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1. INTRODUCTION

The notion of almost split sequences was introduced by M. Auslander and I. Reiten in
[AR1], and they showed the existence of almost split sequences for Artin algebras. We of-
ten use the theory to analyze various additive categories arising from representation theory
and prove many important combinatorial and homological properties with the help of the
theory, for example see [A2, A3, A4, ARS, ASS, Bu, E, H, Hap, I, I2, I3, I4, I5, I6, I7, IJ,
K4, Li2, Y]. Moreover, the theory gives a great impact in other areas such as algebraic
geometry and algebraic topology [A5, J]. A combinatorial skeleton of the additive category
of indecomposable objects is the Auslander–Reiten quiver, which encapsulates much infor-
mation on indecomposable objects and irreducible morphisms. Therefore, to determine the
shapes of Auslander–Reiten quivers is one of classical problems in representation theory of
algebras.

Let O be a complete discrete valuation ring or a field. An O-algebra A is an O-order
if A is free of finite rank as an O-module. We put D := HomO(−,O). Throughout this
thesis, modules mean right modules. An O-order A is Gorenstein if D(A) is a projective A-
module. For an O-order A, an A-module M is called an A-lattice if M is Cohen–Macaulay
as an O-module. We denote by latt-A the full subcategory of the module category mod-A
consisting of A-lattices, where mod-A is the category of finitely generated A-modules. Note
that, when O is a field, an O-order is just a finite dimensional O-algebra, and latt-A is the
module category mod-A.

Now, let A be an O-order. According to [A3], the category latt-A admits almost split
sequences if and only if A is an isolated singularity, that is, gl.dim(A⊗O Op) = Kr-dim(Op)
for all non-maximal p ∈ Spec(O), where Spec(O) is the spectrum of O. If O is a field, then
an A is always an isolated singularity, and if O is a complete discrete valuation ring, then
A is an isolated singularity if and only if A ⊗O K is a semi-simple K-algebra, where K is
the quotient field of O. For an O-order, which is an isolated singularity, one can find some
results on the shapes of Auslander–Reiten quivers, for example [ASS, Di1, Di2, Di3, IK,
K2, K4, Lu, Ro2, Roy, We, Y].

When A is not an isolated singularity, we have to consider a suitable full subcategory
of latt-A which admits almost split sequences. It follows from [AR3, Theorem 2.1] that
M ∈ latt-A appears at the end term of an almost split sequence if and only if M satisfies
the condition (♮):

M ⊗O K is projective as an A⊗O K-module. (♮)
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Here, the full subcategory of latt-A consisting of A-lattices which satisfy the condition (♮)
is denoted by latt(♮)-A. If A is Gorenstein, then the full subcategory latt(♮)-A admits almost
split sequences.

From now on, we consider a Gorenstein O-order A. By the above observation, we can
introduce the notion of the stable Auslander–Reiten quiver for latt(♮)-A, which is given
by deleting all indecomposable projective-injective modules from the original Auslander–
Reiten quiver. Such quivers are stable translation quivers.

Assume that O is a field. Then any component of the stable Auslander–Reiten quiver,
a stable component for short, for latt(♮)-A (= mod-A) has no loops. Therefore, for a
stable component C, there is a directed tree T and a subgroup G ⊂ Aut(ZT ) such that
C ≃ ZT/G as stable translation quivers by the Riedtmann structure theorem [Ri]. Then,
the underlying graph of T is called the tree class of C. Therefore, in order to determine the
shape of C, it is enough to determine the tree class T and the group G. Around 1982, P.
J. Webb approached this problem when A = OG, where G is a finite group. For a stable
component of OG-modules, he constructed a subadditive function (see [HPR]) in order to
give candidates for the tree class of the component, and showed that the tree class is either
a Dynkin diagram or a Euclidean diagram [We]. His method is very effective to determine
the shapes of stable components for a self-injective algebra. Indeed, C. Riedtmann and
G. Todorov showed that the tree class of any stable component of a finite dimensional
self-injective algebra of finite representation type is one of finite Dynkin diagrams by using
Webb’s method [Ri2, T].

On the other hand, when O is a complete discrete valuation ring, stable components
admit loops [Wi]. Thus, we have to check that a stable component does not have loops
before we apply Webb’s method to a component. Moreover, A is of infinite representation
type in most cases, and it is difficult to compute almost split sequences. For these reasons,
the shapes of stable components of A seem to be largely unknown, and there are only few
concrete examples of stable components.

Therefore, the aims of this thesis are the following.

Aims. (1) Give restrictions on the shapes of stable components of a symmetric O-order
A (i.e. A ≃ D(A) as (A,A)-bimodules) when O is a complete discrete valuation ring.

(2) Give new examples of stable components when A is not an isolated singularity.

Let O be a complete discrete valuation ring, A a symmetric O-order, C a stable com-
ponent of A and τ the AR translation of A. If C has only finitely many vertices, then A
is an isolated singularity (Corollary 3.6.7), and a restriction on the shape of C had already
given by X. Luo [Lu]. Thus, we assume that C has infinitely many vertices. In order to get
candidates for the shape of C, we have to answer the following natural questions.

Questions. Assume that C has infinitely many vertices.

(1) If loops exist in C, where do loops appear in C?
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(2) When does C admit loops?

(3) If C has no loops, can we construct a subadditive function on the tree class of C?

Let C be a stable component having infinitely many vertices. For the question (1), we
give a complete answer in our setting. If C has loops, then C is a τ -periodic component
with the period 1, and the loops appear only on the boundary of C (Proposition 3.7.5). In
particular, the answer of (1) leads to a partial answer to (2), namely C has no loops when
one of the following conditions holds:

(i) C has a period larger than 1.

(ii) There is a vertex X ∈ C such that the middle term of the almost split sequence ending
at X, say EX , has exactly one non-projective direct summand, and EX does not have
X as a direct summand.

(iii) C is not τ -periodic.

Assume that C has no loops. Let T be the tree class of the component C. If C is
τ -periodic, the tree class T always admits the subadditive function which is obtained by
averaging the ranks in the same τ -orbit. Hence, the tree class is one of infinite Dynkin
diagrams by [HPR].

Let D : latt-A→ Z be the function defined by

D(X) := ♯{non-projective indecomposable direct summands of X ⊗O κ},

where κ is the residue field of O. As A is symmetric, the AR translation τ is the first
syzygy functor (Corollary 3.5.10, [A2], [Hap] and [I5]). It yields that D is a τ -invariant
function. If A ⊗O κ is representation-finite and C is not τ -periodic, then D is additive on
T .

Summing up, we have the first main result of this thesis:

Main Theorem 1 (Proposition 3.7.5, Theorems 3.7.6 and 3.7.14). Let O be a complete
discrete valuation ring, κ the residue field and C a stable component of a symmetric O-order
A with infinitely many vertices.

(1) If C has loops, then C is τ -periodic. Furthermore, C \ {loops} is of the form ZA∞/⟨τ⟩.
In this case, the loops appear only at the endpoint of C:

C = • • · · · · · · • • · · ·!!

"" "" "" "" ""
## ## ## ## ##

τ τ τ τ

(2) If C has no loops, and is τ -periodic, then the tree class of C is one of infinite Dynkin
diagrams.



1. Introduction 13

(3) If A ⊗O κ is of finite representation type, then the tree class of C is one of infinite
Dynkin diagrams or Euclidean diagrams.

We consider the question (3). In order to get new examples of stable components, we
focus on a special kind of A-lattices called Heller lattices, which is defined to be direct sum-
mands of the first syzygy of an indecomposable A⊗O κ-module as an A-module. There are
two reasons why we consider Heller lattices. The first reason is that they always belong to
latt(♮)-A. Thus, the category latt(♮)-A admits some stable components containing indecom-
posable Heller lattices. We call such components Heller components of A. Another reason
is that Heller lattices of a group algebra play important roles in modular representation
theory. For a p-modular system (K,O,κ) of a finite group G, Heller lattices over OG were
studied by S. Kawata [K3, K4]. It follows from [K3, Theorem 4.4] that Heller lattices over
OG provide us with certain relationship between almost split sequences for latt-OG and
mod-κG, namely he showed that if 0 → A → B → ZM → 0 is the almost split sequence
ending at an indecomposable Heller lattice ZM of an indecomposable κG-module M , then
the induced exact sequence

0→ A⊗O κ→ B ⊗O κ→ ZM ⊗O κ→ 0

is the direct sum of the almost split sequence ending at M and a split sequence (see also [P,
Corollary 5.8]). They motivate us to study Heller lattices when A is an arbitrary symmetric
O-order.

The second main result is on the shapes of stable components containing Heller lattices
when A = O[X]/(Xn). Since A⊗O κ is of finite representation type, the tree class of any
stable components is one of infinite Dynkin diagrams or Euclidean diagrams by the first
main result.

Main Theorem 2 (Proposition 4.2.1, Theorem 4.4.1). Let O be a complete discrete
valuation ring, A = O[X]/(Xn), for n ≥ 2. Then, any Heller component is of the form
either ZA∞/⟨τ2⟩ or ZA∞/⟨τ⟩. Moreover, any Heller lattice appears on the boundary of a
Heller component.

The last main result is on the shapes of stable components containing Heller lattices
when A = O[X,Y ]/(X2, Y 2). Then A⊗O κ is of tame representation type.

Main Theorem 3 (Theorems 5.5.1, 5.8.4 and 5.9.5). Let O be a complete discrete val-
uation ring and A = O[X,Y ]/(X2, Y 2). Assume that the residue field κ is algebraically
closed. Then, there is a unique non-periodic Heller component ZA∞ and infinitely many
periodic Heller components whose tree classes are A∞. Moreover, any Heller lattice appears
on the boundary of a Heller component.

This thesis is based on the following three articles:
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[AKM] S. Ariki, R. Kase and K. Miyamoto, On Components of stable Auslander–Reiten
quivers that contain Heller lattices: the case of truncated polynomial rings, Nagoya
math. J., 228 (2017), 72–113, DOI: 10.1017/nmj.2016.53.

[M1] K. Miyamoto, On the non-periodic stable Auslander–Reiten Heller component for
the Kronecker algebra over a complete discrete valuation ring, to appear in Osaka J.
Math.

[M2] K. Miyamoto, On periodic stable Auslander–Reiten components containing Heller
lattices over the symmetric Kronecker algebra, arXiv: 1808.09289.

There are five chapters in this thesis, and the body begins in Chapter 2. The results of
[AKM] appear in Chapter 3 and 4, those of [M1] appear in Chapter 3 and 5, those of
[M2] appear in Chapter 5. We start with Chapter 2 presenting some fundamentals on
orders and lattices, stable translation quivers and finite dimensional algebras over a field.
In Chapter 3, we present Auslander–Reiten theory for Gorenstein orders over a complete
discrete valuation ring. Moreover, we give a method to construct almost split sequences
in Section 3.5, and we prove some properties of stable Auslander–Reiten components for a
symmetric order in Section 3.6. These results in Section 3.5 and 3.6 establish a criterion,
based on material in [AKM]. In Chapter 4, we determine the shapes of stable components
containing Heller lattices over the truncated polynomial rings. The main result appears
in [AKM]. In Chapter 5, we determine the shapes of stable components containing Heller
lattices over the symmetric Kronecker algebra. The result in the non-periodic case appears
in [M1], and the result in the periodic case appears in [M2].



2. PRELIMINARIES

In this thesis, we deal with an algebra over a complete discrete valuation ring. Thus,
first, we recall some properties of a complete discrete valuation ring from commutative
ring theory in Section 1. In representation theory of algebras, Krull–Schmidt–Azumaya
theorem, K–S–A theorem for short, is a fundamental theorem. It is well-known that, for a
category of finitely generated modules over a finite dimensional algebra over a field, K–S–
A theorem holds, for example see [ASS, Chapter I, 4.10. Unique decomposition theorem].
However, this theorem is not always true when the base ring is an arbitrary commutative
ring. Let R be a commutative ring and A an R-algebra. If the base ring R is a complete
discrete valuation ring and A is finitely generated as an R-module, K–S–A theorem holds
for the category of finitely generated A-modules since the theory of lifting idempotents
works in this setting. In Section 2, we recall the theory of lifting idempotents from the
standard text [CR]. In Section 3, we introduce orders and lattices. Assume that R is a
complete discrete valuation ring. From results in Section 2, the category of A-lattices is a
Krull–Schmidt category with enough projectives.

In Section 4, we list Dynkin diagrams and Euclidean diagrams. In Section 5, we intro-
duce valued stable translation quivers. The structure of valued stable translation quivers
without loops was studied by Riedtmann, which is well-known as Riedtmann’s structure
theorem [Ri]. By using this structure theorem, any stable translation quiver without loops
C is of the form ZT/G for some a directed tree T and an “admissible group” G. Thus, in
order to determine the shape of C, it is enough to determine T and G. On the other hand,
D. Happel, U. Preiser and C. M. Ringel gave a very nice result on determining T [HPR].
Therefore, we recall the Riedtmann structure theorem and Happel–Preiser–Rigel’s results
in this section.

In Chapter 4 of this thesis, we will consider the symmetric Kroneker algebra, which is
symmetric and “special biserial ”. Special biserial algebras over an algebraically closed field
are always of tame representation type [WW], and the classification of all indecomposable
modules of such an algebra was provided in [BR, WW]. Moreover, there is a combinato-
rial method of constructing indecomposable modules over such an algebra [Erd, HL]. In
Section 6, we introduce symmetric special biserial algebras and explain how to construct
indecomposable modules.

Throughout this thesis, we use the following notations. For an algebra Λ, we denote by
mod-Λ the category consisting finitely generated Λ-modules. For M,N ∈ mod-Λ, we write
HomΛ(M,N) for the set of A-module homomorphisms from M to N . We also denote by
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proj-Λ the full subcategory of mod-Λ consisting of projective Λ-modules.

2.1 Complete discrete valuation rings

Let K be a field. A surjective function v : K \ {0}→ Z is a discrete valuation on K if it
satisfies the following two properties for all x, y ∈ K \ {0}:

(i) v(xy) = v(x) + v(y)

(ii) v(x+ y) ≥ min{v(x), v(y)}

By (i), the discrete valuation v is a group homomorphism. The pair (K, v) is called a
valuation field. It is convenient to extend v to the whole of K by putting v(0) = ∞.
The set O := {x ∈ K | v(x) ≥ 0} is a local ring, which is called the discrete valuation
ring of (K, v). It is easy to see that K is the quotient field of O. Moreover, if we set
O−1 := {x−1 | x ∈ O \ {0}}, we have K = O ∪ O−1 and O× = O ∩ O−1. The maximal
ideal in O is given by P := {x ∈ O | v(x) > 0}.

We give two typical examples. Let K = Q and p a prime number. Then, the map
vp : Q \ {0} → Z defined by vp(x) = a, where x = pay and y is an irreducible fraction
whose numerator and denominator are not divisible by p, is a discrete valuation. Then,
the valuation ring of vp is the local ring Z(p). Another example is that K = k(x), where k
is a field and x is an indeterminate. For an irreducible polynomial f ∈ k[x], we define vf
in the same manner as the first example. Then, vf is a discrete valuation.

An integral domainO is called a discrete valuation ring if there is a discrete valuation
v on its quotient field K such that O is the valuation ring of v.

From now on, (K, v) is a discrete valuation field, O is its discrete valuation ring. Let
ε ∈ K such that v(ε) = 1. Then, for any x ∈ K with v(x) = i, the element xε−i is invertible
in O since v(xε−i) = 0. Thus, for any element x ∈ K, there exist an integer i and an
invertible element u ∈ O× such that x = εiu. This implies that any non-trivial ideal in O
is of the form (εi) for some i > 0. In particular, O is a principal ideal domain.

Let R be a local principal ideal domain and p the maximal ideal. For any non-zero
element x ∈ R, there is a non-negative integer i such that x ∈ pi\pi+1 since the intersections
of pk (k = 1, 2, ...) is zero. Thus, we may define v : R \ {0} → Z by v(x) = i. Let K be
the quotient field of R. For 0 ̸= x/y ∈ K, we also define v(x/y) = v(x)− x(y). Then, it is
easy to see that v is well-defined and (K, v) is a discrete valuation field, and the discrete
valuation ring of (K, v) is just R. Therefore, we have the following lemma.

Lemma 2.1.1 ([Mat, Theorem 11.1]). Let R be a commutative ring. Then, R is a discrete
valuation ring if and only if R is a principal ideal domain and local.

We return to the discrete valuation ring O and its maximal ideal P . Let M be an
O-module. Take a family of submodules F = {PnM}n=0,1,2,.... Obviously, P iM ⊂ P jM
for j < i. Then, F makes M into a topological group because one can understand that F
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is a system of neighborhoods of 0. The topology is called the P -adic topology of M . In
particular, O is a topological ring by the decreasing chain

O ⊃ P ⊃ P 2 ⊃ P 3 ⊃ · · · .

Then, O is a Hausdorff space since
⋂∞

i=1 P
i = 0. The factor modules M/P iM is also a

topological space by the quotient topology. Then, P iM is open and closed in M . Indeed,
the complement M \ P iM is a union of cosets x + P iM (x ∈ M \ P iM). Hence, the
topology of M/P iM is discrete. Consider the natural O-module homomorphisms fi,j :
M/P jM → M/P iM for i < j. Then the pair ({fi,j}i,j , {M/P iM}i) becomes an inverse
system of O-modules. We denote by M̂ the inverse limit of ({fi,j}i,j , {M/P iM}i), which
is called the completion of M . It is easy to see that ˆ̂O ≃ Ô. We say that O is complete
if Ô ≃ O as rings. If M is a finitely generated O-module, we have M ⊗O Ô ≃ M̂ .

Let dK : K × K → R≥0 be a function defined by dK(x, y) := 2−v(x−y). Then, the pair
(K, dK) becomes a metric space. By this topology, K is a topological field, and the induced
topology on O coincides with the P -adic topology of O. Let C(K) be the set of all Cauchy
sequences of K. Then C(K) admits a commutative ring structure by using the addition
and the product of K. Let N be the ideal in C(K) consisting of Cauchy sequences which
converge on 0. As the ideal N is maximal, the factor ring K̂ := C(K)/N is a field. By
the construction of K̂, it is the completion of K as the metric space (K, dK). Then, the
metric function dK extends to a metric function d̂K : K̂ × K̂ → R≥0, and (K̂, d̂K) is also a
discrete valuation field. The discrete valuation ring of K̂ is isomorphic to the completion
Ô = lim

←−
O/P i. For the details, see [Mat, Chapter 3, Section 8] and [AM, Chapter 10]. If

the complete discrete valuation ring Ô contains a field, Ô becomes a formal power series
ring over a field with an indeterminate by Cohen’s structure theorem [Co].

2.2 Lifting idempotents

Let R be a ring. An element e ∈ R is an idempotent if e2 = e. Two idempotents e and e′

are called orthogonal if ee′ = e′e = 0. An idempotent e is said to be primitive if e can not
be written as a sum e = e1+e2, where e1 and e2 are non-zero idempotents and orthogonal.
Let R = P1 ⊕ · · · ⊕ Pn be a direct sum decomposition of R into R-modules. Then, there
are idempotents e1 ∈ P1, . . . , en ∈ Pn such that 1R = e1 + · · · + en. This implies that
Pi = eiR for each i, and the idempotents e1, . . . , en are pairwise orthogonal. Conversely, if
a set of pairwise orthogonal idempotents {e1, . . . , en} such that 1R = e1+ · · ·+ en is given,
it gives rise to a direct sum decomposition R = e1R ⊕ · · · ⊕ enR as R-modules. Thus, an
idempotent e ∈ R is primitive if and only if eR is indecomposable.

Let M be an R-module and E = EndR(M). Then, M is an (E,R)-bimodule. For a set
of pairwise orthogonal idempotents e1, . . . , en of E with 1E = e1 + · · ·+ en, the R-module
M is the direct sum M = e1M ⊕ · · · ⊕ enM as R-module. Conversely, for a direct sum
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decomposition of M as R-submodules

M = M1 ⊕ · · ·⊕Mn,

there is a set of pairwise orthogonal idempotents e1, . . . , en of E such that 1E = e1+· · ·+en
andMi = eiM . Moreover, in this case, Mi ≃Mj if and only if Eei ≃ Eej as left E-modules.
As a consequence, a non-zero R-module M is indecomposable if and only if E = EndR(M)
has only two idempotents 0 and 1. Thus, for an R-module M , if the endomorphism
ring EndR(M) is local, the R-module M is indecomposable, for example see [AF, 5.10
Proposition]. However, the converse is not always true.

For a ring R, the Jacobson radical of R, which is denoted by rad(R), is defined by

rad(R) =
⋂

S : a simple A-module

ann(S),

where ann(S) is the annihilator of S. An element x ∈ R lies in the Jacobson radical if and
only if 1−xy is unit for all y ∈ R or, equivalently, 1−yx is unit for all y ∈ R. The Jacobson
radical of R is obviously a two-sided ideal. If R is Artinian, the ring R is semi-simple if
and only if rad(R) = 0. For x ∈ R, we write x for the coset in R/N represented by x.
If e ∈ R be a non-zero idempotent, then e is a non-zero idempotent in R/N . Therefore,
if 1 = e1 + · · · + en with eiej = δi,jei and ei ̸= 0 is given, this decomposition yields a
decomposition 1 = e1 + · · ·+ en of the same kind in R/N .

From now on, we assume that O is a complete discrete valuation ring, P is the maximal
ideal in O, κ the residue field and A is an O-algebra which is finitely generated as an O-
module.

Lemma 2.2.1 ([CR, (5.22) Proposition]). Set A = A/AP , and let ϕ : A → A be the
natural projection. Then, the following statements hold.

(1) rad(A) = ϕ−1(rad(A)) ⊃ AP .

(2) The map ϕ induces an isomorphism A/rad(A) ≃ A/rad(A) as κ-algebras.

(3) A/radA is semi-simple.

(4) There is a positive integer t such that (radA)t is contained in AP .

Proof. (1) Let M be a simple A-module. We show that M · (AP ) = 0. As M is simple,
M = mA for any m ̸= 0. Thus, M is a finitely generated R-module, and MP = 0
or MP = M since M is simple. If MP = M , then M = 0 by Nakayama’s lemma, a
contradiction. Hence, we have MP = 0.

(2) Since ϕ : A→ A is surjective, the A-module homomorphism ϕ induces a surjection
A/rad(A)→ A/rad(A). On the other hand, by (1), there is a surjection ψ : A→ A/rad(A).
As rad(A/rad(A)) = 0, the A-module homomorphism ψ induces the surjection A/rad(A)→
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A/rad(A). Because both A/rad(A) and A/rad(A) are finite dimensional κ-algebras, these
are isomorphic each other.

(3) We notice that A is an Artin ring. Thus, A/rad(A) is semi-simple, and the assertion
follows from the statement (2).

(4) As A is an Artin ring, the Jacobson radical rad(A) is nilpotent. Thus, there is a
positive integer t such that (rad(A))t = 0. Now, the claim is clear by (1).

Lemma 2.2.2 ([CR, (6.5) Proposition]). A is complete with respect to the rad(A)-adic
topology.

Proof. The assertion follows from that Â ≃ Ô ⊗O A and Lemma 2.2.1.

Lemma 2.2.3 ([CR, (6.6) Proposition]). Let Q and Q′ be two finitely generated projective
A-modules. Then, Q ≃ Q′ if and only if Q/(Q · (rad(A))) ≃ Q′/(Q′ · (rad(A))).

Proof. Obviously, Q ≃ Q′ implies Q/(Q · (rad(A))) ≃ Q′/(Q′ · (rad(A))). We show the
converse. Set Q̃ = Q/(Q · (rad(A))) ≃ Q′/(Q′ · (rad(A))). Then the natural projection
Q→ Q̃ factors through the natural projection Q′ → Q̃:

Q′ Q̃

Q

!!
""

f

##✇
✇
✇
✇
✇
✇

By the above commutative diagram, we have Coker(f) = Coker(f)rad(A). As Coker(f)
is finitely generated, f is surjective by Nakayama’s lemma. Since Q′ is projective, the
A-module homomorphism f splits. By using the same argument after swapping Q and Q′,
we conclude that f is an isomorphism.

Proposition 2.2.4 ([CR, (6.7) Theorem on Lifting Idempotents]). The following state-
ments hold.

(1) For every idempotent f ∈ A := A/rad(A), there exists an idempotent e ∈ A such that
f = e.

(2) For two idempotents e1 and e2, the A-modules e1A and e2A are isomorphic if and only
if the A-modules e1A and e2A are isomorphic.

(3) An idempotent e ∈ A is primitive if and only if e ∈ A is primitive.

Proof. Consider the identity element in Z[X]:

1 = (X + (1−X))2n =
2n∑

j=0

(
2n

j

)
X2n−j(1−X)j
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Let

fn(X) :=
n∑

j=0

(
2n

j

)
X2n−j(1−X)j .

Then, the polynomial fn(X) satisfies the following properties:

(a) fn(X) ∈ Z[X].

(b) fn(X) ≡ 0 mod Xn and fn(X) ≡ 1 mod (X − 1)n.

(c) (fn(X))2 ≡ fn(X) mod Xn(1−X)n.

(d) fn(X) ≡ fn−1(X) mod Xn−1(X − 1)n−1.

(e) f1(X) ≡ X mod (X −X2).

(1) Let f ∈ A be an idempotent and a ∈ A such that a = f . As f is an idempotent, we
have a2−a ∈ rad(A). By (d), we have fj(a) ≡ fj−1(a) mod (rad(A))j−1. Thus, (fj(a)) is a
Cauchy sequence. By our assumption that O is complete and Lemma 2.2.2, the algebra A
is also complete with respect to the rad(A)-adic topology. Hence, there is e ∈ A such that
(fj(a)) converges on e. By (c) and (e), we have e = a = f and e2 = e.

(2) The statement follows from Lemma 2.2.3.
(3) Let e be an idempotent of A, and suppose that e is not primitive, so that e = f1+f2

for some non-zero orthogonal idempotents f1 and f2 in A. By (1), there is an idempotent
e1 such that e1 = f1. Take e2 = e − e1. Then, e22 = e2 ̸= 0 and e2e1 = e1e2 = 0, a
contradiction.

Therefore, we have the following:

Proposition 2.2.5 ([CR, (6.10) Proposition]). Let M be a finitely generated A-module.
Then, M is indecomposable if and only if EndA(M) is local.

Proof. Assume that M is indecomposable. As EndA(M) ⊂ EndO(M), the endomorphism
algebra EndA(M) is finitely generated as an O-module. It follows from Lemma 2.2.1 and
Proposition 2.2.4 that EndA(M)/radEndA(M) is semi-simple, and lifting idempotents the-
ory works. Thus, M is indecomposable if and only if EndA(M)/radEndA(M) is a skew-
field.

Theorem 2.2.6 ([CR, (6.12) Krull–Schmidt–Azumaya Theorem]). Let O be a complete
discrete valuation ring, A an O-algebra, which is finitely generated as an O-module, and
M a finitely generated A-module. Then, M admits a finite direct sum decomposition into
indecomposable submodules. Further. if M has two such decompositions

M =
s⊕

i=1

Mi =
t⊕

j=1

Nj ,

then r = s and there is a permutation σ ∈ Sn such that Mi ≃ Nσ(i) for all i.
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Theorem on lifting idempotents and Krull–Schmidt–Azumaya theorem imply that the
isomorphism classes in proj-A correspond bijectively with those in proj-(A/rad(A)), the cor-
respondence being given by mapping the classes of P ∈ proj-A onto the class P/P rad(A) ∈
proj-(A/rad(A)). Therefore, there is a bijection between the set of isoclasses of the inde-
composable projective A-modules and the set of isoclasses of indecomposable projective
A/rad(A)-modules.

