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Summary

Recent breakthroughs in science have significantly benefited from high performance
computing (HPC). The majority of HPC systems today adopt cluster architecture to
achieve their massive scalable computing performance. A cluster is a system of computers
connected through a high-performance network referred to as an interconnect. In a
cluster, processes running on di�erent compute nodes work collectively by exchanging
data and messages with one another over the interconnect. Therefore, the communication
performance of the interconnect is critically important for the total computing performance
of a cluster.

The inter-process communication of an application running on a cluster system shows a
distinctive pattern that originates from the mathematical model, discretization method and
parallelization strategy used in the application. The design of an interconnect could be
highly optimized for a representative application expected on the target system by taking
the communication pattern of the application into account. However, this design approach
is infeasible and unrealistic when designing a real-world cluster, since many users share a
single HPC system and each user runs various applications. Therefore, in contrast to the
application-dependent communication pattern, the interconnect is inherently designed in
an application-independent manner, assuming a uniform communication pattern between
processes. As a result, an imbalance in the packet flow in the interconnect can occur under
a non-uniform communication pattern. This imbalance can lead to tra�c congestion on a
link in the interconnect, which lowers the throughput of communication and degrades the
total application performance as a result.

This dissertation tackles this degradation of application performance by adapting the
control of packet flow in the interconnect to the communication pattern of applications.
Until recently, such dynamic adaptation of the interconnect control has been deemed
infeasible due to the lack of a networking architecture, technology, or technique that allows
flexible and dynamic reconfiguration. However, the recent emergence of programmable
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networking architectures exemplified by Software-Defined Networking (SDN) has opened
up the possibility to realize such adaptation. This dissertation leverages programmable net-
work architectures to overcome the shortcoming of conventional application-independent
interconnects described in the last paragraph. In particular, this dissertation aims at
establishing a programmable interconnect control that dynamically manages the packet
flow in the interconnect based on the communication pattern of applications.

This dissertation tackles the following three challenges to achieve the goal described
above: (1) analyzing the packet flow in the interconnect, (2) dynamic adaptation of the
interconnect control, and (3) coordinating the execution of application and interconnect
control. The first challenge is required to observe and understand the imbalance of packet
flow in the interconnect to perform an e�ective adaptation of the interconnect control.
The second challenge is required to mitigate the imbalance of packet flow and improve
the performance of inter-process communication. The third challenge is required since
many real-world applications exhibit time-varying communication patterns and therefore
the interconnect control needs to be performed in accordance with the execution of an
application.

To address the first challenge, Chapter 2 proposes PFAnalyzer, a toolset for analyzing
the packet flow in the interconnect. When designing and implementing an e�cient
programmable interconnect control, researchers need to conduct a systematic analysis over
many combinations of applications and interconnects. Since performing such an analysis
on a physical cluster is time-consuming, this research utilizes simulation to facilitate the
analysis. The proposed toolset is a pair of tools: an interconnect simulator specialized
for programmable interconnects, and a profiler to collect communication pattern from
applications. PFSim allows researchers and designers working on interconnects to
investigate possible congestion in the interconnect for an arbitrary cluster configuration
and a set of communication patterns extracted by PFProf. In the evaluation, the accuracy
of the simulation results obtained from PFSim is assessed. Furthermore, how PFAnalyzer
can be used to analyze the e�ect of programmable interconnect control is demonstrated.

To address the second challenge, Chapter 3 proposes a framework to accelerate MPI
collectives by dynamically controlling the packet flow in the interconnect. Message
Passing Interface (MPI) is a standardized inter-process communication library widely
used to develop parallel distributed applications for clusters. Out of the communication
primitives provided by MPI, this research focuses on accelerating collective communication
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because it occupies a significant fraction of the execution time of applications. The
network programmability provided by Software-Defined Networking is integrated into
MPI collectives in such a way that MPI collectives are able to e�ectively utilize the
bandwidth of the interconnect. In particular, this research aims to reduce the execution
time of MPI_Allreduce, which is a frequently used MPI collective communication in many
simulation codes. The speedup of MPI_Allreduce when using the proposed collective
acceleration framework is evaluated.

To address the third challenge, Chapter 4 proposes UnisonFlow, a software-defined
coordination mechanism that performs interconnect control in synchronization with
the execution of applications. In real-world applications, the communication pattern
changes with the execution of application. Therefore, a mechanism to coordinate packet
flow control and execution of application is essential. UnisonFlow is a kernel-assisted
mechanism that realizes such coordination on a per-packet basis while maintaining
significantly low overhead. Evaluation verifies that the interconnect control can be
successfully performed in synchronization with the execution of the application and the
overhead imposed by the coordination mechanism is small.

Chapter 5 concludes this dissertation and discusses future works.
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1 Introduction

1.1 Background

1.1.1 High Performance Computing

Recent breakthroughs in science have significantly benefited from high performance
computing (HPC). In modern science, computer simulation is heavily used because it can
substitute experiments that are physically intractable or excessively expensive to conduct
or observe. HPC allows scientists to simulate natural phenomena in an unprecedented
scale and resolution, thereby helping scientists to develop a better understanding of nature
and answer fundamental questions about our surrounding environment.

A wide spectrum of science has taken advantage of the massive computing capability
provided by HPC. Various phenomena ranged from atomic scale to cosmological scale
are simulated on HPC systems. For instance, molecular dynamics simulation reveals the
molecular-level structure and property of matter and their interaction. This knowledge is
used to design better drugs and materials. Earthquake and Tsunami simulation allows
us to predict the impact of seismic activities and prepare for future natural disasters. In
addition to simulation applications, data analysis and machine learning applications are
also starting to leverage HPC systems.

Scientists have been trying to tackle increasingly larger and more complex problems.
This ever-increasing demand from scientists has been the driving force behind the
continuous improvement of computing performance. Figure 1.1 shows the development
of computing performance of HPC systems based on the data published by the Top500 [1]
list. The Top500 list is a biannual list of 500 most powerful HPC systems measured by
the maximal LINPACK benchmark performance achieved. The plot clearly indicates the
steady increase in performance over the past 20 years. Researchers and engineers have
been striving to sustain this growth in performance and reach exascale (Exa FLOPS) in
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Figure 1.1: Performance Development of Top500 HPC Systems [1]

the near future. To achieve this daunting technological challenge, every aspect of the
HPC system including hardware, operating system, middleware and application needs to
be greatly improved, optimized and even redesigned.

1.1.2 Cluster Architecture

Modern HPC systems mostly adopt cluster architecture to achieve their massive computing
performance. In fact, 87% of the recent Top500 systems as of July 2018 are based on the
cluster architecture. A cluster is an aggregation of interconnected computers working
cooperatively. Computers that constitute a cluster perform computation in parallel and
exchange data to be required with one another.

Figure 1.2 shows the architectural overview of a typical cluster. A cluster consists
of multiple computers (i.e., compute nodes), and a high-performance and low-latency
network that integrates (i.e., interconnect) them together as a single system. For the
purpose of sharing input and output data between the compute nodes, a shared file system
is usually deployed as a part of the cluster. Since many users share a single cluster, a job
scheduler is also commonly deployed to e�ciently and e�ectively manage the computing
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resources in a cluster. A job scheduler accepts job requests from users and determines
when to run each job to fulfill the request. The scheduler is also responsible for allocating
compute nodes to the job request and launching a job on the allocated nodes.

The number of compute nodes composing a cluster has a strong trend to increase.
Although the computing performance of a single processor and compute node have been
steadily improving, the growth is not fast enough to meet the high demand for computing
power from the scientists. Therefore, the designers of HPC systems need to scale out the
number of compute nodes to further improve the total computing performance of the
cluster. As a result, a single cluster accommodates tens of thousands of compute nodes
and millions of cores nowadays.

The bandwidth and latency of communication between compute nodes over the
interconnect, or the communication performance, is essential to the scalability of the
cluster. In general, compute nodes need to frequently communicate with one another
during parallel computation to exchange intermediate results and control messages. If
the communication between compute nodes becomes a performance bottleneck, simply
adding compute nodes to the cluster does not increase the total performance of the cluster.
Therefore, great e�orts have been put to the research and development of high-performance
interconnects.
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1.1.3 Interconnect

The main goal of high-performance interconnects is to provide high bandwidth and
low latency in communication between a large number of compute nodes. In fact, the
state-of-the-art interconnects provide more than 100 Gbps bandwidth and less than 1
µs latency between tens of thousands of compute nodes. While achieving such high
communication performance, the monetary cost to build and maintain the interconnect
must be reasonable.

Ethernet [58] and InfiniBand [70] are network technology standards commonly utilized
for interconnects today. Ethernet is a long-standing network technology that has been
ubiquitously used in both local area networks and wide are networks. InfiniBand, on the
other hand, is a network standard specifically designed for HPC. InfiniBand o�oads most
of its protocol stack onto hardware and realizes mechanisms such as kernel bypassing
and Remote Direct Memory Access (RDMA) to reduces the communication latency.
In addition to Ethernet and InfiniBand, some HPC system vendors develop proprietary
interconnects for their systems. For instance, Cray has developed Gemini [45] interconnect
and Aries [37] interconnect for their systems. Fujitsu has developed Tofu [36] interconnect.

Topology is a key factor that determines the performance of an interconnect. A
fully-connected topology is ideal since it has dedicated links between any pair of compute
nodes. However, implementing a fully-connected topology in a large scale cluster is
unrealistic due to extremely high cost and complexity. Therefore, various topologies
have been proposed to balance the trade-o� between cost and performance. Figure 1.3
illustrates some of the popular topologies. For example, fat-tree [74], dragonfly [53],
multi-dimensional torus [36, 45], and hypercube [67] have been widely adopted as
interconnect topologies in HPC systems.

Mostly, the interconnects of computer cluster systems are full-bisection. The bisection
bandwidth for an interconnect is defined as the minimum bandwidth between two
halves of the interconnect. A full-bisection interconnect is an interconnect whose
bisection bandwidth is larger or equal to the aggregated bandwidth between compute
nodes. Interconnects that are not full-bisection are referred as oversubscribed. Full-
bisection interconnect design are preferred since such interconnect does not su�er from
network contention even in the worst case scenario where one half of the compute nodes
communicate with the other half at maximum speed of their network interfaces. This
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(a) Fat-tree
(b) Dragonfly

(c) 2D Torus (d) 4D Hypercube

Figure 1.3: Topology of Interconnects

characteristic is beneficial for applications since it removes the need to be aware of
the current contention state of the interconnect. However, there is a common problem
with full-bisection design: the monetary cost to implement such a design increases
superlinearly as the number of node scales out. Therefore, researches have have worked
on the e�ective utilization of oversubscribed interconnects [9, 10] under the assumption
that oversubscribed interconnects become inevitable in the future.

1.1.4 Message Passing Interface

Message Passing Interface (MPI) [19] is a de facto standard specification for inter-process
communication libraries used to develop parallel applications running on distributed
memory system such as clusters. MPI defines a suite of communication primitives that
help application developers to build parallel distributed applications that require complex
communications among compute nodes.

A remarkable feature of MPI is that it abstracts the underlying network of clusters. As
shown in Fig. 1.4, each interconnect technology requires the application developers to
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Figure 1.4: Abstraction Provided by MPI

use a di�erent set of APIs. MPI hides this di�erence and allows application developers
to build applications without forcing them to study the detailed architecture or structure
of the underlying network. For instance, every process is identified by a rank number,
a consecutive non-negative integer. The mapping between rank numbers and network
addresses is automatically handled by the MPI library. Every process belongs to one
or more groups of processes, which are called communicators. MPI communication is
restricted between processes that belong to the same communicator. These abstractions
make MPI applications portable and easy to be ported to di�erent clusters.

The communication primitives defined in MPI can be roughly categorized into point-to-
point communication, collective communication and one-sided communication. Table 1.1
shows several examples from each category. Note that this list covers only a small fraction
of all the primitives defined in MPI.

Point-to-point communication is a communication between a sender process and
another receiver process. For example, the sender calls MPI_Send whereas the receiver
calls MPI_Recv. It is similar to BSD sockets, but MPI point-to-point communication
di�ers from sockets in three aspects. First, establishing a connection between the sender
and receiver (i.e., connect, listen, accept, etc.) is not necessary since the MPI library
takes care of it internally. Second, the order of calls to MPI_Send on the sender side and
MPI_Recv on the receiver side does not matter due to the internal bu�ering mechanism in
the MPI library. In contrast, calling the recv function after the send function when using
sockets may result in packet drops. This characteristic ensures deterministic behavior
of applications. Finally, a tag can be associated to each message to indicate the type or
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Table 1.1: Examples of MPI Primitives

Type Name Description

Point-to-point Send/Recv Point-to-point send and receive
Isend/Irecv Non-blocking point-to-point send and receive

Collective Bcast Broadcast
Reduce Reduction
Allreduce Broadcast result of reduction
Ibcast Non-blocking Bcast
Ireduce Non-blocking Reduce
Iallreduce Non-blocking Allreduce

One-sided Put One-sided put
Get One-sided get

context of the message. In sockets, messages are merely binary sequences without having
any context.

Collective communication involves a group of processes and provides frequently
used communication patterns by scientists when implementing parallel algorithms
such as broadcast, reduction, all-to-all exchange, etc. In principle, any collective
communication can be implemented using a combination of point-to-point communication.
However, the use of collective communication over the use combinational use of point-to-
point communication is generally preferable because the MPI library implements each
communication primitive based on optimized algorithms that are selected depending
on the message size and number of processes. For instance, a naive implementation of
broadcast where the root process sends the same data to each non-root process requires
O(n) time to complete (n represents the total number of processes). A more e�cient
implementation of broadcast is a tree-like data delivery where non-root processes help
the root process by sending the received data to other processes that have not received the
data yet. The time complexity of tree-like broadcast is O(log n).

Both point-to-point communication primitives and collective communication prim-
itives have blocking and non-blocking versions. Blocking primitives waits until the
communication completes. In contrast, non-blocking primitives returns immediately after
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initiating the corresponding communication operation. A separate synchronization is
prepared to complete the communication. The advantage of non-blocking communication
is that it allows overlapped computation and communication. In other words, computation
can be performed while the communication is in progress. Overlapping computation and
communication is a way to hide the cost of communication and usually results in better
application performance. As a trade-o�, non-blocking communication slightly increases
the programming e�ort compared to blocking communication.

One-sided communication is a form of Remote Memory Access (RMA). In point-
to-point communication, the sender and receiver need to mutually agree to start a
communication. In contrast, one-sided communication allows a process to directly read
or write the memory of a peer process without the involvement of its counterpart. This
communication model reduces the overhead incurred by memory copy and synchronization
points. One-sided communication is especially beneficial on interconnects that support
Remote Direct Memory Access (RDMA).

There are multiple implementations of the MPI standard. Open MPI [62], MPICH [69]
and MVAPICH [59] are representative examples of actively developed open source
implementations of MPI. Furthermore, HPC system vendors such as Cray, Intel and
Fujitsu o�er their own proprietary MPI implementations based upon the open source
implementations, taking the feature and characteristics of their own HPC systems into
consideration. Vendor MPI implementations are highly optimized for the vendor’s HPC
system and able to take advantage of the special features of their system. In addition to
the header files and libraries that implement the APIs defined in the specifications, MPI
implementations usually o�er a launcher that allows users to quickly start MPI processes
on multiple compute nodes.

