
Title A High-speed NDN Forwarding Engine on a
Commercial Off-the-shelf Computer

Author(s) 武政, 淳二

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72593

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A High-speed NDN Forwarding Engine on a

Commercial Off-the-shelf Computer

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2019

JUNJI TAKEMASA

List of Publications

Journal Papers

1. Kaito Ohsugi, Junji Takemasa, Yuki Koizumi, Toru Hasegawa and Ioannis Psaras, “Power
Consumption Model of NDN-Based Multicore Software Router Based on Detailed Protocol
Analysis,” IEEE Journal on Selected Area in Communications, vol. 34, no. 5, pp. 1631–1644,
May. 2016.

2. Junji Takemasa, Yuki Koizumi and Toru Hasegawa, “Is Caching a Key to Energy Reduction of
NDN Networks?,” IEICE Transactions on Communications, vol. 99, no. 12, pp. 2489–2497,
Dec. 2016.

3. Junji Takemasa, Yuki Koizumi and Toru Hasegawa, “Lightweight Cache Admission Algorithm
for Fast NDN Software Routers,”to appear in IPSJ Journal of Information Processing.

Refereed Conference Papers

1. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, and Ioannis Psaras, “On Energy Reduction
and Green Networking Enhancement due to In-Network Caching,” in Proceedings of IEEE
MASS Workshop on Content-Centric Networking, pp. 513–518, Oct. 2015.

2. Kosuke Taniguchi, Junji Takemasa, Yuki Koizumi and Toru Hasegawa, “Poster: A Method
for Designing High-Speed Software NDN Routers,” in Proceedings of ACM Conference on
Information-Centric Networking, Poster Session, pp. 203–204, Sep. 2016.

3. Junji Takemasa, Kosuke Taniguchi, Yuki Koizumi and Toru Hasegawa, “Identifying Highly
Popular Content Improves Forwarding Speed of NDN Software Router,” in Proceedings of
IEEE GLOBECOM Workshop on Information Centric Networking Solutions for Real World
Applications, pp. 1–6, Dec. 2016.

4. Junji Takemasa, Yuki Koizumi and Toru Hasegawa, “Toward an Ideal NDN Router on a

. i .

Commercial Off-the-shelf Computer,” in Proceedings of ACM Conference on Information-
Centric Networking, Full-Paper Session, pp. 43–53, Sep. 2017.

5. Junji Takemasa, Yuki Koizumi and Toru Hasegawa, “Analysis ofMutual Exclusion Overhead of
NDN Packet Forwarding on Multi-core Software Router,” in Proceedings of ACM Conference
on Information-Centric Networking, Poster Session, Sep. 2018.

Non-Refereed Technical Papers

1. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, “A Study on a Power Trade-off between Cache
Processing Overheads and Traffic Reduction in CCN Networks,” in IEICE Communication
Society Conference, B-7-45, Sep. 2014 (in Japanese).

2. Junji Takemasa, Yuki Koizumi, Toru Hasegawa and Ioannis Psaras, “A Study on Energy
Reduction Effects due to In-Network Caching in ICN Networks,” in IPSJ Kansai Society, E-17,
Sep. 2015 (in Japanese).

3. Junji Takemasa, Kosuke Taniguchi, Yuki Koizumi, and Toru Hasegawa, “Cache Admission for
Improving Forwarding Speed of NDN Software Router,” in IEICE Technical Report, vol. 116,
no. 361, IN2016-83, pp. 97–102, Dec. 2016 (in Japanese).

4. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, “A Study on Power Consumption Trade-Off
Due to Caching in NDN Networks,” in IEICE General Conference, B-7-5, Mar. 2016 (in
Japanese).

5. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, “A Study on Power Reduction due to Caching
in an NDN Access Network,” in IEICE Communication Society Conference, B-7-25, Sep.
2016 (in Japanese).

6. Junji Takemasa, Yuki Koizumi, and Toru Hasegawa, “Bottleneck Analysis on Packet Forward-
ing of an NDN Software Router,” in IEICE Technical Report, vol. 116, no. 485, IN2016-83,
pp. 97–102, Mar. 2017 (in Japanese).

7. Junji Takemasa, Kosuke Taniguchi, Yuki Koizumi, Toru Hasegawa, “On a Bottleneck Analysis
on Packet Forwarding of an NDN Software Router,” in IEICE General Conference, B-7-74,
Mar. 2017 (in Japanese).

8. Junji Takemasa, Yuki Koizumi, and Toru Hasegawa, “An Analysis on Data Structures and
Algorithms for FIB of a Fast PC-based NDN Router,” in IEICE Technical Report, vol. 116, no.
205, IN2017-25, pp. 13–18, Sep. 2017 (in Japanese).

9. Junji Takemasa, Kosuke Taniguchi, Yuki Koizumi, Toru Hasegawa, “On an Analysis on

. ii .

Increase in Packet Processing Latency Due to Parallelizing a PC-based NDN Router,” in
IEICE Communication Society Conference, B-7-27, Sep. 2017 (in Japanese).

10. Junji Takemasa, Yuki Koizumi, and Toru Hasegawa, “An Analysis on Cache Algorithm for CS
of Fast PC-based NDN Router,” in IEICE Technical Report, vol. 117, no. 460, IN2017-130,
pp. 243–248, Mar. 2018 (in Japanese).

11. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, “A Study on Fast Cache Algorithm on
PC-based NDN Router,” in IEICE General Conference, B-7-36, Mar. 2018 (in Japanese).

12. Junji Takemasa, Yuki Koizumi, Toru Hasegawa, “A Study on Maintaining Consistency of PIT
States in NDN Parallel Packet Processing,” in IEICE Communication Society Conference,
B-7-11, Sep. 2018 (in Japanese).

. iii .

Preface

A software router, which is built on a hardware platform based on a commercial off-the-shelf (COTS)
computer, becomes feasible because of recent advances in multi-core CPUs and fast networking
technologies for COTS computers. Fast IP packet forwarding has been a research issue for a long
time and hardware architecture designed based on a CPU device with fast memory devices like static
random access memory (SRAM) devices shows that storing data structures for IP forwarding on
SRAM devices enables fast IP forwarding for about 5 × 104 IP prefixes. Successively, compact data
structures have become a research issue to keep up with the increasing number of IP prefixes in the
Internet. Most of the studies have addressed compact trie-based data structures like multi-bit trie
data structures by replacing consecutive elements in a trie to a single element. Such efforts enable it
to store increasing IP prefixes on latest SRAM devices.

Recently, studies on high-speed algorithms and compact data structures are being revisited due
to the emergence of the new Internet architecture called Named Data Networking (NDN), wherein
rich data, including large video data and small sensor data, is delivered by a single architecture.
High-speed NDN packet forwarding is not trivial compared to IP packet forwarding in terms of
memory space and time complexity because name-based forwarding and packet caching, which
are key components of NDN, need much larger data structures than IP forwarding. The number of
names in the NDN-based Internet is believed to be at least the same that of unique domain names,
and the number as of December 2017 is about 2.1 × 108. Such a large number of name prefixes
needs large memory space and heavy computation. In addition to packet forwarding, caching needs
extra data structures for managing packets in a router’s cache and computation for it. Handling
variable-length and human-readable names and stateful forwarding also incur heavy computation.
Heavy name-based forwarding and caching make high-speed NDN packet forwarding challenging.

The goal of this thesis is to present what a high-speed NDN forwarding engine on a COTS
computer is supposed to be. In this thesis, the author designs a reference forwarding engine by
selecting well-established high-speed techniques and then analyzes a state-of-the-art prototype

. v .

implementation to identify its performance bottlenecks. The microarchitectural analysis at the level
of CPU pipelines and instructions provides us with two observations. The first observation is that the
DRAM access latency due to accesses to forwarding tables, which include tables of name-based
forwarding and caching, is one of bottlenecks for high-speed forwarding engines and the other one is
that wasteful cache computation for unpopular Data packets is the rest of the bottlenecks. According
to the first observation, the author designs prefetch algorithms for name-based forwarding and caching
in order to to hide DRAM access latency. According to the second observation, the author designs
a lightweight cache admission algorithm so that wasteful cache computations for unpopular Data
packets are avoided with fast computation. The prototype of an NDN software router with the two
techniques achieves a forwarding rate exceeding 40 million packets per second on a COTS computer.

The main contributions of this thesis are summarized as follows: First, as far as the author knows,
this is the first study that summarizes observations found in existing studies to build high-speed
NDN routers on computers and compiles the observations into a design guideline. According to
the guideline, the author reveals that a hash table-based algorithm and a frequency-based cache
admission algorithm are suitable for name-based forwarding and caching, respectively. Second,
the author designs a prefetch algorithm for hiding most of the DRAM access latency for both
name-based forwarding and caching. The prefetch algorithm reorders instruction executions for
a pair of packets so that the DRAM access latency due to data fetches is successfully hidden by
execution time of instructions independent of the data fetches. Third, the author carefully designs
a lightweight frequency-based cache admission algorithm, Filter, on the basis of the results of the
empirical measurement of an NDN software platform. As the results of the careful design, Filter
consumes a few tens of CPU cycles in average with providing as high cache hit rate as ARC, which is
one of the sophisticated cache eviction algorithms. Fourth, the author implements a proof-of-concept
prototype of an NDN software router with the proposed two techniques and empirically proves that
forwarding speed with the two techniques increases linearly as the number of CPU cores increases,
whereas that without the two techniques does not increase so. A detailed analysis at the level of
CPU pipelines and instructions reveal that most DRAM access latency are successfully hidden by
the prefetch algorithm and that the number of CPU cycles of NDN packet processing is reduced by
the Filter admission algorithm. Fifth, the author sheds light on power efficiency of NDN software
routers as a positive effect of CPU cycle reduction at the different view point from forwarding speed
improvement. By modeling how NDN packet processing consumes power of hardware devices on an
NDN software router, the author reveals that reducing the number of CPU cycles spent for NDN
packet processing contributes to power consumption reduction of an NDN software router.

. vi .

Acknowledgments

My research activities would not have been achieved without many individuals.
First of all, I would like to express my greatest appreciation to my supervisor, Professor

Toru Hasegawa, Graduate School of Information Science and Technology, Osaka University, for
his invaluable support and guidance during my study at Osaka University. He has always been
encouraging and provided insights to help me develop research ideas. I have always been impressed
by how he simplifies complex issues based on practical considerations.

I would like to express my gratitude to the members of my thesis committee, Professor Masayuki
Murata, Professor Takashi Watanabe, and Professor Teruo Higashino, Graduate School of Information
Science and Technology, Osaka University, and Professor Morito Matsuoka, Cyber Media Center,
Osaka University, for carefully reviewing this thesis and providing valuable comments.

I am deeply grateful to Associate Professor Yuki Koizumi, Graduate School of Information
Science and Technology, Osaka University, for irreplaceable guidance and support. His apt comments
have stimulated my daily research activities and helped me to make a breakthrough in research.

I am cordially thankful to Dr. Ioannis Psaras, Department of Electronic & Electrical Engineering,
University College London, for valuable comments to raise the quality of my research.

I would like to thank Dr. Keiichiro Tsukamoto of Dwango Corporation, Yuto Nakai of NTT
Communications Corporation, Kaito Ohsugi of KDDI Corporation, and Yuji Manaka of NTT
Communications Corporation, for their direction during my bachelor and master coursework. Their
direction also has promoted my daily research activities.

Special thanks are due to Kosuke Taniguchi, Yoji Yamamoto and Yasunaga Murai for their ideas
and valuable discussions. They have strengthened the base of my researches and reinforced the value
of this thesis.

I would like to extend my appreciation to the members of the Information Sharing Platform
Laboratory. Especially, I am thankful to Ms. Tomoko Ueshima for her kind help. I thank Yasutaka
Tara and Keita Hasegawa of past members of the Laboratory. I think that daily conversation with them

. vii .

has given me many inspirations. I also express my appreciation to all members of the Information
Sharing Platform Laboratory, Graduate School of Information Science and Technology, Osaka
University.

Finally, I would like to express my heartfelt appreciation to my father, mother, old brother, and
little sister, for their warm-hearted help and support. With the help of them, I could concentrate on
this work and complete it with an easy mind.

. viii .

Contents

List of Publications i

Preface v

Acknowledgments vii

1 Introduction 1
1.1 Background . 1
1.2 Approaches . 2

1.2.1 Elimination of DRAM Access Latency 3
1.2.2 Fast Cache Algorithm with High Cache Hit Rate 4
1.2.3 Power Efficiency Due to CPU Cycle Reduction 5

1.3 Contributions . 6
1.4 Outline . 6

2 Related Work 9
2.1 Name-based Forwarding . 9
2.2 Caching . 10
2.3 Software Packet Processing . 11
2.4 Hardware Packet Processing . 12
2.5 Power Efficiency of Routers . 13

3 Microarchitectural Bottleneck Analysis of an NDN Software Router 15
3.1 Hardware and Software Platforms . 16

3.1.1 Hardware Platform . 16
3.1.2 NDN Packet Forwarding . 17

. ix .

3.1.3 Practices to Exploit Parallel Computation 18
3.2 Microarchitectural Hardware Bottleneck Analysis 20

3.2.1 Bottleneck Analysis Method . 20
3.2.2 Experiment Settings . 22
3.2.3 Analysis Results . 24

3.3 Microarchitectural Software Bottleneck Analysis 28
3.3.1 NDN Packet Processing of Reference NDN Software 28
3.3.2 Analysis Results . 28

3.4 Design Rationale . 29

4 Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables 31
4.1 Data Structure and Algorithm for FIB . 32

4.1.1 Overview . 32
4.1.2 Hash Table-based FIB . 32
4.1.3 Trie-based FIB . 34
4.1.4 Summary . 35

4.2 Cache Algorithm for CS . 36
4.2.1 Overview . 36
4.2.2 Cache Eviction Algorithm . 36
4.2.3 Cache Admission Algorithm . 37
4.2.4 Summary . 38

4.3 Preferch-Friendly Packet Processing . 39
4.3.1 Unhidden Data Fetches in Conventional Packet Processing 39
4.3.2 Prefetch Strategies . 40

4.4 Performance Evaluation . 43
4.4.1 CPU Cycles in Single-Threaded Case . 43
4.4.2 CPU Cycles in Multi-Threaded Case . 44
4.4.3 Forwarding Speed . 45
4.4.4 Discussion . 46

4.5 Conclusion . 47

5 A Lightweight Cache Admission Algorithm for Optimizing Time Complexity 49
5.1 Computation Time Analysis of Cache Algorithms 50

5.1.1 NDN Packet Processing with Cache Algorithms 50

. x .

5.1.2 Cache Eviction vs. Cache Admission . 52
5.2 Design of Cache Admission Algorithm . 53

5.2.1 Overview . 53
5.2.2 Design Rationale . 53
5.2.3 Design of Filter . 54
5.2.4 Comparison with TinyLFU . 56

5.3 Characteristic Analysis of Filter . 56
5.3.1 Overview . 56
5.3.2 Analysis Model . 57
5.3.3 Threshold Value . 58
5.3.4 Analysis Results . 59

5.4 Performance Evaluation . 59
5.4.1 Evaluation Conditions . 59
5.4.2 Cache Insertion and Hit Rates . 61
5.4.3 CPU Cycles Spent for NDN Packet Processing 62
5.4.4 Forwarding Speed . 63

5.5 Conclusion . 64

6 Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction 69
6.1 Introduction . 69
6.2 Reference Architecture . 71

6.2.1 Hardware Platform . 71
6.2.2 Software Platform . 71

6.3 Power Consumption Model . 72
6.3.1 Formulation . 73
6.3.2 Power Consumed by Chassis . 74
6.3.3 Power Consumed by CPU Devices . 74
6.3.4 Power Consumed by Memory Device . 83
6.3.5 Power Consumed by NIC . 84

6.4 Packet Forwarding Analysis . 84
6.4.1 Calculation Method for Naive Router . 85
6.4.2 IP Packet Forwarding Rate . 87
6.4.3 Calculation Method for Optimized Router 87

. xi .

6.4.4 Measured Numbers of CPU Cycles and Accesses Bytes 89
6.5 Case Study . 90

6.5.1 Server Platform . 90
6.5.2 Scenario . 90
6.5.3 Power Reduction Analysis . 91
6.5.4 Lessons Learned . 92

6.6 Conclusion . 93

7 Conclusion 95

Bibliography 99

. xii .

List of Tables

3.1 The consumption of CPU cycles and I/O bandwidth for processing one Interest or
Data packet . 24

3.2 The number of CPU cycles spent in the instruction pipeline (Entire pipeline) 25
3.3 The number of CPU cycles spent in the instruction pipeline (Backend) 25
3.4 The number of CPU cycles spent in the instruction pipeline (Load Unit) 26
3.5 The number of retired load instructions . 26
3.6 The number of CPU cycles against the number of threads 27

5.1 CPU cycles spent for processing blocks of packet processing shown in Figs. 5.1 and 5.2 63
5.2 CPU cycles spent for processing blocks of cache eviction and admission algorithms

shown in Figs. 5.1 and 5.2 . 63

6.1 Parameters of φcpu(cndn) for E5620 Processor . 79
6.2 Parameters of φcpu(cndn) for E3-1220 Processor 79
6.3 Parameters of φcpu(cndn) for 9520 Processor . 80

. xiii .

List of Figures

3.1 Router hardware architecture . 17
3.2 Hardware units on a CPU and four main stages of instruction pipeline 21
3.3 NDN software block diagram and analysis of computation time 23

4.1 Flow of Exact Matching Algorithm . 33
4.2 Conventional packet processing flow . 40
4.3 Prefetcth-friendly packet processing flow with Pre-Hash Computation 41
4.4 Prefetcth-friendly packet processing flow with Speculative Hash Table Lookup (and

Pre-Hash Computation) . 42
4.5 The number of CPU cycles for processing one NDN packet in the single-threaded case 44
4.6 The number of CPU cycles for processing one NDN packet in the multi-threaded

case (20 threads) . 45
4.7 The forwarding speed against the number of threads 46

5.1 Packet processing flow with cache eviction . 51
5.2 Packet processing flow with cache admission . 52
5.3 Schematic of data structures of Filter . 55
5.4 Effects of the length of the history queue q and the threshold θ on insertion rates,

and hit rates . 65
5.5 Comparisons of cache insertion rate for Filter and TinyLFU admissions 66
5.6 Comparisons of cache hit rate for FIFO eviction, Random eviction, LFU eviction,

ARC eviction, Filter admission and TinyLFU admission 67
5.7 Comparison of the average CPU cycles for NDN packet processing with Filter,

TinyLFU, FIFO, Random and ARC under various cache sizes 68
5.8 Packet forwarding speeds of NDN routers with Filter, ARC and FIFO 68

. xv .

6.1 Power Consumed by CPU (E5620) Cores at Each P-state 81
6.2 Power Consumed by CPU (E5620) in the Case of ncore ≥ 2 81
6.3 Maximum Power Consumed by one CPU Core (E5620) in Each P-state 82
6.4 Power Consumption by CPU Device . 82
6.5 Power Consumed by DDR3 Device . 85
6.6 Power Consumed by NIC . 86
6.7 Software block diagram of naive router (without prefetch algorithms and Filter) and

the consumption of CPU cycles and DRAM accesses 87
6.8 Software block diagram of optimized router (with prefetch algorithms and Filter)

and the consumption of CPU cycles and DRAM accesses 88
6.9 The power consumption of the naive and the optimized routers 92
6.10 The power consumption of individual devices of the naive and the optimized routers 93

. xvi .

Chapter 1

Introduction

1.1 Background

A software router, which is built on a hardware platform based on a commercial off-the-shelf (COTS)
computer, becomes feasible because of recent advances in multi-core CPUs and fast networking
technologies for COTS computers. For notation simplicity, hereinafter, a COTS computer is simply
referred to as a computer. Fast IP packet forwarding has been a research issue for a long time and
hardware architecture designed based on a CPU device with fast memory devices like static random
access memory (SRAM) devices [1,2] shows that storing data structures for IP forwarding on SRAM
devices enables fast IP forwarding for about 5 × 104 IP prefixes. Inspired by the success, fast IP
forwarding on software routers is being studied to keep up with the increasing number of IP prefixes
in the Internet. Dobrescu et al. [3] exploit parallelism by leveraging multiple CPU cores or servers.
The success of forwarding engines, which the studies assume to be built on current COTS computers,
shows feasibility of fast packet forwarding of software routers without using special devices like
general-purpose computing on graphics processing unit (GPGPU) devices [4]. As a consequence,
compact data structures have become a research issue and many trie-based data structures have been
designed. Among them, Degermark et al. [5] designed multi-bit trie data structures by replacing
consecutive elements in a trie to a single element. Such efforts enable it to store an increasing number
of IP prefixes, e.g., 7 × 105 prefixes [6], on the latest SRAM devices. In summary, high-speed IP
forwarding on COTS computers is an almost solved research question because IP prefixes are able to
be stored on fast SRAM devices.

Recently, studies on high-speed algorithms and compact data structures are being revisited
due to the emergence of the new Internet architecture called Named Data Networking (NDN) [7].

– 1 –

1.2 Approaches

High-speed NDN packet forwarding is not trivial compared to IP packet forwarding in terms of
space and time complexity because name-based forwarding and packet caching, which are key
components of NDN, need much larger data structures than IP forwarding. The number of names
in the NDN-based Internet is believed to be at least the same that of unique domain names and the
number as of December 2017 is about 2.1 × 108 [8]. Such a large number of name prefixes needs
large memory space and heavy computation. In addition to name-based forwarding, caching needs
extra data structures for managing packets in a router’s cache and computation for it. Handling
variable-length and human-readable names and stateful forwarding also incur heavy computation.

Heavy name-based forwarding and caching result in poor performance of NDN forwarding on
computers. The goal of this thesis is to identify what a high-speed NDN forwarding engine on a
computer is supposed to be.

1.2 Approaches

In this thesis, the author identifies bottlenecks for high speed forwarding by carefully analyzing the
existing NDN forwarding engine in terms of hardware and software constraints. First of all, the
author carefully analyzes what is the most significant constraint among the following three ones: the
computation capability of a CPU device, bandwidths of Dynamic Random Access Memory (DRAM)
devices and bandwidths of Input/Output (I/O) devices. This analysis reveals that the bottleneck is
not the memory bandwidth but the number of CPU cycles, and hence reducing the number of CPU
cycles is a key to high speed NDN forwarding.

In order to know bottlenecks for CPU cycle consumption, the author carefully analyzes how NDN
packet processing consumes CPU cycles at the level of CPU pipelines and instructions and identifies
two bottlenecks. The first bottleneck is the pipeline stall. More precisely, the stall to wait data to be
fetched from the DRAM device is the most significant bottleneck among all of pipeline stalls like
the instruction fetch stall and the instruction execution stall. The above analysis also reveals that
the stall due to data fetches is caused by accessing forwarding tables, which include tables for both
name-based forwarding and caching, and they are placed on the slow DRAM device. This implies
that eliminating the DRAM access latency due to forwarding table accesses is a key to high-speed
NDN forwarding.

The second bottleneck is redundant computation of cache eviction. From the perspective of
software constraints, the author analyzes how each function of NDN packet processing consumes
CPU cycles and found the two facts related to wasteful cache eviction. The first fact is that the packet

– 2 –

Chapter 1. Introduction

processing flow in the case of a cache miss consumes more CPU cycles than that in the case of a
cache hit because a router consumes CPU cycles for forwarding an Interest packet1, which would not
be needed if the Interest packet hit the cache. The second fact is that the function of cache eviction
and insertion for Data packets consumes many CPU cycles among functions constituting the packet
processing flow in the case of a cache miss. The above two facts imply that cache algorithms need to
increase cache hit rate without incurring computation overheads for high-speed NDN forwarding.

According to the above two implications, in this thesis, the author addresses to eliminate the
DRAM access latency due to forwarding table accesses and to realize cache algorithm with fast
computation and high cache hit rate.

1.2.1 Elimination of DRAM Access Latency

The first issue is how to eliminate the DRAM access latency due to forwarding table accesses.
Significant efforts have been directed toward compact data structures and algorithms of name-based
forwarding [9–12] to eliminate the DRAM access latency. A research issue of special concern is
designing compact data structures and some studies show that trie-based data structures can be
designed to be so compact that can be stored on SRAM devices by using a bit as a component
of a trie [12]. Although the assumption that data structures are placed on fast memory devices is
reasonable for NDN hardware routers, it is not reasonable for NDN software routers. Unlike on
hardware routers, data cannot be pinned at CPU caches on computers since eviction and replacement
in CPU caches are governed by their CPUs rather than user-space programs and operating systems.

The argument in the last paragraph implies that hiding DRAM access latency is a vital key to
high speed NDN packet forwarding rather than compactness of the data structures. This is because
the number of DRAM accesses never gets zero even though the sophisticated data structure and
algorithm are adopted. Latest CPUs support instruction and data prefetch, which allows instructions
and data to be fetched to CPU caches in advance of actual use. With the prefetch mechanism, NDN
software routers can hide the large DRAM access latency. In order to exploit the prefetch mechanism,
the address of data to be prefetched must be known in advance. In the case of a trie-based data
structure, it is hard to hide the DRAM access latency with the prefetch mechanism because where
to access cannot be estimated in advance of its access. More precisely, since a trie is searched by
traversing vertices from its root, the address of the next vertex to be traversed cannot be estimated
before its parent is fetched. In contrast, in the case of a hash table-based data structure, to hide

1Interest and Data packets are request and response packets in NDN, respectively. Interest packets transfer requests of
consumer and Data packets do the corresponding data objects.

– 3 –

1.2 Approaches

the DRAM access latency is easier than in the case of a trie-based one since access patterns of the
hash table are predictable if hashes of keys are available in advance. Thus, a hash table-based data
structure is more promising than a trie-based data structure.

In this thesis, the author addresses to hide the DRAM access latency as follows: First, the
author carefully compares existing data structures and algorithms both for name-based forwarding
and caching from the viewpoint of the ease of hiding DRAM access latency and chooses a hash
table-based algorithm and a frequency-based cache admission algorithm for name-based forwarding
and caching, respectively. Second, the author designs a prefetch algorithm for hiding most of
the DRAM access latency for both name-based forwarding and caching. The prefetch algorithm
reorders instruction executions for packets so that the DRAM access latency due to data fetches is
successfully hidden by execution time of instructions independent of the data fetches. Finally, the
author implements a proof-of-concept prototype and empirically proves that forwarding speed with
the prefetch algorithm increases linearly as the number of CPU cores increases, whereas that without
the prefetch algorithm does not increase so. A detailed analysis at the level of CPU pipelines and
instructions reveal that most DRAM access latency are successfully hidden by the prefetch algorithm.

