ways and to pursue stability in such an autonomous and uncoordinated Wi-Fi environment,

it is quite essential to provide such an estimation function for APs to correctly estimate the status

without actually moving into it. Since we introduced the MAC frame monitoring to grasp the current

channel status in our approach, we could estimate the channel status after moving with the assumption

that the network condition is stable.

For this purpose, we have redesigned the function based on the same strategy as the previous

research. We have conducted exhaustive simulations (more than 10,000 cases) which are assumed that

the own traffic of the target AP moves to the new channel to simulate “channel state change”. We

have investigated the simulation dataset to capture not only the interference effect but also the channel

state change due to the channel migration of the target AP. As a result, we decided to apply machine

learning based classification algorithm to estimate the channel saturation due to the traffic movement

in channel migration. In addition, we applied multiple regression analysis to build a prediction function

of channel performance (latency and data delivery ratio).

4.2.2 Preliminaries

We let AP denote an IEEE802.11g AP of interest (called target AP) and ST denote each Wi-Fi STA

which is associated with AP . We assume that AP has commodity Wi-Fi chipsets for traffic monitor-

ing, which are not used for the communication. Suppose AP and its corresponding ST currently uses

channel ccur in the Wi-Fi channel set (denoted as C) and monitors the traffic of other AP(s) (interfer-
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ence AP(s)) that use the same or other channels. In particular, AP calculates the following two values

for each channel k; (i) temporal channel utilization ratio (or simply channel utilization ratio) denoted

as t(k), and (ii) their received signal strength denoted as s(k), (iii) inter-channel distance denoted as

c(k, l), respectively. Obtaining these values does not require driver modification, which is a preferable

feature for easy installation and operation. For instance, these values such as RSSI, frame length, and

transmission rate can be acquired from Atheros chipset in “monitor mode”. It is difficult to balance

communication and monitoring with only one interface, considering the monitoring cost. It is possible

to aim for reduction of switching overhead by using multiple interfaces and optimizing configuration

parameters while switching monitoring and communication interfaces [65]. In this research as well, we

assumed that the target AP has multiple Wi-Fi interfaces and monitoring module is implemented in

the target AP. We note that in order to obtain other information like the number of transmitters, AP

needs to maintain a unique address group, which incurs high calculation cost. Instead, our method

just needs to update a vector that consists of captured time, frame length, Tx rate and RSSI.

4.2.3 Explanatory Parameters Definition

(i) Indicator of Channel Utilization Ratio: t(k)

t(k) is defined as follows.

t(k) = min(
∑

f∈F (k)

8 · frame size(f)

data rate(f)
+ |F (k)| · Tpreamble, 1.0) (4.1)

Let F (k) denote the set of all MAC frames observed on channel k, and frame size(f) denote

the byte size of each observed MAC frame. The data rate data rate(f) is determined by the

destination client of each MAC frame f , and the data rate of IEEE802.11g is 6, 9, 12, 18, 24, 36,

48 or 54Mbps (in case of OFDM PHY). In the simulation of this thesis, dynamic control of the

data rate by the fallback function is not assumed, but it can also be applied to the case where

the data rate is different for each client by the above definition. t(k) is normalized to become the

value from 0 to 1. In addition, t(k) is corrected based on the total number of received frames and

the duration of the preamble. Specifically, Tpreamble denotes the length of time that the control

information of the PHY layer is transmitted, and the length in IEEE 802.11g is 20µs. Due to

CSMA/CA features and inter-frame spacing, t(k) cannot be 1.0, but a larger value means higher

utilization.

(ii) Indicator of Received Signal Strength: s(k)

s(k) is defined as follows.

s(k) =

{
ave rss(k)−θmin

θmax−θmin
θmax ≥ ave rss(k)

1 θmax < ave rss(k)
(4.2)

where θmin and θmax represent the minimum RSS threshold of data frame reception (-90dBm in

IEEE802.11g) and expected maximum RSS (usually -40dBm or around), respectively. s(k) is
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Figure 4.1: Channel allocation in 2.4GHz band

also normalized to become the value from 0 to 1. ave rss(k) is the averaged RSSI of all frames

from all APs and STAs in the observation channel k. From my preliminary experiments of

channel monitoring in urban outdoor with the wireless traffic packet capture AirPcap [102] and

the network tool iperf [103], the expected ave rss(k) value is lower than -40 dBm. But, in the

case of ave rss(k) > −40 dBm, we define s(k) value dose not exceed 1. As well as t(k), a lager

s(k) values also means higher interference power.

(iii) Inter-channel Distance: c(k,l)

To cope with the inter-channel interference problem, we define the absolute inter-channel distance

(simply called channel distance hereafter) between channel k and channel l, denoted as c(k, l),

by Equation (4.3).

c(k, l) = |k − l| (4.3)

The channel distance is expressed as the absolute value of the difference between channels. In

2.4GHz band, two APs are recommended to be operated with channel distance of 5 or larger to

avoid the inter-channel interference. For example, channels 1, 6 11 are popularly used in many

real situations like Figure 4.1. However, from our preliminary site survey at the downtown in

Osaka, APs are operated in an uncoordinated way in such urban outdoor environment because

there is no network manager to manage all APs for avoiding the chaotic frequency usage. In

this research, we focus on the inter-channel interference under the channel distance c(k, l) 3. In

our preliminary simulation experiment, we confirmed that interference from those with channel

distance 4 or larger has little affect on the performance. Therefore, in our method, we regard

that those channels with 3 or smaller channel distance from channel c interfere with c and we

call them adjacent channels of c. AC(k) denotes the set of adjacent channels and is defined in

Equation (4.4).

AC(k) = {l|c(k, l) ≤ 3} (4.4)

In the following section, we describe the design of the dataset to build our proposed estimator.
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4.2.4 Design Interference Dataset for Considering Channel Migration

We assume the situation when the target AP is planning to conduct channel migration as follows. AP

likes to move the channel from ccur to cnew. When the channel migration is conducted, the traffic

related with AP in channel ccur is brought into cnew. If some surrounding nodes works in the channel

set AC(cnew), the inter-channel interference between AP and them may occur. Furthermore, usually

multiple channels are occupied by interference sources in urban environment. In order to estimate

the performance of the target AP in channel cnew without actual channel migration, it is required to

understand the interference effect caused by the channel migration. Assuming the channel status is

stable in the long term, the channel performance could be estimated with the current MAC frame

observation result.

Then, our channel selection strategy is designed based on the same as our previous work. Given

cnew to which AP likes to move from ccur, given observations t(cinf) and s(cinf) where cinf is each

channel that may affect the performance of cnew, and t(ccur) which is the own traffic volume of the

target AP, we provide two functions fD and fT, which return the expected L2 delay and (normalized)

L2 frame delivery ratio (i.e. channel utilization ratio) after channel migration from ccur to cnew,

respectively. Having these two estimators, AP can predict the performance when it moves from ccur to

cnew, just by observing IEEE802.11 MAC frames and their RSSI in channel cinf at AP . Also, taking

into consideration the ease of installation and lightweight operation, we only implement the pre-built

function on AP and do not conduct resource-consuming operations like online learning. As a result,

we decided to apply machine learning based classification algorithm and multiple regression analysis

to build a prediction function as described in following section.

In order to design accurate fD and fT, we have to understand relation between the observed t(cinf),

s(cinf) and t(ccur) and the corresponding delay/frame delivery ratio at cnew. Our basic policy is to use

a large dataset, each of which shows the relation to reveal the performance-observation relations and

trends.

However, such a dataset is generally hard to obtain in the real world because there are too many

combinations of t(cinf), s(cinf) and t(ccur) and for each combination, real equipment has to be config-

ured. This is definitely unrealistic, and we therefore rely on the highly-accurate commercial simulator

(Scenargie 1.8 [99]) to obtain the dataset. Since it has an accurate OFDM sub-channel spectrum spread

model and complete and reliable implementation of the IEEE802.11 family, the simulation results are

sufficiently dependable.

4.2.5 Building Interference Dataset for Estimator

According to the above, we have prepared simulation scenario where AP move from channel ccur to

cnew like in Figure 4.1. The detailed simulation settings are shown in Table 4.1. We put two APs and

their corresponding STAs in 400m×400m. One AP is the target AP and another is an interference

AP. The distance between each AP and its corresponding STA is fixed 10m and every node is static.
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Figure 4.2: Simulation scenario for building interference dataset

Table 4.1: Simulation settings for building interference dataset

Parameter Values
Area Size 400m×400m
AP - STA Distance 10m
Target Pair - Interference Pair Distance [20m, 400m] step=20m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Channels cnew = 6, cinf ∈ {6, 7, 8, 9}
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Antenna Height 1.5m
Propagation Model Free Space
Tpreample 20µs
L7 application iperf-udp-data-rate
L7 traffic (Interference AP) [0.5Mbps, 9Mbps] step=0.5Mbps
L7 traffic (Target AP) [1Mbps. 9Mbps] step=1Mbps
Payload Size 1470byte

The distance between the target pair and interference pair is configured for each scenario. Every

node follows IEEE 802.11g standards in 2.4 GHz band. STAs follows the channel setting of the

associated APs, and the channel settings of APs is set for each scenario. All nodes send packets with

the transmission power 20dBm with the modulation BPSK 3/4 in which the maximum data rate is

9Mbps. In these scenario, the traffic is assumed as uplink communication and the traffic demands is

configured for each scenario.

We designed these simulation scenarios that gradually change their traffic demand and distance. By

changing their traffic demand of application IPERF with the parameter iperf-udp-data-rate, channel

utilization ratios (t(ccur) and t(cinf)) are varied accordingly. We set the traffic demand parameter of

the target AP from 1Mbps to 9Mbps by step 1Mbps, which is 9 cases as a total. In addition, we

set the traffic demand parameter of the interference AP from 0.5Mbps to 9Mbps by step 0.5Mbps,

which is 18 cases as a total. Similarly, by changing their distance, the received signal strength (s(cinf))

is varied. We set the distance parameter from 20m to 400m by step 20m, which is 20 cases as a

total. Moreover, we prepared the 4 kinds of inter-channel interference situation. After AP ’s channel

migration, their channel distance (c(cnew, cinf)) becomes 3 or smaller in these simulation scenarios,
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which causes the inter-channel interference problem. Consequently, We have totally prepared 12,960

scenarios, and from the obtained simulation-based dataset, we can grasp the impact of traffic/RSSI

diversity and inter-channel interference on the performance.

4.3 Design and Build the Performance Estimator

In this section, we present how to build the performance estimator based on the simulation dataset as

stated earlier. We firstly describe the investigation result of the interference dataset and how to model

the interference effect. Secondly, we design the performance estimator by applying machine learning

and multiple regression analysis. Finally, we mention about the way to merge the effect from multiple

interference nodes in different channels.