Until today, countless scientific applications have been developed with MPI. Accompa-
nied by the recent scale-out of clusters, the execution time of MPI primitives has become
a critical factor that determines the total performance of these applications using MPI. In
other words, the total performance of MPI applications can be improved by optimizing
the performance of MPI communications. For this reason, researchers have been striving
to improve the communication performance of MPI from various aspects.
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1.1.5 Problem and Motivation

The inter-process communication of MPI applications shows a distinctive pattern. This
pattern varies depending on the application and originates from the mathematical model,
discretization method, and parallelization strategy. Figure 1.5 (a) shows the communication
pattern of a three-dimensional finite-di�erence solver that performs the nearest neighbor
communication as an example. In this figure, the total size of messages sent from a process
to another process is visualized using a heat map. The horizontal axis and vertical axis
represent the sender and receiver rank, respectively. The visual representation evidently
exhibits a regular and local pattern along the diagonal, which originates from the nearest
neighbor communication required by the finite-di�erence method. As another example,
Fig. 1.5 (b) shows the communication pattern of a three-dimensional finite-element solver.
Clearly, this communication pattern di�ers from the one of a finite-di�erence solver
shown in Fig. 1.5 (a). The existence of dots apart from the diagonal suggests that distant
processes communicate with one another in this application.

The design of an interconnect could be highly optimized for an application by taking
the communication pattern of applications into account. For instance, the interconnect
with a three-dimensional torus topology would be ideal for an application that performs
nearest neighbor communication in three-dimensional space. However, this approach is
infeasible when designing a real-world cluster. The reason can be explained from the fact
that HPC systems are shared by many users where each user runs various applications on
the cluster. Therefore, in contrast to the application-dependent communication pattern,
the interconnect is inherently application-independent.

As a result, a concentration of packet flow in the interconnect, or the imbalance of
packet flow, can take place under a certain combination of communication pattern and
interconnect. The imbalance can lead to the concentration of tra�c on a link in the
interconnect and the slowdown of MPI communication that uses the link. The degraded
MPI communication can ultimately result in serious degradation of total application
performance.

A number of previous studies have tried to address the mismatch between application-
dependent communication patterns and application-independent interconnects. Re-
searchers have attempted to adapt the communication pattern of applications to the
interconnect. For instance, interconnect-aware MPI collectives [14, 17, 26, 31] have
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(a) Three-dimensional Finite-di�erence Solver

(b) Three-dimensional Finite-element Solver

Figure 1.5: Communication Pattern of Applications
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been developed to improve the performance of MPI collectives by taking the interconnect
of a cluster into account. MPI implementation often leverages tree-based algorithms
to aggregate and distribute messages from and to processes. Interconnect-aware MPI
collectives use the information on the interconnect, such as topology and link bandwidth,
to build a delivery tree that matches the underlying interconnect of the cluster. Another
approach is to optimize the placement of MPI processes on the compute nodes [8, 10, 42].
In this approach, the communication pattern of an application is considered as a weighted
graph where nodes represent processes and edges represent the volume of data exchanges
between two processes. Various heuristic algorithms have been proposed to embed the
communication pattern graph onto the interconnect topology.

To date, however, there has been few studies on adapting the interconnect to the
communication pattern of applications. This is mostly because it has been assumed that
flexibly and dynamically reconfiguring the interconnect at run-time is infeasible. However,
this assumption might not hold anymore with the recent emergence of programmable
networking architecture that allows the on-the-fly reconfiguration of the interconnect.

1.1.6 Software-Defined Networking

Software-Defined Networking (SDN) is a novel networking architecture that separates
the control plane and data plane into di�erent devices. In conventional networking
architectures, the decision on how to handle packets (control plane) and the packet transfer
(data plane) are implemented as unified and inseparable features. The separation of the
control plane and data plane allows SDN to deliver the following three benefits:

1. Programmable: The control plane can be handled by a software controller. Network
operators develop software controllers tailored for their needs.

2. Dynamic: SDN allows the controller to quickly reconfigure the network. For
instance, it is possible to dynamically optimize packet flows in the network based
on the real-time tra�c pattern.

3. Centralized: A centralized controller configures the entire SDN-enabled network,
thus reducing e�orts to administer and manage the network. In conventional
networking architectures, the operators need to configure each network device
separately because the control plane is distributed on individual devices.
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Figure 1.6: Software-Defined Networking Architecture
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Matching Condition
Action

Dst MAC Src IP Dst IP

192.0.2.12 192.0.2.34 Output to port 1
192.0.2.34 192.0.2.56 Output to port 2

�:�:�:�:�:� Output to port 1 and 2
72:42:c1:e4:75:8c Drop

Figure 1.7: An Example of a Flow Table

OpenFlow [55] is a widely accepted open standard of SDN. In an OpenFlow-enabled
network, the data plane is handled by OpenFlow switches. Each OpenFlow switch holds
a logical construct called a flow table, which is a collection of flow entries. A flow
entry defines what kind of packet control should be performed on what kind of packets
(Fig. 1.7). Every time a packet arrives at an OpenFlow switch, the switch looks up a
matching flow entry in its flow table using the header fields of the packet. Once the
switch finds a matching flow entry, the corresponding action of the matched flow entry is
applied to the incoming packet. An arbitrary combination of pre-defined header fields
can be used for the matching condition. Table 1.2 shows the twelve header fields defined
in OpenFlow 1.0. OpenFlow switches usually implement specialized hardware such as
Content Addressable Memory (CAM) or Ternary Content Addressable Memory (TCAM)
to perform the matching e�ciently.

The OpenFlow controller is a component responsible for the control plane. It manages
the flow table of each switch by adding, modifying and removing flow entries. The
controller and switches communicate with each other by asynchronously exchanging
messages defined in the OpenFlow protocol specification. Table 1.3 shows a list of
message types defined in OpenFlow 1.0. In this table, messages are classified into three
categories by its initiator. Controller-initiated messages are used by the controller to
update or inspect the state of a switch. On the other hand, switch-initiated messages are
used by switches to notify the controller of network events and update in the switch state.
Symmetric messages are initiated from both sides and used primarily for establishing and
maintaining the connection between the controller and switch. Messages may or may
not require a response from its receiver depending upon the message type. One of the
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Table 1.2: Header Fields Defined in OpenFlow 1.0

Layer Field Name Width (bits)

L1 Ingress Port

L2

Ethernet Source 48
Ethernet Destination 48
Ethernet Type 16
VLAN ID 12
VLAN Priority 3

L3

IP Source 32
IP Destination 32
IP Protocol 8
IP ToS 6

L4
TCP/UDP Source Port 16
TCP/UDP Destination Port 16

most frequently used message type is packet-in, which is sent out from a switch to the
controller when a matching flow entry is missing for an incoming packet. In response, the
controller can send a modify flow entry message to install a new flow entry on the switch.

OpenFlow controllers are usually implemented as a software for flexibility and reduced
development cost. OpenFlow controller frameworks have been developed to support the
developments of OpenFlow controller software by providing reusable building blocks.
Common building blocks include parser and deparser of OpenFlow messages and common
network protocol packets, state machine for the OpenFlow protocol and high-performance
concurrent server for handling the connection with the switches. Trema [5], Ryu [29],
ONOS [22] and OpenDaylight [27] are among the most popular OpenFlow controller
frameworks. Developers of OpenFlow controllers can focus to the application logic by
taking advantage of these controller frameworks.
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Table 1.3: Messages Types Defined in OpenFlow 1.0

Initiator Message Type Response Purpose

Controller

Packet-Out Inject a packet to data plane
Flow-Mod Add/Modify/Delete a flow entry
Port-Mod Modify state of a port
Stats X Get statistics of individual flow
Barrier X Synchronize controller and switch
Queue-Get-Config X Query state of queues
Features X Get capabilities of switch
Get-Config X Get fragmentation setting of switch
Set-Config Set fragmentation setting of switch

Switch
Packet-In Notify an unmatched packet
Flow-Removed Notify when a flow entry been removed
Port-Status Notify status update of a port

Symmetric

Hello Negotiate OpenFlow version
Error Notify failure
Echo X Check liveness of connection
Vendor Vendor-specific extensions
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1.2 Research Objective

As discussed in Section 1.1.5, the mismatch between application-dependent communi-
cation patterns and application-independent interconnects have led to the imbalance of
packet flow in the interconnect. This dissertation aims to address this imbalance problem
by establishing a programmable interconnect control that dynamically controls the packet
flow in the interconnect based on the communication pattern of applications.

Figure 1.8 illustrates the high-level concept of the envisioned programmable intercon-
nect control in this dissertation. The core idea of this programmable interconnect control is
an iteration of three steps: observe, decide and adapt. The envisioned interconnect control
functions as follows. First, the inter-process communication patterns of an application are
observed and recorded. Second, the decision on how to control the packet flow in the
interconnect is made based on the collected communication patterns of the application.
The goal of this packet flow control is to mitigate load imbalance in the interconnect
and achieve higher communication performance between compute nodes. Third, the
interconnect is adapted to perform the planned packet flow control using programmable
networking architecture. These three steps are performed in synchronization with the
execution of application.

To materialize this concept, the following three challenges must be achieved:

1. Analyzing the packet flow in the interconnect: To e�ectively control the packet
flow in the interconnect, interconnect designers first need to carefully analyze
and understand the packet flow generated in the interconnect when running an
application on a cluster.

2. Accelerating MPI communication by dynamically controlling the packet flow
in the interconnect: Given a communication pattern of an application and an
interconnect, interconnect designers need to determine how to control the packet
flow in the interconnect to mitigate load imbalance in the interconnect and improve
the performance of MPI communication.

3. Coordinating the execution of application and interconnect control: The com-
munication pattern of the application changes rapidly with the execution of the
application. Therefore, the interconnect control must be performed in accordance
with the execution of application.
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Figure 1.8: Concept of the Envisioned Programmable Interconnect Control

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 proposes PFAnalyzer, a
toolset for analyzing the packet flow in an interconnect, to address the first challenge
listed in Section 1.2. The packet flow generated in the interconnect highly depends on
parameters such as the communication pattern of application, interconnect design and
cluster configuration. When designing and implementing an e�cient programmable
interconnect control, researchers need to conduct a systematic analysis over many
combinations of these parameters. Because performing such analysis on a physical
cluster is time-consuming, this dissertation utilizes simulation to facilitate the analysis.
PFAnalyzer is a pair of two tools: PFSim, an interconnect simulator capable of simulating
programmable interconnects, and PFProf, a profiler to accurately collect communication
patterns from MPI applications. PFSim allows interconnect researchers and designers to
rapidly investigate possible congestion in a programmable interconnect for a wide variety of
cluster configurations and communication patterns collected by PFProf. This dissertation
evaluates the accuracy of the simulation results obtained from PFSim and demonstrates
how PFAnalyzer can be used to analyze the e�ect of programmable interconnect control.
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Chapter 3 addresses the second challenge. Out of the communication primitives
provided by MPI, this dissertation focuses on accelerating collective communication
because it occupies a significant fraction of the execution time of applications. This
dissertation proposes a framework to accelerate MPI collectives by dynamically controlling
the packet flow in the interconnect. The network programmability provided by Software-
Defined Networking is integrated into MPI collectives so that collectives are able to
e�ectively utilize the bandwidth of the interconnect. In particular, this dissertation aims
to reduce the execution time of MPI_Allreduce, which is a frequently used MPI collective
communication in many simulation codes. The speedup of MPI_Allreduce when using
the proposed collective acceleration framework is evaluated.

Chapter 4 addresses the third challenge. This chapter proposes UnisonFlow, a software-
defined coordination mechanism that performs interconnect control in synchronization
with the execution of applications. In a real-world application, the communication pattern
changes with the execution of the application. Therefore, a mechanism to coordinate
packet flow control and execution of the application is essential. UnisonFlow is a kernel-
assisted mechanism that realizes such coordination on a per-packet basis while maintaining
significantly a low overhead. The evaluation verifies that the interconnect control can be
successfully performed in synchronization with the execution of the application and the
overhead incurred by the coordination mechanism is small.

Chapter 5 concludes this dissertation and discusses future works.
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2 Toolset for Analyzing Packet Flow in
Interconnect

2.1 Introduction

Inter-node communication performance of high-performance computing (HPC) clus-
ters heavily a�ects the total performance of communication-intensive applications.
Communication-intensive applications require low-latency and high-bandwidth commu-
nication between compute nodes to fully exploit the computational power and parallelism
of the compute nodes. High performance networks that provide such low-latency and
high-bandwidth communication between compute nodes of a cluster are often referred
to as interconnects. Message Passing Interface (MPI) [19, 24] is a commonly used
inter-process communication library to describe communication on HPC clusters.

In this dissertation, the interconnects are roughly classified into static interconnects
and dynamic interconnects. In the former category, it is assumed that packet flow
is statically controlled solely based on its source and/or destination. A well-known
exemplifier is InfiniBand [70], where forwarding tables held by switches are populated
with pre-computed forwarding rules in advance of the execution of applications. In
contrast, in the latter category, it is assumed that packet flow is dynamically controlled to
mitigate load imbalance and improve utilization of the interconnect.

Nowadays, the majority of HPC clusters employ the former static interconnects because
of their technological maturity despite the potential cost advantage dynamic interconnects
could provide. The static interconnects are controlled without taking the communication
patterns of individual applications into account. However, they are usually designed to be
able to accommodate the worst-case tra�c demand to achieve good performance for a
variety of applications, each of which has a di�erent communication pattern. Interconnect
designers have respected such criteria as full bisection bandwidth and non-blocking
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networks.

The continuously growing demand for computing power from academia and industry
has inevitably forced HPC clusters to scale out more and more. As a result of the
growing number of compute nodes, interconnects have been increasingly large-scale and
complex. This technical trend is making static and over-provisioned interconnects more
cost-ine�ective and di�cult to build.

Based on this background and these trends, this study explores the feasibility and
applicability of programming dynamic interconnect within HPC [13]. In particular, SDN-
enhanced MPI [23, 30], a framework that incorporates the dynamic network controllability
of Software-Defined Networking (SDN) [40] into MPI, has been researched based on
the idea that dynamically optimizing the packet flow in the interconnect according to the
communication patterns of applications can increase the utilization of the interconnect and
then improve application performance. The goal of SDN-enhanced MPI is to accelerate
individual MPI collectives by dynamically optimizing the packet flow in the interconnect.
Several MPI collectives have been successfully accelerated in the previous works up to
this time. One of the core challenges in the research on SDN-enhanced MPI lies in the
design of an algorithm to e�ectively control the packet flow in the interconnect for each
MPI collective called by the application.

More generally, an algorithm that takes the communication patterns of applications
as its input and then determines how to manage the packet flow is essential towards
realizing a dynamic and application-aware interconnect. In order to develop a generic
algorithm that achieves good performance on a variety of applications and interconnects,
the algorithm must be investigated and evaluated by targeting di�erent applications and
interconnects. However, utilizing actual clusters to analyze the performance characteristics
of the interconnect is restricted in the following three points. First, the execution time
of real-world HPC applications typically ranges from hours up to days, sometimes even
months. Second, large-scale deployments of dynamic interconnects that allow execution of
highly parallel applications have not yet been seen because the research and development
of dynamic interconnects are still at their early stage. Third, network hardware such
as switches may not support measuring tra�c in the interconnect with enough high
frequency and precision to obtain meaningful insights.