1.2.2 Fast Cache Algorithm with High Cache Hit Rate

The second issue is how to design fast cache algorithm with high cache hit rate. As the first step,
the author carefully analyzes how two types of cache algorithms, i.e., cache eviction and admission
algorithms, consumes CPU cycles in NDN packet processing and identifies the two obstacles of
fast cache algorithm. First, cache insertion of a Data packet is relatively time-consuming among
function blocks which are executed when a cache miss occurs. It means that insertion of unpopular
Data packets which are not hit later wastes many CPU cycles. Second, sophisticated cache eviction
algorithms like Adaptive Replacement Cache (ARC) [13] incur computational overheads for choosing
a victim Data packet sophisticatedly, which will be evicted from the cache.

This implies that cache algorithms need to increase cache hit rate and reduce unpopular Data
packet insertion rate simultaneously without incurring computation overheads for high-speed NDN
software routers. The author proposes cache admission as a better candidate than cache eviction
according to two reasons: First, cache admission obviously resolves the first obstacle because only
the selected Data packets are inserted into the cache. Second, computation of cache admission is
lighter than that of cache eviction to achieve high cache hit rate. The heavy computation of cache
eviction comes from the fact that a cache eviction algorithm decides exactly one Data packet evicted
from the cache by maintaining an eviction priority queue, where all the Data packets are sorted

– 4 –

Chapter 1. Introduction

according to their eviction priority values in the cache according to recency or frequency. On the
other hand, a cache admission algorithm performs lighter computation such that it only decides
whether an incoming Data packet should be inserted into the cache or not and hence it does not need
to maintain the eviction priority queue.

In this thesis, the author develops a light-weight cache admission algorithm, Filter, and shows an
example case that cache admission is better than cache eviction for an NDN router. Filter exploits
frequency, which is the number of Interest packets for a Data packet, as a history of requests to Data
packets. The average computation time handling one Interest packet is about a few tens of CPU
cycles. Nevertheless, Filter with FIFO eviction achieves high cache hit rate similar to that of ARC
eviction with the above small computation. The author implements a proof-of-concept prototype of
an NDN software router with Filter and empirically evaluates the overall packet forwarding speed of
an NDN router with Filter based on its prototype implementation.

1.2.3 Power Efficiency Due to CPU Cycle Reduction

The above two approaches in Sections 1.2.1 and 1.2.2 address how to reduce the number of CPU
cycles consumed by NDN packet processing in order to improve forwarding speed of NDN software
routers. The author further addresses a positive effect of CPU cycle reduction from a different angle
and to answer the question whether CPU cycle reduction contributes to improving power efficiency
of NDN software routers. The author sheds light on power efficiency, which is also a crucial design
issue of NDN routers as being addressed by many previous studies [14–17].

The author empirically models how NDN packet processing consumes power of hardware devices
constituting an NDN software router on a computer. This model reveals that the CPU device
consumes much power and that its consumed power is in proportion to its load, i.e., the number of
consumed CPU cycles. This means that reducing the number of CPU cycles consumed by NDN
packet processing contributes to power efficiency of an NDN software router. Based on the model,
the author conducts a case study of analyzing power consumption of naive NDN software routers and
those which use the proposed techniques. The case study reveals that reduction of the number of
CPU cycles due to the proposed techniques contributes to power reduction of modern computers,
which are energy proportional to their load.

– 5 –

1.3 Contributions

1.3 Contributions

The main contributions of this thesis are summarized as follows: First, as far as the author knows,
this is the first study that summarizes observations found in existing studies to build high-speed
NDN routers on computers and compiles the observations into a design guideline. According to
the guideline, the author reveals that a hash table-based algorithm and a frequency-based cache
admission algorithm are suitable for name-based forwarding and caching, respectively. Second,
the author designs a prefetch algorithm for hiding most of the DRAM access latency for both
name-based forwarding and caching. The prefetch algorithm reorders instruction executions for
a pair of packets so that the DRAM access latency due to data fetches is successfully hidden by
execution time of instructions independent of the data fetches. Third, the author carefully designs
a lightweight frequency-based cache admission algorithm, Filter, on the basis of the results of the
empirical measurement of an NDN software platform. As the results of the careful design, Filter
consumes a few tens of CPU cycles in average with providing as high cache hit rate as ARC. Fourth,
the author implements a proof-of-concept prototype of an NDN software router with the proposed
prefetch algorithm and the Filter admission algorithm and empirically proves that the router realizes
a nearly optimal forwarding speed. Fourth, the author implements a proof-of-concept prototype of
an NDN software router with the proposed two techniques and empirically proves that forwarding
speed with the two techniques increases linearly as the number of CPU cores increases, whereas
that without the two techniques does not increase linearly. A detailed analysis at the level of CPU
pipelines and instructions reveal that most DRAM access latency are successfully hidden by the
prefetch algorithm and that the number of CPU cycles of NDN packet processing is reduced by
the Filter admission algorithm. Fifth, the author sheds light on power efficiency of NDN software
routers as a positive effect of CPU cycle reduction at the different view point from forwarding speed
improvement. By modeling how NDN packet processing consumes power of hardware devices on
an NDN software router, the author reveals that reducing the number of CPU cycles for high speed
NDN forwarding contributes to power consumption reduction of an NDN software router.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 summarizes related work. Chapter 3
identifies true bottlenecks for high speed forwarding based on the instruction level analysis after
explaining a state-of-the-art software NDN implementation used for the analysis. Chapter 4 designs

– 6 –

Chapter 1. Introduction

a prefetch algorithm after choosing data structures and algorithms for name-based packet forwarding
and caching among the existing algorithms from the view point of the ease of hiding DRAM access
latency. Chapter 5 proposes an NDN packet forwarding scheme with the cache admission based on
Filter after introducing a problem of wasteful caching computation. Chapter 6 models how hardware
devices of NDN software routers consume power and then reveals that the CPU cycle reduction due
to prefetch and Filter mechanisms contribute to reducing power consumed by NDN software routers.
Finally, Chapter 7 concludes this thesis.

– 7 –

Chapter 2

Related Work

The thesis is compared with the four series of studies: name-based forwarding, caching, software
packet processing, and power efficiency of routers.

2.1 Name-based Forwarding

Perino and Varvello investigate Content-Centric Networking (CCN) software in detail and claim that
CCN deployment is feasible at ISP scale, whereas today’s technology is not yet ready to support an
Internet scale deployment of NDN/CCN [18]. To achieve high-speed NDN packet processing, many
researches attack issues of heavy NDN functions, focusing on heavy name-based forwarding and
caching.

To cope with the issue of heavy name-based forwarding, previous studies address efficient data
structures of name-based forwarding and its efficient longest prefix match algorithms. Regarding
efficient data structures, the author has enough design choices such as Bloom filter-based, trie-based,
and hash table-based data structures. Dai et al. [9] propose a counting bloom filter-based data
structure with the unified index of all of NDN forwarding tables, i.e., CS, PIT and FIB, so that the
data structure is stored in the SRAM device. Song et al proposes a binary patricia trie using a bit as a
component of a trie so that all of rules of name-based FIB is stored in the compact data structure [11].
So et al. propose a hash table with fast collision-resistant hash computation and compact arrays in
order to reduce the number of DRAM accesses. Bloom filter-based and trie-based data structures
address compactness of data structures of name-based forwarding, whereas the compactness is not
suitable for an NDN software router because the number of DRAM accesses never gets zero on
the NDN software router. From the ease of hiding DRAM access latency, the author chooses a

– 9 –

2.2 Caching

hash table-based data structure [10], whereas its naive design incurs a few of unhidden data fetches,
which are the root cause of forwarding speed degradation. In this thesis, the author designs prefetch
techniques so that the DRAM access latency due to such unhidden data fetches is successfully hidden.

Regarding efficient longest prefix match algorithms, Yuan and Crowley propose a longest prefix
matching algorithm based on binary search of hash tables, which reduces the worst case computation
complexity [12]. So et al. design an efficient FIB lookup algorithm that provides good average and
worst case FIB lookup time complexity. Fukushima et al. design a protocol that avoids redundant
longest prefix matching by exploiting neighboring router’s cooperation [19]. Although these studies
successfully reduce the average time-complexity of longest prefix matching, these incur unhidden
data fetches, of which latency is difficult to be hidden. From the ease of hiding DRAM access latency,
the author proposes to use a simple longest-first search algorithm, as used in [20].

2.2 Caching

In contrast to name-based forwarding, only a few studies focus on fast computation of caching [21,22].
These studies address the large access latency to the secondary memory device like the Solid State
Drive (SSD) storage, which is used for the packet cache of the NDN router. So et al. [21] propose
to explicitly separate CPU cores for accessing the slow SSD storage and those for fast name-based
forwarding to mitigate forwarding speed degradation of an entire NDN router. Mansilha et al.
propose a caching algorithm which hides insufficient memory bandwidth between the main memory
device and the secondary memory device used for a per-packet caching [22]. Both approaches use
one or more CPU cores exclusively to compensate the large access latency to SSDs and thus it
requires heavy computation with multiple CPU cores.

In this thesis, the author proposes to use cache admission according to the observation that
handling Data packets of unpopular content is wasteful. At first, cache admission algorithms [23–25]
are designed by leveraging cooperation of caches of routers in a network so that the same Data packet
is not likely to be inserted into different caches. ProbCache [23] and Betweenness [25] insert Data
packets equally into caches on a delivery path, whereas Leave Copy Down (LCD) [24] focuses on
off-path caching. Nevertheless, the author uses cache admission algorithms without such cooperation,
i.e., cache admission algorithms working independently on individual routers, being inspired by the
observation found by Sun et al. [26] that the LFU-based cache algorithms without such cooperative
cache admission achieves higher traffic reduction in a whole network as well as sufficiently similar
cache hit rate compared with the cache admission algorithms with cooperation. A cache admission

– 10 –

Chapter 2. Related Work

algorithm without such cooperation is simply referred to as a cache admission algorithm, hereafter.

Precisely, the author adopts a frequency-based cache admission algorithm which is executed
independently from the other caches. TinyLFU [27] is a frequency-based cache admission algorithm
and inserts Data packets which are received often recently into a cache. Although Filter of this thesis
is also a frequency-based cache admission, Filter focuses on fast computation of cache admission
itself compared to the TinyLFU, as the author will discuss later in Section 5.2.

2.3 Software Packet Processing

Prototypes of NDN software routers have been developed. Kirchner et al. [28] have implemented their
NDN software router, named Augustus, in two different ways: a standalone monolithic forwarding
engine based on the DPDK framework [29] and a modular one based on the Click framework. Though
the forwarding speed of Augustus is very high, it does not approach the potential forwarding speed
realized by computers. Hence, analyzing the bottlenecks of NDN software routers remains an issue.

How to exploit CPU caches is an important issue to realize the fast packet processing. Vector
packet processing (VPP) [30] enhances packet processing speed by processing a vector of packets at
once rather than processing each of them individually. The key idea behind VPP is to reduce the
processing time by increasing the hit probability at the instruction caches. However, in the case of the
NDN software router, the instruction cache misses, i.e., the instruction pipeline stalls at the frontend
stage, do not occupy a significant proportion of the overall pipeline stalls. Furthermore, unlike VPP,
approaches of this thesis focus on hiding the DRAM access latency, assuming that data cannot be
pinned on the caches.

Fast packet processing is also a hot research topic in the area of networked applications. Li et
al. [31] developed a multi-threaded in-memory key-value store that exploits DPDK and RSS. They
have revealed that the number of cache misses at the L3 cache increases as the number of threads
increases. However, NDN software implementation designed in this thesis scales up to 20 threads
without increasing the number of L3 cache misses.

This thesis addresses the two research issues for high-speed forwarding of NDN software routers.
First, high speed hash table handling is also an important issue in hash table-based systems such
as key-value store systems [32] and OpenFlow switches [33] as well as high speed NDN software
routers. These studies focus on fast mutual exclusion for read-intensive workloads because hash table
lookups dominate most of operations, whereas this thesis avoids such mutual exclusion by having
threads not access the same hash table at the same time. On the contrary, hiding long DRAM access

– 11 –

2.4 Hardware Packet Processing

latency in hash table handling is important for the both hash table-based systems. The author believes
that the proposed prefetch technique for hiding DRAM access latency is applicable to the other hash
table based systems. Second, a lightweight cache admission algorithm, filter, proposed in Section 5,
is used together with cash algorithms of the above systems such as key-value store [32] and reverse
proxy [34]. The studies focus on reducing meta data structures which are stored at caches because
such data structures are larger than data pieces themselves, e.g., 64 bytes data pieces, whereas the
filter focuses on reducing the number of data pieces stored at caches.

2.4 Hardware Packet Processing

Due to the trend that the integration degree of transistors has not increased on the CPU device
recently [35], hardware packet processing with the ASIC-based chip becomes a hot research
topic [36, 37]. A programmable switch hardware with the ASIC-based chip is being released by
Barefoot Networks [38] and the switch hardware realizes both high processing speed by 6.4 Tbps and
the programmability that various types of network applications like IP router [36] and network load
balancer [37] can be implemented. The switch hardware typically implements packet processing as
on-chip operations where all of data structures are pinned on SRAM or TCAM devices and packets
are processed on ASICs using the data structures [36]. Most of network applications using the
switch hardware sheds light on compact data structures to place them on on-chip SRAM or TCAM
devices [37].

The programmable switch hardware is considered to be a promising platform for future NDN
routers requiring about 1 Tbps forwarding speed [39]. However, many issues should be resolved so
that NDN packet processing is implemented on the switch hardware. Among them, a large amount
of NDN data structures raises an implementation issue since all of NDN data structures cannot be
placed on on-chip TCAM and SRAM devices, as discussed in Section 1.1. This means that a part of
NDN data structures must be placed on the off-chip DRAM device of the switch hardware like [36]
or the remote DRAM device of the COTS computer connected to the switch hardware like [40]. In
such the cases, the ASICs need to fetch data pieces of the data structures from the DRAM device to
on-chip SRAM or TCAM devices before using them. Thus, the latency to fetch data from the DRAM
device becomes a issue of high-speed NDN packet processing on the programmable switch hardware
in similar to the COTS computer hardware. The author believes that the data prefetch techniques
proposed in Section 4.3 contribute to hiding such the latency on the programmable switch hardware.

– 12 –

Chapter 2. Related Work

2.5 Power Efficiency of Routers

Many studies which address power efficiency of NDN routers and networks focus on the caching
function because its traffic reductionwould contribute to energy savings. Lee et al. [14,15] investigated
how much power is reduced by reducing hop counts to obtain contents. In their simulations, they
used a power consumption model which only considers the power consumed by lower layer packet
forwarding devices. Choi et al. [16] show that the power consumed by memory devices used for
caching and for the forwarding processes is not insignificant. Imai et al. [17] proposed a method
of determining capacities of NDN routers’ memory devices so that the power they consume is
minimized.

Many power consumption models focus on the power consumed by memory devices because they
are power-hungry even while in idle state. In contrast, the author focuses on the power consumed by
the CPU device for packet forwarding, taking into account the trend towards low power consumption
by memory devices [41, 42].

Bolla et al. [43, 44] model the power consumed by a CPU device with power optimization
techniques by considering two power management states. Although the study of this thesis is partially
motivated by [43, 44], in this thesis, the author models multiple CPU devices (compared to only one
in [43,44]) and empirically validates the developed model by applying it to two different commercial
CPU devices. Finally, the author takes into account all elements of the router (e.g., chassis, memory
devices and CPU), in contrast to [43, 44], where only the CPU is taken into account.

– 13 –

Chapter 3

Microarchitectural Bottleneck Analysis
of an NDN Software Router

As the first step to achieve a high-speed NDN software router, in this chapter, the author identifies
true bottlenecks of NDN packet forwarding on a computer from the perspectives of hardware and
software constraints as described below: First, the author considers what is the most significant
constraint among the constraints on the computation capability of a CPU device, bandwidths of
DRAM devices and bandwidths of Input/Output (I/O) devices by analyzing how a current state-of-the
art NDN software router implementation behaves on a computer. From the analysis, the author
reveals that computation on a CPU is the most significant constraint. Second, the author analyzes
how individual hardware components of the CPU spend time for processing NDN packets at the level
of instructions and instruction pipelines. By carefully analyzing the behavior at the level of CPU
pipelines and instructions, the author identifies two types of bottlenecks of NDN packet forwarding.
The first bottleneck is the unhidden DRAM access latency due to forwarding table accesses and
the other one is the number of instructions executed for NDN packet processing. Third, the author
analyzes how each of NDN functions consumes CPU cycles for processing a packet in order to
identify the cause of the large number of executed instructions. The analysis reveals that packet
processing flow in the case of a cache miss consumes many CPU cycles and that among functions
constituting the packet processing flow in the case of a cache miss, a function of cache eviction
and insertion consumes many CPU cycles. Finally, the author compiles the above analysis results
into two design rationales for high-speed NDN packet forwarding. The first rationale is that data
structures and algorithms for NDN packet processing should be designed so that the DRAM access

– 15 –

3.1 Hardware and Software Platforms

latency is hidden. The second rationale is that cache algorithm should be designed so that high cache
hit rate is achieved with fast computation.

The rest of this Chapter is organized as follows. The author explains NDN packet forwarding
behavior and a state-of-the-art software NDN implementation used for the bottleneck analysis in
Section 3.1. In Section 3.2, the author identifies bottlenecks for high speed forwarding based on the
instruction level analysis from the perspective of hardware constraints. In Section 3.3, the author
identifies bottlenecks of computation time of NDN packet processing from the perspective of software
constraints. Based on analysis results, the author finally provides design rationales for a high speed
NDN router in Section 3.4.

3.1 Hardware and Software Platforms

After describing a hardware platform, this section summarizes software design practices to exploit
the parallel computation capabilities of CPU cores, which are essential to high-speed NDN packet
forwarding.

3.1.1 Hardware Platform

A reference hardware platform is illustrated in Fig. 3.1. It is based on Intel Xeon family CPUs [45],
double data rate fourth-generation synchronous (DDR4) DRAM devices, and latest network interface
cards (NICs).

CPU Cores and Caches Each CPU has several CPU cores, and they are interconnected with one
or two full-duplex on-die ring interconnects. The CPU has L1 instruction, L1 data, L2, and L3
caches. For the sake of notation simplicity, L1 instruction and L1 data caches are referred to as L1I
and L1D caches, respectively. In contrast to the L3 cache, which is shared with all CPU cores, each
of the CPU cores has exclusive L2, L1I, and L1D caches.

Data Transfer between CPU and NIC/DRAM The DRAM and NICs are connected with the
CPU via a memory controller and a PCI express (PCIe) 3.0 controller on its die. PCIe devices,
such as network interface cards (NICs), are connected via the PCIe controller. The CPUs and NICs
support the Intel Data Direct I/O (DDIO) technology [46], which allows data to be transferred directly
between NICs and the L3 cache without passing through the DRAM device. The data transfer rate
via the PCIe controller is 96 Gbytes/s and data is prefetched at any time after all packets in the NIC

– 16 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

NIC

Memory Controller

Core

PCIe Controller

L2

40x PCIe 3.0 lanes

Full Duplex On-die
Ring Interconnect

4x DRAM Channels

DRAM

Packet

L1D

L1I

Core L2
L1D

L1I
L2

L1D

L1I
Core

L2
L1D

L1I
Core

Shared
L3

1)Receive Packet

3)Send Packet

2) Run NDN ProtocolPIT

Data

Instruction

FIB CS

Packet

Figure 3.1: Router hardware architecture

are transferred to the L3 cache in a batch. The memory controller supports DDR4 DRAM devices
and has four DDR4 DRAM channels. The allocation rule of memory requests from the memory
controller to the DRAM channels is determined by the memory management library provided by
DPDK [29]. Data, including NDN tables and instructions, is placed on the DRAM device and it is
fetched via the memory controller. The access latency to the DRAM device is one or more orders of
magnitude greater than that to CPU caches. To hide the DRAM access latency, the CPU has two
types of prefetch mechanisms: hardware and software prefetch mechanisms. The CPU automatically
fetches instructions and data with the hardware prefetch mechanism if their accesses can be predicted
in advance. In addition, data can be speculatively fetched to the caches using the software prefetch
mechanism, which is controlled by the software with the PREFETCH instruction [47]. How to issue
the PREFETCH instruction is vital to hiding the large DRAM access latency.

3.1.2 NDN Packet Forwarding

The packet forwarding flow of NDN on the above router hardware is illustrated in Fig. 3.1. When a
packet arrives at a NIC, it is directly transferred from the NIC to the L3 cache. Then, the packet is

– 17 –

3.1 Hardware and Software Platforms

fetched from the L3 cache to a CPU core and NDN protocol processing is performed for the packet.
Finally, the packet is transmitted from the L3 cache to a NIC. To fully exploit the computation
capabilities made possible by many CPU cores, received packets are processed by several threads in
parallel. the author briefly describes NDN in the following paragraphs.

NDN realizes request/response communication of a named object using two types of packets:
an Interest packet and a Data packet, which correspond to a request packet and a response packet,
respectively. Both Interest and Data packets have a name which uniquely identifies a piece of an
object and only the Data packet has the piece of an object.

NDN protocol processing mainly consists of Content Store (CS), Pending Interest Table (PIT)
and Forwarding Information Base (FIB). CS is a cache memory1 which stores previously processed
Data packets. FIB is a forwarding table which stores outgoing interfaces for Interest packets. PIT
is a table which stores arrival interfaces of pending Interest packets and it is used as a forwarding
table for Data packets. An NDN router realizes NDN protocol processing by using the above three
components as follows: When an Interest packet arrives, the router looks up a piece of an object from
its exact name in the CS. If the router finds the piece, it sends back a Data packet with the piece to
the arrival interface of the Interest packet. Otherwise, the router inserts the arrival interface with the
name of the Interest packet into the PIT. Finally, the router looks up the outgoing interface having the
longest name prefix of the name of the Interest packet and sends the Interest packet to the interface.
When a Data packet arrives, the router looks up its outgoing interface from its exact name in the PIT
and deletes it from the PIT. Then, the router inserts the Data packet into the CS and evict the most
unpopular Data packet from the CS according to cache algorithms, i.e., cache eviction and admission.
Finally, the router sends the Data packet to the outgoing interface.

3.1.3 Practices to Exploit Parallel Computation

Exploiting the parallel computation capabilities of CPU cores is the key to high-speed NDN packet
forwarding, which is more complex than IP packet forwarding. To exploit capabilities of computers,
the software must eliminate obstacles as follows: 1) mutual exclusion, 2) hardware interrupts, 3)
instruction pipeline stalls, and 4) time complexity. Obstacles due to mutual exclusion 1) and hardware
interrupts 2) have already been resolved by existing studies. The author summarizes the design
practices for the first two obstacles in the rest of the section, and then addresses the last two obstacles
in the rest of this thesis. These are the main research issues of this thesis.

1To avoid confusion, hereinafter, the author refers to caches on a CPU and an NDN router as cache, which is the only
SRAM device in a computer, and content store (CS), respectively.

– 18 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

Eliminating Mutual Exclusion

When an area on memory devices is locked with mutual exclusion, threads waiting for the area to
become free is being idle. In a similar way, hardware interrupts and instruction pipeline stalls also
make threads being idle. One way to compensate for such idle time is to increase the concurrency, i.e.,
the number of threads, so that other threads can use idle computing units. For instance, a prototype
NDN software router, named Augustus [28], uses Hyper-Threading Technology. However, this
approach may introduce many context switches, and the context switches also results in significant
overheads. In this sense, the author suggests that the number of threads should be kept equal to or
less than the number of CPU cores.

To utilize computing capabilities derived from multi-core CPUs, multi-threading strategies must
be designed carefully. The author chooses the strategy of assigning one thread to one NDN packet
rather than assigning a sequence of threads to one packet as a pipeline to prevent the pipeline from
being disturbed by I/O waits. The author focuses on two important issues for the multi-threading
strategies: elimination of mutual exclusion and balancing the workloads for processing packets
equally across all threads. To resolve two issues, the author adapts exclusive NDN tables and
packet-level sharding. Mutual exclusion for any shared data would result in serious performance
degradation.

To eliminate mutual exclusion, each thread exclusively has its own FIB, PIT, and CS, thereby
preventing it from accessing the tables of the other threads, as the existing prototypes of NDN
software routers adopt [10, 28].

Arriving packets are forwarded to threads according to their names by using receiver side scaling
(RSS), which allows NICs to send different packets to different queues to distribute the workloads
among CPUs. As Saino et al. [48] revealed in their investigation, packet-level sharding, which
distributes Data packets to CSs based on the result of a hash function computed on the names of the
packets, distributes them equally to each CS. Based on their results, the author assumes in this thesis
that the software distributes packets equally to each thread according to the hashes of their names at
the NICs by using RSS. Please note that partial name matching of Interest and Data names is not
supported in this thesis because the sharding mechanism using RSS requires that a Data packet is
explicitly requested by its exact name.

– 19 –

3.2 Microarchitectural Hardware Bottleneck Analysis

Eliminating Hardware Interrupts

To eliminate hardware interrupts, the author adopts the DPDK user-space driver [29], which allows
user-space software to bypass the protocol stacks of operating systems and provides a way to transfer
data directly from NICs to the software.

Remaining Issues

The remaining issues are twofold: one is to eliminate instruction pipeline stalls caused by NDN
packet processing and the other is to design NDN packet processing itself to optimize its time
complexity. To identify the main cause of instruction pipeline stalls, the author conduct a bottleneck
analysis at the level of the instruction pipeline in Sec. 3.2. To address time complexity, the author
identifies the root cause of such high time complexity in Sec. 3.3.

3.2 Microarchitectural Hardware Bottleneck Analysis

To identify a true bottleneck of NDN packet forwarding on a computer, the author conducts a
microarchitectural hardware analysis, which analyzes how individual hardware components of the
CPU spend time for processing NDN packets at the level of instructions and instruction pipelines,
with the method described in the previous section.

3.2.1 Bottleneck Analysis Method

This subsection summarizes the microarchitectural analysis method.

Analysis of Packet Forwarding Flow

First, the author identifies which of the factors, computation time or I/O bandwidth, is the bottleneck
limiting the maximum packet forwarding rate by defining how these two factors limit the maximum
rate.

