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In [3] we considered those finite groups G having a standard subgroup 4,
such that my,(C;(A4))>1 and A[Z(A) is of known type. The goal of this paper
is to settle certain ambiguities that were not dealt with in [3]. In the case
A==G,(4) we showed that G was “of Conway type”, although we did not actually
prove that G==Co,. For the case A/Z(A)=<L,(4) we appealed to the results of
Nah [7] to conclude that <4°>=Suz or He. However, there were errors in
[7] which put the results in question. Our main result is the following:

Theorem. Let A be a standard subgroup of the finite group G. Suppose
that my(Cy(A)>1 and A|Z(A)==Ly(4) or Gy4). Then one of the following
holds:

1) A<KG;

il) A=G,4) and <A°>=Co,;

iil) A==Ly4) or SLy(4) and <A°>=Suz or Suz|Zs; or

iv) A|Z(A)=Ly4), Z(A)=Z,X Z,, aand <A®y=He.

The method of proof is to choose certain 2-groups in AC¢;(A4) and push-up
their normalizers. Eventually, we determine the structure of the centralizer
of a central involution at which point we can quote an appropriate recognition
theorem.

Throughout the paper we use the following notation. A is a standard
subgroup of G, RESyl,(C¢(A)) and m(R)>1. We assume AHG and that
G is a minimal counterexample to this theorem.

Much of the mathematics in this paper was completed at the 1979 Summer
Institute on Finite Simple Groups in Santa Cruz, sponsored by the American
Mathematical Society and funded by the National Science Foundation. We
began the project as a result of conversations at the conference with various col-
leagues. Moreover our four weeks in Santa Cruz provided a good opportunity
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for collaboration.

1. Pushing-up and cores

We have A/Z(A)==Ly4) or Gy(4). In the first case let E, F be 2-subgroups
of AR such that R<ENF and such that Z(4)E/RZ(A) and Z(A)F|RZ(A) are
the two Eys subgroups in a Sylow 2-subgroup of RA/RZ(A). If A|Z(A)=G,4),
let A,/Z(A) be the subgroup generated by all long root subgroups in a fixed
system of root subgroups of Gy(4). Then 4,/Z(A4)=SLs(4) and we may choose
corresponding subgroups E and F of 4,R.

The first stage of the development of the 2-local structure of G is concerned
with the groups Ng(E) and Ng(F). In this section we study these groups and
make certain other observations that apply to each of the possible configurations.
In later sections we look at individual cases.

(1.1) (i) R is elementary abelian.
(ii) There exists g& G—N(A4) with R*<C(R). For any such g, RE*<AR.

Proof. The second assertion in (ii) follows from (20.1) of [2]. The rest of
(ii) then follows from (3.3) of [3]. Also, (3.2) of [3] gives (i).

(1.2) Let X be a quasisimple group with Z(X) an elementary abelian 2-group
and X/Z(X)=<L,;(4). Let H/Z(X)and K/Z(X) be the E,s subgroups in a Sylow
2-subgroup of X/Z(X). Then

(i) H and K are elementary abelian;

(i) HNK=Z(HK); and

(ili) Nx(H) (resp. Nx(K)) is the split extension of H (resp. K) by L,4).

Proof. Ny(H)/Z(X) is the split extension of H|/Z(X) by L,(4), and H/Z(X)
is the natural module for L,(4). In particular, Ny(H) is transitive on (H/Z(X))*.
Thus, each coset of Z(X) in H consists of involutions. This proves (i). (ii)
follows from (i) and the fact that (H NK)/Z(X)=Z(HK|Z(X)). (iii) holds
since a Sylow 2-subgroup of a complement to H/Z(X) in Ny(H)/Z(X) is con-
jugate to (H N K)/Z(X).

(1.3) (i) R=E,.

(i) RERZ(A)/RZ(A) is a root subgroup of RA/RZ(A), and for suitable
choice of g, it is a long root subgroup.

(iii) If A/Z(A)==G,4), then Z(A4)=1.

(iv) If |Z(A4)] is odd, then R#¢N A=1 provided R? projects to a long root
subgroup of A/Z(A). '

Proof. (i) follows from (ii). Suppose A/Z(A)==Ly4). Choose g G—N(A)
with RE< AR, and let 1+=x&R?. By (1.2) we have x central in a Sylow 2-
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subgroup, say D, of AR. Then DN(C(A4%)). As D is generated by ele-
mentary subgroups of order 2*|R|, we conclude that D<A¢R¢< C(R?). (ii)
follows. Suppose that |Z(A4)| is odd. Then De&Syl,(AR)N Syl (A¢R?) and
D'=Z(D)NA=Z(D)N A¢. Consequently, (iv) holds.

Suppose A/Z(A)=Gy(4). Then (iii), (ii), and (iv) follow from (8.3),
(8.9), and (8.6) of [3], respectively.

(1.4) Noration. If AJZ(A)==Li4), let A,=A. If A|Z(A)=G,4), then
Z(A)=1 and we let 4, be the group generated by all long root subgroups in a
fixed system of root subgroups of 4. In either case 4, is quasisimple and
A,|Z(A))==Ly4). In the second case A4,=<SL;4). Choose a fixed Sylow
2-subgroup of 4;R and let E/R and F/R be the corresponding E,; subgroups.
By (1.2) and (1.3) E==xF=E, and ENF=Z(EF). Moreover, we may take
g€ G such that ENF=RXR®.

Let Q=E°UFC¢. We will refer to elements of Q as planes, elements of
K€ as points, and elements of (E N F)C as lines.

(1.5) Suppose that | Z(4)]| is odd. Then

(i) E—A is partitioned by its 16 points.

(ii) N(E)=P,(N(E)NN(R)), with P,<IN(E) and P,/Cp(E)=<E,, regular
on the 16 points of E. P;=0(C4(E)) X OyP,).

Proof. By (1.3) (iv) and (3.6) of [3], EN F contains 4 points and the non-
identity elements of these points partition (ENF)—A. Now E contains 5
lines that contain R, these being conjugate under N, (E). This proves (i).

Since R¢ N 4,=1, N4 (E) is transitive on the 15 points of E, other than R.
Since E=E,, E<AfR¢ and N ,(E) is transitive on the 15 points of E other
than Rf., Thus, N(E) is 2-transitive on the 16 points in E. The 16 points
and 20 lines in E form an affine plane, so all but the last sentence of (ii) follows
from Theorem 1 of [8]. Py=[N(E), P,]Cs,(E) and Cp(E)=EO(C¢(E)) with
[O(CH(E)), NA(B)<[OWN(R)), NA(E)I=1, s0 Po—O(C(E)) X OAPy).

(1.6) Suppose |Z(A)]| is even. Then
(i) R<A.
(it) E contains 6 points.
(iif) N(E)/C(E) contains As, the 3-fold cover of 4, as a normal subgroup.
(iv) There is a 3-element acting as an outer diagonal automorphism of A4
and transitive on R¥.

Proof. By (3.6) of [3] E N F contains either 4 points or 2 points. In the first
case we argue as in (1.5) to conclude that N(E) is 2-transitive on the 16 points
of E and there exists D<IN(E) with D inducing a regular normal subgroup on
R°NE. Then [D, E]<IN,(E) and one checks that E=[D, E]X R. Butthen EF
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splits over R, contradicting | Z(A4)| even. Therefore, ENF contains exactly 2
points, E contains exactly 6 points, and (ii) holds.