LetM be a finitely generated A-module and P a finitely generated projective A-module.
A surjection f : P → M is a projective cover of M if any g : N → P such that fg is
surjective is surjective.

Lemma 2.2.7 ([CR, (6.20) Proposition]). Given two projective covers f : P → M and
g : Q→M , there exists an isomorphism h : P → Q such that f = gh.

Proof. Since P is projective and g is surjective, there is h : P → Q such that f = gh. By
the definition of projective covers, h is surjective. Hence, h is a retraction. Let h′ : Q→ P
such that hh′ = 1Q. Since g : Q→M is a projective cover, h′ is also a retraction. Thus, h
is an isomorphism with f = gh.

Theorem 2.2.8 ([CR, (6.23) Theorem]). Let O be a complete discrete valuation ring and
A an O-algebra, which is finitely generated as an O-module. Then, every X ∈ mod-A has
the projective cover. In particular, the category mod-A has enough projectives.

Proof. Let X ∈ mod-A. Since A := A/rad(A) is semi-simple, X = X/Xrad(A) ∈ mod-A
is a direct sum of indecomposable projective A-modules eiA. Hence, there exists a finitely
generated projective A-module P such that P ≃ X as A-modules, where P = P/P rad(A).
As P is projective, we have f : P → X making the following diagram commute:

X X

P P

!!

!!

≃
""

f

""
✤

✤

✤

The commutative diagram implies that f(P )+Xrad(A) = X. By Nakayama’s lemma, f is
surjective. Then, f gives the projective cover since the map P → P is the projective cover
of P .

2.3 Orders and lattices

In representation theory of algebras, lattices over orders over a complete discrete valuation
ring have been studied extensively.

Definition 2.3.1. Let O be a complete discrete valuation ring.

(1) An O-algebra A is called an O-order if A is free of finite rank as an O-module.
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(2) An O-order A is called Gorenstein if HomO(A,O) is a projective A-module. If A and
HomA(A,O) are isomorphic as (A,A)-bimodules, then A is called symmetric.

(3) Let A be an O-order and M an A-module. M is called a Cohen–Macaulay A-
module or an A-lattice if M is free of finite rank as an O-module.

Remark 2.3.2. We follow [I] for the definitions of orders and lattices. This means that
the definitions of orders and lattices are different from Auslander’s sense [A2, Chapter I,
Section 7]. However, if A is a Gorenstein O-order, then A is an O-order in his sense.
Moreover, Gorenstein O-orders in Auslander’s sense are symmetric O-orders in our sense.

From now on, we use the following conventions in this thesis.

(i) O is a complete discrete valuation ring with a uniformizer ε.

(ii) κ is the residue field and K is the quotient field.

(iii) The symbol ⊗ means the tensor product taken over the complete discrete valuation
ring O.

(iv) A is an O-order and A = A⊗ κ = A/εA.

We denote by latt-A the full subcategory of mod-A consisting of A-lattices. A sequence
in latt-A is called exact if it is exact in mod-A. We denote by latt-A the stable module
category of latt-A by proj-A. Then, latt-A is closed under extensions, and the functor
D := HomO(−,O) induces the duality

latt-A
∼←→ latt-Aop.

We call I ∈ latt-A an injective A-lattice if I ∈ add(D(Aop)), where add(D(Aop)) is the
full subcategory of latt-A consisting of direct summands of finite direct sums of copies of
D(Aop). We denote by inj-A and latt-A the category of injective A-lattices and the stable
module category of latt-A by inj-A.

By Theorem 2.2.6, the category latt-A is a Krull–Schmidt category, that is, any object
is isomorphic to a finite direct sum of objects whose endomorphism algebras are local.
In brief, any A-lattice admits a unique indecomposable finite direct sum decomposition
as an A-module. It follows from Theorem 2.2.8 that the category latt-A has enough
projectives. Let {e1, . . . , en} be a set of idempotents of A. Theorem 2.2.6 yields that
{e1A, · · · , enA} is a complete set of isoclasses of indecomposable projective A-modules if
and only if {e1A, . . . , enA} is a complete set of isoclasses of indecomposable projective
A-modules since εA ⊂ rad(A).

An O-order A is called an isolated singularity if the algebra A⊗K is a semi-simple K-
algebra. For example, for a finite group G, the group algebra OG is an isolated singularity
if and only if char(K) does not divide the order of G or char(K) = 0 by Maschke’s theorem.
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In particular, For a p-modular system (K,O,κ) of a finite group G, the group algebra
OG is an isolated singularity. By [A3], A is an isolated singularity if and only if, for any
X,Y ∈ latt-A, the set of homomorphisms HomA(X,Y ) in latt-A has finite length as an
O-module.

We denote by
Ω : latt-A −→ latt-A, Ω−1 : latt-A −→ latt-A

the syzygy functor and the cosyzygy functor of A. We also denote by

Ω̃ : mod-A −→ mod-A, Ω̃−1 : mod-A −→ mod-A

the syzygy functor and the cosyzygy functor of A. If A is symmetric, the syzygy and
cosyzygy functors give category equivalences and quasi-inverse each other.

Lastly, we recall a well-known fact as Miyata’s theorem.

Theorem 2.3.3 ([M, Theorem 1]). Let R be a commutative noetherian ring and Λ an
R-algebra which is finitely generated as an R-module. Let E : 0→ L→ E →M → 0 be a
short exact sequence in mod-Λ. If E ≃ L⊕M as Λ-modules, then E splits.

2.4 Dynkin and Euclidean diagrams

We list Dynkin and Euclidean diagrams. The following labelled undirected graphs are
called finite Dynkin diagrams.

An • • • · · · • •

Bn • • • · · · • •(1,2)

Cn • • • · · · • •(2,1)

Dn

•
• •

•
· · · • •♦♦♦♦♦

❖❖❖
❖❖

(n vertices and n ≥ 4.)

E6 • • • •

•

•

E7 • • • •

•

• •

E8 • • • •

•

• • •

F4 • • • •(2,1)

G2 • •(3,1)

The following are infinite Dynkin diagrams.

A∞ • • • · · ·

B∞ • • • · · ·(1,2)

C∞ • • • · · ·(2,1)

D∞

•
• •

•
· · ·♦♦♦♦♦

❖❖❖
❖❖

A∞∞ · · · • • • · · ·
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The following are Euclidean diagrams.

Ãn • • • · · ·

•

• •❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥
❥

❖❖❖
❖❖❖

❖❖❖
❖❖

B̃n • • • · · · • •(1,2) (2,1)

C̃n • • • · · · • •(2,1) (1,2)

D̃n

•
•

•
· · · •

•

•
♦♦♦♦♦

❖❖❖
❖❖ ♦♦♦♦♦

❖❖❖
❖❖

B̃Cn • • • · · · • •(1,2) (1,2)

B̃Dn • • · · · •
•

•

(1,2)
♦♦♦♦♦

❖❖❖
❖❖

C̃Dn • • · · · •
•

•

(2,1)
♦♦♦♦♦

❖❖❖
❖❖

Ẽ6 • • • •

•

•

•

Ẽ7 • • • •

•

• • •

Ẽ8 • • • •

•

• • • •

F̃4,2 • • • • •(2,1)

G̃2,1 • • •(1,3)

G̃2,2 • • •(3,1)

Ã1,1 • •(1,4)

Ã1,2 • •(2,2)

Here, we note that Ã0 is a single loop with one vertex and Ã1 is the underlying graph of
the Kronecker quiver.

2.5 Valued stable translation quivers

In this section, we recall notations on stable translation quivers. A quiverQ = (Q0, Q1, s, t)
is a quadruple consisting of two sets Q0 and Q1, and two maps s, t : Q1 → Q0. Each el-
ement of Q0 and Q1 is called a vertex and an arrow, respectively. For an arrow α ∈ Q1,
we call s(α) and t(α) the source and the target of α, respectively. We understand that
quivers are directed graphs. We write Q for the underlying graph of Q. Given two quivers
Q and ∆, a quiver homomorphism f : Q → ∆ is a pair of maps f0 : Q0 → ∆0 and
f1 : Q1 → ∆1 such that (s × t) ◦ f1 = (f0 × f0) ◦ (s × t). In this section, we assume
that quivers have no multiple arrows, that is, the map (s× t) is injective. Let (Q, v) be a
pair of a quiver Q and a map v : Q1 → Z>0 × Z>0. For an arrow x → y of Q, we write
v(x→ y) = (dxy, d′xy), and we understand that there is no arrow from x to y if and only if
dxy = d′xy = 0. Then, (Q, v) is called a valued quiver, and the values of the map v are
called valuations. For an arrow α : x→ y with dx,y = d′x,y = 1, we usually omit to write
the valuation of α. For each vertex x ∈ Q0, we set

x+ = {y ∈ Q0 | x→ y ∈ Q1}, x− = {y ∈ Q0 | y → x ∈ Q1}.
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Note that a quiver is determined by the set x+ (or x−). A quiver Q is locally finite if
x+ ∪ x− is a finite set for any x ∈ Q0, and Q is called finite if the sets Q0 and Q1 are
finite sets. A translation quiver is a triple (Q,Q′0, τ) of a locally finite quiver Q, a subset
Q′0 ⊂ Q0 and an injective map τ : Q′0 → Q0 satisfying x− = (τx)+. If Q′0 = Q0 and τ is
bijective, the translation quiver is said to be stable. Then, we write (Q, τ) for the stable
translation quiver, simply. Let C be a full subquiver of a stable translation quiver (Q, τ).
Then, C is a (connected) component if the following three conditions are satisfied.

(i) C is stable under the quiver automorphism τ .

(ii) C is a disjoint union of connected components of the underlying undirected graph.

(iii) There is no proper subquiver of C that satisfies (i) and (ii).

A quiver homomorphism f from a translation quiver (Q,Q′0, τ) to a translation quiver
(∆,∆′0, τ

′) is a translation quiver homomorphism if f0 ◦ τ = τ ′ ◦ f0 is satisfied on
Q′0. It is easily seen that τ induces a translation quiver automorphism when (Q,Q′0, τ) is
stable, and we use the same letter τ . In this thesis, we denote by Autτ (Q) the set of all
translation quiver automorphisms of (Q, τ). Let Q and ∆ be two stable translation quivers.
A surjective translation quiver homomorphism f : Q → ∆ is a covering if f |x+ gives a
bijection between x+ and (f(x))+.

For a stable translation quiver (Q, τ) and a subgroup G ⊂ Autτ (Q), we define the
translation quiver homomorphism πG : Q→ Q/G by πG(x) = Gx for x ∈ Q0. A subgroup
G ⊂ Autτ (Q) is admissible if each G-orbit intersects x+ ∪ {x} in at most one vertex and
x− ∪ {x} in at most one vertex, for any x ∈ Q0. Then, the map πG is covering.

Definition 2.5.1. A valued stable translation quiver is a triple (Q, v, τ) such that

(i) (Q, v) is a valued quiver,

(ii) (Q, τ) is a stable translation quiver,

(iii) v(τy → x) = (d′x,y, dx,y) for each arrow x→ y.

Given a valued quiver (Q, v), one can construct the valued stable translation quiver
(ZQ, ṽ, τ) as follows.

• (ZQ)0 := Z×Q0.

• (n, x)+ := {(n, y) | y ∈ x+} ∪ {(n+ 1, z) | z ∈ x−}.

• ṽ((n, x)→ (n, y)) = (dx,y, d′x,y), ṽ((n− 1, y)→ (n, x)) = (d′x,y, dx,y).

• τ0((n, x)) = (n− 1, x).

We write it simply ZQ. Note that ZQ has no loops whenever Q has no loops.
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Lemma 2.5.2 ([B, Lemma 4.15.2]). Let T be a directed tree and (Q, τ) a stable translation
quiver. Given a quiver homomorphism f : T → Q, there is a unique translation quiver
homomorphism f̃ : ZT → Q such that f̃(0, x) = f(x).

Proof. For m ∈ Z and x ∈ T , let f̃(m,x) = τ−mf(x). Then, the morphism f̃ is a
translation quiver homomorphism satisfying f̃(0, x) = f(x). The uniqueness is clear by the
definition of translation quiver homomorphisms.

Lemma 2.5.3 ([B, Lemma 4.15.3]). Let T and T ′ be directed trees. Then, ZT ≃ ZT ′ as
stable translation quivers if and only if T ≃ T ′.

Proof. Obviously, if ZT ≃ ZT ′ implies that T = T ′. Define f : T → ZT ′ as follows.
First, we choose a vertex x ∈ T , and let f(x) = (0, x). As T is connected, we may
extend this uniquely to a quiver homomorphism f : T → ZT ′ in such a way that f send
each x ∈ T to (nx, x) for some nx ∈ Z. By the above lemma, we have f̃ : ZT → ZT ′
such that f̃(0, x) = (nx, x). Then, f̃ is an isomorphism since the morphism defined by
ZT ′ ∋ (0, x) 5→ (−nx, x) ∈ ZT is its inverse.

The following theorem is well-known and it is effective to describe the structure of
stable translation quivers [Ri], see also [B, Theorem 4.15.6].

Theorem 2.5.4 (Riedtmann’s structure theorm). Let (Q, τ) be a stable translation quiver
without loops and C a connected component of (Q, τ). Then, there exist a directed tree
T and an admissible group G ⊆ Autτ0(ZT ) such that C ≃ ZT/G as stable translation
quivers. Moreover, T is uniquely determined by C, and the admissible group is unique up
to conjugation.

In Theorem 2.5.4, the underlying undirected tree T is called the tree class of C.
Let (Q, τ) be a connected stable translation quiver. A vertex x ∈ Q0 is called periodic

if x = τkx for some k > 0. If there is a periodic vertex in Q, then all vertices of Q are
periodic. Indeed, if x is a periodic vertex in Q, then there is a positive integer and nx such
that τnxx = x. Since (Q, τ) is a stable translation quiver, τnx induces a bijection on the
finite set x+, and so some power of τnx stabilizes x+ elementwise. Hence, all vertices in x+

are periodic. It follows that all vertices are periodic. In this case, (Q, τ) is called periodic.

Definition 2.5.5. Let I be a set. A Cartan matrix on I is a function C : I × I → Z
satisfying the following properties.

(i) For all i ∈ I, C(i, i) = 2.

(ii) C(i, j) ≤ 0 for all i ̸= j, and for each i, we have that C(i, j) < 0 for only finitely
many j ∈ I.

(iii) C(i, j) ̸= 0 if and only if C(j, i) ̸= 0.
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Let (Q, v) be a connected valued quiver without loops and two cycles. Then, (Q, v)
gives rise to a Cartan matrix on Q0:

C(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

2 if x = y,
−dx,y if y ∈ x+,
−d′y,x if y ∈ x−,
0 otherwise.

The above Cartan matrix is denoted by Cv
Q.

Definition 2.5.6. Let C be a Cartan matrix on I. A subadditive function for C is a
function ℓ : I → Q>0 such that it satisfies

∑

y∈I
C(x, y)ℓ(y) ≥ 0

for all x ∈ I. A subadditive function ℓ is called additive if the equality holds for all x ∈ I.
We say that a connected valued quiver Q admits a subadditive function when there exists
a subadditive function for a Cartan matrix on Q0.

Remark 2.5.7. Let (Q, v, τ) be a connected valued stable translation quiver without loops,
and let T be the tree class of Q. If a function ℓ : Q0 → Q>0 satisfies ℓ(τx) = ℓ(x) and

2ℓ(x) ≥
∑

y∈x−∩T

dy,xℓ(y) +
∑

y∈x+∩T

d′x,yℓ(y),

then the restriction ℓ|T is a subadditive function for the Cartan matrix Cv
T on T 0.

The following theorem is a generalization by D. Happel, U. Preiser and C. M. Ringel of
characterizations of Dynkin and Euclidean diagrams by E. B. Vinberg [V] and S. Berman,
R. Moody and M. Wonenburger [BMW].

Theorem 2.5.8 ([B, Theorem 4.5.8]). Let (∆, v) be a connected valued quiver without
loops. If ∆ admits a subadditive function ℓ, then the following statements hold.

(1) The underlying undirected graph ∆ is either a finite or infinite Dynkin diagram or a
Euclidean diagram.

(2) If ℓ is not additive, then ∆ is either a finite Dynkin diagram or A∞.

(3) If ℓ is additive, then ∆ is either an infinite Dynkin diagram or a Euclidean diagram.

(4) If ℓ is unbounded, then ∆ is A∞.
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2.6 Indecomposable modules over a special biserial algebra

Throughout this section, k is an algebraically closed field. Let Q be a quiver, which
admits loops and multiple arrows. Set Q∗1 = {α∗ | α ∈ Q1}. We understand that the
symbol α∗ is the formal inverse arrow of α, that is, α∗ is an arrow such that s(α∗) = t(α),
t(α∗) = s(α) and α∗∗ = α. For a path w = c1c2 · · · cn in Q, we define s(w) = s(c1),
t(w) = t(cn) and w∗ = c∗nc

∗
n−1 · · · c∗1. If w is the path with the length 0 at a vertex a,

then we understand that w is the trivial path εa with s(εa) = t(εa) = a and ε∗a = εa.
A walk with length n is a sequence w = c1c2 · · · cn such that each ci ∈ Q1 ∪ Q∗1 and
t(ci) = s(ci+1) for i = 1, 2, . . . , n− 1, and w is called reduced if w is either a trivial path
or a walk with positive length such that ci+1 ̸= c∗i for all i = 1, 2, . . . , n− 1. Given a walk
w, the source s(w) and the target t(w) are also defined. For two walks w1 = c11 · · · c1n and
w2 = c21 · · · c2m, the product w1w2 is defined by

w1w2 :=

{
c11 · · · c1nc21 · · · c2m if t(w1) = s(w2),
0 otherwise.

If w is a walk with s(w) = t(w), then one has also arbitrary powers wj of w. Assume that
w = c1c2 · · · cn is a reduced walk with positive length. The walk w is called a reduced
cycle if s(w) = t(w) and cn ̸= c∗1. We say that a non-trivial path p is contained in w if
p or p∗ is a subwalk of w. A relation in Q with coefficients in k is a k-linear combination
of paths of length at least two having the same source and target.

For a finite quiver Q, the path algebra, say kQ, is defined as follows. As a k-vector
space,

kQ =
⊕

w:a path in Q

kw,

and the product in kQ is defined as the product of walks. Then, there is a direct sum
decomposition

kQ = kQ0 ⊕ kQ1 ⊕ kQ2 ⊕ · · ·

as k-vector spaces, where, for each l ≥ 0, the k-vector space kQl is the subspace of kQ
generated by the set of all paths with length l inQ. A two-sided ideal I in kQ is admissible
if there exists a positive integer n ≥ 2 such that

⊕

l≥n
kQl ⊂ I ⊂

⊕

l≥2
kQl.

If I is an admissible ideal in kQ, then the factor algebra kQ/I is finite dimensional, and
the factor algebra kQ/I is called a bound quiver algebra. Let kQ/I be a bound quiver
algebra. A path w is called a zero path if w belongs to I. A zero path with minimal
length is called a zero relation of kQ/I. For non-zero paths p and q from a vertex a to
a vertex b, the pair (p, q) is a binomial relation of kQ/I if there exists (λ, µ) ∈ k× × k×

such that λp+ µq ∈ I.
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Let Λ be a basic finite dimensional algebra over k and {e1, . . . , en} a complete set of
primitive orthogonal idempotents of Λ. Then, we define the Gabriel quiver of Λ, which
is denoted by QΛ, as follows:

(a) The set of vertices is {1, 2, . . . , n}.

(b) We draw dimk(ea(rad(Λ)/(rad(Λ)2))eb) arrows from a to b.

Note that the Gabriel quiver of Λ does not depend on the choice of a complete set of
primitive orthogonal idempotents in Λ. For each arrow α : a → b in QΛ, let xα ∈ rad(Λ)
such that {xα + rad(Λ)2 | α : a→ b} forms a k-basis of ea(rad(Λ)/(rad(Λ)2))eb. Then, the
map ϕ : kQΛ → Λ defined by

a 5−→ ea, α 5−→ xα (a ∈ (QΛ)0, α ∈ (QΛ)1)

is a surjective k-algebra homomorphism. It is easy to see that Ker(ϕ) is an admissible ideal
in kQΛ. Thus, we have:

Theorem 2.6.1 ([ASS, Chapter II, 2.9. Corollary and 3.7. Theorem]). Let Λ be an
indecomposable finite dimensional algebra over k. Then, there exists a finite connected
quiver Q and an admissible ideal I in kQ such that Λ is Morita equivalent to kQ/I.
Moreover, the admissible ideal I is generated by finite relations in Q.

LetQ be a finite quiver. A k-linear representation ofQ is a system (Ma, fα)a∈Q0,α∈Q1

consisting of k-vector spaces Ma and k-linear maps fα : Ms(α) →Mt(α). The k-linear rep-
resentation M = (Ma, fα) is said to be finite dimensional if the sum

∑
a∈Q0

dimk(Ma)
is finite. For two k-linear representations of Q, say M = (Ma, fα) and N = (Na, gα), a
morphism of representations ϕ : M → N is a family ϕ = (ϕa)a∈Q0 of k-linear maps
ϕa : Ma → Na (a ∈ Q0) that are compatible with the structure maps fα and gα, that is,
the following square is commutative for all α : a→ b ∈ Q1:

Na Nb

Ma Mb

gα
! !

fα !!

ϕa

""

ϕb

""

The composition of morphisms of representations is naturally defined.
For a path w = w1 · · ·wt with length t, we define the morphism ϕw = ϕwt · · ·ϕw1 .

Then, for a relation ρ =
∑n

i=1 λiwi in Q, we also define the morphism ϕρ =
∑n

i=1 λiϕwi .
A k-linear representation M = (Ma, fα) is said to be bound by I if we have fρ = 0 for
all ρ ∈ I.

Given a finite quiver Q and an admissible ideal I in kQ, we define rep(Q) (resp.
rep(Q, I)) to be the k-linear category consisting of finite dimensional k-linear represen-
tations of Q (resp. finite dimensional k-linear representations bound by I) and morphisms
of representations.
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Theorem 2.6.2 ([ASS, Chapter III, 1,6 Theorem]). Let {e1, . . . , en} be a complete set of
primitive orthogonal idempotents in kQ (or kQ/I). Then, there is a k-linear equivalences
of categories

mod-(kQ)
∼←→ rep(Q), mod-(kQ/I) ∼←→ rep(Q, I),

which send M to (Ma, fα), where Ma = Mea,

fα : Ms(α) ∋ m 5−→ mα ∈Mt(α).

We identify these two categories.

Definition 2.6.3. A bound quiver algebra Λ ≃ kQ/I is called special biserial if the
following two conditions are satisfied.

(i) For each vertex x of Q, ♯x+ ≤ 2 and ♯x− ≤ 2.

(ii) For each arrow α of Q, there exist at most one arrow β such that αβ /∈ I and at most
one arrow γ such that γα /∈ I.

Brauer graph algebras are symmetric special biserial algebras. The converse is also
true by K. Erdman and A. Skowroński [ES]. On Brauer graph algebras, see [S]. B. Wald
and J. Waschbüsch showed that special biserial algebras are of tame representation type
by classifying indecomposable modules over such an algebra into “string modules” and
“band modules” [WW]. Moreover, we can construct all finite dimensional indecomposable
modules over a special biserial algebra by using a combinatorial method. In this section,
we recall the construction of indecomposable modules over a special biserial algebra, see
[Erd], [HL] for details.

Let Λ = kQ/I be a bound quiver algebra. A reduced walk w is said to be a string
path of Λ if each path contained in w is neither a zero relation nor a maximal subpath of
a binomial relation of Λ. A non-trivial reduced cycle is said to be a band path of Λ if
each of its powers is a string path and it is not a power of a string path with less length.

For each string path w of Λ, the string module M(w) is defined as follows. If w = εa,
then M(w) is the simple Λ-module corresponding to a. For a non-trivial w = c1c2 · · · cn,
M(w) is the k-linear representation (M(w)a,M(w)α) given by the following. For 1 ≤ i ≤
n+ 1, we set k(i) = k. Given a vertex a of Q, we define M(w)a =

⊕
i∈Wa

k(i), where

Wa = {i | s(ci) = a} ∪ {n+ 1 | t(cn) = a}.

For 1 ≤ i ≤ n, we define the k-linear map fci by

fci :

{
k(i) −→ k(i+ 1), x 5−→ x if ci ∈ Q1,
k(i+ 1) −→ k(i), x 5−→ x if ci ∈ Q∗1.

Given an arrow α of Q, we define M(w)α as the direct sum of the k-linear maps fci such
that ci = α or c∗i = α.
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Let w = c1c2 · · · cn be a band path of Λ and V a finite dimensional indecomposable left
k[x, x−1]-module. We construct the band module N(w, V ) corresponding to w and V as
follows. For 1 ≤ i ≤ n, we set V (i) = V . For 1 ≤ i ≤ n, let f ′ci be the k-linear map defined
by

f ′ci :

⎧
⎪⎪⎨

⎪⎪⎩

V (i) −→ V (i+ 1), v 5−→ v if 1 ≤ i ≤ n− 1 and ci ∈ Q1,
V (i+ 1) −→ V (i), v 5−→ v if 1 ≤ i ≤ n− 1 and ci ∈ Q∗1,
V (n) −→ V (1), v 5−→ xv if i = n and cn ∈ Q1,
V (1) −→ V (n), v 5−→ x−1v if i = n and cn ∈ Q∗1.

For a vertex a of Q, we define N(w, V )a =
⊕

i∈W ′
a
V (i), where

W ′a = {i | s(ci) = a}.

For an arrow α of Q, we define N(w, V )α as the direct sum of the k-linear maps f ′ci such
that ci = α or c∗i = α.

Theorem 2.6.4 ([WW, (2.3) Proposition]). Let Λ be a special biserial algebra. Then, the
disjoint union of string modules, band modules and all projective-injective modules corre-
sponding to the binomial relations forms a complete set of isoclasses of finite dimensional
indecomposable Λ-modules.

Remark 2.6.5 ([Erd, Chapter II] and [HL]). (1) Let w1 and w2 be string paths of Λ.
Then, the string modules M(w1) and M(w2) are isomorphic each other if and only
if w2 = w1 or w2 = w∗1.

(2) Let w = c1 · · · cn be a band path. A rotation of w is a walk of the form ci+1 · · · cnc1 · · · ci.
Given two band paths w1 and w2, the band modules N(w1, V ) and N(w2, V ) are iso-
morphic each other if and only if w2 is a rotation of w1 or a rotation of w∗1.

(3) A finite dimensional left k[x, x−1]-module is a finite dimensional k-vector space together
with a k-linear automorphism f . If the module is indecomposable, then f is similar to
a Jordan block

J(λ,m) :=

⎛

⎜⎜⎜⎜⎜⎝

λ 1 · · · · · · 0
0 λ · · · · · · 0
...

. . .
...

0 · · · · · · λ 1
0 · · · · · · 0 λ

⎞

⎟⎟⎟⎟⎟⎠

for some λ ∈ k× and m ∈ Z>0.



3. ON THE SHAPES OF STABLE AUSLANDER–REITEN COMPONENTS
FOR A SYMMETRIC ORDER

Auslander–Reiten theory for the lattice category latt-A was developed by many authors
including M. Auslander and I. Reiten, for example see [A2, A3, A4, AR3, ARS, AS, Bu,
I, I3, K4, Ro1, Ro2, RoS, Ru, Y]. In this theory, the existence theorem of almost split
sequences is essential. There are two approaches to show the existence of almost split
sequence, one is based on an explicit calculation of extension groups [ARS] and the other
one is based on the concept of dualizing O-varieties [AR2]. Let A be a Gorenstein O-order.
Then, the existence of almost split sequences for latt-A was studied in [A2] and [AR3].
Recall that the category latt-A admits almost split sequences if and only if A is an isolated
singularity.