The packet forwarding rate, λ packet/s, is defined as the number of packets, including Interest
and Data packets, forwarded per second. When the packet forwarding rate is λ, the consumed CPU
cycles are derived as λC, where C is the average number of CPU cycles consumed to process a
packet. Assuming the load for processing packets is equally assigned to N CPU cores operating at a
frequency of F Hz, the maximum packet forwarding rate, λmax, must satisfy λmax ≤ NF/C. In the
same way, the average number of bytes read from and written to DRAM devices for processing a

– 20 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

Core

Retirement
Unit

Branch Prediction
Unit

Fetch/Decode
Unit

L1I
Cache

L1D
Cache

L2
Cache

Shared L3
Cache

DRAM
ALU

Load/Store
Unit

IDQ
Frontend

Backend
Retirement

Speculation

Uncore

Figure 3.2: Hardware units on a CPU and four main stages of instruction pipeline

packet is expressed as M and it can be modeled similarly to the CPU cycles. The maximum packet
forwarding rate λmax satisfy λmax ≤ B/M, where B is the bandwidth of DRAM channels, thereby
λmax satisfying

λmax ≤ min (NF/C, B/M) . (3.1)

If the maximum packet forwarding rate is NF/C, computation time is a bottleneck. Otherwise I/O
bandwidth is a bottleneck.

Analysis of Pipeline Stalls

Second, the author analyzes the bottleneck for computation since computation time is the bottleneck,
as shown later in Section 3.2.3. Specifically, the author analyzes where hazards occur in the
pipeline and how long the pipeline is stalled due to the hazards. The author uses the top-down
micro-architecture analysis method proposed by Yasin [49]. Before analyzing the pipeline hazards,
the author explains the pipeline and flows of instructions and data on a CPU.

The pipeline has four main stages: frontend, backend, speculation, and retirement, as shown in
Fig. 3.2. The frontend stage is responsible for fetching instructions from the DRAM device or the
CPU caches and feeding them to the backend stage, and the speculation stage supports the frontend
stage in its instruction fetches, using the branch prediction unit. In contrast, the backend stage is
responsible for executing the instructions, fetching necessary data from the DRAM device or the
caches and storing data on the caches. Finally, instructions executed successfully are retired at the
retirement stage.

The CPU cycles spent for processing the pipeline are also categorized into four major parts: CPU
cycles spent during the pipeline stalls at the frontend stage due to instruction cache misses, that spent
during pipeline stalls at the backend stage due to data cache misses, that wasted at the speculation

– 21 –

3.2 Microarchitectural Hardware Bottleneck Analysis

stage due to branch prediction misses, and that spent when instructions are successfully executed and
retired at the retirement stage. In the ideal case, where instructions are executed without pipeline
stalls, the CPU cycles spent at all stages except for the retirement stage become zero. That is, the
CPU cycles spent at the retirement stage are equivalent to the minimum computation time.

The pipeline stalls at each of the stages can be further broken down into more specific categories
based on the reasons for the stalls. The pipeline stalls at the backend stage are divided into the
following three categories: pipeline stalls due to waits at load units, at store units, and at core units,
such as instruction execution units. Since the pipeline stalls at the backend stage dominate the overall
pipeline stalls, the author omits any detailed investigation of the pipeline stalls at the frontend and
speculation stages. Among them, the pipeline stalls due to waits at load units dominate the overall
pipeline stalls at the backend stage, and hence the author further categorizes the pipeline stalls at the
load units into the following four categories: pipeline stalls to wait for data to be fetched from the
L1D, L2, L3 caches, and the DRAM device.

CPU Cycle Measurement Method

The number of CPU cycles spent at each of the pipeline stages are measured with a performance
monitoring unit (PMU) on CPUs. A PMU has a set of counters, which count the number of
occurrences of hardware events. Such events include pipeline stalls at the frontend, backend, and
speculation stages and the instruction retirement at the retirement stage.

3.2.2 Experiment Settings

Prototype Implementation

The author implements a prototype of basic NDN functions which include longest prefix match on
FIB lookup, exact match on CS lookup and PIT lookup, and FIFO-based CS eviction according to
a state-of-the-art software implementation [10]. The processing flow of the prototype is shown in
Fig. 3.3. When an Interest packet is received, the prototype performs NDN functions in the same
order as the block diagram of [7] except for the functions below. A nonce is not calculated because
the number of CPU cycles needed for the calculation is much smaller than that of the whole Interest
packet forwarding [50]. Only the Best Route Strategy is supported. Partial name matching of Interest
and Data names and selectors are not supported because the goal of this thesis is fast name-based
longest prefix match. The FIB does not have entries other than those for Interest forwarding such as
those for RTT estimation because fast stateful forwarding is not a goal of this thesis. When a Data

– 22 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

B2: CS

Lookup

B7:Data

Reception

B5: FIB

Lookup

B3: Data

Composition
B9: CS Eviction

& Insertion

Interest

B1: Interest

Reception

B6: Interest

Transmission

B4: PIT

Insertion

Hit

Miss

Data

B8: PIT

Deletion

B10: Data

Transmission

C:571 C:148 C:188 C:413 C:56

C:72

C:50 C:329 C:73 C:188

C : CPU Cycles [cycle/packet]

Figure 3.3: NDN software block diagram and analysis of computation time

packet is received, the prototype performs NDN functions in the same order. The CS is stored on the
DRAM device to avoid long read latency to the hard disk drive. The prototype employs Interest and
Data packets that conform to the NDN-TLV packet specification [51], and Interest and Data packets
are encapsulated by IP packets, of which the headers hold the hashes of their name and are used for
RSS at the NICs.

Experiment Conditions

For the experiments, the author uses two computers with a Xeon E5-2699 v4 CPU (2.20 GHz × 22
CPU cores), eight DDR4 16 Gbytes DRAM devices, and two Intel Ethernet Converged Network
Adapter XL710 (dual 40 Gbps Ethernet ports) NIC. The operating system on the computers is an
Ubuntu 16.04 Server.

One computer is used as a router and the other is used as a consumer and a producer. The two
computers are connected using four 40 Gbps direct-attached QSFP+ copper cables. The two links
are used for connecting the consumer and the router and the other two are used for the router and
the producer. That is, the total bandwidth between the consumer and the router and the router and
the producer is 80 Gbps. The consumer sends Interest packets to the producer via the router. The
producer returns Data packets in response to the Interest packets via the router. The author sets the
payload size of Data packets to 128 bytes. For the experiments, the consumer generates 80 million
different Interest packets with different 80 million names so that all Interest packets miss at the CS
and the PIT.

To generate workloads and FIB entries for experiments, the author uses the results of the analysis
on HTTP requests and responses of the IRCache traces [52] conducted in [10]. 13,548,815 FIB

– 23 –

3.2 Microarchitectural Hardware Bottleneck Analysis

Table 3.1: The consumption of CPU cycles and I/O bandwidth for processing one Interest or Data
packet

I-miss I-hit Data
CPU Cycles 1470 860 565
Memory I/O Bandwidth 909 511 816

entries are stored in the FIB. The average number of components in Interest packets is set to 7 and
the average length of each component is set to 9 characters. The average number of components in
prefixes of FIB entries is set to 4 and consequently, the average number of FIB lookup operations per
one Interest packet is slightly larger than that in [10].

3.2.3 Analysis Results

This subsection conducts the microarchitectural bottleneck analysis in accordance with the steps
described in Section 3.2.1.

Analysis Results of Packet Forwarding Flow

The evaluation is accomplished by using the prototype in Fig. 3.3 with two steps: I) Measuring the
CPU cycles and I/O bandwidth consumed to process a packet and II) estimating the maximum packet
forwarding rate limited by CPU computation time and I/O bandwidth.
I) CPU Cycles and I/O Bandwidth Consumption: The author measures CPU cycles and I/O
bandwidth consumed for processing one Interest packet or one Data packet in the following three
cases: The Interest packet processing flow in the case of CS misses, the Interest packet processing
flow in the case of CS hits, and the Data packet processing flow. CPU cycles and I/O bandwidth are
measured using the time-stamp counter and the performance monitoring unit on the CPU, respectively.
The CPU cycles and the DRAM channel bandwidth consumed for processing one Interest or Data
packet are shown in Tab. 3.1.
II) Maximum Throughput: Based on the measured results, the author estimates the maximum
packet forwarding rate limited by either computation time or DRAM channel bandwidth. the author
assumes two computers: Computer 1 has one CPU (2.20 GHz × 22 CPU cores), which has the
highest number of CPU cores among Intel Xeon E5 CPUs, and computer 2 has one CPU (2.60
GHz × 4 CPU cores) [45]. The maximum bandwidth of DRAM channels on both computers scales
up to 76.8 Gbytes/s [45]. For this analysis, the author assumes a 30% CS hit rate. The average
number of CPU cycles and DRAM bandwidth consumed for processing a packet are C = 925.4

– 24 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

Table 3.2: The number of CPU cycles spent in the instruction pipeline (Entire pipeline)

I-miss I-hit Data
Total 1470 860 565
Frontend 161 40 73
Backend 662 359 220
Speculation 161 18 42
Retirement 486 443 230

Table 3.3: The number of CPU cycles spent in the instruction pipeline (Backend)

I-miss I-hit Data
Backend 662 359 220
Load 512 256 146
Store 10 11 14
Core 140 92 60

cycles and M = 800.7 bytes, respectively. The maximum packet forwarding rate limited by the
DRAM bandwidth of both computers is B/M = 95.9 × 106 packets/s. In contrast, the maximum
packet forwarding rates limited by CPU cycles, i.e., NF/C, for computer 1 and 2 are calculated to be
NF/C = 52.3 × 106 and 11.2 × 106 packet/s, respectively.

In summary, the computation time is the more significant constraint limiting the maximum packet
forwarding rate, i.e., NF/C � B/M , in both cases where the number of CPU cores is high and where
it is small. The author obtains an observation that computation time is the most significant constraint
for high-speed forwarding on modern computer platforms. The observation that, computation time is
a bottleneck, is considered to hold true on future computer platforms. This is because the memory
bandwidth B continues to increase year by year [53], whereas either the CPU clock speed F or the
CPU cores number N has not been increasing recently [35].

Analysis Results of Pipeline Stalls

The CPU cycles spent during the pipeline stalls at the frontend, backend, and speculation stages and
the instruction executions at the retirement stage are summarized in Table 3.2. The author measures
the CPU cycles spent for processing one Interest packet or one Data packet in the following three
cases: The Interest packet processing flow in the case of CS misses, the Interest packet processing
flow in the case of CS hits, and the Data packet processing flow. To simplify the notation, these
three cases are denoted by I-miss, I-hit, and Data in the tables. Among all the three cases, I-miss
consumes the largest number of CPU cycles. Only the flow includes the FIB lookup procedure, and

– 25 –

3.2 Microarchitectural Hardware Bottleneck Analysis

Table 3.4: The number of CPU cycles spent in the instruction pipeline (Load Unit)

I-miss I-hit Data
Load 512 256 146
L1D 33 66 20
L2 0 0 0
L3 19 28 32
DRAM 460 162 94

Table 3.5: The number of retired load instructions

I-miss I-hit Data
Load 328 289 127
L1D 322 286 122
L2 1 1 2
L3 1 1 2
DRAM 4 1 1

hence the design of FIB data structures and FIB lookup algorithms is a critical issue, as discussed
in the previous subsection. For all the three cases, the pipeline stalls at the backend stage consume
the nearly one third or more of all the CPU cycles. In the rest of this chapter, the author focuses on
eliminating stalls at the backend stage because they are more significant than those at the other stages
and the root cause of such stalls is identified, as described below. Please note that eliminating stalls
at the other stages is a topic left for future study.

Backend Stalls

To elucidate the causes of the long stalls at the backend stage, the author measures the stalls due to
the load, store, and core units. The results are summarized in Table 3.3. Most of the pipeline stalls at
the backend stage are caused by the load units waiting data to be fetched from either the caches or the
DRAM device.

The author further drills down into the stalls at the load unit level: stalls to wait for data to
be fetched from the L1D, L2, L3 caches, and the DRAM device. The results are summarized in
Table 3.4. Most of the CPU cycles due to the stalls at the load units are spent to wait for data to be
fetched from the DRAM device. It is a straightforward result since the DRAM access latency is much
longer than those of the L1D, L2, and L3 caches. However, the number of accesses to the DRAM
device, which is measured by the number of retired load instructions, is surprisingly small, i.e., 4 or
less, as shown in Table 3.5. This is because most of the data fetches from the DRAM device are

– 26 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

Table 3.6: The number of CPU cycles against the number of threads

The number of threads 1 10 20
Entire Pipeline 1470 1567 2033
DRAM cycles 460 640 878
The number of DRAM accesses 4 4 4

hidden by the hardware prefetching mechanisms of the CPU and such data would be provided to core
units without stalling the pipeline. However, a few DRAM accesses that cannot be prefetched using
the hardware prefetching mechanism cause significant pipeline stalls and these lead to significant
degradation of the forwarding speed.

Multi-Threaded Case

The author next evaluates the CPU cycles and the number of DRAM accesses in the case of
multi-threaded software. The results are summarized in Table 3.6. The author allocates 2 CPU cores
to the operating system and the remaining 20 CPU cores to the NDN software router. The number of
CPU cycles due to the stalls to wait for data to be fetched from the DRAM device increase as the
number of threads increases while the number of DRAM accesses does not increase.

Observations

From the above analysis results, the author obtains three observations related to bottlenecks of an
NDN software router. The first observation is that the pipeline stalls to wait for data to be fetched
from the DRAM device spent the majority of CPU cycles. For the Interest packet processing flow,
31.3% of the CPU cycles are spent during the pipeline stalls to wait for data to be fetched from the
DRAM device. Hence, to hide the latency due to DRAM accesses is an important design issue for
high-speed NDN software routers.

The second observation is that the CPU cycles due to the stalls to wait for data to be fetched from
the DRAM device increases as the number of threads increases. This is because there is contention
at the memory controller on the CPU and the wait time due to the contention increases as the number
of threads increases. In contrast, the average number of DRAM accesses does not change even if the
number of threads increases. This is counterintuitive because the L3 cache is shared by all CPU
cores. The reason for this effect is that the most part of the three tables, i.e., the PIT, the CS, and the
FIB, is stored on the DRAM device regardless of the number of threads, and therefore the data of the
tables will be fetched every time they are used.

– 27 –

3.3 Microarchitectural Software Bottleneck Analysis

The third observation is that the number of CPU cycles spent at the retirement stage is not
negligible from the result shown in Table 3.2. The CPU cycles spent at the retirement stage are
equivalent to the minimum computation time without any pipeline stalls. This implies that there is
still room to reduce computation time of NDN packet processing.

In the next section, the author identifies the cause of long computation time of NDN packet
processing by NDN software analysis.

3.3 Microarchitectural Software Bottleneck Analysis

This section analyzes computation time of NDN packet processing from the perspective of software
constraints. The author identifies software constraints by analyzing how each of NDN functions
consume CPU cycles based on the state-of-the-art NDN software implementation after describing its
packet processing flow.

3.3.1 NDN Packet Processing of Reference NDN Software

This section describes the NDN packet processing flows within the cases of both cache hits and
misses according to the diagram illustrated in Figure 3.3. Block B1 receives and decodes an incoming
Interest packet and then computes hash values of prefixes of its name. B2 checks whether a data
piece of a Data packet corresponding to the Interest packet is stored in the CS. If the data piece is in
the CS, B3 fetches it and composes the Data packet with it, and then B10 sends back the Data packet
to the incoming interface.

Otherwise, i.e., if the Interest packet does not hit the CS, B4 inserts the incoming interface into
the PIT. After B5 gets an outgoing interface by longest name prefix lookup of FIB, B6 sends the
Interest packet to the outgoing interface. When a returned Data packet corresponding to the Interest
packet arrives at the router, B7 receives and decodes the Data packet and then computes a hash value
of its name. After B8 gets and deletes an outgoing interface from the PIT, B9 evicts a victim from the
cache according to the cache eviction algorithm and then inserts the incoming Data packet into the
CS. Finally, B10 sends the Data packet to the outgoing interface.

3.3.2 Analysis Results

The author analyzes how each function of NDN packet processing described in Fig. 3.3 consumes
CPU cycles for processing a packet. For the analysis, the author employs the same experiment

– 28 –

Chapter 3. Microarchitectural Bottleneck Analysis of an NDN Software Router

settings that are used in the bottleneck analysis described in Section 3.2.2. The measured CPU
cycles spent at each block for processing one packet are summarized in Fig. 3.3. The value after the
character “C” represents the CPU cycles spent at each block. From this figure, the author founds the
following two facts related to software constraints of NDN packet processing.

First, among two packet processing flows, i.e., the packet processing flow in the case of a cache
miss and that in the case of a cache hit, that in the case of a cache miss consumes many CPU cycles,
where packet processing flows in cases of a cache miss and a cache hit consume 2016 and 791 cycles,
respectively. This is because a router consumes CPU cycles for forwarding an Interest packet at B4,
B5 and B6, which are not needed if the Interest packets hits the CS, in addition to those for processing
the corresponding Data packet at B7, B8, B9 and B10.

Second, among function blocks which are executed in the case of a cache miss, the block B5

spends the most CPU cycles and B9 does the second most CPU cycles. The number of CPU cycles
spent at B9 is caused by computations of the cache eviction algorithm, whereas the number of CPU
cycles spent at B5 is mostly caused by the stall to data pieces of the FIB to be fetched from the
DRAM.

From the above two facts, the author obtains the following observations. First, the packet
processing flow in the case of a cache miss should be prevented from being executed because it
consumes many CPU cycles. Second, computation of cache algorithms should be fast in order to
reduce computation time of the packet processing flow in the case of a cache miss. These two
observations imply that the cache algorithm needs to improve cache hit rate with fast computation.
Finally, the stall to wait data pieces of the FIB to be fetched from the DRAM device should be
successfully hidden.

3.4 Design Rationale

Finally, this subsection summarizes design rationales for high-speed NDN forwarding on the basis of
bottleneck analysis results in Sections 3.2 and 3.3. The first principle is to hide instruction pipeline
stalls to wait for data to be fetched from the DRAM device by leveraging the software prefetch
mechanism. In the ideal case, all DRAM access latency is hidden behind instructions at the retirement
stage. The second principle is to reduce computation time of NDN packet processing. This is because
if the computation time is longer than the DRAM access latency, computation becomes a bottleneck
for fast name-based forwarding and caching. To reduce the computation time, cache algorithm for
NDN software routers needs to improve cache hit rate with fast computation time, as identified in

– 29 –

3.4 Design Rationale

Section 3.3.
According to the first principle, the author chooses data structures and algorithms and then

designs prefetch algorithms to hide all of the DRAM access latency in Chapter 4. According to the
second principle, in Chapter 5, the author designs an NDN packet forwarding scheme with a simple
cache admission algorithm so that high cache hit rate is achieved with fast computation.

– 30 –

Chapter 4

Data Prefetches to Eliminate Pipeline
Stalls on Hash Table-based Forwarding
Tables

In Chapter 3, the author identified two bottlenecks. The first bottleneck is unhidden DRAM access
latency due to forwarding table accesses and the other one is wasteful computation of cache algorithm.
Among them, in this chapter, the author addresses how to hide DRAM access latency.

The rest of this chapter is organized as follows. First, in Sections 4.1 and 4.2, the author carefully
compares existing data structures and algorithms both for name-based forwarding and caching
from the viewpoint of the ease of hiding DRAM access latency and chooses a hash table-based
algorithm and a frequency-based cache admission algorithm for name-based forwarding and caching,
respectively. Then, in Section 4.3, the author designs a prefetch algorithm for hiding most of
the DRAM access latency for both name-based forwarding and caching by reordering instruction
executions for a pair of packets so that the DRAM access latency due to data fetches is successfully
hidden by execution time of instructions independent of the data fetches. In Section 4.4, the author
implements a proof-of-concept prototype and empirically prove that it realizes a nearly optimal
forwarding speed. A detailed analysis at the level of CPU pipelines and instructions reveal that
most DRAM access latency are successfully hidden by the prefetch algorithm. Finally, the author
concludes this chapter in Section 4.5.

– 31 –

4.1 Data Structure and Algorithm for FIB

4.1 Data Structure and Algorithm for FIB

4.1.1 Overview

In this section, the author chooses a FIB data structure appropriate for hiding DRAM access latency
between two representative FIB data structures, i.e., a hash table-based FIB [11] and a trie-based
one [12] by comparing the average numbers of dependent DRAM accesses for longest name prefix
matching for a queried name. The word “dependent” means that the address of a “dependent” data
piece is not determined until a data piece which contains the pointer to the dependent data piece is
fetched from a DRAM device. Since such data pieces in the DRAM device should be fetched in
sequence, fetching dependent data pieces creates a bottleneck even if multiple data pieces in DRAM
devices can be fetched in parallel. It is clear that time of longest name prefix matching is at least the
dependent data piece number multiplied by time of one data fetch from a DRAM device, i.e., about
115 CPU cycles.

The author does not consider a bloom filter-based FIB [9, 54] because it accesses a bloom filter
before accessing a hash table. This obviously increases the number of dependent DRAM accesses
compared to a hash table-based FIB.

4.1.2 Hash Table-based FIB

Data Structure and Exact Matching Algorithm

A hash table-based FIB [10] uses a hash table, which is a data structure to realize an associative
array, to store mappings of name prefixes and interfaces. In the case where a hash table is used
as an underlying data structure of a FIB, its keys are name prefixes and its values are interfaces
corresponding to the keys. Hereinafter, the author refers to name prefixes simply as prefixes. Although
a naive hash table is a chained hash table with linked lists where several hash entries are connected
via pointers, it needs to serially traverse several hash entries through pointers and the traverse causes
a large number of dependent DRAM accesses. To resolve this problem, the author employs a
sophisticated chained hash table proposed by So et al. [10]. It packs pointers to several hash entries
on a hash bucket, which is a single cache line-sized array, so that this eliminates the above traverse of
hash entries. The author refers to buckets and entries of a hash table as hash buckets and hash entries.

The author first discusses exact matching with a hash table from the perspective of dependent
DRAM accesses since a longest prefix matching operation on a name is realized by iteratively
executing exact matching operations on its name prefixes. Figure 4.1 shows the exact matching

– 32 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

hash entry

1.compute

hash (Hash)

hash bucket

2.fetch

bucket (Bf)

3.check

bucket (Bc)

4.fetch entry if found (Ef)

5.check entry (Ec)

h h h…

hash …name

hashname

Figure 4.1: Flow of Exact Matching Algorithm

algorithm in the case where the sophisticated chained hash table is used. It looks up a prefix in
a hash table which is matching to a queried name of an Interest packet, as described below: The
algorithm, first, computes a hash value of the name (1 of Fig. 4.1) and fetches a hash bucket which
corresponds to the hash value (2 of Fig. 4.1). This is the first fetch from the DRAM device. Then
it iteratively checks hash values in the hash bucket to look up a pointer to a hash entry having a
matching prefix (3 of Fig. 4.1) and then fetches the hash entry to which the pointer points in the
DRAM device (4 of Fig. 4.1). This is the second fetch. The two fetches of the hash bucket and the
hash entry are dependent because the hash entry is fetched by using the pointer in the hash bucket.
Thus, the number of dependent DRAM accesses for an exact matching operation is 2. Finally, it
checks a name in the hash entry to validate whether the name in the hash entry is the queried name or
not only if the hash entry is found (5 of Fig. 4.1). An advantage of the sophisticated chained hash
table proposed in [10] is that their hash buckets in DRAM devices can be fetched in parallel.

Longest Prefix Matching Algorithm

The number of dependent DRAM accesses is determined by a longest prefix matching algorithm
which searches for the longest matching prefix in the hash table corresponding to the queried name.
The author compares the number of dependent DRAM accesses for the two promising algorithms:
longest-first search and 2-stage search algorithms.

The longest-first search algorithm is a commonly used algorithm. It starts to run the above exact
matching algorithm for the name itself, which is its longest prefix, and continues to run the algorithm
for a shorter prefix until it finds the longest matching prefix. It ensures that a hash entry which is
firstly found during lookup iterations has the longest matching prefix. All the hash buckets can be
fetched in parallel but the two fetches of the hash entry and the hash bucket that holds the pointer of

– 33 –

4.1 Data Structure and Algorithm for FIB

the entry are dependent. Thus, the number of dependent DRAM accesses is 2.
The 2-stage search algorithm [10] reduces the average number of iterations by starting the search

from a certain shorter prefix (M components) than the queried name. Every FIB entry having a
prefix with M components maintains the maximum length of a prefix that starts with this prefix. By
checking the maximum length, it determines whether to continue searching for shorter prefixes or
for longer ones. The algorithm first accesses a hash entry with a prefix having M components by
fetching its hash bucket and hash entry (the first and second fetches). Then, it fetches a hash bucket
and a hash for all shorter or longer prefixes in parallel for the search (the third and fourth fetches).
Hence, the number of dependent DRAM accesses is 4.

Finally, the author chooses the longest-first search algorithm since the number of its dependent
DRAM accesses is fewer than that of the 2-stage search algorithm.

Please note that this section considers only those cases where the exact matching algorithm
successfully matches a queried prefix with a prefix in a hash entry. There are two cases where the
exact matching algorithm fails. First, the queried prefix is not stored in the hash table. Second, the
name in the hash entry is not the queried prefix which is caused by hash collision. In the above
cases, the exact matching algorithm is rerun for a shorter queried prefix. How to handle such cases is
described later in Section 4.3.2.

4.1.3 Trie-based FIB

A trie is a tree-based data structure that stores an associative array. In a way similar to a hash
table-based FIB, its keys are prefixes and its values are corresponding interfaces. Interfaces are
looked up by traversing vertices from the root vertex. If the whole data structure of a trie-based FIB
is not stored in the CPU caches, several vertices are sequentially accessed through pointers from the
DRAM device. In the rest of this subsection, the author estimates the number of vertices fetched
from the DRAM devices as the number of dependent DRAM accesses.

As a reference data structure, the author selects a binary Patricia trie [11] because its data structure
is the most likely to be stored in CPU caches among trie-based FIBs since its memory consumption
is the smallest among such FIBs [11]. The author derives the number of DRAM accesses in the
following steps: First, the author calculates the probability Pd of a vertex vd for which the depth is d

being in the L3 cache by using Rd, which is the number of bytes fetched to the L3 cache during two
consecutive accesses to vd. I(vd) denotes the interval of the two consecutive accesses to vd. If Rd is
larger than the L3 cache size S, vd will be in the DRAM device; otherwise it will be in the L3 cache.
Second, Rd is derived from the product of Nd, which is the average number of packets processed

– 34 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

during the interval I(vd), and r , which is the number of bytes fetched to the L3 cache for processing
a packet.