4.3.1 Modeling Estimator Based on Interference Dataset

At first, we show the simulated delay and frame delivery ratio in Figure 4.3. In the Figure 4.3, delay

and frame delivery ratio are respectively plotted in the ascending and descending order for each channel

distance. We can confirm that the flat trend changes suddenly around the middle of X-axis from the

result shown in Figure 4.3. Clearly, this occurs due to channel saturation by the target AP’s traffic and

interference traffic. From this findings, in order to improve the accuracy of our performance estimator,

we should model the saturated situations and unsaturated situations independently because it seems

difficult for a single function to capture the joint behavior of flat and increasing/decreasing trends.

Then, we provide a two-state prediction function with a binary state classifier (denoted as sat) that

determines the channel cnew’s state as “unsaturated” or “saturated”. By surveying these preliminary

experiment results shown in Figure 4.3, we empirically define that cnew’s state is “saturated” when

the observed delay is 100ms or larger. We will use this saturation threshold (delay = 100ms) for

determining both of the delay estimator and the frame delivery ratio estimator. We confirmed that

the classification results almost match when it is determined by the threshold (frame delivery ratio

=0.789).

Our state classifier sat is trained by Support Vector Machine (SVM). SVM is a typical clustering

method for supervised learning. If sat determines that the state of cnew is “unsaturated”, we can

regard that cnew can achieve desirable performance. On the other hand, in case of “saturated”, AP

then predicts how severe the current saturation is.

However, assuming a realistic urban environment, there may be several interference sources for all

channels, and there may be no satisfactory channels for AP . Even in that case, we will predict how

severe the interference effect is so as to select the channel with the least effect. For this prediction,

we provide log-linear-mixed regression function for delay and frame delivery ratio and apply multiple

regression analysis using the “saturated” state data. AP only needs to have the function with the

determined coefficients, which contributes to lightweight operation.
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(a) Delay (b) Frame Delivery Ratio

Figure 4.3: Definition of saturation (delay/frame delivery ratio)

Our regression functions are given in Equation 4.5 and Equation 4.6 for delay and frame delivery

ratio respectively.

fD(cnew, cinf , t(cinf), s(cinf), t(ccur))

=



0 (|cnew − cinf | > 3 or sat = “unsaturated”)

u0 + u1 log(t(cinf) + t(ccur))
+u2 · t(cinf) + u3 · s(cinf) + u4 · t(ccur)

(|cnew − cinf | = 0 and sat = “saturated”)

v0 + v1 · t(cinf) + v2 · s(cinf) + v3 · t(ccur)
+v4 · t(cinf) · s(cinf) + v5 · s(cinf) · t(ccur)
+v6 · t(cinf) · t(ccur) + v7 · t(cinf) · s(cinf) · t(ccur)

(0 < |cnew − cinf | ≤ 3 and sat = “saturated”)

(4.5)

fT(cnew, cinf , t(cinf), s(cinf), t(ccur))

=



1.0 (|cnew − cinf | > 3 or sat = “unsaturated”)

u0 + u1 log(t(cinf) + t(ccur))
+u2 · t(cinf) + u3 · s(cinf) + u4 · t(ccur)

(|cnew − cinf | = 0 and sat = “saturated”)

v0 + v1 · t(cinf) + v2 · s(cinf) + v3 · t(ccur)
+v4 · t(cinf) · s(cinf) + v5 · s(cinf) · t(ccur)
+v6 · t(cinf) · t(ccur) + v7 · t(cinf) · s(cinf) · t(ccur)

(0 < |cnew − cinf | ≤ 3 and sat = “saturated”)

(4.6)
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These equations are configured with unknown parameters (ui, vj , ui and vj). These unknown parame-

ters are determined by multiple regression analysis. Also predicate satc(cnew,cinf )(t(cinf), s(cinf), t(ccur))

is decided by applying machine learning approach.

As stated earlier, predicate sat is a binary classifier to predict whether or not the traffic of the

target AP in the current channel ccur causes saturation if it is moved to the new channel cnew. The

first case of both functions represents the unsaturated situation where the delay and frame delivery

ratio are assumed to be 0.0 (sec.) and 1.0, respectively.

In the the case of saturated situation where c(cnew, cinf) == 0, we utilize a logarithmically curved

function, which models the performance of the CSMA/CA-based systems. The target AP can avoid

the collision because AP in cnew = cinf hears the frames from the interference node directly. It is

considered to be different from other cases and the reason for using such a logarithmically curved

function can be found in Figure 4.3. Clearly, the trend of interference effect is different from other

channel distance results. In this figure, we can see that the increase of delay in zero channel distance

case is clearly slower than the other cases. As a result, we designed this function which contains a

logarithmically term, log(t(cinf) + t(ccur)). Based on this term, this function also has t(cinf), s(cinf)

and t(ccur) as the descriptive variables.

Finally, for the rest cases where the channel distance is between 1 to 3, we employ a linear function

to model the interference from adjacent channels. We designed the function which contains t(cinf),

s(cinf) and t(ccur) as the descriptive variables. In addition, the interaction terms among t(cinf), s(cinf)

and t(ccur) are introduced as the descriptive variables.

4.3.2 Determining Classifier and Model Parameters

Firstly, in order to obtain predicate sat, we have applied Support Vector Machine (SVM) based learning.

We have labeled “saturated” or “unsaturated” to each data in the dataset. This labeling is simply done

by the delay values where 100ms delay is considered as the saturation point. Then using the set of

vectors (t(cinf), s(cinf), t(ccur)) with labeled delay or frame delivery ratio as a training dataset, we

finally obtained a state classifier with different channel distance from 0 to 3, which is directly used as

sat.

Secondly, we have applied multiple regression analysis to determine all the unknown parameters

(ui and vj , 0 ≤ i ≤ 4 and 0 ≤ j ≤ 7) to model the performance in the case of saturation. In order

to obtain the values of these parameters, we extracted the vectors labeled with “saturated” from the

original dataset. We applied multiple regression analysis for this subset where delay and frame delivery

ratio are groundtruth and the unknown parameters are explanatory variables. Parameters ui and vj

obtained by multiple regression analysis are summarized in Table 4.2. The value 0 in the table indicates

that there is no interference effect by that term. This decision is based on the indicator AIC (Akaike’s

Information Criterion) which is used for model selection on multiple regression analysis.
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Table 4.2: Regression analysis results for fD and fT
(a) Coefficients of fD and fT (Saturated, c(cnew, cinf) == 0)

Model coefficients
u0 u1 u2 u3 u4

ud 10.08839 11.33052 -6.43820 -0.200706 -9.13417
ut -0.091064 -1.581287 0.489509 0.109054 0.712960

(b) Coefficients of fD (Saturated, c(cnew, cinf) > 0)
Channel coefficients
Distance v0 v1 v2 v3 v4 v5 v6 v7

1 5.1669 -12.7752 -9.9034 -2.9089 -33.8512 6.3304 1.8806 0
2 3.809 -23.179 -5.935 -1.185 48.670 2.096 10.822 -13.644
3 -5.232 -23.425 11.473 7.862 38.979 -14.945 14.505 -14.738

(c) Coefficients of fT (Saturated, c(cnew, cinf) > 0)
Channel coefficients
Distance v0 v1 v2 v3 v4 v5 v6 v7

1 0.98471 0.37795 0.13484 -0.17870 -1.88417 -0.49107 0 0
2 1.42418 0.56237 -0.70279 -0.66546 -2.00872 0.41862 0 0
3 2.35717 0.85577 -2.19927 -1.69353 -1.95952 2.12111 -0.17065 0

4.3.3 Modeling the Effect from Multiple Adjacent Channels

Our prediction function proposed so far can grasp the interference state from a single channel and

predict the communication quality. However, considering the application of the proposed method in

the scenario imitating the real world, it is necessary to comprehensively capture the influence from

adjacent channels occurring due to frequency overlap in the allocation of 2.4 GHz band. On the other

hand, according to the design policy of the proposed method, if we attempt to build an interference

dataset in which setting parameters are changing step by step in order to consider the influence from

multiple channels, the number of simulation scenarios increases. The total number of combinations

explosively increases, which is not realistic. Therefore, in the proposed method, we attempt to quantify

the influence from multiple channels by a combination of predicted values for each single channel.

In order to quantify the multi-channel effect, we prepared simulation scenarios in which each two

interference pair operates on two channels one by one like Figure 4.4. Each detailed simulation setting

is shown in the Table 4.3. We put three APs and their corresponding STAs in 400m×400m. The

distance between each AP and its corresponding STA is fixed 10m and every node is static. The

distance between the target pair and interference pairs are configured fixed 100m like Figure 4.4.

Every node follows IEEE 802.11g standards in 2.4 GHz band. STAs follows the channel setting of the

associated APs, and the channel settings of APs is set for each scenario. All nodes send packets with

the transmission power 20dBm with the modulation BPSK 3/4 in which the maximum data rate is

9Mbps. In these scenario, the traffic is assumed as uplink communication and the traffic demands is

configured the fixed value. The traffic demands of each AP’s application are set by iperf-udp-data-rate.

To quantify the effect from multiple adjacent channels, interference pair 1 uses the channel number
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Figure 4.4: Multi-channel scenario about fD and fT

Table 4.3: Simulation settings for multi-channel scenario about fD and fT

Parameter Values
Area Size 400m×400m
Interference APs - Target AP Distance 100m
AP - STA Distance 10m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Channel of target AP cnew = 6
Channel of Interference 1 cinf = 6
Channel of Interference 2 cinf ∈ {7, 8, 9}
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Antenna Height 1.5m
Tpreample 20µs
Propagation Model Free Space
L7 application iperf-udp-data-rate
L7 traffic (Interference APs) 3Mbps
L7 traffic (Target AP) 9Mbps
Payload Size 1470byte

6 which is the same as the cnew. On the other hand, the channel of interference pair 2 is configured for

each scenario. Its channel is selected from the number 7 to 9, which means that the channel distance

is from 1 to 3.

4.3.4 Determining Multiple Effect Model

The delay time observed at the target AP is shown the blue boxes in Figure 4.5 as a simulation result.

It can be confirmed that the effect of the closer channel distance is strongly received in the case of

the influence from multiple channels. This means that the simulated delay value is the highest in the

most nearest channel distance case (c(cnew, cinf1) = 0 and c(cnew, cinf2) = 1). Moreover, we can confirm

that the influence of the father channel distance is somewhat, but weak influence occurs as the inter-
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Table 4.4: Correlation result in multi-channel scenario with function fD output and simulated delay
value

Channel Distance Function output Groundtruth
(0,1) 1.417 0.968
(0,2) 1.125 0.800
(0,3) 0.879 0.584

(0,none) 0.671 0.554

Correlation 0.979

channel distance increase. This means that the simulated delay value in the case of c(cnew, cinf1) = 0

and c(cnew, cinf2) = 3 is lower than in the case of c(cnew, cinf1) = 0 and c(cnew, cinf2) = 1, but the

simulated delay value in the case of c(cnew, cinf1) = 0 and c(cnew, cinf2) = 3 is slightly higher than in

the case of c(cnew, cinf1) = 0 and c(cnew, cinf2) = none.