Let LeSyl(N4(EF)). Then LINGENF), so L stabilizes each of the
two points in ENF. Therefore, RE=[L, ENF]. By symmetry (iv) holds, and
since |Z(A)| is even, R<A, proving (i). Now N(E)N N(R) contains a sub-
group inducing As;X Z; on E, where the Z; factor stabilizes each point in E.
Since N 4¢(E) moves R, we conclude that N(E) induces S; or 4, on the points of
E. Since O¥N(E)) acts irreducibly on E as an Fy-space, and since N(E)/C(E)
contains a normal subgroup of order 3, we see that E may be regarded as 3-
dimensional Fj-space for either 3:A; or AgxXZ; But SLy4)ZA4sXZ; so
the latter case is not possible. This proves (iii).

(1.7) Let X&N¥(E, 2') and Y=C{AY®>. Then either
(1) X=1;o0r
(1) Y/Z(Y)==Suz, He, or Co,, and X=0(C4(4)).

Proof. Suppose X=1. Then X=T', z(X)<N(A), and since 4§ (E, 2")=
{O(C(A))}, X=0(C(A)). Similary, X—O(C(4?)) for each g& N(E). As
N (E)XN(A), (ii) holds by minimality of |G].

(1.8) Suppose G contains a 2-central involution, 2, such that (Cy(2)/OC(2)))
is isomorphic to the centralizer of a 2-central involution in one of the groups

Suz, He, or Co,. Then O(Cy(2))=1.

Proof. We may assume that 2 E is a 2-central involution in N(4), and as
C¢(2)* is 2-constrained, 2z is not conjugate to an involution in R. As E<
N(O4(C(=)), (1.7) imples that O(Cy(2))<O(Cg(L)). Suppose O(Cy(2)) *1, let
X=0(C4(A)) and Y=<A"®>, Then [X, Y]=1.

Suppose RS N(Y?). As [Aut(Y?): Y| <2, RN Y* contains an involution,
r. Then E(Cy(r))==A4, so that X¢<C(4AR). Thus X=X?¢ and Y=Y%. That
is, R fixes precisely one point in Y¢. Now suppose &N(Y?). Then z cen-
tralizes a Y4-conjugate of R?, and it follows from Gleason’s lemma that (R¢®
is transitive on the elements of Y° fixed by 2. But (RC><Y. So 2 fixes a
unique element of Y¢ and the result follows from Holt’s Theorem [6].

For the remainder of this section we operate under the following hypo-
theses:

(1.9) (i) =isa 2-central involution in G;

(ii) There is an extraspecial subgroup X <Cgx(2) such that | X|=27 or
2% and {2> Syl,(C(X));

(iif) X is weakly closed in a Sylow 2-subgroup of Cg(2), with respect
Ce(2); and

(iv) If g€C(2) and m(X N X*¢)>1, then X=X5,
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(1.10) Assume Hypothesis (1.9). Then X is strongly closed with respect to
Cs(2) in a Sylow 2-subgroup of C(2).

The proof of (1.10) will be carried out in a series of steps. Assume the
result to be false.

(1.11) There exists g= C¢(2) such that setting Y=<IX, X¢>, B=N,(X?), D=
Nye(X), and I=X N X?, the following hold:
(i) Y/BD=Ly2"), Sz(2*), or D,, for n odd;
(i1) BD|/I is the sum of natural modules for Y/BD; and
(iif) I<D.
Proof. Use (2.4) of [12].
(1.12) I=Z,, Z,, or Q,.
Proof. This is (iv) of Hypotheses (1.9).
(1.13) IxZ,

Proof. Suppose otherwise and let bars denote images in C(2)/<{z>. We
have m(X)=m(B)+m(X/B)=m(D)+ m(X/Cx(D). Also, m(D)>m(X|B)=
m(X|Cx(D)). For deD?, [X, D]=B=Cx(d), so by (7.6) of [2], B is abelian.
We conclude from these facts that either | X |=2" with m(D)=3, or | X|=2°
with m(D)=4. The first case is out since this would force each 1+deD to
act on X as a b, involution of OF(2), whereas Q#(2) contains no such involutions.

Hence | X|=2°.

Now Y/BD=L,(2*) and BD|I is the natural module, so there exists a
subgroup J <Y such that J induces Zj; on each of B, D, and X/B. Viewing
J < Aut(X), we see that Aut(X)/Inn(X)=03(2), B is a singular 4-space of
X, and D is contained in the unipotent radical of the stabilizer in O3 (2) of B.
Let T be this unipotent radical. Then T* consists of 28 4, involutions and
35 remaining involutions of type a,. Also, T=D X D,, where D,=E, and J
induce Z; on D,. Therefore, D} consists of the 3 4, involutions fixed by Os([])
and J acts semiregularly on the 4, involutions in 7. This is numerically im-

possible.

(1.14) (i) Y=Cy(I)oI if and only if I=Q,.
(i) O(YV)<C().
(iii) If Y=0%(Y)I, then =@,

Proof. If Y=Cy(I) and I=Z, then X<Y<C(I), a contradiction.
On the otherhand, if I==@Q;, then Q=Cq(I)I, so Y=Cy(I)I. Thus (i) holds.
(iii) follows from (i) and (ii), and (1) follows from the fact that Y centralizes
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both I and <2)>.
(1.15) |X:B|=2.

Proof. Suppose false. Then Y/BD is a Bender group and Y=O%Y)L
By (1.14) (iii) /=@, and by (1.14) (i) Y=Cy(I)I. Set W=Cy(I) and V=WNX.
Then m(V)=4 or 6, and one of the following holds:

(a) | X| =25 W|Oy(W)==Ly(4), and O,(W) the natural module; or
(b) | X|=28 W|O(W)==L,8), and O,(W) is the natural module; or
(€) |X|=28 W|O(W)==Ly(4), and O,(W) is the sum of two copies of

the natural module.

Set E=DNW and consider the action of E on X. Since E<XC(I), either
E<O0#(2) or EXO¥(2), according to | X|=26 or 28, If (b) holds, then E con-
sists of &, involutions in O7(2), whereas Qf(2) contains no &, involutions. If
(c) holds then E=E,; and E<C(B). Since B is a 4-space in the 6-space V, E
centralize a proper non-degenerate subspace of V. However, m(O*(l, 2))<4
for [<6. Therefore, (c) does not hold. Suppose (a) holds. Then Oy(W)=E,,
BN W=<E,, and we may regard E<O{(2). Then each e E*is an a, involution
in 0}(2), and so E<Qf(2)==S,%x.S;. But then E is a Sylow 2-subgroup of
Qi (2), whereas Qf(2) contains ¢, involutions. This is a contradiotion.

(1.16) I=Z,.

Proof. Otherwise 1=, and by (1.15) m(DX/X)=3 or 5, according to
whether |X|=2° or 28, By (1.14) (i), D centralize I, so D<O0%(2), or Og(2),
respectively. But m(O7(2))=2 and m(Oz(2))=4. This is impossible.

(1.17) IxZ,.

Proof. Suppose I=Z,. Then by (1.15), m(D/I)=m—2, m=m(X) while
by (1.11), B/I=Cy, /(D). This is impossible as (Aut(X) N N(I))/C(X/1)==Sp,.-2)
is of 2-rank m—3.

In view of (1.16) and (1.17), the proof of (1.10) is now complete.