From the three restrictions mentioned above, an interconnect simulator that allows
researchers to conduct a systematic investigation of clusters with diverse topologies
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and parameters is essentially demanded to accelerate the research and development of
application-aware dynamic interconnects that control packet flow in response to the
communication patterns of applications. A wide spectrum of interconnect simulators
have been developed with di�erent focus and purpose until today. However, existing
simulators mostly focused on static interconnects and few research has been done to
simulate dynamic and application-aware interconnects.

This chapter describes the design and implementation of PFAnalyzer, a toolset for ana-
lyzing application-aware dynamic interconnects. PFAnalyzer consists of two components:
PFSim and PFProf. PFSim is an interconnect simulator specialized for application-aware
dynamic interconnects. PFSim takes a set of communication patterns derived from
applications and a cluster configuration as its input and then simulates the tra�c on each
link of the interconnect. PFProf is a custom profiler to extract communication patterns
from applications which are supplied to PFSim.

The contributions of this chapter are summarized as follows:

• A lightweight interconnect simulator for simulating dynamic and application-aware
interconnects is proposed.

• A custom profiler for extracting communication patterns from applications is
presented.

• Simulation results for NAS CG benchmark and MILC on a fat-tree interconnect are
presented to demonstrate the practicality of of the proposed toolset.

The rest of this chapter is organized as follows. Section 2.2 examines the requirements
of an interconnect simulator for dynamic and application-aware interconnects. Section 2.3
describes the design and implementation of PFAnalyzer. Section 2.4 evaluates the
accuracy of the simulated tra�c. Furthermore, the NAS CG benchmark and MILC are
taken as example applications to demonstrate how PFAnalyzer can be used by researchers
to analyze the joint e�ect of node allocation, process placement and routing on the
distribution of tra�c in the interconnect. Section 2.5 reviews the related work. Section 2.6
concludes this chapter and outlines future work.
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2.2 Research Objective

This chapter aims to realize a toolset for analyzing the packet flow in the interconnect
to facilitate the research and development of application-aware dynamic interconnects.
The packet flow generated in an interconnect highly depends on parameters such as the
communication pattern of application, interconnect design and cluster configuration.
When designing and implementing an e�cient application-aware dynamic interconnect,
researchers need to conduct a systematic analysis over many combinations of these
parameters. However, conducting such analysis on a physical cluster can be extremely
time- and resource-consuming. Therefore, this research takes the approach of utilizing
simulation to facilitate the analysis.

This research attempts to provide a toolset that performs a lightweight simulation of
the interconnect and predicts the packet flow generated in the interconnect. The toolset
should allow researchers to predict the packet flow in the interconnect by supplying
the communication pattern of real-world application alongside with the interconnect
design and cluster configuration. The predicted packet flow can then be analyzed by
researchers to gain an insight on the interconnect while significantly saving the time and
cost compared to experiments on a physical cluster. Based on the discussion above, the
toolset should be able to satisfy the following requirements.

• Extraction of communication patterns from applications: Communication patterns
of real-world HPC applications should be fed into the simulator to reproduce the
characteristics of communication generated by real-world applications. To simulate
the packet flow in the interconnect when an application is being executed, the
simulator needs to predict the volume of point-to-point communication exchanged
between compute nodes. In the actual computing scene, the tra�c among compute
nodes is generated by the processes executed on the compute nodes. Thus, some
means to analyze the tra�c volume of point-to-point communication exchanged
between the processes from applications is essential. In this chapter, applications
that leverage MPI for inter-process communication are targeted.

• Reproduction of process placement characteristic: As described in Section 1.1.2,
multiple jobs are running concurrently on a real-world cluster. Under such a cluster
environment, the process placement characteristic of the job scheduler such as job
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scheduling, node selection and process placement algorithms heavily a�ect the
distribution of packet flow generated in the interconnect. Since the job scheduler
and its configuration largely varies across deployments, the process placement
characteristic of the job scheduler needs to be reproduced.

• E�cient prediction of packet flow in the interconnect: The simulator should be
designed to be lightweight and fast to carry out a large number of simulations with
di�erent parameters in a reasonable amount of time. If necessary, appropriate
approximation should be introduced to improve simulation performance.

2.3 Proposal

This research proposes PFAnalyzer, a toolset for analyzing the performance characteristics
of application-aware dynamic interconnects. PFAnalyzer is composed of PFProf, a
profiler to extract communication patterns from applications, and PFSim, a simulator
capable of simulating application-aware dynamic interconnects.

2.3.1 Representation of a Communication Pattern

In this dissertation, the communication pattern of an application is represented using a
tra�c matrix of the application. The reason why this research has adopt tra�c matrix as
representation of communication pattern is explained below.

The tra�c matrix of an application is defined as a matrix of which element is equal to
the tra�c volume exchanged between two processes in the application. Here, the volume
of tra�c between processes is approximated as being constant during the execution of a
job. In other words, the tra�c volume between a process pair is assumed to be the total
bytes transferred divided by the runtime of the application.

This approximation is introduced to reduce the size of the communication pattern as
well as to simplify and to speed up the simulation. The idea behind this approximation is
based on the fact that many HPC applications (e.g. partial di�erential equation solvers)
exhibit an iterative nature. These applications spend most of their execution time inside a
repetitive loop and thus their communication patterns do not significantly change over
time. Therefore, omitting the temporal change of the communication pattern and assuming
the tra�c volume between processes as being constant is a good approximation. In the
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future, trace segmentation [12] techniques can be applied on the communication trace.
This technique segments a trace into multiple communication phases, which could then
be simulated individually to further improve the accuracy of simulation for applications
with significantly time-varying communication patterns.

2.3.2 PFProf (MPI Profiler)

PFProf is a profiler that extracts the inter-process communication patterns from MPI
applications. The collected communication patterns are later fed into PFSim to simulate
the packet flow generated in the interconnect.

To capture the inter-process communication of an MPI application, either profiling or
static analysis is commonly utilized. Profiling gives accurate results but requires the users
to run their application once. In contrast, static analysis of the source code does not require
the users to run their application. However, the communication patterns obtained through
the use of static analysis are usually less accurate compared to the patterns obtained by
profiling. This research takes the profiling approach because an accurate communication
pattern is essential to obtain a simulation result with high fidelity.

Initially, existing MPI profilers and tracers such as Score-P [39], Vampir [54] and
TAU [61] were considered for collecting the tra�c matrices from MPI applications.
However, these tools can capture only a subset of the communication pattern when
profiling an application that uses MPI collectives. The reason can be explained from
the following technological aspect. Existing MPI profilers replace the standard MPI
functions provided by MPI libraries with instrumented functions by utilizing the MPI
Profiling Interface (PMPI). Although this approach works regardless of a specific MPI
implementation, it fails to capture the function calls made within the MPI library. Mean-
while, collective communication functions are internally implemented as a combination of
point-to-point communication in MPI implementations. These underlying point-to-point
communication functions are hidden from PMPI-based profilers and excluded from the
communication patterns emitted by profilers. Therefore, an instrumentation mechanism
other than PMPI is required to capture the hidden point-to-point communication.

Furthermore, the combination of point-to-point communication that composes a
collective communication is unknown until the collective communication function is
called during the execution of the application. This is because MPI libraries usually

24



�.� Proposal

implement multiple algorithms for each MPI collective that are selected depending on
the message size and number of processes. For example, Open MPI [64] implements
three algorithms to realize MPI_Allgather: the recursive doubling algorithm, the Bruck
algorithm, and the ring algorithm [66]. Figure 2.1 illustrates the underlying point-to-point
communication of MPI_Allgather for each algorithm. It is evident that the point-to-point
communication of MPI_Allgather is significantly di�erent depending on the algorithm
being used. For the reason, the mapping between a collective communication and its
corresponding underlying point-to-point communication cannot be statically generated
before executing the application.

To accurately capture the underlying point-to-point communication of collective
communication, this research has taken the strategy of combining the MPI Performance
Examination and Revealing Unexposed State Extension (PERUSE) [60] with PMPI.
PERUSE was designed to provide the internal information of an MPI implementation
that was not exposed through PMPI to applications and performance analysis tools.
PERUSE delivers the internal information of an MPI implementation to applications and
performance analysis tools through an event-driven API.

Figure 2.2 illustrates how PFProf, the MPI library and an MPI application interact with
one another. PFProf intercepts the function calls from the application to several MPI
functions using PMPI. MPI_Init and MPI_Finalize are intercepted to perform initialization
and finalization when the application starts or exits (step 1 in Fig. 2.2). In addition, PFProf
intercepts MPI functions that create or destroy communicators to maintain a mapping
between global ranks (rank number within MPI_COMM_WORLD) and local ranks (rank number
within a communicator created by the user). This mapping is necessary because PERUSE
events are reported with local ranks, while profiling results should be described with
global ranks for the ease of analysis. During the initialization, PFProf subscribes to
two PERUSE events: PERUSE_COMM_REQ_XFER_BEGIN and PERUSE_COMM_REQ_XFER_END
(step 2). These events are emitted each time a transfer of a message begins and ends,
respectively.

After the application starts, PFProf receives PERUSE events from the MPI library
every time the application calls an MPI function that causes inter-process communication
(step 3). PERUSE extracts the sender, receiver and transferred bytes from each PERUSE
event and updates the tra�c matrix online. Once the application calls MPI_Finalize, the
communication pattern is written out to disk as a JSON file (step 4).
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(a) Recursive Doubling Algorithm

(b) Bruck Algorithm

(c) Ring Algorithm

Figure 2.1: Underlying Point-to-Point Communication of MPI_Allgather
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communication pattern

Figure 2.2: Block Diagram of PFProf

Finally, PFProf is designed to be provided in the form of a shared library so that users
do not need to modify the source code of their applications. Users can either set the
LD_PRELOAD environment variable to load the shared library at run-time or dynamically
link the shared library with their application at build-time.

2.3.3 PFSim (Interconnect Simulator)

PFSim uses a set of communication patterns of applications and a cluster configuration as
its input and then simulates the packet flow generated by the applications. The packet
flow is aggregated per link to compute the tra�c load on each link. The simulated tra�c
load of links can be summarized into statistics for quantitative analysis or visualized.
Using these outputs from PFSim, users can locate hot-spots and assess load imbalance in
the interconnect. These insights on the interconnect can be useful for designing better
algorithms for controlling the packet flows in application-aware dynamic interconnects.

Methodologies for simulating interconnects are roughly classified into packet-level
simulation [46] and flow-level simulation [49]. In the packet-level simulation, the behavior
of how each packet travels through the interconnect is precisely reproduced. Therefore,
the communication time of applications can be predicted accurately in exchange for
long execution time and large memory foot print. In contrast, the flow-level simulation
estimates the steady state behavior of the interconnect and does not track individual
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packets. Thus, the packet flow in the interconnect can be speedily estimated compared
to the packet-level simulation. As a trade-o�, predicting the communication time of
applications using flow-level simulation is challenging. As described in Section 2.2,
this research aims at realizing a toolset for e�ciently predicting the packet flow in the
interconnect under diverse configurations. Therefore, PFSim is based on the flow-level
simulation for execution e�ciency.

Figure 2.3 shows the internal structure of PFSim. This simulator is based on a discrete-
event simulation model. Under this model, the simulation is driven by events, each of
which indicates a change in the internal state of the simulator. Each event holds (1) type
of the event, (2) time when the event will occur, and (3) additional information indicating
what kind of state change the event will cause. An event queue is a priority queue that
stores the events prioritized by the time each event occurs. An event handler is a function
that is associated to a specific event type and invoked when an event of the associated type
occurs. The dispatcher manages the event queue. It pops events from the event queue one
by one and calls the associated event handler for each event.

In PFSim, three event types exist: job-arrived, job-started and job-finished. The event
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handler for the job-arrived event first checks if the job queue is empty and if there are
enough compute nodes unallocated to run the job. If the job is not runnable at the
time, the job is enqueued to the job queue and the event handler finishes. If the job is
runnable, the event handler initiates the job startup routine shown in Algorithm 1. First,
a set of available compute nodes are allocated to the job (line 1 in Algorithm 1). Next,
the placement of processes on the allocated compute nodes is determined (line 2–3).
Subsequently, each process is associated to the compute node that accommodates it (line
4–5). Finally, a job-started event is inserted into the event queue (line 6).

Algorithm 1: Job start routine

1 nodes allocateNodes(job);
2 procs Set of processes composing job;
3 mapping mapProcs(procs, nodes);
4 foreach (proc, node) 2 mapping do
5 Associate proc with node;

6 Insert job-started event to event queue;

Algorithm 2 shows the overview of the event handler for the job-started event. This
event handler first obtains the tra�c matrix of the application that has started (line 1
in Algorithm 2). Next, based on the tra�c matrix, the tra�c load on each link in the
interconnect is updated as follows: first, compute nodes that accommodate the source
and destination processes are obtained (line 3–4). Subsequently, the path from the source
compute node to destination compute node is calculated (line 5–8). Lastly, the tra�c load
on each link along the path is increased based on the amount of tra�c transferred between
the source and destination processes (line 9–10). After the tra�c load is updated, the
event handler inserts a job-finished event into the job queue (line 11).

The event handler for the job-finished event releases the compute nodes allocated to the
job. If there are one or more jobs in the job queue, one of them is selected. If there are
enough number of available compute nodes, the job startup routine shown in Algorithm 1
is invoked.

PFSim aims at predicting the packet flow in the interconnect generated by applications
under diverse cluster configurations. The configuration of the simulation must be able to
be edited by users. For the reason, the configuration is described in a human-readable
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Algorithm 2: Event Handler for Job-started Event

1 tm Tra�c matrix of job;
2 foreach (srcProc, dstProc, tra�c) 2 tm do
3 src Compute node that accommodates srcProc;
4 dst Compute node that accommodates dstProc;
5 if path between (src, dst) is already computed then
6 path Cached path between (src, dst);

7 else
8 path route(src, dst, job);

9 foreach link 2 path do
10 Increase tra�c load of link for tra�c;

11 Insert job-finished event to event queue;

simulation scenario file. The simulation scenario file is designed to be described in
a structured serialization format called YAML. YAML has been adopted for its high
readability and editability compared to other alternatives such as JSON and XML.

Listing 2.1 shows an example of a simulation scenario file. In this simulation scenario
file, the topology of the interconnect (line 1 in Listing 2.1), output directory for the
simulation results (line 2), and a set of jobs to simulate (line 16–21) are specified.
Moreover, the algorithms that control the execution and communication of jobs, which
are shown in Table 2.1, are also specified (line 3–15). Each configuration value can be a
list of parameters. The simulation is executed multiple times, each time with a di�erent
combination of configuration values until all combinations are completed. In Listing 2.1,
one scheduling algorithm (line 4–5), two node allocation algorithms (line 6–8), two
process placement algorithms (line 9–11), and three routing algorithms (line 12–15) are
specified. When this scenario file is supplied to PFSim, 12 simulations are executed in
total in a combination manner.