Assuming that the probabilities of digits {0, 1} in prefixes and names are identical, the probability
of vd being accessed at each longest prefix match operation is derived as 1/2d. Thus, vd is accessed
once every 1/(1/2)d = 2d longest prefix match operations on average. Since Interest and Data
packets are one-for-one in principle, the author can assume that one Data packet is processed
between two longest prefix match operations. Under this assumption, the average number of Data
packets being processed during the interval I(vd) is 2d. Therefore, Rd is estimated as Rd = r2d. If
Rd > S, the vertex vd is fetched from the DRAM device. The total number of DRAM accesses is
derived by adding such DRAM accesses for all vertices between the root vertex and leaf vertices.
According to the analytical model [11], the average depth of all leaf nodes, which hold FIB entries, is
log(n) + 0.3327, where n denotes the number of FIB entries. The author defines a binary variable Bd

and Bd = 1 if Rd > S, 0 otherwise. By using Bd, the average number of DRAM accesses is derived
as

∑ blog(n)+0.3327c
i Bi.

According to the analyses conducted in [10], the author sets the number of FIB entries to
13,548,815, which is the number of unique names in the IRCache traces [52]. The author empirically
measures r with PMU registers, and the number of bytes fetched from the DRAM device for
processing one Data packet is 511 bytes. Assuming a Xeon E5-2699 v4 CPU, of which the L3 cache
size is the largest among commercially available CPUs, the author sets the L3 cache size S to 55
Mbytes. In this case, the average depth of the Patricia-based FIB is 24.01, and thus the average
number of vertices from the DRAM device is

∑ blog(n)+0.3327c
i Bd = 7. This result means that the last

7 vertices are sequentially accessed from the DRAM device among all vertices accessed in one FIB
lookup operation. The number of dependent DRAM accesses of the trie-based FIB is greater than
that of the hash table-based FIB.

4.1.4 Summary

Finally, the author chooses a hash table as an underlying data structure for FIB and a longest-first
search algorithm for a lookup algorithm. To hide the latency to fetch a hash entry of the hash
table-based FIB, the author designs a prefetch algorithm for the hash entry in Section 4.3.

– 35 –

4.2 Cache Algorithm for CS

4.2 Cache Algorithm for CS

4.2.1 Overview

In this section, the author chooses a cache algorithm appropriate for hiding DRAM access latency
from representative algorithms, cache eviction algorithms and cache admission algorithms. Cache
eviction determines a victim, i.e., a Data packet evicted from a CS, whereas cache admission decides
whether a new Data packet is inserted into the CS or not. Usually, a cache admission algorithm
is used with a simple cache eviction algorithm based on FIFO. An important difference from the
choice of FIB data structure described in Section 4.1 is that time complexity and cache hit rates
should be considered as well. The author chooses a cache algorithm in the following steps: First, the
author excludes the FIFO eviction algorithm from the candidates because cache hit rate provided by
it are obviously less than the other algorithms. In other words, the other cache eviction and cache
admission algorithms, of which cache hit rate is sufficiently high, are candidates and hereinafter, the
author does not discuss cache hit rate differences among the candidates. Second, the author excludes
some cache algorithms due to their heavy computation time, as described in Section 4.2.2. Finally,
the author compares the numbers of dependent DRAM accesses for the other representative cache
algorithms.

4.2.2 Cache Eviction Algorithm

Two promising kinds of algorithms to realize cache eviction exist: frequency-based eviction and
recency-based eviction. These algorithms exploit the history of requests to Data packets in order to
improve cache hit rates. The author excludes frequency-based eviction algorithms such as WLFU [55]
and LFU-DA [56] because it is well known that updating the priority queue, which maintains the
numbers of requests, requires computation with logarithmic time complexity. Representative recency
based eviction algorithms require only computation with constant time complexity and hereinafter,
the author compares the number of dependent DRAM accesses for them.

Recency-based eviction exploits the recency of Data packets, which is defined as the elapsed
time from when the last request for a Data packet arrives to the current time, as a history. There
are two kinds of data structures representing the history of recencies. Some algorithms such as
LRU, LIRS [57] and ARC [13] use a doubly linked list where nodes corresponding to Data packets
stored in a CS are ordered according to their recencies, called an LRU list. These algorithms reorder
nodes in the LRU list every time a request for a Data packet is received. Other algorithms such as

– 36 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

CLOCK [58], CAR [59] and CLOCK-Pro [60] avoid such reordering by adding each node in the list
a flag bit, which specifies which Data packet has been hit in the CS recently.

Recency-based Eviction with LRU List

This subsection describes the number of dependent DRAM accesses for recency-based eviction
algorithms using only the LRU list [13, 57]. The number of dependent DRAM accesses is the largest
when the request hits the CS as described below. First, the eviction algorithm fetches the hash bucket
of the hash table storing the cached Data packet (the first fetch) after computing the hash value of
the queried name. Then, it fetches the hash entry (the second fetch) which holds the pointer to the
corresponding node in the LRU list. Then, it moves this node corresponding to the hit Data packet to
the head of the LRU list. For this movement, it fetches this node and the head node in the LRU list in
parallel (the third fetch) and then fetches the next and previous nodes of this node (the fourth fetch).
Hence, the number of dependent DRAM accesses is 4.

Recency-based Eviction with Flag Bits

A recency-based eviction algorithm [58–60] with flag bits does not need to maintain an exact recency
history. It searches the LRU list to find the node of which the flag bit is reset when a received Data
packet is inserted and a victim Data packet is deleted to and from the CS, respectively, whereas it
just sets the flag bit of the node corresponding to the Data packet stored in the CS. If the LRU node
list was pinned at SRAM devices, such search would incur low computational overhead. However,
since the LRU list is stored in DRAM devices, the algorithm needs to fetch nodes in the LRU list
sequentially to check their flag bits and hence the number of dependent DRAM accesses is equal to
the number of fetched nodes. Song et al. investigated the average number of traversals of nodes in
the LRU list to find a victim Data packet in [60] and revealed that CLOCK-Pro serially traverses an
average of 16.6 list nodes. This means that the average number of dependent DRAM accesses is 16.6.
The author concludes that the recency-based eviction algorithm using only the LRU list [13,57] is
better than that with flag bits [58–60].

4.2.3 Cache Admission Algorithm

Two promising kinds of algorithms to realize a cache admission exist: frequency-based admission
and recency-based admission. Recency-based admission such as 2Q [61] causes a similar number of

– 37 –

4.2 Cache Algorithm for CS

dependent DRAM accesses as recency-based eviction since it handles an LRU list when a request hits
a CS. Therefore, in the rest of this subsection, the author focuses on only frequency-based admission.

Frequency-based admission is generally used in conjunction with simple cache eviction such
as FIFO. The author assumes that the underlying cache eviction for cache admission is FIFO
eviction. Although a common objective of both frequency-based eviction and admission is to
identify popular/unpopular Data packets by exploiting frequency, there is a difference between their
computations. The eviction identifies the most unpopular Data packet in a CS, whereas the admission
only decides whether a new Data packet is more popular than one of the Data packets in a CS.
Note that here the word “popular” means that a Data packet is likely to be requested in the future.
The above difference means the admission has an advantage in terms of computational overhead
because it does not need to maintain a priority queue where Data packets are ordered according
to their frequencies, which requires an operation with logarithmic time complexity. That is, the
frequency-based admission requires only computation with constant time complexity.

A Representative frequency-based cache admission algorithm is TinyLFU [27]. TinyLFU uses a
counting bloom filter to record frequencies of Data packets stored in a CS and they are indexed by
the hash values of names of Data packets. FIFO eviction uses a simple ring buffer as a queue to store
Data packets and their names and the hash values of their names are also stored in the ring buffer.
First, the TinyLFU admission algorithm fetches the frequency of a new Data packet after computing
the hash value of its name (the first fetch). Then, it compares the frequency to the frequency of a
victim Data packet as follows: To obtain the hash value of the name of the victim Data packet, it
fetches the node of the victim Data packet, i.e., the tail node, in the FIFO ring buffer (the second fetch).
Then, it fetches the frequency of the victim Data packet by using the hash value (the third fetch). The
first and the second fetches are operated in parallel because they are independent. When the first
fetch occurs, the address of the tail node in the FIFO ring buffer is obviously known. In contrast, the
second and third fetches are dependent. Hence, the number of dependent DRAM accesses is 2.

4.2.4 Summary

Finally, the author selects TinyLFU admission with FIFO eviction for the NDN software router of this
chapter. With respect to the cache hit rate, Gil et al. evaluated cache hit rates with TinyLFU and other
sophisticated cache eviction algorithms in [27]. The evaluation revealed that TinyLFU admission
achieves high cache hit rates comparable to ARC, LIRS and WLFU evictions under realistic traffic
traces of various services such as YouTube video and Wikipedia. According to the evaluation result,
the author concludes that TinyLFU admission is one of the best algorithms to provide both fast

– 38 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

computation and a high cache hit rate.

4.3 Preferch-Friendly Packet Processing

In this section, the author first identifies data fetches causing instruction pipeline stalls which cannot be
hidden by a conventional packet processing flow. Then, the author designs a prefetch-friendly packet
processing flow to circumvent instruction pipeline stalls caused by the identified data fetches. Finally,
the author experimentally evaluates the performance gains obtained by using the prefetch-friendly
packet processing.

4.3.1 Unhidden Data Fetches in Conventional Packet Processing

Since data pieces stored on the DRAM device are only the hash buckets and hash entries of the three
hash tables, i.e., a CS, a PIT and a FIB, it is important to know precisely both when a thread of
handling an NDN packet knows the address of a hash bucket or a hash entry and when it fetches the
bucket or the entry. Figure 4.2 shows typical flows for handling an Interest packet and a Data packet.
The figure is based on the exact matching algorithm for looking up a hash table, as shown in Fig. 4.1.
The flow includes of computation and fetches of hash buckets and entries. The computation includes
hash computation, computation of checking a hash bucket to know the address of the corresponding
hash entry and that of processing a CS, a PIT or a FIB. The two example flows in Fig. 4.2 are the most
time-consuming among those handling Interest and Data packets. In the case of an Interest packet, all
three hash tables are accessed as follows: First, the thread computes the hash values of all prefixes in
the name of the received Interest packet since the hash values are used as indexes to access the three
hash tables. Next, the thread search the hash table of the CS. Since the Interest packet does not hit the
CS, the thread next searches the hash table of the FIB for the outgoing interface, after searching the
PIT and creating an entry at the PIT. Though PIT entries created in the PIT must be written back to
the DRAM device, such write back operations can be performed in parallel with other computations.
Thus, the author does not discuss the DRAM access latency for such write back operations.

In Fig. 4.2, the two packets are received in sequence and the author calls them the first packet
and the second packet, respectively. The suffixes 1 and 2 mean the first packet and the second one,
respectively. From Fig. 4.2, the author obtains two observations on instruction pipeline stalls which
are difficult to be hidden. First, the first hash bucket (Bf 1 after Hash1 or Bf 2 after Hash2 in the
figure) cannot be perfected because its address is determined by the hash computation just before.
Apparently, there is no time between the address computation, i.e., hash computation, and the data

– 39 –

4.3 Preferch-Friendly Packet Processing

Hash1 Bf1 PIT1 FIB1
CS1 Ef1Bc1 Bf1 Bc1 Bf1 Bc1

Hash2 Bf2 Bc2 Ef2 PIT2 Bf2 Cb2 CS2

Interest Packet1

Data Packet2

fetching a
hash bucket

fetching a
hash entry

hash
computation

CS
processing

FIB
processing

PIT
processing

checking a
hash bucketBf Ef

PIT FIBHash

Bc

CS

checking a
hash entryEc

Ec1

Ec2

Figure 4.2: Conventional packet processing flow

fetch. Second, the hash entry of a PIT or a FIB cannot be fetched after reading its address which is
stored in the corresponding hash bucket. For example, the addresses of hash entries Ef 1 and Ef 2 are
stored in the hash buckets Bc1 and Bc2, respectively.

4.3.2 Prefetch Strategies

To hide instruction pipeline stalls caused by fetches of the first hash bucket and the hash entry, the
author designs the two prefetch strategies, i.e., Pre-Hash Computation and Speculative Hash Table
(HT) Lookup, based on the following assumptions: Since four DDR4 DRAM channels are provided
and each channel supports eight DRAM ranks each of which is able to independently access a cache
line-sized data piece [62], it is reasonable for multiple data pieces in the DRAM device to be fetched
in parallel. This implies that up to 32 data pieces are prefetched in parallel while the thread is running
some computations whose CPU cycles are greater than those consumed by one data fetch from the
DRAM device.

Pre-Hash Computation

First, Pre-Hash Computation is inspired by the first observation of the previous subsection. In
order to hide instruction pipeline stalls caused by a fetch of the first hash bucket, the author should
leverage the computation of a subsequent packet. It means that a sequence of computations should be

– 40 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

Hash1

Bf1

PIT1 FIB1CS1 Ef1Bc1

Bf1

Bc1

Bf1

Bc1Hash2

Bf2

Bc2 Ef2 PIT2

Bf2

Bc2 CS2

Interest Packet1 Data Packet2

Prefetched

Ec1 Ec2

Figure 4.3: Prefetcth-friendly packet processing flow with Pre-Hash Computation

reconsidered for multiple packets. Figure 4.3 shows a prefetch-friendly packet processing flow with
Pre-Hash Computation. The author chooses to handle two consecutive packets because handling a
large number of packets incurs state information for handling multiple packets, which may be stored
on the DRAM device in a worst case scenario. Thus, the author precomputes the hash value of
the subsequent packet just after finishing the hash computation of the first packet. In parallel, hash
buckets of the first packet are fetched from the DRAM device illustrated by Bf 1 in Fig. 4.3. The hash
computation of the second packet hides instruction pipeline stalls caused by the fetch of the first hash
bucket.

Speculative Hash Table Lookup

Second, after fetching the above-mentioned hash buckets, it becomes possible for the hash entries of
all the hash tables, i.e., the PIT and FIB, of the first packet to be fetched from the DRAM device by
checking the hash values in the hash buckets. Thus, all the hash entries, including those which may
not be accessed due to the longest prefix match results, are speculatively fetched even if some of the
hash entries are not used later. The strategy is called Speculative HT Lookup. Figure 4.4 shows the
prefetch-friendly packet processing flow with Speculative HT Lookup. Speculative HT Lookup is
applied to all hash buckets and hash entries which correspond to shorter prefixes than the queried
name of the packet to hide the instruction pipeline stalls caused by the longest-first search which is
described in Section 4.1.2. Please note that the flow in the figure includes the Pre-Hash computation
strategy. Speculative HT Lookup is applied to hash entries for the subsequent packet after fetching
hash buckets for it.

If the longest-first search algorithm naively uses Speculative HT Lookup, some computations of
the exact matching algorithm are unnecessarily executed for shorter prefixes than the matching prefix.
Specifically, the exact matching algorithm is repeatedly executed by finding a prefix in a hash table
which satisfies the two conditions which are described in Section 4.1.2: The first condition is that a

– 41 –

4.3 Preferch-Friendly Packet Processing

Hash1

Bf1

PIT1 FIB1CS1Bc1

Bf1

Bc1

Bf1

Bc1Hash2

Bf2

Bc2

Ef2

PIT2

Bf2

Bc2
CS2

Interest Packet1 Data Packet2

Ec1 Ec2

Ef1
Prefetched

Figure 4.4: Prefetcth-friendly packet processing flow with Speculative Hash Table Lookup (and
Pre-Hash Computation)

hash bucket stores the address of a hash entry. The second condition is that the hash entry stores
the name of a queried prefix. If either condition does not hold, the longest-first search algorithm
executes the exact matching algorithm for a shorter prefix by one component. During the iteration,
computations of checking hash buckets are performed in sequence, whereas all hash buckets are
fetched in parallel. This means that unnecessary exact matching operations consumes CPU cycles
in proportion to the number of prefixes which are shorter than the matching prefix. The problem
is that the above unnecessary CPU cycles are not negligible, as described below: The number of
CPU cycles consumed by the above operation for one prefix on a Xeon E5-2699 v4 CPU are 48,
whereas the number of CPU cycles consumed by one hash bucket fetch is 115. In the case of the
prefix distribution which this thesis assumes in Section 3.2.2, the average prefix length and matching
prefix length are 7 and 4, respectively, and thus the above unnecessary computation of the exact
matching algorithm is executed 3 times. This incurs about 144 CPU cycles.

To circumvent this problem, the author introduces a short-circuit evaluation of the result of exact
matching for each prefix. First, the longest-first search algorithm prefetches all the hash buckets of all
the prefixes. Then it repeatedly checks the first condition for hash buckets from the longest prefix to
the shortest one until the condition is satisfied. When such a hash bucket is found, it fetches the hash
entry. If the hash entry has the name of the queried prefix, i.e., the queried prefix matches this prefix,
the longest-first search algorithm terminates. This avoids the above unnecessary exact matching
operations. Otherwise the longest-first search algorithm continues to find the next hash entry by
iteratively checking the hash bucket of shorter prefixes. In many cases, the longest-first search
algorithm, however, terminates when the first hash entry is fetched, as the author will empirically
investigate in the following section.

– 42 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

4.4 Performance Evaluation

First, the author evaluates how the proposed prefetch-friendly packet processing eliminates instruction
pipeline stalls due to DRAM accesses. Then, the author evaluates the forwarding speed of NDN
routers with conventional packet processing and the proposed prefetch-friendly packet processing.
For the evaluation, the author employs the same experiment settings that the author used in the
bottleneck analysis described in Section 3.2.2

4.4.1 CPU Cycles in Single-Threaded Case

First, the author evaluates the CPU cycles for processing packets in the single-threaded case to
focus on evaluating how Pre-Hash Computation and Speculative HT Lookup contribute to hiding
instruction pipeline stalls due to DRAM accesses. For comparison purposes, the author uses the
four variants of the NDN software routers: Naive, Bucket Prefetch, Pre-Hash, and SHTL, to which
existing and the proposed optimization techniques are incrementally applied. Naive is the NDN
software router which is based on the router platform in Section 3.1. It is designed according to the
design rationales presented in Sections 4.1 and 4.2 but it does not have any prefetch techniques. This
is equivalent to the software proposed by So et al. [10] except that it uses the longest-first search
algorithm rather than the 2-stage search algorithm and it employs TinyLFU admission rather than
FIFO eviction. Bucket Prefetch is based on Naive but it prefetches hash buckets for arriving packets
according to the existing prefetch technique proposed by So et al. [10]. Pre-Hash is based on Naive
but it employs Pre-Hash Computation proposed in Section 4.3. SHTL represents the NDN software
router that has Speculative HT Lookup in addition to Pre-Hash Computation.

Figure 4.5 shows the CPU cycles for processing one Interest and Data packet. I-miss represents
the CPU cycle for processing one Interest packet in the case of CS misses. That is, all the three hash
tables of the CS, the PIT and the FIB are accessed in the I-miss flow. Bucket Prefetch reduces the
number of CPU cycles by 15.03% compared with Naive. Pre-Hash reduces the number of CPU
cycles by 9.16% compared with Bucket Prefetch because the hash buckets of the CS are efficiently
prefetched with Pre-Hash Computation. In addition to Pre-Hash Computation, SHTL further reduces
the number of CPU cycles by 7.82% compared to Pre-Hash Computation since Speculative HT
Lookup hides instruction pipeline stalls for fetching hash entries of the FIB. Finally, SHTL reduces
the number of CPU cycles by 28.85% compared to Naive.

In contrast to the case for Interest packets, the CPU cycles for processing one Data packet do
not decrease when Bucket Prefetch and Pre-Hash are used. This phenomenon can be explained

– 43 –

4.4 Performance Evaluation

0
300
600
900

1200
1500
1800

I-miss Data

C
yc

le
s/

P
ac

ke
t Naive

Bucket Prefetch
Pre-Hash

SHTL

Figure 4.5: The number of CPU cycles for processing one NDN packet in the single-threaded case

as follows: In the experiments, Data packets are returned shortly after the corresponding Interest
packets are processed. When a Data packet arrives at the router, hash buckets and entries necessary
for processing the Data packet are likely to be on the CPU caches since they are fetched to the CPU
caches for processing the corresponding Interest packet. Bucket Prefetch and Pre-Hash, therefore, do
not contribute to reducing the number of CPU cycles. In contrast to the experiments, if Data packets
are not returned promptly, some hash buckets and entries would not be in the CPU caches. In this
case, the number of CPU cycles of Naive increases because it does not prefetch any data from the
DRAM device. In contrast, those of Bucket-Prefetch and Pre-Hash do not change. That is, CPU cycle
reduction due to Bucket Prefetch and Pre-Hash is slightly underestimated in the result in Fig. 4.5.

In contrast, SHTL prefetches such hash buckets and hash entries irrespective of whether they are
still in the CPU cache or not. SHTL reduces the number of CPU cycles by about 11.98% compared
to Naive, Bucket Prefetch, and Pre-Hash because instruction pipeline stalls due to accesses to hash
entries and buckets of a replaced Data packet in the CS is hidden by SHTL.

4.4.2 CPU Cycles in Multi-Threaded Case

Next, the author evaluates the reduction in CPU cycles resulting from prefetch-friendly packet
processing in the case of multi-threaded software. Figure 4.6 shows the number of CPU cycles
required for processing one packet in the case where the software is running with 20 threads. The
number of CPU cycles of SHTL, which includes both Pre-Hash Computation and Speculative HT
Lookup, does not increase compared with the single-threaded case, whereas for Naive and Bucket
Prefetch, the number of CPU cycles in the multi-threaded case is larger than that in the single-threaded

– 44 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

0
300
600
900

1200
1500
1800
2100
2400

I-miss Data

C
yc

le
s/

P
ac

ke
t Naive

Bucket Prefetch
SHTL

Figure 4.6: The number of CPU cycles for processing one NDN packet in the multi-threaded case
(20 threads)

case. As shown in Table 3.6, the DRAM access latency increases when the number of threads
becomes greater. Naive and Bucket Prefetch have unhidden DRAM accesses and the latency of
the unhidden DRAM accesses causes the increase in the total number of CPU cycles required for
processing an Interest packet and a Data packet. In contrast, SHTL hides most of the DRAM accesses.
More precisely, SHTL does not hide accesses to hash entries of the CS since the software does not
have enough amount of computation between the accesses to a hash bucket and a hash entry of the
CS to hide the accesses, but SHTL hides all the other DRAM accesses. Therefore, the CPU cycles
required for processing packets are approximately constant regardless of the number of threads. As a
result, the absolute difference between the CPU cycles of Bucket Prefetch and SHTL becomes larger
compared to the single-threaded case due to the larger DRAM access latency.

4.4.3 Forwarding Speed

Finally, the forwarding speed of the NDN software routers is evaluated. To show the worst case
forwarding speed, the author chooses names for Data packets such that all the Interest packets miss
the CS since I-miss is computationally heavier than I-hit, as shown in Table 3.2.

Figure 4.7 shows the forwarding speed against the number of threads. The forwarding speed of
SHTL is approximately linear to the number of threads, whereas the speeds of Naive and Bucket
Prefetch are not. SHTL hides most of the DRAM accesses, whereas Bucket Prefetch still has unhidden
DRAM accesses. As was shown in Fig. 4.6, the number of CPU cycles needed for processing
packets increase in the case of Naive and Bucket Prefetch due to the unhidden DRAM accesses. This

– 45 –

4.4 Performance Evaluation

0

10

20

30

40

50

0 5 10 15 20

T
hr

ou
gh

pu
t [

M
P

P
S

]

Number of Threads

Naive
Bucket Prefetch

SHTL

Figure 4.7: The forwarding speed against the number of threads

degrades the forwarding speed. In contrast, SHTL hides most of the DRAM accesses and therefore
the forwarding speed is not degraded. Please note that although Fig. 4.7 shows that the forwarding
speed increases as the number of threads increases, the speed does not linearly increase 22 threads
because the maximum capacity of DRAM I/O is not enough for the speed. As analyzed in Section 3.2,
if the number of bytes read from and written to DRAM devices per second reaches the bandwidth of
DRAM I/O channels, the forwarding speed does not increase even if the number of threads increases.
On a computer used in Fig. 4.7, when the number of threads is 40, the number of bytes read from and
written to DRAM devices per second just reaches the maximum capacity of DRAM I/O channel.

SHTL finally realizes a forwarding speed of up to 42.49 MPPS. The author believes that it is one
of the fastest NDN software routers realized on a computer. Note that the forwarding speed of 42.49
MPPS is not the upper bound of the router since the author uses only one of two CPUs. If additional
NICs can be installed on this computer, the forwarding speed will be scaled up to about 80 MPPS.

4.4.4 Discussion

Short Circuit Evaluation Fail in Speculative HT Lookup

Speculative HT Lookup employs short circuit evaluation for the longest-first search algorithm, as
described in Section 4.3.2. The short circuit evaluation could incur false positives such that a fetched
hash entry does not store the name of a queried prefix. In order to reduce such false positives, the

– 46 –

Chapter 4. Data Prefetches to Eliminate Pipeline Stalls on Hash Table-based Forwarding Tables

author employs a collision-resistant hash function, as suggested by So et al. in [10]. Specifically, the
author chooses the SipHash function because it provides a good balance between collision resistance
and computation time. As a result, in the evaluation, no failure in the prefetching of a hash entry was
observed.

Cache Collision Due to Prefetching Data Pieces of Subsequent Packet

Another concern is that in Pre-Hash Computation, prefetching hash buckets and entries of a subsequent
packet, i.e., the second packet, to the CPU cache would evict or overwrite those of a prior packet, i.e.,
the first packet from the CPU cache; however, such evictions would not occur because the average
size of newly fetched data for processing the two packets is considerably smaller than that of the
CPU cache. The average size of data fetched for processing two packets can be estimated from the
DRAM channel bandwidth for processing a packet measured in Section 3.2.3 and the size is 1601.4
(800.7 bytes/packet), whereas the average size of the L3 cache for one CPU core is approximately 2.5
Mbytes because 55 Mbytes is shared with 22 CPU cores [45].

4.5 Conclusion

In this chapter, the author identified the ideal form of an NDN software router on computers in the
following steps: 1) the author conducted a detailed study of the existing techniques for high-speed
NDN packet forwarding and compiled them into the design rationale toward the realization of an ideal
NDN software router. 2) The author conducted microarchitectural and comprehensive bottleneck
analyses on the NDN software router and revealed that to hide the DRAM access latency is vital
to the realization of an ideal NDN software router. 3) The author proposed two prefetch-friendly
packet processing techniques to hide the latency. Finally, the prototype implemented according to
the rationale and the prefetch-friendly packet processing techniques demonstrated that a forwarding
speed exceeding 40 million packets per second (MPPS) could be achieved on a single computer.