From these findings, we designed the way to aggregate the multiple interference effect indicators fD

or fT. When cnew is assumed to be affected by multiple channels, the target AP is strongly influenced

by the nearer one. Then we quantify by the weighted sum inversely proportional with the weight

determined based on the channel distance between channel cnew and the interference channel cinf , and

the function output for each single channel as following equation 4.7 and 4.8.

scorefD(cnew) =
∑

i∈AC(cnew)

w(cnew, i) · fD (4.7)

scorefT(cnew) =
∑

i∈AC(cnew)

w(cnew, i) · fT (4.8)

We designed the two kinds of the weight function based on the channel distance as following

equation 4.9 and 4.10. The first equation 4.9 is the simple reciprocal of the channel distance. The

second equation 4.10 is the square of the reciprocal of the channel distance. In these equation, 1 is

added so as to be equal magnitude influence when the channel distance is equal to 0. By comparing

the error between the function output and the simulated channel performance, we decided to use the

equation 4.10

w(cnew, cinf) =
1

c(cnew, cinf) + 1
(4.9)

w(cnew, cinf) =
1

(c(cnew, cinf) + 1)2
(4.10)

In this simulation experiment, the correlation coefficient between scorefD and the simulated delay

value is 0.97 as shown in Table 4.4. This result shows that our method can sufficiently follow the effect

from multiple channels.
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Figure 4.5: Quantify the multiple channel effects about fD

4.4 Estimator Validation

In this section, we show the capabilities of our functions fD and fT that estimate the delay and frame

delivery ratio.

4.4.1 Validation Dataset

In order to validate our proposed performance estimator, we divided the interference dataset into 2

groups. One group is used for the training and the other group is used for this validation. We picked

up 2,592 scenarios for testing from the dataset randomly which are 20% of all simulation cases. The

remaining 80% cases is used for training the classifier sat and determining the coefficients by applying

multiple regression analysis.

4.4.2 Validation Result

Classifier sat

Firstly, we show the classification capability of sat classifier by applying sat to the test dataset. The

classification result is shown in Table 4.5. We show four subtables (confusion matrices) categorized

by channel distance c(cnew, cinf) =0, 1, 2 or 3. We note that the rows show the groundtruth and the

columns show sat outputs. From these results, the accuracy is quite high. Even in the worst case

(c(cnew, cinf) = 1), the accuracy is 97.685%. We found that the classification is rather false positive.

The average accuracy was 98.34%, and their false positive and false negative are negligible values.
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Table 4.5: sat classifier output with different channel distance |cnew − cinf |
(a) |cnew − cinf | = 0

channel distance classifier output
0 saturated unsaturated

groundtruth saturated 371 0
unsaturated 5 272

(b) |cnew − cinf | = 1

channel distance classifier output
1 saturated unsaturated

groundtruth saturated 346 0
unsaturated 15 287

(c) |cnew − cinf | = 2

channel distance classifier output
2 saturated unsaturated

groundtruth saturated 314 1
unsaturated 12 321

(d) |cnew − cinf | = 3

channel distance classifier output
3 saturated unsaturated

groundtruth saturated 265 0
unsaturated 10 373

Multiple Regression Function

Secondly, we have examined the accuracy of regression functions by using the test dataset. However,

we remove some scenario manually to test the regression function because the test dataset contains

“unsaturated” condition and the function does not work in this situation. As we have used regression

analysis, we may directly refer to the coefficient of determination (R2) to validate the fitting to the

values. The adjusted R2 value is an index which shows the explanation accuracy of the linear expression

constructed by the regression analysis. As this value is closer to 1, it is judged that the tendency of

the objective variable is better grasped. We show the results in Table 4.6. As seen in the table, in all

the cases, the model well captures the delay and frame delivery ratio behavior as they are almost close

to 0.8 or larger. In particular, the frame delivery ratio with c(cnew, cinf) = 0 is the best case where

0.98 is achieved. On the other hand, the model does not capture the trend of delay and frame delivery

ratio with c(cnew, cinf) = 1. It is difficult to grasp the inter-channel interference effect by only MAC

frame monitoring. Even so, R2 value of fT with c(cnew, cinf) = 1 is over 0.75.

Finally, we have shown the accuracy of the delay and frame delivery ratio estimation results. For

visualization purpose, we have also shown the graphs in Figs. 4.6 and 4.7 that show both groundtruth

and the corresponding estimation results where the plots are sorted by the groundtruth values. The

visualized scenario is limited by the channel state which is labeled “saturated”. We can confirmed that
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Table 4.6: Coefficients of determination of fD and fT with different channel distance |cnew − cinf |
Channel Distance Co. of Det. (R2)

fD fT

0 0.8215 0.9815
1 0.7906 0.7520
2 0.8463 0.8161
3 0.8306 0.8796

Table 4.7: Average mean square errors of fD and fT with different channel distance |cnew − cinf |
Channel Distance Ave. Mean Square Errors

fD (sec.) fT (ratio)
0 0.1759 0.0178
1 1.1545 0.1055
2 0.9894 0.0897
3 1.1358 0.0879

the most accurate case is the channel distance 0 and the estimator captures the groundtruth well. We

have also summarized the average mean square errors in Table 4.7. For other cases, the error of delay

estimation is about 1 second and the error of frame delivery ratio estimation is 10% or less. These

values are quite reasonable considering the fact that we only use MAC frame passive observation and

this is a lightweight estimation function that can easily be implemented on any APs as a value-added

function.

4.5 Evaluation of Estimator

In this section, we show the evaluation result of our proposed estimator in more general scenario.

4.5.1 Evaluation Scenario Setting

In order to evaluate our proposed estimator in more general scenario, we have prepared the evaluation

environment in the simulator. Each detailed simulation setting is summarized in the Table 4.8. From

our simple site survey result, we confirmed that there are several APs in any channels in urban

environment. Therefore we have prepared a representative interference AP-STA pair in each channel,

and these 13 pairs are deployed in a position away about 100m from the target AP-STA pair in the

simulation area. Like Figure 4.8, the topology of representative interference pairs is like a circle in

which the target AP and its STA are the center of the circle. Each STA is deployed 5m away from

its AP and all nodes are static. Every node follows IEEE 802.11g standards in 2.4 GHz band. All

nodes send packets with the transmission power 20dBm with the modulation BPSK 3/4 in which the

maximum data rate is 9Mbps. In these scenario, the traffic is assumed as uplink communication and

the traffic demands is configured the fixed value. The traffic demands of each AP’s application are set
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(a) 1 (b) 2

(c) 3 (d) 4

Figure 4.6: fD (delay) output and groundtruth with different channel distance |cnew − cinf |

by iperf-udp-data-rate. Their traffic configurations are adjusted to IPERF 5 Mbps (channel 1, 6, 11),

1 Mbps (channel 3, 4, 13) and 3 Mbps (others). This traffic volume setting is designed based on the

AP channel distribution. In general, channel 1, 6 and 11 are often used for avoiding the inter-channel

interference by the network manager. Then, higher traffic volume is set in channel 1, 6, 11 and, on the

contrary, the setting of channel 3, 4, 11 is lower than others. The target AP-STA pair communicates

from channel 1 to 13 with IPERF 4.5Mbps. In this evaluation, we compare the estimator output and

groundtruth and confirm that the estimator can capture the best channel.

4.5.2 Evaluation Result

At first, we plotted the function output and the simulated delay values in Figure 4.9. The green boxes

shows the simulated delay values and the blue line shows the function output. We can confirmed that

our estimator can capture the overall tendency of the simulated delay values from this figure.

Secondly, table 4.9 shows the simulated delay value (groundtruth) of target pair and the estimator
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(a) 1 (b) 2

(c) 3 (d) 4

Figure 4.7: fT (frame delivery ratio) output and groundtruth with different channel distance
c(cnew, cinf)

output in each channel. From this table, we can confirmed that the target pair should select the channel

number 13 based the simulated delay value, which is the lowest value in all 13 channels. That is, we

want to confirm whether our proposed estimator can choose channel number 13. The outputs of our

proposed estimator are also shown in Table 4.9. Comparing the function output of each channel, the

lowest value is the one of channel number 13. Therefore we have confirmed that our estimator imply

the best channel is 13. We also confirmed the correlation coefficient is above 0.85 and our estimator

can capture the tendency of groundtruth. From this simulation result, the delay values of the worst

channel 9 was about 3.7 times the value of the best one. It is worth noting that our channel selection

based on the interference prediction shows significant improvement of communication quality.

61



Figure 4.8: Evaluation Scenario

Figure 4.9: Evaluation result

4.6 Conclusion

This chapter presents a channel migration technology that can control congestion among Wi-Fi chan-

nels based on the concept of interference environment sensing. Since our previous function is to “rank”

the current channel status (i.e. it is a “diagnosis” function), it is difficult to estimate the channel status

after an AP actually moves from the current channel into that channel to expect quality improvement.

As a result, the AP would make an erroneous channel selection. In order to let APs (some of them

may be selfish) behave in more intelligent ways and to pursue stability in such an autonomous and

uncoordinated Wi-Fi environment, it is quite essential to provide such an estimation function for APs

to correctly estimate the status without actually moving into it.

Given the information about the other APs’ traffic (volume, signal strength and the channel) and
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Table 4.8: Simulation settings for evaluation scenario

Parameter Values
Area Size 400m×400m
Interference APs - Target AP Distance [50m, 150m] (uniform distribution)
AP - STA Distance 5m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Channel of target AP to be determined
Channel of Interference selected one by one from 1 to 13
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Antenna Height 1.5m
Tpreample 20µs
Propagation Model Free Space
L7 application iperf-udp-data-rate
L7 traffic (Interference APs) determined based on the AP density
L7 traffic (Target AP) 4.5Mbps
Payload Size 1470byte

its own traffic (volumes) that may be moved to a target channel c, the function predicts capacity

saturation in channel c caused by this movement without actual channel migration. In the case of

channel saturation, our proposed function estimates the expected performance under the capacity

saturation. In order to build our proposed function, we decided to use the network simulator to

obtain the interference dataset for understanding the relationship between the observed parameters

and interference effect. We have prepared more than 10,000 scenarios and conducted simulations which

are assumed that the own traffic of the target AP moves to the new channel to simulate “channel state

change”. We have investigated the simulation dataset to capture not only the interference effect but

also the channel state change due to the channel migration of the target AP. As a result, we decided

to apply machine learning based classification algorithm to estimate the channel saturation due to the

traffic movement in channel migration. In addition, we applied multiple regression analysis to build a

prediction function of channel performance (latency and data delivery ratio).