In this chapter, we deal with the case that A is not an isolated singularity. It follows
from [AR3, Theorems 2.1 and 2.2] that an A-lattice M appears at the end of an almost
split sequence if and only if M ⊗ K is projective as A ⊗ K-module. Thus, we introduce
the full subcategory of latt-A consisting of A-lattices M such that M ⊗ K is projective
in Section 3.4. The subcategory will be denoted by latt(♮)-A in this thesis, and we will
introduce the stable Auslander–Reiten quiver Γs(A) for latt(♮)-A when A is a symmetric
O-order in Section 3.6.

The first main result of this thesis is on the shapes of stable Auslander–Reiten compo-
nents of a symmetric O-order, which appears in [AKM] and [M1].

Main Theorem (Proposition 3.7.5, Theorems 3.7.6 and 3.7.14). Let C be a component
of the stable Auslander–Reiten quiver of a symmetric O-order A. Assume that Γs(A) has
infinitely many vertices.

(1) If C has loops, then C is τ -periodic. Furthermore, C \ {loops} is of the form ZA∞/⟨τ⟩.
In this case, the loops appear only at the endpoint of C:

C = • • · · · · · · • • · · ·!!

"" "" "" "" ""
## ## ## ## ##

τ τ τ τ

(2) If C has no loops, and is τ -periodic, then C is of the form ZT/G, where T is a directed
tree whose underlying graph is one of infinite Dynkin diagrams and G is an admissible
group.
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(3) If A⊗κ is of finite representation type, then the tree class of C is one of infinite Dynkin
diagrams or Euclidean diagrams.

3.1 The ext group and the space of extensions

For an O-order A and A-lattices M,N , we identify often the ext group Ext1A(M,N) and
the set of equivalence classes of extensions of M by N for some equivalence relation. In
this section, we recall this identification. Note that since latt-A is closed under extensions,
latt-A admits push-outs and pull-backs.

Let E : 0 → N → E → M → 0 and E′ : 0 → N → E′ → M → 0 be two extensions of
M by N . We write E ∼ E′ when there is an A-module homomorphism f : E → E′ such
that the following diagrams is commutative:

E :

E′ :

0 N E M 0

0 N E′ M 0

!! !! !! !!

!! !! !! !!

f

""

By the five lemma, the A-module homomorphism f is an isomorphism. Thus, the relation
∼ is an equivalence relation. We denote by EXT1

A(M,N) the set of equivalence classes of
the set of extensions of M by N . We write [E] for the equivalence class represented by E.

For A-lattices M and N , we define 0M,N to be the canonical splittable exact sequence

0M,N : 0→ N
(1N0 )−−−→ N ⊕M

(0 1M )−−−−→M → 0.

Let E : 0→ N
f−→ E

g−→ M → 0 and E′ : 0→ N
f ′
−→ E′

g′−→ M → 0 be two extensions of M
by N . Then, we define [E] + [E′] to be the equivalence class of the extension

0 −→ N
f ′′
−−−→ E′′

g′′−−−→M −→ 0

with E′′ = U/V , where U = {(x, x′) ∈ E ⊕ E′ | g(x) = g′(x′)}, V = {(f(x),−f ′(x)) | x ∈
N}, f ′′(x) = (f(x), 0)+V and g′′((x, x′)+V ) = g(x). As latt-A is closed under extensions,
E′′ is an A-lattice. The addition + in EXT1

A(M,N) is called the Baer sum. Then,
EXT1

A(M,N) is an abelian group with the Baer sum whose the zero element is [0M,N ]. Let
U and V be two A-lattices. For A-module homomorphisms u : N → U and v : V → M ,
we define u[E] and [E]v by the lower exact sequence of the push-out along (f, u) and the
upper exact sequence of the pull-back along (g, v), respectively.

Let [E] = [0 → N → E → M → 0] ∈ EXT1
A(M,N) and P2

p2−→ P1
p1−→ P0 → M be

the minimal projective presentation of M . Then, we obtain the following commutative
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diagram since P0 and P1 are projective:

[E] :

P2 P1 P0 M 0

0 N E M 0

p2 !! p1 !! !! !!

!! !! !! !!

ξ1

""

ξ0

""

1M

""

Define two maps

ΞM,N : EXT1
A(M,N)→ Ext1A(M,N) = KerHomA(p2, N)/ImHomA(p1, N)

and
ΣM,N : Ext1A(M,N)→ EXT1

A(M,N)

by the following. The map ΞM,N is given by ΞM,N ([E]) = ξ1+ImHomA(p1, N) ∈ Ext1A(M,N).
Let f + ImHomA(p1, N) ∈ Ext1A(M,N). Since Ker(p1) = Im(p2), we infer that there is
α ∈ HomA(Im(p1), N) such that f factors through α. To define ΣM,N , we consider the
push-out diagram along (p1,α)

0 Im(p1) P0 M 0

0 N E M 0

!! p1 !! !! !!

!! !! !! !!

α

""

β

""

1M

""

Then, ΣM,N (f + ImHomA(p1, N)) is to be the lower exact sequence of the above commuta-
tive diagram. It is easy to show that ΞM,N and ΣM,N are well-defined and the inverse map
of the other. Moreover, these maps are (EndA(N),EndA(M))-bimodule homomorphisms
[SY1, Chapter III, Theorem 3.5 and Proposition 3.8].

3.2 The radical of morphisms

Let A be an O-order. For A-lattices M and N , the radical of HomA(M,N) is the O-
submodule of HomA(M,N) consisting of f ∈ HomA(M,N) such that 1M − gf is invertible
for any g ∈ HomA(N,M). The radical of HomA(M,N) is denoted by rad(M,N). By the
definition, we have rad(M,M) = radEndA(M).

Lemma 3.2.1 ([ASS, Appendix. 3.3 Lemma], [SY1, Chapter III. Lemma 1.1, Proposition
1.2]). Let M and N be A-lattices. Then the following statements hold.

(1) The equality

rad(M,N) = {f ∈ HomA(M,N) | 1N − fg is invertible for any g ∈ HomA(N,M)}

holds.
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(2) The radical rad(−,−) is an ideal in latt-A.

Proof. (1) We only show that

rad(M,N) ⊂ {f ∈ HomA(M,N) | 1N − fg is invertible for any g ∈ HomA(N,M)}.

The converse is similar. For any f ∈ rad(M,N) and any g ∈ HomA(N,M), there is
ϕ ∈ EndA(M) such that ϕ(1M − gf) = (1M − gf)ϕ = 1M . Then, ψ := 1N + fϕg is the
inverse morphism of 1N − fg.

(2) Let f ∈ rad(M,N) and h ∈ HomA(N,L). For any g ∈ HomA(L,M), the A-module
morphism 1M − ghf is invertible by the definition of rad(M,N) . Thus, hf ∈ rad(M,L).
By the statement (1), for any h ∈ HomA(L,M), we have fh ∈ rad(L,N).

In particular, for A-lattices M = M1⊕ · · ·⊕Mn and N = N1⊕ · · ·⊕Nm, an A-module
homomorphism f = (fi,j) : M → N is in rad(M,N) if and only if fi,j : Mi → Nj is in
rad(Mi, Nj) for each i, j.

Lemma 3.2.2 ([SY1, Chapter III. Lemma 1.4]). Let M and N be two indecomposable
A-lattices. Then, rad(M,N) is the set of all non-isomorphisms.

Proof. Any f ∈ rad(M,N) is a non-isomorphism. We show the converse. Let 0 ̸= f ∈
HomA(M,N) be a non-isomorphism and g ∈ HomA(N,M). Then gf is a non-isomorphism.
Indeed, if gf is an isomorphism, Im(f) is a direct summand ofN since f is a section. AsN is
indecomposable, the morphism f is surjective. Hence f is an isomorphism, a contradiction.
Since EndA(M) is local, the morphism 1M − gf is invertible in EndA(M).

Let m ≥ 1 be a positive integer. For two A-lattices M and N , we define the m-th
power of the radical radm(M,N) to be the O-submodule of rad(M,N) consisting of
all finite sums of homomorphisms of the form fmfm−1 · · · f2f1 with fi ∈ rad(Mi−1,Mi)
(i = 1, . . . ,m) for some A-lattices M = M0,M1, . . . ,Mm−1,Mm = N . Clearly, radm(−,−)
is an ideal in latt-A.

3.3 Almost split sequences

In this section, we introduce the notion of almost split sequences for latt-A.

Definition 3.3.1. (1) Let f : L→M be a morphism in latt-A. The morphism f is called
left minimal if every h ∈ EndA(M) with hf = f is an isomorphism, and is called left
almost split if it is not a section and every h ∈ HomA(L,W ) which is not a section
factors through f .

(2) A morphism g : M → N in latt-A is called right minimal if every h ∈ EndA(M) with
gh = g is an isomorphism, and is called right almost split if it is not a retraction
and every h ∈ HomA(W,N) which is not a retraction factors through g.
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(3) A morphism f is said to be left minimal almost split in latt-A if f is both left
minimal and left almost split.

Similarly, a right minimal almost split morphism in latt-A is defined.

(4) A morphism f ∈ HomA(M,N) is said to be an irreducible morphism, provided that

(i) the morphism f is neither a section nor a retraction,

(ii) if f = f2f1, then either f1 is a section or f2 is a retraction.

Lemma 3.3.2 ([ASS, Chapter IV. 1.8 Lemma]). The following statements hold.

(1) If f : L→M is left almost split in latt-A, then L is an indecomposable A-lattice.

(2) If f : M → N is right almost split in latt-A, then N is an indecomposable A-lattice.

Proof. We show only (1). The proof of the statement (2) is similar. Since f is not a section,
we have L ̸= 0. Suppose that L = L1⊕L2 with L1 ̸= 0 ̸= L2 as A-lattices. Let pi : L→ Li

be the canonical projection. Since Ker(pi) = Li ̸= 0, the morphism pi is not a section. As
f is left almost split, there exists ui : M → Li such that pi = uif for each i = 1, 2. Then,
we have

(u1
u2

)
f = 1L, a contradiction.

Lemma 3.3.3 ([ASS, Chapter IV, 1.13 Lemma]). Let

0 L M N 0

0 L M N 0

!! f !! g !! !!

!!
f

!!
g

!! !!

w

""

v

""

u

""

be a commutative diagram in latt-A, where the rows are non-split exact sequences. Then
the following statements hold.

(1) If L is indecomposable and w is an isomorphism, then u is also an isomorphism.

(2) If N is indecomposable and u is an isomorphism, then w is also an isomorphism.

Proof. We only show (1). The proof of (2) is similar. We may assume that w = 1N .

Let [δ] := [0 → L
f−→ M

g−→ N → 0] ∈ EXT1
A(N,L). Then, the lower exact sequence

is u[δ]. The fact that diagram is commutative means [δ] = u[δ]. As [δ] ̸= [0N,L], we
have u /∈ radEndA(L). Since EndA(L) is local, the A-module homomorphism u is an
isomorphism.

Corollary 3.3.4. Let δ : 0 → L
f−→ M

g−→ N → 0 be a non-split exact sequence in latt-A.
Then the following statements hold.
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(1) If L is indecomposable, then g is right minimal.

(2) If N is indecomposable, then f is left minimal.

Lemma 3.3.5 ([ASS, Chapter IV. 1.8 Corollary]). The following statements hold.

(1) If f : L → M is irreducible and injective in latt-A and suppose that Coker(f) is an
A-lattice, then Coker(f) is indecomposable.

(2) If f : M → N is irreducible and surjective in latt-A, then Ker(f) is an indecomposable
A-lattice.

Proof. Let f be an irreducible morphism in latt-A. We show that f is either a proper
monomorphism or a proper epimorphism. Since f is neither a section nor a retraction, f is
not an isomorphism. Assume that f is not surjective. Consider the following commutative
diagram:

L M

Im(f)

f !!

$$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧

Since the inclusion Im(f) → M is not surjective and f is irreducible, the map L → Im(f)
is a section. In particular, f is injective.

Let f : L → M be an injective irreducible morphism. By the above arguments, f is
not surjective. Hence, the cokernel of f is not zero. By the assumption, Coker(f) is an
A-lattice. Suppose that Coker(f) = N1 ⊕ N2 with N1 ̸= 0 ̸= N2 as an A-lattice. Let
ui : Ni → Coker(f) be the canonical inclusion for i = 1, 2 and p : M → Coker(f) the
canonical projection. Then, there is no A-module homomorphism vi : M → Ni such that
p = uivi. Consider the pull-back diagram along (p, ui):

0 L V Ni 0

0 L M Coker(f) 0

!! f ′
!! g′ !! !!

!!
f

!!
p
!! !!

w

""

ui

""

Since f is irreducible, either f ′ is a section or w is a retraction. If w is a retraction
with the right inverse morphism w′, we have p = uig′w′, a contradiction. Thus, f ′ is a
section, and hence g′ is a retraction. Let g′′ be the right inverse morphism of g′. Take
u′i := wg′′. Then we have pu′i = uig′g′′ = ui. Now, we define an A-module homomorphism
u′ : Coker(f) → M by u′ = (u′1, u

′
2). Then, the A-module homomorphism u′ is the right

inverse morphism of p. Thus, f is a section, which contradicts with the fact that f is
irreducible. The proof of (2) is similar.

Lemma 3.3.6 ([ASS, Chapter IV. 1.10 Theorem]). The following statements hold.
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(1) If a non-zero A-module homomorphism f : L → M is left minimal almost split in
latt-A, then f is irreducible.

(2) If a non-zero A-module homomorphism g : M → N is right minimal almost split in
latt-A, then g is irreducible.

Proof. We show only (1). The proof of the statement (2) is similar. By the definition of left
almost split morphisms, f is not a section. If f is a retraction, we have L ≃ M ⊕ Ker(f).
By Lemma 3.3.2, the A-lattice M is indecomposable. Since M ̸= 0, we have Ker(f) = 0
by the indecomposablity of L. Thus, f is an isomorphism, a contradiction. Assume that
f = f2f1 in latt-A and f1 is not a section. Since f is left almost split, there exists an A-
module homomorphism g in latt-A such that f1 = gf . As f is left minimal, the A-module
homomorphism f2g is an isomorphism. Hence, f2 is a retraction.

We have the following proposition as the case of finite dimensional algebras.

Proposition 3.3.7 ([A2, Chapter II Proposition 4.4] and [ARS, Chapter V, Proposition

5.9]). For a non-split exact sequence 0 → L
f−→ M

g−→ N → 0 in latt-A, the following
statements are equivalent.

(i) f is left minimal almost split in latt-A and g is right minimal almost split in latt-A.

(ii) f is left minimal almost split in latt-A.

(iii) f is left almost split in latt-A and N is indecomposable.

(iv) g is right minimal almost split in latt-A.

(v) g is right almost split in latt-A and L is indecomposable.

Proof. First, we show that the statements (i), (iii) and (v) are equivalent. By Lemma 3.3.2,
(i) implies (iii) and (v).

Assume that (iii) holds. By Lemma 3.3.2, the A-lattice L is indecomposable. Let
u : W → N in latt-A. We claim that if there is no an A-module homomorphism h : W →M
such that u = gh, then u is a retraction. Consider the pull-back diagram along (g, u):

0 L V W 0

0 L M N 0

!! f ′
!! g′ !! !!

!!
f

!!
g

!! !!

v

""

u

""

If g′ is a retraction, there exists h′ : W → V such that u = gvh′, which contradicts the
choice of u. Thus, f ′ is not a section. Since f is left almost split in latt-A, there is an
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A-module homomorphism w : M → V such that f ′ = wf . Now, we have the following
commutative diagram:

0 L M N 0

0 L V W 0

!! f !! g !! !!

!!
f ′

!!
g′

!! !!

w

""
u′

""

Since N is indecomposable, uu′ is an isomorphism by Lemma 3.3.3. Therefore, u is a
retraction, hence (v) follows. Similarly, (v) implies (iii).

Assume that (iii) and (v) hold. Then, Corollary 3.3.4 implies that f is left minimal
and g is right minimal. Therefore, the statements (i), (iii) and (v) are equivalent.

Clearly, (i) implies (ii) and (iv). We show that (ii) implies (iii). It is enough to show
that N is indecomposable. However, the claim follows easily from Lemmas 3.3.5 and 3.3.6.
Similarly, (iv) implies that (v).

An almost split sequence is a special kind of short exact sequences. Among equivalent
conditions in Proposition 3.3.7, we choose (v) as the definition of almost split sequences
for latt-A.

Definition 3.3.8 ([Ro2]). Let L, M and N be A-lattices. A short exact sequence in latt-A

0 −→ L −→M
g−−−−→ N −→ 0

is called an almost split sequence ending at N if the following two conditions are
satisfied:

(i) The morphism g is right almost split in latt-A.

(ii) The A-lattice L is indecomposable.

Lemma 3.3.9 ([ARS, Chapter V. Proposition 5.9]). For an exact sequence E : 0→ L
f−→

M
g−→ N → 0, the following two conditions are equivalent.

(i) The exact sequence E is an almost split sequence.

(ii) The A-lattices L and N are indecomposable and the A-module homomorphisms f
and g are irreducible.

Proof. It follows from Lemma 3.3.6 and Proposition 3.3.7 that (i) implies (ii). We show
the converse. As g is irreducible, it is not a retraction. Let v : W → N in latt-A such that
v is not a retraction. We show that the A-module homomorphism v factors through g. We
may assume that W is indecomposable. By the proof of Lemma 3.3.5, one of the following
statements holds since f is irreducible:
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(a) There is u : W →M in latt-A such that v = gu.

(b) There is u′ : M →W in latt-A such that g = vu′.

In the first case, there is noting to prove. Assume the second case. By the definition of
irreducible morphisms, u′ is a section since v is not a retraction. Thus, we have W =
M ⊕ Coker(u′) Since M ̸= 0 and W is indecomposable, we have Coker(u′) = 0. Therefore,
u′ is an isomorphism. But then we have v = gu−1.

Lemma 3.3.10 ([SY1, Chapter III. Lemma 8.2]). Let E : 0 → L
f−→ M

g−→ N → 0 and

E′ : 0 → L′
f ′
−→ M ′

g′−→ N ′ → 0 be almost split sequences for latt-A. Then the following
statements are equivalent.

(i) E and E′ are isomorphic as short exact sequences.

(ii) L and L′ are isomorphic as A-lattices.

(iii) N and N ′ are isomorphic as A-lattices.

Proof. Clearly, (i) implies (ii) and (iii). We show that (ii) implies (i). Let u : L→ L′ be an
isomorphism. Since f is left almost split and f ′u is not a section, there exists v : M →M ′

such that f ′u = vf . Similarly, there exists v′ : M ′ → M such that fu−1 = v′f . Then, v
is an isomorphism because f and f ′ are left minimal. Consider the following commutative
diagram:

0 L M N 0

0 L′ M ′ N ′ 0

!! f !! g !! !!

!!
f ′

!!
g′

!! !!

u

""

v

""

w

""

Since u and v are isomorphisms, so is w. The proof that (iii) implies (i) is similar.

It follows from Lemma 3.3.10 that an almost split sequence is uniquely determined by
the starting term, and is also uniquely determined by the ending term.

Definition 3.3.11. Let A be a Gorenstein O-order and 0→ L→M → N → 0 an almost
split sequence. We define the AR translations τ and τ−1 by τ(N) = L and τ−1(L) = M .

3.4 The existence of almost split sequences

The existence of almost split sequences was first studied by M. Auslander and I. Reiten
around 1971 for Artin algebras of finite representation type to analyze “Auslander algebras”
[AR2]. Let Λ be a finite dimensional algebra over a field k. In this case, it is well-known
that for every indecomposable non-projective finite dimensional Λ-module N , there exists
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the almost split sequence ending at N . Dually, for every indecomposable non-injective
finite dimensional Λ-module L, there exists the almost split sequence starting at N . For
example, see [ASS, Chapter IV. 3.1 Theorem] or [SY1, Chapter III. Theorem 8.4].

Let A be a Gorenstein O-order. Recall that, according to [A3], the category latt-A
admits almost split sequences if and only if A is an isolated singularity. When A is not an
isolated singularity, we have to consider a suitable full subcategory of latt-A which admits
almost split sequences. In this case, the existence of almost split sequences had been given
in [AR3].

Theorem 3.4.1 ([AR3, Theorems 2.1 and 2.2]). Let A be a Gorenstein O-order, M a
non-projective indecomposable A-lattice and N a non-injective indecomposable A-lattice.
Then, there exists the almost split sequence ending at M if and only if M ⊗K is projective
as an A ⊗ K-module. Dually, there exists the almost split sequence starting at N if and
only if N ⊗K is injective as an A⊗K-module.

We denote by latt(♮)-A the full subcategory of latt-A consisting of A-lattices M such
that M⊗K is a projective A⊗K-module. If A⊗K is a self-injective K-algebra, the category
latt(♮)-A admits almost split sequences. Moreover, Theorem 3.4.1 also implies that almost
split sequences in latt(♮)-A are also almost split sequences in latt-A. Obviously, any finitely
generated projective A-module belongs to latt(♮)-A. We give other examples of A-lattices
in latt(♮)-A.

Definition 3.4.2. Let A be a Gorenstein O-order and M be an indecomposable A-module.
We call each direct summand of Ω(M) a Heller lattice of M .

Remark 3.4.3. The Heller lattice Ω(M) of an indecomposable A-module M may not be
an indecomposable A-lattice. For instance, we consider a p-modular system (K,O,κ) of
finite p-group G. Let ϕ be a valuation of the p-modular system. Let κG be the trivial
κG-module. Then, the Heller lattice of κG is rad(OG), and it is well-known that rad(OG)
is decomposable if and only if |G| = p and ϕ(p) = 1.

Lemma 3.4.4 ([AKM, Remark 1.12]). Any Heller lattice belongs to latt(♮)-A.

Proof. Let M be an indecomposable A-module. Take the projective cover P
pM−−→ M in

latt-A. Let ZM be a Heller lattice of M . By the definition of Heller lattices, ZM is an
A-submodule of P . Hence, we have ZM ⊗ K ⊂ P ⊗ K. On the other hand, pM (εP ) = 0
yields that εP is contained in ZM . Thus, we have P ⊗K ⊂ ZM ⊗K.

Corollary 3.4.5. For any non-projective indecomposable Heller lattice Z, there exists the
almost split sequence ending at Z.

Remark 3.4.6. Heller lattices over group algebras are studied by S. Kawata [K3, K4].
Assume that (K,O,κ) ⊃ (K′,O′,κ′) is an extension of p-modular systems of a finite group
G, κ = κ′ are algebraically closed and the ramification index is larger than 1 [P]. Then, any
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Heller lattice of OG is indecomposable, and it appears on the boundary of the Auslander–
Reiten quiver. Let M be a non-projective indecomposable κG-module, and ZM the Heller
lattice of M . If we apply −⊗O κ to the almost split sequence ending at the Heller lattice
ZM , then it is direct sum of the almost split sequence ending at M and a splitable exact
sequence. Thus, Heller lattices over a group algebra are the most important lattices in
modular representation theory of groups.

3.5 The Construction of almost split sequences

It is natural to ask how to construct almost split sequences. In fact, any almost split
sequence is obtained by taking a suitable pull-back diagram [AKM, Proposition 1.15].
In this section, we explain how to construct almost split sequences in latt(♮)-A. This
construction is a generalization of [Th], and it was explained in [Ta] and [AKM, Appendix].

Set D′ := HomO(−,K) and D′′ := HomO(−,K/O). We also set ν = DHomA(−, A),
ν ′ = D′HomA(−, A) and ν ′′ = D′′HomA(−, A). The functor ν : latt-A → latt-A is called
the Nakayama functor, and it induces an equivalence between proj-A and inj-A. In
particular, there are bijections between the following three sets [Lu, Proposition 2.8]:

(i) The set of all indecomposable projective A-lattices.

(ii) The set of all indecomposable injective A-lattices.

(iii) The set of all simple modules.

Consider the injective resolution of O as an O-module:

0 −→ O ι−→ K p−−→ K/O −→ 0

Lemma 3.5.1. For an A-lattice M , we have the exact sequence 0 → ν(M) → ν ′(M) →
ν ′′(M)→ 0.

Proof. By applying the functor HomO(X,−), where X is an A-lattice, to the sequence
0→ O → K→ K/O → 0, we have

0 −→ HomO(X,O) −→ HomO(X,K) −→ HomO(X,K/O) −→ Ext1O(X,O) = 0.

In particular, if we take X = HomA(M,A), where M is an A-lattice, we obtain

0 −→ D(HomA(M,A)) −→ D′(HomA(M,A)) −→ D′′(HomA(M,A)) −→ 0

as required.

Note that we had also obtained the exact sequence of functors

0 −→ D(−) −→ D′(−) −→ D′′(−) −→ 0.
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Let M be an A-lattice, and let λ : D((HomA(M,A)⊗A −))
∼−→ HomA(−, ν(M)) be the

functorial isomorphism. We define λ′ and λ′′ in the similar manner by replacing ν with ν ′

and ν ′′, respectively. We also define the natural transformation

µM : HomA(M,A)⊗A − −→ HomA(M,−)

by µM (X)(f ⊗ x) = (m 5→ f(m)x). Then, the functor µM induces the following three
morphisms of functors:

DµM : D(HomA(M,−)) −→ D(HomA(M,A)⊗A −)
D′µM : D′(HomA(M,−)) −→ D′(HomA(M,A)⊗A −)
D′′µM : D′′(HomA(M,−)) −→ D′′(HomA(M,A)⊗A −)

Lemma 3.5.2. We have the following commutative diagram of functors.

0 DHomA(M,−) D′HomA(M,−) D′′HomA(M,−) 0

0 HomA(−, ν(M)) HomA(−, ν ′(M)) HomA(−, ν ′′(M))

!! ι∗ !! p∗ !! !!

!! ι∗ !! p∗ !!

λ◦DµM

""
λ′◦D′µM

""
λ′′◦D′′µM

""

Here, p∗ = p ◦ − and ι∗ = ι ◦ −.

Proof. For anA-latticeN , it follows from Lemma 3.5.2 and the left exactness of HomA(N,−)
that the rows are exact. Thus, it is enough to show that the diagram is commutative. Note
that the Hom-tensor adjointness

λN : D(HomA(M,A)⊗A N)
∼−→ HomA(N, ν(M))

is given by f 5→ [x 5→ (y 5→ f(y ⊗ x))]. By replacing D with D′ and D′′, we have explicit
formulas of λ′N and λ′′N , respectively. Thus, for f ∈ DHomA(M,N), we have

λ′N ◦ D′µM (N) ◦ ι∗(f) = [x 5→ (y 5→ ιfµM (N))(y ⊗ x)] = ι∗N ◦ λN ◦ DµM (N)(f).

Similarly, the right squire in the diagram is commutative.

Lemma 3.5.3. Let M be an object in latt(♮)-A. Then, we have a functorial isomorphism

HomA⊗K(M ⊗K, A⊗K)⊗A − ≃ HomA⊗K(M ⊗K,−⊗K).

Proof. The statement follows immediately since M ⊗K is projective.

Corollary 3.5.4. LetM be an object in latt(♮)-A andX an A-lattice. Then, Coker(µM (X))
is a torsion O-module.
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Proof. Let q : Coker(µM (X))→ K ⊗ Coker(µM (X)) be the canonical homomorphism. We
show that Ker(q) = Coker(µM (X)). Consider the following commutative diagram

HomA(M,A)⊗A X HomA(M,X) Coker(µM (X)) 0

K ⊗ HomA(M,A)⊗A X K ⊗ HomA(M,X) K ⊗ Coker(µM (X)) 0

HomA⊗K(M ⊗K, A⊗K)⊗A X HomA⊗K(M ⊗K, X ⊗K) K ⊗ Coker(µM (X)) 0

µM (X)
!! !! !!