– 47 –

Chapter 5

A Lightweight Cache Admission
Algorithm for Optimizing Time
Complexity

In the previous chapter, the author tackled the unhidden DRAM access latency, which is one of
two bottlenecks for high-speed NDN forwarding, identified in Chapter 3. In this chapter, the author
tackles wasteful computation of cache algorithm, which is the rest of the two bottlenecks. In Chapter
3, the author found that cache algorithm for NDN routers needs to improve cache hit rate with fast
computation. Nevertheless, the cause of heavy computation of cache algorithm itself is unclear.

To understand the cause of heavy cache algorithm computation, the author firstly analyzes
computation time of two types of cache algorithms, i.e., cache eviction and admission algorithms
and finds that the cache eviction always performs cache insertions for unpopular Data packets while
a function of the cache insertion is relatively time-consuming among functions of NDN packet
processing. This finding means that cache insertion of unpopular Data packets which are not hit later
wastes many CPU cycles.

The finding obtained in Chapter 3 and that described above imply that cache algorithms for
NDN routers need to increase cache hit rate and reduce unpopular Data packet insertion rate
simultaneously without incurring computation overheads. According to this implication, the author
designs lightweight cache admission algorithm called Filter so that both high cache hit rate and low
cache insertion rate are achieved with fast computation. The rest of this chapter is organized as
follows: The author introduces a problem of wasteful caching computation by analyzing computation

– 49 –

5.1 Computation Time Analysis of Cache Algorithms

time of cache eviction and admission algorithms in Section 5.1 The author proposes an NDN packet
forwarding scheme with the caching admission based on Filter to optimize the wasteful cache
computation in Section 5.2. In Section 5.3, the author analytically investigates cache hit rate of
caching with Filter and then, the author evaluates performance of Filter and the proposed NDN
packet forwarding scheme with Filter in Section 5.4. Finally, the author concludes this chapter in
Section 5.5.

5.1 Computation Time Analysis of Cache Algorithms

In this section, the author analyzes computation time of two types of cache algorithms, i.e., cache
eviction and admission, to show that cache admission is better than cache eviction by analyzing
packet flows of the NDN software described in Chapter 3.

5.1.1 NDN Packet Processing with Cache Algorithms

A cache algorithm is classified into cache eviction and cache admission. Cache eviction determines a
victim, i.e., a Data packet evicted from the cache when an incoming Data packet is inserted into the
cache, i.e., the CS, whereas cache admission decides whether an incoming Data packet is inserted
into the cache or not. A common objective of them is to identify popular/unpopular Data packets by
using a history of incoming requests to Data packets. The word “popular” means that a popular data
packet is likely to be requested in the future.

This section compares computation time of NDN packet processing flows with cache eviction
and cache admission algorithms by carefully analyzing how individual function blocks consume
CPU cycles of the flows.

Packet Processing Flows with Cache Eviction

This section describes packet processing flows with cache eviction in the cases of both cache hits and
misses according to the diagram illustrated in Figure 5.1, where blocks B2 and B12 are used for cache
eviction. First, block B1 receives and decodes an incoming Interest packet. B2 updates the history of
incoming requests to Data packets, which is later used for cache eviction, and B3 checks whether a
data piece of a Data packet corresponding to the Interest packet is stored in the CS. If the data piece
is in the CS, B4 fetches it and composes the Data packet with it, and B11 sends back the Data packet
to the incoming interface.

– 50 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

B6:FIB

Lookup

B5:PIT

Insertion
B8:Data

Reception

B9:PIT

Deletion

B7:Interest

Transmission

End

B3:CS

Lookup

B11:Data

Transmission

B10:CS

Insertion

B12:CS

Eviction

B1:Interest

Reception
Start

B2:CS History

Update

B4:Data

Composition

Hit

Miss

Figure 5.1: Packet processing flow with cache eviction

Otherwise, i.e., if the Interest packet does not hit the CS, B4 inserts the incoming interface into the
PIT. After B5 gets an outgoing interface from the FIB by performing longest name prefix matching,
B6 sends the Interest packet to the outgoing interface. When a returned Data packet corresponding to
the Interest packet arrives at the router, B6 receives and decodes the Data packet, and then B7 gets
and deletes an outgoing interface from the PIT. After B12 chooses and evicts a victim from the cache
according to the history of incoming requests to Data packets, B8 inserts the incoming Data packet
into the CS. Finally, B9 sends the Data packet to the outgoing interface.

The author groups the blocks so that the average CPU cycles spent for handling a pair of an
Interest and a Data packet are calculated with the two parameters, the cache hit rate and the cache
insertion rate, as below:

• G1 is the set of blocks executed always for each Interest packet: B1, B2, B3 and B11.
• G2 is the block executed at a cache hit: B4.
• G3 is the set of blocks executed at a cache miss except for the blocks for cache eviction, i.e.,

B12 and B10: B5, B6, B7, B8 and B9.

The average CPU cycles spent for processing a pair of an Interest and a Data packet CAvg
Evi are defined

by Eq. (5.1), where pHit is the cache hit rate, Cb,i is the CPU cycles of block Bi , and Cg,i is the CPU
cycles of group Gi. pHit is defined as the probability that Interest packets hit the cache.

CAvg
Evi = Cg,1+pHitCg,2 + (1 − pHit)(Cg,3 + Cb,12 + Cb,10) (5.1)

– 51 –

5.1 Computation Time Analysis of Cache Algorithms

B13:CS

Admission

B11:Data

Transmission

B10:CS

Insertion

Not Insert

Insert

B1:Interest

Reception
Start

B2:CS History

Update

B4:Data

Composition

Hit

B6:FIB

Lookup

B5:PIT

Insertion
B8:Data

Reception

B7:Interest

Transmission

Miss

B9:PIT

Deletion

End

B3:CS

Lookup

Figure 5.2: Packet processing flow with cache admission

Packet Processing Flows with Cache Admission

The packet processing flows with cache admission is illustrated by the diagram in Figure 5.2. The
flow in the case of a cash hit is the same as the flow with cache eviction illustrated in Figure 5.1.
Precisely, the CPU cycles of B2 for cache eviction and admission are slightly different. On the
contrary, in the case of a cash miss, the flows with cache admission are explicitly different from those
with cache eviction as follows. First, block B12 for cache eviction is replaced with B13 for cache
admission. Please note that the CPU cycles of B13 are less than those of B12. Second, B10 for cache
insertion is executed only when B13 decides to insert a Data packet into the CS.

The average CPU cycles CAvg
Adm are defined by Eq. (5.2), where pInsertion is the cache insertion rate.

pInsertion is defined as the probability that Data packets are inserted into the cache by block B13.

CAvg
Adm = Cg,1+pHitCg,2 + (1 − pHit)(Cg,3 + Cb,13 + pInsertionCb,10) (5.2)

5.1.2 Cache Eviction vs. Cache Admission

Assuming that the cache hit rates of both cache eviction and cache admission are same, the
difference between the average CPU cycles of cache eviction and admission, i.e., CAvg

Evi − CAvg
Adm, is

(1 − pHit)((Cb,12 −Cb,13) + pInsertionCb,10). If the difference is positive, the average CPU cycles CAvg
Adm

is smaller than CAvg
Evi , which means that cache admission is faster than cache eviction.

To validate the above claim preliminarily, the author estimates the average CPU cycles of the ARC

– 52 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

eviction algorithm and the TinyLFU admission algorithm and the difference between the average
CPU cycles of them based on the measurements of the blocks’ CPU cycles in Section 5.4. Precisely,
the author does so, assuming that the cache hit rate pHit of all cache algorithms of ARC and TinyLFU
is 30% and that the cache insertion rate pInsertion of TinyLFU is 10%. The measurement results in
Section 5.4 show that the CPU cycles Cb,12 of ARC, the CPU cycles Cb,12 of TinyLFU and the CPU
cycles Cb,10, are 202, 282 and 188 CPU cycles, respectively. Thus the average CPU cycles of cache
eviction CAvg

Evi of ARC and those of cache admission CAvg
Adm of TinyLFU are 1817 and 1705 CPU

cycles, respectively, and CAvg
Adm is 112 CPU cycles smaller than CAvg

Evi .
The author has obtained the following observations from the above estimation results: First, cache

admission reduces the CPU cycles of cache eviction by about 6%. Second, however, computation
time of deciding whether a Data packet is inserted or not, i.e., the CPU cycles Cb,13, is larger than the
time of deciding a victim, i.e., the CPU cycles Cb,12. This implies that there is still room for reducing
CPU cycles by improving the CPU cycles Cb,13 of TinyLFU. Thus, in the rest of this chapter, the
author focuses on a lighter cache admission algorithm than TinyLFU, whereas it realizes the similar
cache hit rate to TinyLFU.

5.2 Design of Cache Admission Algorithm

5.2.1 Overview

The goal of the cache admission algorithm is to identify unpopular Data packets for filtering out
them in order to increase the cache hit rate and reduce the cache insertion rate. Obviously, increase
in cache hit rate contributes to improving forwarding speed of NDN routers. A few cache admission
algorithms have been proposed [23,24, 27]; however, computation time for filtering out unpopular
Data packets is not carefully considered. The author designs a simpler cache admission algorithm,
named Filter. In the rest of this section, the author firstly describes the design rationale behind Filter,
and the author then designs Filter according to the design rationale. Finally, the author compares
Filter with a well-known cache admission algorithm, TinyLFU [27], in terms of cache hit rate and
computation time.

5.2.2 Design Rationale

The design rationale behind Filter is that accesses to slow memory devices, such as dynamic random
access memory (DRAM) devices, should be eliminated since the time spent by one DRAM access

– 53 –

5.2 Design of Cache Admission Algorithm

accounts for a large part of the entire computation time. For instance, in Chapter 3, the author
empirically revealed that one DRAM access spends about 11% of the average computation time of
entire NDN packet processing.

The author therefore does not adopt TinyLFU [27] because it is difficult to eliminate DRAM
accesses from packet processing of TinyLFU. TinyLFU compares the frequency of an arriving Data
packet and that of a victim Data packet, which is chosen among Data packets in the cache, and it
inserts the arriving Data packet to the cache only if its frequency is larger than that of the victim Data
packet. Though this enables it for TinyLFU to decide whether the arriving Data packet is inserted
into the cache or not without any threshold, this incurs unavoidable DRAM accesses due to the fact
that the victim Data packet is, in general, in DRAM devices.

In contrast to TinyLFU, Filter is designed so that it avoids accesses to DRAM devices by
comparing the frequency of an arriving Data packet with a predefined threshold value, both of which
are not stored in DRAM devices, instead of comparing it with the frequency of a victim Data packet.
Since the advantage of not accessing to DRAM devices causes a necessity to tune the predefined
threshold in compensation for the fast computation, the author will develop an analytical model of
Filter in Section 5.3 to clarify a guideline of choosing the threshold.

5.2.3 Design of Filter

Filtering unpopular Data packets is equivalent to admitting only highly popular Data packets. Filter
identifies highly popular Data packets on the basis of the intuition that the number of highly popular
Data packets is much smaller than that of unpopular ones. To identify highly popular Data packets,
Filter identifies Interest packets that appear several times within a certain time window. The main
intuition behind Filter is that Interest packets for highly popular Data packets may appear often and
such packets will arrive again in the near future. To realize this idea with light computation, the
author designs Filter as follows.

Our Filter consists of lightweight computation and two simple data structures to memorize ingress
Interest packets: A FIFO queue to store a history of Interest packets, i.e., a sequence of past Interest
packets, and a hash table to store the frequency of appearances of the Interest packets within the
history. The author refers to the FIFO queue and the hash table as history queue and counter hash
table, respectively. The schematic of Filter is shown in Figure 5.3. The history queue holds hashes of
content names in the past q Interest packets, {xn−1, xn−2, . . . , xn−q} in order of their arrivals. xn is
the hash of the content name in the n-th Interest packet and it is used as an index to access the counter
hash table. The xn-th slot of the counter hash table, H[xn], holds the frequency of appearances of

– 54 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

Counter hash table
(Hash table to store the number of apperances
of the Interest packets in the history queue)

f0 fh

2) Increment/decrement the number of
apperances of the n-th/(n - q)-th packets

1) Convert hash into the internal hash
used for looking up the hash table

yn : Hash of the name in n-th packet yn mod h
= x n xn-1 xn-2 xn-3

xn-qx n

xn-q

History queue
(FIFO to store hash values of
the past q Interest packets)

fxn-q
fxn

0
0・・・ ・・・ ・・・

・・・

h entries

q entries

Figure 5.3: Schematic of data structures of Filter

Interest packets, of which hash is xn, within the past q Interest packets.

The Filter algorithm is summarized as follows. When an Interest packet arrives (B2 in Figure 5.2),
Filter computes the hash of its content name, xn, and updates the history queue and the counter hash
table, as shown in Figure 5.3. That is, Filter dequeues an entry, xn−q, from the head of the history
queue and enqueues xn to the tail of it. Then, Filter increments H[xn] and decrements H[xn−h].
When a Data packet arrives (B13 in Figure 5.2), Filter determines whether the packet should be
inserted into the cache or not by checking the counting hash table without updating the history queue
and the counter hash table. That is, if its frequency of appearances, H[xn], satisfies H[xn] ≥ θ, where
θ is a threshold parameter, then the packet is forwarded to the CS Insertion function block (B10),
otherwise B10 is bypassed and the packet is forwarded directly to the Data Transmission function
block (B11).

To keep the computation of Filter fast, hash collisions in the counter hash table are not resolved
by allowing a certain degree of false positives, i.e., several Interest packets that have different content
names with the same hash are mapped to the same slot in the counter hash table. However, such false
positives rarely occur as described below: The probability of false positives pFP can be derived by
using well-known analytical models for hash collisions [63]. Given the assumption that hash values
are perfectly random, pFP is calculated as pFP = 1 − (1 − 1/h)q , where q and h are the length of the
history queue and the counter hash table, respectively. Due to space limitations, the author omits
the details of the equation. In the case of q = 104 and h = 224, pFP is 0.0596%, whereas the history
queue with 104 64-bit hash values and the counter hash table with 224 16-bit integer values consume
only 32 Mbytes. Thus, the author concludes that pFP is sufficiently low.

– 55 –

5.3 Characteristic Analysis of Filter

5.2.4 Comparison with TinyLFU

Finally, the author discusses the advantage and the disadvantage of the proposed Filter for existing
cache admission algorithms focusing on cache hit rate and computation time. As a reference for
Filter, the author chooses TinyLFU [27] among several cache admission algorithms [23, 24, 27]
because its implementation is highly optimized, whereas another algorithms [23,24] have focused on
only high cache hit rate.

The key advantage of Filter is that its computation time is shorter than that of TinyLFU. The author
implements Filter and TinyLFU on the proposed NDN forwarding scheme, and then measure how
they spend the CPU cycles for decision of cache insertion at block B13 in Figure 5.2. Please note that
the measurement conditions are same as those summarized in Section 5.4.1. The measured number of
the CPU cycles for Filter and that for TinyLFU is 28 and 288, respectively. Filter reduces computation
time of TinyLFU because it eliminates DRAM accesses by using the predefined threshold value
instead of frequency of the victim Data packet in TinyLFU, as described in Section 5.2.2.

The disadvantage of Filter is that if Filter selects an ineffective threshold value, it misidentifies
popular Data packets as unpopular ones in its insertion decision. That is, Filter with the ineffective
threshold value causes lower cache hit rate than TinyLFU. In the next section, the author selects
the threshold value for Filter based on its characteristic analysis, and then in Section 6, the author
evaluates cache hit rates of Filter with the selected threshold and TinyLFU.

5.3 Characteristic Analysis of Filter

5.3.1 Overview

In this section, the author analyzes how parameters of Filter, i.e., the threshold and the history length
affect the performance of Filter. The author develops an analytical model of Filter, focusing on two
performance metrics: cache hit rate and cache insertion rate. Cache hit rate, which is defined as a
probability that Data packets requested with incoming Interest packets exist in the cache, is one of
the most important metrics for both cache eviction and cache admission algorithms. In addition,
in the case with a cache admission algorithm, Data packets are inserted into the cache only when
the cache admission algorithm admits them, and hence cache insertion rate, which is defined as the
probability that incoming Data packets are inserted to the cache, is also an important metric. To
simplify notation, the author refers to cache hit rate and cache insertion rate as hit rate and insertion
rate, respectively.

– 56 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

5.3.2 Analysis Model

Firstly, the author computes an insertion rate for Data packet c, pInsertion
c , wherein an insertion rate is

a probability that a received Data packet c is selected to be inserted into the cache. For simplicity,
the author assumes that Interest packets for Data packets c arrive according to a Poisson process
with rate λc . The insertion rate pInsertion

c , is derived with the conditional probability that the Interest
packets for c appears θ − 1 times and more in the history queue subject to the next arrival of the
Interest packet. Since the future arrival events are independent from the past ones, the insertion rate
is equivalent to P[Xc ≥ θ − 1], where Xc is a stochastic variable to express the number of arrived
Interest packets for c in the history queue. Since the history queue holds the past q Interest packets,
the time window W , which is the time difference between the most and least recent Interest packet
arrivals in the history queue, is approximately W = q/

∑
c λc. To simplify the notation, the author

defines λ′c as λ′c = λc/
∑

k λk , which is the arrival rate for Data packet c normalized by that for all
Data packets. By using the cumulative distribution function of the Poisson distribution, pInsertion

c is
derived as

pInsertion
c = P[Xc ≥ θ − 1] = 1 − P[Xc ≤ θ − 2]

= 1 −

(
exp

(
−qλ′c

) θ−2∑
k=0

(
qλ′c

)k
k!

)
. (5.3)

The average insertion rate for all Data packets pInsertion is

pInsertion =

∑
c∈G λc(1 − pHit

c)p
Insertion
c∑

c∈G λc(1 − pHit
c)

, (5.4)

which is the average of insertion rate for each Data packet weighted by its arrival rate λc(1 − pHit
c).

pHit
c is the cache hit rate of Interest packet for Data packet c. pHit

c is derived as follows.

As the author selects in Section 5.4.1, the author uses the FIFO eviction algorithm behind the
Filter admission algorithm. In this case, the cache hit rate of Interest packet for Data packet c to the
cache is derived by the analytical model of a FIFO eviction algorithm [64] and the insertion rate for
Data packet c. In [64], the cache hit rate of Interest packet for Data packet c in a FIFO pHit

c is the
probability that Data packet c is in the cache and pHit

c is expressed as λInsertion
c τc, where λInsertion

c is
the frequency at which Data packet c enters the cache and τc is its mean cache eviction time. Since
a Data packet c is inserted into the cache only when an Interest packet for Data packet c misses
at the cache and then a Data packet c is inserted, λInsertion

c is λc(1 − pHit
c)p

Insertion
c . Since τc can be

– 57 –

5.3 Characteristic Analysis of Filter

approximated to be a constant independent of each Data packet when the cache size is large [64], the
author assumes τc to be a constant value τ. From the above, the cache hit rate of Interest packet for
Data packet c to the cache with FIFO eviction and inserted Data packet selection is expressed as

pHit
c =

λcpInsertion
c τ

1 + λcpInsertion
c τ

. (5.5)

The author can obtain τ for a cache of size C by solving

C =
∑
c∈G

λcpInsertion
c τ

1 + λcpInsertion
c τ

. (5.6)

Therefore, the average cache hit rate pHit is expressed as

pHit =

∑
c∈G λcpHit

c∑
c∈G λc

, (5.7)

which is the average of the cache hit rate for all Data packets weighted by arrival rates of Interest
packets requesting for them.

5.3.3 Threshold Value

Determining the optimal value for the threshold θ, which realizes both high cache hit rate and low
cache insertion rate, is not trivial because it depends on many factors, such as a cache size and traffic
patterns. Instead of determining the optimal value, this section determines it according to the facts
found in the existing studies.

The threshold θ is set to 2 according to the following two facts: one is that many objects, video
objects in particular, are requested only once [65] and the other is that immediately evicting one-timer
objects, which are not requested until they are evicted from the cache, contributes to high cache hit
rate [66]. More precisely, Gill et al. [65] measured requests to YouTube videos at a gateway of a
campus network and revealed that 68.1% of requests to YouTube videos from the campus network
are observed only once. Imai et al. [66] analytically investigated that evicting such one-timer objects
immediately from the cache greatly contributes to high cache hit rate. These studies imply that the
threshold θ = 2 prevents such one-timer Data packets from being inserted to the cache, and hence it
contributes to high cache hit rate with sufficiently low cache insertion rate.

In the following subsection, the author will analytically investigate that θ = 2 realizes sufficiently
high cache hit rate and low cache insertion rate under a condition where requests are generated

– 58 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

according to the Poisson process, although the cache hit rate and the cache insertion rate are not
always optimal. In Section 5.4, the author will validate the above claim through simulations.

5.3.4 Analysis Results

The author analyzes how the threshold θ and the history length q affects cache hit rate and cache
insertion rate of Filter. Please note that the author employs the same analysis conditions as those
in Section 5.4.1, where the number of unique Data packets and the cache size are 1 × 107 Data
packets and 1 × 105 Data packets, respectively, and Data packets are requested according to the Zipf
distribution with the parameter α = 0.8. Figure 5.4 shows the cache insertion rate pInsertion and the
cache hit rate pHit when the history length q varies from 1 × 104 to 1 × 106 and the threshold θ varies
from 1 to 30. The horizontal axis indicates the threshold θ. Figure 5.4(a) indicates that pInsertion

is sufficiently low when θ is larger than 2 under all settings of q. In Figure 5.4(b), the threshold 2
obtains near optimal cache hit rate among various threshold values under all settings of q. In the rest
of this chapter, for small memory consumption of Filter, the author sets 1 × C to the history length q,
where C is the cache size.

5.4 Performance Evaluation

In this section, the author evaluates performance of an NDN packet forwarding scheme with the
proposed Filter in the following steps: First, the author proves that Filter achieves high cache hit rate
and low cache insertion rate comparable to existing cache algorithms. Second, the author evaluates
how NDN packet processing with Filter reduces computation time compared to that with a cache
eviction algorithm. Third, the author implements a prototype of an NDN router with Filter and
measure its packet forwarding speed as an overall performance.

5.4.1 Evaluation Conditions

Experiment Platform

For experiments, the author uses two computers with a Xeon E5-2699 v4 CPU (2.20 GHz × 22 CPU
cores), eight DDR4 16 GB DRAM devices, and two Intel Ethernet Converged Network Adapter
XL710 (dual 40 Gbps Ethernet ports) NICs. The operating system on the computers is Ubuntu 16.04
Server.

– 59 –

5.4 Performance Evaluation

One computer is used as a router and the other is used as a consumer and a producer. The two
computers are connected with four 40 Gbps direct-attached QSFP+ copper cables. The two links are
used for connecting the consumer and the router and the other two are used for the router and the
producer. That is, the total bandwidth between the consumer and the router and the router and the
producer is 80 Gbps. The consumer sends Interest packets to the producer via the router, and the
producer returns Data packets in response to the Interest packets via the router. If Interest packets hit
the cache of the router, the router returns Data packets instead of the producer.

To generate packets and FIB entries for experiments, the author uses the results of the analysis
on HTTP requests and responses of the IRCache traces [52] conducted in [10]. 13,548,815 FIB
entries are stored at the FIB. The average number of components in prefixes of FIB entries are set
to 4 so that the average number of FIB lookup operations per one Interest packet is slightly larger
than that in [10]. The average number of components in an Interest and a Data packet is set to 7 and
the average length of each component is set to 9 characters. Interest and Data packets conform to
the NDN TLV packet specification [51], and they are encapsulated by IP packets so that sizes of an
Interest packet and a Data packet are 121 bytes and 1143 bytes, respectively.

Traffic Loads

The author uses traffic loads generated on the basis of two typical popular applications in the Internet,
i.e., web and video, because they account for a large portion of the current Internet traffic [67]. The
author assumes that web objects are small enough so that each object consists of one Data packet.
In contrast, a video is divided into multiple Data packets. The author chooses YouTube as a video
application because it is one of the most famous video applications. Simulations for YouTube videos
allow us to evaluate how Filter behaves in the condition that traffic loads are not created according to
the Poisson process, whereas the analysis in Section 5.3 uses traffic loads according to it.

The author creates three types of traffic loads. The first workload is web traffic. The producer
stores 1 × 107 unique web objects where one web object corresponds to one Data packet and the
consumer generates Interest packets for these Data packets according to the Poisson process and
the Zipf distribution with the parameter α = 0.8 [67]. The second workload is video traffic. The
producer stores 1× 104 videos where the size of each video is 10 Mbytes [65] and each video consists
of 104 Data packets with 1024 bytes payload. Assuming that a few thousands of consumers are
accommodated on the router and each consumer views one video per day with 5 Mbps bit rate,
consumers generate requests for the video, i.e., Interest packets for the first Data packet of the video,
according to the Poisson process with the average rate 0.5 [request/sec] and Interest packets for the

– 60 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

subsequent Data packets in the constant time interval with the constant rate 625 [packet/sec]. The
third workload is the combination of web and video traffic. The author sets the ratio of the amount of
web traffic to that of video traffic to 0.7 in this workload, as Fricker et al. investigated in [67].

The author evaluates the cache hit rate and the cache insertion rate at an edge router, to which
consumers are directly connected, that is, the aforementioned Interest packets directly arrive without
being cached between the consumers and the router. This is because cache hit rate in a realistic ISP
network was already evaluated by Sun et al. [26] and they conclude that LFU is the best algorithm in
terms of traffic reduction in the entire network and the second best one in terms of cache hit rate.
Hence, the author focuses on validating that the performance of Filter is close to that of LFU at an
edge router.

Reference Cache Algorithms

As a reference cache eviction algorithm for Filter, the author selects ARC [13] among existing cache
eviction algorithms [13, 55] which exploits the history of incoming requests to Data packets because
ARC realizes the fast computation with sufficiently high cache hit rate. Although frequency-based
cache eviction algorithms such as LFU and WLFU [55] provide high cache hit rate, they cause
heavy computational overheads with logarithmic time complexities. However, the computation
complexity of ARC is O(1) and its computational overhead is low comparable to that of Least
Recently Used (LRU). Nevertheless, ARC provides the high cache hit rate comparable to WLFU as
Gil et al. investigated in [27]. In this evaluation, the author implements the ARC eviction based on
data structures and algorithms which the authors of ARC have proposed in [68]. Please note that the
author uses the FIFO eviction algorithm behind the Filter admission algorithm.