2. Suz

In this section we assume that [Z(A4)| is odd and A4/Z(A)==L,(4). That
is A=<Ly4) or SLy(4). We maintain the notation of §1. In addition, we set
P=0,(P,), where P, is as in (1.5). Set Z=ANZ(EF) and S=FCp(RZ|Z).

(2.1) (1) E=Ce(E);

(ii) P/E=Oy(N,(E)/E)=E,; and Py=PxO(C4E)), so P=0,N(E)).
(iii) (SN P)E=E,; and
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(iv) S/E=E
Proof. These are all clear, given 1.5.

(2.2) (i) S=Nps(F);
(ii) |FP|=4.
(iif) S is a Sylow 2-subgroup of C(Z)N C(RZ/Z)N N(E) N N(F).
(iv) |[K(FNA)>| =>4

Proof. Since S/E=E;, EF<1S. The groups E and F are the unique
subgroups of EF isomorphic to Eg, and S<N(E). Therefore, S<N(F).
(i) follows from this and the fact that S/E=N,g,(FE/E). (ii) follows from (i).
Let ST, with T Sylow in C(Z)NC(RZ/Z)NN(E)NN(F). As S is transitive
on the points in RZ, T<SNi(R). But Ny(R)=EF, so (iii) holds.

To obtain (iv) let T={(FNA4)">. Since TE/[E=S|E=<E,, it will suffice
to show that ENA<T. Suppose otherwise and let W=[P,I], where I€
Syly(N4(EF)). P|(ENA) is abelian since N4(E) is transitive on (P/E)}. Thus
|W|=4* and WNR=1. As Z<T and T is I-invariant, T N(EN A)=Z and
T=(FNA)W,, where W;=TNW. As I acts irreducibly on W;/Z and on Z,
W, is abelian. Also W,=TNW<JW. Choosing an appropriate conjugate of F
we obtain W, WY® with W,<IW and W,N W,=1. Therefore, W is abelian.

We show W is elementary abelian as follows. Let fe(FNA)—Z. Let
gEP such that fé=fw,, with w,€W,—Z. As f¢ is an involution, f inverts w;.
If W is not elementary, then |w,| =4 anZ letting g vary, f inverts W,. Now let
f vary and obtain a contradiction.

Consider N=N(W) and let bars denote images in N/WW. The involutions
in WR are in WUE, so R_Gﬂ WR=R". We conclude that N has a standard
subgroup L==I,(4) with ReSyl,(Cx(L)). By [1], E(N)=L,4), A, H], or
My As |W|=2° and 11 does not divide |GL(8, 2)|, E(N)2M,,. Suppose
E(N)=A, Then R~F in N(W) and it follows that R6N A =@, which is not
the case. Next, suppose E(N)=~H]. For f€(FNA)—Z, we have [f, W]=
W,=Cy(f), and f is a 2-central involution of E(N). Viewing N <Aut(W)we
then have E(N)=<{Cx(f)| f €(FNL)—Z><N(W,). This is impossible.

We are left with the case E(N)=L,(4). Clearly, W is weakly closed in
a Sylow 2-subgroup of N(W), and applying Theorem 4 of [5] we conclude that
W is strongly closed in a Sylow 2-subgroup of C. The main theorem of [5]
gives a contradiction.

Define P(F)=0,(N(F)), so that (P, E) is symmetric to (P(F), F). By 2.2
(i) and (iii), S=FC(RZ|Z)=ECp)(RZ|Z).

(2.3) Let xP(F)—S, F,=(E N A)(E*NP), and H=<P, P(F)>. Then
(i) E*NE=Z and S=EE*
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(i) PNS=EF, and E and F, are the maximal elementary abelian 2-
subgroups of PN S. Also E=F,.

(i) FZ={F, Ff} and E*={E, (E*)"}.

(iv) QNS=FfUE#" and N4(S) act on {F¥, E¥}.

(v) H induces 45 on E#.

Proof. LetheP—S. FNF*NE=Zand FNF'<E,so FNF*=Z. Then
|S|=|FF*|, so S=FF". So (i) follows from (2.2) (iii) which guarantees sym-
metry between E and F. (1) implies (ii).

If UNP =1 for some point U in E* then U N F, =1, so as m(F)=:6, USF,
and F, is a plane. On the otherhand if U N P=1 for each point U in E* and
each x € P(F)—S, then {(ENA)’">=F, is of order 64, contradicting 2.2
(iii) and (iv).

So F, is a plane. By (1.3) EN 4 intersects each point of G trivially, and so
F,—(ENA) is partitioned by its points and ENA=F,N A’ for each point
R’<F, F,E<P so by (i), F,<[P. Then P<O?(C(F,NA’) N\ N(F))=P(F,),
so P=P(F,).

Let VV be a planein S. If V<P, then V=E or F, by (ii). Suppose V<LP.
V=0%(Cy(V)),s0 Z<V. As V<LPand P=Cjy(e)forec(ENA)—Z, VN (ENA)
=Z. If VNE +Z, then V contains some point R’ of E, for j& P. Then
RZ<Vi? so Ve F?. This leaves the case VN E=Z. The involutions in
SNP are F§UE*. Hence |F;: VNF,|=4, and as Fy—E is partitioned by
its points, V' N F,is a line. However, P is transitive on the lines in F, through
Z, so VNF,e(E*UF,)*. Tt follows that V'e(E*)". It has now been shown
that

QNS = {E, F} UFFU(E")*.

Notice that (E*)? is precisely the set of V&€SNQ such that VNE=Z,
while FyNF=Z. By symmetry between E and F, {F} UF?=(F)U (F")*®),
for he P—S. 'Therefore, {F} UF’=F¥". By symmetry, E¥={E} U(E*)?, and
so (iii) and (iv) hold. (v) follows from (iii).

(2.4) S is special with Z(S)=Z.

Proof. E|Z<Z(S|Z), so by (2.3) (i), [S, SI<Z. [R,S]=Z so [S, S]=
D(S)=2Z. Z(S)<Cs(R)=EF with Cz(S)=Z, so the lemma holds.

(2.5) Z(SP|Z) = (EN A4)/Z.

Proof. Set SP/Z=SP. Then Z(SP|E)=(SNP)/E so Z(SP)<(SN P)/Z.
Cz(P)=Cr,(P)=(EN A)/Z, since P is transitive on the lines through Z on E
and F,. On the otherhand if ¥& N,(E) is of order 3 then Csnp(x)=R and
[SNP,x]=F,, so as Cz(SP)=1, Z(SP)=[Z(SP), x]<F,. Therefore Z(SP)=
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Cr,(P)=(EN A4)/Z.

(2.6) Choose notation as in (2.3) and set S=5/Z and A(S)=Aut(S)/Cauus)(S).
Then

(i) S is the central product of two copies of the Sylow 2-group of L(4).

(ii) S is an orthogonal space over GF(4) with (5, Z)=0 if and only if
[s,2]=1 and § singular if and only if #=1. Aut(S)NC(Z) preserves this
structure and Cu)(Z) = Of(4). A(S) is Z; X Cys(Z) extended by a field
automorphism of order 2, with O4(A(S)) inducing scalar action on S correspond-
ing to a generator of GF(4). Caus(S)=V=8SxU, where S=U=
Cy(0O4(A(S))JAut(S) and for z€Z% the map 5—>Cy(s<2)) is a Cy5(Z)-iso-
morphism of S with the dual of U.