Since PFSim accepts the topology of the interconnect as its input and outputs the tra�c
load on each link of the interconnect, the file format for representing the interconnect needs
to be considered. The file format should be designed for graphs since the interconnect can
be considered as a graph. In addition, the format should be supported by existing analysis
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Listing 2.1: Example of a Simulation Scenario
1 topology: topologies/milk.graphml
2 output: output/milk-cg-dmodk
3 algorithms:
4 scheduler:
5 - pfsim.scheduler.FCFSScheduler
6 node_selector:
7 - pfsim.node_selector.LinearNodeSelector
8 - pfsim.node_selector.RandomNodeSelector
9 process_mapper:

10 - pfsim.process_mapper.LinearProcessMapper
11 - pfsim.process_mapper.CyclicProcessMapper
12 router:
13 - pfsim.router.DmodKRouter
14 - pfsim.router.GreedyRouter
15 - pfsim.router.GreedyRouter2
16 jobs:
17 - submit:
18 distribution: pfsim.math.ExponentialDistribution
19 params:
20 lambd: 0.1
21 trace: traces/cg-c-128.tar.gz

Table 2.1: List of Configurable Algorithms

Algorithm Description

Job Scheduling Selects the job to execute from the job queue. (e.g. FCFS,
Backfill)

Node Selection Selects which compute nodes to assign for a job. (e.g. Linear,
Random, Topology-aware algorithms)

Process Placement Determines on which compute node to place a process. (e.g.
Block, Cyclic, Application-aware algorithms)

Routing Computes a route between a pair of processes. (e.g. D-mod-K,
S-mod-K, Random, Dynamic algorithms)
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and visualization tools so that users can take advantage of these software assets. Based on
the requirements above, PFSim is designed to use GraphML [33], an XML-based markup
language for graphs, as its input and output format of the interconnect. Popular graph
visualization tools such as Cytoscape and Gephi can be used to view and edit GraphML
files. Users can use these tools to visually and intuitively locate bottlenecks and load
imbalance in the interconnect.

2.4 Evaluation

The first experiment is conducted to verify if PFProf is able to capture the underlying
point-to-point communication behind collective communication. Then, the accuracy
of the simulation performed by PFSim is evaluated through the comparison of the
tra�c estimated by PFSim with the tra�c measured on a cluster when actually running
an application. Then, the performance of point-to-point communication between two
processes with and without PFProf are compared to assess the overhead incurred by
PFProf. Lastly, how PFAnalyzer can be used by researchers to analyze the joint e�ect
of node allocation, process placement and routing on the distribution of tra�c in the
interconnect is demonstrated.

2.4.1 Comparison of PFProf and Conventional Profiler

This experiment verifies if PFProf is able to capture the underlying point-to-point
communication of collective communication. A simple MPI application is profiled using
TAU and PFProf. Subsequently, the extracted communication patterns are compared.
Listing 2.2 shows the source code of the MPI application. This application first executes
MPI_Allreduce, one of the commonly used collective communications. Then, every
process performs a point-to-point communication with its neighboring process. This
application is executed with 128 processes.

Figure 2.4 (a) shows the communication pattern obtained with TAU. In this figure,
the horizontal and vertical axis indicate the sender and receiver rank, respectively. The
point-to-point communication between the neighbor processes is clearly visualized as
a pattern along the diagonal. However, the underlying point-to-point communication
of MPI_Allreduce was not observed. On the other hand, Figure 2.4 (b) shows the
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Listing 2.2: MPI Application Used for Evaluation
1 #include <stdio.h>
2 #include <mpi.h>
3
4 #define BUF_SIZE (1000)
5
6 int rank, size;
7 MPI_Request req;
8 char buf[BUF_SIZE] = {};
9 char buf2[BUF_SIZE] = {};

10
11 int main(int argc, char *argv[])
12 {
13 MPI_Init(&argc, &argv);
14
15 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
16 MPI_Comm_size(MPI_COMM_WORLD, &size);
17
18 /* Collective communication */
19 MPI_Allreduce(buf, buf2, BUF_SIZE, MPI_CHAR,
20 MPI_SUM, MPI_COMM_WORLD);
21 \label{fig:allgather-ring}
22
23 /* Point-to-point communication */
24 MPI_Irecv(buf, BUF_SIZE, MPI_CHAR,
25 (rank - 1) % size,
26 0, MPI_COMM_WORLD, &req);
27 MPI_Send(buf, BUF_SIZE, MPI_CHAR,
28 (rank + 1) % size,
29 0, MPI_COMM_WORLD);
30 MPI_Wait(&req, MPI_STATUS_IGNORE);
31
32 MPI_Finalize();
33 }

communication pattern obtained with PFProf. This communication pattern reveals the
MPI communication generated from MPI_Allreduce in detail. The underlying point-to-
point communication is clearly detailed. These observations suggest that PFProf is able
to capture the underlying point-to-point communication of collective communication.

2.4.2 Accuracy of Tra�c Estimated by PFSim

This experiment evaluates the accuracy of the simulation performed with PFSim. The
tra�c estimated by PFSim and the tra�c measured when running an application on an
actual cluster are compared.
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(a) TAU (b) PFProf

Figure 2.4: Extracted Communication Patterns

The simulated cluster was modeled after a small-scale cluster installed at our institution.
The cluster is composed of 20 compute nodes, each equipped with two quad-core Intel
Xeon E5520 processors. Compute nodes are interconnected with a two-tier fat-tree
topology as illustrated in Fig. 2.5. A single NEC ProgrammableFlow PF5240 switch is
logically divided into six switches that constitute the fat-tree topology. The upper-layer two
switches are referred to as spine1–spine2 and the lower-layer four switches as leaf1–leaf4.
The CG benchmark from the NAS Parallel Benchmark Suite [73] was executed with 128
processes on 16 compute nodes. Since the CG benchmark only allows power-of-two
number of processes, some compute nodes could not be utilized.

Figure 2.6 shows the comparison of simulated tra�c using PFSim and the measured
tra�c on the original cluster. The tra�c on each link between the spine switches and leaf
switches were normalized by the tra�c on the link spine1!leaf1 and shown in the plot.
The plot indicates the error of simulation result is small. The largest error was 1.9% and
was observed on the link leaf4!spine1. These results indicate that the simulation result
is su�ciently accurate to analyze performance of dynamic interconnects.

2.4.3 Overhead Incurred by PFProf

In this experiment, the performance of point-to-point communication between two
processes with and without PFProf were compared to inspect the overhead incurred by
the profiler. OSU Micro Benchmark [4] was used to measure the throughput and latency
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Figure 2.7: Throughput of Point-to-point Communication

of point-to-point communication between two processes for varying message sizes. The
comparison of throughput and relative throughput are shown in Fig. 2.7 and Fig. 2.7,
respectively. For messages larger than 1KB, the overhead was ignorable. For messages
smaller than 1KB, up to 30% of overhead was incurred. Comparison of latency and
relative latency are shown shown in Fig. 2.9 and Fig. 2.10, respectively. These plots
suggest that there is almost no overhead for latency. These results indicate that PFProf is
able to extract the communication pattern from applications without significantly hurting
the performance of applications.

2.4.4 Use Case of PFAnalyzer

This experiment shows how PFAnalyzer can be used by researchers to analyze the joint
e�ect of node allocation, process placement and routing on the distribution of tra�c in the
interconnect. Communication-intensive MPI applications were executed on the proposed
simulator. The maximum tra�c load observed on links composing the interconnect
was compared in both cases of static interconnect control and dynamic interconnect
control. The maximum tra�c load observed on the links was used as an indicator of
the communication performance of an application. In most cases, a hot spot link can
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Figure 2.10: Relative Latency of Point-to-point Communication

slow down the whole application, because every process needs to wait until the slow
communication crossing the hot spot link completes when collective communication or
synchronization is performed by an application. Therefore, mitigating the tra�c load on
the hot spot link is considered to improve the performance of the application.

Two applications were selected as representatives of communication-intensive applica-
tions. The first one was the CG benchmark from the NAS Parallel Benchmark Suite [73].
The CG benchmark estimates the largest eigenvalue of a sparse matrix using the inverse
power method. Internally it uses the conjugate gradient method, which frequently appears
in irregular mesh applications. The second application (ks_imp_dyn) was from MIMD
Lattice Computation (MILC) [3], a collection of applications used to study Quantum
Chromodynamics (QCD). As for the input data, the data set provided by NERSC as a
part of the NERSC MILC benchmark was used. These two applications were executed
with 128 MPI processes. Thread parallelism was not put in use (i.e., flat MPI model was
adopted).

To analyze the e�ect of dynamic interconnect control, simulations were carried out
using static routing and dynamic routing control. Furthermore, in order to investigate
the impact of node selection and process placement to the tra�c load, the node selection
algorithm and process placement algorithm were also changed. As a result, exhaustive
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combinations of two node selection algorithms, two process placement algorithms and
two routing algorithms were investigated with the scheduling algorithm fixed. Below are
the descriptions of the algorithms used in this experiment:

• Scheduling: A simple First-Come First-Served (FCFS) scheduling without back-
filling was adopted.

• Node Selection: Either linear or random node selection was adopted. Linear node
selection assumes that compute nodes are lined up in a one-dimensional array
and minimizes the fragmentation of allocation. This is essentially the same as the
default node selection policy of Slurm [68]. Random node selection, as the name
indicates, randomly selects compute nodes. This algorithm simulates a situation
where the allocation of compute nodes is highly fragmented.

• Process Placement: Either block or cyclic process placement was adopted. Block
process placement assigns rank i to the bi/cc-th compute node where c represents
the number of cores per node. Cyclic process placement assigns rank i to the
(i mod n)-th compute node where n denotes the number of compute nodes.

• Routing: Either D-mod-K routing or a dynamic routing was adopted. Destination-
modulo-K (D-mod-K) routing is a popular static load balancing routing algorithm
that distributes packet flow over multiple paths based on the destination address
of the packet. The dynamic routing algorithm implemented here computes and
allocates routes from the heaviest communicating process pair. A route is computed
to minimize the tra�c of the maximum-tra�c link in the path.

Under this condition, the maximum tra�c load observed on links through the simulation
were measured and compared. Figure 2.11 shows the simulation results in the NAS CG
benchmark. In this graph, the blue hatched bars represent the results for D-mod-K routing
while the red crosshatched bars represent the results for dynamic routing. The vertical
axis represents the simulated maximum tra�c load normalized by the maximum tra�c
load when linear node selection, block process placement and D-mod-K routing were
adopted.

What stands out in Fig. 2.11 is that dynamic routing consistently achieves lower tra�c
load compared to static D-mod-K routing. The reduction of tra�c load was the largest
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when linear node selection and block process placement were adopted. Under this
combination of node selection and the process placement algorithm, dynamic routing
slashed the maximum tra�c load by 50% in comparison with D-mod-K routing. Also,
the graph reveals that cyclic process placement always increased maximum tra�c load
compared to block process placement because neighboring ranks were placed on di�erent
compute nodes despite the locality of the communication pattern.

Figure 2.12 shows the result in the case of MILC. The graph reveals that dynamic
routing outperforms D-mod-K routing. In this case, the reduction of the link load was the
largest when random node selection and cyclic process placement was adopted. When
using linear node selection and block process placement, the reduction of the maximum
link load was 18%. Compared to NAS CG benchmark, the e�ect of dynamic routing was
smaller.

To investigate the impact of tra�c load on the application performance of an actual
environment, the configuration described in the previous Section 2.4.4 was reproduced
on a actual cluster and then the execution time of each benchmark was measured. This
cluster was equipped with switches that support OpenFlow, which is a de facto standard
implementation of SDN. The routing algorithms were implemented based on OpenFlow.
In this experiment, linear node selection and block process placement was adopted. The
average execution time of 10 runs was compared when using D-mod-K routing and
dynamic routing. Figure 2.13 shows the measured execution time for both benchmarks.
The use of dynamic routing reduced the execution time of NAS CG benchmark for 23%.
Meanwhile, the execution time of MILC benchmark was reduced for 8%, which was
smaller than the case of NAS CG benchmark. This matches with the simulation result
that predicted NAS CG benefits from larger reduction in maximum tra�c load by using
dynamic routing compared to MILC.

These results suggest that application performance is actually improved by alleviating
the tra�c load on the hot spot link. This suggestion implies that researchers working on
dynamic interconnects can take advantage of the proposed toolset to simulate di�erent
packet flow controlling algorithms and assess their performance improvement e�ect on
real-world applications by using indicators such as maximum tra�c load.
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2.5 Related Work

The novelty of PFAnalyzer is three-fold. First, PFProf can record the underlying point-to-
point communication of a collective communication, which conventional MPI profilers
failed to capture. Second, PFSim rapidly simulates the tra�c and identify load imbalance
in an interconnect owing to an adequate approximation of the communication pattern.
Third, PFSim is capable of simulating programmable interconnects, which were not
targeted by conventional interconnect simulators.

Several interconnect simulators have been proposed in the past research. PSINS [50]
is a trace-driven simulator for HPC applications. Traces obtained from applications are
used to predict the performance of applications on a variety of HPC clusters with di�erent
configurations. LogGOPSim [46] simulates the execution of MPI applications based on
the LogGOP network model. A limitation of LogGOPSim is that the interconnect is
assumed to have full bisection bandwidth and thus congestion is not simulated. These
two simulators can provide accurate performance predictions owing to their per-message
simulation capability. However, the topology and the routing algorithm of interconnects
are abstracted in the network models of PSINS and LogGOPSim. Therefore, these
simulators cannot be used for predicting and comparing the performance of di�erent
topologies or routing algorithms. In contrast, the simulator proposed in this chapter
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allows users to compare the performance characteristic of di�erent topologies and routing
algorithms.

ORCS [49] simulates the tra�c load on each link in the interconnect for a given
topology, communication pattern and routing algorithm in the same way as PFSim. The
simulated tra�c load of links can be summarized into various performance metrics and
used for further analysis. A limitation of ORCS is that only pre-defined communication
patterns can be used as its input. Moreover, ORCS assumes static routing as in InfiniBand.
On the contrary, PFSim can handle dynamic routing algorithms that use communication
patterns of applications and interconnect usage to make routing decisions.

In [18], simulations are carried out to examine the performance characteristics of
an SDN-based multipath routing algorithm for data center networks. A simulator was
developed based on MiniSSF to simulate the throughput and delay of a packet flow under
diverse settings. However, communication patterns are randomly generated and not based
on real-world applications. PFSim is designed to accept arbitrary communication patterns
obtained from real-world applications using our custom profiler.

INAM2 [15] is a comprehensive tool to monitor and analyze network activities in an
InfiniBand network. The tight integration with the job scheduler and a co-designed
MPI library allows INAM2 to associate network activities with jobs and MPI processes.
For instance, it can identify hot spots in the interconnect and inspect which node, job,
and process is causing the congestion. Although INAM2 is a useful tool for system
administrators to diagnose the performance issues of interconnects, it is not suitable for
studying diverse interconnects since it only supports physical clusters.

2.6 Conclusion

This chapter described the design and implementation of PFAnalyzer, a toolset for
analyzing the performance characteristics of application-aware dynamic interconnects.
PFAnalyzer is composed of PFProf, a profiler to extract communication patterns from
applications, and PFSim, a simulator capable of simulating application-aware dynamic
interconnects. PFSim takes a set of communication patterns of applications and a cluster
configuration as its input and then simulates the tra�c on each link of the interconnect.
Evaluation conducted in this dissertation verified that PFProf is able to capture the
underlying point-to-point communication of collective communication, which is essential
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for understanding the communication characteristic of applications. Also, it also indicated
that the incurred overhead is small. Furthermore, the error of tra�c simulated with PFSim
was 1.9% at maximum, which is small enough to analyze the performance characteristic
of interconnects.

PFAnalyzer contributes to realizing a programmable interconnect control adaptive to the
communication pattern of application in two aspects. First, PFProf allows researchers to
accurately extract the inter-process communication pattern from applications. The obtained
communication pattern is a crucial information for understanding the communication
characteristic of applications and adapting the interconnect control to the application.
Second, PFSim helps researchers to design and implement e�ective algorithms to control
the packet flow in the interconnect for mitigating imbalance in the interconnect and
achieving higher communication performance between compute nodes.