5.4.2 Cache Insertion and Hit Rates

First, the author evaluates the cache insertion rates of Filter and TinyLFU and the cache hit rates of
Filter and other cache algorithms through simulations.

Figure 5.5 shows the cache insertion rate pInsertion with Filter under three workloads of web
traffic, video traffic and traffic including both web traffic and video traffic. In Fig. 5.5, the cache
size varies from 1% of the number of total Data packets stored in the producer to 10% of it. For
comparison purposes, the author also plots the cache insertion rate with TinyLFU, which was chosen
as a reference cache admission algorithm for Filter in Section 5.2.4. As Gil et al. [27] selected for
the TinyLFU admission, the author selects the Random eviction, which randomly chooses a victim

– 61 –

5.4 Performance Evaluation

among Data packets stored in the cache, behind the TinyLFU admission. Note that the window size of
TinyLFU is set to a sufficiently large number, 50 × C, where C is the cache size. The horizontal and
vertical axes indicate the cache size and the cache insertion rate, respectively. Figure 5.5 indicates
that the cache insertion rate with Filter is lower than that with TinyLFU under all of three workloads.

Next, the author shows that Filter achieves the sufficiently high cache hit rate even if it is used in
conjunction with a simple cache eviction algorithm, such as FIFO and Random. For comparison
purposes, the author also plots the cache hit rates of the FIFO eviction, the Random eviction, the
LFU eviction, the ARC eviction, and the TinyLFU admission. Figure 5.6 shows simulation results of
the cache hit rate under three workloads of web traffic, video traffic and traffic including both web
and video traffic. Since the author obtains similar results under all of three workloads, the author
explains the result under the workload of web traffic of Fig. 5.6(a). In the case where the cache size
is 1 × 105, the cache hit rates of FIFO, Random, LFU, ARC, TinyLFU, and Filter are 0.238, 0.241,
0.389, 0.366, 0.376, and 0.341, respectively. Although the cache hit rate of Filter is slightly lower
than those of LFU, TinyLFU, and ARC, Filter improves the cache hit rate of FIFO and Random
by about 1.4 times and 1.4 times, respectively. Under this evaluation condition, where popularity
distribution of Interest packets does not change over time, the LFU eviction achieves the optimal
cache hit rate, as Fricker et al. claimed [67]. The results in Fig. 5.5 and Fig. 5.6 suggest that Filter
efficiently increases the cache hit rate and reduces the cache insertion rate compared with simple
cache eviction algorithms such as Random and FIFO.

5.4.3 CPU Cycles Spent for NDN Packet Processing

In this subsection, the author estimates the average CPU cycles of the NDN software with Filter,
ARC, FIFO, Random, and TinyLFU on the computer platform. The author conducts the estimation
with the workload of web traffic in the following three steps:

First, the author measures the CPU cycles of individual function blocks illustrated in Fig. 5.1 and
Fig. 5.2. Table 5.1 and Table 5.2 summarize the measured CPU cycles of the blocks of the NDN
software. Table 5.2 shows the CPU cycles of the blocks for cache eviction and admission, i.e., B2,
B12 and B13. Note that the CPU cycles depend on cache eviction/admission algorithms, i.e., Filter,
ARC, FIFO, Random, and TinyLFU.

Second, the author estimates the CPU cycles for various cache sizes by assigning the measured
CPU cycles of the blocks and the cache hit and the insertion rates estimated with simulations, shown
in Fig. 5.5 and Fig. 5.6, to Eqs. (5.1) and (5.2). Figure 5.7 shows the CPU cycles in the case of
Filter, FIFO, Random, TinyLFU, and ARC when the cache size varies from 1 × 105 to 10 × 105

– 62 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

Table 5.1: CPU cycles spent for processing blocks of packet processing shown in Figs. 5.1 and 5.2

B1 B3 B4 B5 B6 B7 B8 B9 B10 B11
571 148 72 188 413 56 188 73 329 50

Table 5.2: CPU cycles spent for processing blocks of cache eviction and admission algorithms shown
in Figs. 5.1 and 5.2

B2 (History Update) B12 (Eviction) B13 (Admission)
Filter 83 0 28

TinyLFU 91 0 282
ARC 173 202 0

Random 0 62 0
FIFO 0 0 0

packets. Filter reduces 16%, 11%, 15% and 9% of the average CPU cycles compared with ARC,
FIFO, Random, and TinyLFU, respectively, when the cache size is 1 × 105 packets.

The author obtains the following observations from Fig. 5.7. i) Cache admission, such as Filter,
is successful at reducing CPU cycles in the cases of the various cache hit rates by avoiding redundant
cache insertions, as described in Section 5.4.2. ii) The average of the CPU cycles for NDN packet
processing with Filter is even smaller than those with FIFO, whereas the cache hit rate of Filter is
higher than that of FIFO. The light computation of block B13 of Filter contributes to this phenomenon.

Third, the author compares two cache admission algorithms, i.e., Filter and TinyLFU, in terms
of trade-offs between cache hit rate and CPU cycles. Regarding cache hit rate, Filter just degrades
the cache hit rate by 3% compared with TinyLFU when the cache size is 1 × 105 packets under the
workload of web traffic, as evaluated in the previous section. This 3% degradation in the cache hit rate
of Filter results in increasing 28 cycles in the average CPU cycles spent for NDN packet processing
since the heavy computation of FIB Lookup must be executed in the case where a cache miss occurs.
However, Filter entirely reduces 9% of the average CPU cycles for NDN packet processing because
the light-weight computation of block B13 of Filter contributes to this reduction, as shown in Fig. 5.7.
From these results, the author concludes that Filter provides the fast computation at the small sacrifice,
i.e., the small cache hit rate degradation.

5.4.4 Forwarding Speed

Finally, the author measures the forwarding speed of NDN software routers with Filter, FIFO, and
ARC. The software is executed in a single-threaded environment. The author measures the number

– 63 –

5.5 Conclusion

of forwarded Interest packets per second and that of forwarded Data packets per second and calculate
the sum of those numbers as the total forwarding speed. Figure 5.8 shows the measured results.

The total forwarding speed of the NDN router with Filter increases by 1.3 times and 1.1 times
larger than that with ARC and that with FIFO, respectively. In the experiment conditions, where
the sizes of an Interest and a Data packet are 121 bytes and 1143 bytes, the NDN router with Filter
achieves the 16.1 Gbps forwarding speed in a single-threaded environment while that with ARC and
that with FIFO do the 11.2 Gbps and the 13.9 Gbps forwarding speeds, respectively. These results
prove that Filter achieves fast packet forwarding in NDN software routers compared to FIFO and
ARC, while keeping similar cache hit rate to ARC.

5.5 Conclusion

In this chapter, the author proposes to use cache admission for achieving both high cache hit rate
and fast packet forwarding speed in NDN software routers. A key of this technique is Filter, which
identifies highly popular Data packets by filtering out unpopular Data packets from the cache. The
author designs Filter so that it is implemented by a lightweight code of consuming a few tens of CPU
cycles. A simulation-based evaluation proves that Filter achieves high cache hit rate comparable
to sophisticated cache eviction algorithms such as ARC. The author implements a prototype of an
NDN software router with Filter and empirically validate that the NDN router with Filter improves
forwarding speed compared to that with sophisticated cache eviction like ARC and even that with
simple cache eviction like FIFO.

– 64 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

0 5 10 15 20 25 30
0

0.5

1

C
ac

he
 in

se
rt

io
n

ra
te

Threshold (θ)

q = 1×104

q = 5×104

q = 1×105

q = 5×105

q = 1×106

(a) Cache insertion rate (pInsertion)

0 5 10 15 20 25 30
0

0.5

1

C
ac

he
 h

it
 r

at
e

Threshold (θ)

q = 1×104

q = 5×104

q = 1×105

q = 5×105

q = 1×106

(b) Cache hit rate (pHit)

Figure 5.4: Effects of the length of the history queue q and the threshold θ on insertion rates, and hit
rates

– 65 –

5.5 Conclusion

0

0.5

1

C
ac

he
 in

se
rt

io
n

ra
te

0 2×105 4×105 6×105 8×105 10×105

Cache size [packets]

TinyLFU
Filter

(a) Workload of web traffic

0

0.5

1

0 2×106 4×106 6×106 8×106 10×106

C
ac

he
 in

se
rt

io
n

ra
te Filter

Cache size [packets]

TinyLFU

(b) Workload of video traffic

0

0.5

1

2.2×106 4.4×106 6.6×106 8.8×106 11.0×106

C
ac

he
 in

se
rt

io
n

ra
te Filter

TinyLFU

0
Cache size [packets]

(c) Workload including web and video traffic

Figure 5.5: Comparisons of cache insertion rate for Filter and TinyLFU admissions

– 66 –

Chapter 5. A Lightweight Cache Admission Algorithm for Optimizing Time Complexity

0
Cache size [packets]

0

0.5

1

2×105 4×105 6×105 8×105 10×105

C
ac

he
 h

it
 r

at
e

LFU
TinyLFU

ARC
Filter FIFO

Random

(a) Workload of web traffic

0

0.5

1

0 2×106 4×106 6×106 8×106 10×106

C
ac

he
 h

it
 r

at
e

Cache size [packets]

LFU
TinyLFU

ARC
Filter FIFO

Random

(b) Workload of video traffic

0

0.5

1

C
ac

he
 h

it
 r

at
e

2.2×106 4.4×106 6.6×106 8.8×106 11.0×1060
Cache size [packets]

LFU ARC
Filter FIFOTinyLFU

Random

(c) Workload including web and video traffic

Figure 5.6: Comparisons of cache hit rate for FIFO eviction, Random eviction, LFU eviction, ARC
eviction, Filter admission and TinyLFU admission

– 67 –

5.5 Conclusion

0 2×105 4×105 6×105 8×105 10×1050

600

1200

1800

C
P

U
 c

yc
le

s

FIFO

Cache size [packets]

ARC
TinyLFU

Filter

Random

Figure 5.7: Comparison of the average CPU cycles for NDN packet processing with Filter, TinyLFU,
FIFO, Random and ARC under various cache sizes

0

1

2

3

FIFO ARC Filter

Th
ro

ug
hp

ut
 [M

PP
S] DataInterest

Figure 5.8: Packet forwarding speeds of NDN routers with Filter, ARC and FIFO

– 68 –

Chapter 6

Power Efficiency of NDN Software
Routers Due to CPU Cycle Reduction

6.1 Introduction

Due to its host-based communication and end-to-end approach, IP cannot naturally provide rich
functions such as mobility, multicasting and in-network caching. For example, locators of a host
change as it moves, while the host name remains unchanged. Since IP routers do not have functions
to handle such changing locators, mobility management should be implemented by special servers.
In order to overcome such problems inherent to IP, NDN [7] is designed as an alternative Internet
architecture. NDN naturally supports the above functions by adopting name-based routing/forwarding
and ensures that NDN routers keep state of routes and caches.

Despite the fact that NDN provides numerous functions, its time-consuming name-based
forwarding and caching raise a couple of issues related to power consumption [16–18] as well
as forwarding performance [50]. Since name-based forwarding and caching are time-consuming,
high-performance NDN router implementation has become a hot research topic [10, 18, 22] and the
author also addressed high-speed NDN router implementation in Chapters 4 and 5. In this chapter,
the author addresses how the proposed techniques for high speed forwarding in Chapters 4 and 5
contributes to power reduction.

Previous studies focusing on power reduction [16–18] address power reduction of memory
devices, assuming that memory devices consume much power at the idle time. For example, Perino
et al. assume that DRAM devices used for CSs consume 0.023 W/MB while in the idle state [18].

– 69 –

6.1 Introduction

According to this assumption, these previous studies [16, 17] addressed to optimize cache placement,
which determines where to place caches in the network [16, 17], in order to reduce the total amount
of memory devices used for caching in an entire network. However, the power that memory devices
consume is being reduced by lowered voltage and improvements in manufacturing technology.
Vogelsang predicts that the decrease in power per bit consumed by Double-Data-Rate Synchronous
DRAM (DDR SDRAM) is 1.2 per generation of DDR [41].

The author argues that this trend towards lower power consumption implies that the power
consumed by the CPU device for time-consuming name-based forwarding and caching will become
larger than the power consumed by the memory devices. This means that CPU cycle reduction of
NDN packet processing contributes to power reduction of an NDN software router. According to this
implication, in Chapters 4 and 5, the author addresses CPU cycle reduction of NDN packet processing
and proposes the two techniques for this reduction. The first technique is the prefetch algorithm,
which eliminates pipeline stalls by hiding the DRAM access latency due to accesses to forwarding
tables and the other one is the cache admission algorithm, Filter, which reduces computation time by
bypassing wasteful cache computations for unpopular Data packets with lightweight computation.
Although forwarding speed improvement by CPU cycle reduction is evaluated, power reduction
obtained by this CPU reduction need be clarified.

In this chapter, the author models how a multicore NDN software router on a computer consumes
power. The author chooses a software router built on a computer as a target NDN router as Chapters 4
and 5 of this thesis show that well-engineered NDN software routers achieve high-performance
name-based forwarding and caching. This model focuses on precise estimation of the power consumed
by multicore CPU devices since the CPU device is a key to power efficiency of an NDN software
router. Based on the model, the author empirically evaluates the power reduction effect of the above
prefetch algorithms and Filter.

The main contributions of this chapter are summarized as follows:

• This chapter sheds light on the power consumed by name-based forwarding and caching,
whereas most studies on power reduction in NDN consider power consumed by memory
devices while in the idle state [16, 17].

• This chapter develops a general method for developing a power consumption model of a
multicore NDN software router built on a computer by applying the method to the three
different server computers.

• This chapter precisely models multicore CPU devices with power management states. This
makes it clear that power consumption of CPU devices is proportional to their load if they

– 70 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

are highly loaded and thus this energy-proportionality is an important requirement to reduce
power consumption of an NDN software router.

• By using the power consumption model of the well-engineered NDN router, this chapter
empirically proves that prefetch algorithms and Filter reduces the total power consumption of
an entire NDN software router when the traffic load of the router is high.

The rest of this chapter is organized as follows. Section 6.2 describes hardware and software
architectures of the target router platform. Sections 6.3 and 6.4 empirically models how a multicore
software router based on the router platform consumes power. Section 6.3 models the power
consumed by the hardware platform and Section 6.4 focuses on the power consumed by NDN packet
processing. Section 6.5 applies the model to estimate power consumed by an NDN software router.
Section 6.6 concludes this chapter.

6.2 Reference Architecture

6.2.1 Hardware Platform

For NDN software routers with and without Filter and prefetch algorithms, the author selected
multicore software routers as target hardware platforms due to the following reasons. First, full-
fledged NDN routers that have all NDN functions would not be used in backbone networks but only
in access networks. This is because caching in backbone networks is not as effective as it is in access
networks [69]. Second, it is natural that NDN functions are not implemented by interface cards, but
by service cards like the ISM (Integrated Service Module) cards in a vendor’s routers. So et al. [10]
showed that 20 Gbps throughput is feasible on such service cards in commercial routers, which are
multicore software routers consisting of a service card and multiple interface cards. In this chapter,
the author uses the three computer hardware platforms, each of which consists of one CPU device
with 4 CPU cores or two CPU devices with 4 CPU cores, one DDR3 memory device, a chassis and
one Network Interface Card (NIC) device. The DDR3 memory device is used to store both tables
and packets.

6.2.2 Software Platform

This subsection describes software platforms with and without prefetch algorithms and Filter. As a
software platform without prefetch algorithms and Filter, the author employed the software platform,
designed in Section 3.1 of Chapter 3. Since its design rationale and detailed description are already

– 71 –

6.3 Power Consumption Model

provided in Section 3.1, the author briefly summarizes key features of the platform as follows: First,
this software platform employs a software proposed in [10] as the NDN software. The software
realizes the minimum NDN router having only functionalities of the CS, PIT and FIB. All data
structures of the CS, PIT and FIB are implemented by the chained hash table described in Section 4.1.
As a cache eviction algorithm, the simple FIFO cache eviction algorithm is employed. Second,
in order to eliminate mutual exclusion, each thread exclusively has its own FIB, PIT, and CS and
arriving packets are forwarded to threads according to their names so that accessing the tables of the
other threads is prevented. Third, in order to eliminate hardware interrupts, this software platform
employs the DPDK user-space driver [29], which allows user-space software to bypass the protocol
stacks of operating systems and provides a way to transfer data directly from NICs to the software.

A software platform with prefetch algorithms and Filter is almost same as the above platform
but differences between them are as follows: First, in the CS, Filter, which is a frequency-based
cache admission algorithm designed in Chapter 5, is employed in addition to FIFO cache eviction
algorithm. Second, prefetch algorithms, which prefetches data pieces to access hash tables of the
CS, PIT and FIB, are employed. The algoritms are designed in Chapter 4. Both Filter and prefetch
algorithms contribute to CPU cycle reduction of NDN packet processing.

Based on the above two platforms, in this chapter, the author evaluates how CPU cycle reduction
due to Filter and prefetch algorithms contributes to power reduction of an NDN software router. In
the next section, the author develops a power consumption model of the NDN software router.

6.3 Power Consumption Model

The author develops a power consumption model of a multicore NDN software router to satisfy
the following requirements. The first requirement is that the model should reflect the loads on a
hardware platform, that is, the consumed power should be a function of the loads. Such loads include
a CPU load, an access rate to DRAM (DDR3) devices, and so forth. The second requirement is that
the above-mentioned loads on the hardware platform should be derived from loads on NDN packet
forwarding. Sections 6.3 and 6.4 address the first and second requirements, respectively.

– 72 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

6.3.1 Formulation

The author formulates the power consumed by a hardware platform based on a computer having the
minimum configuration. The power φrouter [W] is defined as,

φrouter(cndn, rmem, λip) = φcpu(cndn) + φmem(rmem) + φnic(λip) + Φchassis. (6.1)

It is parameterized by the following three parameters: the load on the CPU device (cndn [cycle]),
the number of bytes accessed in the DDR device per second (rmem [byte/s]), and the IP packet
forwarding rate (λip [packet/s]). To measure the CPU load, the author uses the CPU cycles incurred
for processing tasks, such as NDN packet processing. Each term in Eq. (6.1), which indicates the
power consumed by each hardware component, is explained as follows:

• φcpu(cndn) [W] is the power consumed by the CPU device. It is a function of the CPU load cndn.
• φmem(rmem) [W] is the power consumed by accessing the DDR3 device. It is a function of the
number of bytes accessed per second rmem.

• φnic(λip) [W] is the power consumed by the NIC. It is a function of the IP packet forwarding
rate λip.

• Φchassis [W] is the power consumed by the chassis when the router is idle. It includes the power
consumption of all devices.

Note that the author uses capital and small letters to express constants and variables, respectively.
In this section, the author empirically measures the above four terms in order to model them.

For the measurement, the author employs two different kinds of computer architectures: one for
general-purpose computing (x86-64), and one for mission-critical computing (IA-64). From the two
architectures, the author selects three server computers: a high-performance server computer for
general-purpose computing (server 1), a low-energy server computer for general-purpose computing
(server 2), and a high-performance server computer for mission-critical computing (server 3). Server
1 has two Intel® Xeon® E5620 processors (2.4 GHz × 4 cores), one DDR3 12 GB memory device,
one Intel® X540-T2 10GBASE-T NIC. Server 2 has one Intel® Xeon® E3-1220 processor (3.10
GHz × 4 cores), one DDR3 16 GB memory device, one Intel® X540-T2 10GBASE-T NIC. Server 3
has one Intel® Itanium® 9520 processor (1.73 GHz × 4 cores), one DDR3 8 GB memory device,
and one HP® Integrity Ethernet I/O adapter. To simplify the notation, the author refers to Intel®

Xeon® E5620, Intel® Xeon® E3-1220, and Intel® Itanium® 9520 processors as E5620, E3-1220,
and 9520 processors, respectively hereafter. As operating systems, the author uses Ubuntu 13.10
for the general-purpose servers and HP-UX 11.31 for the mission-critical server. The author uses a

– 73 –

6.3 Power Consumption Model

power meter and a current transformer developed by Omron® (ZN-CTX21 and ZN-CTS51-200As).
The power is measured in joules per second (watt). Each measurement is performed for 30 minutes,
consisting of a 10-minute warm-up phase and a 20-minute measurement phase. To ensure that the
author is measuring the servers in their steady state, the author puts the target load on the servers
without taking measurements during the warm-up phase and then measure the power consumption
every minute, i.e., the author takes 20 samples during the measurement phase.

6.3.2 Power Consumed by Chassis

The author measures the power consumed by the computer under the condition where all the CPU
cores are idle and the NIC is connected to an Ethernet switch but no frames are sent or received.
The averages of the power consumption of servers 1, 2, and 3 are 68.43, 34.20, and 117.82 [W] and
their two-sided 95% confidence intervals are [34.09, 34.30], [68.24, 68.62], and [117.62, 118.02],
respectively. Since the confidence intervals are narrow enough, the author determines Φchassis for
servers 1, 2, and 3 to be 34.20, 68.90, and 117.82 [W], respectively.

6.3.3 Power Consumed by CPU Devices

Overview

Modern CPU devices employ several power management states to achieve energy-efficient computing.
Therefore, the author hypothesizes that CPU devices consume power in proportion to their loads if they
are highly loaded. To validate the hypothesis, the author carefully models several power management
states that a modern CPU device employs. The CPU power consumption model estimates the power
consumed by multiple multicore CPU devices by incorporating power management states inside each
CPU core and device. The author briefly describes the power management states of CPU devices
and strategies for controlling the power management states. Then, the author builds the CPU power
consumption model. Finally, the author validates it on the basis of empirical measurements and
determine the parameters of the model for several commercial CPU devices.

CPU Power Management States

Modern CPU devices have two kinds of power management states, low-power idle states (C-states)
and performance states (P-states) [70].

The C-states are used to save the power at idle time. When a CPU core is idle, it enters one of
idle states, which are numbered from C1 to Cn states. When tasks arrive, it reverts to the active state,

– 74 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

which is referred to as the C0 state. A CPU core has several idle states, e.g., C1, C3, and C6 for
E5620, E3-1220, and 9520 processors, and a CPU core in a higher numbered C-state requires less
power. The author models those idle states together and thus simply refer to the idle states as the C1
state, hereafter. In the case of multicore CPU devices, there are several restrictions on controlling
C-states. A CPU device has a per-device C1 state, which is a power saving state for the entire CPU
device, and each CPU core has a per-core C1 state. Each CPU core can enter its per-core C1 state
independently of other CPU cores, whereas an entire CPU device can enter its per-device C1 state
only if all its CPU cores are in their per-core C1 states.

In contrast to the C-states, the P-states are used for reducing the power consumption while
the CPU device is active, i.e., the C0 state. While a CPU core is working in the C0 state, its
power consumption depends on the P-states, which are pairs of the selected operating voltages and
frequencies. A CPU device has several P-states numbered from P0 to Pn. For instance, an E5620
processor has seven P-states, P6 to P0, with frequencies ranging from 1.6 to 2.4 GHz. The P0 state is
the highest performance state, i.e., the highest operating frequency, voltage, and power consumption.
In subsequent P-states, the operating frequency and voltage are progressively reduced in tandem.
Note that, in a similar way to the per-device C-states, the P-states are per-device states and thus they
affect all CPU cores in a CPU device, i.e., all CPU cores work at the same frequency. The power
management using the P-states is also referred to as dynamic voltage and frequency scaling (DVFS).

Strategy for Controlling CPU Power Management States

In order to build a power consumption model of multiple multicore CPU devices, the author has
to model i) a strategy for assigning the load incurred for processing NDN packets to multiple CPU
devices and cores, and ii) a strategy for controlling P-states according to the load on each CPU core.
The author crafts those strategies so that the number of active CPU devices and cores would be
minimized.

The author assumes that a computer platform has Ncpu identical CPU devices, each of which has
Ncore identical CPU cores. The CPU devices offer a set of P-states P and the operating frequency in
the P-state p (p ∈ P) is hp. The author denotes the highest performance P-state (P0 state) as p0, i.e.,
the highest operating frequency of the CPU device is hp0 . The author uses CPU cycles per second to
measure the CPU load [cycle/s]. Since a CPU core working in the P-state p can process a hp CPU
workload per second [cycle/s], the processing capacity of a CPU core is equivalent to its operating
frequency.

Regarding strategy i), the load for processing NDN packets, cndn, is assigned to CPU devices, so

– 75 –

6.3 Power Consumption Model

that the number of active CPU devices ncpu is minimized. Since the power consumption of a CPU
device increases steeply when any of CPU cores enter their per-core C0 state, which results in the
transition of the entire CPU device to its per-device C0 state, minimizing ncpu is a good strategy for
minimizing the energy consumed by CPU devices. To minimize ncpu, all CPU cores of the ncpu − 1
CPU devices, which have Ncore CPU cores, must work at their maximum frequency hp0 . Therefore,
using a ceiling function, ncpu is expressed as

ncpu =

⌈
cndn

Ncorehp0

⌉
. (6.2)

In this case, ncpu − 1 CPU devices are fully utilized, i.e., all Ncore CPU cores in the ncpu − 1 CPU
devices process NDN packets at their maximum frequency hp0 . Therefore, the load processed by
those fully utilized ncpu − 1 CPU devices is

(
ncpu − 1

)
· Ncorehp0 and the remainder of the load,

cdevice = cndn −
(
ncpu − 1

)
· Ncorehp0, (6.3)

is processed by the least loaded CPU device.

The load cdevice is assigned to CPU cores in the least loaded CPU device so that the number
of active CPU cores is minimized. Since the power consumption of a CPU core is also a concave
increasing function of its load, as shown in Section 6.3.3, it is preferable to assign as much load as
possible to ncore − 1 CPU cores and the remainder to another one. The number of active CPU cores
ncore in the least loaded CPU device is expressed as

ncore =

⌈
cdevice

hp0

⌉
=

⌈
cndn −

(
ncpu − 1

)
· Ncorehp0

hp0

⌉
. (6.4)

In this case, Ncore CPU cores in the ncpu − 1 CPU devices and ncore − 1 CPU cores in the least loaded
CPU device process NDN packets at their maximum frequency hp0 . Hence, the least loaded CPU
core in the least loaded CPU device processes the load ccore and it is calculated as

ccore = cdevice − (ncore − 1) hp0

= cndn −
(
(ncore − 1) +

(
ncpu − 1

)
· Ncore

)
· hp0 . (6.5)

Next, the author defines a strategy for selecting P-states for the least loaded CPU device according
to the CPU load cdevice. The author constructs the strategy so that the operating frequency is increased
if the utilization of a CPU core, which is defined as the CPU load divided by the processing capacity

– 76 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

of the CPU core, exceeds a threshold θ. Such a strategy is often used in the current operating systems.
For instance, an advanced configuration and power interface (ACPI) CPU driver employs this strategy.
The P-state for the load cdevice is modeled as,

p(cdevice) =

p0 if

cdevice
hp0

≥ θ

argmink hk s.t.
cdevice

hk
< θ otherwise.