(iii) H/S=A4; and Cy(S)=Z<Syl,(C¢(S)) and S & Syl,(Cyx(S)).

(iv) H is irreducible on S as a GF(4)-module.

(v) S is the sum of two natural modules for S/H =<4, as a GF(2)-module.

(vi) HIN(S).

Proof. Let S;=<ENA4,FNA) and S,=<I, R}, where I is F;N C(FNA4).
Clearly S, is isomorphic to a Sylow 2-subgroup of L,(4) and this also holds
for S, as S,=IR and [i, R]=Z=2Z(S,) foric[—Z. Moreover, S is the central
product of S, and S,, proving (i). (i) implies (ii); the first two sentences of (1i)
are reasonably clear; we supply a proof of the rest. Let S=T*T, with, T;==.S,.
Let Ey=X;,<T, i,j={1,2}. Each veV?* acts faithfully on some X;;, say
X. As|[v,S8]<Z, veC(Z). This determines V/Cy(X) in GL(X)=<L,(2), and
we find V/Cy(X)<Ey;, and hence |V|<2®. On the otherhand in the split
extension of X;; by L,(2) there is U;; with [U;;, X;3_;1=1=U;;NT;=[U,;, y;;],
[U;;, T]<Z, and U,;=E,, where y;; is of order 3 with Cr,(y;;)=1. Embed
U;; in Aut(S) by taking [U;;, Ts_;]=1; set U=U,;:4,5>. [U;;, U, ]<C(Ty)N
C(T3)=1 for (i,j)=*(r,s), so U is elementary abelian. Similarly U=FEs and
UNS=1. So US=Ezs and as |V|<2® V=US. Let y of order 3 with
(OVIV=04A(S)). Then <y>V|Cy(Xi)=<y:>VICu(Xy), so [y, Ul=1 and
hence U= Cy(y) < Aut(S). Finally let z€Z% If s .S with [U,s] <<{=>,
then as Cy,s)(2) is irreducible on S, [U, S]<<2>, a contradiction. Thus
| U: Cy(s<2>)| =2, completing the proof of (ii).

Since E &€ Syl,(Co(E)), ZESyl(Cs(S)). Co(S)< Ng(R)S and Ny(R)=
EF & Syl,(C4(EF|Z)N N(R)) so SESyl,(Cs(S)). Thus Cyx(S)=XZ, where
X=0(Cyx(S)). By(1.7) X<Z(H). We have |PS/S|=4and PS|S=[PS/S,u],
when u is a 3-element in N ,(S). So by (ii) together with (2.3) (v) and H=0%(H),
we have H/S=A4;. Therefore, (iii) holds.

By (ii) one of the following holds: H/S stabilizes a nonsingular 1-space of
S, HS stabilizes a pair of complementary totally singular 2-spaces of S, or H/S
is irreducible on S. The first two cases do not occur because of (2.5). There-
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fore, (iv) holds, and (iv) implies (v). Finally, (vi) follows from (2.3) (iv) and
(1.7).

(2.7) Choose u=N,(S) with |#|=3 and [E, u]=+1, and let yENg(R)N C(v)
with |y|=3. Then u=xy*, where x| =3, x induces scalar action on S/Z as
an F;-module, and Z=[Z, x].

Proof. Z=[Z,u]and yeC(Z),so u=y. Also, u acts on H and acts non-
trivially on PS/S. Hence u=xy' w th x of order 3 in C(H/S) and i=41. By
(2.6) (v) H<x> acts irreducibly on S/Z as an Fj-module, so Schur’s lemma
shows that x induces an F), scalar on S/Z.

(2.8) Let T,&Syl,(Ne(S)) and Ty=T,/Z. Then
(i) S=J)Ty);
(i) T,=SyL(G); and
(iii) Z<INL(T).

Proof. By 2.6. iii, S=C;(S). Thus if (i) fails there is a nontrivial el-
ementary abelian 2-subgroup U of Autg(S) with |U|>|S: C5(U)|, which
is impossible from the structure of Aut(S) described in 2.6. ii.

Let geNy(T,). We claim Z¢=Z. Either Z=Z(T,), in which case the
claim is clear, or |Z: Z(T,)| =2.

In the latter case, Z(T,)<Z? and Z%/Z(T,)<Z(T\/Z(T,)). But using (i)
and 2.6 (i), we see that Z|Z(T)=Z(T,/Z(T,)). This proves the claim, and so
(ii) follows from (i).

(29) (i) PNQ={E, F{®"¥®™} has order 6.
(ii) PeSyl,(Ce(E N A)).
(iii) Ng(P) is transitive on PN Q.

Proof. Let VEPNQ and B a point of V. Conjugating by N(E) N N(P)
we may take BNS=+1. Then BNS<E or BNS<F, by (2.3) (ii). As each
elementary subgroup of N(R) of rank 6 is a plane through R, B<E or B<F,,
so V=(ENA)B=E or F,. Hence (i) holds.

Clearly PESyl,(Co(ENA)NN(E)). So if (ii) is false there is a 2-element
gENP)NC(ENA) such that Ef+E. Therefore, N(P)?"®=4; or S;. Let
I=N(P)NC(ENA). ThenI®"® 31 andis normalin N(P)*"®, So, [?"> 4,
and this forces S<7, a contradiction. This proves (ii). (iii) now follows from
(i), (ii), and the symmetry between E and F.

(2.10) Q = ES.
Proof. See (2.9) and (2.3) (iii).
(2.11) Set K=0¥Ny(P)). Then



GRouPs WITH A STANDARD COMPONENT OF KNowN TypE, 11 713

(1) K/PO(K)==34,.

(ii) [y, K]I<PO(K).

(iii) P/(ENA) is the natural module for K/PO(K).

(iv) ENA is the natural module for K/PO(K)y>==4,.

Proof. Ng(E)P"® >4, so by (2.9) K" = A, Ng(E) +(Ng(E) N
C(ENA)Kpngso K+=Cx(ENA)Kpng. Hence K/Cx(E N A)==A; acts naturally
on ENA.

(KP)pna=P(Ngp(R)png) while (Ngp(R)png)/O(K)R acts faithfully on RZ,
and hence is a subgroup of E,. Thus KP/PO(K) is a subgroup of Agx E, or
of 344X Z;. Choose y asin 2.7. yENy(R)<N(E)<N(P), while by 2.6 parts
(i) and (v), (ENA)/Z=[P, E|Z]<Cp;;(y) and Cp,z(y) is a complement to R
in Cy(Z). Thus [y, K]<PO(K), so PIENA is a faithful GF(4)-module for
K/PO(K), so K/PO(K)<GL4#4). Then as K/PO(K)<AsX Eqor 344X Z,, the

lemma holds.

(2.12) Let PS> T,&SyL(N(S)). Then
(i) T,eSyL(G);
(i) SP<T=T,NOYNy(P)), |T,: T| <2, and H{x>T|S==S,x 4s;
(i) Z(T)=Z +Z(T);
(iv) ET={E, F)}; and
(v) PLT,.