To validate the model accuracy, we have conducted simulation experiments with different realistic

scenarios. For this purpose, we have conducted additional 2,000 simulations. As a result, we confirmed

that the classifier sat can determine the accurate channel state without actual channel migration. Also,

our proposed function can estimate the frame delivery ratio with less than 10% error in average.

Finally, we demonstrate that the proposed function can be used in more general scenario for channel

selection at the target AP. To evaluate our function, we prepared the evaluation environment where the

representative interference AP in each channel interferes with the target AP. We designed the traffic

parameter based on the density of APs in each channel. In this scenario, we found that our channel

selection function can predict the best channel and the performance trend of overall 13 channels. In

addition, we confirmed the correlation coefficient between our estimator output and the groundtruth
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Table 4.9: Correlation result in evaluation scenario with function output and simulated delay value
(groundtruth)

Channel Function output Groundtruth
1 3.684 2.133
2 3.632 2.224
3 3.352 1.788
4 3.606 1.634
5 4.569 2.009
6 5.869 3.125
7 6.245 4.993
8 6.043 5.484
9 6.043 6.082
10 6.246 3.889
11 5.868 3.743
12 4.315 2.063
13 2.592 1.635

Correlation 0.853

is above 0.85 and our estimator can capture the tendency of overall channel performance.

We note that some contents in this chapter refer our previous publications [106,107].
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Chapter 5

Performance Analysis of
Prediction-based Channel
Management in Realistic Urban
Scenario

5.1 Introduction

We have initially proposed a method to quantify the interference effect by multiple regression analysis

with simple and reasonable MAC frame monitoring in chapter 3. In that literature, in order to

consider the inter-channel interference problem and the diversity of traffic and RSSI, we have designed

an indicator that quantifies the channel interference using a dataset generated by precise simulations.

Then, in the following chapter 4, we have improved our initial method to consider the channel migration

of the target AP. This algorithm can estimate the real delay and frame delivery ratio values, which

can be used to support decision making by access points in migrating to other channels for better

performance.

However, the performance analysis of our proposed method was not examined enough. In this

chapter, in order to evaluate our method in more realistic urban situations, we modeled the urban

environment in the simulator based on the real site survey results in Osaka. As a result, we have built

three realistic urban scenarios which was simulating Osaka downtown.

For this purpose, firstly, we should understand the current situations of urban Wi-Fi environment.

We focused on the traffic conditions and Wi-Fi AP deployment. To understand the traffic condition

in such environment, we conducted traffic monitoring around Osaka station. Figure 5.1 shows the

congestion of Wi-Fi APs around Osaka station. As you can see, the congestion is quite high and we

regarded this environment as a typical urban situation in our research. To build the Wi-Fi traffic

model in an urban area, we conducted the monitoring at 10 locations including shopping malls, cafes,
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Figure 5.1: Congestoin of Wi-Fi APs around Osaka station [1]

Figure 5.2: Wi-Fi Radio Map of Osaka City

commercial buildings and stations on both weekdays and holidays. This monitoring was carried out

in each channel for five minutes, and we got the number of APs and STAs from the source and

destination MAC addresses of Beacon frames and Probe Response frames. Then we analyzed this

actual measurement and added more traffic considering the future growth of Wi-Fi traffic. This future

traffic prediction is determined based on the distribution of the number of APs in each channel.

In addition, in order to understand the current Wi-Fi AP deployment, we used Wi-Fi Radio Map

of Osaka City which was provided by our Wi-Fi bigdata project [2, 3], as shown in Figure 5.2. This

dataset provided the estimated locations of the actual APs, the actual channel usage information and

the radio map. We used this dataset to obtain the actual APs’ location and their channel usage.

Finally, we demonstrate that our proposed function can be used in this urban model for channel

selection at each AP. Through the simulation experiments with such real data in real geography model,

we show that our function can identify the best channels and APs can migrate to them accordingly.

Moreover, we compared our proposed method with naive channel selection approaches and confirmed

the effectiveness of channel management in such a realistic environment. As a result, the throughput
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of the target AP can be 1.83 times higher than that of the AP which randomly selects channels.

5.2 Wi-Fi Channel Selection Strategy

In this section, we present how to conduct the channel selection based on our proposed channel perfor-

mance estimator. We firstly describe the overview of our proposed AP’s architecture with our method.

Then, we introduce prediction-based channel selection strategy.

5.2.1 Overview

We assumes the situation in which the IEEE82.11g AP of interest is deployed at the major intersec-

tion in urban environment as shown in Figure 5.3. The target AP is affected by interference from

surrounding APs and their STAs. In addition, the target AP is exposed to inter-channel interference

because the channel frequency in 2.4 GHz is partially overlapped. In order to let the target AP behave

in more intelligent and autonomous ways and to pursue stability in an uncoordinated Wi-Fi envi-

ronment, the target AP has the two kinds of functions to estimate the best channel for autonomous

channel management. The first function is MAC frame monitoring function to understand the in-

terference environment around the target AP. In this step, the target AP monitors MAC frames in

each channel by using multiple Wi-Fi interfaces for monitoring. Basically the target AP gathers the

received signal strength (RSSI), the length and the transmitted data rate of observed MAC frames in

each channel. RSSI is used for understanding the interference signal strength, and the frame informa-

tion is for understanding the interference traffic volume. These information are summarized for each

channel. Then, the summarized parameters are input of the second performance prediction function.

The performance prediction function is constructed in two steps. In the first step, the target AP judges

whether channel saturation occurs when the target AP conducts channel migration. When the channel

migration is conducted, the traffic related with the target AP moves together into the new channel.

Since the brought traffic may causes huge traffic saturation, we introduced the binary classifier to our

channel selection strategy. When the classifier labels the channel condition as “unsaturated”, the per-

formance prediction function judges that the channel migration may not cause the traffic saturation.

In the other case, the function applies regression analysis-based performance prediction to understand

how severe the saturation is. This two-step prediction function is trained by using a large simulation

dataset beforehand. The simulation dataset is designed to understand the relationship between the

interference effect and observed parameters. Finally, the target AP estimates the best channel by

comparing the function output which represents the interference effect.

5.2.2 Prediction-based Channel Selection

We let AP denote an IEEE802.11g AP of interest (called target AP) and ST denote each Wi-Fi device

associated with AP . We assume that AP has commodity Wi-Fi chipsets for traffic monitoring, which
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Figure 5.3: Overview of prediction-based channel selection

are not used for the communication. Suppose AP and its corresponding ST currently use channel ccur

in the Wi-Fi channel set (denoted as C) and monitors the traffic of other AP(s) (interference AP(s))

that use the same or other channels. In particular, AP calculates the following two values for each

channel k; (i) temporal channel utilization ratio (or simply channel utilization ratio) denoted as t(k),

and (ii) the received signal strength denoted as s(k). Obtaining these values does not require driver

modification, which is a preferable feature for easy installation and operation. For instance, these

values such as RSSI, frame length, and transmission rate can be acquired from Atheros chipset in

“monitor mode”. We note that in order to obtain other information like the number of transmitters,

AP needs to maintain a unique address group, which incurs high calculation cost. Instead, our method

just needs to update a vector that consists of captured time, frame length, Tx rate and RSSI.

We let F (k) denote the set of observed frames in a certain observation time window W for channel

k. We also let len(f) and dr(f) denote the length (bit) of an observed frame f and the transmission

rate of IEEE802.11g frames, which is one of 6, 9, 12, 18, 24, 36, 48 and 54 Mbps (in case of OFDM

PHY), respectively. We regard that t(k) is as the collection of occupation time by frame f and preamble

(denoted as Tpreamble) and is defined in Equation (5.1).

t(k) =
∑

f∈F (k)

{
len(f)

dr(f)
+ Tpreamble

}
(5.1)

We adopt Tpreamble = 20µs based on the preamble duration in the 802.11g ERP-OFDM.
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We let rss(f) denote the RSSI value of frame f . s(k) is defined in Equation (5.2).

s(k) =

∑
f∈F (k)

rss(f)

|F (k)| − θmin

θmax − θmin
(5.2)∑

f∈F (k) rss(f)/|F (k)| represents the average RSSI value within W . θmin and θmax represent the min-

imum RSSI threshold of data frame reception (−90dBm in IEEE802.11g) and the expected maximum

RSSI (usually −40dBm or around), respectively. θmin is determined based on the preamble threshold

value on frame reception.

We define inter-channel distance (simply called channel distance hereafter) between channel k and

channel l, denoted as c(k, l), by Equation (5.3).

c(k, l) = |k − l| (5.3)

The channel distance is expressed as the absolute value of the difference between channels.

In 2.4GHz band, two APs are recommended to operate with channel distance of 5 or larger to avoid

interference. For example, channels 1, 6 11 are popularly used in many real situations. However, in our

preliminary simulation experiment, we confirmed that interference from those with channel distance 4

or larger has little affect on the performance. Therefore, in our method, we regard that those channels

with 3 or smaller channel distance from channel c interfere with c and we call them adjacent channels

of c. AC(k) denotes the set of adjacent channels and is defined in Equation (5.4).

AC(k) = {l|c(k, l) ≤ 3} (5.4)

Then our channel selection strategy is given as follows. Given cnew to which AP likes to move

from ccur and given observations t(cinf), s(cinf) and t(ccur) where cinf is each channel that may affect

the performance of cnew, we provide two functions fD and fT, which return the expected L2 delay

and (normalized) L2 frame delivery ratio (i.e. channel utilization ratio), respectively. Having these

two estimators, AP can predict the performance when it moves from ccur to cnew, just by observing

IEEE802.11 MAC frames and their RSSI in channel cinf at AP . Also, taking into consideration the

ease of installation and lightweight operation, we only implement the pre-built function on AP and do

not conduct resource-consuming operations like online learning.
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Table 5.1: Model parameters of channel performance function
(a) Coefficients of fD (Saturated, c(cnew, cinf) == 0)

Model coefficients
u0 u1 u2 u3 u4

ud 10.08839 11.33052 -6.43820 -0.200706 -9.13417

(b) Coefficients of fD (Saturated, c(cnew, cinf) > 0)
Channel coefficients
Distance v0 v1 v2 v3 v4 v5 v6 v7

1 5.1669 -12.7752 -9.9034 -2.9089 -33.8512 6.3304 1.8806 0
2 3.809 -23.179 -5.935 -1.185 48.670 2.096 10.822 -13.644
3 -5.232 -23.425 11.473 7.862 38.979 -14.945 14.505 -14.738

Our functions are given in Equation (5.5) and Table 5.1.

fD(cnew, cinf , t(cinf), s(cinf), t(ccur))

=



0 (|cnew − cinf | > 3 or sat = “unsaturated”)

u0 + u1 log(t(cinf) + t(ccur))
+u2 · t(cinf) + u3 · s(cinf) + u4 · t(ccur)

(|cnew − cinf | = 0 and sat = “saturated”)

v0 + v1 · t(cinf) + v2 · s(cinf) + v3 · t(ccur)
+v4 · t(cinf) · s(cinf) + v5 · s(cinf) · t(ccur)
+v6 · t(cinf) · t(ccur) + v7 · t(cinf) · s(cinf) · t(ccur)

(0 < |cnew − cinf | ≤ 3 and sat = “saturated”)

(5.5)

When cnew is assumed to be affected by multiple channels, we quantify by the weighted sum

inversely proportional to (c(cnew, cinf)+1)2 of the function output for each single channel using equation

(5.6) and (5.7).

w(cnew, cinf) =
1

(c(cnew, cinf) + 1)2
(5.6)

scorefD(cnew) =
∑

i∈AC(cnew)

w(cnew, i) · fD (5.7)

Finally, the target AP estimates and determines the best channel by comparing the function output

scorefD(cnew) which represents the interference effect.