(6.6)

For instance, the threshold θ is defined as 0.8 for the “conservative” mode in the ACPI CPU driver
embedded in Linux kernels [71]. If the utilization cdevice/hp0 exceeds the threshold θ, the P-state of
the CPU device is set to p0. In this case, all CPU cores work at the maximum frequency hp0 since
P-states are per-device states.

CPU Power Consumption Model

The power consumed by a CPU device φcpu [W] is determined by the load incurred for processing
NDN packets cndn as

φcpu(cndn) = Φncore,p ·

(
ccore
hp

)σncore,p

+

ncore−1∑
k=1
Φk,p + Φ · (ncpu − 1). (6.7)

The first and second terms on the right hand side are the power consumption of the least loaded CPU
device and the third one is that of the fully utilized CPU devices. Since the power consumption of the
fully utilized CPU devices, Φ, is constant, the total power consumption of the

(
ncpu − 1

)
fully utilized

CPU devices is simply derived as Φ · (ncpu − 1). In contrast, the power consumption of the least
loaded CPU device depends on its P-state. Since the P-states are the per-device states, the P-state
of the CPU cores in the least loaded CPU device are the same and p is derived by using Eq. (6.6).
The second term is the power consumed by fully utilized CPU cores in the least loaded CPU device.
Empirical measurements show that the maximum power consumption of CPU cores differs slightly
depending on the number of active CPU cores though the CPU cores are identical and all of them are
operated at the same frequency hp. Therefore, the author models the maximum power consumption
of CPU cores as Φncore,p, which indicates the maximum power consumption of a CPU core in the
case that ncore CPU cores are active and their P-states are p. To derive the power consumption of the
fully utilized CPU cores, the author uses their sum from k = 1 to ncore − 1. Note that if ncore = 1,
the second term is zero, and otherwise p is always p0 because the P-states are per-device states.

– 77 –

6.3 Power Consumption Model

Therefore, for deriving the second term in Eq. (6.7), the author needs only Φncore,p in the case where
p = p0. The author describes an empirical measurement of Φncore,p0 in the following subsection.

Finally, the author explains the first term on the right hand side of Eq. (6.7), which indicates the
power consumed by the least loaded CPU core in the least loaded CPU device. This depends on its
P-state p and the load ccore. Therefore, to derive this, the author has to model the C-states, i.e., the
power consumption when the CPU cores transit between the C0 and C1 states depending on the load
ccore, and the P-state, i.e., the power consumption of the CPU core for each P-state while the CPU core
is in the C0 state. The model of this thesis is based on the power consumption model of a single core
CPU device proposed in [44], which models the C-states as ((1−c/hp) ·(Φ

(p)
i)

1/σ+c/hp · (Φ
(p)
a)

1/σ)σ ,
where Φ(p)i and Φ(p)a are the power consumption of a CPU core with the P-state p in the C1 and C0
state, respectively. The constant parameter σ determines the shape of the power consumption curve.
The case σ = 1 corresponds to the ideal case, where there is no overhead when entering or exiting
the idle state. In reality, a latency exists when reverting from the C1 state to the C0 state and a certain
amount of power is consumed during the transition. Thus, the power consumption is an increasing
concave function of the load λ, i.e., the parameter σ for a current CPU device satisfies 0 < σ < 1.
To model the P-states, i.e., the maximum power consumption Φ(p)a in the case of the P-state p, this
model uses the following equation, Φ(p)a = (Φ

1/ν
amin + (Φ

1/ν
amax − Φ

1/ν
amin) · hp/hp0)

ν, where Φamax and
Φamin are the maximum and minimum power consumptions in the C0 state. The constant parameter
ν determines the shape of the power consumption curve. The case ν = 1 corresponds to dynamic
frequency scaling and ν = 2 corresponds to dynamic voltage scaling. For DVFS, ν is greater than 2.

The author extends this model to multiple multicore CPU devices assuming that the CPU power
management is performed as discussed in the previous subsection. The author sets Φ(p)i to 0 since
the power consumption of the current CPU’s idle cores is near-zero independent of other cores [72].
Then, the author applies the model [44] to the least loaded CPU core. The first term of Eq. (6.7) is
based on the C-state model in [44]. According to the observations found in empirical measurements
below, the author defines the parameters σncore,p for each P-state p and the number of active CPU cores
ncore instead of using a single parameter σ. The constant Φn,p is the maximum power consumption
of the n-th CPU core for a given P-state p in the case that n − 1 CPU cores are fully utilized. Φncore,p

[W] can be derived as

Φncore,p =

(
Φ

1
ν

a min +

((
Φncore,p0

) 1
ν − Φ

1
ν

a min

)
·

hp

hp0

)ν
, (6.8)

where Φa min is the minimum power consumption of the CPU core in the C0 state. The constant

– 78 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

Table 6.1: Parameters of φcpu(cndn) for E5620 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1

1.6

1.35 · 103 16.86

0.30 24.33
1.73 0.13 25.08
1.87 0.15 25.88
2.0 0.065 26.66
2.13 0.14 27.49
2.27 0.074 28.36
2.4 0.12 29.22

2 2.4 - - 0.84 5.94
3 2.4 - - 0.74 5.37
4 2.4 - - 0.81 6.51

Table 6.2: Parameters of φcpu(cndn) for E3-1220 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1

1.6

1.89 · 103 3.63

0.46 6.25
1.8 0.40 6.69
2.0 0.32 7.16
2.2 0.38 7.66
2.4 0.36 8.20
2.6 0.40 8.78
2.8 0.38 9.39
3.1 0.48 10.40

2 3.1 - - 0.59 5.71
3 3.1 - - 0.69 6.86
4 3.1 - - 0.56 5.24

ν is a parameter to determine the maximum power consumption of the CPU core for each P-state.
Eq. (6.8) is used to derive Φn,p since P-state adaptation is applied only when the number of active
CPU cores is one, the author applies Eq. (6.8) for the case of ncore = 1 and otherwise the author uses
the empirically measured value for Φn,p0 .

Validation and Parameter Fitting

To derive the constants in Eqs. (6.7) and (6.8), the author measures the power consumption by running
a program that performs an infinite loop containing only arithmetic operations and a sleep operation
to avoid access to any hardware devices other than the CPU. The author varies the CPU load by
changing the sleep time. The derived parameters are summarized in Tables 6.1, 6.2, and 6.3.

– 79 –

6.3 Power Consumption Model

Table 6.3: Parameters of φcpu(cndn) for 9520 Processor

ncore hp [GHz] ν Φa min σncore,p Φncore,p

1
1.066

2.58 0.00
0.68 2.23

1.6 0.78 6.35
1.733 0.34 7.80

2 1.733 - - 0.55 3.92
3 1.733 - - 0.74 1.39
4 1.733 - - 0.34 1.21

First, to derive the parameters σncore,p and Φncore,p in the case of ncore = 1, the author measures
the CPU power consumption for each P-state by changing the CPU load. The measured and estimated
power consumption of the E5620 processor (server 1) for each operating frequency (P-state) is
shown in Fig. 6.1. The horizontal axis shows the offered CPU load normalized to the maximum
processing capacity and the vertical axis shows the power consumption. Cross markers and error
bars indicate the mean of 20 measured results and 95% confidence intervals. Since the confidence
intervals are considerably small for measurements, as shown in Fig. 6.1, the confidence intervals for
the CPU power measurements are omitted, hereafter. The author derives σncore,p with least squares
approximation. The significance of the regression is measured by the coefficient of determination,
R2 = 1 −

∑
i(yi − mi)/

∑
i(yi − ȳ), where yi denotes the sample value with mean ȳ whereas mi is the

modeled value, and R2 is shown in each graph. Due to space limitations, the author omits graphs
for the E3-1220 and 9520 processors. The tendencies of the fitting results of the E3-1220 and 9520
processors are the same as that of the E5620 processor. R2 of the fitting results for the E3-1220
processor in the case of hp = 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, and 3.1 GHz are 0.934, 0.946, 0.856,
0.922, 0.978, 0.981, 0.945, and 0.954, respectively. Those for the 9520 processor in the case of hp =

1.066, 1.6, and 1.73 GHz are 0.911, 0.899, and 0.919, respectively. Since R2 of the fitting results are
high, the author determines the parameters σncore,p and Φncore,p in the case of ncore = 1, as shown in
Tables 6.1, 6.2, and 6.3.

Next, to derive σncore,p in the case that ncore is more than 1, the author measures the power
consumption of the n-th CPU core by changing the load on the core. During the measurement of the
n-th CPU core, the other n − 1 CPU cores are fully utilized and the remaining CPU cores are kept
idle. Since the P-state of all CPU cores is p0 when more than one CPU core is active, the author
measures the power consumption in the case of the P-state p0. The measured and fitted results for the
E5620 are shown in Fig. 6.2. The meanings of the axes and markers are the same as those in Fig. 6.1.
R2 of the fitting results for the E3-1220 processor in the case of ncore = 2, 3, and 4 are 0.891, 0.870,

– 80 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.949)

Measured Result

(a) 1.6 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.669)

Measured Result

(b) 1.73 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.773)

Measured Result

(c) 1.87 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.604)

Measured Result

(d) 2.0 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.321)

Measured Result

(e) 2.13 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o
w

e
r

[W
]

Fitted Result (R
2
 = 0.604)

Measured Result

(f) 2.27 GHz

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

Normalized CPU Load

P
o

w
e
r

[W
]

Fitted Result (R
2
 = 0.793)

Measured Result

(g) 2.4 GHz

Figure 6.1: Power Consumed by CPU (E5620) Cores at Each P-state

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o

w
e
r

[W
]

Fitted Result (R
2
 = 0.999)

Measured Result

(a) ncore = 2

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o

w
e
r

[W
]

Fitted Result (R
2
 = 0.927)

Measured Result

(b) ncore = 3

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Normalized CPU Load

P
o

w
e
r

[W
]

Fitted Result (R
2
 = 0.994)

Measured Result

(c) ncore = 4

Figure 6.2: Power Consumed by CPU (E5620) in the Case of ncore ≥ 2

and 0.699, and those for the 9520 processor are 0.929, 0.998, and 0.913.

To derive the parameters ν and Φa min, the author measures the power consumption for each
P-state when a CPU core is fully utilized and the other CPU cores are kept idle. The measured
power and the fitted model are shown in Fig. 6.3. The horizontal axis shows the operating frequency
normalized to the maximum frequency of each CPU core. R2 of each regression is shown in each
graph. Though the error between fitted and measured power consumption of the E5620 processor
with operating frequency of 2.13 and 2.27 GHz is large, R2 is high. R2 of the fitting results for the
E3-1220 and 9520 processors are 0.951 and 0.995, respectively. Therefore, the author derives ν for
the E5620, E3-1220, and 9520 processors as 1.35 · 103, 1.89 · 103, and 4.22 and Φa min for the E5620,
E3-1220, and 9520 processors as 16.86, 3.63, and 0.00, respectively.

– 81 –

6.3 Power Consumption Model

0 1.6 2 2.4
0

5

10

15

20

25

30

Operating Frequency [GHz]

P
o

w
er

 [
W

]

Fitted Result (R
2
 = 0.679)

Measured Result

Figure 6.3: Maximum Power Consumed by one CPU Core (E5620) in Each P-state

0 1 2 3 4
0

10

20

30

40

50

Normalized CPU Load

P
o

w
e
r

[W
]

Estimated Power
Measured Power

(a) E5620 Processor

0 1 2 3 4
0

5

10

15

20

25

30

Normalized CPU Load

P
o

w
e
r

[W
]

Estimated Power

Measured Power

(b) E3-1220 Processor

0 1 2 3 4
0

5

10

15

20

Normalized CPU Load

P
o

w
e
r

[W
]

Estimated Power
Measured Power

(c) 9520 Processor

Figure 6.4: Power Consumption by CPU Device

Finally, the author shows the CPU power consumption of the E5620, E3-1220, and 9520
processors as estimated by the model of this thesis in Fig. 6.4. The horizontal axis shows the offered
CPU load normalized to the maximum processing capacity, cndn/hp0 , of each CPU core and the
vertical axis shows the power consumption. The significance of the estimation has been shown
as the coefficients of determination, R2, of the fitting results in Figs. 6.1 to 6.3. Since modern
CPU devices employ several power management states, they are almost energy-proportional to their
loads in the case that two or more CPU cores are active. That is, the power consumption of the
CPU devices are approximately modeled as a linear function to their loads. The author derives a
coefficient and an intercept of the linear function by using linear regression. The power consumption
of the E5620 processor is approximately modeled as φcpu(cndn) = 5.88 · cndn/hp0 + 23.58 and R2 is
0.997. In the same way, the power consumption of the E3-1220 and 9520 processors are modeled

– 82 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

as φcpu(cndn) = 5.85 · cndn/hp0 + 5.43 with R2 = 0.979 and φcpu(cndn) = 1.65 · cndn/hp0 + 8.15 with
R2 = 0.943, respectively.

6.3.4 Power Consumed by Memory Device

The author formulates the power consumed by accessing data in the DDR3 device φmem(rmem) [W]
as a function of the average number of bytes accessed per second rmem [byte/s] as follows:

φmem(rmem) = Ψmem · rmem, (6.9)

where Ψmem is the energy [joule] consumed to read/write one byte of data from/to the DDR3 device
[joule/byte]. Since currently available DDR3 devices do not have DVFS, their power consumption is
proportional to the access rate to the devices [73]. Hence, the author models the power consumption
of the DDR3 device as a linear function to the access rate rmem. Note that the power consumed
constantly by the DDR3 device, such as the power for refreshing registers, is included in the power
consumed by the chassis Φchassis.

To validate that the power consumed by accessing the DDR3 device is proportional to the rate of
accessing it and to derive the constant Ψmem in Eq. (6.9), the author runs a program that repeatedly
reads 8 byte data from the array allocated by the malloc function. In general, the DDR3 power
consumption for writing and reading data is slightly different but the difference is small. For instance,
writing a page to a DDR3 device operating at 1333 MHz consumes 61 nano-joule while reading does
56 nano-joule [73]. Since the author measures the power consumed for reading the DDR3 device
and estimate Ψmem based on the measured results, the model of this thesis may underestimate the
power consumed by the DDR3 device. However, the error is at most about 8% according to [73].
Furthermore, the DDR3 device accounts for the small proportion of the total power consumption of
the servers. Therefore, the error might be much smaller. The average number of bytes accessed in the
DDR3 device per second is measured by the Intel® Performance Counter Monitor. Since all three
servers 1, 2, and 3 have DDR3 devices, the author uses server 2 for this measurement. The author
derives the power consumed by accessing the DDR3 device by subtracting the power consumed by
one active CPU core (10.40 [W]) from the measured power.

Figure 6.5 shows the power consumed by the DDR3 device at various byte access rates [byte/s].
The author derives the constants Ψmem by using the least squares approximation. Since the confidence
intervals of each measured result are small and R2 is close to 1, the author decides on Ψmem to be
0.61 · 10−9 [joule/byte].

– 83 –

6.4 Packet Forwarding Analysis

6.3.5 Power Consumed by NIC

The author formulates the power consumed by the NIC φnic(λip) [W] as a function of the IP packet
forwarding rate λip [packet/s] as

φnic(λip) = Ψnic · λip, (6.10)

where Ψnic is the energy [joule] consumed by the NIC for forwarding one IP packet [joule/packet].
Though the power consumed by a currently available NIC may not be energy-proportional, its power
consumption in general is much smaller than that of a CPU device [74]. Even though the author
models it as a linear function to its load, the error between the estimated and measured power
consumption might be small enough, which is validated by empirical measurements below.

The author measures the power consumed by the NIC at various rates in the following way. The
three computers are connected by 10 Gbps Ethernet links. One computer is used as an IP router and
the other two act as a client and server, respectively. The client sends UDP packets at various rates by
running a simple program that switches between sending a UDP packet and sleeping. The author
measures the power by choosing 1500 bytes as the size of the IP packets.

Figure 6.6 shows the power consumed by the NIC. The horizontal axis shows the packet forwarding
rate [packet/s]. Cross markers and error bars indicate the mean and 95% confidence intervals of
measured results. The author derives the constant Ψnic as 1.26 · 10−5 [joule/packet] using the least
squares approximation. The power does not appear to be exactly proportional to the IP packet
forwarding rate since the power consumed by the NIC is small and thus the fluctuations in the
measured values become relatively large. However, the author assumes that the power is proportional
to the forwarding rate λip. This is because the confidence intervals of each measured result are small
and R2 is close to one, and thus errors between the actual and estimated values would be negligible.

6.4 Packet Forwarding Analysis

This section describes the method of calculating values of the three parameters cndn, rmem and λip in
order to derive the average power consumed by a multicore NDN software router built on computers.
The author describes how average values of the three parameters are calculated from the average
input Interest packet rate λndn [packet/s], cache hit rate πhit and cache insertion rate πinsertion of the
NDN router. Since the objective of this chapter is to compare power consumption of two routers with
and without Filter and prefetch algorithms, the rest of this section provides the calculation methods
for the two routers. For notation simplicity, hereinafter, routers with and without prefetch algorithms

– 84 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

0 2 4 6 8 10 12
0

2

4

6

8

Access Rate [Gbyte/s]

P
o

w
er

 [
W

]

Fitted Result (R
2
 = 0.989)

Measured Result

Figure 6.5: Power Consumed by DDR3 Device

and Filter are simply referred to as an optimized router and an naive router, respectively.

6.4.1 Calculation Method for Naive Router

CPU Cycles

The average power consumed by the CPU device is determined by the average number of consumed
CPU cycles per second [cycles/s] cndn. cndn is calculated by the product of the average Interest packet
rate λndn [packet/s] and the average number of CPU cycles spent for processing a pair of an Interest
and a Data packet [cycles/packet]. Please note that the CPU cycle number for the naive router is
defined as a function of cache hit rate πhit and it is denoted by CNaive

ndn (πhit).

CNaive
ndn (πhit) is calculated based on packet processing flows of the naive router illustrated in

Fig. 6.7. Please note that the author omits a description of each block Bi in this figure since the
description is already provided in 5.1 of Chapter 5. The calculation of CNaive

ndn (πhit) is conducted with
the flows in the following steps. First, the author groups the blocks so that CNaive

ndn (πhit) is calculated
with cache hit rate πhit, as below:

• G1 is the set of blocks executed always for each Interest packet: B1, B2, B3 and B11.
• G2 is the block executed at a cache hit: B4.
• G3 is the set of blocks executed at a cache miss except for the blocks for cache eviction, i.e.,

B12 and B10: B5, B6, B7, B8 and B9.

– 85 –

6.4 Packet Forwarding Analysis

 0 50000 100000 150000
0

0.5

1

1.5

2

Packet Forwarding Rate [packet/s]

P
o
w

er
 [

W
]

Fitted Result (R
2
 = 0.878)

Measured Result

Figure 6.6: Power Consumed by NIC

Next, CNaive
ndn (πhit) is defined by Eq. (6.11) as

CNaive
ndn (πhit) = Cg,1+πhitCg,2 + (1 − πhit)(Cg,3 + Cb,12 + Cb,10), (6.11)

where Cb,i is the CPU cycles of block Bi, and Cg,i is the CPU cycles of group Gi.

Access Rate to DDR3 Device in Bytes

The average power consumed by the DDR3 device is determined by the average number of bytes
accessed (read or written) per second rmem [bytes/s]. rmem is calculated by the product of the average
Interest packet rate λndn [packet/s] and the average number of bytes accessed for processing a pair of
an Interest and a Data packet MNaive

ndn (πhit) [bytes/packet], which is defined as a function of cache hit
rate πhit.

MNaive
ndn (πhit) is calculated based on packet processing flows in Fig. 6.7 in the same way as that of

calculating CNaive
ndn (πhit). MNaive

ndn (πhit) is defined by Eq. (6.12) as

MNaive
ndn (πhit) = Mg,1+πhitMg,2 + (1 − πhit)(Mg,3 + Mb,12 + Mb,10), (6.12)

where Mb,i is the number of bytes accessed in block Bi , and Mg,i is the number of bytes accessed in
blocks which are included in group Gi.

– 86 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

B6:FIB

Lookup

B5:PIT

Insertion
B8:Data

Reception

B9:PIT

Deletion

B7:Interest

Transmission

End

B3:CS

Lookup

B11:Data

Transmission

B10:CS

Insertion

B12:CS Eviction

(FIFO)

B1:Interest

Reception
Start

B2:CS History

Update

B4:Data

Composition

Hit

Miss

C:72,M:131

C : CPU Cycles [cycle/packet],
M : DRAM Access [bytes/packet]

C:571,M:260 C:148,M:110

C:188,M:440

C:0,M:0

C:56,M:10 C:188,M:122 C:73,M:292

C:329,M:392 C:50,M:10

C:413,M:89

C:0,M:0

Figure 6.7: Software block diagram of naive router (without prefetch algorithms and Filter) and the
consumption of CPU cycles and DRAM accesses

6.4.2 IP Packet Forwarding Rate

The average IP packet forwarding rate λip [packet/s] is calculated by the following function of λndn

and πhit:
λip(λndn, πhit) = λndn · (2 − πhit). (6.13)

λip is calculated assuming that Interest and Data packets are encapsulated by IP packets. Since
Interest and Data packets are one-for-one and their flow balances are strictly maintained in NDN [75],
the author can calculate the average number of Interest and Data packets received and sent per
second as follows. The router receives λndn Interest packets from downstream routers per second.
λndn · πhit Data packets are sent back to them per second when Interest packets hit those in the CS.
Otherwise, λndn · (1− πhit) Interest packets are sent (forwarded) to upstream routers per second. Then
λndn · (1 − πhit) Data packets are received from the upstream routers and then they are sent back to
the downstream routers per second. Since either an Interest or a Data packet is encapsulated by an IP
packet, λndn · (2− πhit) IP packets are sent and the same number of IP packets are received per second.
It means that λndn · (2 − πhit) IP packets are forwarded. Thus, λip(λndn, πhit) is λndn · (2 − πhit).

6.4.3 Calculation Method for Optimized Router

CPU Cycles

In a similar way to the calculation of the number of CPU cycles for the naive router, cndn in the case
of the optimized router is calculated by the product of the average interest packet rate λndn [packet/s]

– 87 –

6.4 Packet Forwarding Analysis

B13:CS

Admission (Filter)

B11:Data

Transmission

B10:CS

Insertion

Not Insert

Insert

B1:Interest

Reception
Start

B2:CS History

Update

B4:Data

Composition

Hit

B6:FIB

Lookup

B5:PIT

Insertion
B8:Data

Reception

B7:Interest

Transmission

Miss

B9:PIT

Deletion

End

B3:CS

Lookup

C:571,M:260 C:22,M:68 C:48,M:110 C:72,M:131

C:163,M:392

C:289,M:281

C:87,M:440

C:18,M:13

C : CPU Cycles [cycle/packet],
M : DRAM Access [bytes/packet]

C:56,M:10 C:188,M:122 C:73,M:292

C:50,M:10

Figure 6.8: Software block diagram of optimized router (with prefetch algorithms and Filter) and the
consumption of CPU cycles and DRAM accesses

and the average number of CPU cycles spent for processing a pair of an Interest and a Data packet
[cycles/packet]. Please note that the CPU cycle number for the optimized router is defined as a
function of cache hit rate πhit and cache insertion rate πinsertion and it is denoted by COpt

ndn (πhit, πinsertion).

COpt
ndn (πhit, πinsertion) is calculated based on the packet processing flow of the optimized router,

which is illustrated in Fig. 6.8, as

COpt
ndn (πhit, πinsertion) = Cg,1+πhitCg,2 + (1 − πhit)(Cg,3 + Cb,13 + πinsertionCb,10). (6.14)

Note that the author omits a description of each block Bi in this figure since the description is already
provided in Section 5.1 of Chapter 5.

Access Rate to DDR3 Device in Bytes

Similarly to the calculation of access rate for the naive router, rmem is calculated by the product of the
average Interest packet rate λndn [packet/s] and the average number of bytes accessed for processing a
pair of an Interest and a Data packets MNaive

ndn (πhit, πinsertion) [bytes/packet], which is also defined as a
function of cache hit rate πhit and cache insertion rate πinsertion.

MOpt
ndn (πhit, πinsertion) is calculated based on packet processing flows in Fig. 6.8 in the same way as

– 88 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

calculating COpt
ndn (πhit, πinsertion). MOpt

ndn (πhit, πinsertion) and it is defined as

MOpt
ndn (πhit, πinsertion) = Mg,1+πhitMg,2 + (1 − πhit)(Mg,3 + Mb,13 + πinsertionMb,10). (6.15)

IP Packet Forwarding Rate

In the case of the optimized router, the average IP packet forwarding rate λip [packet/s] is calculated
by Eq. (6.13) in the similar way to the case of the naive router.

6.4.4 Measured Numbers of CPU Cycles and Accesses Bytes

In this section, the author provides the measured number of CPU cycles of each block Cb,i and that of
bytes accessed in each block Mb,i in order to calculate CNaive

ndn (πhit), MNaive
ndn (πhit), COpt

ndn (πhit, πinsertion)

and MOpt
ndn (πhit, πinsertion). Measurement conditions are same as those used in Chapter 5. The numbers

for the naive and optimized routers are summarized in Figs. 6.7 and 6.8, respectively. In Figs. 6.7
and 6.8, the value after the character “C” and that after the character “M” represent the CPU cycles
spent at each block and the number of bytes accessed in each block, respectively. Please note that in
Fig. 6.8, Bb,2 and Bb,12 do not incur any CPU cycles and accessed bytes because the FIFO cache
eviction does not require any processing at Bb,2 and Bb,12.