Further work is necessary to investigate the performance characteristics of dynamic
interconnects on large-scale and highly parallel clusters. Moreover, application-aware
node selection and process placement algorithms are planned to be implemented on
PFSim. The impact of such application-aware algorithms on the performance of dynamic
interconnects should be evaluated.
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3 Accelerated MPI Collective Using
Software-Defined Networking

3.1 Introduction

As described in Section 1.1.4, communication primitives defined in MPI can be roughly
categorized into point-to-point communication, collective communication and one-sided
communication. Out of these three categories, this dissertation particularly focus on
accelerating collective communication because of its significant impact to the application
performance. In fact, a recent analysis of MPI usage on a production HPC system has
revealed that approximately 34% of the total core-hours of the system are expended in
MPI communication and 66% of the total MPI communication time is spent in collective
communication [7]. This fact clearly indicates that reducing the time of collective
communication is of great importance.

MPI collectives require intensive communication among multiple compute node pairs.
However, some compute node pairs communicate less, whereas other pairs have to
communicate much more. Because of this imbalance, even in the case where the
interconnect of a cluster system has multiple redundant routes between compute nodes,
the packet flow generated from MPI collectives could collide on a single link of the
interconnect without any control of packet flow.

This chapter aims at accelerating MPI collectives by dynamically controlling the packet
flow in the interconnect. In particular, a cluster system deployed with an interconnect
that contains multiple redundant routes is targeted. This is because the majority of
interconnects today are provisioned with redundant routes to improve the bisection
bandwidth and fault tolerance. Specifically, this research specifically focuses on fat-tree.
This research designs and implements a framework that e�ectively makes use of redundant
routes by dynamically controlling the packet flow in the interconnect using SDN described
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in Section 1.1.6.
The rest of this chapter is organized as follows. Section 3.2 reviews conventional tra�c

balancing methods and analyzes their problems. Subsequently, the goal of this chapter is
clarified. In Section 3.3, the design and implementation of the proposed architecture of
SDN-enhanced MPI_Allreduce is presented. In Section 3.4, an evaluation on a cluster
system is conducted to verify the feasibility of the proposed framework. Section 3.5
discusses related works. Section 3.6 concludes this chapter and discusses challenges for
further improving the practicality of our proposed framework.

3.2 Research Objective

MPI collective operations require a large number of simultaneous communication among
multiple process pairs. However, some compute node pairs communicate less, whereas
other pairs have to communicate much more. When the underlying network of the cluster
system that interconnects with the compute nodes has a full-bisection bandwidth, the
imbalance of source and destination in communication would not be a problem although
structuring this type of a network is hard to scale out due to economic and physical
restrictions [51]. Under the assumption that the network is oversubscribed, the shortage
of available bandwidth could give rise to a serious problem.

Suppose a cluster system of four compute nodes interconnected with a two-tier
fat-tree topology as illustrated in Fig. 3.1. Fat-tree is a network topology that has
multiple redundant routes between the upper layer switches and lower layer switches. By
distributing tra�c among these redundant routes, it is possible to gain higher bisection
bandwidth compared to a simple tree topology.

The tra�c load balancing algorithm deployed on the interconnect becomes important
on such an interconnect. For example, suppose compute node 1 is sending data to node 3,
and node 2 is sending di�erent data to node 4 at the same moment in Fig. 3.1. If those two
communications are routed within the exact same route, link contention could happen.
When these two communications are routed so that they make use of the redundant routes
as depicted in Fig. 3.2, link contention can be avoided.

Various algorithms for balancing tra�c in a network with redundant routes have been
proposed. Equal-Cost Multi-Path routing (ECMP) [25] is a standardized load balancing
strategy mainly used in L3 switches. For each communication between two compute
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nodes, if multiple equal cost routes are available, ECMP selects one route from among
them. The decision on which route to use is based on the header fields (e.g. source and
destination addresses) of each packet. A hash function is applied to the header fields to
generate the corresponding hash value for the header fields, where every value in the hash
value space are evenly assigned to one of the equal cost routes.

InfiniBand [70] is a computer network communication link commonly used in the area
of HPC and data centers. InfiniBand supports multiple routing methods. One of those
methods is a min-hop routing algorithm, which calculates the minimum hop route between
every compute node pair. If multiple minimum hop routes for a single compute node pair
are available, the algorithm assigns a route so that usage among links is equalized.

The problem of these existing conventional load balancing mechanisms is that they are
application-agnostic and never consider the communication pattern of MPI applications. In
general, MPI applications cannot retrieve the usage information of the underlying network
nor control it. Meanwhile, MPI communication in an MPI application usually shows a
strong locality where each process communicates with a limited number of processes.
This non-uniform communication pattern combined with application-agnostic network
control causes unequal link usage that decreases available bandwidth between compute
nodes. Ultimately, this decrease in available bandwidth can lead to the performance
degradation of MPI applications.

From the observations above, an application-aware network control mechanism which
recognizes the communication pattern needed by MPI collectives is essential. Also, the
mechanism must e�ectively utilize the bandwidth of each link by distributing the tra�c
among redundant routes. Therefore, this research leverage Software-Defined Networking
(SDN) to enable such dynamic control of packet flow depending on the communication
patterns of MPI applications.

In particular, this research focuses on accelerating MPI_Allreduce. MPI_Allreduce is
one of the most frequently used and time-consuming collective communication functions
of MPI. In fact, an analysis of 100K jobs executed on a large-scale production HPC
system has revealed that MPI_Allreduce accounts for 19.4% of the total core-hours spent
in MPI, and is the most significant among all MPI collectives regarding both core-hours
and number of calls [7]. This collective communication reduces values from all processes
with an operator and broadcasts the result of the reduction to every process. More
specifically, suppose there are n processes in a communicator and each process with rank
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n�1 and � is the operator used
for reduction. The operator can be any user-defined associative operator or one of the
pre-defined operators such as sum, product, or maximum. Figure 3.3 shows an example
where four processes each having five values call MPI_Allreduce with the sum operator.

One of the use cases of MPI_Allreduce is parallel Conjugate Gradient (CG) method.
CG method is an iterative algorithm to solve a system of linear equations Ax = b whose
coe�cient matrix A is positive-definite and symmetric. In the parallel CG method, a
significant amount of time is spent in MPI_Allreduce to compute the inner product of
vectors [38]. Another use case is parallel Stochastic Gradient Descent (SGD). SGD is a
continuous optimization algorithm that minimizes an objective function f parameterized
by w for a given set of input S. SGD incrementally updates w in the following way:
wt+1 = wt � ⌘r f (wt; z

t) where wt is the parameter for the t-th iteration, z
t is an input

data randomly sampled from S, and ⌘ is a small constant. In parallel SGD, the gradient
r f (wt ; z

t) is computed in parallel by each process using di�erent samples. Subsequently,
MPI_Allreduce is used to compute the average of the individual gradients computed by
all processes.

This research attempts to accelerate MPI_Allreduce on a cluster system with a fat-tree
interconnect. The dynamic network controllability of SDN is integrated with MPI in
order to mitigate link contention. The speedup of MPI_Allreduce based on the proposed
framework is evaluated.
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3.3 Proposal

This section presents the proposed framework for accelerating MPI collectives. First,
the basic idea behind the proposed framework is outlined. After that, the design and
implementation of the framework is described in detail.

3.3.1 Basic Idea

The motivation behind the proposed framework is to improve the ine�cient communication
in MPI in order to enhance the performance of MPI applications. The fact that MPI
applications are unable to retrieve the usage of the underlying network results in a potential
ine�ciency in terms of communication. One of such ine�ciencies is the inequality of
link usage among links. Since the bandwidth of a link is limited, an inequality of link
usage can cause congestion in heavy-loaded links. Therefore, this research focuses on the
inequality of the link usage among the interconnect of a cluster system.

In this chapter, redundant routes in the interconnect are used to mitigate the inequality
of link usage, based on an assumption that the cluster system has a fat-tree interconnect.
Through this tra�c distribution, contention in the links is expected to be alleviated, which
as a result speeds up communication.

3.3.2 Design of Collective Acceleration Framework Using SDN

The proposed framework is composed of three modules. These three modules are SDN
controller, LLDP (Link Layer Discovery Protocol) [48] daemon and SDN MPI library.
They are deployed onto a cluster system as illustrated in Fig. 3.4. The SDN controller is
designed to be deployed onto the management node of a cluster system. The management
node is used for controlling the whole cluster system such as deploying jobs to the system.
The LLDP daemon is designed to run in the background on all compute nodes. The SDN
MPI library is a library that needs be statically linked to MPI applications at compile time.

Although each compute node can run one or more MPI processes, in this chapter,
it is assumed that each compute node runs only a single MPI process. This is a
reasonable assumption since many applications nowadays leverage hybrid parallelism,
which combines distributed memory programming and shared memory programming.
Under the hybrid parallelism model, the application starts a single MPI process per node

50



�.� Proposal

SDN-enabled
Switch

Compute
Node

Management
Node

MPI
Application

SDN MPI
Library

LLDP
Daemon

MPI
Application

SDN MPI
Library

LLDP
Daemon

MPI
Application

SDN MPI
Library

LLDP
Daemon

MPI
Application

SDN MPI
Library

LLDP
Daemon

Figure 3.4: Placement of the Modules Composing SDN-enhanced MPI_Allreduce

and then spawns a thread for each socket or core on the node. After that, the application
uses MPI for intra-node communication and threading frameworks such as OpenMP for
intra-node communication.

The interaction among these modules is roughly divided into two phases: the initializa-
tion phase at the MPI application startup and the main phase at each MPI collective call.
Figure 3.5 is a UML sequence diagram that illustrates how these modules cooperate with
each other. MPI_Init is the MPI function that initializes the MPI execution environment,
which must be called on the application startup. After MPI_Init finishes, all MPI processes
notify their own IP address and MPI rank number to the SDN controller. This information
obtained from MPI processes is held by the controller until the execution of the MPI
application finishes.

When an MPI collective is called, the rank 0 process generates the communication
pattern of the MPI collective. This communication pattern is a set of sender process and
receiver process pairs during the MPI collective communication. After the communication
pattern is generated, this set is sent to the SDN controller by the rank 0 process. As
soon as the SDN controller receives the communication pattern, it generates a route for
each sender-receiver pair. Subsequently, the SDN controller programs each SDN-enabled
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switch so that the MPI packets are routed along the pre-generated routes. After the entire
communication pattern is processed, the MPI collective is called to start the actual data
transfer and computation for the collective operation.

3.3.3 Implementation of Collective Acceleration Framework Using
SDN

To realize the proposed framework, three modules that work as an integrated system has
been developed: LLDP daemon, SDN controller and SDN MPI library. This section
explains the implementation of these three modules in detail.

LLDP Daemon

Each compute node runs an LLDP daemon in the background. This daemon is designed
to emit LLDP packets containing hardware information periodically, which are received
by the SDN-enabled switches and used for topology discovery. Some LLDP daemon
implementations already exist. However, a new, minimal daemon has been developed to
easily add and tweak features so that it can cooperate with the other programs composing
the whole system.

The developed daemon detects all available network interfaces installed on a computer
and queries its interface index, MAC address and IP address. This information is packed
into a single LLDP packet and sent out from each network interface periodically. The
interval is set to one second in this prototypical implementation to speed up the topology
discovery. However, it can be a longer period in practical systems so that its topology
does not change frequently.

As described above, the LLDP daemon emits a few hundred byte long packets to the
network every second. This tra�c is considered to be small enough so that it does not
cause serious side e�ects on the actual MPI process, for instance taking CPU time away
from the application or consuming too much bandwidth that could interfere with the MPI
communication. Generating such LLDP packets is also not a di�cult task for a today’s
computer, so the impact to the application is considered to be ignorable.
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SDN Controller

The SDN controller was developed on top of Trema [5], a framework designed for easily
developing OpenFlow controllers in the Ruby language. It has the following four core
functionalities:

1. Generating routes for MPI collectives to mitigate link contention and installing the
generated routes to SDN-enabled switches

2. Detecting the topology and usage of the interconnect using LLDP

3. Responding to Address Resolution Protocol (ARP) requests from compute nodes to
avoid broadcast storms

4. Routing of non-MPI tra�c such as ICMP and SSH

The first functionality is topology detection. How detection is performed is shown in
Fig. 3.6. The controller periodically requests every switch to send out an LLDP packet
from each of their physical ports (step 1 in Fig. 3.6). This LLDP packet contains two
kinds of information: datapath ID (a number that uniquely distinguishes the switches)
and port number (port index where the packet is sent out). Moreover, all compute nodes
also emit LLDP packets from the LLDP daemon described in the previous section. The
controller is notified of a LLDP packet arrival at a switch. After that, it parses the packet
to obtain the information on the packet’s origin, and then examines whether the packet
came from a compute node or an SDN-enabled switch. If the sender is a compute node,
its MAC address and interface index is acquired. Otherwise if the sender is a switch,
its datapath ID and port number is acquired (step 2). Using this information from its
neighbors, an adjacency list is generated (step 3). From this adjacency list, a network
topology graph is constructed, which is used in the route generation and routing. If the
packet is from a compute node, the source MAC address and IP address are registered in
a MAC/IP address translation table used in the ARP responding functionality.

The second functionality is replying to ARP requests. ARP requests are L2 broadcast
packets and therefore cause a broadcast storm in a network that contains a cycle. Since
this chapter targets a network that has redundant routes, the topology of the network is
not a tree. Therefore, the network is always cyclic and a�ected by the broadcast storm
problem. To eliminate broadcast storms, the controller instructs the switches to reply to
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the received ARP requests on behalf of the compute node that has the corresponding
IP address. The IP address that corresponds to the MAC address is obtained from the
above-described MAC/IP address translation table.

The third functionality is route generation and installation for MPI collective communi-
cation. The route generation algorithm is implemented as a pluggable module so that
di�erent algorithms can be specifically tailored for each MPI collective.

Since this research focuses on accelerating MPI_Allreduce, a route generation algorithm
targeting MPI_Allreduce has been designed and implemented. The goal of this route
generation algorithm is to mitigate the interference between the packet flows generated
by the underlying point-to-point communication of MPI_Allreduce. In particular, the
proposed algorithm tries to generate routes so that the packet flows are evenly distributed
among the redundant routes in the interconnect. In other words, the proposed algorithm
aims to minimize the maximum number of packet flows sharing a link.

Note that this problem is a combinatorial optimization problem on a multi-commodity
flow network and thus requires heavy computation to find the optimal solution. Meanwhile,
the SDN controller needs to perform the route generation every time an MPI collective
is called as described in Section 3.3.2. Therefore, the proposed algorithm is designed
to be a heuristic algorithm based on a greedy strategy that quickly finds an approximate
solution rather than an optimal solution.

The basic idea behind this heuristic algorithm is to assign a route to each point-to-point
communication iteratively. At each iteration, the algorithm selects a pair of a sender and
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a receiver and finds the least utilized route between them. This is achieved by considering
a weighted graph where the weight of a link is equal to the total number of packet flows
going through the link, and then finding the shortest route between the sender process
and receiver process in this graph. Here, the Dijkstra algorithm is used to find the
shortest route because of its speed and simplicity. After a route is assigned, the weight of
each link along the generated route is incremented. This procedure is repeated for all
sender-receiver pairs.