5.3 Traffic Model Based on Actual Traffic Measurement in
Osaka Downtown

In this section, we describe the Wi-Fi traffic measurement result around Osaka station. As mentioned

above, this measurement was conducted for understanding the current traffic condition in typical urban

environment. We focused on the distribution of APs over 13 channels, the number of APs and STAs,

the RSSI, and the traffic volume. Then we analyzed these actual measurement and added more traffic
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Figure 5.4: AirPcap Nx and Wireshark

considering the future growth of Wi-Fi traffic. This future traffic prediction is determined based on

the distribution of the number of APs in each channel.

5.3.1 MAC Frame Monitoring in Osaka Downtown

For the reproduction of Wi-Fi overcrowded environment in simulation, we conducted frame monitoring

in the real environment. As mentioned above, we used a USB wireless LAN protocol analyzer, AirPcap

Nx, and the analysis software, Wireshark, as shown in Figure 5.4. AirPcap Nx can capture 802.11 MAC

frames including frames that Frame Check Sequence (FCS) is not correct. Wireshark can analyze the

measurement log files (.pcap files).

Figure 5.5 shows the ten locations where we performed the MAC frame monitoring around Osaka

station. As Osaka station is reported the busiest train station in Osaka, these locations can be regarded

as typical urban environment. Also, we confirmed the congestion of Wi-Fi APs around Osaka station in

Figure 5.1. In our research, we concluded that this location is suitable for our assuming environment.

We selected the monitoring locations including stations, outdoor environment, shopping malls, cafes

and commercial buildings to find the difference with the location and situation. These locations are

shown in Figure 5.5. In Figure 5.5, the green, orange, blue, and black boxes represent the station,

shopping malls and commercial buildings, cafes, and outdoor environment, respectively. We surveyed

every location on both weekdays and holidays to find the difference between them because the visitors

may be different on weekdays and holidays.
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Figure 5.5: Traffic monitoring locations around Osaka station

We have captured the MAC frames that are sent and received at APs and STAs in each channel

for five minutes in one location with AirPcap Nx. Due to the limited number of AirPcap Nx, we could

monitor only six channels at the same time. Since 2.4 GHz band has 13 channels, we divided the

channels into three groups and we measured the channels in each group simultaneously.

5.3.2 Traffic Modeling by Analyzing Measurement Result

From this observation, we obtain some statical values. As stated earlier, we focused on the distribution

of APs over 13 channels, the number of APs and STAs, the RSSI, and the traffic volume of all sensed

frames.

AP distribution patterns over 13 channels

At first, we focused on the APs distribution over 13 channels since the concentration of APs to a

specific channel directly affects the characteristics of Wi-Fi utilization. In order to obtain the number

of APs, we counted the source MAC addresses of Beacon frames and the destination MAC addresses of

Probe Response frames. In the same way, to obtain the number of STAs, we counted the destination

MAC addresses of Probe Response frames. We summarized the number of APs in each channel to

survey the AP distribution.

As stated earlier, it is easily imagined that most APs are configured at either channel 1, 6 or 11 due

to the partial channel overlapping in 2.4GHz band. At first, to find such various distribution patterns,
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(a) concentrated on 1, 2 (b) concentrated on 1, 6, 11 (c) scattered

Figure 5.6: Normalized AP distribution in each channel and each location

we applied k-means clustering to this dataset. k-means algorithm is a typical clustering method for

unsupervised learning. We apply k-means algorithm to the dataset captured on holidays by different

k values. As a result, when we use the parameter k = 3, we can classify three kinds of distribution

patterns clearly. These three kinds of distribution patterns which we found are (a) concentrated on

channel 1 and 2, (b) concentrated on channel 1, 6 and 11, (c) scattered as shown in Figure 5.6.

The first pattern, (a) concentrated on channel 1 and 2 in Figure 5.6, can be seen at a shopping mall

and shows the ratio of channels 1 and 2 is extremely high. We can consider that this case is the result

of easy installation by default settings. The second pattern, (b) concentrated on channel 1, 6 and 11

in Figure 5.6 can be seen at office buildings and shopping malls and shows some peaks at channels

1, 6 and 11. We can consider that the channels of APs are managed so as not to interfere with each

other since such a building has a network administrator. The last pattern, (c) scattered in Figure 5.6,

can often be seen outdoors and at busy areas. This shows the number of APs in channels 1 and 11 is

slightly higher than the others. We consider that this pattern is the most chaotic situation.

Relationship of AP distribution between holidays and weekdays

Secondly, we compared the AP distributions of holidays with the one of weekdays at the same location.

We assume that two distributions of holidays and weekdays at the same location have strong correlation

since the most APs are considered to be permanently installed. This means that it becomes possible to

reduce the frequency of traffic monitoring when the trends are the same. To confirm the relationship,

we calculated the correlation coefficients in each location as shown in Table 5.2. We can confirmed

that the coefficients are almost above 0.70, except the cafe 3 case. This means the two distributions

have high correlation. In addition, we plotted and compared the total sum of APs between in holidays

and weekdays in Figure 5.7 (a). We found that the mean values do not really change but the variance

change slightly. From this result and for simplicity, we can assume that the distribution of APs in

holidays and weekdays are the same.
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Table 5.2: Correlation of AP distributions (Holidays and Weekdays)

Location Correlation
outdoor 1 0.82
outdoor 2 0.78
shopping mall 1 0.75
shopping mall 2 0.91
shopping mall 3 0.73
station 1 0.86
station 2 0.78
cafe 1 0.80
cafe 2 0.77
cafe 3 0.56

(a) APs (b) STAs

Figure 5.7: Difference of these total volume between weekdays and holidays

Relationship between the number of APs and STAs

Thirdly, we compared the distribution of APs and the distribution of STAs at the same time in the

same location. In the same way, we assume that two distributions of APs and STAs at the same time

and location have strong correlation since STAs need to associated with an AP to access the internet

and the number of STAs is considered to be roughly proportional to the number of APs. To clarify

this correlation, we calculated the correlation coefficients at the same time in each location as shown

in Table 5.3. As shown in Table 5.3, except the station 1 and cafe 3, coefficients are above 0.7. In

addition, we plotted and compared the total sum of STAs between in holidays and weekdays in Figure

5.7 (b). As shown in Figure 5.7 (b), the mean of the number of STAs increases 60% on holidays. This

is because more people use their laptops in public areas like cafes on holidays. We need to consider

that the traffic gain on holidays this is part of our future work. For simplicity, we also consider that

the distribution of STAs is the same as APs.
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Table 5.3: Correlation of AP and STA distributions
Location Correlation
outdoor 1 0.95
outdoor 2 0.92
shopping mall 1 0.91
shopping mall 2 0.85
shopping mall 3 0.93
station 1 0.63
station 2 0.92
cafe 1 0.74
cafe 2 0.72
cafe 3 0.53

(a) RSSI (b) Traffic

Figure 5.8: Difference of these total volume between weekdays and holidays

Averaged RSSI and the traffic volume of all sensed frames

Finally, we compared the average of RSSI and the traffic volume on holidays and weekdays. The

volume of traffic is calculated by averaging the sum of the frame length transmitted and received in

each channel, and RSSI is similarly calculated by averageing RSSI of all frames in each channel. This

result is shown in Figure 5.8. We found that the mean values do not really change but the variances

change slightly. We concluded that we can ignore the effect of day of the week and this knowledge can

be used for channel monitoring policy.

5.3.3 Problems of Urban Channel Allocation

By analyzing our measurement results in typical urban environment, we found problems of urban

channel allocation.

As seen in Figure 5.6 (c), especially in urban outdoor environments, we can confirm that the

uncoordinated AP installation is underway. Therefore, we have investigated the interference problems
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Table 5.4: Simulation settings with urban channel allocation

Parameter Values
Area Size 200m×200m
Coordinates of APs randomly deployed
AP - STA Distance 5m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Channel selected according to channel distribution
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Antenna Height 1.5m
Tpreample 20µs
Propagation Model Free Space
L7 application iperf-udp-data-rate
L7 traffic volume configured based on actual measurement result
Payload Size 1470byte

with such channel allocation in urban situation. In order to investigate the uncoordinated channel

allocation problem in such dense Wi-Fi environment, we prepared the simulation environment which

imitated Osaka station area.

We have prepared a 200m×200m field in the simulator, called Scenargie, and one hundred APs

are deployed randomly in this simulation environment. Each AP has one corresponding STA, and the

distance distance between the AP and its STA is 5m. We ignored the mobility of the nodes in this

scenario. All node follows IEEE 802.11g standards in 2.4 GHz band and transmits packets with the

transmission power 20dBm and the modulation BPSK 3/4 in which the maximum data rate is 9Mbps.

We constructed three types of scenario with the AP distributions which are (a), (b) and (c) in Figure

5.6. In these scenario, the channel setting of APs are determined according to the three AP distribution

respectively. In addition, the traffic volume of APs are set based on the actual measurement result in

each channel. The summary of simulation parameters are shown in Table 5.4.

We show these three simulation results in Figure 5.9. In this figure, we show the averaged delay

values of all AP-STA pairs in each scenario, (a) concentrated on channel 1/2, (b) concentrated on

channel 1/6/11, and (c) scattered. From this result, the worst delay value is observed in the scenario

(a). In (c), since the channel allocation of APs is dispersed throughout, the delay is smaller than (a).

This means that the concentration of APs to one channel causes very huge interference and let the

overall communication quality low because the interference influences each other. Also, we confirmed

that the best channel allocation is (b). In this coordinated scenario, the APs are distributed in channel

1, 6 and 11 to mitigate the interference. These facts indicate the importance to select interference-free

channels as the scenario (b) models administrated environments. Our proposed method is designed to

avoid interference and the same facts have been confirmed in the following experiment.