In Fig. 6.8, the number of each Mb,i in the case of the optimized router is estimated based on the
measured number of each Mb,i in the case of the naive router, as shown in Fig. 6.7. This is because
the prefetch algorithms of the optimized router make the accurate measurement of Mb,i difficult by
reordering execution orders of instructions to fetch data pieces. The author estimates Mb,i as follows:
First, the author assumes that in the case of the optimized router, extra data pieces are fetched from
the DRAM device, i.e., all possible hash buckets for a given name prefix are prefetched for the FIB
lookup of the name prefix regardless of whether they are used or not, based on the observation
obtained in Section 4.3.2 of Chapter 4. This assumption means that the numbers of Mb,6 in the naive
and optimized routers are different, whereas the other numbers of Mb,i are same between two routers.
Second, the number of prefetched hash buckets in the optimized router is equivalent to the length of
the prefix according to the behavior of a FIB lookup described in Sections 4.3.2, whereas the number
of fetched hash buckets in the naive router is equivalent to the matching prefix length in longest
prefix matching of FIB lookup. This means that extra data pieces fetched in the optimized router are
hash buckets and that their number is derived by the difference between the prefix length and the
matching prefix length. The former and the latter lengths are 7 and 4, respectively, in measurement

– 89 –

6.5 Case Study

conditions of this chapter, and thus the difference is 3. Third, since the size of one hash bucket is
64 bytes, which corresponds to the size of one cache line, the number of extra bytes fetched in the
optimized router is 192 = 3 × 64 bytes. Therefore, the number of Mb,6 in the optimized router is
281 = 89 + 192 [bytes/packet].

In the next section, with measured numbers of CPU cycles and accessed bytes, the author
compares power consumption of the optimized and naive routers in order to evaluate how CPU cycle
reduction of prefetch algorithms and Filter contributes to power reduction of an NDN software router.

6.5 Case Study

This section evaluates how the prefetch algorithms and Filter designed in Chapters 4 and 5 contribute
to power reduction of a NDN software router. For this evaluation, the author compares power
consumption of the naive and the optimized NDN software routers. This comparison is conducted by
using the power consumption model described in Section 6.3 and the calculation method of CPU
cycle and accessed byte described in Section 6.4.

6.5.1 Server Platform

In the rest of this section, the author chooses a low-energy server computer with an E3-1220 processor
(server 2) among the three server platforms, which are described in Section 6.2, because this server is
the most power efficient among the three servers. To evaluate power consumption in the case of high
traffic load, the author assumes that the server 2 has two Intel Ethernet Converged Network Adapter
XL710 (dual 40 Gbps Ethernet ports) NIC devices instead of one Intel X540-T2 NIC device (single
10 Gbps Ethernet ports), which is used for experiments in Section 6.3. The author calculates the
power consumption of the XL 710 NIC device, assuming that it is also proportional to the input IP
packet forwarding rate in the same way as the X540-T2 NIC device. The coefficient Ψnic, which is
the energy consumed by the NIC for forwarding one IP packet Ψnic [joule/packet], is estimated from
the maximum packet forwarding rate [76] and the maximum power consumption [77] of the XL 710
NIC device and it is derived as Ψnic = 2.3 × 10−7.

6.5.2 Scenario

A consumer, who sends Interest packets, and a producer, who sends back Data packets to the
consumer, are connected to an NDN software router. The producer stores 1× 107 unique web objects,

– 90 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

where one web object corresponds to one Data packet and the consumer generates Interest packets
for these Data packets. Interest packets for each Data packet are generated according to the Poisson
process and the rates of Interest packets for Data packets are determined according to the Zipf
distribution with the parameter α = 0.8 [67]. The size of one Data packet is 1024 bytes. The NDN
software router can store 1 × 105 Data packets in its cache. Regarding cache algorithms, the naive
router employs the FIFO cache eviction algorithm, whereas the optimized router does Filter, the
cache admission algorithm designed in Chapter 5, in addition to the FIFO cache eviction algorithm.
Cache hit and insertion rate of both the two routers are obtained from their simulation results in
Section 5.4 of Chapter 5. The cache hit rates of the naive and the optimized routers are 0.238 and
0.341, respectively, whereas the cache insertion rates of the naive and the optimized routers are 1.0
and 0.03, respectively.

6.5.3 Power Reduction Analysis

First, the author compares the total power consumption of the naive and the optimized routers.
Figure 6.9 shows the power consumption of the naive and the optimized routers. The total data
retrieval rate from the producer, which is defined as the total amount of Data packet size per one
second received by the consumer, is varied from 0 to about 58 Gbps. The high data retrieval rate
means that the load on the router is high. The optimized router reduces the power consumption by
11.3% compared with the naive router in the case that the total data retrieval rate is 58 Gbps.

In order to analyze the power consumption in more detail, the power consumption of individual
hardware devices of the NDN software router is analyzed. Figure 6.10 shows the power consumption
of the individual devices of the naive and optimized routers in the case that total data retrieval rate
is 58 Gbps. The following observations are found from the results in Fig. 6.10. First, the power
reduction of the entire NDN software router is mostly come from the CPU device since it consumes
the most power among the NIC, the CPU and the memory devices. This means that the CPU cycle
reduction derived by the prefetch algorithms and Filter contributes to the reduction in the total power
consumption of an NDN software router. Second, the power consumption of the NIC device and that
of the memory device are relatively small compared with that of the CPU device. This implies that
the extra data fetches caused by the prefetch algorithms, which increase the number of accessed bytes
for the memory device, do not have much impact on the total power consumption of a NDN software
router.

– 91 –

6.5 Case Study

 0

 20

 40

 60

 80

 0 10 20 30 40 50 60

P
o

w
er

 [
W

]

Total data retrieval rate [Gbps]

Naive router
Optimized router

Figure 6.9: The power consumption of the naive and the optimized routers

6.5.4 Lessons Learned

This section summarizes important lessons learned from the evaluation.

An important requirement for realizing power-efficient NDN software routers is that the power
consumption of devices constituting routers need to be proportional to their load. Among the devices,
the CPU device is a key to reducing the power consumption because its power consumption dominates
the total power consumption of an NDN software router. Hence, the prefetch algorithms and Filter
are beneficial to reduce the power consumption because they reduce the number of CPU cycles for
forwarding packets, thereby reducing the power consumption of the CPU device.

The power consumption model proposed in this thesis is useful for evaluating the power
consumption of an NDN network because it derives the power consumption of an NDN software
router by using just a few parameters. Furthermore, it is important to understand how NDN packet
forwarding consumes power and to improve forwarding algorithms precisely. Our power consumption
model can play an important role in this task because it can derive the power consumption of the CPU
device in a function-by-function manner. For instance, the power consumption of the CPU devices
caused by each function can be derived by using the CPU power consumption model (Eq. (6.7)), the
calculation methods for CPU cycles (Eq. (6.11) and Eq. (6.14)), and the cache hit rate and insertion
rate analysis models (Chapter 5).

– 92 –

Chapter 6. Power Efficiency of NDN Software Routers Due to CPU Cycle Reduction

0

20

40

60

80

Naive router Optimized router

CPU

Memory
NIC

ChassisP
ow

er
 [

W
]

Figure 6.10: The power consumption of individual devices of the naive and the optimized routers

6.6 Conclusion

This chapter has developed a power consumption model of an NDN software router by carefully
modeling how hardware devices consume the power and how software components incur the load on
the hardware devices. First, the author has modeled the power consumption of a CPU, a memory,
and a NIC devices as the power consumption model of hardware devices. Next, the author model the
number of CPU cycles spent by CPU devices, the number of bytes accessed to DRAM devices and the
packet forwarding rate of NIC devices as the load of the devices caused by the software. The author
has incorporated the NDN software platform designed through Chapters 3, 4 and 5 into the power
consumption model. The author learned several lessons to realize a power-efficient NDN software
router through the analyses conducted with the developed power consumption model. According to
the analyses, the power consumption of CPU devices dominates the total power consumption of an
NDN software router and hence the CPU cycle reduction due to the prefetch algorithms and Filter,
which are designed in Chapters 4 and 5, contribute to reducing the power consumption as well as
improving the forwarding speed of an NDN software router, which is discussed in Chapters 4 and 5.
Finally, the author believes that the developed power consumption model of an NDN software router
will play an important role in developing name-based forwarding and caching algorithms.

– 93 –

Chapter 7

Conclusion

In this thesis, the author presents what a high-speed NDN forwarding engine on a computer is
supposed to be. As the first step, the author identifies bottlenecks for high speed NDN forwarding
by carefully analyzing the existing NDN forwarding engine in terms of hardware and software
constraints. First of all, the author analyzed what is the most significant constraint among the
constraints on the computation capability of a CPU device, bandwidths of DRAM devices and
bandwidths of I/O devices on a current state-of-the art NDN software router implementation and
revealed that computation on a CPU is the most significant constraint. Based on the analysis result,
the author further analyzed the behavior of NDN packet processing at the level of CPU pipelines and
instructions. The analysis identifies two bottlenecks. The first bottleneck is the stall to wait data to be
fetched from the DRAM device and the other one is the wasteful computation of cache eviction.

To hide the DRAM access latency, the author conducted a detailed study of the existing techniques
for high-speed NDN packet forwarding and compiled them into the design rationale toward the
realization of an ideal NDN software router. The author compared existing data structures and
algorithms both for name-based forwarding and caching from the viewpoint of the ease of hiding
DRAM access latency and chose a hash table-based algorithm and a frequency-based cache admission
algorithm for name-based forwarding and caching, respectively. Then, the author proposed two
prefetch-friendly packet processing techniques to hide the unhidden DRAM access latency. Finally,
the prototype implemented according to the rationale and the prefetch-friendly packet processing
techniques demonstrated that a forwarding speed exceeding 40 million packets per second (MPPS)
could be achieved on a single computer.

To resolve wasteful cache eviction computation, the author proposed to use cache admission
for achieving both high cache hit rate and fast packet forwarding speed in NDN software routers.

– 95 –

Chapter 7. Conclusion

Cache admission avoids wasteful cache computations for unpopular Data packets by filtering their
unnecessary cache insertions, whereas cache eviction always inserts all of incoming Data packets
into the cache. As a reference cache admission algorithm, the author designed Filter so that it is
implemented by a lightweight code of consuming a few tens of CPU cycles. A simulation-based
evaluation proves that Filter achieves high cache hit rate comparable to sophisticated cache eviction
algorithms such as ARC. Empirical evaluations with a prototype implementation of an NDN software
router with Filter validated that the NDN router with Filter improves forwarding speed compared to
that with sophisticated cache eviction like ARC and even that with simple cache eviction like FIFO.

The main contributions of this thesis are summarized as follows: First, as far as the author knows,
this is the first study that summarizes observations found in existing studies to build high-speed
NDN routers on computers and compiles the observations into a design guideline. According to
the guideline, the author reveals that a hash table-based algorithm and a frequency-based cache
admission algorithm are suitable for name-based forwarding and caching, respectively. Second,
the author designs a prefetch algorithm for hiding most of the DRAM access latency for both
name-based forwarding and caching. The prefetch algorithm reorders instruction executions for
a pair of packets so that the DRAM access latency due to data fetches is successfully hidden by
execution time of instructions independent of the data fetches. Third, the author carefully designs
a lightweight frequency-based cache admission algorithm, Filter, on the basis of the results of the
empirical measurement of an NDN software platform. As the results of the careful design, Filter
consumes a few tens of CPU cycles in average with providing as high cache hit rate as ARC, which is
one of the sophisticated cache eviction algorithms. Fourth, the author implements a proof-of-concept
prototype of an NDN softwarerouter with the proposed two techniques and empirically proves that
forwarding speed with the two techniques increases linearly as the number of CPU cores increases,
whereas that without the two techniques does not increase so. A detailed analysis at the level of
CPU pipelines and instructions reveal that most DRAM access latency are successfully hidden by
the prefetch algorithm and that the number of CPU cycles of NDN packet processing is reduced by
the Filter admission algorithm. Fifth, the author sheds light on power efficiency of NDN software
routers as a positive effect of CPU cycle reduction for NDN forwarding speed improvement. In order
to validate the power reduction effect, the author, first of all, models how NDN packet processing
consumes power of hardware devices on an NDN software router and then conducts a case study of
comparing power consumption of naive NDN software routers and those which use the proposed
techniques for high speed forwarding. The case study reveals that reduction of the number of CPU
cycles due to the proposed techniques contributes to power reduction of modern computers which

– 96 –

Chapter 7. Conclusion

are energy proportional to their load.

– 97 –

Bibliography

[1] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke, L. Graham, M. Hathaway,
P. Herman, A. King, S. Kohalmi, T. Ma, J. Mcallen, T. Mendez, W. C. Milliken, R. Pettyjohn,
J. Rokosz, J. Seeger, M. Sollins, S. Storch, B. Tober, G. D. Troxel, D.Waitzman, and S.Winterble,
“A 50-Gb/s IP router,” IEEE/ACM Transactions on Networking, vol. 6, pp. 237–248, June 1998.

[2] A. Asthana, C. Delph, H. V. Jagadish, and P. Krzyzanowski, “Towards a gigabit IP router,”
Journal of High Speed Networks, vol. 1, pp. 281–288, Oct. 1992.

[3] M.Dobrescu, N. Egi, K.Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A.Knies,M.Manesh, and
S. Ratnasamy, “RouteBricks: Exploiting parallelism to scale software routers,” in Proceedings
of ACM SOSP, pp. 15–28, Oct. 2009.

[4] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-accelerated software router,” in
Proceedings of ACM SIGCOMM, pp. 195–206, Aug. 2010.

[5] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small forwarding tables for fast routing
lookups,” in Proceedings of ACM SIGCOMM, pp. 3–14, Sept. 1997.

[6] “CIDR report.” http://www.cidr-report.org/as2.0/.

[7] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc claffy, P. Crowley, C. Papadopoulos, L. Wang,
and B. Zhang, “Named data networking,” ACM SIGCOMM Computer Communication Review,
vol. 44, pp. 66–73, July 2014.

[8] “December 2017 web server survey.” https://news.netcraft.com/archives/2017/12/26/december-
2017-web-server-survey.html.

[9] H. Dai, J. Lu, Y. Wang, and B. Liu, “BFAST: Unified and scalable index for NDN forwarding
architecture,” in Proceedings of IEEE INFOCOM, pp. 2290–2298, Apr. 2015.

– 99 –

BIBLIOGRAPHY

[10] W. So, A. Narayanan, and D. Oran, “Named data networking on a router: Fast and DoS-resistant
forwarding with hash tables,” in Proceedings of ACM/IEEE ANCS, pp. 215–226, Oct. 2013.

[11] T. Song, H. Yuan, P. Crowley, and B. Zhang, “Scalable name-based packet forwarding: From
millions to billions,” in Proceedings of ACM ICN, pp. 19–28, Sept. 2015.

[12] H. Yuan and P. Crowley, “Reliably scalable name prefix lookup,” in Proceedings of ACM/IEEE
ANCS, pp. 111–121, May 2015.

[13] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low overhead replacement cache,” in
Proceedings of USENIX FAST, pp. 115–130, Mar. 2003.

[14] U. Lee, I. Rimac, D. Kilper, and V. Hilt, “Toward energy-efficient content dissemination,” IEEE
Network, vol. 25, pp. 14–19, Mar. 2011.

[15] U. Lee, I. Rimac, and V. Hilt, “Greening the internet with content-centric networking,” in
Proceedings of ACM e-Energy, pp. 179–182, Apr. 2010.

[16] N. Choi, K. Guan, D. C. Kilper, and G. Atkinson, “In-network caching effect on optimal energy
consumption in content-centric networking,” in Proceedings of IEEE ICC, pp. 2889–2894, June
2012.

[17] S. Imai, K. Leibnitz, and M. Murata, “Energy efficient data caching for content dissemination
networks,” Journal of High Speed Networks, vol. 19, pp. 215–235, Oct. 2013.

[18] D. Perino and M. Varvello, “A reality check for content centric networking,” in Proceedings of
ACM SIGCOMM Workshop on Information-Centric Networking, pp. 44–49, Aug. 2011.

[19] M. Fukushima, A. Tagami, and T. Hasegawa, “Efficient lookup scheme for non-aggregatable
name prefixes and its evaluation,” IEICE Transactions on Communications, vol. E96-B,
pp. 2953–2963, Dec. 2013.

[20] A. Afanasyev, J. Shi, B. Zhang, L. Zhang, I. Moiseenko, Y. Yu, W. Shang, Y. Huang, J. P.
Abraham, S. DiBenedetto, C. Fan, C. Papadopoulos, D. Pesavento, G. Grassi, G. Pau, H. Zhang,
T. Song, H. Yuan, H. B. Abraham, P. Crowley, S. O. Amin, V. Lehman, and L. Wang.,
“NFD developer’s guide,” tech. rep., NFD Team, Aug. 2014. http://named-data.net/wp-
content/uploads/2014/07/NFD-developer-guide.pdf.

– 100 –

BIBLIOGRAPHY

[21] W. So, T. Chung, H. Yuan, D. Oran, and M. Stapp, “Toward terabyte-scale caching with SSD in
a named data networking router,” in Proceedings of ACM/IEEE ANCS, pp. 241–242, Oct. 2014.

[22] R. B. Mansilha, L. Saino, M. P. Barcellos, M. Gallo, E. Leonardi, D. Perino, and D. Rossi, “Hi-
erarchical content stores in high-speed ICN routers: Emulation and prototype implementation,”
in Proceedings of ACM ICN, pp. 59–68, Sept. 2015.

[23] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network caching for information-centric
networks,” in Proceedings of ACM SIGCOMM Workshop on Information-Centric Networking,
pp. 55–60, Aug. 2012.

[24] G. Rossini and D. Rossi, “Coupling caching and forwarding: Benefits, analysis, and implemen-
tation,” in Proceedings of ACM ICN, pp. 127–136, Sept. 2014.

[25] W. K. Chai, I. Psaras, and G. Pavlou, “Cache "less for more" in information-centric networks,”
in Proceedings of IFIP TC 6, pp. 27–40, May 2012.

[26] Y. Sun, S. K. Fayazand, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and S. Uhlig, “Trace-driven
analysis of icn caching algorithms on video-on-demand workloads,” in Proceedings of ACM
CoNEXT, pp. 363–376, Dec. 2014.

[27] G. Einziger, R. Friedman, and B. Manes, “TinyLFU: A highly efficient cache admission policy,”
ACM Transactions on Storage, vol. 13, pp. 35:1–35:31, Dec. 2017.

[28] D. Kirchner, R. Ferdous, R. L. Cigno, L. Maccari, M. Gallo, D. Perino, and L. Saino, “Augustus:
a CCN router for programmable networks,” in Proceedings of ACM ICN, pp. 31–39, Sept. 2016.

[29] Intel Corporation, “Data plane development kit (DPDK),” 2017.

[30] The Fast Data Project (FD.io), “Vector packet processing,” 2016.

[31] S. Li, H. Lim, V. W. Lee, JungHoAhn, A. Kalia, M. Kaminsky, D. G. Andersen, S. O, S. Lee,
and P. Dubey, “Achieving one billion key-value requests per second on a single server,” IEEE
Micro, vol. 36, pp. 94–104, May 2016.

[32] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and concurrent memcache with
dumber caching and smarter hashing,” in Proceedings of USENIX NSDI, pp. 371–384, Apr.
2013.

– 101 –

BIBLIOGRAPHY

[33] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer,
P. Shelar, K. Amidon, and M. Casado, “The design and implementation of open vswitch,” in
Proceedings of USENIX NSDI, pp. 117–130, 2015.

[34] P. Graziano, “Speed up your web site with varnish,” Linux Journal, vol. 2013, Mar. 2013.

[35] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture: Domain-
specific hardware/software co-design, enhanced security, open instruction sets, and agile chip
development,” in Turing Award Lecture given at ISCA, 2018. Available at http://iscaconf.org/
isca2018/turing_lecture.html.

[36] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz, “Forwarding metamorphosis: Fast programmable match-action processing in
hardware for sdn,” in Proceedings of ACM SIGCOMM, pp. 99–110, Aug. 2013.

[37] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making stateful layer-4 load balancing
fast and cheap using switching asics,” in Proceedings of ACM SIGCOMM, pp. 15–28, Aug.
2017.

[38] B. Networks, “Barefoot tofino,” 2018.

[39] R. Miguel, S. Signorello, and F. M. V. Ramos, “Named data networking with programmable
switches,” in IEEE ICNP, pp. 400–405, Sept. 2018.

[40] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external memory for switch data
planes,” in Proceedings of ACM SIGCOMM Workshop on Hot Topics in Networks, pp. 1–7,
Nov. 2018.

[41] T. Vogelsang, “Understanding the energy consumption of dynamic random access memories,”
in Proceedings of IEEE/ACM MICRO, pp. 363–374, Dec. 2010.

[42] Hewlett-Packard Company, “DDR3 memory technology.” http://h20000.www2.hp.com/bc/
docs/support/SupportManual/c02126499/c02126499.pdf.

[43] R. Bolla, R. Bruschi, and A. Ranieri, “Performance and power consumption modeling for green
COTS software router,” in Proceedings of COMSNETS, pp. 1–8, Jan. 2009.

[44] R. Bolla, R. Bruschi, A. Carrega, F. Davoli, D. Suino, C. Vassilakis, and A. Zafeiropoulos,
“Cutting the energy bills of internet service providers and telecoms through power management:
An impact analysis,” Computer Networks, vol. 56, pp. 2320–2342, July 2012.

– 102 –

BIBLIOGRAPHY

[45] Intel Corporation, “Intel® Xeon® processor E5 v4 family,” 2016.

[46] Intel Corporation, “Intel® data direct I/O technology (Intel® DDIO): A primer,” 2012.

[47] Intel Corporation, “Intel® 64 and IA-32 architectures optimization reference manual,” 2016.

[48] L. Saino, I. Psaras, and G. Pavlou, “Understanding sharded caching systems,” in Proceedings of
IEEE INFOCOM, pp. 1–9, Apr. 2016.

[49] A. Yasin, “A top-down method for performance analysis and counters architecture,” in
Proceedings of IEEE ISPASS, pp. 35–44, Mar. 2014.

[50] H. Yuan, T. Song, and P. Crowley, “Scalable NDN forwarding: Concepts, issues and principles,”
in Proceedings of IEEE ICCCN, pp. 1–9, Aug. 2012.

[51] The Named Data Networking (NDN) project, “NDN packet format specification,” 2014.

[52] IRCache, “IRCache Project,” 1995.

[53] W. M. Holt, “1.1. moore’s law: A path going forward,” in Proceedings of IEEE ISSCC, pp. 8–13,
Jan. 2016.

[54] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu, and Q. Dong, “NameFilter: Achieving
fast name lookup with low memory cost via applying two-stage bloom filters,” in Proceedings
of IEEE INFOCOM Mini Conference, pp. 95–99, Apr. 2013.

[55] G. Karakostas and D. Serpanos, “Exploitation of different types of locality for web caches,” in
Proceedings of IEEE ISCC, pp. 207–212, July 2002.

[56] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating content management
techniques for web proxy caches,” ACM SIGMETRICS Performance Evaluation Review, vol. 27,
pp. 3–11, Mar. 2000.

[57] S. Jiang and X. Zhang, “LIRS: An efficient low inter-reference recency set replacement policy
to improve buffer cache performance,” in Proceedings of ACM SIGMETRICS, pp. 31–42, June
2002.

[58] E. I. Organick, The Multics System: An Examination of Its Structure. MIT Press, 1972.

[59] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement,” in Proceedings of
USENIX FAST, pp. 187–200, Mar. 2004.

– 103 –

BIBLIOGRAPHY

[60] S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: An effective improvement of the CLOCK
replacement,” in Proceedings of the USENIX, pp. 323–336, Apr. 2005.

[61] T. Johnson and D. Shasha, “2Q: A low overhead high performance buffer management
replacement algorithm,” in Proceedings of VLDB, pp. 439–450, Sept. 1994.

[62] Fujitsu, “White paper: Memory performance of Xeon E5-2600 v4 (Broadwell-EP) based
system.” http://docs.ts.fujitsu.com/dl.aspx?id=8f372445-ee63-4369-8683-da9557673357.

[63] A. Broder and M. Mitzenmacher, “Network applications of bloom filters: A survey,” Internet
Mathematics, vol. 1, no. 4, pp. 485–509, 2003.

[64] V. Martina, M. Garetto, and E. Leonardi, “A unified approach to the performance analysis of
caching systems,” in Proceedings of IEEE INFOCOM, pp. 2040–2048, Apr. 2014.

[65] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization: A view from the
edge,” in Proceedings of ACM IMC, pp. 15–28, Oct. 2007.

[66] S. Imai, K. Leibnitz, and M. Murata, “Statistical approximation of efficient caching mechanisms
for one-timers,” IEEE Transactions on Network and Service Management, vol. 12, pp. 595–604,
Dec. 2015.

[67] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on caching performance in
a content-centric network,” in Proceedings of IEEE NOMEN, pp. 310–315, Mar. 2012.

[68] N. Megiddo and D. S. Modha, “One up on LRU,” ;login: - The Magazine of the USENIX
Association, vol. 4, pp. 7–11, Aug. 2003.

[69] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen, B. Maggs, K. C. Ng,
V. Sekar, and S. Shenker, “Less pain, most of the gain: Incrementally deployable icn,” in
Proceedings of ACM SIGCOMM, pp. 147–158, Aug. 2013.

[70] Intel Corporation, “Intel® 64 and ia-32 architectures optimization reference manual,” Sept. 2014.
available at https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html.

[71] “The Linux kernel archives.” https://www.kernel.org.

– 104 –

BIBLIOGRAPHY

[72] Intel Corporation, “Intel ® Xeon® processor 5600/5500 series platforms for embedded comput-
ing.” available at http://www.intel.com/content/dam/www/public/us/en/documents/platform-
briefs/xeon-5500-5600-platform-brief.pdf.

[73] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory power management
via dynamic voltage/frequency scaling,” in Proceedings of the ACM ICAC, pp. 31–40, June
2011.

[74] J. Mogul, “Improving energy efficiency for networked applications.” Keynote presentation
at ACM/IEEE ANCS, Dec. 2007. available at http://www.cse.wustl.edu/ANCS/2007/slides/
ANCS2007KeynoteMogul.pdf.

[75] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass, N. Briggs, and R. L. Braynard,
“Networking named content,” in Proceedings of ACM CoNEXT, pp. 1–12, Dec. 2009.

[76] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle, “MoonGen: A scriptable
high-speed packet generator,” in Proceedings of ACM IMC, pp. 275–287, Oct. 2015.

[77] Intel Corporation, “Intel ® ethernet converged network adapter XL710.” available
at https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-
xl710-brief.pdf.

– 105 –