Proof. (i) is just (2.8) (ii). (ENA)/Z=Z(PS|Z), so ENA<T, Thus
(v) follows from (2.9) (ii). By (2.11) and (1.7), O(N(P))=1Ix O(C(R)) where
ye&l is the split extension of P by Ag/Z,. Let J be the setwise stabilizer in
O N4(P)) of {E,F}. PS<T=T,N JeSyl(J), while with (2.11) (ii),
YO (NLS) N N(P))O(C(A)) contains a Hall 2'-group of J, so J<N(S).
JIOANOCA)=Zx S, with [y, JI<OL)O(C(A)), s0 JHISO(C(R)—Syx 4.
Of course JH=<X)TH. T,JH|S<S;XSs, so |Ty:T|<2. Hence (ii) and
(iv) hold. Finally J induces S; on Z, so Z=+Z(T). On the otherhand
Z(T)< Cyr(S|Z)=S while by (2.6) (i), Z(S|Z(T))=Z|Z(T). Hence (iii) holds.

(2.13) Let K=HT<{x). Then K is the semidirect product of Ng({x}>) with
S and Ng(<x)) is determined up to conjugation in Aut(S), so that the isomor-
phism class of K is determined.

Proof. Cs(x)=1and Cx(S)=Z, so K is the semidirect product of Ng(<{x))
with S by a Frattini argument and we may regard K as a subgroup of W=
Nauws(<x>). Choose notation as in 2.6. ii and set W*=W|U. By 2.6. ii and
(v), and as the 1-cohomology of the natural module for Aj is trivial, U is transi-
tive on the complements to U in UH. Thus it remains to show K* is determined
up to conjugacy in W*, since Cy(H)=1.
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Let tT invert x with £S5 and [H, {]<S. As Cys(t*)" %1, ¢ in-
terchanges the components of W*, and then as ¢ inverts x, t* is determined up
to conjugacy in W*. Then K*=E(Cy«(t*))<t*)<x*> is determined up to
conjugacy in W*.

(2.14) (i) There exists a unique subgroup @ of T isomorphic to the central
product of three quaternion groups and invariant under <y.

(i) Q<HT.

(i) |[ENA4A:ENANQ|=2.

Proof. Let D=Suz. By (2.13) we may take HT<x)><D. Set<{2>=Z(T),
C=Cy(2) and @ =0,(C). Then Q=(Q;)° Set C=C/{z)> and C*=C/Q.
Suppose B< T with B=Q +B. Then B=E,, so |B*|>|Q: Cg(B)|. So as
C* =05(2) acts naturally on @, E;= B*<O,(C+(Z(T*)) with B* = C(B¥).
Suppose <y><N(B). Set Coo(Z(T*))=K* and K=K*|Z(T*). Then Bis a
4-subgroup of K invariant under <{3>, so B=Z(T*) for some k& C(y), or
B*=Q,. As B*=E,, the first case holds. But then B*+C;(B*)=~E,. Thus
@ is uniquely determined.

As QJIC>HT, QHT. (QNS)/Z is an irreducible GF(2)-module of
S|Z of rank 4 for H/S, so (ENANRKQ)/Z=Cyns(P) is of order 2, and (ii1)
holds.

(2.15) Set K=O0%N¢(P)) and <2>=Z(T). Then
(1) TeSylL(K).
(i) ENANQ=Z(T)NENA.
(i) Q<Ck().

Proof. T,<N(K) by (2.13) and T&Syl,(K) from the definition of 7.
By (2.11) (iv), Z(T)NE N A is a hyperplane of ENA. By (2.14) (iii), ENANQ
is a hyperplane of ENA4 in Z,(T), so (i) holds. Then [@, Zy(T)NE N A]<<2),
s0 Q< 0y(Ck(2)) by (2.11) (iv). But Cg(2)= Oy(Cx(2))Ck(<z,y>), and for
g€ Cx(Kz, ), Q*<T and ye N(QF), so Q=Q° by (2.14) (i). Thus Q<ICk(2).

(2.16) Set M=<T"@>. Then M|QO(Z(M))==Qz(2) acts naturally on /<.

Proof. Out (Q)=05(2) with HT/Q a maximal parabolic of E(Out(Q)). So
by (2.15) (iii), Out, (Q)=05(2). C,(Q)=0(M)<z) and by (1.7), O(M)< Z(M).

(2.17) (i) M is transitive on Z¢®@ NQ
(i) N(Z)NC(2) is transitive on the C(g)-conjugates of @ containing Z.

Proof. (2.16) implies (i) and (i) implies (ii),

(2.18) (i) Ny(Z)=HTLx>O(Ny(Z)) with HT<IN,(Z).
(i) If geC(2) and m(Q N Q*)>1, then Q=@*.
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Proof. Set X=N(Z), X=X/Z. Then by (2.8), S=J(T,), so S is weakly
closed in Nx(S). We next show S to be strongly closed. If not by Corollary
4 of [5], there is B<S and g&X such that D=B*<S and for deD—S,
m([S,d])<m(D/DNS). But m([S, £{])>2 for each involution t& Ty— S by
(2.6), so m(D/DNS)>1. Hence by (2.6) there is d&D—S with m([S, d])=4,
so m(D/D N S)>4>m(T,/S), a contradiction.

So S is strongly closed. Now by Goldschmidt’s fusion Theorem [5], and the
action of H on S, SO(X)<X. By (1.7), S<X, so (i) follows from (1.7) and
(2.6).

Choose g as in (ii). Then as m(@NQ*)>1, we may take Z< Q%. So
by (2.17) we may take g&X. Now as Cy(2)=Cy(2)T,0O(N(Z)) with
[HT, O(C(Z))]=1 and Q< Cy(2)T,, Q=8&".

Set X = C(z), X= X[z, Nx(Q)* = Nx(Q)/Q.
(2.19) @ is weakly closed in X.

Proof. If g€X with Q +Q*<N(Q), then Q°*=Ey, so as N»x(Q)*=05(2)
or Q5 (2) acts naturally on @, m(Q NQ%)>1. This contradicts (2.18) (ii).

We can now obtain a contradiction. By (2.18) (i1), (2.19), and (1.10),
Q is strongly closed in Cg(2). So by Goldschmidt’s fusion theorem [5],
QO(X)<1X. Then (2.16) and (1.8) imply O(X)=1, and M<1X. By Theorem
2in [11], and Theorem B of [10], we have <A¢>=Suz, which we are assuming
false.

3. Co,

In this section we assume A4/Z(A4)==G,(4) and obtain a contradiction; we
continue the notation in §1. In particular, let 4,=SL,4) be as in (1.4) and
<x>=Z(A4,). Inaddition we set B=E(Cy(x)) By (1.3) (iii) Z(4)=1.

(3.1) B=3Suz, the covering group of the Suzuki group.
Proof. This follows from (8.14) of [3] and the result established in §2.

Since A4, is standard in B and ReSyl,(Cy(4,)) the entire analysis of §2
applies to the triple (R, 4,, B), replacing (R, 4, G). We will make use of the
subgroups Z, E, F, P, @, and T as defined in §1 or constructed in §2. Then
ENA is the direct product of two long root subgroups of A(or A4,). Let
By=Cy(2)’, for z=Z* Then Q<1B, and B)/Q=Q5(2).

(3.2) Let I=N4,(ENA).
(1) I=D(Jx<x>), where D=0,(I) and J=SL,(4).
(ii) (ENA)=Z(D), D/(ENA) is elementary of order 4%, and D/(EN A)



716 M. ASCHBACHER AND G. SEITZ

is generated by the images of 3 short root subgroups.