We prepared the following scenario in the simulator. We have prepared a representative interference
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Figure 5.9: Averaged delay values in three scenario ((a) concentrated on channel 1/2, (b) concentrated
on channel 1/6/11, (c) scattered)

(a) target AP (b) all APs

Figure 5.10: Result of delay values in evaluation scenario

AP-STA pair in each channel, and these 13 pairs are deployed in a position away from about 100m

from the target AP-STA pair. The topology of representative interference pairs is like a circle in

which the target AP and its STA are the center of the circle. Each STA is deployed 5m away from its

corresponding AP and we ignored the mobility of all nodes. The traffic demands of each interference

AP’s iperf application are determined based on the real traffic measurement according to the channel.

The traffic setting of the target AP is set to 4.5Mbps. The target AP-STA pair communicates from

channel 1 to 13 and we observed the delay value of the target AP and the averaged delay value of all

APs. The other simulation settings are the same in the Table 5.4.

Figure 5.10 shows the simulated delay value. The delay value of the target AP is shown in this

figure (a), and the averaged delay value of all APs is shown in (b). From these figures, it is found that

the target pair should select channel 13. In addition, we can confirm that the overall network quality

is the best when the target pair select the channel number 13 as shown in Figure 5.10 (b). We have

confirmed that our proposed method can choose the channel 13.
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In a realistic scenario constructed in the subsequent sections, it is possible to avoid such problems

confirmed in this section by selecting and using a channel with less interference influence by our

proposed method.

5.4 Urban Scenario Construction

In this section, we describe how to construct the urban scenario with the traffic model in section 5.3.

As stated earlier, we use the actual information about the current positions and channels of existing

APs in Osaka downtown. These information is obtained from Wi-Fi Radio Map of Osaka City [2]

which our research group have constructed [3]. In following section, firstly, we introduce Wi-Fi Radio

Map of Osaka City and then we describe the design of the evaluation scenario.

5.4.1 Wi-Fi Radio Map of Osaka City

Our Wi-Fi bigdata project provides Wi-Fi Radio Map of Osaka City, called Wi-Fi radio map hereafter.

This Wi-Fi radio map is constructed by using crowdsourcing and radio propagation simulation as shown

in Figure 5.11.

In this system, cooperative smartphone users install the observation application which performs

Wi-Fi channel scan at regular intervals. The observation application performs this scanning pro-

cedure when the user has the smartphone in his/her hands and walks/stops in urban areas. This

application collects ESSIDs (SSID texts), BSSIDs (MAC addresses), RSSI, channels and bandwidth

(20MHz/40MHz etc.) by beacon advertisement from APs and reports them to the cloud with the

timestamp and scanned location from GPS module in the smartphone. By using the collected ob-

servations and conducting radio propagation simulation at the cloud server, the “virtual positions”

of APs are estimated by the simple range-free 3D localization algorithm using the scanned position

and RSSI values. It is difficult to estimate the accuraete location of APs which are indoor based on

the observations. Therefore we estimate the virtual AP location, called “tx tile”, that represents the

virtual radio wave transmission point on the surface of the buildings. In addition, this system provides

the 3D radio map as shown in Figure 5.2. Given the virtual AP location and the RSSI observations,

the system conducts the radio propagation simulation to build the RSSI radio map of each AP. The

radio map contains simulated RSSI values from each AP at any points of outdoor spaces such as major

and minor streets, public spaces and parks in urban ares.

We have already conducted large-scale crowdsensing and constructed the radio map in Osaka

city [2]. The target area of observation is about 5km2 as shown in the following Figure 5.12. The

observers holding the smartphone in their hands walked to cover almost all the roads in this area. We

got observations covering all areas on three different days. The number of total observation points is

42,202, and the number of observed APs is 78,170. From those observation data, we have constructed

the radio map. By excluding common APs on all days, mobile AP are exclued from targets.
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Figure 5.11: Wi-Fi Radio Map of Osaka City [2, 3]

We used the name of APs which is represented as ESSID or BSSID, the channel which the AP uses

and the virtual position which are represented 3D coordinates for realistic urban scenario construction.

The name and channel data is actual observation, but the position of APs is estimated value. However,

the estimated results are quite reasonable because we have predicted the virtual location that reduce

contradiction among multiple observed values.

5.4.2 Scenario Setup

In order to confirm that our function can estimate the delay and frame delivery ratio in more realistic

scenarios, we have designed several scenarios. We show the overview of this scenario construction in

Figure 5.12.

At first, we selected three locations as shown in Figure 5.13. These three targeted locations are

about 300m square area. The reason for this selection is that they are crowded urban environments

including a large intersection. The network simulator Scenargie, which we use in the step of modeling

our function, can handle OpenStreetMap (.osm file) and geographical information such as buildings

and streets. Then, we can use the tx-tile location from the Wi-Fi radio map directly. From the Wi-Fi

radio map, we obtained the 3D coordinates of tx-tiles which represent the virtual AP locations. As

a result, we constructed the geographical scenarios as shown in Figure 5.14. The target AP which

will conduct channel selection by using our proposed method is deployed at an intersection of streets
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Figure 5.12: Scenario construction overview using Wi-Fi Radio Map of Osaka City

Figure 5.13: Location of evaluation scenario in Osaka City (Scenario 1 - Scenario 3)

assuming a road side unit for intelligent transportation system. The target AP is located at the

approximate center in each scenario. In these figures, the red blue and orange nodes represent target

APs, their clients and AP ’s Wi-Fi monitoring devices, respectively. Also, as surrounding interference

sources, such APs are represented by black nodes and their client are represented by green nodes. One

AP has one corresponding client in our scenario and the client is located 5m away from the AP. In

these scenarios, the target AP conducts MAC frame monitoring and applies our proposed function to

select the best channel in each environment.

Then, we obtained the channel information of each AP from the Wi-Fi radio map. The number
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3

Figure 5.14: Evaluation scenario based on real urban measurement

of APs in each scenario and in each channel are shown in Table 5.5. We confirmed that APs were

concentrated particularly on channel 1 through all the scenarios. Also, channel 6 and 11 are used

for a relatively large number of APs. In most cases, at least one AP is running in all channels.

However, the target AP may not be exposed to interference from all channels since we take into

account attenuation by the walls of buildings in this scenario. Since the Wi-Fi radio map does not

have any traffic information, we have determined the traffic parameter of Wi-Fi APs based on the real

traffic measurement in urban areas as we described in section 5.3. By analyzing traffic measurement

results, the average traffic volume of each channel is set as the application demands parameter iperf-

udp-data-rate.

The other simulation parameters are shown in Table 5.6. All node follows IEEE 802.11g standards in

2.4 GHz band and transmits packets with the transmission power 20dBm and the modulation BPSK

3/4 in which the maximum data rate is 9Mbps. The target AP send packets with fixed data rate

4.5Mbps in IPERF application. We used the WallCount model as the radio wave propagation model.

This model is based on free space propagation model attenuating simply according to distance. In this
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Table 5.5: The number of APs in each scenario
Scenario Channel Number

1 2 3 4 5 6 7 8 9 10 11 12 13

1 14 1 0 2 0 9 1 1 0 1 8 2 2
2 8 3 2 3 2 5 3 2 1 1 7 1 2
3 8 1 2 3 1 6 1 2 3 1 6 1 5

Table 5.6: Simulation settings for realistic urban scenario

Parameter Values
Area Size 300m×300m
Coordinates of target AP center of the area
Coordinates of interference APs configured based on Wi-Fi Radio Map of Osaka city
AP - STA Distance 5m
Wireless Standards IEEE802.11g
Wireless Band 2.4GHz
Channels of target AP to be determined
Channels of interference APs configured based on Wi-Fi Radio Map of Osaka city
Transmission Power 20dBm
IEEE802.11g Data Rate 9Mbps (BPSK 3/4)
Propagation Model WallCount
Attenuation by wall 5dBm
Antenna Height 1.5m
Tpreample 20µs
L7 application iperf-udp-data-rate
L7 traffic (target AP) 4.5Mbps
L7 traffic (interference AP) configured based on actual measurement result
Payload Size 1470byte

WallCount model, basically the pathloss value is calculated by the distance between the transmitter

and the receiver as the same as free space propagation model. In addition to this, if there is a wall

between the transmitter and the receiver, the simulator calculates to attenuate by 5dBm with a fixed

value for each wall. We regard each side of the building as one wall in this scenario.

In the following section, we confirmed whether our proposed function can estimate the best channel

in these urban scenarios.

5.5 Performance Evaluation in Realistic Urban Scenarios

In this section, we describe the performance evaluation result of our proposed channel selection method

in the realistic urban scenarios built in section 5.4. In addition, we show the effectiveness of channel

selection with our proposed method by comparing two kinds of different channel selection techniques

which are randomly selection and selection based on the number of APs.
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5.5.1 Evaluation Result

We conducted performance evaluation experiments of our proposed method with prepared three urban

environment scenarios as shown in Figure 5.14. In these scenarios, the target AP and its client

communicate while changing from channel 1 to channel 13 under the same condition. We confirm

whether or not the channel estimated to be the highest communication quality by relatively comparing

the function output matches the best channel determined based on the actual measured value in these

simulations.

The evaluation results in three urban realistic scenarios are shown in Figure 5.15. In this figure,

the simulated delay values are represented by a bar graph, and the estimator outputs of our proposed

method are also represented by a line graph. In each scenario, the best channel in which the delay

value of the target system achieves the lowest one is represented in red. By comparing the simulated

channel performance values in each channel, the best channel is judged to be channel 9, channel 12,

channel 7 respectively. Therefore, we check whether the predicted channel by applying our proposed

method matches these channels. From our proposed method, channel 9, channel 12, channel 7 were

also judged to be best in each scenario, respectively. It was confirmed that the best channel can be

predicted by using the proposed method even in realistic scenarios simulating the urban environment.

It is worth noting that our proposed method can estimate the optimal channel even though the best

channel is different in each scenario. This shows the adaptability of our proposed method to various

environments. In addition, it can be confirmed that the output value of our prediction function follows

the trend of the delay values over all 13 channels in each scenario. This information can be used to

select a relatively good channel subset. This channel subset is useful in the case of the system which

uses multiple channels like MIMO (multiple-input and multiple-output). When the system operates

in multiple channels, it can select channels from the channel subset which do not interfere with each

other. Even if the channels are partially overlapped, our estimator can predict such inter-channel

interference.

5.5.2 Effectiveness of Channel Selection

Moreover, we have evaluated whether the target AP can achieve the higher throughput by comparing

two channel selection methods to confirm the effectiveness of our channel selection approach. This

evaluation environment was designed based on scenarios in Figure 5.14 and the simulation setting also

follows the parameters as shown in Table 5.6.

We selected the following naive selection approaches.

(1) Randomly Selection, RS

In this approach, the target AP selects the channel randomly. We considered this approach as a

baseline. In reality, people who are not familiar with IT technology are likely to do this kind of

operation. This throughput is calculated as the expected value, which is the averaged throughput
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 5.15: Evaluation result in urban scenarios

value of all channels.