!! !! !!
"" ""

q

""

≃ !! !! !!

≃
""

≃
""

1
""

Thus, we conclude that K ⊗ Coker(µM (X)) = 0, and q = 0.

Lemma 3.5.5 ([AKM, Lemma A.1]). Let X be an A-lattice and M ∈ latt(♮)-A. Then, the
following statements hold.

(1) D′µM (X) is an isomorphism and natural in X.

(2) DµM (X) is a monomorphism and natural in X.

(3) If M is a projective A-module, then DµM (X) is an isomorphism.

(4) D′′µM (X) is an epimorphism and natural in X.

(5) The sequence

DHomA(M,X)
λX◦DµM (X)−−−−−−−−−→ HomA(X, ν(M))

p∗◦(λ′
X◦D

′µM (X))−1◦ι∗−−−−−−−−−−−−−−−→ D′′HomA(M,X)

is exact.

Proof. (1) Since Coker(µM (X)) is a torsion O-module, D′Coker(µM (X)) = 0. Indeed, if
there is a non-zero O-module homomorphism f ∈ D′(Coker(µM (X))), we can take x ∈
Coker(µM (X)) such that f(x) ̸= 0. Let r ∈ O be a non-zero element of O such that
rx = 0. Then, we have rf(x) = f(rx) = 0, a contradiction. Thus, we have

0→ D′HomA(M,X)
D′µM (X)−−−−−−→ D′(HomA(M,A)⊗A X)→ Ext1O(Coker(µM (X)),K).

As K is an injective O-module, we conclude that D′HomA(M,X) ≃ D′(HomA(M,A)⊗AX).
(2) As Coker(µM (X)) is a torsion O-module, we have also DCoker(µM (X)) = 0. Hence,

(2) follows.
(3) If M is projective, the functor µM is an isomorphism. Thus, DµM is also isomor-

phism since D induces the duality between latt-A and latt-Aop.
(4) As K/O is also an injective O-module, we have Ext1O(Coker(µM (X)),K/O) = 0.

Thus, the statement (4) holds.
(5) The exactness of the sequence follows from (1) and the commutative diagram in

Lemma 3.5.2.
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Lemma 3.5.6 ([AKM, Lemma A.2]). Let M be an A-lattice and pM : P → M the
projective cover. Let L = D(Coker(HomA(pM , A))). Then, the following sequences are
exact in latt-A.

0 −→ L −→ ν(P )
ν(pM )−−−−→ ν(M) −→ 0

0 −→ DHomA(M,−) λ◦DµM (−)−−−−−−−→ HomA(−, ν(M)) −→ Ext1A(−, L) −→ 0

Proof. By applying the functor D to the exact sequence

0 −→ HomA(M,A)
HomA(pM ,A)−−−−−−−−→ HomA(P,A) −→ Coker(HomA(pM , A)) −→ 0,

we have the exact sequence

0 −→ L −→ ν(P )
ν(pM )−−−−→ ν(M) −→ 0.

Since ν gives an equivalence latt-A→ latt-A, ν(P ) is an A-lattice, so is L.
For any A-lattice X, we obtain the exact sequence

HomA(X, ν(P )) −→ HomA(X, ν(M)) −→ Ext1A(X,L) −→ Ext1A(X, ν(P )) = 0

since ν(P ) is an injective A-lattice. Thus, by Lemma 3.5.5, we have the following diagram
with exact rows.

HomA(X, ν(P )) HomA(X, ν(M)) Ext1A(X,L) 0

0 DHomA(M,X) HomA(X, ν(M)) D′′HomA(M,X)

ν(pM )∗:=HomA(X,ν(pM ))
!! !! !!

!!
λX◦DµM (X)

!! !!

We show that ν(pM )∗ factors through λX ◦DµM (X). Consider the following commutative
diagram:

HomA(M,A)⊗A X HomA(P,A)⊗A X

HomA(M,X) HomA(P,X)

p∗M⊗idX !!

p∗M :=HomA(pM ,X)
!!

µM (X)

""
µP (X)

""

By applying D to the above diagram, we obtain the commutative diagram

HomA(X, ν(M)) HomA(X, ν(P ))

DHomA(M,X) DHomA(P,X),

ν(pM )∗&&

Dp∗M&&

λX◦D(µM (X))

''

λX◦D(µP (X))

''
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and λX ◦D(µP (X)) is an isomorphism. Therefore, ν(pM )∗ factors through λX ◦DµM (X).
Since Dp∗M is an epimorphism, the image of ν(pM )∗ coincides with Im(λX ◦ D(µM (X))),
and we get the desired exact sequence.

It follows from Lemma 3.5.6, we have the commutative diagram:

0 Im(ν(p)∗) HomA(X, ν(M)) Ext1A(X,L) 0

0 Im(λX ◦ D(µM (X))) HomA(X, ν(M)) D′′HomA(M,X)

!! !! !! !!

!! !! !!

∃tXL,M

""

We notice that the A-module homomorphism tXL,M : Ext1A(X,L) → D′′HomA(M,X) is
injective.

Corollary 3.5.7. Let M be an indecomposable A-lattice and pM : P →M the projective
cover. Then, soc(D′′EndA(M)) is a simple EndA(M)-module, and there is an isomorphism

soc(Ext1A(M,L)) ≃ {f ∈ D′′(EndA(M)) | f(radEndA(M)) = 0}.

Now, we are ready to give the construction of almost split sequences for latt(♮)-A.

Theorem 3.5.8 ([AKM, Proposition 1.15]). Suppose that A is a Gorenstein O-order and
M is an indecomposable non-projective A-lattice belonging to latt(♮)-A. Let pM : P → M
be the projective cover. For ϕ ∈ HomA(M, ν(M)), we consider the pull-back diagram along
(ν(pM ),ϕ):

0 L E M 0

0 L ν(P ) ν(M) 0

!! f !! g !! !!

!! !!
ν(pM )

!! !!
""

ϕ

""

Then the following (1) and (2) are equivalent.

(1) The upper exact sequence 0→ L→ E →M → 0 is an almost split sequence.

(2) The following three conditions hold.

(a) ϕ does not factor through ν(pM ).

(b) The A-lattice L is an indecomposable.

(c) For all h ∈ radEndA(M), ϕh factors through ν(pM ).

Moreover, any almost split sequence is given in this way.
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Proof. Assume that the upper exact sequence 0 → L → E → M → 0 is an almost split
sequence. Suppose that ϕ = ν(pM )s for some s : M → ν(P ). Then, we obtain the following
commutative diagram by the universality of the pull-back:

E M

ν(P ) ν(M)

M

g !!

ν(pM )
!!

""
ϕ

""

1M

((

s

))

**

Thus, g is a retraction, which contradicts with (1). Hence, (a) follows. The condition (b)
follows from the definition of almost split sequences. Let h ∈ radEndA(M). Since M is
indecomposable, h is not a retraction. Thus, h factors through the A-module homomor-
phism g : E → M since g is right almost split. It implies that ϕh factors though ν(pM ).
Therefore, (1) implies (2).

We show the converse. Assume that the conditions (a), (b) and (c) hold. By (a), the
exact sequence 0 → L → E → M → 0 does not split. Since L is indecomposable by the
condition (b), it is enough to we show that g is right almost split. As g is not a retraction,
we only prove that any A-module homomorphism h : X → M in latt-A which is not a
retraction factors through g. Consider the following diagram

0 L FX X 0

0 L E M 0

0 L ν(P ) ν(M) 0

!! f !! g !! !!

!! !!
ν(pM )

!! !!

!! !! !! !!

""
ϕ

""

""
h

""

with exact rows, where the first row is the pull-back along (g, h). Let [E] be the equivalence
class in EXT1

A(M,L) represented by 0→ L→ E →M → 0. Then, the equivalence class of
the first row in EXT1

A(M,L) is [E]h, and h factors through g if and only if [E]h = [0X,L].
Since M is indecomposable, the condition (c) is equivalent to [E]ψ = [0M,L] for any ψ ∈
radEndA(M). Consider the following commutative diagram:

0 Ext1A(M,L) D′′HomA(M,M)

0 Ext1A(X,L) D′′HomA(M,X).

!!
tML,M !!

!!
tXL,M

!!

Ext1A(h,L)
""

D′′HomA(M,h)

""
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Let ξ := tML,M (ΞM,L([E])). Since h ∈ rad(X,M), we have hm ∈ radEndA(M) for all
m ∈ HomA(M,X). Thus,

D′′HomA(M,h)(ξ)(m) = ξ(hm) = tML,M (ΞM,L([E]))(hm) = tML,M (ΞM,L([E](hm))) = 0

holds for all m ∈ HomA(M,X), and hence we have Ext1A(h, L)(ΞM,L(E)) = 0. This implies
that [E]h = [0X,L]. By the proof of Lemma 3.5.6, any almost split sequence is given in this
way since there is a surjection HomA(M, ν(M))→ Ext1A(M,L).

Recall that O is a complete discrete valuation ring.

Definition 3.5.9. Let M be an A-lattice and Q
q−→ P

p−→ M the minimal projective
resolution of M . Then, we define the transpose Tr(M) of M as the cokernel of the
A-module homomorphism HomA(P,A)→ HomA(Q,A).

Corollary 3.5.10. If A is a Gorenstein O-order, then we have a functorial isomorphism
τ ≃ Ων. In particular, if A is symmetric, then there is a functorial isomorphism τ ≃ Ω.

Proof. Let M be an A-lattice in latt(♮)-A and let Q
q−→ P

p−→ M → 0 be the minimal
projective presentation of M . Then, it follows from Lemma 3.5.6 that we have the following
exact sequence in latt-A:

E : 0 −→ D(Coker(HomA(p,A))) −→ ν(P )
ν(p)−−→ ν(M) −→ 0

On the other hand, we have the exact sequence

E′ : 0 −→ Coker(HomA(p,A)) −→ HomA(Q,A) −→ Tr(M) −→ 0.

Since the exact sequence E′ is the projective cover of Tr(M), we have DΩTr(M) = τ(M).
The exact sequence E implies that DCoker(HomA(p,A)) = Ω(ν(M)). Therefore, we have
τ ≃ DΩTr ≃ Ων.

Remark 3.5.11 ([Hap]). As A is a Gorenstein O-order, the Nakayama functor ν : latt-
A → latt-A is an autofunctor, and latt-A is a Frobenius category. Hence, latt-A is a
triangulated category with the shift functor Ω−1. Then, we have a triangulated equivalence
ν : latt-A

∼−→ latt-A, and the AR translation τ is represented by Ων.

Remark 3.5.12 ([A2, I5]). Let R be a noetherian complete local ring with Kr-dim(R) = d.
If an R-algebra Λ is Cohen–Macaulay as an R-module, then Λ is also called an R-order.
Assume that Λ is an isolated singularity. We denote by CM(Λ) the category of Cohen–
Macaulay Λ-modules, that is, the objects of CM(Λ) are Λ-modules which are Cohen–
Macaulay as R-modules. Then, we have a duality

ΩdTr : CM(Λ)←→ CM(Λop),

where Ω is the syzygy functor. In this setting, the AR translation τd is given by HomR(−, R)ΩdTr.
If d = 0, then R is a field, and CM(Λ) is just mod-Λ. If d = 1, then R is a complete discrete
valuation ring, and CM(Λ) is just latt-Λ.



3. On the shapes of stable Auslander–Reiten components for a symmetric order 49

Let A be a symmetric O-order. Since A is symmetric, the AR translation τ is the syzygy
founctor on latt-A. Thus, it is an additive functor and, for an A-lattice M , τ(M) = 0 if
and only if M is a projective A-module. Furthermore, since A is symmetric, if M is a non-
projective indecomposable A-lattice if and only if τ(M) is a non-projective indecomposable
A-lattice. Let M be a non-projective indecomposable A-lattice in latt(♮)-A. Then, the
middle term of an almost split sequence may have projective direct summands.

Theorem 3.5.13 ([A2, Chapter III, Theorem 2.5]). Let A be a Gorenstein O-order. Sup-
pose that M is a non-projective indecomposable A-lattice in latt(♮)-A. Let 0 → τM →
E →M → 0 be the almost split sequence ending at M . Then the following are equivalent.

(a) The A-lattice E has a projective indecomposable direct summand.

(b) If X →M is a surjection in latt(♮)-A which is not a retraction, then X has a projective
indecomposable summand.

(c) τ(M) is isomorphic to a non-projective direct summand of radP for some indecompos-
able projective A-module P .

3.6 Stable Auslander–Reiten quivers

Throughout this section, we assume that A is a symmetric O-order. The definition of the
stable Auslander–Reiten quiver for latt(♮)-A is given as follows.

Definition 3.6.1. Let A be a symmetric O-order.

(1) The stable Auslander–Reiten quiver for latt(♮)-A is the valued stable translation
quiver (Γs(A), τ) defined as follows:

• The set of vertices is a complete set of isoclasses of non-projective indecomposable
A-lattices in latt(♮)-A.

• We draw a valued arrow M
(a,b)−−−→ N whenever there exist irreducible morphisms

M → N , where the valuation (a, b) means:

(i) a is the multiplicity of M in the middle term of the almost split sequence
ending at N .

(ii) b is the multiplicity of N in the middle term of the almost split sequence
starting at M .

• The translation τ is the AR translation.

(2) A component of Γs(A) containing an indecomposable Heller lattice Z is said to be a
Heller component of A, and denoted by HC(Z).
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Remark 3.6.2. For a finite dimensional algebra Λ over an algebraically closed field k, it
is well-known that the Auslander-Reiten quiver for mod-Λ has no loops, for example see
[SY1, Chapter III, Corollary 11.3]. However, in the case of an O-order, there are possibility
that Γs(A) has loops [Wi]. For example, if A is Morita equivalent to either a Bass order
or a maximal order, then the Auslander–Reite quiver of such an algebra has loops.

Definition 3.6.3. An O-linear map d : A→ EndO(M) is called a derivation if

d(xy) = xd(y) + d(x)y

for all x, y ∈ A. We denote by Der(A,EndO(M)) the O-module of derivations. Note that
Der(A,EndO(M)) is an O-order since A and EndO(M) are.

Lemma 3.6.4 ([AKM, Lemma 1.24]). Let A be an O-order, M an indecomposable A-
lattice. Then, there exists an integer s such that M/εkM is an indecomposable A/εkA-
module, for all k ≥ s.

Proof. Let k be a positive integer. For f ∈ EndO(M) such that af(m + εkM) = f(am +
εkM), for a ∈ A and m ∈M , we define Df ∈ HomO(A,EndO(M)) by

Df (a)(m) = ε−k(f(am)− af(m))

for a ∈ A and m ∈M . Then, Df is a derivation. Indeed,

Df (xy)(m) = ε−k(f(xym)− xyf(m))

= ε−k(xf(ym)− xyf(m)) + ε−k(f(xym)− xf(ym))

= xDf (y)(m) +Df (x)y(m).

Let Der(k) be the O-submodule of Der(A,EndO(M)) which is generated by all such Df ,
and we define Der(∞) =

∑
k≥1Der(k). Since Der(A,EndO(M)) is a finitely generated

O-module, there exists an integer s such that

Der(∞) =
s−1∑

k=1

Der(k).

Let pk : M →M/εkM be the canonical projection. Then, for any f ∈ EndA(M), there
exists f ∈ EndA(M/εkM) such that fpk = pkf . We show that the algebra homomorphism

EndA(M) ∋ f 5−→ f ∈ EndA(M/εkM)

is surjective, for all k ≥ s. Let θ ∈ EndA(M/εkM), for k ≥ s. We fix f ∈ EndO(M) such
that f(m+ εkM) = θ(m+ εkM) for m ∈M . Then, there exist ci ∈ O and fi ∈ EndO(M)
that satisfy

fi(m+ εliM) = θi(m+ εliM)
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for some 1 ≤ li ≤ s − 1 and θi ∈ EndA(M/εliM) such that Df =
∑N

i=1 ciDfi . More
explicitly, we have

f(am)− af(m) =
N∑

i=1

εk−lici(fi(am)− afi(m))

for a ∈ A and m ∈ M . It implies that f −
∑N

i=1 ε
k−licifi ∈ EndA(M). Since it coincides

with θ if we reduce modulo ε, we have proved

Im(EndA(M)→ EndA(M/εkM)) + εEndA(M/εkM) = EndA(M/εkM).

Thus, Nakayama’s lemma implies that EndA(M) → EndA(M/εkM) is surjective, and we
have an isomorphism of algebras EndA(M)/εkEndA(M) ≃ EndA(M/εkM). As O is a
complete local ring, the lifting idempotent argument works by Proposition 2.2.4. Hence,
M/εkM is decomposable for k ≥ s when M is indecomposable.

The following lemma is well-known as the Harada–Sai lemma.

Lemma 3.6.5 ([ARS, Chapter VI, Corollary 1.3]). Let Λ be an Artin algebra, m a positive
integer and

N1
f1−−→ N2

f2−−→ · · ·
f2m−2−−−−→ N2m−1

f2m−1−−−−→ N2m

a chain of Λ-module homomorphisms satisfying the following conditions.

(i) The Λ-modules N1, . . . , N2m are indecomposable with ℓ(Ni) ≤ m, where ℓ(M) is the
length of composition series of M .

(ii) The Λ-module homomorphism fi : Ni → Ni+1 belongs to rad(Ni, Ni+1).

Then we have f2m−1 · · · f1 = 0.

Proof. Let {Ni | 1 ≤ i ≤ 2m} be a collection of indecomposable Λ-modules such that the
length of composition series of Ni is less than or equal to m, for all i. We show by induction
on n that if

N1
f1−−→ N2

f2−−→ · · ·
f2n−2−−−−→ N2n−1

f2n−1−−−−→ N2n

is a chain of non-zero non-isomorphisms, then we have ℓ(Im(f2n−1 · · · f2f1)) ≤ m− n.
When n = 1, the statement is clear. Indeed, if ℓ(Im(f1)) = m, then f1 must be

isomorphism. Thus, we have ℓ(Im(f1)) ≤ m − 1. Assume that n > 1. We set f =
f2n−1 · · · f2f1, g = f2n and h = f2n+1−1 · · · f2n+2f2n+1. By the inductive assumption, we
have ℓ(Im(f)) ≤ m−n and ℓ(Im(h)) ≤ m−n. If either ℓ(Im(f)) < m−n or ℓ(Im(h)) < m−n,
then the statement is clear. Now, we suppose that ℓ(Im(f)) = m − n, ℓ(Im(h)) = m − n
and m > n.
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We prove that ℓ(Im(hgf)) ≤ m−n−1. In order to get a contradiction, we suppose that
ℓ(Im(hgf)) > m−n− 1. As ℓ(Im(hgf)) ≤ ℓ(Im(h)) ≤ m−n, we have ℓ(Im(hgf)) = m−n,
and the formula

ℓ(Im(hgf)) = ℓ

(
Im(f)

Im(f) ∩ Ker(hg)

)
= ℓ(Im(f))− ℓ(Im(f) ∩ Ker(hg))

yields Im(f)∩Ker(hg) = 0. On the other hand, the chain of inclusions Im(hgf) ⊂ Im(hg) ⊂
Im(h) implies that ℓ(Im(hg)) = m− n, so that

ℓ(Ker(hg)) = ℓ(N2n+1)− ℓ(Im(hg)) ≤ m− (m− n) = n.

Thus, we conclude that N2n = Im(f) ⊕ Ker(hg) since ℓ(N2n) = ℓ(Im(f)) + ℓ(Ker(hg)).
By the indecomposablity of N2n , the Λ-module homomorphism hg is injective, hence g
is injective. Similarly, it follows from Im(gf) ∩ Ker(h) = 0 and the indecomposability of
N2n+1 that g is surjective. This is a contradiction.

The following proposition is a generalization of [ASS, Chapter IV, 5.4 Theorem].

Proposition 3.6.6 ([AKM, Proposition 1.26]). Let C be a component of Γs(A). Assume
that A is indecomposable as an algebra and the number of vertices in C is finite. Then C
exhausts all non-projective indecomposable A-lattices.

Proof. We add indecomposable projective A-lattices to Γs(A) to obtain the Auslander–
Reiten quiver of A. We show that if C is a finite component of the Auslander–Reiten
quiver then C exhausts all indecomposable A-lattices.

Assume that M is an indecomposable A-lattice which does not belong to C. It suffices
to show that HomA(M,N) = 0 and HomA(N,M) = 0 for all N ∈ C. To see that it is
sufficient, let P be an indecomposable direct summand of the projective cover of N ∈ C.
Then, P belongs to C since N belongs to C and HomA(P,N) ̸= 0. As A is indecomposable
as an algebra, there is no indecomposable projective A-lattice Q with the property that

HomA(Q,R) = 0 = HomA(R,Q),

for all indecomposable projective A-lattices R ∈ C. It implies that any direct summand Q
of the projective cover of M belongs to C. Then HomA(Q,M) ̸= 0 implies that M ∈ C,
which contradicts our assumption. Thus, C exhausts all indecomposable A-lattices.

Assume that there exists a nonzero morphism f ∈ HomA(M,N). As M ̸∈ C and
N ∈ C, f is not a retraction. We consider the almost split sequence ending at N , and
we denote by N1, . . . , Nr the indecomposable direct summands of the middle term of the

almost split sequence. Let g(1)i : Ni −→ N be irreducible morphisms. Then, there exist
fi ∈ HomA(M,Ni) such that

f =
r∑

i=1

g(1)i fi.
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If Ni is non-projective, we apply the same procedure to fi. If Ni is projective, fi factors
through the Heller lattice radNi of the simple A-module Ni/rad(Ni). Thus, we apply the
procedure after we replace Ni with radNi. After repeating n times, we obtain,

f =
∑

g(1)i · · · g(n)i hi,

such that g(j)i are morphisms among indecomposable A-lattices in C, hi are morphisms
M → Xi, where Xi are indecomposable A-lattices in C and they are not isomorphisms.

Since the number of vertices in C is finite, there exists an integer s such that X/εsX is
indecomposable, for all X ∈ C by Lemma 3.6.4. Let m be the maximal length of A/εsA-
modules X/εsX, for X ∈ C. Applying Lemma 3.6.5 to the Artin algebra A/εsA with
n = 2m − 1, we obtain

HomA(M,N) = εsHomA(M,N),

and Nalayama’s lemma implies HomA(M,N) = 0. The proof of HomA(N,M) = 0 is
similar. We start with a nonzero morphism f ∈ HomA(N,M) and consider the almost
split sequence starting at N . Let N1, . . . , Nr be the indecomposable direct summands of
the middle term of the almost split sequence as above, and let

g(1)i : N −→ Ni

be irreducible morphisms. If Ni is projective, then we replace Ni with radNi. Then, after
repeating the procedure n times, we obtain

f =
∑

hig
(n)
i · · · g(1)i ,

where hi are morphisms from indecomposable A-lattices in C to M . Then, we may deduce
HomA(N,M) = 0 by the Harada–Sai lemma and Nakayama’s lemma as before.

An O-order A is of finite CM type if there are only finitely many isoclasses of inde-
composable A-lattices.

Corollary 3.6.7. A symmetric O-order is of finite CM type if and only if the stable
Auslander–Reiten component has a finite component. Moreover, if A is of finite CM type,
then A is an isolated singularity.

Proof. The first half of the statements immediately follows from Proposition 3.6.6. We show
the last half of the statements. If A is of finite CM type, all non-projective indecomposable
A-lattices belong to the stable Auslander–Reiten quiver. We apply the arguments in the
proof of Proposition 3.6.6 for arbitrary A-lattice M . It implies that latt(♮)-A = latt-A.

Remark 3.6.8 ([A3]). Corollary 3.6.7 had proven by M. Auslander in [A3], namely if A
is a Gorenstein O-order, which is of finite CM type, then A has an isolated singularity.
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3.7 On the shape of the stable Auslander–Reiten quiver

To determine the shapes of Auslander–Reiten quivers is one of classical problems in rep-
resentation theory of algebras. There exist strong restrictions on the shapes of stable
Auslander–Reiten quivers for important classes of finite dimensional algebras. In [We], P.
J. Webb studied the stable Auslander-Reiten components of group algebras. Let G be a
finite group and k an algebraically closed field with characteristic p such that p divides the
order of G. Then, the tree class of any stable component of the group algebra kG is one
of infinite Dynkin diagrams A∞, B∞, C∞, D∞ or A∞∞, or else it is An, or one of Euclidean
diagrams ([B, Theorem 4.17.4]). Moreover, Erdmann showed that the tree class of any
stable component of a wild block of kG is A∞ [Erd]. For another example, Riedtmann
and Todorov showed that the tree class of any stable component of a finite dimensional
self-injective algebra of finite representation type is one of finite Dynkin diagrams [Ri2, T].
However, if the base ring is not a field, then the shapes of (stable) Auslander–Reiten com-
ponents are mostly unknown. In this section, we give restrictions on the shape of certain
stable Auslander–Reiten components [AKM, M1].

Throughout this section, we assume that A is a symmetric O-order and C is a connected
component of Γs(A). By the definition of the stable Auslande–Reiten quiver, C is valued
stable translation quiver. Assume that C has no loops. Then, it follows from the Riedtmann
structure theorem that there exists a directed tree T and G ⊂ Autτ0(ZT ) such that C is
isomorphic to ZT/G. In order to get a restriction on the shape of C, we give candidates
for the tree class T .

First, we consider the case of finite CM type. This case had already given in [Lu].
Assume that C has finitely many vertices. By Corollary 3.6.7, the O-order A is an isolated
singularity. In this case, latt-A is a Hom-finite triangulated category. Therefore, the
following result follows from [XZ, Theorem 2.3.5].

Theorem 3.7.1 ([Lu, Theorem 2.18]). Let A be a symmetric O-order, which is of finite
CM type. Then, the tree class of Γs(A) is one of finite Dynkin diagrams.

From now on, we assume the following.

Assumption 3.7.2. The stable Auslander–Reiten quiver Γs(A) has infinitely many ver-
tices.

Lemma 3.7.3. Let C be a component of Γs(A). Then, C has infinitely many vertices.

Proof. This follows immediately from Corollary 3.6.7 and Assumption 3.7.2.

Lemma 3.7.4. Let C be a periodic component of Γs(A) without loops and T the tree class
of C. Then, the function R : C0 → Q≥0 defined by

R(X) :=
nX−1∑

i=0

rank(τ iX)

nX
,
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where nX is a positive integer such that τnX (X) ≃ X, is subadditive on T .

Proof. Let C be a periodic component of Γs(A) without loops and T the tree class of C.
For each X ∈ T , the inequality

∑

Y ∈X−

dY,X rank(Y ) ≤ rank(X) + rank(τX) (3.1)

implies that R satisfies

2R(X) ≥
∑

Y ∈X−∩T

dY,XR(Y ) +
∑

Y ∈X+∩T

d′X,Y R(Y ) (3.2)

for all X ∈ T . This is shown as follows. By the definition of R, it is a τ -invariant function.
Let n =

∏
Y→X nY . Then, we have

nXn−1∑

k=0

(
∑

Y→X

dτkY,τkX rank(τkY )

)
=
∑

Y→X

nXn−1∑

k=0

(dY,X rank(τkY ))

=
∑

Y→X

dY,X
nXn

nY

nY −1∑

k=0

rank(τkY )

=
∑

Y→X

dY,XnXnR(Y ).

On the other hand, we have

nXn−1∑

k=0

(rank(τkX) + rank(τk+1X)) = 2
nXn

nX

nX−1∑

k=0

rank(τkX) = 2nXnR(X).