(i) Z(DJI(ENA)=UENA)=UENA)(ENA) for U, a short root
subgroup.

(iv) [D,U.]=ENA.

(v) I/D acts indecomposably on D/(E N A).

(vi) I/D acts on D/UENA) as on the natural module for GLy(4).

Proof. These facts are elementary consequences of the Chevalley com-
mutator relations for G,(4).

(3.3) (i) E—(ENA) is partitioned by the sixteen members of R°NE=A.
(i) N(E)=D(N(E)NN(Kx>)). In particular N(E)*=(N(E)NN(x>))*,
Np(E)*<IN(E)*, and Nz(E)* is GLy(4) acting on its natural module.
(iliy P=PD=0,(N(E)N C(E N A))ESyl,(N(E)N C(EN 4)) and P>=P*
is regular.

(iv) Cp(E)=DCH(E)=DXxR.

Proof. (i) is just (1.5) (i). X=N(E)NN(Kx>) is transitive on A, so
N(E)=X(N(E)NN(R)). By a Frattini argument and (3.2) (i), N(E) N N(R)=
DN(R), so N(E)=DX. Now (ii) follows, and implies (iii) and (iv).

(3.4) (i) P=DP with DNP=ENA.
(i) D=[P, x].
(iii) Z(P/(ENA))>U,R(ENA)EN A).
(iv) [P, PI<ULENA).

Proof. By 3.3) (iii), P=DP, while DNP=Cras(F)=ENA. By (i),
[15, x]<D, while by (3.2), D=[D, x], so (ii) holds. J acts on Cp/gn »(P), so
by (3.2), [Us, PJISENA. Of course [P, R]|<EN A, so (iii) holds. Then (3.2)
(vi) implies [P, D]< U4(E N A), while by (3.2) (ii), [D, D]<EN A4, and by (2.11)
(iii), [P, PJ<ENA. Hence (iv) holds.

(35) D = OC4(P)) =Syl (Co(P)).

Proof. We first show that [D,P]=1. Choose Y<Cq(x) such that
| Y|=3, Y is transitive on R* and [R, A]=1 (for example Y=<{y>, with y as in
(2.11)). Then Y x<x)> contains a subgroup Y, of order 3 such that Y, <Cy(4).
Then Y acts on P, [Y;, D]=1 and [Y,, P]=P. Therefore, [P, Y,, D]=[P, D],
[Y,, D, P]=[1, P]=1, and [D,P, Y,]<[D, Y,]=1. By the 3-subgroups lemma,
[P, D]=1.

Finally, Cg(P)< C4(R) so that Cy(P)= C(P)N C(R)= Cp(P)O(C(A4))=
DO(C(A4)) by (1.7), so the lemma holds.

(3.6) Let T,=TNJESyL(J), Vo/(EN A)=C(T)) N D/EN A), and V=[V,, {xD].



GROUPS WITH A STANDARD COMPONENT OF KNowN TypE, 11 717

Then V contains a unique <x)-invariant subgroup @, such that Q,=@; and

Z(Qo)=2Z(Q)

Proof. The action of Jx<{x> on D|(EN A) is easily determined from the
Chevalley commutator relations. The group V, is the product of E N 4 together
with the product of two short root subgroups, where the short roots add to a
long root. Then V is the group generated by these two short root subgroups.

The group V[Z(V)=E,; and Z(V)=Cy(x) is a long root subgroup. Since (x>
acts without fixed points on V/Z(V), <x)> stabilizes precisely five 4-subgroups
of Y/Z. Aside from the images of the two short root subgroups, there are
three subgroups each having preimage containing a unique <{x)-invariant @; and
having center of order 2 in Z(V)=Z. Since Z(Q)<Z, the result follows.

(3.7) (i) T<Cq(Qy).
(ii) Q,Q is extraspecial of order 2°
(i) Q,E Syl (Ce(Q))-
(iv) By<C(Qy).

Proof. By (3.5) and the fact that PT,<1T, we have T<N(V,). Since
also T<C(x), by (3.6), T<N(Q,). As <{x>Xx T acts on @,, we necessarily, have
(1). In particular, @ <C(Q,), proving (ii).

Let C=C¢(Q) and suppose Q. Syl,(C). Consider N¢(, (Q<r>)=N, where
r&R!.  First we claim that @<7> has index at most 2 in a Sylow 2-subgroup
of N. So suppose otherwise and let Y=CNNNC(r). Then |CNN:Y|<2
$0Q,0(Y)<Yand Y<SC(Q)<C(ENANQ). By(2.14)(iii), Y <DRO(C(A))Xx).
By (1.7) Y=(Ka>Oy(Y))xO(Y). Now ARNC(Q)ARNN(Q), so it follows
from (3.2) and Y*=Y, that U,<Y. However, the commutator relations show
U,<£N(Q,), a contradiction. Therefore, the claim holds. We conclude that
N|Qr> has a 2-complement of index 2.

Both N and @QKr)> are invariant under <x>XE. By (1.7) and the above
claim we conclude that |N(<x>)| is divisible by 4. As N(<x))/O(N(<x>))<
Aut(Suz), this is impossible. This establishes (iii).

To obtain (iv) consider the group C. If O(C)=1, the assertion follows
from (1.7) and the structure of Co,. Suppose O(C)=1. If E(C)=1, then
C=QKx> and (iv) holds. If E(C)=1, then 0% (C)=SLy(q) for some ¢=3,5
(mod 8) and [Q,, B,]<[0%(C), B)]=1.

(3.8) Let F=N4QQ)™. Then QQ<F and F/QQ=0:(2).

Proof. By (3.7) \a)XB,<No(QuQ). Let M=0(No(QuQ)/Co(QuQ/<2D))-
Then M <4 (2) and <x> X B, induces a subgroup M isomorphic to Z; X Q5(2).
Easy arguments show that (Z;x Qg(2))<t>=M, is maximal in Q5 (2), where
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T inverts the Z, factor and induces a transvection on the Qg (2) factor. It will
suffice to show that M contains such an element = and M > M;.

To get 7, use the fact that N,({x>) contains an involution inverting x.
Thus M;<M. The argument in the first paragraph of the proof of (3.7) shows
that [V, T]<V. Since <{x) acts irreducibly on V/Q,Z, [V, T]1< Q. Z < QQ.
Hence V< N, (Q,Q) and V induces on @,Q/<z> a subgroup of M not contained in
M,. This proves (3.8).

(3.9) Ny(QQ)/QQLO(Ns(QyQ)=Q5 (2).

Proof. Otherwise <x) X B g> < Cs(x), where g induces a transvection on
Q/{2z>. On the otherhand N;({x>)/O(Ng(<x>)=Aut(Suz), so no such g exists.

(3.10) Cx(Z) contains a normal subgroup S such that

(1) Sis special with Z(é):Z, and $ is the central product of three copies
of a Sylow 2-group of L;(4).

(i) CH(Z)/S=Qi(2) has two noncentral chief factors on $/Z, both of
which are natural.

(i11) Sis weakly closed in NG(SA) with respect to Ng(Z). )

() No(S)/SO(Co($))=5,x0%(2) and CH(Z)O(C(Z))=No($) N C(2).

Proof. F acts on Q,Q/<z> as the natural module for QF(2) and the
image of Z is a singular point. So N(Z)/Q,Q is a parabolic subgroup of Q3(2)
isomorphic to €¢(2) on its natural module. Set U=Cl,(Z) and S= Oy(Cr(Z)).
Then 1<Z4 U<S<1CF(Z) is a normal series with U/Z and $/U the natural
module for CF(Z)/S Qg (2). That is (ii) holds.