(2) Least Congested Channel Scan, LCCS [108]

In this approach, the target AP selects the channel based on the number of APs in the same

channel of the target one. This LCCS algorithm selects one channel which is the smallest number

of competitive Wi-Fi APs to avoid the conflict in the same channel. Therefore, this approach

considers a part of interference problems, not including the inter-channel interference problem.

The target AP senses beacon frames and counts the unique number of interference APs. Such

operation is usually conducted in commodity products. When multiple channels are selected,

the average throughput among selected channels is calculated.

(3) Least Traffic Channel (Single Channel), LTC (SC)

In this approach, the target AP selects the channel based on the traffic measurement. This LTC

(SC) algorithm selects one channel which has the least traffic volume. This approach does not

consider the interference from adjacent channels and the signal strength from surrounding nodes.

(4) Least Traffic Channel (Adjacent Channels), LTC (AC)

As well as LTC (SC), the target AP selects the channel based on the traffic measurement in

this approach. This LTC (AC) algorithm selects one channel which has the least sum of traffic

volume in the same and one adjacent channel to consider the inter-channel interference problem.

Table 5.7 shows the throughput result of comparison approaches and our proposed method in each

scenario. Except for scenario 1, we can confirm that only our proposed method can select the channel

that achieves the best throughput, which shows bold in the table. As shown in Table 5.5, in Scenario

1, the surrounding APs are concentrated on channel 1, 6, 11 which are separated completely. In

such scenario, LTC (AC) can select the best quality channel as well as our proposed method. The

throughput of the best channel is 1.83 times higher that RS in Scenario 1. Also, the throughput can
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Table 5.7: Evaluation result about effectiveness of our proposed approach (throughput (Mbps))

RS LCCS [108] LTC (SC) LTC (AC) Proposed
Scenario1 2.35 3.41 3.41 4.30 4.30
Scenario2 0.85 1.27 0.73 1.32 1.76
Scenario3 1.27 1.96 1.11 2.72 3.21

achieve 1.26 times higher than LCCS and LTC (SC) by considering the inter-channel interference.

Compared with Scenario 1, in Scenario 2 and 3, the channels which the surrounding APs use are

scattered. In these scenarios, we confirmed that comparison methods cannot achieve the best channel

because these methods did not consider the relationship among inter-channel distance, RSSI, and

traffic volume. The throughput of our proposed approach can achieve 1.33 and 1.18 times higher

than LTC (AC) in Scenario 2 and 3 respectively. Therefore, we confirmed the importance to consider

inter-channel interference problem for using the channel resources effectively and concluded that it is

significant to select interference-free channels with our proposed method.

5.6 Discussion

Channel Usage Trend

As a result of actual traffic measurement using AirPcap shown in Figure 5.6 and in Table 5.5, we

confirmed that APs tend to concentrate on a specific channel. Using these normalized AP distributions,

we can design probabilistic models of the potential number of transmitters. The number of transmitters

in each channel is very useful information to predict channel performance. This is because the channel

capacity is affected by this number in CSMA/CA system. On the other hand, it is not desirable

to observe it considering the small memory area of low-cost Linux equipment. We believe that it is

possible to obtain such information from some Web sites or Osaka Wi-Fi Scan Map as prior knowledge.

Especially in the Osaka Wi-Fi radio map, the information about mobiles APs such as mobile routers

is omitted, so it is suitable for this use case.

In addition, around some shops like a coffee shop, continuous traffic like video streaming is well

detected. In the scenario where fixed APs are installed at intersections, it can be considered that it

is possible to acquire surrounding geographical information. For example, AP can use probabilistic

parameters about the occurrence of continuous traffic by using this geographical information and the

opening hours of the surrounding shops.

Furthermore, we are planning to utilize the location and the temporal characteristics of mobile

routers. Since business people and visitors have multiple Wi-Fi devices recently, they tend to hold

mobile routers. Based on the geographical information, it is possible to utilize the statistics about

human congestion at the roadside. Then, in the rush hour, the traffic from mobile routers will be

increased in the vicinity of people gathering such as the station.

85



Figure 5.16: Measurement experiment in laboratory environment

By applying such a spatiotemporal trend as a probabilistic model to the channel prediction, we

aim at the sophistication of our proposed method.

Implementation of prototype

We are implementing the prototype of an autonomous/intelligent AP with frame monitoring module,

channel quality prediction module, and quality measurement module. We are planning to show feasi-

bility at low cost by using small Linux devices with existing Wi-Fi module. Now we are developing in

Scenargie Comm Node which has two Wi-Fi interfaces for transmitting and monitoring. Measurement

of Wi-Fi usage status and throughput in the laboratory environment is also currently underway.

We are also designing an experiment to predict channel quality by applying a prediction module

based on traffic, RSSI and channel information which is input parameter of this method observed by

the monitoring module. The channel quality will be evaluated by the throughput using the IPERF

application. Through this experiment, we would like to ascertain the effectiveness of our proposed

method in the actual environment rather than simulation.

As a preliminary experiment in Figure 5.16, we conducted channel monitoring and quality mea-

surement in the laboratory environment of midnight on holiday. We deployed AP and ST in the

laboratory. Then AP measures the throughput for 10 seconds in each channel by the IPERF applica-

tion. AP and ST changes the channel from 1 to 13 sequentially. Since MCS index was set to 0, the

maximum transmission rate is up to 6.5 Mbps.

As a result, even though AP observed the same level of traffic (t(k)) and RSSI (s(k)) at the channel

1 and 2, the throughput of channel 1 was much greater than that of channel 2 without interference

from any other channels. Therefore, in that case, our prediction function will not be worked well. One

possible reason for this is that the interference effect may differ depending on the type of observed
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frames. It was confirmed that the frame error rate of channel 2 was higher than that of channel 1. In

channel 2, many Data frames were observed. On the other hand, in channel 1, most of the observed

frames were Beacon frames. From these findings, we can guess that frames whose priority is low like

Beacon frames are likely to be suppressed by CSMA/CA. In our current proposed method, since we

do not sufficiently consider the various frame types and protocols, we have to propose the function

design which can estimate the channel performance in the real environment.

5.7 Conclusion

In this chapter, we have designed and modeled the urban environment based on the real measurement

in Osaka city to evaluate our proposed method in more realistic environment. To this end, we con-

ducted the traffic monitoring at ten locations including shopping malls, cafes, commercial buildings

and stations around Osaka station on both weekdays and holidays to understand the current traffic

situation in such typical urban environment. Then we analyzed this actual measurement results and

designed the traffic parameters from the future traffic prediction based on the distribution on the

number of APs in each channel. Also, we obtained the actual AP locations and their corresponding

channels from Wi-Fi Radio Map of Osaka City which our research group have built. We matched

this information with OpenStreetMap in the network simulator, and then we constructed three real

geographical scenarios for this evaluation experiment.

By using these evaluation scenario, we demonstrated whether our proposed function can be used in

these urban scenarios for channel selection at the target AP. We confirmed that it was possible to predict

and select the best channel with the highest communication quality and also predict the trend over all

channels by our proposed method in all scenarios. In the subsequent validity evaluation experiment,

it was confirmed that the throughput of the target AP becomes about 1.83 times as compared with

the expected value when the target AP select a channel randomly. As a result, our proposed approach

can select interference-free channels considering the inter-channel interference problem for using the

channel resources effectively.

We note that some contents in this chapter refer our previous publications [109].
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Chapter 6

Conclusion

This dissertation has presented a novel approach to select interference-free channels in 2.4GHz Wi-Fi.

The goal of this dissertation is to cope with interference problems; how the inter-channel interference

affects the performance, how it is closely related with RSSI and traffic volume, and how we should

choose a channel in an open, uncoordinated situation. We have addressed the issue by introducing a

simple monitoring scheme to the target AP and predicting each channel performance for channel selec-

tion based on exhaustive simulation dataset. In particular, we consider (i) inter-channel interference

where adjacent channels interfere with each other in Wi-Fi systems and (ii) urban situations where

many APs in different systems are deployed in an uncoordinated way. In this dissertation, we have

made the following three primary contributions to embody this idea.

Firstly, we have presented an algorithm to estimate each channel performance by multiple regression

functions. As it is often hard to identify the channel with less interference in the urban situation, we

present a channel scoring function that estimates the performance level of each channel based on the

concept of interference environment sensing. To cope with the problem, our approach for ranking

function derives a relative indicator of channel quality based on realistic, observable parameters like

inter-channel distance, RSSI and traffic volume. We apply the IEEE802.11 MAC frame monitoring

in each channel, which can be obtained by the off-the-shelf devices with low-cost. In order to build

the scoring function based on the observations, we have conducted exhaustive simulations with a

large number of scenarios, and multiple regression analysis has been applied where channel occupancy

patterns, traffic volumes and RSSI in those channels are used as explanatory variables. Relying on

exhaustive simulations but with a reduced number of simulation cases, our model built by regression

analysis achieves sufficient accuracy to estimate better Wi-Fi channels. To evaluate our method, this

scoring function was examined in two kinds of general and realistic scenario (typical and dense scenario)

where several APs interfere with the AP of interest in a 150m × 150m region. We have confirmed

that the scores and the actual performance are well-matched where the Spearman’s rank correlation

coefficient was over 0.8 and can identify the top-ranked channel as well.

Secondly, we have presented an improved approach to predict each channel performance for channel
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selection at the target AP. In order to let APs not select erroneous channels, it is quite essential to

provide an estimation function for APs to correctly estimate the channel status without actually moving

into it. Therefore, we have prepared more than 10,000 scenarios and conducted simulations which are

assumed that the own traffic of the target AP moves to the new channel to simulate “channel state

change”. We analyzed the interference dataset for understanding the relationship between the observed

parameters and interference effect to build our proposed function. We applied a machine learning

based classification algorithm to estimate channel saturation due to the traffic movement in channel

migration and multiple regression analysis to build a prediction function of channel performance under

saturation. We confirmed that our function can classify the channel state accurately and estimate the

frame delivery ratio with less than 10% error in average with additional 2,000 simulations. Moreover,

we demonstrate that our estimator can capture the tendency of overall channel performance in the

more general scenario for channel selection. The experimental result shows the correlation coefficient

between our estimator output and the groundtruth is above 0.85.

Thirdly, we have designed realistic urban scenarios based on the actual measurement in Osaka

city to evaluate our proposed approach in more realistic environments. We conducted the traffic

monitoring at ten locations including shopping malls, cafes, commercial buildings and stations around

Osaka station on both weekdays and holidays to understand the current traffic situation in such

typical urban environments. Then we analyzed this actual measurement results and designed the

traffic parameters from the future traffic prediction based on the distribution on the number of APs

in each channel. Also, we obtained the actual AP locations and their corresponding channels from

Wi-Fi Radio Map of Osaka City which has been built by our group. We matched this information with

OpenStreetMap in the network simulator, and then we constructed three real geographical scenarios

for this evaluation experiment. In these evaluation scenarios, we demonstrated that it was possible

to predict and select the best channel with the highest communication quality and also predict the

trend over all channels by our proposed method in all scenarios. In the subsequent validity evaluation

experiment, the experimental result shows that the throughput of the target AP becomes about 1.73

times as compared with the expected value when the target AP select a channel randomly.