Thus, the inequality (3.1) yields the inequality (3.2) since C is a valued stable translation
quiver. By Remark 2.5.7, the restriction R|T is subadditive.

Proposition 3.7.5 ([AKM, Lemma 1.23]). Let C be a component of Γs(A). If C has loops,
then C is τ -periodic. Furthermore, C \ {loops} is of the form ZA∞/⟨τ⟩. In this case, there
exists exactly one loop and it appears at the endpoint of C such that the valuation of the
loop is trivial.

C = • • · · · · · · • • · · ·!!

"" "" "" "" ""
## ## ## ## ##

τ τ τ τ

Proof. First, we show that if X ∈ C has a loop, then X ≃ τX. Suppose that X ∈ C has a
loop and X ̸≃ τX. Then the almost split sequence ending at X is of the form

0→ τX → X⊕l1 ⊕ EX ⊕ τX⊕l2 → X → 0,
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where EX is an A-lattice and l1, l2 ≥ 1. Therefore,

rank(X) + rank(τX) = l1rank(X) + l2rank(τX) + rank(EX),

implies rank(EX) = 0 and l1 = l2 = 1. However, it follows from Theorem 2.3.3 that the
almost split sequence ending at X splits, a contradiction. Therefore, if X has a loop, then
X and τX are isomorphic.

We notice that C \ {loops} is also a valued stable translation quiver, and we may apply
the Riedtmann structure theorem. We write C \{loops} = ZT/G, for a directed tree T and
an admissible subgroup G. By Lemma 3.7.4, the function R is subadditive on T . Since
C has a loop, R|T is not additive. Then, Lemma 2.5.8 implies that T = A∞ since C has
infinitely vertices. Thus, we may assume without loss of generality that T is a chain of
irreducible maps

X1 → X2 → · · ·→ Xr → · · ·

by Lemma 2.5.3. We assume that Xr has a loop. If r > 1 then the almost split sequence
starting at Xr is

0 −→ Xr −→ X⊕lr ⊕Xr+1 ⊕Xr−1 ⊕ P −→ Xr −→ 0,

where l ≥ 1 and P ∈ proj-A. Since R(Xt) ≥ 1 for all t ≥ 1, we have

R(Xr) ≥ (2− l)R(Xr) ≥ R(Xr+1) +R(Xr−1) ≥ R(Xr+1) + 1.

We show that R(Xm) ≥ R(Xm+1) + 1 for m ≥ r. Suppose that R(Xm−1) ≥ R(Xm) + 1
holds. The same argument as above shows 2R(Xm) ≥ R(Xm−1) + R(Xm+1), and the
induction hypothesis implies

2R(Xm) ≥ R(Xm−1) +R(Xm+1) ≥ R(Xm) +R(Xm+1) + 1.

Hence R(Xm) ≥ R(Xm+1)+1. Thus, there exists a positive integer t such that R(Xt) < 0,
which contradicts with R(Xt) ≥ 1. Hence r = 1, that is, the deleted loops appear only at
the endpoint of the homogeneous tube. Then, l = 1 by 2 × rank(X1) > l × rank(X1). We
have proved that the loop is unique and it appears at the endpoint of the homogeneous
tube such that the valuation is (1, 1).

Theorem 3.7.6 ([AKM, Theorem 1.27]). Let C be a τ -periodic component of the stable
Auslander–Reiten quiver. If C has no loops, then C is of the form ZT/G, where T is
a directed tree whose underlying graph is one of infinite Dynkin diagrams and G is an
admissible group.

Proof. Since C has no loops, the statement follows from Theorem 2.5.8 and Lemmas 3.7.3
and 3.7.4.
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Corollary 3.7.7. Let C be a periodic component of Γs(A). For X ∈ C, we denote by EX

the middle term of almost split sequence ending at X. Assume that

(i) there exists a vertex X of C such that the number of non-projective direct summands
of EX is one, and

(ii) EX does not have X as a direct summand.

Then, C dose not have a loop.

Proof. If C has a loop, C \ {the loop} ≃ ZA∞/⟨τ⟩, and the loop only appear the boundary
of C by Proposition 3.7.5. By our assumption that EX has exactly one non-projective
indecomposable direct summand, the A-lattice X appears on the boundary of C and EX =
X ⊕ P for some P ∈ proj-A. This contradicts with the assumption (ii).

Corollary 3.7.8. Let C be a periodic component of Γs(A). If there exists a vertex X of
C such that the following conditions hold:

(i) The number of non-projective indecomposable direct summands of EX is 1. We
denote by Y the unique non-projective direct summand.

(ii) The number of non-projective indecomposable direct summands of EY is 2.

Then, C is a tube.

Proof. By the assumption (i) and (ii), we have Y ̸= X. Thus, it follows from Corollary
3.7.7 that C has no loops. Thus, the tree class T of C is one of infinite Dynkin diagrams.
By the assumption (i), T ̸= A∞∞. By the assumption (ii), T ̸= B∞, C∞, D∞. Therefore, T
is A∞.

By Proposition 3.7.5, we may assume the following.

Assumption 3.7.9. A stable Auslander–Reiten component of Γs(A) does not have a loop.

The following proposition is effective to determine the shapes of stable components of
A.

Proposition 3.7.10 ([K3, Proposition 4,5]). Let A be an O-order and L an indecompos-
able A-lattice, and let

0→ τL→ E
g−→ L→ 0

be the almost split sequence ending at L. Assume that L is not a direct summand of any
Heller lattice. Then, the induced exact sequence

0→ τL⊗ κ→ E ⊗ κ→ L⊗ κ→ 0

splits.
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Proof. Let P → L ⊗ κ = L/εL be the projective cover of L ⊗ κ as an A-module. Set
Q = εP and Z = Ω(L/εL). Then, we have εZ ⊂ Q ⊂ Z ⊂ P and an isomorphism
ϕ : Q/εZ

∼−→ L/εL. Let i : Q→ Z and ι : Q/εZ → Z/εZ be the inclusions, u : Q→ Q/εZ,
v : L → L/εL and w : Z → Z/εZ the projections. Since Q is projective, there exists an
A-module homomorphism q̃ : Q→ L such that the following diagram is commutative:

L L/εL 0

Q

Q/εZ

!!v !!

u

""

≃ϕ

""

∃q̃

++✡
✡
✡
✡
✡
✡
✡
✡
✡

As vq̃(εZ) = ϕu(εZ) = 0, we have q̃(εZ) ⊂ εL. Thus, we may extend q̃ to an A-module
homomorphism q : Z → L. Let q : Z/εZ → L/εL be the induced morphism from q. Then,
the equations

ϕu = vq̃ = vqi = qwi = qιu

hold. Thus, ϕ factors through q : Z/εZ → L/εL. By our assumption that L is not a direct
summand of Z, q is not a retraction. Thus, q factors through the morphism g:

0 τL E L 0

Z

!! !! g !! !!

q

"",,⑧
⑧
⑧
⑧
⑧

Since 1L⊗κ = qιϕ−1, the identity morphism 1L⊗κ factors through the induced morphism
g : E/εE → L/εL.

We define the function D : latt(♮)-A→ Z≥0 by the following.

D(X) := ♯{non-projective indecomposable direct summands of X ⊗ κ}

Lemma 3.7.11 ([M1, Lemma 3.2] and [M2, Lemma 1.16]). Suppose that A is a symmetric
O-order. Then, for any non-projective A-lattice M , there is an isomorphism τ(M) ⊗ κ ≃
Ω̃(M ⊗ κ). In particular, we have the equality D(X) = D(τX).

Proof. Let M be an A-lattice and π : P → M the projective cover. Let Q ⊗ κ → M ⊗ κ
be the projective cover. Then rank Q ≤ rank P . On the other hand, it lifts to Q→M and
it is an epimorphism by Nakayama’s lemma. Thus, we have rank Q = rank P and P ⊗ κ is
the projective cover of X ⊗ κ. Therefore, we have τ(M)⊗ κ ≃ Ω̃(M ⊗ κ) as objects in the
stable module category mod-A. Since the functor − ⊗ κ is exact on latt-A, the assertion
follows.
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Lemma 3.7.12 ([M1, Lemma 3.3]). If a short exact sequence 0 → τL → E → L → 0 in
latt(♮)-A is the almost split sequence ending at L, then the equality

D(L) +D(τL) = D(E)

holds whenever L is not isomorphic to any direct summand of Heller lattices.

Proof. Let L be an indecomposable A-lattice in latt(♮)-A. Suppose that L is not isomorphic
to a Heller lattice. Let 0 → τL → E → L → 0 be the almost split sequence ending at L.
By Proposition 3.7.10, the induced exact sequence

0→ τL⊗ κ→ E ⊗ κ→ L⊗ κ→ 0

splits, which gives the desired conclusion.

Corollary 3.7.13 ([M2, Lemma 1.19]). Let C be a component of Γs(A). For an indecom-
posable Heller lattice Z ∈ C, let EZ be the middle term of the almost split sequence ending
at Z. If D satisfies 2D(Z) ≥ D(EZ) for any indecomposable Heller lattice Z ∈ C, then D
gives rise to a subadditive function on T , where T is a directed tree such that C ≃ ZT/G.
In particular, D|T is additive if and only if the equalities hold for any Z.

Proof. The assertion follows from Lemmas 3.7.11 and 3.7.12.

Theorem 3.7.14 ([M1, Proposition 5.4]). Let C be a component of the stable Auslander–
Reiten quiver of A. Assume either

(i) C does not contain Heller lattices or

(ii) A is of finite representation type.

Then, the tree class of C is one of infinite Dynkin diagrams or Euclidean diagrams.

Proof. If C is τ -periodic, the statement had proven by Theorem 3.7.6. Thus, we may
assume that C is not τ -periodic. Since C has no loops, there exist a directed tree T and
an admissible group G such that C ≃ ZT/G by Theorem 2.5.4. Suppose that C does not
contain Heller lattices. In this case, the function D is additive with D(X) = D(τX), for
all X ∈ C by Lemmas 3.7.11 and 3.7.12. Thus, the assertion follows from Theorem 2.5.8.

Suppose that A is of finite representation type. Since the number of isoclasses of Heller
lattices is finite, there exists an integer nX such that both τnXX and τnX+1X are not
Heller lattices for any vertex X ∈ C. Thus, D is an additive function on T .



4. HELLER COMPONENTS: THE CASE OF TRUNCATED POLYNOMIAL
RINGS

In this chapter, we determine the shapes of Heller components when A = O[X]/(Xn). The
results in this chapter appear in [AKM]. Since A⊗K = K[X]/(Xn) is not semi-simple, A
is not an isolated singularity. In particular, latt-A is of infinite representation type, and
the stable Auslander–Reiten quiver Γs(A) has infinitely many vertices. Since A is of finite
representation type, the tree class of any Heller component of A which has no a loop is one
of infinite Dynkin diagrams or Euclidean diagrams by Theorem 3.7.14.

In this chapter, we use the same symbol X as X + (Xn). It is well-known that the
stable Auslander–Reiten quiver is given as follows:

M1 M2 · · · · · · Mn−2 Mn−1
"" "" "" ""

## ## ## ##

τ τ τ τ

Here, the indecomposable A-module Mi is given as follows. As a κ-vector space, Mi is a
(n− i)-dimensional κ-vector space

Mi =
n−i−1⊕

k=0

κXi+k,

and the action of X is given in natural way. We denote by Zi the first syzygy of Mi in
latt-A. Then, Zi is indecomposable (Lemma 4.1.1).

The second main result of this thesis is the following:

Main Theorem (Proposition 4.2.1, Theorem 4.4.1). Let O be a complete discrete valua-
tion ring, A = O[X]/(Xn), for n ≥ 2. Then, the Heller component containing Zi and Zn−i
is ZA∞/⟨τ2⟩ if 2i ̸= n, and ZA∞/⟨τ⟩ (i.e. homogeneous tube) if 2i = n. Moreover, any
Heller lattice appears on the boundary of a Heller component.

4.1 Heller lattices

We view Mi as an A-module. Then, the A-module homomorphism pMi : A → Mi defined
by 1 5→ Xi is the projective cover of Mi. Therefore, the first syzygy Zi := Ω(Mi) is given
as follows:

Zi = Oε⊕OεX ⊕ · · ·⊕OεXn−i−1 ⊕OXn−i ⊕OXn−i+1 ⊕ · · ·⊕OXn−1
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Lemma 4.1.1 ([AKM, Lemma 2.1]). We have the following.

(1) The Heller lattices Z1, . . . , Zn−1 are pairwise non-isomorphic indecomposableA-lattices.

(2) If ρ ∈ radEndA(Zi) then ρ(ε) has the form

ρ(ε) = a0ε+ · · ·+ an−i−1εX
n−i−1 + an−iX

n−i + · · ·+ an−1X
n−1,

where ai ∈ O, for 1 ≤ i ≤ n− 1, and a0 ∈ εO.

Proof. (1) The representing matrix of the action of X = (xi,j) on Zi with respect to the
above basis is given by the following matrix

xi,j =

⎧
⎨

⎩

ε if i = n− i+ 1, j = n− i,
1 if i = j + 1, j ̸= n− i,
0 otherwise.

Then, the endomorphism algebra EndA(Zi) is isomorphic to {M ∈ Mat(n, n,O) |MX = XM} .
The right hand side is contained in the set:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜⎝

a 0 · · · 0
. . .

. . .
...

∗ . . . 0
a

⎞

⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a ∈ O

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Hence, EndA(Zi) is local. The statement (2) follows immediately from the proof of (1).

We now consider the following pullback diagram along (pZ ,ϕi):

0 Ker(pZi) Ei Zi 0

0 Ker(pZi) A⊕A Zi 0

!! !! !! !!

!! !!
pZi !! !!

""

ϕi

""

Here, ϕi is the A-module homomorphism defined by ϕi(ε) = Xn−1 and pZi : A ⊕ A → Zi

is defined by e1 5−→ Xn−i, e2 5−→ ε. Then, pZi is the projective cover of Zi, and the kernel
of pZi is given by

O(εe1 −Xn−ie2)⊕ · · ·⊕O(εXi−1e1 −Xn−1e2)⊕OXie1 ⊕ · · ·⊕OXn−1e1 ≃ Zn−i.

Lemma 4.1.2 ([AKM, Lemma 2.3]). The upper exact sequence in the above commutative
diagram is the almost split sequence ending at Zi.
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Proof. By Theorem 3.5.8, it is enough to show the following two statements.

(1) The A-module homomorphism ϕi does not factor through pZi .

(2) For any ρ ∈ radEndA(Zi), φiρ factors through pZi .

Suppose that there is a morphism µ = (µ1, µ2) : Zi → A ⊕ A such that pZiµ = ϕi. Then
we have Xn−iµ1(ε) − εµ2(ε) = ε(µ1(Xn−i) − µ2(ε)) = Xn−1, a contradiction. Thus, (1)
follows.

Next, we show (2). Write ρ(ε) = a0ε+· · ·+an−i−1εXn−i−1+an−iXn−i+· · ·+an−1Xn−1.
Then, by Lemma 4.1.1, there exists a ∈ O such that a0 = εa. We define µ ∈ HomA(Zi, A⊕
A) by µ(ε) = −aXn−1e2. Then, it is easy to check that pZiµ = ϕiρ holds.

By the above lemma, we have the almost split sequence 0 −→ Zn−i −→ Ei −→ Zi −→ 0,
where

Ei =O(ε, Xn−i, 0)⊕O(εX,Xn−i+1, 0)⊕ · · ·⊕O(εXi−1, Xn−1, 0)

⊕O(Xi, 0, 0)⊕O(Xi+1, 0, 0)⊕ · · ·⊕O(Xn−1, 0, 0)

⊕ O(Xi−1, 0, ε)⊕O(0, 0, εX)⊕ · · ·⊕O(0, 0, εXn−i−1)

⊕ O(0, 0, Xn−i)⊕O(0, 0, Xn−i+1)⊕ · · ·⊕O(0, 0, Xn−1).

To simplify the notation, we define a0 = b0 = 0 and

ak =

{
(Xn−k, 0, 0) if 1 ≤ k ≤ n− i,
(εXn−k, X2n−k−i, 0) if n− i < k ≤ n,

bk =

⎧
⎨

⎩

(0, 0, Xn−k) if 1 ≤ k ≤ i,
(0, 0, εXn−k) if i < k < n,
(Xi−1, 0, ε) if k = n.

Then, we have

Xak =

{
ak−1 if k ̸= n− i+ 1,
εak−1 if k = n− i+ 1,

Xbk =

⎧
⎨

⎩

bk−1 if k ̸= i+ 1, n,
εbk−1 (k = i+ 1)
an−i + bn−1 ifk = n.

and
Ker(Xk) =

⊕

1≤j≤k
(Oaj ⊕Obj).
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4.2 The middle terms of almost split sequences ending at Heller lattices

In this section, we show that the middle term Ei of the almost split sequence ending at
Zi is indecomposable, for 2 ≤ i ≤ n− 1, and the middle term of the almost split sequence
ending at Z1 has only one non-projective indecomposable direct summand.

Proposition 4.2.1 ([AKM, Proposition 2.4]). The following statements hold.

(1) A is an indecomposable direct summand of E1, and the other direct summand is
indecomposable.

(2) For 2 ≤ i ≤ n− 1, the A-lattice Ei is indecomposable.

Proof. (1) As Zn−1 = radA, it follows from Theorem 3.5.13 that A is a direct summand of
E1. We also give more explicit computational proof here. Define xk, yk ∈ E1, for 1 ≤ k ≤ n,
as follows:

xk =

⎧
⎨

⎩

a1 + εb1 if k = 1,
ak + bk if 2 ≤ k ≤ n− 1,
bn if k = n,

yk =

{
bk if 1 ≤ k ≤ n− 1,
an − εbn if k = n.

Then they form an O-basis of E1. Moreover, we have Xx1 = 0 and Xy1 = 0,

Xxk = xk−1, for 2 ≤ k ≤ n, and Xyk =

⎧
⎨

⎩

εy1 if k = 2,
yk−1 if 3 ≤ k ≤ n− 1,
−εyn−1 if k = n.

Thus, the O-span of {xk | 1 ≤ k ≤ n} is isomorphic to the indecomposable projective
A-lattice A. In particular, A is an indecomposable direct summand of E1, and the other
direct summand is indecomposable, because it becomes A⊗K after tensoring with K.

(2) En−1 does not have a projective direct summand by Theorem 3.5.13. As En−1 ≃
τ(E1), the A-lattice En−1 is indecomposable. We assume 2 ≤ i ≤ n − 2 in the rest of the
proof.

Suppose that Ei = E′⊕E′′ with E′ ̸= 0 ̸= E′′ as an A-lattice. Since Ei⊗K is projective
as an A⊗K-module and rank(Ei) = 2n, we have E′⊗K ≃ A⊗K ≃ E′′⊗K. In particular,
rank(E′) = n = rank(E′′). Since

0→ E′ ∩ Ker(Xk)→ E′ → Im(Xk)→ 0

and Im(Xk) is a free O-module, we have the increasing sequence of O-submodules

0 ! · · · ! E′ ∩ Ker(Xk) ! E′ ∩ Ker(Xk+1) ! · · · ! E′ ∩ Ker(Xn) = E′
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such that all the O-submodules are direct summands of E′ as O-modules. Thus, we may
choose an O-basis {e′k}1≤k≤n such that e′k ∈ E′ ∩Ker(Xk) \Ker(Xk−1). Similarly, we may
choose an O-basis {e′′k}1≤k≤n of E′′ such that e′′k ∈ E′′ ∩ Ker(Xk) \ Ker(Xk−1). Write

e′k = αkak + βkbk +A′k, for αk,βk ∈ O and A′k ∈ Ker(Xk−1),
e′′k = γkak + δkbk +A′′k, for γk, δk ∈ O and A′′k ∈ Ker(Xk−1).

Without loss of generality, we may assume A′k ∈ Ker(Xk−1)∩E′′ and A′′k ∈ Ker(Xk−1)∩E′.
Since {e′k, e′′k} and {ak, bk} are O-bases of Ker(Xk)/Ker(Xk−1), we have αkδk−βkγk ̸∈ εO.

As Xe′k ∈ Ker(Xk−1) ∩ E′, there are f (k)
k−1, . . . , f

(k)
1 ∈ O such that

Xe′k = f (k)
k−1e

′
k−1 + · · ·+ f (k)

1 e′1.

Similarly, there are g(k)k−1, . . . , g
(k)
1 ∈ O such that

Xe′′k = g(k)k−1e
′′
k−1 + · · ·+ g(k)1 e′′1.

The coefficient of ak−1 in Xe′k is given by

{
αk if k ̸= n− i+ 1,
εαk if k = n− i+ 1.

Thus, we have

f (k)
k−1αk−1 =

{
αk if k ̸= n− i+ 1,
εαk if k = n− i+ 1.

Similarly, we have the following:

f (k)
k−1βk−1 =

{
βk if k ̸= i+ 1,
εβk if k = i+ 1.

g(k)k−1γk−1 =

{
γk if k ̸= n− i+ 1,
εγk if k = n− i+ 1.

g(k)k−1δk−1 =

{
δk if k ̸= i+ 1,
εδk if k = i+ 1.

We shall deduce a contradiction in the following three cases and conclude that Ei is
indecomposable for 2 ≤ i ≤ n− 2:

(a) 2 ≤ n− i < i (b) 2 ≤ i = n− i (c) 2 ≤ i < n− i
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Suppose that we are in (a). We multiply each of e′k and e′′k by suitable invertible
elements to get new O-bases of E′ and E′′ in order to have the equalities

f (k)
k−1 =

{
1 if k ̸= n− i+ 1,
ε if k = n− i+ 1,

and g(k)k−1 =

{
1 if k ̸= i+ 1,
ε if k = i+ 1,

in the new bases. For k = 1, we keep the original basis elements e′1 and e′′1. Suppose that
we have already chosen new e′j and e′′j for 1 ≤ j ≤ k − 1. If k ̸= n − i + 1, i + 1, then it
follows from

f (k)
k−1g

(k)
k−1(αk−1δk−1 − βk−1γk−1) = αkδk − βkγk

that f (k)
k−1 and g(k)k−1 are invertible. Thus, multiplying e′k and e′′k with their inverses respec-

tively, we have f (k)
k−1 = 1, g(k)k−1 = 1 in the new basis. Note that we have

(
α1 β1
γ1 δ1

)
=

(
α2 β2
γ2 δ2

)
= · · · · =

(
αn−i βn−i
γn−i δn−i

)
.

If k = n− i+ 1, then, by using i ̸= n− i, we have

f (n−i+1)
n−i g(n−i+1)

n−i αn−iδn−i = εαn−i+1δn−i+1,

f (n−i+1)
n−i g(n−i+1)

n−i βn−iγn−i = εβn−i+1γn−i+1.

It implies that f (n−i+1)
n−i g(n−i+1)

n−i ∈ εO \ ε2O. Thus, we may assume f (n−i+1)
n−i = ε and

g(n−i+1)
n−i = 1 by swapping E′ and E′′ if necessary. Then, we have

(
αn−i βn−i
γn−i δn−i

)
=

(
αn−i+1 ε−1βn−i+1

εγn−i+1 δn−i+1

)
= · · · =

(
αi ε−1βi
εγi δi

)
.

Finally, if k = i + 1, then the similar argument shows f (i+1)
i g(i+1)

i ∈ εO \ ε2O, and we

may assume that (f (i+1)
i , g(i+1)

i ) is either (ε, 1) or (1, ε). In the former case, we have the
equalities (

α1 β1
γ1 δ1

)
=

(
αi ε−1βi
εγi δi

)
=

(
ε−1αi+1 ε−1βi+1

εγi+1 εδi+1

)
,

which implies that αi+1,βi+1 ∈ εO, a contradiction. Thus, we obtain f (i+1)
i = 1, g(i+1)

i =
ε. Therefore, we have obtained the desired formula. In particular, we have

αk−1 = αk, f (k)
k−1βk−1 = g(k)k−1βk, g(k)k−1γk−1 = f (k)

k−1γk, δk−1 = δk,

Xak = f (k)
k−1ak−1, Xbk = g(k)k−1bk−1 + δk,nan−i.
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Suppose that 1 ≤ k ≤ n− 1. Then, we have

XA′k = X(e′k − αkak − βkbk)

= Xe′k − f (k)
k−1αkak−1 − g(k)k−1βkbk−1,

f (k)
k−1A

′
k−1 = f (k)

k−1(e
′
k−1 − αk−1ak−1 − βk−1bk−1)

= f (k)
k−1e

′
k−1 − f (k)

k−1αkak−1 − g(k)k−1βkbk−1.

We compute Xe′k − f (k)
k−1e

′
k−1 in two ways:

Xe′k − f (k)
k−1e

′
k−1 = XA′k − f (k)

k−1A
′
k−1 ∈ E′′,

Xe′k − f (k)
k−1e

′
k−1 = f (k)

k−2e
′
k−2 + · · ·+ f (k)

1 e′1 ∈ E′.

This implies Xe′k = f (k)
k−1e

′
k−1 for 1 ≤ k ≤ n− 1.

Next suppose that k = n. Then, the similar computation shows

βnan−i +XA′n − f (n)
n−1A

′
n−1 = Xe′n − f (n)

n−1e
′
n−1 = f (n)

n−2e
′
n−2 + · · ·+ f (n)

1 e′1.

By computing Xn−i+1e′n − f (n)
n−1X

n−ie′n−1 in two ways as before, we obtain

Xn−i+1A′n − f (n)
n−1X

n−iA′n−1 = f (n)
n−2X

n−ie′n−2 + · · ·+ f (n)
1 Xn−ie′1 = 0.

Hence, we have f (n)
n−2 = · · · = f (n)

n−i+1 = 0. Now, define

zn = e′n, zk = e′k +Xn−k−1(f (n)
n−ie

′
n−i + · · ·+ f (n)

1 e′1)

for 1 ≤ k ≤ n − 1. Then, {zk | 1 ≤ k ≤ n} is an O-basis of E′, since Xn−k−1(f (n)
n−ie

′
n−i +

· · · + f (n)
1 e′1) belongs to Ker(Xk−1). Further, we have zk = e′k, for 1 ≤ k ≤ i − 1. In

particular, zn−i = e′n−i by n− i ≤ i− 1. Then, we can check that

Xzk =

{
zk−1 if k ̸= n− i+ 1,
εzk−1 if k = n− i+ 1.

Thus, we conclude that E′ ≃ Zn−i. Recall that the exact sequence

0→ Zn−i → Ei → Zi → 0

does not split. On the other hand, Ei ≃ Zn−i ⊕ Zi implies that it must split by Theorem
2.3.3. Hence, Ei is indecomposable in (a).

Next assume that we are in (b). Then, For k ̸= i + 1, f (k)
k−1 and g(k)k−1 are invertible as

before, and we may choose f (k)
k−1 = and g(k)k−1 = 1.



4. Heller components: the case of truncated polynomial rings 67

If k = i+ 1, note that

f (i+1)
i αi = εαi+1, f (i+1)

i βi = εβi+1, g(i+1)
i γi = εγi+1, g(i+1)

i δi = εδi+1.