Algorithm 3 is a pseudo-code for the algorithm. First, an empty array routes is
initialized (line 1 in Algorithm 3). After that, the route search is performed for each
sender-receiver pair (line 4–7). The resulting route is added to routes (line 5) and the link
weight (which is the number of total routes that use that link) of each link is incremented
(line 6–7). After all routes are generated, these routes are installed to the SDN-enabled
switches.

Algorithm 3: Pseudocode of Route Generation

1 routes empty array;
2 nodes nodes in the topology graph;
3 links links in the topology graph;
4 foreach (sender, receiver) 2 sender-receiver pairs do
5 route dijkstra(nodes, links, sender, receiver);
6 foreach link 2 route do
7 Increment weight of link;

The fourth functionality is route generation and installation for non-MPI tra�c. For
non-MPI tra�c such as ICMP and SSH packets, the SDN controller generates the
minimum hop routes between compute nodes and installs them on demand.

SDN MPI Library

An MPI application that wants to use the proposed framework must be linked with the
SDN MPI library. This library contains two classes of functions: SDN_MPI_Init, which
is an initialization function for the library, and MPI collective functions prefixed with
SDN_MPI_, which replace the conventional MPI collectives with their SDN-enhanced
versions.
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Figure 3.7: Recursive Doubling Algorithm

The application is required to call SDN_MPI_Init when it launches. This function
opens a TCP connection with the SDN controller and notifies the IP address and MPI
rank number of the process that has called itself.

SDN_MPI collectives are called by the application when it needs to perform collective
communication. Each SDN_MPI collective generates the communication pattern (set of
sender process and receiver process pairs during the collective communication) for the
MPI application and sends the pattern to the SDN controller.

Several algorithms to realize the Allreduce operation have been proposed [11, 38, 63,
66]. This research focuses on recursive doubling [63], since it requires more inter-node
communication compared with other algorithms, which means more room for optimization
in terms of communication. Figure 3.7 illustrates how the recursive doubling algorithm
works. The recursive doubling algorithm requires log p communication steps where p

denotes the number of processes. For explanatory purposes, the distance between two
MPI processes is defined as the absolute di�erence of their rank numbers here. In the first
step, processes that are one distance apart exchange their data and perform the reduction
operation between the data that the process has originally held and with the just exchanged
data. In the second step, processes that are 2 distance apart exchange their data, and in the
i-th step, processes that are 2i�1 distance apart exchange their data. The SDN MPI library
memorizes all process pairs that have to communicate and exchange data by following
each step of the recursive doubling algorithm. For each of those pairs, the library notifies
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the SDN controller to prepare each route.

3.4 Evaluation

3.4.1 Experimental Environment

An experiment was conducted to compare the execution time of MPI_Allreduce accelerated
with the proposed framework against conventional MPI_Allreduce. The experimental
environment is illustrated in Fig. 3.8. This experiment was performed on a real cluster
system consisting of 28 compute nodes and 6 SDN-enabled switches, which formed
a two-tier fat-tree topology. The compute nodes and SDN-enabled switches were all
connected through Gigabit Ethernet links; hence the interconnect was oversubscribed.

In addition to the network connecting the compute node and switches, another network
was prepared for control and management. This network connects compute nodes, SDN-
enabled switches and the SDN controller. The interaction between the SDN controller and
SDN switches is performed via OpenFlow protocol with this management network. The
compute node that runs MPI’s rank 0 process and the SDN controller also communicates
with this network. Other compute nodes were connected to the management network as
well, but those connections were not used in this experiment.

CentOS 6.4 was installed on all computers including the compute nodes and SDN
controller. The SDN controller was developed using a SDN controller framework
Trema [5] 0.4.6 and Ruby 1.9.3. The SDN MPI Library and the benchmark application
were written in C and compiled with gcc 4.4.7. As a representative of a conventional
MPI, Open MPI [64] 1.5.4 was used.

3.4.2 Measurement Result

A micro-benchmark that repeats MPI_Allreduce 20 times and measures the average
execution time of the function was used for comparing the execution time of the proposed
MPI_Allreduce with its Open MPI counterpart.

Figure 3.9 shows the measurement results using 8 nodes, where the horizontal axis
indicates the message size and the vertical axis shows the average time taken to execute
MPI_Allreduce. The solid line and dashed line represent the execution time of the
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Figure 3.8: Experimental Environment

proposed framework and Open MPI implementation, respectively. Figure 3.10 shows
the speedup of MPI_Allreduce accelerated using the proposed framework in comparison
with the Open MPI implementation. The maximal speedup was 41%. Figure 3.11
shows the result in the case of using 16 nodes. Figure 3.12 indicates the speedup of the
proposed MPI_Allreduce. It shows that the proposed framework succeeded to realize a
56% speedup at maximum.

Both Figs. 3.10 and 3.12 clearly show that MPI_Allreduce accelerated with the proposed
framework is consistently faster than the Open MPI implementation. However, some
fluctuation of the speedup is also observed. This fluctuation of performance is considered
to be caused by the non-deterministic aspect of the network. For example, queueing and
scheduling of packets at compute nodes and switches, TCP congestion control, and OS
noise heavily a�ect the time it takes for each packet to travel through the network. Such
variation in the latency of each point-to-point communication significantly impacts the
execution time of a collective communication. A larger number of benchmark runs is
expected to exhibit a constant speedup ratio.
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3.5 Related Work

There have been many research works related to MPI. Since MPI is merely a specification
for standard APIs for parallel programming, several algorithms for collective operations
have been proposed and implemented targeting several network technology. As a
representative example of such works, MVAPICH [59] can be raised. MVAPICH is an
MPI implementation targeting InfiniBand, which most of high-performance computing
systems ranked in Top500 have adopted. Sur et al. [43] designed an MPI library by
leveraging novel InfiniBand-o�ered features. They explored new architectures from a
system point of view and new programming paradigms from an application point of
view to keep scaling out applications on more powerful computing systems. Jiuxing et
al. [65] also investigated an MPI communication protocol focusing on RDMA operations
in InfiniBand. The approach of this research has some points in common in terms that this
research also aims to benefit from the features of the underlying network. However, this
research leverages Software-Defined Networking instead of InfiniBand from the purpose
of investigating the feasibility of dynamic control of network from an application point of
view.

Researchers have attempted to elaborate algorithms for MPI collective operations. Op-
timized algorithms have been proposed for MPI_Alltoall [71], MPI_Reduce_scatter [72],
MPI_Reduce and MPI_Allreduce. Most of the optimized algorithms are specialized either
for latency or throughput, so switching multiple algorithms depending on the message
size or process number makes the MPI implementation behave faster for various message
sizes and process numbers [63].

Another approach is to o�oad the communication or computation of collective
communication operations to hardware. For example, the K-computer [44] has a hardware
module called Tofu Barrier Interface [36] on all nodes. This module executes Barrier,
Broadcast, Reduce and Allreduce collective operations in hardware instead of software.
However, this approach does not mitigate the congestion on links.

Past works including existing MPI implementations have been successful in switching
between multiple algorithms depending on message size, node number, etc. to accelerate
collective communication in MPI. Using such a mechanism, some estimation of
the threshold value for parameters like message size, node number, etc. is essential.
Pjeöivac-GrboviÊ et al. [57] compared several parallel communication models that are
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frequently used for dynamically estimating the threshold values. In contrast, the current
implementation of the proposed framework always uses recursive doubling for executing
MPI_Allreduce. Therefore, the proposed framework has a disadvantage in the cases where
small data size is treated on MPI_Allreduce and thus the latency is more respected than
the bandwidth. For this disadvantage, automatic switching of algorithms that leverages
estimation models is planned to be introduced.

The Fabric Collective Accelerator (FCA) [2] is a product by Mellanox Technologies
with the target of accelerating collective communication on clusters with InfiniBand
interconnect. FCA accelerates collective communication by o�oading computations
to an InfiniBand Host Channel Adapter (HCA). It also optimizes communication flow
according to job and topology. FCA optimizes collective tree and rank placement to
control communication flow. In contrast, the proposed framework is capable of adaptively
reconfiguring the network itself, which is more flexible. FCA also requires InfiniBand
hardware, but this research focuses on a commodity Ethernet network.

Furthermore, there have been many research reports focusing on adaptive use of
networks for high-performance computing. Geo�ray et al. [52] proposed an adaptive
routing method on Myrinet and the above-mentioned literature [65] explored the adaptive
use of multiple independent networks on InfiniBand. This research also aims for a
dynamic use of the underlying interconnection network, but di�ers in the fact that this
research attempted to use a di�erent interconnection network.

3.6 Conclusion

This chapter has attempted to reduce the execution time of MPI collectives by dynamically
controlling the packet flow in the interconnect using Software-Defined Networking (SDN).
By using SDN, this research has proposed a novel framework for accelerating collectives
that can e�ectively make use of redundant routes by having SDN interact with the
communication pattern of collectives. A system of three modules cooperating together
has been designed and implemented to realize the proposed framework. The evaluation
conducted in this chapter showed that the proposed framework speeds up the execution
time of MPI_Allreduce for 56% at most compared with a conventional implementation
of MPI_Allreduce. This result confirms the superiority of the proposed framework over
conventional methods.
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Several issues to tackle have remained for the realization of practical and useful
collective acceleration framework leveraging SDN. The first issue is the support for
multiple processes on a single compute node. On modern computing platforms where
multiple cores are implemented in a single compute node, the assumption set in this
preliminary stage of this research is neither practical nor realistic. Therefore, intra-node
communication for pure MPI jobs needs to be considered by integrating kernel-assisted
communication such as KNEM [34] or Cross Memory Attach (CMA) with the proposed
method. Also, computing paradigms such as the hybrid use of OpenMP with MPI must
be considered for enhancing practicality. Also, other implementations of MPI such as
MVAPICH [59] are essential for investigating the practicality and usefulness of SDN.

The second issue regards the necessity of additional experiments on a larger scale
environment. This chapter has verified the feasibility and possibility of the proposed
framework through the experiments using a simple prototypical implementation. However,
because OpenFlow switches were expensive and thus only a small-scale cluster was
available, only a limited number of experiments in a small cluster environment could be
conducted. Therefore, further experiments on a larger scale environment are essential for
the evaluation of future scalability.

The third issue is the scalability issue caused by the SDN controller. Since the current
implementation requires communication between MPI processes and SDN controller and
route generation for each MPI communication request, the SDN controller might become
a scalability bottleneck on larger environments. Therefore, the IP address and MPI rank
number for each process need be cached in the SDN controller. Furthermore, the current
implementation needs to be enhanced so that only the root process interacts with the
SDN controller and conveys information of all participating processes in the collective
communication.
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4 Coordination Mechanism of
Communication and Computation

4.1 Introduction

Recent scientific research has been taking a major advantage of computational analysis
and simulation. Sustained proliferation in the volume of data generated by scientific
experiments has led to a rise in the importance of data-intensive computing. For example,
approximately 15 PB of experimental data is annually generated and processed at the
Large Hadron Collider (LHC), an experimental facility for high energy physics [41].

Today, in general, data-intensive computations are performed on high-performance
computer clusters. A computer cluster is composed of a set of compute nodes connected
to a high-performance network, usually referred to as an interconnect. Applications
designed to run on computer clusters are based on a parallel distributed processing model.
In this processing model, a large computation is decomposed into smaller fractions of
computation and then performed by processes running in parallel. These processes
communicate with each other for data exchange and synchronization. For this reason,
the inter-node communication performance among processes can significantly impact
the total performance of data-intensive applications. Recent advancements of high
performance computing has heavily relied upon the high degree of parallelism rather than
the improvement of CPU clock speed. Consequently, the total number of processes and
compute nodes involved in a computation has kept increasing. As a result, communication
between distributed processes is becoming the principal bottleneck of data-intensive
applications.

Each application running on a computer cluster has a distinct pattern of communication
among processes [47]. These communication patterns are di�cult to predict precisely in
prior to the execution of the application. Furthermore, most of the current interconnects
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available have adopted static network control and thus they are unable to adaptively
reconfigure themselves to match requirements from applications. In fact, in InfiniBand [70],
which is a currently dominant interconnect technology, the forwarding tables on switches
are usually pre-configured and remain unchanged until hardware failure or topology
change occurs.

Furthermore, current interconnects are designed to be over-provisioned in order to
satisfy the communication performance requirements from various applications with
diverse communication patterns. Such over-provisioned interconnects are designed and
provided with su�cient network resources (e.g. bandwidth) to minimize the overload of
interconnect such as congestion.

However, the recent scale-out in number of compute nodes has revealed two potential
shortcomings of over-provisioned designs. First, the cost for building interconnects has
become increasingly higher, which makes it di�cult to implement over-provisioned designs.
This increased cost is because of the scale and complexity of interconnects that grow
superlinearly as the number of compute nodes increases. The second shortcoming is the
under-utilization of interconnects. A discrepancy between the performance characteristics
of the over-provisioned interconnect and the aggregated network requirements of the
applications may cause some portion of the interconnect not being fully utilized.

Based on these considerations, a novel cluster architecture which dynamically controls
the packet flow in the interconnect based on the communication pattern of the application is
considered to alleviate the aforementioned two shortcomings derived from the conventional
over-provisioned designs. For the reason, Software-Defined Networking enhanced
Message Passing Interface (SDN-enhanced MPI), which is an unconventional MPI
framework that incorporates the flexible network controllability brought by SDN into
interconnects, was proposed in our past research. Furthermore, past research towards SDN-
enhanced MPI has demonstrated that the acceleration of collective MPI communication
is feasible.

However, a technical challenge remains in this research, that is, applying the research
achievements to real-world MPI applications. The preliminary stage of this research has
mainly focused on verifying the feasibility of the idea by investigating whether individual
MPI collective communications could be accelerated or not. Meanwhile, real-world
applications commonly call multiple MPI collectives during their execution. Therefore,
how MPI communication accelerated with SDN could be synchronized with the execution
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of an MPI application remains a question that requires a new technical innovation.
To this end, this research proposes UnisonFlow, a mechanism for SDN-enhanced MPI

to perform network control in synchronization with the execution of an MPI application,
based on the strategy shown in [20]. The synchronization does not incur a large overhead
so it avoids performance degradation of the applications. Furthermore, the proposed
mechanism is designed to work on actual hardware OpenFlow switches, and is not limited
to software switches or specialized hardware.

The main contributions of this chapter are summarized as follows:

• UnisonFlow, a software-defined coordination mechanism of network control and
execution of an MPI application is proposed.

• A low-overhead implementation of the proposed concept that works on actual
hardware OpenFlow switches is presented.

• An experiment is carried out to verify whether the interconnect control is successfully
performed in synchronization with the execution of an application.

• A performance measurement of point-to-point communication is conducted to
evaluate the overhead incurred by the proposed mechanism.

The remainder of this chapter is organized as follows. Section 4.2 introduces SDN-
enhanced MPI and its key technologies. Subsequently, the challenge to realize SDN-
enhanced MPI is derived. Section 4.3 describes the proposed mechanism and its
implementation. Section 4.4 shows the result of the experiments conducted to demonstrate
the feasibility of the proposal. Section 4.5 reviews related literature and clarifies the
contributions of this chapter. Finally, Section 4.6 discusses future issues to be tackled and
concludes this chapter.