Next S=C4(x) and §:S[§, x]. Moreover by 2.6, B,=Cy(Z)" is a subgroup
of F acting as Q;(2) on S/Z as the sum of two natural modules, and S is the
central product of two copies of the Sylow 2-group of Ly(4). Also there is
g€ Cr(Z) with [S 6] < Cs(x%)=S%, so [S, x] is isomorphic to a Sylow 2-group
of L(4). As [S,x, B]=1, S=I[S, B]<C([S, x]). Therefore (i) holds.

V—S/Z is elementary abelian and if g& N(Z) with S*<F and S+ S¢, then
V£V® and m(VE[V N VE)=m(V|V N V) =m(V|Cy(V?¥)), which is impossible by
(i1). Thus S is weakly closed in F with respect to N(Z).

Let j€Q®Q—C(Z) be an involution. Then [Z,j]=z and [}, Cx(Z)]<
CQOQ(Z)<S so j& N(S) and {C(Z), ]>/S Z;x Q¢ (2). However from (i),
Out(S) is the extension of Z;x Og(4) by a field automorphism, so as [Z, j]#1,
J induces a field or graph-field automorphism, and as j centralizes CF(Z)/S it
is the former. In particular C'F(Z)/S E(Out(S)) N C(j) is maximal in E(Out(S)),
so if NG(S)“‘ +Cr(Z), then N(S)*/$=Q¢(4). But then as RZ/Z and (ENn4)|Z
are singular points in S/Z, RZe(ENA)Y <§), contradiction.
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So Ca(Z)=N,(S), and hence by (1.7), Ns(S) N C(Z)=CH(Z)O(N ()},
where either =1 or ¢ induces a GF(4)-transvection on S/Z. In the latter case
t acts on <j, U>=@Q,Q, and (3.9) supplies a contradiction. In particular the
second part of (iv) holds. In addition as Sis weakly closed in F with respect to
N(Z), (iii) holds. There is an element of order 3 in A acting nontrivially on
Z, so by (iii) and a Frattini argument some 3-element in N(SA) is nontrivial on
Z, so that the proof of (iv) is complete.

(3.11) (i) $=04Ci(2).
(ii) Ng(S) contains a Sylow 2-group of G.

Proof. Claim Sis strongly closed in N(SAA) with respect to C(Z). Assume
not. By 3.10, S is weakly closed, while V=>S5/Z is an elementary subgroup of
C(Z)*=C(Z)|Z. So by Theorem 4 in [5] thereis U<V and W= U? <N(V) such
that m([V, w])<m(W/WNV) for each w&W. But by 3.10, m([V, w])>4 for
each involution we N(V)/V, so m(W/WNV)>4. As(N(V)NC(Z)*)|V=Q;(2)
has 2-rank 4, m(W|/W N V)=4 and WV |V=0,(X/V) where X is the stabilizer of
a singular point of V. Now if w& W—V then m(Cy(w))=8, so by symmetry
between V and V%, m(W)>8. Thus m(Cy(W))>m(V N W)>4, impossible as
m(Cy(W))=2.

So the claim is established. Now by Goldschmidt’s fusion theorem [5]
and (1.7) and (3.10) (iv), (i) holds. Moreover if I& Syl,(Ny(Z)), then Z=_Z,(I),
so (3.10) (iii) and (i) imply (ii).

(3.12) Let @, = QQ.
(1) If geC(z) and m(Q,NQ)>1, then Q,=@%.
(ii) @, is weakly closed in a Sylow 2-subgroup of Cg(z).

Proof. Suppose g€ C(z) and m(Q,NQf)>1. By (3.8) we may assume
Z<Q,N &4, and applying (3.8) to N(Qf) we may take g=N(Z). By (3.11) and
(3.10) ()N N(Z)=CHZ)HON(Z) and by (1.7) [O(N/Z)), Ca(Z)D]=1.
Since Cr(Z)<{j><N(Q,) we conclude that g€ N(Q,), proving (i).

To prove (ii), suppose g€ C(z) and QI<N(Q,). By (3.9) Q4Q,/Q.<Q:(2).
If Q4 +Q,, then by (i) m(Q, N Q%)=1, so (@ N Q,)/<z)> is an anisotropic 1-space or
2-space. In the first case m(Q$Q,/Q,)=7 and Q{Q,/Q, is a subgroup of Sp(2),
while in the second case m(Q%Q,/Q,)=6 and Q4¢Q,/Q, is a subgroup of Oz (2).
In either case we have a contradiction.

As in §2 we can now reach a contradiction. By (3.12) and (1.10), @, is
strongly closed in C4(2), so by Goldschmidt’s fusion theorem [5] @,0(Cy(2))<
Ce(2). By (1.7) and (1.8) O(Cg/(2)=1. Finally, (3.9) and Patterson’s theorem
[9] yield G=Co,, which we have assumed to be false.
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4. He
In this section we assume | Z(A4)| is even. By (1.6) Z, X Z,=~Re< Syl,(Z(A4)).

(4.1) (i) N(E)/C(E) contains 34, and induces S5 on R°NE. Similarly for F.
(i) There is an element g of order 3 and an involution y such that
<g,y>=S, and <{g, y)> induces S, on R.

Proof. By (1.6) N(E)/C(E) and N(F)/C(F) contain 34,. By (1.7) N(E)*=
EL, where L=<34; and <{gd=Z(L) acts as an outer diagonal automorphism of
A. Now C,(g)==4s and we may assume that F;=F N C,(g) €Syl,(C,(g)). Set
J=N(F)=8,XZ;. Then EJ]<N(Cy(F,)F,)=N(F).
_ Let bars denote images in N(F)/C(F) and suppose N(F)=34;. Then
EJ=8,xZ, and Z(EJ)=Z(N(F)). This forces <{g>=Z(N(F)), whereas
[E,g]=E. Consequently N(F) induces S; on R°NF. By symmetry, (i) holds.
Consequently, N(E) N N(R) induces S5 on RN E— {R}. and (ii) follows.

(4.2) Let S=EF and yeS,ESyl,(N(S)). Then either
(i) S,€SyL(G) and S,/S=E,, or
(i) S,/S=D; and E~F in N(4).

Proof. Let S,=N;(E). By 4.1, S,/S=E,. As E and F are the unique
elementary abelian subgroups of S of order 2° we conclude either S,/S=D; or
S;=3S,. In the first case EEFY¥® and as N(E) is transitive on R°N E, N(R) is
transitive on E¢N N(R), so E€FV“ and (ii) holds. In the second case we
show S=J(S,), to conclude S, Syl,(G), so that (i) holds. If not there exists
Ep=U<S, with UsE or F. Then

(*) |Auty (E)| = | E: C(U)].

But by 4.1.i, the representation of Autg(E) on E is determined and (x) forces
Auty (E)=Aut;(E), so that USUE=FE=S.

4.3) S,€SyL(G).

Proof. Suppose otherwise and let g = N(S,)—S; with g2 S,. Then
S¢+S. Let Z=Z(S)=ENF. If Z®=Z, then g stabilizes the two element
set R°NZ. So, for some s€S,, gs&€N(R) and it follows that g&S,. Suppose,
then, that Z° =Z.