Thus, αi,βi ∈ εO if f (i+1)
i is invertible, and γi, δi ∈ εO if g(i+1)

i is invertible. But

both are impossible. Further, f (i+1)
i g(i+1)

i (αiδi − βiγi) = ε2(αi+1δi+1 − βi+1γi+1) implies

f (i+1)
i g(i+1)

i ∈ ε2O \ ε3O. Thus, we may choose f (i+1)
i = ε and g(i+1)

i = ε. Hence, we may
assume without loss of generality that

f (k)
k−1 = g(k)k−1 =

{
1 if k ̸= i+ 1,
ε if k = i+ 1,

(
α1 β1
γ1 δ1

)
= · · · · =

(
αi βi
γi δi

)
=

(
αi+1 βi+1

γi+1 δi+1

)
= · · · · =

(
αn βn
γn δn

)

and Xak = f (k)
k−1ak−1, Xbk = g(k)k−1bk−1 + δk,nai. For 1 ≤ k ≤ n− 1, we have

XA′k − f (k)
k−1A

′
k−1 = Xe′k − f (k)

k−1e
′
k−1 = f (k)

k−2e
′
k−2 + · · ·+ f (k)

1 e′1,

and the same argument as before shows that

Xe′k =

{
f (k)
k−1e

′
k−1 if k ̸= n,

f (n)
n−1e

′
n−1 + f (n)

i e′i + · · ·+ f (n)
1 e′1 if k = n.

Now, we compute

Xi−1e′n−1 = f (n−1)
n−2 · · · f (n−i+1)

n−i e′n−i = εe′i,

Xian = f (n)
n−1 · · · f

(i+1)
i ai = εai,

Xibn = Xi−1(bn−1 + ai) = g(n−1)n−2 · · · g(i+1)
n−i bi + f (i)

i−1 · · · f
(2)
1 a1 = εbi + a1.

Thus, we have

Xie′n −Xi−1e′n−1 = Xi(αnan + βnbn +A′n)− εe′i
= ε(αnai + βnbi − e′i) +XiA′n + βna1.

If i+ 1 ≤ k ≤ n− 1, then k− i+ 1 ≤ n− i = i and Xie′k = f (k)
k−1 · · · f

(k−i+1)
k−i e′k−i ∈ εE′.

Thus, XiA′n ∈ εE′ follows. On the other hand, we have

Xie′n −Xi−1e′n−1 = Xi−1(Xe′n − e′n−1)

= Xi−1(f (n)
i e′i + · · ·+ f (n)

1 e′1)

= f (n)
i Xi−1e′i

= f (n)
i Xi−1(αiai + βibi +A′i)

= f (n)
i (αiX

i−1ai + βiX
i−1bi)

= f (n)
i (αia1 + βib1).
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Hence, we obtain βna1 ≡ f (n)
i (αia1 + βib1) mod εO. The similar computation using e′′k

shows δna1 ≡ f (n)
i (γia1 + δib1) mod εO. If f (n)

i was invertible, it would imply βi, δi ∈ εO,

which contradicts αiδi − βiγi ∈ O×. Thus, f (n)
i ∈ εO and we have βn, δn ∈ εO, which is

again a contradiction. Hence, Ei is indecomposable in (b).
Finally, suppose that we are in (c). Since Ei ≃ τ(En−i), for 2 ≤ i ≤ n− 2, and En−i is

indecomposable by (a), the A-lattice Ei is indecomposable in (c).

Corollary 4.2.2. The following statements hold.

(1) Any Heller component does not have a loop.

(2) Any Heller lattice appears on the boundary of a Heller component.

Proof. It is enough to show (1). However, the claim follows from Corollary 3.7.7 and
Proposition 4.2.1 immediately.

4.3 The almost split sequence ending at Ei

Recall that the A-lattice Ei is given by

Ei =O(ε, Xn−i, 0)⊕O(εX,Xn−i+1, 0)⊕ · · ·⊕O(εXi−1, Xn−1, 0)

⊕O(Xi, 0, 0)⊕O(Xi+1, 0, 0)⊕ · · ·⊕O(Xn−1, 0, 0)

⊕ O(Xi−1, 0, ε)⊕O(0, 0, εX)⊕ · · ·⊕O(0, 0, εXn−i−1)

⊕ O(0, 0, Xn−i)⊕O(0, 0, Xn−i+1)⊕ · · ·⊕O(0, 0, Xn−1),

and

ak =

{
(Xn−k, 0, 0) if 1 ≤ k ≤ n− i,
(εXn−k, X2n−k−i, 0) if n− i < k ≤ n,

bk =

⎧
⎨

⎩

(0, 0, Xn−k) if 1 ≤ k ≤ i,
(0, 0, εXn−k) if i < k < n,
(Xi−1, 0, ε) if k = n.

In this section, we construct the almost split sequence ending at Ei for 2 ≤ i ≤ n− 2. For
2 ≤ i ≤ n− 2, we define π : A⊕4 → Ei by

π(1, 0, 0, 0) = an, π(0, 1, 0, 0) = bn, π(0, 0, 1, 0) = bn−1, π(0, 0, 0, 1) = bi.

Lemma 4.3.1 ([AKM, Lemma 2.5]). Let π : A⊕4 → Ei be as above. Then, the following
statements hold.

(1) The A-module homomorphism π is an epimorphism.
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(2) There is an isomorphism Ker(π) ≃ En−i for 2 ≤ i ≤ n− 2.

Proof. (1) It is easy to check that ak, bk ∈ Im(π) for 1 ≤ k ≤ n. Note that Ei is generated
by {an, bn, bn−1, bi} as an A-module and an−i = Xbn − bn−1.

(2) We define an A-module homomorphism ι : En−i → A⊕4 by

ι(f, g, h) =

(
g,−Xf +

Xn−ih

ε
, f,−h

)
,

where (f, g, h) ∈ En−i. Since h ∈ Zi, one can write h = h0ε + h1εX + · · · + hi−1εXi−1 +
hiXi + · · ·+ hn−1Xn−1, where hi ∈ O. Then, we have

Xn−ih

ε
= h0X

n−i + h1X
n−i+1 + · · ·+ hi−1X

n−1.

Note that (f, g, h) ∈ A⊕3 belongs to En−i if and only if h ∈ Zn−i and Xif − εg = h0Xn−1.
It is clear that ι is a monomorphism and it suffices to show that Im(ι) = Ker(π). Since

πι(f, g, h) =

(
εg −Xif +

Xn−1h

ε
, Xn−ig, ε

(
−Xf +

Xn−ih

ε

)
+ εXf −Xn−ih

)

=

(
εg −Xif +

Xn−1h

ε
, Xn−ig, 0

)

= (0, 0, 0),

we have Im(ι) ⊆ Ker(π). Let (p, q, r, s) ∈ Ker(π). Then we have εp+Xi−1q = 0, Xn−ip = 0
and εq+ εXr+Xn−is = 0. The third equation shows that the projective cover A→Mn−i
given by f 5→ Xn−if + εA sends s to 0. Thus, we have s ∈ Zn−i. Further,

Xn−1s+ ε(−εp+Xir) = Xn−1s+ ε(Xi−1q +Xir) = Xi−1(Xn−is+ εq +Xr) = 0

implies Xir − εp =
Xn−1(−s)

ε
. Hence, we have (r, p,−s) ∈ En−i and

ι(r, p,−s) =
(
p,−Xr − Xn−is

ε
, r, s

)
= (p, q, r, s).

Therefore, we have Ker(π) = Im(ι), which implies Ker(π) ≃ En−i.

We consider the following pullback diagram

0 En−i Fi Ei 0

0 En−i A⊕4 Ei 0,

!! !! !! !!

!! ι !! π !! !!
""

φi

""
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where ι is the isomorphism En−i ≃ Ker(π) defined in the proof of Lemma 4.3.1, and

φi(ak) = 0 for 1 ≤ k ≤ n,
φi(bk) = 0 for 1 ≤ k ≤ n− 1,
φi(bn) = b1 for k = n.

Lemma 4.3.2 ([AKM, Lemma 2.6]). Suppose that 2 ≤ i ≤ n − i. Let ρ ∈ radEndA(Ei)
such that

ρ(an) = αan + βbn +A, ρ(bn) = α′an + β′bn +B,

where α,β,α′,β′ ∈ O and A,B ∈ Ker(Xn−1). Then we have the following.

(1) β ∈ εO, and α ∈ εO if and only if β′ ∈ εO.

(2) αβ′ − βα′ ∈ εO.

Proof. (1) We compute ρ(εXn−ibn −Xn−1an) in two ways. Since Xn−ibn = εbi + a1 and
Xn−1an = εa1, we have ρ(εXn−ibn −Xn−1an) = ε2ρ(bi) ∈ ε2Ei. On the other hand, since
Xn−ibn = εbi + a1, we have

ρ(εXn−ibn −Xn−1an) = εXn−i(α′an + β′bn +B)−Xn−1(αan + βbn +A)

= εα′Xn−ian + ε2β′bi + ε(β′ − α)a1 − εβb1 + εXn−iB.

Then, Xn−iak = εak−n+i and Xn−ibk = εbk−n+i, for n − i + 1 ≤ k ≤ n − 1, imply that
εXn−iB ∈ ε2Ei. Hence, we may divide the both sides by ε. Reducing modulo ε, we have

(β′ − α)a1 − βb1 ≡ 0 mod εEi

since Xn−ian ≡ 0 mod εEi. Now, the claim is clear.
(2) Since ρ(ak), ρ(bk) ∈ Ker(Xk), we may write

ρ(ak) = αkak + βkbk +Ak,

ρ(bk) = α′kak + β′kbk +Bk,

where αk,βk,α′k,β
′
k ∈ O and Ak, Bk ∈ Ker(Xk−1). We claim that

αkβ
′
k − βkα′k = αβ′ − βα′.

To see this, observe that we have the following identities in Ei/Ker(Xk−1).

⎧
⎨

⎩

αak + βbk ≡ ρ(Xn−kan) ≡ ρ(ak) mod Ker(Xk−1) if k > n− i,
αεak + βbk ≡ ρ(Xn−kan) ≡ ερ(ak) mod Ker(Xk−1) if i < k ≤ n− i,
αεak + βεbk ≡ ρ(Xn−kan) ≡ ερ(ak) mod Ker(Xk−1) if k ≤ i,
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⎧
⎨

⎩

α′ak + β′bk ≡ ρ(Xn−kbn) ≡ ρ(bk) mod Ker(Xk−1) if k > n− i,
α′εak + β′bk ≡ ρ(Xn−kbn) ≡ ρ(bk) mod Ker(Xk−1) if i < k ≤ n− i,
α′εak + β′εbk ≡ ρ(Xn−kbn) ≡ ερ(bk) mod Ker(Xk−1) if k ≤ i.

Thus, if we put

(ak, bk) = (ak + Ker(Xk−1), bk + Ker(Xk−1)),

(a′k, b
′
k) = (ρ(ak) + Ker(Xk−1), ρ(bk) + Ker(Xk−1)),

then we have

(ak, bk)

(
αk α′k
βk β′k

)
= (a′k, b

′
k) = (ak, bk)

(
α α′

β β′

)

or

(ak, bk)

(
α α′ε

βε−1 β′

)
.

Therefore, we have αkβ′k − βkα′k = αβ′ − βα′. In particular, if αβ′ − βα′ ∈ O×, then ρ is
surjective, which contradicts with ρ ∈ radEndA(Ei).

Lemma 4.3.3 ([AKM, Lemma 2.7]). Suppose that 2 ≤ i ≤ n − i, and let φi ∈ EndA(Ei)
be as in the definition of the pullback diagram. Then we have the following.

(1) φi does not factor through π.

(2) For any ρ ∈ radEndA(Ei), the A-module homomorphism φiρ factors through π.

Proof. (1) Suppose that there exists ψ = (ψ1,ψ2,ψ3,ψ4) : Ei → A⊕4 such that πψ = φi.
Then, we have

0 = πψ(an) = (εψ1(an) +Xi−1ψ2(an), X
n−iψ1(an), εψ2(an) + εXψ3(an) +Xn−iψ4(an)),

b1 = πψ(bn) = (εψ1(bn) +Xi−1ψ2(bn), X
n−iψ1(bn), εψ2(bn) + εXψ3(bn) +Xn−iψ4(bn)).

The first equality implies ψ4(Xn−1an) ∈ ε2A by the following computation:

ψ4(X
n−1an) = Xi−1(Xn−iψ4(an)) = −Xi−1(εψ2(an) + εXψ3(an))

= −εXi−1ψ2(an)− εψ3(X
ian) = ε2ψ1(an)− ε2ψ3(an−i)

Thus, we conclude ψ4(Xn−ibn) ≡ 0 mod εA from

εψ4(X
n−ibn) = εψ4(X

n−i−1an−i +Xn−i−1bn−1) = εψ4(a1 + εbi)

= ψ4(εa1) + ε2ψ4(bi) = ψ(Xn−1an) + ε2ψ4(bi) ∈ ε2A.

On the other hand, by using b1 = (0, 0, Xn−1), the second equality implies

εψ2(bn) + εXψ3(bn) +Xn−iψ4(bn) = Xn−1.
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It yields ψ4(Xn−ibn) ̸≡ 0 mod εA. Hence, we have reached a contradiction.
(2) Let ρ ∈ radEndA(Ei). We write ρ(an) = αan+βbn+A and ρ(bn) = α′an+β′bn+B,

where α,β,α′,β′ ∈ O and A,B ∈ Ker(Xn−1). Then, φiρ(an) = βb1 and φiρ(bn) = β′b1
hold.

By Lemma 4.3.2 (1), β ∈ εO and if β′ was invertible then α would be invertible, which
contradicts with Lemma 4.3.2 (2). Thus, β,β′ ∈ εO follows, and we may define ψ2 : Ei → A
by

(f, g, h) 5→ βXn−1f

ε2
+
β′Xn−1h

ε2
,

where (f, g, h) ∈ Ei. The A-module homomorphism ψ2 is well-defined. Indeed, we have
ψ2(ak) = 0 and ψ2(bk) = 0 for 1 ≤ k ≤ n− 1 and

ψ2(an) =
β

ε
Xn−1, ψ2(bn) =

β′

ε
Xn−1.

Then ψ = (0,ψ2, 0, 0) : Ei → A⊕4 satisfies πψ = (Xi−1ψ2, 0, εψ2) = φiρ.

By Proposition 3.5.8 and Lemma 4.3.3, we obtain the almost split sequence

0→ En−i → Fi → Ei → 0,

where Fi = {(p, q, r, s, t) ∈ A⊕4⊕Ei | π(p, q, r, s) = φi(t)} for 2 ≤ i ≤ n− i. For 1 ≤ k ≤ n,
we define zk = (0, 0, 0, 0, ak) ∈ Fi and xk, yk, wk ∈ Fi by

xk =

{
(0, 0, 0, Xn−k, ak) if 1 ≤ k ≤ n− i,
(0, 0,−X2n−i−k−1, εXn−k, ak) if n− i < k ≤ n.

yk =

⎧
⎨

⎩

(0, 0, 0, 0, bk) if 1 ≤ k ≤ i,
(0, 0, 0, Xn+i−k−1, bk + ak−i+1) if i < k < n,
(0, 0, 0, X i−1, bn) if k = n.

wk =

{
(0,−Xn−k+1, Xn−k, 0, 0) if 1 ≤ k ≤ i,
(Xn−k+i,−εXn−k+1, εXn−k, 0, 0) if i < k ≤ n.

Note that (p, q, r, s, t) ∈ Fi if and only if

(εp+Xi−1q,Xn−ip, εq + εXr +Xn−is) = βnb1,

where t =
∑n

k=1(αkak + βkbk).

Lemma 4.3.4 ([AKM, Lemma 2.8]). {xk, yk, zk, wk | 1 ≤ k ≤ n} is an O-basis of Fi.

Proof. It suffices to show that they generate Fi as an O-module since rank Fi = 4n. Let
F ′i be the O-submodule generated by {xk, yk, zk, wk | 1 ≤ k ≤ n}. We show first that
(Ker(π), 0) ⊆ F ′i . Recall that any element of (Ker(π), 0) = (Im(ι), 0) is of the form

(
g,−Xf +

Xn−ih

ε
, f,−h, 0

)
,
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where (f, g, h) ∈ A ⊕ A ⊕ Zn−i and Xif − εg = Xn−1h/ε. Thus, Xn−ig = 0 and g is
an O-linear combination of Xn−k+i for i < k ≤ n. Thus, subtracting the corresponding
O-linear combination of wk, for i < k ≤ n, we may assume g = 0. Since

h ∈ Zn−i = Oε⊕ · · ·⊕OεXi−1 ⊕OXi ⊕ · · ·⊕OXn−1,

we may further subtract an O-linear combination of xk, for 1 ≤ k ≤ n, and we may asume
g = h = 0 without loss of generality. Then, (0,−Xf, f, 0, 0), for f ∈ A with Xif = 0, is
an O-linear combination of wk, for 1 ≤ k ≤ i. Hence, (Ker(π), 0) ⊆ F ′i . Next we show that
(0, 0, 0, 0,Ker(φ)) ⊆ F ′. But it is clear from (0, 0, 0, 0, ak) = zk and

(0, 0, 0, 0, bk) =

{
yk if 1 ≤ k ≤ i,
yk − xk−i+1 if i < k < n.

Suppose that (p, q, r, s, t) ∈ Fi. Write t = βbn + t′ such that β ∈ O and t′ ∈ Ker(φ).
In order to show that (p, q, r, s, t) ∈ F ′i , it is enough to see (p, q, r, s,βbn) ∈ F ′i . Since
εq + εXr +Xn−is = βXn−1, we have (p, q, r, s− βX i−1) ∈ Ker(π). Therefore, we deduce

(p, q, r, s,βbn) = (p, q, r, s− βX i−1, 0) + β(0, 0, 0, X i−1, bn) ∈ F ′i ,

because (0, 0, 0, X i−1, bn) = yn.

Let F ′i be the O-span of {xk, yk, wk | 1 ≤ k ≤ n} and F ′′i the O-span of {zk | 1 ≤ k ≤ n}.
It is easy to compute as follows.

Xwk =

{
wk−1 if k ̸= i+ 1,
εwi if k = i+ 1.

Xxk =

{
xk−1 if k ̸= n− i+ 1,
εxn−i − w1 if k = n− i+ 1.

Xyk =

{
yk−1 if k ̸= i+ 1,
εyi + x1 if k = i+ 1.

Xzk =

{
zk−1 if k ̸= n− i+ 1,
εzn−i if k = n− i+ 1.

Hence, the direct summands F ′i and F ′′i of Fi = F ′i ⊕ F ′′i are A-lattices and F ′′i ≃ Zn−i.

Lemma 4.3.5 ([AKM, Lemma 2.9]). Assume 2 ≤ i ≤ n − 2. Then the middle term of
the almost split sequence ending at Ei is the direct sum of Zn−i and an indecomposable
A-lattice.

Proof. Since τ(Zi) ≃ Zn−i implies τ(Ei) ≃ En−i, we may assume 2 ≤ i ≤ n − i without
loss of generality. Let F ′i be the A-lattice as above. Then, we have to show that F ′i is
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an indecomposable A-lattice. Suppose that F ′i is not indecomposable. Then, there exist
A-sublattices Z and L such that F ′i ≃ Z ⊕ L and Z ⊗K ≃ A⊗K. Since

Ker(Xk) ∩ F ′i =
⊕

1≤j≤k
(Owj +Oxj +Oyj),

we may choose an O-basis {ek | 1 ≤ k ≤ n} of Z such that

ek = αkwk + βkxk + γkyk +Ak,

where αk,βk, γk ∈ O with (αk,βk, γk) ̸∈ (εO)⊕3 and Ak ∈ Ker(Xk−1) ∩ L. Then, we have
Ker(Xk) ∩ Z = Oe1 ⊕ · · ·⊕Oek and at least one of αk,βk, γk is invertible. Write

Xek = f (k)
k−1ek−1 + · · ·+ f (k)

1 e1,

where f (k)
1 , . . . , f (k)

k−1 ∈ O. We first assume that 2 ≤ i < n− i. Note that

Xek =

⎧
⎨

⎩

αkwk−1 + βkxk−1 + γkyk−1 +XAk if k ̸= i+ 1, n− i+ 1,
αn−i+1wn−i + βn−i+1(εxn−i − w1) + γn−i+1yn−i +XAn−i+1 if k = n− i+ 1,
αi+1εwi + βi+1xi + γi+1(εyi + x1) +XAi+1 if k = i+ 1.

This implies the equation

f (k)
k−1(αk−1,βk−1, γk−1) =

⎧
⎨

⎩

(αk,βk, γk) if k ̸= i+ 1, n− i+ 1,
(αn−i+1, εβn−i+1, γn−i+1) if k = n− i+ 1,
(εαi+1,βi+1, εγi+1) if k = i+ 1.

We may assume one of the following two cases occurs.

(1) f (k)
k−1 = 1 (k ̸= n− i+ 1), f (n−i+1)

n−i = ε.

(2) f (k)
k−1 = 1 (k ̸= i+ 1), f (i+1)

i = ε.

In fact, since at least one of αk,βk, γk is invertible, f (k)
k−1 is invertible when k ̸= n−i+1, i+1.

By multiplying its inverse to ek, we obtain f (2)
1 = · · · = f (i)

i−1 = 1 and (α1,β1, γ1) = · · · =
(αi,βi, γi) in the new basis. By the same reason, we have f (k)

k−1 ̸∈ ε2O for all k. Suppose

that both f (n−i+1)
n−i and f (i+1)

i are invertible. Then, we may reach

(αi,βi, γi) = (εαi+1,βi+1, εγi+1) = · · · = (εαn−i,βn−i, εγn−i) = (εαn−i+1, εβn−i+1, εγn−i+1),

a contradiction. Suppose that both f (n−i+1)
n−i and f (i+1)

i are not invertible. Then,

(αi,βi, γi) = (αi+1, ε
−1βi+1, γi+1) = · · · = (αn−i, ε

−1βn−i, γn−i)

= (ε−1αn−i+1, ε
−1βn−i+1, ε

−1γn−i+1),
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which implies that none of αn−i+1,βn−i+1, γn−i+1 is invertible. Thus, we have proved that
we are in the case (1) or the case (2). Suppose that we are in the case (1). Then, we have

Xek − f (k)
k−1ek−1 = f (k)

k−2ek−2 + · · ·+ f (k)
1 e1

=

⎧
⎨

⎩

XAk −Ak−1 if k ̸= n− i+ 1, i+ 1,
XAn−i+1 − εAn−i − βn−i+1w1 if k = n− i+ 1,
XAi+1 −Ai + γi+1x1 if k = i+ 1.

Since Ak ∈ Ker(Xk) ∩ L, we obtain the equations

Xek =

⎧
⎪⎨

⎪⎩

ek−1 if k ̸= n− i+ 1, i+ 1,

εen−i + f (n−i+1)
1 e1 if k = n− i+ 1,

ei + f (i+1)
1 e1 if k = i+ 1,

and XAn−i+1 = X2An−i+2 = · · · = XiAn. As we are in the case (1),

(α1,β1, γ1) = (α2,β2, γ2) = · · · = (αi,βi, γi)

= (εαi+1,βi+1, εγi+1) = · · · = (εαn−i,βn−i, εγn−i)

= (αn−i+1,βn−i+1, γn−i+1) = · · · = (αn,βn, γn)

follows so that we may write

ek =

{
εαwk + βxk + εγyk +Ak if 1 ≤ k ≤ i or n− i+ 1 ≤ k ≤ n,
αwk + βxk + γyk +Ak if i+ 1 ≤ k ≤ n− i,

with α, γ ∈ O and β ∈ O×. Then, Xen−i+1 = εen−i + f (n−i+1)
1 e1 implies

εαwn−i + β(εxn−i − w1) + εγyn−i +XiAn = εen−i + f (n−i+1)
1 (εαw1 + βx1 + εγy1).

We equate the coefficients of w1 on both sides. Since contribution from XiAn comes from
Xiwi+1 = εw1 only, we conclude that β ∈ εO, which contradicts with β ∈ O×.

Suppose that we are in the case (2). Then, the same argument as above shows that

Xek =

⎧
⎪⎨

⎪⎩

ek−1 if k ̸= n− i+ 1, i+ 1,

en−i + f (n−i+1)
1 e1 if k = n− i+ 1,

εei + f (i+1)
1 e1 if k = i+ 1.

We define an O-basis {e′′k} of Z as follows:

(i) e′′k = ek (1 ≤ k ≤ i).

(ii) e′′n−i = en−i − f (i+1)
1 en−2i+1 + f (n−i+1)

1 e1.
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(iii) e′′n−1 = en−1 − f (i+1)
1 en−i − f (i+1)

1 f (n−i+1)
1 e1.

(iv) e′′k = ek − f (i+1)
1 ek−i+1 (i+ 1 ≤ k ≤ n, k ̸= n− i, n− 1).

Then, we have Z ≃ Zi. To summarize, we have proved that if there is a direct summand
of rank n then it must be isomorphic to Zi. As there is an irreducible morphism Zi → Ei,
the A-lattice Ei must be a direct summand of En−i and we conclude Ei ≃ En−i. Then,
there exist a′k, b

′
k ∈ En−i, for 1 ≤ k ≤ n, such that

an = αa′n + βb′n +A,

bn = γa′n + δb′n +B,

where α,β, γ, δ ∈ O with αδ − βγ ∈ O×, A,B ∈ Ker(Xn−1), and

Xa′k =

{
a′k−1 (k ̸= n− i+ 1)
εa′k−1 (k = n− i+ 1),

Xb′k =

⎧
⎨

⎩

b′k−1 (k ̸= i+ 1, n)
εb′k−1 (k = i+ 1)
a′n−i + b′n−1 (k = n).

We compute Xn−ian and Xn−ibn as follows.

εai = ε(αa′i + βb′i) + βa′1 +Xn−iA,

εbi = ε(γa′i + δb′i) + δa′1 +Xn−iB.

Since Xn−iA,Xn−iB ∈ εEn−i by 2 ≤ i < n−i, we have β, δ ∈ εO, which is a contradiction.
Thus, F ′i is indecomposable if 2 ≤ i < n − i. It remains to consider 2 ≤ i = n − i. We
choose an O-basis {ek | 1 ≤ k ≤ n} of Z and write

ek = αkwk + βkxk + γkyk +Ak,

as before. Then, we have

Xek =

{
αkwk−1 + βkxk−1 + γkyk−1 +XAk if k ̸= i+ 1,
αi+1εwi + βi+1(εxi − w1) + γi+1(εyi + x1) +XAi+1 if k = i+ 1,

and it follows that

f (k)
k−1(αk−1,βk−1, γk−1) =

{
(αk,βk, γk) if k ̸= i+ 1,
(εαi+1, εβi+1, εγi+1) if k = i+ 1.

Hence, we may assume f (k)
k−1 = 1, for k ̸= i+ 1, and f (i+1)

i = ε, without loss of generality.

Since Ak ∈ Ker(Xk−1) ∩ L, we obtain from the computation of Xek − f (k)
k−1ek−1 that

Xek =

{
ek−1 if k ̸= i+ 1,

εei + f (i+1)
1 e1 if k = i+ 1,
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and XAi+1 = X2Ai+2 = · · · = XiAn. Let λ, µ and ν be the coefficients of wn−i+1, xn−i+1

and yn−i+1 in An, respectively. Then the coefficients of w1, x1, y1 in XAi+1 are ελ, εµ,

εν. Since f (i+1)
1 e1 = XAi+1 − εAi − βi+1w1 + γi+1x1, we have

f (i+1)
1 α1 ≡ −βi+1 mod εO, f (i+1)

1 β1 ≡ γi+1 mod εO, f (i+1)
1 γ1 ≡ 0 mod εO.

We may show that f (i+1)
1 is not invertible, but whenever it is invertible or not,

γ1 = γ2 = · · · = γn and β1 = β2 = · · · = βn

imply that βk ≡ 0 mod εO and γk ≡ 0 mod εO, for 1 ≤ k ≤ n. It follows that we may
choose an O-basis {a′k, b′k | 1 ≤ k ≤ n} of L as

a′k = λ′kwk + xk +A′k,

b′k = λ′′kwk + yk +B′k,

where λ′,λ′′ ∈ O and A′k, B
′
k ∈ Ker(Xk−1) ∩ Z. Write

Xa′k =
k−1∑

j=1

(g(k)j a′j + h(k)j b′j).