4.2 Research Objective

This section first briefly describes the two key technologies of SDN-enhanced MPI:
the Message Passing Interface (MPI) and Software Defined Networking (SDN). After
outlining the current development status of SDN-enhanced MPI, the central challenge in
realizing a practical SDN-enhanced MPI is clarified.
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4.2.1 SDN-enhanced MPI

The basic idea of SDN-enhanced MPI is to incorporate the flexible network controllability
of SDN into MPI. As described in Section 1.1.4, MPI mainly focuses on hiding the
complexity of the underlying network architecture. Therefore, MPI does not provide
any functionality for explicitly controlling the network. The integration of SDN into
MPI could complement such lack of a network control feature in MPI and allow MPI to
optimize the packet flow in the network in accordance with the communication pattern of
applications.

At the time of writing this dissertation, the above described basic idea has been applied
and tested on to two collective MPI primitives, MPI_Bcast and MPI_Allreduce as proof
of concept. Experiments conducted on a real computer cluster comprising bare metal
servers and hardware OpenFlow switches have demonstrated that the execution time of
these primitives has been successfully reduced [23, 30]. SDN-enhanced MPI_Bcast [23]
accelerates MPI_Bcast by utilizing the hardware multicast functionality of OpenFlow
switches. SDN-enhanced MPI_Allreduce [30] dynamically reconfigures the path alloca-
tion based on the communication pattern of MPI_Allreduce so that congestion in links is
minimized.

4.2.2 Central Challenge of SDN-enhanced MPI

The central challenge in realizing a practical SDN-enhanced MPI lies in a coordination
mechanism between the application and network control. Although the previous works
on SDN-enhanced MPI have shown the feasibility of accelerating individual primitives
as described in Section 4.2.1, actual MPI applications have not yet taken the advantage
of network programmability brought by SDN, since each of the distinct network control
algorithms designed for an MPI primitive cannot be activated along with the execution of
an MPI application. In other words, no mechanism exists that conveys the type and option
of the MPI primitive being executed at the moment by an application to the network
controller in charge of acceleration of the corresponding primitive.

This chapter aims at realizing a software-defined coordination mechanism to perform
network control in synchronization with the execution of an application. Furthermore,
the following technical requirements must be fulfilled by the mechanism:

• Low overhead: The overhead incurred by the proposed coordination mechanism
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should not degrade the communication performance of MPI, since the final goal is
to improve the total performance of the MPI application.

• Interoperability with hardware OpenFlow switches: This research places emphasis
on developing a practical implementation that works on computer clusters. There-
fore, the mechanism should work on actual hardware OpenFlow switches, and
should not be limited to software switches or specialized hardware.

• Compatibility with existing MPI library: To mitigate the cost to port the existent
MPI applications on SDN-enhanced MPI, the existent MPI applications should
work on SDN-enhanced MPI without the source code being modified or recompiled.
Compatibility with existing MPI implementations is essential for the portability of
applications.

4.3 Proposal

4.3.1 Basic Idea

The basic idea of UnisonFlow is to embed MPI context information as a tag into each
packet released through the MPI library and handle packets based on their tags in switches.
The tag is stored in the header field of each packet. In this dissertation, MPI context
information is defined as a collection of application-aware data which identifies an
communication of an MPI communication primitive. Specifically, an MPI primitive type,
source/destination rank and communicator constitute the MPI context information.

A straightforward approach to realize application-aware network control is to enhance
the packet processing feature of OpenFlow switches in a way that switches can read
the application-layer information from packets and then make decisions based on that
information. However, this approach requires significant alteration to the switch hardware
itself and the OpenFlow protocol, because packet processing on switches is mostly
performed on fixed dedicated hardware components. The proposed mechanism stores the
application-layer information into a header field of packets so that OpenFlow switches
can perform application-aware packet flow control.

Technologically, the tag is embedded into the destination MAC address field of the
packet header field. The location of the destination MAC address field in a packet and

69



� Coordination Mechanism of Communication and Computation

Ethernet Header IP Header TCP Header MPI Message Ethernet Trailer

Destination MAC Address Source MAC Address Ethernet Type

Communicator ID Collective Type

12 16

Source Rank

32

Destionation Rank

48

Figure 4.1: Tag Information Embedded in a Packet

the binary layout of a tag are shown in Fig. 4.1. Two main reasons exist for using the
destination MAC address header field. The first reason is that the MAC address is defined
as one of the header fields that can be used as a matching condition in OpenFlow. In
other words, there is no need to extend or modify existing OpenFlow switches to support
this header field. The second reason is explained from the advantage in the number of
installable flow entries. Although there are header fields other than the destination MAC
address that can be used as a matching condition in OpenFlow, switches are typically
equipped with a special hardware dedicated for L2 header field lookups. As a result, more
flow entries that include only L2 header fields can be stored than the flow entries with
other header fields.

4.3.2 Architecture

Overview

Figure 4.2 illustrates an overview of UnisonFlow. In this research, it is assumed that a
computer cluster executes a single MPI application because the target of this research is
the acceleration of inter-node communication in MPI. The operating system of compute
nodes is assumed to be Linux.

Three major software modules that constitute this architecture (bold rectangles in
Fig. 4.2) have been developed. The first module is the Interconnect Controller, which is
basically an OpenFlow controller responsible for installing flow entries into OpenFlow
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Figure 4.2: Overall Architecture of UnisonFlow

switches. The interconnect controller was developed based on the Ryu SDN controller
framework [29]. The second module is the Tagging Kernel Module. It was designed and
developed to reside in the kernel space of each compute node. The role of the tagging
kernel module is to extract MPI context information from each packet emitted by the
MPI library, encode this context information as a tag and then apply it to the packet. The
third module is the Customized MPI Library, which was designed and implemented to
be dynamically linked with the MPI application. MPICH [69], an implementation of
MPI library, was extended so that it meets our needs. Specifically, it was enhanced to
communicate with the tagging kernel module and to send active connection information
to the kernel module.

Intra-node architecture

On each compute node, the tagging kernel module and MPI library is deployed to work
together to embed MPI context information as a tag into each packet. The kernel module
performs the actual tagging procedure, whereas the MPI library provides the kernel
module with complementary information used for filtering out non-MPI tra�c.
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As described in Section 4.3.1, UnisonFlow exploits the destination MAC address field
of a packet as a place to store the corresponding tag. To implement this embedding of a
tag to the destination mac address field, a functional component that dynamically rewrites
MAC address fields of packets is essential.

Three potential technical solutions have been considered for implementing the functional
component on the Linux kernel: (1) ebtables, (2) raw socket and (3) protocol handler [35].
Ebtables is a widely adopted L2 packet filter implemented on top of the netfilter framework.
It mainly features L2 packet filtering and Network Address Translation (NAT). Raw
sockets are special type of sockets that give user space programs access to the whole
packet including protocol headers. TCP/UDP sockets only allows user space programs
to read or write TCP/UDP payloads, whereas raw sockets allows programs to read and
write TCP/UDP, IP and Ethernet protocol headers. In exchange for the high flexibility, the
user space program has the full responsibility to handle the network protocol correctly.
Protocol handlers are used to implement new network protocols in the Linux kernel. The
network stack of Linux kernel is designed to be extensible so that new network protocols
can be added relatively easily. New protocols can be implemented by protocol handlers,
which are essentially callback functions that are invoked when a packet is sent or received.
When implemented in a loadable kernel module, protocol handlers can be added without
recompiling the kernel.

Out of these potential solutions, the protocol handler has been adopted because it
can achieve both flexibility in rewriting of the packets depending on their payload and
minimal alteration to the MPI library. As previously described, ebtables has a MAC NAT
feature. However, it has a limitation where the MAC addresses can only be translated
to pre-configured addresses. On the other hand, the use of a raw socket results in an
extensive modification of the MPI library, since it requires the MPI library to handle the
TCP/IP stack. In contrast to these two methods, the use of the protocol handler facilitates
the interception of packets in the network stack of the kernel and arbitrary modifications to
those packets. For this reason, re-implementing another network stack can be avoided by
utilizing the existing network stack of the kernel. Moreover, the whole packet including
header and payload can be read and written by the protocol handler for dynamically
rewriting the MAC address fields of packets.

Figure 4.3 illustrates how MPI packets are processed on a compute node. The solid
arrows represent packet flows generated by an MPI application. The dashed arrow
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represents interaction between software modules.
Once the tagging kernel module is loaded into the kernel space at the boot time of the

Linux operating system, the kernel module registers its own protocol handler to the kernel
using the dev_add_pack API. This protocol handler is called every time a packet is sent
out from the network stack to the Network Interface Card (NIC). Intercepted packets
sequentially undergo three major phases of packet processing, which are performed by
the following three components (bold rectangles in Fig. 4.3), respectively:

1. MPI packet filter: Packets generated by SSH, remote file systems, and any other
programs other than MPI are immediately forwarded to the NIC. To investigate
whether a packet originates from MPI or not, this component looks up the peer
table maintained by the tagging kernel module and verifies if the packet is a part of
the TCP connections opened by the MPI library. The peer table is designed as a
hash table of all TCP connections to other processes opened by MPI. The 4-tuple
(source IP, destination IP, source port and destination port) of each packet is used to
identify a TCP connection.

2. MPI context information extractor: This component extracts the MPI context
information from packets by reading and parsing their message envelope. The
message envelope is essentially a header prepended to every MPI message by the
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MPI library for identification. Although the message envelope is prescribed in the
MPI specification [19], its actual binary layout is implementation-dependent.

3. Tag writer: This component encodes the context information extracted in the
previous phase as a virtual MAC address and writes it into the packet. The virtual
MAC address is generated by packing the components of MPI context information
into the binary format shown in Fig. 4.1. Technically, the MAC addresses of packets
can be modified by simply overwriting the specific position of the sk_buff structure,
which is the internal representation of network packets in the kernel.

As described, the tagging kernel module maintains the peer table to keep track of all
connections opened by the locally-running MPI process to other MPI processes running
on remote compute nodes. In order to update the content of the peer table in accordance
with the internal information of the MPI library, the MPI library has been enhanced to
provide this information to the kernel module. As the communication channel between
the MPI library and kernel module, the ioctl system call has been leveraged. These
modifications have been made so that functional compatibility with the original MPI
library is guaranteed.

Inter-node architecture

Switches composing the interconnect forward packets based on their tag value. These
forwarding rules are stored in the form of flow entries and managed by the centralized
interconnect controller.

The decision on how a packet is forwarded is made by the MPI primitive module, which
is a pluggable software component integrated into the interconnect controller. A unified
interface between the MPI primitive module and the interconnect controller is defined
for simplified development and integration of primitive modules. Each MPI primitive
module is expected to be designed dedicatedly for a single type of MPI primitive.

Figure 4.4 illustrates an example of the packet flow between two remote compute nodes.
When the interconnect controller receives a packet-in message caused by an unmatched
packet (step 1), the controller decodes the tag embedded in the packet and extracts the
MPI context information (step 2). After that, the responsible MPI primitive module is
invoked with the context information as its input (step 3). The MPI primitive module
determines how a set of packets carrying the same context information should be treated.
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Based on this decision, flow entries are generated and then installed to relevant switches
(step 4).

Note that NICs drop incoming packets whose destination addresses are not the address
of NICs unless they are put into promiscuous mode. Therefore, the destination MAC
address of tagged packets needs to be restored to the true MAC address of its receiver
node. This restoration is achieved by appending an action for changing the MAC address
field to the flow entry installed on the switch adjacent to the receiver node.

4.4 Evaluation

Two experiments are conducted to examine the feasibility of UnisonFlow. In the first
experiment, the control of the interconnect is investigated in terms of whether it is
properly synchronized with the execution of the application. In the second experiment,
the overhead imposed by UnisonFlow is evaluated.

4.4.1 Experimental Environment

Both of the two experiments were conducted on the SDN-enabled computer cluster
shown in Fig. 4.5. For the topology of the interconnect, a two-tier fat-tree composed of
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six switches was adopted because a fat-tree is one of the most widely used topologies
for today’s cluster systems. Note that each of the two physical switches was divided
to three logical switches due to the limited number of available OpenFlow switches in
our institution. In the following discussion, the two upper layer switches are referred
to as spine1 and spine2, whereas the four lower layer switches are referred to as leaf1,
leaf2, leaf3 and leaf4, respectively. Spine switches and leaf switches were connected
on 4 Gbps links, each of which was an aggregated link of four GbE links. Six compute
nodes were connected to a leaf switch; that is, 24 compute nodes in total. These compute
nodes are hereinafter referred to as node01 to node24. Leaf switches and compute nodes
were interconnected with Gigabit Ethernet. A management node accommodating the
interconnect controller was also prepared.

For SDN switches, NEC ProgrammableFlow PF5240 has been adopted. The compute
node was a SGI Rackable Half-Depth Server C1001 equipped with the hardware and
software as shown in Table 4.1.

4.4.2 Verification of Coordination Mechanism

The first experiment was conducted to verify whether the dynamic control of packet
flows on the interconnect was performed in synchronization with the execution of the
application. To verify the synchronization between interconnect control and execution
of the application, an MPI application which sequentially executes two di�erent MPI
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Table 4.1: Specifications of Compute Nodes

Name Spec

CPU Intel Xeon E5-2620 (2.00 GHz, 6 cores) ⇥ 2
Memory 64GB (DDR3-1600 8GB ⇥ 8)
Network Gigabit Ethernet
OS CentOS 7.2
Kernel Linux 3.10
MPI Library MPICH 3.1.4

primitives has been developed. The interconnect controller applies di�erent routing
strategies for each primitive as MPI primitive modules. The packet flow on the interconnect
was observed using the port counters of switches to verify if the interconnect control can
successfully switch from one to another when the MPI primitive executed changes.

The detailed experimental setup is as follows. The MPI application executes an iteration
of MPI_Bcast followed by another iteration of MPI_Reduce. List 4.1 shows a simplified
source code of this application. The process with rank 0 is specified as the root process
for both MPI_Bcast and MPI_Reduce. The rank 0 process is configured to run on node01,
which is connected to switch leaf1. Furthermore, the MPI application records the time
where each of the following three events occurs: the start of the MPI_Bcast iteration (t1),
the start of the MPI_Reduce iteration (t2) and the finish of the MPI_Reduce iteration (t3).
This timing information is used to investigate the relationship between the execution of
the MPI application and the tra�c change in the interconnect.

Each MPI primitive is repetitively executed because a single invocation of these
primitives completes too quickly to observe the tra�c change. The port counters of
PF5240 are updated approximately once a second. This update frequency implies
that instant tra�c changes happening in less than one second cannot be precisely
observed. Since a single invocation of MPI_Bcast or MPI_Reduce finishes in the order of
milliseconds, each primitive is repeated to make its total execution time longer so that the
tra�c change can be observed using port counters.