We have Z=S', so Z*=(S")%. By (4.2) |E*NS|>2* and so either
(E*NS)Z or (F*NS)Z is elementary of order at least 25 say the former.
Therefore, (E* N .S)Z<E or F and S*<N(E) or N(F). Apply (4.2) to conclude
that Zf#=(S%)'<S. Now SNS*<C(ZZ%) and ZZ*<E or F. Since
| S4S: S| <4 we necessarily have |[SNS%| =2% and |S%S:S|=4. Then
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SNS®=E or F, so geN(E) or N(F). But this is not the case.

(4.4) (1) Ng(S)/SO(C(S))=8;x S; or S;1Z,
(ii) The structure of S; is uniquely determined by |[S;|=2" or 2"

Proof. Let A(S)=Aut(S)/Caus(S/Z(S)). As SE€Syl,(4) and E,=~Re
Syl,(Z(A4)) with A/Z(A)=<L44), we may calculate in A to determine Z(S)=ENF
is partitioned by

{R, R} U{[E, s]: s S}

where R,=[Z(S), x] and x is of order 3 in N,4(S)—Z(4). Ng(S)<Ng(Z(S)),
so Ng(S) acts transitively on the two member set R°NZ(S)= {R, R} and
| Ng(S): N(R) N No(S)| =2=]Aut(S): Naww(R)|. Outays(S)==S;x ;==
A(S/R) and N 45)(R) is isomorphic to a subgroup of A(S/R), so A(S)=S;12Z,
and N 45(R)==S;X.S;. Outy (S)=S;X S;, so (i) holds.

Let T Syly(4A<g> N N(S)), and choose T so that S,=SN;(T). Cs(T)=
1=C(T) N Cpurs(S/Z(S)) as T is irreducible on S/Z(S). Thus the product is
semidirect and N (T)<A(S)=S;1Z,. Next by 4.2, N5 (T)=E, or D, and in
the former case Ns(T)<N(E). Thus |S,|=2° or 2", TN, (T)=N xs(E) or
A(S), and S,T, and hence also S, is uniquely determined by |S,].

(4.5) (i) S, is isomorphic to a Sylow 2-group of He or Aut(He).

(i1) S; contains a unique extraspecial 2-subgroup @ of order 27 with
Z(Q)=Z(S)).

(iii) QN(E)NN(F).

(iv) S,/Q=D; or D

(v) Q=(Dy.

Proof. (i) follows from (4.4) and the fact that the results obtained so far
apply to He and Aut(He). In particular we can embed S, as a Sylow 2-group
of Gi=He or Aut(He). Let <{2>=Z(S,), C=C¢(z), and Q=0,C). Then
(iii), (iv), and (v) follow from the structure of G,. Moreover C/Q==Ly(2) or
PGL,7), with E(C/Q) acting on V=Q/<{z)> as the sum of the natural module
and its dual. In particular this forces V=J(S/{2>), so @ is unique, and (ii)
holds.

(4.6) Let <z>=Z(Q), X=E or F, and I;,=0%(C(z) N N(X)). Then
(1) Ix=Ee(SiXZ,).
(i) IxEN(R).
(i) |@NX|=16.
(iv) Y=<Ig ;)< N@Q).

Proof. By (4.1) and (1.7) O%(N(X))=L=<Ss/Zs/Es, and E(L/X) acts
naturally on X. In particular I,=C,(2)=E(S,X Z,). As S;NN(X)LXN(R),
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(i) holds. By (4.5) (v), m(XNQ)<4 and by (4.5) (iv), m(X/XNQ)<2, so
(iii) holds. By (iii), QX/X=E,, so as L/ X=Ss/Z;, N (QX)/X=Z,XS,. As
HD=Z(QX), {zD>IN(QX), so Iy=N,(QX). Hence (iv) holds.

4.7) (1) Y/Q=Ly2).
(i1) Q/{(z> is the sum of the natural module for Y/Q and its dual.
(i) N@Q)/QO(N(Q))=Ly(2) or PGL,(7).

Proof. By (1.7) we may take O(N(Q))=1. Embed S, in G, as in 4.5, and
adopt the notation of that lemma. Let V, and V, be the two E(C/Q)-chief
factors in V=@/<{z>. Then EQ/Q centralizes a hyperplane E, of V, and a
point E, of V,, with E\E,=[V,E]. As [E, QI<ENQ=E, E\E,=(ENQ)[Kz).
In particular each member of E—@ induces an involution of type a,on V, and EF
induces automorphisms in Qg(2) on V. Therefore Y=<EY, F¥) induces
automorphisms in Q5(2)=4; on V. EFQ=S,NYQ with EF/Q=D; and
Y=0%(Y)=0XY), so YQ|Q=A4,, A,, or Ly(2). However there is one class
each of Ag’s and A4,’s and two classes of Ly(2)’s in 4;. As the involutions in
EFQ[Q are of type a,, we conclude (i) and (ii) holds. Similarly as S;/Q@=<D,
or Dy and Y/Q==L4(2) is a transitive subgroup of N;(Q)~/Q<A4,, (iii) holds.

(4.8) @ is strongly closed in S; with respect to C(2).

Proof. By (4.5) (ii), @ is weakly in S, with respect to C(2). Set N(Q)=
N@)/QON(Q)) and C(2)* = C(2)/{2), so that V=Q* ~E;. Assume @ is
not strongly closed. By (2.4) of [12], there exists g&C(z) such that, setting
L=<(Q, Q*>, B=Ny(Q®), D=Q*NN(Q), and I=QN ¥, the following hold:
(1) L/BD==L,2"), Sz(2"), or D,,, m odd;

(2) BD|/I is the sum of natural modules for L/BD; and
(3) I=+D.

m(D)<m(S)=2. But by Corollary 4 in [5], m([V, d])<m(D) for each
deD—1I, while by (4.7), m([V, s])>2 for each s€S,—Q. Hence m(D)=2 and
m([V,d])=2 for each deD—1I. By (4.7) it follows that D<E(N(Q)) and that
[D, V]=Cy(D) is of rank 3. But B=[Q, V]I, so B*=Cy(D) is of codimension

at most 2 in V, a contradiction.

(4.9) (G) Q=F*(Cy(2)\.
(i) Cy(2)/Q=PGLy(7).

Proof. By 4.8 and Goldschmidt’s fusion theorem [5], QO(C(2))<C(2).
By (4.7) and (1.8) O(C(2))=1. If C(2)=Y, then by [4], G=He, contrary to
our assumption that G is a counter example to the Main Theorem. So (4.7)
completes the proof.

(4.10) G +0%G).



GRoUPs WITH A STANDARD COMPONENT OoF KNOowN TYPE, II 723

Proof. All involutions in EF are fused to 2 or 7&R* in Ny(E) and Ny(F).

All involutions in Y are fused into EF under Y. But by (4.9) (ii) |.S,|=2", so

as R°NZ(S) is of order 2, |S;NN(R)|=2".

In particular some involution

teS,NN(R)—Y induces a graph-field automorphism on A. Then [R,{]=1
and C,(#)/R=E,Q;. Then myCy(t))>1, so by (4.9) t&=°. Hence if (4.10)
is false, ¢&7° by Thompson transfer. As [R, f]=1, this contradicts (1.1).

As G is simple, (4.10) yields a contradiction.

This completes the proof of

the Main Theorem.
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