Through these contributions, it has been shown that our channel management mechanism offers

efficient frequency reuse by passive frame monitoring at the point of interest. Our study leaves po-

tentials of further studies for cooperative channel management of multiple APs at the target area.

For instance, our proposed estimator predicts the interference effect by MAC frame monitoring when

the target AP uses some channel. Since the interference effects are mutual, we can also estimate the

negative impact for other surrounding APs. Such information will be helpful for channel manage-

ment of the surroundings APs as the target AP sends it with a management frame such as a beacon

frame. Also, cooperation between our proposed approach and Wi-Fi Radio Map of Osaka City can be

considered. In this dissertation, we use only the estimated location and operating channel of each ob-

served AP based on the smartphone user’s crowdsensing from this radio map. This radio map also has
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the transmission range for each observed AP based on the estimated RSSI by the network simulator.

Therefore, by assuming traffics from actual observations in a typical environment, we can estimate the

best channel at arbitrary points by using the information on radio wave range and operating a channel

of each AP provided by this radio map. We believe that it would be worth continuing to seek such

further possibilities toward the more efficient frequency management solution.
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[59] A. Şahin, E. Bala, İ. Güvenç, R. Yang, and H. Arslan, “Partially Overlapping Tones for Un-

coordinated Networks,” IEEE Transactions on Communications, vol. 62, no. 9, pp. 3363–3375,

September 2014.

[60] J. Zheng, Y. Cai, W. Yang, Y. Xu, and A. Anpalagan, “A Game-Theoretic Approach to Exploit

Partially Overlapping Channels in Dynamic and Distributed Networks,” IEEE Communications

Letters, vol. 18, no. 12, pp. 2201–2204, December 2014.

[61] Y. Xu, Q. Wu, J. Wang, L. Shen, and A. Anpalagan, “Opportunistic Spectrum Access Using

Partially Overlapping Channels: Graphical Game and Uncoupled Learning,” IEEE Transactions

on Communications, vol. 61, no. 9, pp. 3906–3918, September 2013.

[62] P. B. F. Duarte, Z. M. Fadlullah, A. V. Vasilakos, and N. Kato, “On the Partially Overlapped

Channel Assignment on Wireless Mesh Network Backbone: A Game Theoretic Approach,” IEEE

Journal on Selected Areas in Communications, vol. 30, no. 1, pp. 119–127, January 2012.

[63] Y. Ding, Y. Huang, G. Zeng, and L. Xiao, “Using Partially Overlapping Channels to Improve

Throughput in Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, vol. 11,

no. 11, pp. 1720–1733, November 2012.

[64] J. Zheng, Y. Cai, Y. Xu, and A. Anpalagan, “Distributed Channel Selection for Interference

Mitigation in Dynamic Environment: A Game-Theoretic Stochastic Learning Solution,” IEEE

Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4757–4762, November 2014.

[65] S. Sen, R. Roy Choudhury, and S. Nelakuditi, “No Time to Countdown: Migrating Backoff to

the Frequency Domain,” in Proceedings of the 17th Annual International Conference on Mobile

Computing and Networking (MobiCom ’11), 2011, pp. 241–252.

[66] D. Malone, P. Clifford, and D. Leith, “MAC Layer Channel Quality Measurement in 802.11,”

IEEE Communications Letters, vol. 11, no. 2, pp. 143–145, February 2007.

[67] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-level Measurements from an

802.11b Mesh Network,” in Proceedings of the ACM 2004 Conference on Applications, Technolo-

97



gies, Architectures, and Protocols for Computer Communications (SIGCOMM ’04), 2004, pp.

121–132.

[68] S. Rayanchu, A. Patro, and S. Banerjee, “Airshark: Detecting non-WiFi RF Devices Using

Commodity WiFi Hardware,” in Proceedings of the 2011 Internet Measurement Conference (IMC

’11), 2011, pp. 137–154.

[69] S.-M. Chun, S.-M. Lee, J.-W. Nah, J.-H. Choi, and J.-T. Park, “Localization of Wi-Fi Access

Point using smartphone’s GPS information,” in Proceedings of the 2001 International Conference

on Selected Topics in Mobile and Wireless Networking (iCOST ’11), October 2011, pp. 121–126.

[70] A. Achtzehn, L. Simic, M. Petrova, and P. Mahonen, “IEEE 802.11 Wi-Fi Access Point Density

Estimation with Capture-recapture Models,” in Proceedings of the 2015 International Conference

on Computing, Networking and Communications (ICNC ’15), February 2015, pp. 153–159.

[71] F. Li, C. Zhao, G. Ding, J. Gong, C. Liu, and F. Zhao, “A Reliable and Accurate Indoor

Localization Method Using Phone Inertial Sensors,” in Proceedings of the 2012 ACM Conference

on Ubiquitous Computing (Ubicomp ’12), 2012, pp. 421–430.

[72] J. Yin, Q. Yang, and L. M. Ni, “Learning Adaptive Temporal Radio Maps for Signal-Strength-

Based Location stimation,” IEEE Transactions on Mobile Computing, vol. 7, no. 7, pp. 869–883,

2008.

[73] P. Bahl and V. N. Padmanabhan, “RADAR: An In-building RF-based User Location and Track-

ing System,” in Proceedings of the IEEE 19th International Conference on Computer Commu-

nications (INFOCOM ’00), vol. 2, March 2000, pp. 775–784.

[74] Y. Cho, M. Ji, Y. Lee, and S. Park, “WiFi AP Position Estimation Using Contribution from

Heterogeneous Mobile Devices,” in Proceedings of the 2012 IEEE/ION Position, Location and

Navigation Symposium (PLANS ’12), 2012, pp. 562–567.

[75] H. Satoh, S. Ito, and N. Kawaguchi, “Position Estimation of Wireless Access Point Using Di-

rectional Antennas,” in Proceedings of the 1st International Workshop on Location-and Context-

Awareness (LoCA ’05), 2005, pp. 144–156.

[76] A. P. Subramanian, P. Deshpande, J. Gao, and S. R. Das, “Drive-by Localization of Road-

side WiFi Networks,” in Proceedings of the 27th IEEE International Conference on Computer

Communications (INFOCOM ’08), 2008, pp. 1391–1399.

[77] D. Han, D. G. Andersen, M. Kaminsky, K. Papagiannaki, and S. Seshan, “Access Point Localiza-

tion Using Local Signal Strength Gradient,” in Proceedings of the 10th International Conference

on Passive and Active Network Measurement (PAM ’09), 2009, pp. 99–108.

98



[78] Z. Fang, L. U. O. Haiyong, G. Hao, and S. U. N. Qijin, “An RSSI Gradient-based AP Localization

Algorithm,” China Communications, vol. 11, no. 2, pp. 100–108, 2014.

[79] Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zho, and H. Zheng, “I Am the

Antenna-Accurate Outdoor AP Location using Smartphones,” in Proceedings of the 17th ACM

International Conference on Mobile Computing and Networking. (MobiCom ’11), 2011, pp. 109–

120.

[80] X. Zheng, C. Wang, Y. Chen, and J. Yang, “Accurate Rogue Access Point Localization Lever-

aging Fine-grained Channel Information,” in Proceedings of the IEEE 2014 Conference on Com-

munications and Network Security (CNS ’14), 2014, pp. 211–219.

[81] J. Shi, L. Meng, A. Striegel, C. Qiao, D. Koutsonikolas, and G. Challen, “A Walk on the Client

Side: Monitoring Enterprise Wifi Networks Using Smartphone Channel Scans,” in Proceedings of

the 35th IEEE International Conference on Computer Communications (INFOCOM ’16), 2016,

pp. 1–9.

[82] S. Yang, P. Dessai, M. Verma, and M. Gerla, “FreeLoc: Calibration-free Crowdsourced Indoor

Localization,” in Proceedings of the 32nd IEEE International Conference on Computer Commu-

nications (INFOCOM ’13), 2013, pp. 2481–2489.

[83] Q. Jiang, Y. Ma, K. Liu, and Z. Dou, “A Probabilistic Radio Map Construction Scheme for

Crowdsourcing-Based Fingerprinting Localization,” IEEE Sensors Journal, vol. 16, no. 10, pp.

3764–3774, 2016.

[84] A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I. Smith, J. Scott, T. Sohn, J. Howard,

J. Hughes, F. Potter, J. Tabert, P. Powledge, G. Borriello, and B. Schilit, “Place Lab: Device

Positioning Using Radio Beacons in the Wild,” in Proceedings of the 3rd IEEE International

Conference on Pervasive Computing and Communications (PerCom ’05), 2005, pp. 116–133.

[85] S. Rosen, S. J. Lee, J. Lee, P. Congdon, Z. Mao, and K. Burden, “MCNet: Crowdsourcing Wire-

less Performance Measurements through the Eyes of Mobile Devices,” IEEE Communications

Magazine, vol. 52, no. 10, pp. 86–91, 2014.

[86] A. W. T. Tsui, W. C. Lin, W. J. Chen, P. Huang, and H. H. Chu, “Accuracy Performance

Analysis between War Driving and War Walking in Metropolitan Wi-Fi Localization,” IEEE

Transactions on Mobile Computing, vol. 9, no. 11, pp. 1551–1562, 2010.

[87] J. Koo and H. Cha, “Unsupervised Locating of WiFi Access Points Using Smartphones,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 42, no. 6, pp. 1341–1353, 2012.

[88] M. L Stein, Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999.

99



[89] H. Zhao, B. Huang, and B. Jia, “Applying Kriging Interpolation for WiFi Fingerprinting based

Indoor Positioning Systems,” in Proceedings of the 2016 IEEE Wireless Communications and

Networking Conference (WCNC ’16), 2016, pp. 1–6.

[90] C. Liu, A. Kiring, N. Salman, L. Mihaylova, and I. Esnaola, “A Kriging Algorithm for Location

Fingerprinting based on Received Signal Strength,” in Proceedings of the 10th Workshop on

Sensor Data Fusion: Trends, Solutions, Applications (SDF ’15), 2015, pp. 1–6.

[91] S. Gollakota, F. Adib, D. Katabi, and S. Seshan, “Clearing the RF Smog: Making 802.11n

Robust to Cross-Technology Interference,” ACM SIGCOMM Computer Communication Review,

vol. 41, no. 4, pp. 170–181, 2011.

[92] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi Interference in Low

Power Zigbee Networks,” in Proceedings of the 8th ACM Conference on Embedded Networked

Sensor Systems (SenSys ’10), 2010, pp. 309–322.

[93] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-Å. Norden, and P. Gunningberg, “SoNIC: Clas-
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