By multiplying a′k = λ′kwk + xk +A′k with X, we obtain

Xa′k =

{
λ′kwk−1 + xk−1 +XA′k if k ̸= i+ 1,
ελ′i+1wi + εxi − w1 +XA′i+1 if k = i+ 1.

Thus, g(k)k−1 = 1, for k ̸= i+ 1, g(i+1)
i = ε, and h(k)k−1 = 0 for all k. Further, we have

Xa′k − g(k)k−1a
′
k−1 =

{
XA′k −A′k−1 if k ̸= i+ 1,
XA′i+1 − εA′i − w1 if k = i+ 1.

We obtain Xa′k − a′k−1 = 0 if k ̸= i + 1, and if k = i + 1 then Xa′i+1 − εa′i is equal to

g(i+1)
1 a′1 + h(i+1)

1 b′1 = XA′i+1 − εA′i − w1. Since XA′i+1 = X2A′i+2 = · · · = Xn−iA′n, the
coefficient of x1 in XA′i+1 is in εO. This implies the equation

(λ′1g
(i+1)
1 + λ′′1h

(i+1)
1 + 1)w1 + g(i+1)

1 x1 + h(i+1)
1 y1 ≡ 0 mod εF ′i .

We must have g(i+1)
1 , h(i+1)

1 ∈ εO, but then w1 ≡ 0 mod εF ′i , which is impossible. Hence,
F ′i is indecomposable if 2 ≤ n− i = i.
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4.4 The shapes of Heller components

Now, we determine the shapes of Heller components of the truncated polynomial rings.

Theorem 4.4.1 ([AKM, Theorem 3.1]). Let O be a complete discrete valuation ring,
A = O[X]/(Xn), for n ≥ 2. Then, the Heller component containing Zi and Zn−i is
ZA∞/⟨τ2⟩ if 2i ̸= n, and ZA∞/⟨τ⟩ if 2i = n.

Proof. Any Heller component does not admit a loop by Corollary 4.2.2. Let C be the Heller
component containing Zi and Zn−i and T the tree class of C. If i = 1 or i = n − 1, then
Proposition 4.2.1 (1) implies that the subadditive function R|T is not additive. Thus, the
tree class of C is A∞. For the remaining cases, the assertion follows from Corollary 3.7.8
and Lemmas 4.2.1 and 4.3.5.



5. HELLER COMPONENTS: THE CASE OF THE SYMMETRIC
KRONECKER ALGEBRA

In this chapter, we determine the shapes of Heller components when A is the symmetric
Kronecker algebra O[X,Y ]/(X2, Y 2). The results in this chapter appear in [M1, M2].

Throughout this chapter, we assume that κ is algebraically closed. Since A ⊗ K =
K[X,Y ]/(X2, Y 2) is not semi-simple, A is not an isolated singularity, and it is of infinite
representation type. In particular, the stable Auslander–Reiten quiver Γs(A) has infinitely
many vertices. It is well-known that the stable Auslander–Reiten quiver of A is of the form

· · ·
M(−5)

M(−4)

M(−3)

M(−2)

M(−1)

M(0)

M(1)

M(2)

M(3)

M(4)%%⑧⑧⑧⑧
%%⑧⑧⑧⑧

%%⑧⑧⑧⑧
%%⑧⑧⑧⑧

%%⑧⑧⑧⑧
%%⑧⑧⑧⑧

%%⑧⑧⑧⑧
%%⑧⑧⑧⑧

%%⑧⑧⑧⑧
%%⑧⑧⑧⑧$$❄

❄❄
❄

$$❄
❄❄

❄
$$❄

❄❄
❄

$$❄
❄❄

❄
$$❄

❄❄
❄

$$❄
❄❄

❄
$$❄

❄❄
❄

$$❄
❄❄

❄ · · ·

M(λ)1 M(λ)2 · · ·"" ""
## ## · · · (λ ∈ P1(κ) = κ : {∞}),

where M(0) is the simple A-module and M(λ)n (n ∈ Z>0,λ ∈ P1(κ)) is given by

X 5→
(

0n 0n
1n 0n

)
Y 5→

(
0n 0n

J(λ, n) 0n

)
(if λ ∈ κ)

X 5→
(

0n 0n
J(0, n) 0n

)
Y 5→

(
0n 0n
1n 0n

)
(if λ =∞).

Here, we denote by 1n and 0n the identity matrix of size n and the zero matrix of size
n, respectively. We denote by Zn and Zλ

n the first syzygy of M(n) and M(λ)n in latt-A,
respectively. Then, Heller lattices Zn and Zλ

n are indecomposable (Proposition 5.1.5).
The last main result of this thesis is the following.

Main Theorem (Theorems 5.5.1, 5.8.4 and 5.9.5 ). Let O be a complete discrete valuation
ring and A = O[X,Y ]/(X2, Y 2). Assume that the residue field κ is algebraically closed.
Then, the following statements hold.

(1) There is a unique non-periodic Heller component HC(Z0), and it is isomorphic to ZA∞.
Moreover, the Heller lattice Zn belongs to HC(Z0) for all n ∈ Z.
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(2) If the characteristic of κ is 2, then HC(Zλ
n) ≃ ZA∞/⟨τ⟩ for all λ ∈ P1(κ) for all n ∈ Z.

(3) If the characteristic of κ is not 2, then HC(Zλ
n) ≃ ZA∞/⟨τ⟩ if λ = 0 or ∞, HC(Zλ

n) ≃
ZA∞/⟨τ2⟩ otherwise.

(4) Any Heller lattice appears on the boundary of a Heller component.

Throughout this chapter, we use the symbolX and Y asX+(X2, Y 2) and Y +(X2, Y 2),
respectively. For a positive integer n, we denote by e1, . . . , en the standard basis of O⊕n
and we adopt e1, Xe1, Y e1, XY e1, . . . , en, Xen, Y en, XY en as an O-basis of A⊕n. The
symmetric Kronecker algebra A is the bound quiver algebra over κ defined by the following
quiver and relations:

1 Y$$X !! ; X2 = Y 2 = 0, XY − Y X = 0.

Since κ is an algebraically closed field, a d-dimensional A-module M is of the form

M = κd M2
%%

M1
&&

,

whereM1 andM2 are square matrices of size d which commute and square zero by Theorem
2.6.2. To simplify, we denote by (d,M1,M2) the A-module M . Since A is a special biserial
algebra, we may give all finite dimensional indecomposable modules by Theorem 2.6.4.

We note that the “Kronecker algebra” over a ring R usually means the generalized
triangular matrix R-algebra (

R 0
R2 R

)
.

However, the R-algebra R[X,Y ]/(X2, Y 2) is also called the “Kronecker algebra”, see [Erd,
Chapter I, Example 4.3]. These two algebras are not isomorphic each other, but there is a
functorial relation, which is explained in [G, Section 5], [ARS, Chapter X Section 2] and
[SS, Chapter XIX, 1.13 Remark]. In order to distinguish these two Kronecker algebras, we
called the algebra R[X,Y ]/(X2, Y 2) the “symmetric” Kronecker algebra.

5.1 Heller lattices

First, we give a complete list of Heller lattices. By Theorem 2.6.4, all finite dimensional
indecomposable A-modules are classified into string modules, band modules and projective-
injective modules. We notice that the unique indecomposable projective-injective module
A is given by ⎛

⎜⎜⎝4,

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .
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Now, we present a complete list of the other finite dimensional indecomposable A-modules,
which are denoted by M(m), M(−m), M(λ)n, where m ∈ Z≥0, n ∈ Z>0 and λ lies on the
projective line P1(κ) = κ : {∞}.

(i) The string module M(m) := M((β∗1β2)
m) (m ∈ Z≥0) is given by the formula:

M(m) =

⎛

⎝2m+ 1,

⎛

⎝
0m 0m+1

1m 0m+1

0 · · · 0 0 · · · 0

⎞

⎠ ,

⎛

⎝
0m 0m+1

0 · · · 0 0 · · · 0
1m 0m+1

⎞

⎠

⎞

⎠

(ii) The string module M(−m) := M((β1β∗2)
m) (m ∈ Z≥0) is given by the formula:

M(−m) =

⎛

⎜⎜⎝2m+ 1,

⎛

⎜⎜⎝

0m+1 0m

1m

0...
0

0m

⎞

⎟⎟⎠ ,

⎛

⎜⎜⎝

0m+1 0m
0...
0

1m 0m

⎞

⎟⎟⎠

⎞

⎟⎟⎠

(iii) The string module M(0)n := M((β1β∗2)
n−1β1) (n ∈ Z>0) is given by the formula:

M(0)n =

(
2n,

(
0n 0n
1n 0n

)
,

(
0n 0n

J(0, n) 0n

))

(iv) The string module M(∞)n := M(β2(β∗1β2)
n−1) (n ∈ Z>0) is given by the formula:

M(∞)n =

(
2n,

(
0n 0n

J(0, n) 0n

)
,

(
0n 0n
1n 0n

))

(v) Let V be a finite-dimensional indecomposable left κ[x, x−1]-module. Assume that V
is represented by x 5→ J(λ, n) with respect to a basis of V for some λ ∈ κ× and
n ∈ Z>0. The band module M(λ)n := N(β∗2β1, V ) is given by the formula:

M(λ)n =

(
2n,

(
0n 0n
1n 0n

)
,

(
0n 0n

J(λ, n) 0n

))

Lemma 5.1.1. The set of the A-modules

{M(m) | m ∈ Z} : {M(λ)n | λ ∈ P1(κ), n ∈ Z≥1} : {A}

forms a complete set of isoclasses of finite dimensional indecomposable modules over A.

Proof. The assertion follows from Proposition 2.6.4. See also [B, Theorem 4.3.3].

For simplicity, we visualize an A-module as follows:
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• Vertices represent basis vectors of the underlying κ-vector spaces.

• Arrows of the form −→ represent the action of X, and !!" represent the action of Y .

• If there is no arrow (resp. dotted arrow) starting at a vertex, then X (resp. Y )
annihilates the corresponding basis element.

By using this notation, the indecomposable modules listed above are represented as follows:

1. A = e1

Xe1

Y e1

XY e1
--)

)
)

..♥♥♥♥♥♥ --)
))

..♥♥♥♥♥

. 2. M(m) =

u1

v0

vm−1um−1

......

um

v1

vm

......

!!❴❴❴❴
//❣❣❣❣❣❣❣❣

!!❴❴❴❴❴

!!❴❴❴

//❣❣❣❣❣❣❣❣❣

3. M(−m) =

u1

vm−1
um

...

u2 v2

um+1

vm

v1

...

//❣❣❣❣

//❣❣❣❣

//❣❣❣❣❣

!!

!!

!!

4. M(0)n =

u1

vn−1un−1

...

u2 v2

un vn

v1

...

!!

!!

//❣❣❣❣❣

!!

!!

//❣❣❣❣

5. M(∞)n =

u1
u2

v1

vn−1un−1

......

un

v2

vn

......

!!❴❴❴❴

!!❴❴❴❴❴

//❣❣❣❣❣❣❣❣

!!❴❴❴❴❴

!!❴❴❴

//❣❣❣❣❣❣❣❣❣

6. M(λ)n =

u1

vn−1un−1

...

u2 v2

un vn

v1

...

!!

!!

00❥❥❥❥❥

λ

((⑤
✉

❴ ■
❇
!!

λ
11❇

■
❴ ✉

⑤
!!

00❥❥❥❥❥

λ
11❇

■
❴ ✉

⑤

Here,
ui vi

vi−122♦♦♦♦♦

λ
11❇

■
❴ ✉

⑤

in the picture 6 means Y ui = λvi + vi−1.

From now on, as a κ-basis of a non-projective indecomposable module over A, we adopt
the above κ-basis.
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Remark 5.1.2 ([ARS, ASS, Erd, SY1]). Almost split sequences for mod-A are known to
be as follows:

0 −→M(−1) −→ A⊕M(0)⊕M(0) −→M(1) −→ 0
0 −→M(n− 1) −→M(n)⊕M(n) −→M(n+ 1) −→ 0 (n ̸= 0)
0 −→M(λ)1 −→M(λ)2 −→M(λ)1 −→ 0 (λ ∈ P1(κ))
0 −→M(λ)n −→M(λ)n−1 ⊕M(λ)n+1 −→M(λ)n −→ 0 (n > 1,λ ∈ P1(κ))

Lemma 5.1.3. For all m ∈ Z, λ ∈ P1(κ) and n ∈ Z>0, there are isomorphisms

Ω̃(M(n)) ≃M(n− 1), Ω̃(M(λ)n) ≃M(−λ)n, Ω̃(M(∞)n) ≃M(∞)n.

Proof. Since A is symmetric, the functor Ω̃ on mod-A is an autofunctor. Note that Remark
5.1.2 implies that there are isomorphisms Ω̃2(M(l)) ≃ M(l − 2) in the stable module
category mod-A for any l.

First, we show that Ω̃(M(n)) ≃M(n− 1) in mod-A for n ≤ 0 by induction on n. It is
clear for n = 0. Assume that the statement holds for n ≤ k ≤ 0. The induction hypothesis
Ω̃(M(n)) ≃M(n− 1) implies

Ω̃(M(n− 1)) ≃ Ω̃2(M(n)) ≃M(n− 2)

in mod-A and the statement is true for n− 1.
Now, we show that Ω̃−1(M(n)) ≃ M(n+ 1) in mod-A for n ≥ 0 by induction on n. It

is easy to check that Ω̃(M(1)) ≃ M(0). Thus, the statement is true for n = 0. Assume
that the statement holds for 1 ≤ k ≤ n. The induction hypothesis Ω̃−1(M(n)) ≃M(n+1)
implies

Ω̃−1(M(n+ 1)) ≃ Ω̃−2(M(n)) ≃M(n+ 2)

in mod-A and the statement is true for n+ 1.
Next, we consider the case of M(λ)n. For λ ∈ P1(κ) and n > 0, we define a map

πλn : (A)⊕n → M(λ)n by πλn : ei 5→ ui. Then, πλn is the projective cover of M(λ)n as an
A-module. First, we assume that λ ̸=∞. In this case, the kernel of πλn is given by

κ(Y e1 − λXe1)⊕ κXY e1

⊕ κ(Y e2 − λXe2 −Xe1)⊕ κ(XY e2)

⊕ · · ·
⊕ κ(Y en − λXen −Xen−1)⊕ κXY en,

and it is isomorphic to M(−λ)n in mod-A. Next, we consider λ = ∞ case. A κ-basis of
the kernel of π∞n is given by

κXe1 ⊕ κXY e1

⊕ κ(Xe2 − Y e1)⊕ κ(XY e2)

⊕ · · ·
⊕ κ(Xen − Y en−1)⊕ κXY en,
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and it is isomorphic to M(∞)n in mod-A. In the both cases, the isomorphisms are lifted
in mod-A since the kernels have no A as a direct summand.

Let M be a non-projective indecomposable A-module listed in Lemma 5.1.1. For each
m, n and λ, the projective cover of M as an A-module πM is given by

πM :

⎧
⎪⎪⎨

⎪⎪⎩

A⊕m −→M, ei 5−→ ui if M ≃M(m), m > 0,
A⊕m+1 −→M, ei 5−→ ui if M ≃M(−m), m > 0,
A −→M, e1 5−→ u1 if M ≃M(0),
A⊕n −→M, ei 5−→ ui if M ≃M(λ)n, n > 0, λ ∈ P1(κ).

For m ∈ Z, n ∈ Z≥0 and λ ∈ P1(κ), we define the Heller A-lattices Zn and Zλ
m to be the

A-lattices Zm := Ker(πM(m)) and Zλ
n := Ker(πM(λ)n). We denote by B(m) and B(λ)n the

following O-basis of Heller lattices Zm and Zλ
n , respectively: For m > 0,

Zm = Oεe1 ⊕OεXe1 ⊕O(Y e1 −Xe2)⊕OXY e1

⊕Oεe2 ⊕OεXe2 ⊕O(Y e2 −Xe3)⊕OXY e2

⊕ · · ·
⊕Oεem−1 ⊕OεXem−1 ⊕O(Y em−1 −Xem)⊕OXY em−1

⊕Oεem ⊕OεXem ⊕OεY em ⊕OXY em,

Z0 = Oεe1 ⊕OXe1 ⊕OY e1 ⊕OXY e1,

Z−m = Oεe1 ⊕OεXe1 ⊕OY e1 ⊕OXY e1

⊕Oεe2 ⊕OεXe2 ⊕O(Y e2 −Xe1)⊕OXY e2

⊕ · · ·
⊕Oεem ⊕OεXem ⊕O(Y em −Xem−1)⊕OXY em

⊕Oεem+1 ⊕OXem+1 ⊕O(Y em+1 −Xem)⊕OXY em+1.

For n > 1,

Zλ
n = Oεe1 ⊕OεXe1 ⊕O(Y e1 − λXe1)⊕OXY e1

⊕Oεe2 ⊕OεXe2 ⊕O(Y e2 − λXe2 −Xe1)⊕OXY e2

⊕ · · ·
⊕Oεen ⊕OεXen ⊕O(Y en − λXen −Xen−1)⊕OXY en

Z∞n = Oεe1 ⊕OXe1 ⊕O(Y e1 −Xe2)⊕OXY e1

⊕Oεe2 ⊕OεXe2 ⊕O(Y e2 −Xe3)⊕OXY e2

⊕ · · ·
⊕Oεen−1 ⊕OεXen−1 ⊕O(Y en−1 −Xen)⊕OXY en−1

⊕Oεen ⊕OεXen ⊕OεY en ⊕OXY en,
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and

Zλ
1 = Oεe1 ⊕OεXe1 ⊕O(Y e1 − λXe1)⊕OXY e1,

Z∞1 = Oεe1 ⊕OXe1 ⊕OεY e1 ⊕OXY e1.

To simplify the notations, we use the following symbols:
• For the Heller lattice Zm (m ≥ 0), we put

⎛

⎜⎜⎜⎜⎜⎝

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
...

...
...

...
am−1,1 am−1,2 am−1,3 am−1,4
am,1 am,2 am,3 am,4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

εe1 εXe1 (Y e1 −Xe2) XY e1
εe2 εXe2 (Y e2 −Xe3) XY e2
...

...
...

...
εem−1 εXem−1 (Y em−1 −Xem) XY em−1
εem εXem εY em XY em

⎞

⎟⎟⎟⎟⎟⎠

when m > 0, and if m = 0, we put

(a1,1, a1,2, a1,3, a1,4) = (εe1, Xe1, Y e1, XY e1).

We understand that a0,j = 0 for j = 1, 2, 3, 4. Then, X and Y act on Zm as follows. If
m > 0, then

Xai,j =

⎧
⎪⎪⎨

⎪⎪⎩

ai,j+1 if j = 1,
ai,j+1 if i ̸= m and j = 3,
εam,4 if i = m and j = 3,
0 otherwise,

Y ai,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εai,3 + ai+1,2 if i ̸= m and j = 1,
εa4,3 if i = m and j = 1,
εai,4 if j = 2,
−ai+,4 if i ̸= m and j = 3,
0 otherwise.

If n = 1, then

Xa1,j =

⎧
⎨

⎩

εa1,2 if j = 1,
a1,4 if j = 3,
0 otherwise,

Y a1,j =

⎧
⎨

⎩

εa1,3 if j = 1,
a1,4 if j = 2,
0 otherwise.

• For the Heller lattice Z−m (m > 0), we put

⎛

⎜⎜⎜⎜⎜⎝

b1,1 b1,2 b1,3 b1,4
b2,1 b2,2 b2,3 b2,4
...

...
...

...
bm,1 bm,2 bm,3 bm,4

bm+1,1 bm+1,2 bm+1,3 bm+1,4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

εe1 εXe1 Y e1 XY e1
εe2 εXe2 (Y e2 −Xe1) XY e2
...

...
...

...
εem εXem (Y em −Xem−1) XY em
εem+1 Xem+1 (Y em+1 −Xem) XY em+1

⎞

⎟⎟⎟⎟⎟⎠
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We understand that b0,j = 0 for j = 1, 2, 3, 4. Then, X and Y act on Z∞n as follows.

Xbi,j =

⎧
⎪⎪⎨

⎪⎪⎩

bi,2 if i ̸= m+ 1 and j = 1,
εbm+1,2 if i = u+ 1 and j = 1,
bi,4 if j = 3,
0 otherwise,

Y bi,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εbi,3 + bi−1,2 if i =1 and j = 1,
εbi,4 if i ̸=u+ 1 and j = 2,
bm+1,4 if i =u+ 1 and j = 2,
−bi−1,4 if j = 3,
0 otherwise.

• For the Heller lattice Zλ
n (λ ̸=∞), we put

⎛

⎜⎜⎜⎜⎜⎝

cλ1,1 cλ1,2 cλ1,3 cλ1,4
cλ2,1 cλ2,2 cλ2,3 cλ2,4
...

...
...

...
cλn−1,1 cλn−1,2 cλn−1,3 cλn−1,4
cλn,1 cλn,2 cλn,3 cλn,4

⎞

⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

εe1 εXe1 (Y e1 − λXe1) XY e1
εe2 εXe2 (Y e2 − λXe2 −Xe1) XY e2
...

...
...

...
εen−1 εXen−1 (Y en−1 − λXen−1 −Xen−2) XY en−1
εen εXen (Y en − λXen −Xen−1) XY en

⎞

⎟⎟⎟⎟⎟⎠

when n > 1, and if n = 1, we put

(cλ1,1, c
λ
1,2, c

λ
1,3, c

λ
1,4) = (εe1, εXe1, (Y e1 − λXe1), XY e1).

Then, X and Y act on Zλ
n as follows. If n > 1, then

Xcλi,j =

{
cλi,j+1 if j = 1, 3,
0 otherwise,

Y cλi,j =

⎧
⎪⎪⎨

⎪⎪⎩

εcλi,3 + λcλi,2 + cλi−1,2 if j = 1,
εcλi,4 if j = 2,
−λcλi,4 − cλi−1,4 if j = 3,
0 otherwise.

If n = 1, then

Xcλ1,j =

{
cλ1,j+1 if j = 1, 3,
0 otherwise,

Y cλ1,j =

⎧
⎪⎪⎨

⎪⎪⎩

εcλ1,3 + λcλ1,2 if j = 1,
εcλ1,4 if j = 2,
−λcλ1,4 if j = 3,
0 otherwise.

• For the Heller lattice Z∞n , we put
⎛

⎜⎜⎜⎜⎜⎝

d1,1 d1,2 d1,3 d1,4
d2,1 d2,2 d2,3 d2,4
...

...
...

...
dn−1,1 dn−1,2 dn−1,3 dn−1,4
dn,1 dn,2 dn,3 dn,4

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎜⎝

εe1 Xe1 (Y e1 −Xe2) XY e1
εe2 εXe2 (Y e2 −Xe3) XY e2
...

...
...

...
εen−1 εXen−1 (Y en−1 −Xen) XY en−1
εen εXen εY en XY en

⎞

⎟⎟⎟⎟⎟⎠
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when n > 1, and if n = 1, we put

(d1,1, d1,2, d1,3, d1,4) = (εe1, Xe1, εY e1, XY e1).

Then, X and Y act on Z∞n as follows. If n > 1, then

Xdi,j =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εd1,2 if i = j = 1,
di,2 if i ̸= 1, j = 1,
di,4 if i ̸= n, j = 3,
εdn,4 if i = n, j = 3,
0 otherwise,

Y di,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εdi,3 + di+1,2 if i ̸= n, j = 1,
dn,3 if i = n, j = 1,
d1,4 if i = 1, j = 2,
εdi,4 if i ̸= 1, j = 2,
−di+1,4 if i ̸= n, j = 3,
0 otherwise.

If n = 1, then

Xd1,j =

{
εd1,j+1 if j = 1, 3,
0 otherwise,

Y d1,j =

{
d1,j+2 if j = 1, 2,
0 otherwise.

Lemma 5.1.4 ([M1, Lemma 2.5]). Let Z be a Heller lattice over A. Then, the rank of Z
as an O-module is divisible by four.

Proof. Let Z be a Heller A-lattice. Then, Z⊗K is projective as an A⊗K-module. On the
other hand, the unique projective indecomposable A⊗K-module is A⊗K, whose dimension
is four. This gives the desired conclusion.

Proposition 5.1.5 ([M1, Proposition 2.4] and [M2, Proposition 2.8]). For m ∈ Z, n ∈ Z≥0
and λ ∈ P1(κ), the following statements hold.

(1) There are isomorphisms

Zm ⊗ κ ≃M(m− 1)⊕M(m), Zλ
n ⊗ κ ≃M(λ)n ⊕M(−λ)n,

where we set −∞ =∞.

(2) The Heller lattices Zm and Zλ
n are indecomposable.

Proof. (1) We show the following five isomorphisms:

(i) Zm ⊗ κ ≃M(m)⊕M(m− 1) for m > 0.

(ii) Z0 ⊗ κ ≃M(0)⊕M(−1).

(iii) Z−m ⊗ κ ≃M(−m)⊕M(−m− 1) for m > 0.

(iv) Zλ
n ⊗ κ ≃M(λ)n ⊕M(−λ)n for n ≥ 1 and λ ̸=∞.

(v) Z∞n ⊗ κ ≃M(∞)⊕2n for n ≥ 1.
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(i) For any m > 0, we define A-submodules Z(m, 1) and Z(m, 2) of Zm ⊗ κ by

Z(m, 1) :=Spanκ{ai,1, ai,2, am,3 | i = 1, . . . ,m},
Z(m, 2) :=Spanκ{ai,3, aj,4 | i = 1, . . . ,m− 1, j = 1, . . . ,m}.

Obviously, Zm ⊗ κ = Z(m, 1)⊕Z(m, 2). Then, it is easy to see that Z(m, 1) ≃M(m) and
Z(m, 2) ≃M(m− 1).

(ii) The isomorphism Z0 ⊗ κ ≃M(0)⊕M(−1) is clear.
(iii) For any m > 0, we define A-submodules Z(−m, 1) and Z(−m, 2) of Z−m ⊗ κ by

Z(−m, 1) :=Spanκ{bi,1, bj,2 | i = 1, . . . ,m+ 1, j = 1, . . . ,m},
Z(−m, 2) :=Spanκ{bm+1,2, bi,3, bi,4 | i = 1, . . . ,m+ 1}.

Obviously, Z−m ⊗ κ = Z(−m, 1) ⊕ Z(−m, 2). Then, it is easy to see that Z(−m, 1) ≃
M(−m) and Z(−m, 2) ≃M(−m− 1).

(iv) For any n > 0, we define A-submodules Z(λ, n, 1) and Z(λ, n, 2) of Zλ
n ⊗ κ by

Z(λ, n, 1) :=Spanκ{cλi,1, cλi,2 | i = 1, . . . , n},
Z(λ, n, 2) :=Spanκ{cλi,3, cλi,4 | i = 1, . . . , n}.

Then, Zλ
n⊗κ is decomposed into Z(λ, n, 1)⊕Z(λ, n, 2) asA-modules. DefineA-homomorphisms

fλ,n
1 : M(λ)n → Z(λ, n, 1) and fλ,n

2 : M(−λ)n → Z(λ, n, 2) by

fλ,n
1 (ui) = cλi,1, fλ,n

1 (vi) = cλi,2, fλ,n
2 (ui) = (−1)i+1cλi,3, and fλ,n

2 (vi) = (−1)i+1cλi,4.

As these morphisms are isomorphisms, we have Zλ
n ⊗ κ ≃M(λ)n ⊕M(−λ)n.