Under the interconnect topology of this experimental environment, there are always
two possible paths between any two di�erent leaf switches. One path contains spine1
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Listing 4.1: Source code of MPI application
1 #include <mpi.h>
2 #define BUF_SIZE (1000)
3 #define REPEAT_COUNT (10000)
4
5 char send_buf[BUF_SIZE];
6 char recv_buf[BUF_SIZE];
7
8 int main(int argc , char** argv) {
9 MPI_Init(&argc , &argv);

10
11 /* Record current time as t1 */
12
13 /* MPI_Bcast */
14 for (i = 0; i < REPEAT_COUNT; i++) {
15 MPI_Bcast(send_buf, BUF_SIZE, MPI_CHAR, 0,
16 MPI_COMM_WORLD);
17 }
18
19 /* Record current time as t2 */
20
21 /* MPI_Reduce */
22 for (i = 0; i < REPEAT_COUNT; i++) {
23 MPI_Reduce(send_buf, recv_buf, BUF_SIZE,
24 MPI_CHAR, MPI_SUM, 0,
25 MPI_COMM_WORLD);
26 }
27
28 /* Record current time as t3 */
29
30 MPI_Finalize();
31 }
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(e.g. leaf1–spine1–leaf2) and another path contains spine2 (e.g. leaf1–spine2–leaf2).
The interconnect controller was deployed with a routing strategy that assigned paths
utilizing spine1 to the tra�c generated by MPI_Bcast. In contrast, the tra�c generated
by MPI_Reduce was set so that it went through spine2. Note that spine switches are
never utilized by tra�c between two compute nodes under an identical leaf switch. As a
representative implementation of conventional networking architecture, an SDN controller
was employed with a Equal Cost Multi Path (ECMP) routing strategy. To observe the
tra�c change in the interconnect, a measurement module that periodically (every two
seconds) gathers and reports transmitted and received bytes of every switch port was
integrated into the interconnect controller. Based on these port counter values, the
throughput of the transmitted tra�c and the received tra�c of each port was calculated.

Figure 4.6 shows the change of throughput observerd at the ports of switch spine1.
The four plots on the left column (Fig. 4.6 (a)) show the observed throughput when using
ECMP, where as the four plots on the right column (Fig. 4.6 (b)) show the throughput when
using the proposed mechanism. Each row corresponds to a port of switch spine1. For
example, the plots in the first row show the throughput measured at the port connected to
switch leaf1. In these plots, the time of event occurrences recorded by the MPI application
(t1–t3) are marked with vertical dotted black lines. The temporal synchronization between
throughput change and event occurrences was made by using timestamps. Figure 4.7
shows the observed throughput at switch spine2 in the same manner as Fig. 4.6.

When using ECMP, Figs. 4.6 (a) and 4.6 (a) indicate that both spine1 and spine2 were
utilized during the execution of MPI_Bcast and MPI_Reduce as a result of load balancing.
However, there is some inequality in the utilization of two spine switches. This inequality
is because ECMP distributes the tra�c workload not on the basis of not packets, but on
flows.

MPICH, which is the MPI library used in UnisonFlow, has optimized implementa-
tions for collective communications like other MPI libraries. In particular, under the
environment of this experiment, MPI_Bcast uses the binomial tree algorithm while
MPI_Reduce uses the Rabenseifner’s reduce algorithm [66]. As a result, MPI_Bcast
is not a simple repeated point-to-point communication from the root process to other
processes, but involves communication between non-root processes. For instance, the first
plot in Fig. 4.6 (a) indicates how the tra�c between spine1 and leaf1 changes. In detail,
spine1!leaf1 shows the outgoing tra�c from spine1 to leaf1, which is the aggregated
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tra�c from the compute nodes under leaf2–leaf4 to the compute nodes under leaf1. In
contrast, leaf1!spine1 shows the incoming tra�c to spine1, which is the aggregated
tra�c from compute nodes under leaf1 to other compute nodes under leaf2, leaf3 and
leaf4.

Figures 4.6 (b) and 4.7 (b) reveal the change of throughput when using the proposed
mechanism. At t1 where MPI_Bcast started, both incoming and outgoing tra�c observed
at the ports of spine1 rise steeply, while there is no clear growth of throughput at the
ports of spine2. This result indicates that only spine1 was utilized during the execution of
MPI_Bcast. When MPI_Bcast finished and then MPI_Reduce started at t2, a sharp fall of
throughput at spine1 was observed, whereas a rapid uptake in the throughput at spine2
was observed. After that, a sharp drop of throughput at the ports of spine2 was observed
immediately when MPI_Reduce finished (t3). This measurement result indicates that only
spine2 was utilized during the execution of MPI_Reduce. Based on these observations, it
is confirmed and verified that the network control is successfully synchronized with the
execution of the MPI application.
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4.4.3 Evaluation of Overhead

The primary source of the overhead incurred by the proposed mechanism is considered to
be the tagging kernel module, because it requires per-packet inspection and modification
over all packets emitted from a compute node. Additionally, rewriting the destination
MAC address header field in the switches to restore the true MAC address can also be
a source of overhead. In order to evaluate the total overhead caused by the proposal,
the communication performance of point-to-point MPI primitives between node01 and
node02 was measured using the OSU Micro-Benchmark Suite 5.3 [4], a widely adopted
micro-benchmark for evaluating MPI communication performance. The result were
compared with and without the proposed mechanism. The reason for measuring the
performance of not collective communication but point-to-point communication is to
remove unwanted influence from complex algorithms and communication patterns of
collective communications. The osu_bw benchmark and osu_latency benchmark included
in the OSU Micro-Benchmark suite were used to measure the bandwidth and latency,
respectively.

Figure 4.8 shows a comparison of the throughput observed between node01 and node02.
Figure 4.9 shows the comparison of latency for the same compute node pair. The plots in
Figs. 4.8 and 4.9 represent the average of 500 measurements and 50,000 measurements,
respectively. Figure 4.10 shows the relative latency when using the proposed mechanism
compared to the latency without using the proposed mechanism. These plots indicate that
performance degradation imposed by the proposed mechanism is practically negligible
for both bandwidth and latency.

It should be noted, however, that Fig. 4.10 reveals a fluctuation in the latency. In
particular, using the proposed mechanism resulted in a smaller latency than not using the
proposed mechanism when the message size was 50–100 bytes. This is considered to be
arising from the high jitter (i.e. variation of latency) caused by the network stack. Unlike
InfiniBand that employs aggressive hardware o�oading and kernel bypassing to reduce
the latency and jitter of communication, TCP/IP over Ethernet is mostly implemented in
the kernel. Therefore, the latency of TCP/IP communication is a�ected by the context
switching and task scheduling of the kernel, which results in high jitter.

This experiment only evaluated the performance of point-to-point primitives. However,
the fact that collective primitives are often implemented using multiple point-to-point
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primitives [59, 62] implies that the overhead of the proposed mechanism is negligible for
collective primitives as well.

4.5 Related Work

Several studies [16, 28] have been carried out to incorporate application-awareness into
SDN. An extension to Open vSwitch and OpenFlow has been proposed [28] to realize an
application-aware data plane. This extension adds flow tables with application-specific
actions to the packet processing pipeline of Open vSwitch. Although this method covers
most network applications, it is not able to e�ciently read and process the payload of
a packet because the flow matching mechanism has not been modified from the plain
OpenFlow design. Thus, only pre-defined header fields can be used as matching criteria.
Moreover, applying this method to bare-metal computer clusters is challenging because
the hardware switches are out of the focus. The packet processing pipelines of commercial
hardware switches cannot be modified since they are implemented using unmodifiable
hardware. In contrast, the research summarized in this dissertation supports the existing
hardware switches and per-packet inspection.

An application-aware routing scheme for big data applications has been presented
in [16]. This routing scheme maintains a global view of the network topology and link
usage. Based on this global view, the network controller dynamically allocates a path
for each Hadoop network flow so that congestion is avoided and network utilization is
increased. Experiments demonstrated that the application-aware SDN routing significantly
improved the speed of the shu�e phase in Hadoop, in comparison with conventional
routing mechanisms such as ECMP and Spanning Tree. The concept of optimizing
the packet flow in the interconnect based on application-layer information is similar to
SDN-enhanced MPI. However, the scheme to synchronize flow installation and a Hadoop
job has not been clarified in this research.

Hybrid Flexibly Assignable Switch Topology (HFAST) [56] interconnect architecture
tailors the interconnect topology to meet the communication requirements of di�erent
applications. This is achieved by utilizing reconfigurable optical circuit switches to
dynamically provide the connection between packet switches. Additionally, a process
allocation algorithm optimized for HFAST architecture is also presented. HFAST
architecture can reduce required hardware resources compared to conventional fat-tree
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interconnects. The research summarized in this dissertation is di�erent from this research
in terms that a technical design to extract communication patterns from applications and
convey such information to the network controller in real-time is exhibited.

A software-defined multicasting mechanism for MPI has been presented in [21]. This
mechanism o�oads collective MPI primitives to programmable NICs and OpenFlow
switches. This method heavily depends on specialized hardware such as NetFPGA,
whereas the proposal in this dissertation is software-based.

Multi-Protocol Label Switching (MPLS) and UnisonFlow share the similar idea of
eliminating the need to examine packet payloads by encoding the upper layer information
into fixed-length tags that are processable by hardware. However, to the best of the
author’s knowledge, no work has tackled to integrate MPI with label switching networks.

4.6 Conclusion

This chapter proposed UnisonFlow, a software-defined coordination mechanism for SDN-
enhanced MPI that performs network control in synchronization with the execution of an
application. The proposed mechanism is characterized by a kernel-assisted approach to
tag packets that are emitted from compute nodes with the MPI context information of each
packet. Experiments conducted on a computer cluster have verified the synchronization
between network control and the execution of the application. Moreover, evaluation
experiments have indicated that the overhead incurred by the coordination mechanism is
practically negligible.

There are still issues to be addressed in the future. First, SDN-enhanced MPI primitives
developed in our previous work [23, 30] need to be adjusted as MPI primitive modules
on the interconnect controller and tested to see if they are accelerated compared to
conventional MPI primitives. Second, performance evaluation using real-world MPI
applications is necessary. Although some individual SDN-enhanced MPI primitives and
UnisonFlow as the coordination mechanism of message-passing communication and
computation have been developed, it is still unclear how these elements can accelerate a
practical application as a whole. Finally, how this architecture can be adopted to a computer
cluster simultaneously running multiple jobs, which is common in practical deployments,
needs to be investigated. Since the current implementation of the UnisonFlow assumes
only one job running at the same time on a node, it needs to be enhanced to support
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multiple concurrent jobs. This enhancement might involve an integration with the job
scheduler.
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5 Conclusion

5.1 Concluding Remark

The inter-process communication of applications running on cluster systems show
distinctive patterns. However, in contrast to the application-dependent communication
pattern, the interconnect is inherently designed in an application-agnostic manner because
a real-world cluster is usually shared by many users and each user runs various applications.
As a result, the imbalance in the packet flow on the interconnect can take place under
particular combinations of communication pattern and interconnect. This imbalance can
lead to tra�c congestion on links in the interconnect, which lowers the throughput of
communication and degrades the total application performance as a result.

This dissertation tackled this imbalance problem by taking the strategy of adapting the
interconnect to the communication pattern of applications. Traditionally, such dynamic
adaptation of the interconnect has been deemed infeasible due to the lack of a networking
architecture, technology, or technique that allows flexible and dynamic reconfiguration.
However, the recent emergence of programmable networking architectures exemplified
by Software-Defined Networking (SDN) has opened up the possibility to realize such
adaptation. This dissertation aimed to overcome this shortcoming of conventional
application-agnostic interconnects by establishing a programmable interconnect control
that dynamically controls the packet flow in the interconnect based on the communication
pattern of applications.

The following three challenges have been tackled to achieve the goal described above:
(1) analyzing the packet flow in the interconnect, (2) accelerating MPI communication
by dynamically controlling the packet flow in the interconnect, and (3) coordinating the
execution of application and interconnect control.

To address the first challenge, Chapter 2 proposed PFAnalyzer, a toolset for analyzing
the packet flow in the interconnect. When designing and implementing an e�cient
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programmable interconnect control, researchers need to conduct a systematic analysis
over many combinations of applications and interconnects. Since performing such an
analysis on a physical cluster is time-consuming, this dissertation has chosen the strategy
of using simulation to facilitate the analysis. The proposed toolset is a pair of tools:
an interconnect simulator specialized for programmable interconnects, and a profiler to
collect communication pattern from applications. PFSim has allowed researchers and
designers working on interconnects to investigate possible congestion in the interconnect
for an arbitrary cluster configuration and a set of communication patterns extracted
by PFProf. In the evaluation, the accuracy of the simulation results obtained from
PFSim was assessed. Furthermore, how PFAnalyzer can be used to analyze the e�ect of
programmable interconnect control was demonstrated.

To address the second challenge, Chapter 3 proposed a framework to accelerate MPI
collectives by dynamically controlling the packet flow in the interconnect. Message Passing
Interface (MPI) is a standardized inter-process communication library widely used to
develop parallel distributed applications for clusters. Out of the communication primitives
provided by MPI, this dissertation focused on accelerating collective communication
because it usually occupies a significant fraction of the execution time of applications.
The network programmability provided by Software-Defined Networking was integrated
into MPI collectives in such a way that MPI collectives were able to e�ectively utilize the
bandwidth of the interconnect. In particular, this dissertation aimed to reduce the execution
time of MPI_Allreduce, which is a frequently used MPI collective communication in many
simulation codes. The speedup of MPI_Allreduce when using the proposed collective
acceleration framework was evaluated.

To address the third challenge, Chapter 4 proposed UnisonFlow, a software-defined
coordination mechanism that performs interconnect control in synchronization with the
execution of applications. In real-world applications, the communication pattern changes
with the execution of application. For the reason, a mechanism to coordinate packet flow
control and execution of application is essential for the adaptation of the interconnect
to the time-varying communication pattern of real-world applications. UnisonFlow was
proposed as a kernel-assisted mechanism that realizes such coordination on a per-packet
basis while maintaining significantly low overhead. Evaluation shown in Chapter 4
verified that the interconnect control was successfully performed in synchronization with
the execution of the application and the overhead imposed by the coordination mechanism
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was small.

5.2 Future Work

In this dissertation, it was assumed that only a single job is executed on the cluster.
However, a production cluster usually executes multiple jobs simultaneously. Therefore,
the proposed programmable interconnect control should be enhanced to support multiple
concurrent jobs on a cluster. This enhancement is a challenging task because of the
following two reasons. First, the interconnect control needs to be coordinated with the
scheduling of jobs. In other words, the interconnect control needs to be triggered each
time a job starts and a job exits. Such coordination could be realized by integrating the job
scheduler with the interconnect controller. Second, inter-job interference of packet flow
needs to be considered. The coexistence of multiple jobs on a single cluster implies that
the packet flow generated by di�erent jobs may share a single link. Under such situation,
the packet flow generated by a communication-intensive job could occupy the interconnect
and degrade the communication performance of other jobs. In fact, researchers have
reported a significant performance variability of jobs on production clusters caused by
the interference of packet flow between di�erent jobs [32]. Therefore, the programmable
interconnect control should globally optimize the packet flow in the interconnect while
considering the communication pattern of each job and the interference between jobs, so
that all jobs can equally benefit from the interconnect control.

Due to the limited scale of the cluster that was available for the experiments, the
scalability of the proposed programmable interconnect control has not been thoroughly
investigated yet. There are mainly two challenges in applying the programmable
interconnect control to large-scale clusters composing of large number of compute nodes.
The first challenge is the concentration of load on the interconnect controller. As described
in Section 1.1.6, a centralized controller oversees the entire network in SDN. This design
inherently poses a limit in the scale of the cluster since the work that needs to be performed
by the controller, such as monitoring the state of the interconnect and exchanging control
messages with the switches, dramatically increases with the number of compute nodes in
the cluster. To overcome this limitation, multi-controller architecture [6] may be utilized.
Under the multi-controller architecture, the network is managed by multiple controllers
working cooperatively. The second challenge is the limit of flow entries that a switch can
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handle. The number of flow entries that need to be installed on each switch increases
rapidly with the number of compute nodes composing the cluster. However, the number
of flow entries that can be stored in the TCAM of an SDN switch is limited. This problem
might be solved by merging redundant flow entries or evicting rarely matched flow entries
from switches.
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