(v) Finally, we show that Z∞n ⊗ κ ≃M(∞)⊕2n . For any n > 0, we put

Z(∞, n, 1) :=Spanκ{di,1, dj,2, dn,3 | i = 1, . . . , n, j = 2, . . . , n},

Z(∞, n, 2) :=Spanκ

{
d1,2, di,3, dn,4, dj,4

∣∣∣∣
i = 1, . . . , n− 1,
j = 1, . . . , n− 1

}
.

Then, one can show that Z(∞, n, 1) ≃ Z(∞, n, 2) ≃M(∞)n by using similar arguments in
the proof of the case of λ ̸=∞.

(2) First, we prove that the Heller lattice Zm is indecomposable for any integer m.
We obtained an isomorphism Zm ⊗ κ ≃ M(m) ⊕ M(m − 1) by (1). Assume that Zm

is decomposable. We write Zm = Z1 ⊕ Z2 with Z1 ̸= 0 ̸= Z2 as A-lattices. By the
Krull–Schmidt–Azumaya theorem, we would obtain two isomorphisms Z1 ⊗ κ ≃ M(m)
and Z2 ⊗ κ ≃M(m− 1). On the other hand, the dimension of M(m) as a κ-vector space
is odd, a contradiction with Lemma 5.1.4. Therefore, Zm is an indecomposable A-lattice.
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From now on, we show that the Heller lattice Zλ
n is indecomposable for any n > 0 and

λ ∈ P1(κ). Let X̃, Ỹ and
˜̃
Y be square matrices of size 4 defined by

X̃ :=

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞

⎟⎟⎠ Ỹ :=

⎛

⎜⎜⎝

0 0 0 0
λ 0 0 0
ε 0 0 0
0 ε −λ 0

⎞

⎟⎟⎠
˜̃
Y :=

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞

⎟⎟⎠

Then, the representing matrices of the actions of X and Y on Zλ
n (λ ̸=∞) with respect to

the O-basis Bλ
n are of the form:

X =

⎛

⎜⎜⎜⎜⎜⎜⎝

X̃

X̃ 0
. . .

X̃

0 X̃

⎞

⎟⎟⎟⎟⎟⎟⎠
Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ỹ
˜̃
Y

Ỹ
˜̃
Y 0

. . .

Ỹ
˜̃
Y

0 Ỹ

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mat(4n, 4n,O)

Obviously, the Heller lattice Zλ
1 is indecomposable since Zλ

1 ⊗ K ≃ A ⊗ K. We prove
that idempotents of EndA(Zλ

n) are only 14n and 04n. Let M = (mi,j) be an idempotent of
EndA(Zλ

n). We partition M into n2 blocks of size 4× 4, and denote by Mi,j ∈ Mat(4, 4,O)
the (i, j)-block of M and by αi,j the (4i−2, 4j−1)-entry of M . The equalities MX = XM
and MY = YM yield that the block Mi,j is of the form

Mi,j =

⎛

⎜⎜⎝

di,j 0 0 0
m4i−2,4j−3 di,j ci,j 0
m4i−1,4j−3 0 di,j 0
m4i,4j−3 m4i−1,4j−3 m4i,4j−1 di,j

⎞

⎟⎟⎠ ,

where

di,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m1,1 if i = j = 1,

m1,1 + ε
∑j−1

k=1 αk,k+1 if i = j > 1,

ε
∑j

k=1 αi−j−1+k,k if n ≥ i > j ≥ 1,
m1,4j−3 if n ≥ j > i = 1,
m1,4(j−i)+1 + ε

∑i−1
k=1 αk,j−i+1+k if n ≥ j > i > 1,

(5.1)

ci,j =

⎧
⎨

⎩

0 if i = n, j = 1,
αi,j if i ̸= n,

−
∑j−1

k=1 αi−j+k,k if n = i ≥ j > 1.

Here, we have to choose each element mk,l in Mi,j in such a way that the equation MY =
YM holds. By comparing the (1, 1)-entries of M and M2, we have the equation

m1,1 = m2
1,1 + ε

n−1∑

k=1

m1,4k+1m4k−2,3.
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We write x for the coset in the residue field κ = O/εO represented by x ∈ O. The above
equation implies that m1,1 is either 0 or 1.

Assume that m1,1 = 0. Then, the element di,i belongs to εO for all i by (5.1). By
comparing the (1, 4k + 1)-entries of M and M2, we have

m1,4k+1 = m1,1m1,4k+1 +
k∑

l=1

m1,4l+1dl+1,l+1 + ε
n−1∑

l=k+1

m1,4l+1P (l) (5.2)

for some P (l) ∈ O, and hence m1,4k+1 ∈ εO for all k. From (5.2), m1,4k+1 belongs to εtO
for all t > 0. It implies that m1,4k+1 = 0 for all k. Therefore, the first row of M is zero.
By comparing the (5, 5)-entries of M and M2, the following equation holds:

εm2,7 =

{
ε2m2,7 if n = 2,
ε2m2

2,7 + ε
∑n−2

k=1 m2,4k+7dk+2,2 if n > 2.

In the case n = 2, m2,7 = 0 because 1− εm2,7 is invertible. Therefore, we have:

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
m2,1 0 m2,3 0 m2,5 0 0 0
m3,1 0 0 0 m3,5 0 0 0
m4,1 m3,1 m4,3 0 m4,5 m3,5 m4,7 0
εm2,3 0 0 0 0 0 0 0
m6,1 εm2,3 0 0 m6,5 0 −m2,3 0
m7,1 0 εm2,3 0 m7,5 0 0 0
m8,1 m7,1 m8,3 εm2,3 m8,5 m7,5 m8,7 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

By M = M2, all elements of M must be 0.
In the other case, first we prove that the (4k−2)-th row ofM is zero for all k = 1, 2, . . . , n

by induction on k. By comparing the (2, 4s − 1)-entries of M and M2, the following
equations hold:

m2,4s−1 =
n−1∑

l=1

m2,4l+3dl+1,s, s = 1, 2, . . . , n. (5.3)

Since the first row of M is zero, each dl+1,s of the right hand side of (5.3) belongs to εO
and so is m2,4s−1 for all s = 1, 2, . . . , n. Thus, for s = 1, 2, . . . , n, the element m2,4s−1
lies on εtO for all t > 0. It implies that m2,4s−1 = 0 for all s = 1, 2, . . . , n. Then, the
(2, 4s− 3)-entries of M and M2 yield

m2,4s−3 =
n−2∑

l=1

m2,4l+5dl+2,l, s = 1, 2, . . . , n.

As each dl+2,l belongs to εO, so is m2,4s−3 for all s = 1, 2, . . . , n. It implies that the element
m2,4s−3 lies on εtO for t > 0, and hence the second row of M is zero.
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Assume that the statement holds for 2 ≤ t ≤ k − 1, we will show the statement for k.
Then, by the induction hypothesis, we have

m4k−2,4s−1 =
n−1∑

l=1

m4k−2,4l+3dl+1,s, s = 1, 2, . . . , n.

Thus, we obtain m4k−2,4s−1 = 0 and

m4k−2,4s−3 =
n−2∑

l=1

m4k−2,4l+5dl+2,l, s = 1, 2, . . . , n

by similar arguments to the proof of the case of k = 1. It implies that the (4k − 2)-th row
of M is zero for all k = 2, . . . , n.

Since the first and the (4k − 2)-th row of M are zero for all k, the (i, j)-block of M is
of the form

Mi,j =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0

m4i−1,4j−3 0 0 0
m4i,4j−3 m4i−1,4j−3 m4i,4j−1 0

⎞

⎟⎟⎠ .

Therefore, we obtain M = 04n by comparing each entry of M and M2.
Next we assume that m1,1 = 1. Then, 14n −M is an idempotent whose (1, 1)-entry is

belongs to εO and M = 14n follows. Therefore, the Heller lattice Zλ
n is indecomposable.

Finally, we show the indecomposablity of Z∞n . Let X(a,b), Y(a,b), Y2 be square matrices
of size 4 defined by

X(a,b) :=

⎛

⎜⎜⎝

0 0 0 0
a 0 0 0
0 0 0 0
0 0 b 0

⎞

⎟⎟⎠ Y(a,b) :=

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
a 0 0 0
0 b 0 0

⎞

⎟⎟⎠ Y2 :=

⎛

⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

⎞

⎟⎟⎠ ,

where a, b ∈ {1, ε}. Then, the representing matrices of the actions of X and Y on Z∞n
with respect to the O-basis B∞n are of the form:

X =

⎛

⎜⎜⎜⎜⎜⎝

X(ε,1)

X(1,1) 0
. . .

X(1,1)0 X(1,ε)

⎞

⎟⎟⎟⎟⎟⎠

Y =

⎛

⎜⎜⎜⎜⎜⎝

Y(ε,1)
Y2 Y(ε,ε) 0

. . .

Y(ε,ε)0 Y2 Y(1,ε)

⎞

⎟⎟⎟⎟⎟⎠
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Then, any endomorphism M : Z∞n → Z∞n satisfies MX = XM and MY = YM . Thus,
the endomorphism ring of Z∞n is subset of
⎧
⎨

⎩(mi,j)i,j ∈ Mat(4n, 4n,O)

∣∣∣∣∣∣

mi,i = mi+1,i+1 for all 1 ≤ i ≤ 4n− 1,
mi,j = 0 for i < j whenever (i, j) ̸= (2, 3), (2, 5), (4, 5)

(4, 7) or (8, 9).

⎫
⎬

⎭

Let M be an idempotent of the endomorphism ring of Z∞n . It follows from the above
observation that M must be either the zero matrix or the identity matrix by comparing
all entries of M with those of M2. Therefore, the A-lattice Z∞n is indecomposable.

Proposition 5.1.6 ([M1, Proposition 2.7] and [M2, Proposition 2.15]). For m ∈ Z, λ ∈
P1(κ) and n > 0, the following statements hold.

(1) There exists an isomorphism τ(Zm) ≃ Zm−1.

(2) If λ ̸=∞, there exists an isomorphism τ(Zλ
n) ≃ Z−λn .

(3) If λ =∞, there exists an isomorphism τ(Z∞n ) ≃ Z∞n .

In particular, Γs(A) admits the unique non-periodic Heller component containing Z0.

Proof. (1) we prove that the indecomposable Heller lattice Zm is not periodic in Γs(A). In
order to do this, we introduce another O-basis of Z−m for each m > 0 as follows;

Z−m = Oεe1 ⊕O(Xe1 − Y e2)⊕OY e1 ⊕OXY e1

⊕Oεe2 ⊕O(Xe2 − Y e3)⊕OεY e2 ⊕OXY e2

⊕ · · ·
⊕Oεem ⊕O(Xem − Y em+1)⊕OεY em ⊕OXY em

⊕Oεem+1 ⊕OXem+1 ⊕OεY em+1 ⊕OXY em+1.

We denote by B(m) this O-basis of Z−m.
We compute τ(Zm) in the following five cases.

(a) m = 1, (b) m > 1, (c) m = 0, (d) m = −1, (e) m < −1.

Suppose (a). Since the projective cover of Z1 is given by

π1 : A⊕A −→ Z1, e1 5−→ a1,1, e2 5−→ a1,4,

we have τ(Z1) = O(−XY e1 + εe2)⊕OXe2 ⊕OY e2 ⊕OXY e2 ≃ Z0.
Suppose (b). Since the projective cover of Zm is given by

πm : A⊕2m−1 −→ Zm

ei 5−→
{

ak,1 if i = 2k− 1, k = 1, 2, 3, . . . ,m,
ak,3 if i = 2k, k = 1, 2, 3, . . . ,m− 1,



5. Heller components: the case of the symmetric Kronecker algebra 93

we have

τ(Zm) =
m−2⊕

k=1

(
O(Y e2k−1 −Xe2k+1 − εe2k)⊕O(XY e2k−1 − εXe2k)

⊕O(−Xe2k+2 − Y e2k)⊕O(−XY e2k)

)

⊕O(Y e2m−3 +Xe2m−1 − εe2m−2)⊕O(XY e2m−3 − εXe2m−2)

⊕O(XY e2m−1 − εY e2m−2)⊕O(−XY e2m−2).

We change the above O-basis of τ(Zm) by using the invertible matrix P = (Pi,j) of size 4m
defined by Pi,j := (−1)iδi,j14. Then, the representing matrices of the actions of X and Y
on τ(Zm) with respect to the new ordered O-basis coincide with those on Zm−1. It follows
that τ(Zm) ≃ Zm−1.

Suppose (c). Since the projective cover of Z0 is given by

π0 : A⊕A⊕A −→ Z0, e1 5−→ a1,1, e2 5−→ a1,2, e3 5−→ a1,3,

we have an isomorphism

τ(Z0) = O(−Y e1 + εe3)⊕O(−XY e1 + εXe3)⊕OY e3 ⊕OXY e3

⊕O(−Xe1 + εe2)⊕OXe2 ⊕O(Y e2 −Xe3)⊕OXY e2

≃ Z−1.

Next, we consider the case (d) and (e). The projective cover of Z−m (m ≥ 1) is given
by

π−m : A⊕2m+3 −→ Z−m

ei 5−→

⎧
⎪⎪⎨

⎪⎪⎩

bk,1 if i = 2k− 1, k = 1, 2, . . . ,m+ 1,
bk,3 if i = 2k, k = 1, 2, . . . ,m,
bm+1,2 if i = 2m+ 2,
bm+1,3 if i = 2m+ 3.

Thus, an O-basis of τ(Z−m) is given as follows. If m = 1, then

τ(Z−1) = O(εe2 − Y e1)⊕O(Xe2 + Y e5)⊕OY e2 ⊕OXY e2

⊕O(Y e3 −Xe1 − εe5)⊕O(−Y e4 +Xe5)

⊕O(XY e1 + εY e5)⊕OXY e5

⊕O(Xe3 − εe4)⊕OXe4 ⊕O(XY e3 + εY e4)⊕OXY e4,
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and if m > 1, then

τ(Z−m) = O(Y e1 − εe2)⊕O(Y e4 +Xe2)⊕OY e2 ⊕OXY e2

⊕
m−2⊕

k=1

(
O(Y e2k+1 −Xe2k−1 − εe2k+2)⊕O(Y e2k+4 +Xe2k+2)

⊕O(XY e2k−1 + εY e2k+2)⊕OXY e2k+2

)

⊕O(Y e2m+1 −Xe2m−1 − εe2m+3)⊕O(−Y e2m+2 −Xe2m+3)

⊕O(XY e2m−1 + εY e2m+3)⊕OXY e2m+3

⊕O(Xe2m+1 − εe2m+2)⊕OXe2m+2

⊕O(XY e2m+1 − εY e2m+2)⊕OXY e2m+2.

In the both cases, we have an isomorphisms τ(Z−m) ≃ Z−m−1 for each m ≥ 1.
(2) The map πn,λ defined by

πn,λ : A⊕2n −→ Zλ
n

ei 5−→
{

cλk,1 if i = 2k− 1, k = 1, 2, . . . , n,
cλk,3 if i = 2k, k = 1, 2, . . . , n

is the projective cover of Zλ
n as an A-module. Its kernel τ(Zλ

n) is given by

O(εe2 − Y e1 + λXe1)⊕O(εXe2 −XY e1)⊕O(Y e2 + λXe2)⊕OXY e2
n⊕

k=2

(
O(−1)k−1(εe2k − Y e2k−1 + λXe2k−1 +Xe2k−3)⊕O(−1)k−1(εXe2k −XY e2k−1)

⊕O(−1)k−1(Y e2k + λXe2k +Xe2k−2)⊕O(−1)k−1XY e2k

)
.

Then, the actions X and Y on τ(Zλ
n) coincide with those on Z−λn .

(3) We define an A-module homomorphism by

πn,∞ : A⊕2n −→ Z∞n

ei 5−→

⎧
⎪⎪⎨

⎪⎪⎩

d1,1 if i = 1,
d1,2 if i = 2,
dk,3 if i = 2k+ 1, k = 1, 2, . . . , n− 1,
dk,1 if i = 2k, k = 2, 3, . . . , n.

Then, the πn,∞ is the projective cover of Z∞n , and an O-basis of the kernel of πn,∞ is given
as follows. If n = 1, then the kernel of π1,∞ is

O(−Xe1 + εe2)⊕OXe2 ⊕O(−XY e1 + εY e2)⊕OXY e2,
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and it is isomorphic to Z∞1 . If n = 2, then the kernel of π2,∞ is

O(−XY e1 + εe2)⊕OXe2 ⊕O(−Xe3 + Y e2)⊕OXY e2
⊕O(−Y e1 +Xe4 + εe3)⊕O(−XY e1 + εXe3)⊕O(XY e4 + εY e3)⊕OXY e3,

and it is isomorphic to Z∞2 . Suppose that n ≥ 3. Then an O-basis of the kernel of πn,∞ is
given by

O(εe2 −Xe1)⊕OXe2 ⊕O(Y e2 −Xe3)⊕OXY e2

⊕O(εe3 +Xe4 − Y e1)⊕O(εXe3 −XY e1)⊕O(Y e3 +Xe5)⊕OXY e3
n−2⊕

k=2

(
O(−1)k+1(εe2k+1 +Xe2(k+1) − Y e2k)⊕O(−1)k+1(εXe2k+1 −XY e2k)

⊕O(−1)k+1(Y e2k+1 +Xe2k+3)⊕O(−1)k+1XY e2k+1

)

⊕O(−1)n(εe2n−1 +Xe2n − Y e2(n−1))⊕O(−1)n(εXe2n−1 −XY e2(n−1))

⊕O(−1)n(εY e2n−1 +XY e2n)⊕O(−1)nXY e2n−1.

Then, it is easy to check that the actions X and Y on the kernel of πn,∞ coincide with
those on Z∞n .

5.2 Almost split sequence ending at non-periodic Heller lattices

By Lemmas 3.4.4 and 5.1.5, there are almost split sequences ending at the Heller lattices Zm

and Zλ
n for each m ∈ Z, n ∈ Z>0 and λ ∈ P1(κ). Furthermore, it follows from Proposition

5.1.6, there is the unique non-periodic Heller component HC(Z0), which contains Zm for
all m ∈ Z. In this section, we explain some properties of the middle term of the almost
split sequence ending at the Heller lattice Zm in order to determine the shape of HC(Z0).
Since the stable Auslander–Reiten quiver Γs(A) is stable translation quiver, it is enough
to consider n = 1.

Recall that the projective cover of Z1 is given by

π1 : A⊕A −→ Z1, e1 5−→ a1,1, e2 5−→ a1,4.

Then, the representing matrix of π1 is:

⎛

⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 ε 1 0 0 0

⎞

⎟⎟⎠
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Let ψ ∈ HomA(Z1, A⊕A), and we write

ψ(εe) =
2∑

i=1

(ai1ei + ai2Xei + ai3Y ei + ai4XY ei),

ψ(XY e) =
2∑

i=1

(bi1ei + bi2Xei + bi3Y ei + bi4XY ei).

Since εψ(XY e) = XY ψ(εe), the representing matrix of ψ is:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εb14 0 0 0
a12 εb14 0 0
a13 0 εb14 0
a14 a13 a12 b14
εb24 0 0 0
a22 εb24 0 0
a23 0 εb24 0
a24 a23 a22 b24

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Thus, the set of endomorphisms of Z1 factorizing through π1 is:
⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

εα 0 0 0
β εα 0 0
γ 0 εα 0
εδ εγ εβ εα

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
α,β, γ, δ ∈ O

⎫
⎪⎪⎬

⎪⎪⎭

On the other hand, the radical of the endomorphism ring of Z1 is given by

radEndA(Z1) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

εa 0 0 0
b εa 0 0
c 0 εa 0
d εc εb εa

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
a, b, c, d ∈ O

⎫
⎪⎪⎬

⎪⎪⎭
.

Therefore, we may take an endomorphism ϕ which satisfies conditions (i) and (iii) in
Theorem 3.5.8 as

ϕ =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞

⎟⎟⎠ ,

and we consider the pullback diagram along (π1,ϕ):

0 Z0 A⊕A Z1

Z1

0

E1Z0 00

!! !!
π1

!!

ϕ

""
!!

!! !! !! !!

""
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Since Z0 is indecomposable, the upper exact sequence is the almost split sequence ending
at Z1. Then, an O-basis of E1 is given by

E1 ={(f1, f2, x) ∈ A⊕A⊕ Z1| π1(f1, f2) = ϕ(x)}
= O(e2 + εe3)⊕OXe2 ⊕OY e2 ⊕OXY e2

⊕O(XY e1 + ε2e3)⊕O(εXe3)⊕O(εY e3)⊕O(XY e3).

Proposition 5.2.1 ([M1, Proposition 2.7]). For any integer m, the Heller lattice Zm

appears on the boundary of HC(Z0).

Proof. It is enough to show that the A-lattice E1 has exactly one non-projective indecom-
posable direct summand since τ(Zm) ≃ Zm−1 for all m. Note that, since rad(A) = Z0,
the A-lattice E1 has projective direct summands by Theorem 3.5.13. In fact, we have
isomorphisms

E1 ≃ O(e2 + εe3)⊕O(Xe2 + εXe3)⊕O(Y e2 + εY e3)⊕O(XY e2 + εXY e3)

⊕O(ε2e3)⊕O(εXe3)⊕O(εY e3)⊕O(XY e3)

≃ A⊕Oε2e3 ⊕OεXe3 ⊕OεY e3 ⊕OXY e3.

Let E1 = Oε2e3 ⊕ OεXe3 ⊕ OεY e3 ⊕ OXY e3. Then, E1 is not isomorphic to A. Since
E1 ⊗K ≃ A⊗K, the A-lattice E1 is indecomposable.

Corollary 5.2.2 ([M1, Proposition 2.12]). Let Em be the middle term of the almost split
sequence ending at Zm.

(1) For any integer m ̸= 1, the A-lattice Em is indecomposable.

(2) For any m ∈ Z, we have an isomorphism Em ⊗ κ ≃M(m− 1)⊕4.

Proof. (1) For any m ̸= 0, the Heller lattice Zm is not a direct summand of rad(A). Thus,
the assertion follows from Theorem 3.5.13 and Proposition 5.2.1.

(2) Applying −⊗ κ to the A-lattice

E1 = Oε2e3 ⊕OεXe3 ⊕OεY e3 ⊕OXY e3,

we have E1 ⊗ κ ≃M(0)⊕4. Thus, Lemma 5.1.3 implies our claim.

5.3 Excluding the possibility B∞, C∞ and D∞

The Heller component HC(Z0) does not have a loop. Let T be the tree class of HC(Z0).
It follows Corollary 3.7.13 that the function D gives a additive function on T . Thus, T
is one of infinite Dynkin diagrams or Euclidean diagrams. In this section, we exclude the
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possibility that T = B∞, C∞ or D∞. From now on, we denote by Em the unique non-
projective indecomposable direct summand of the middle term of the almost split sequence
ending at Zm. Let Fm be the middle term of the almost split sequence ending at Zm.
The aim of this section is to show that, for any m ∈ Z, the non-projective indecomposable
direct summands of Fm are Zm−1 and an indecomposable A-lattice Fm. Moreover, for all
m, neither Zm nor Em are isomorphic to Fn (n ∈ Z).

It is enough to show the assertion for the case F 1. We construct the almost split
sequence ending at E1. Since the projective cover of E1 is given by

πE1 : A⊕4 −→ E1, e1 5−→ ε2e, e2 5−→ εXe, e3 5−→ εY e, e4 5−→ XY e,

where e is the identity element of O, the representing matrix of πE1 is the following:

⎛

⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ε 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 ε 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 ε2 0 0 ε 0 0 ε 0 0 1 0 0 0

⎞

⎟⎟⎠

On the other hand, the radical of EndA(E1) is given by

radEndA(E1) =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝

εa 0 0 0
b εa 0 0
c 0 εa 0
d c b εa

⎞

⎟⎟⎠

∣∣∣∣∣∣∣∣
a, b, c, d ∈ O

⎫
⎪⎪⎬

⎪⎪⎭
.

Lemma 5.3.1 ([M1, Lemma 2.17]). Any endomorphism of E1 which factors through πE1

is reprsented by ⎛

⎜⎜⎝

ε2a 0 0 0
ε2b ε2a 0 0
ε2c 0 ε2a 0
ε2d ε2c ε2b ε2a

⎞

⎟⎟⎠

for some a, b, c, d ∈ O.

Proof. The proof is straightforward.

Let ϕ : E1 → E1 be the endomorphism defined by ϕ(ε2e) = εXY e. Note that ϕ(εXe) =
ϕ(εY e) = ϕ(XY e) = 0. We consider the pullback diagram along (πE1 ,ϕ):

0 E0 A⊕4 E1

E1

0

F 1E0 00

!! !!
πE1

!!

ϕ

""
!!

!! !! !! !!

""
(5.4)
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Lemma 5.3.2 ([M1, Lemma 2.18]). The following statements hold.

(1) ϕ does not factor through πE1 .

(2) For each f ∈ radEndA(E1), ϕ ◦ f factors through πE1 .

Proof. (1) If ϕ factors through πE1 , then it contradicts with Lemma 5.3.1.
(2) Let f ∈ radEndA(E1). Assume that f(ε2e) = εa(ε2e)+b(εXe)+c(εY e)+d(XY e) for

some a, b, c, d ∈ O. Since ε2f(XY e) = XY f(ε2e) = ε3aXY e, we have f(XY e) = εaXY e,
and hence ϕ ◦ f(ε2e) = ε2a(XY e). Define ψ : E1 → A⊕4 by ψ(ε2e) = aXY e1. Then, it is
easy to check ϕ ◦ f = πE1 ◦ ψ.

By Proposition 3.5.8, the upper short exact sequence in (5.4) is the almost split sequence
ending at E1.

Proposition 5.3.3 ([M1, Proposition 2.16]). For any m ∈ Z, the non-projective indecom-
posable direct summands of Fm are Zm−1 and an indecomposable A-lattice Fm. Moreover,
for all m, neither Zm nor Em are isomorphic to Fn (n ∈ Z).

Proof. The A-lattice F 1 is a direct sum of F1 and F ′1, where

F1 =O(Xe1 − εe2)⊕OXe2 ⊕O(XY e1 − εY e2)⊕OXY e2

⊕O(Y e1 − εe3)⊕O(Xe3 − Y e2)⊕OY e3 ⊕OXY e3

⊕O(Xe3 + ε2e)⊕OεXe⊕OεY e⊕OXY e,

F ′1 =O(εe4 + ε2e)⊕O(Xe4 + εXe)⊕O(Y e4 + εY e)⊕O(XY e4 + εXY e).

Obviously, the A-lattice F ′1 is isomorphic to the Heller lattice Z0. We show that the A-
lattice F1 is indecomposable. The actions of X and Y on F1 with respect to the above
basis are given by the following matrices:

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
−ε 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 −ε 0 0 −1 0 0

0 0 0 0
−ε 0 0 0

0 0 0 0 0 0
0 0 1 0

0 0 0 0
ε 0 0 0

0 0 0 0 0 0
0 0 ε 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0 0 0
0 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 −ε 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0

0 0 0 0
0 0 0 0

0 0 ε 0 0 0
0 ε 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let M = (xi,j) ∈ EndA(F1) be an idempotent. By the equalities MX = XM and MY =
YM , the idempotent M is of the form M = (M1 M2), where M1 and M2 are

M1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 0 0 0 −εx3,7 0
x2,1 x1,1 0 0 −εx4,7 −εx3,7
x3,1 x3,2 x1,1 0 x3,5 x3,6
x4,1 x4,2 x2,1 x1,1 x4,5 x4,6
−εx3,2 0 0 0 x1,1 − εx3,6 0
x6,1 −εx3,2 0 0 x6,5 x1,1 − εx3,6
−εx8,2 0 ε2x3,2 0 x7,5 εx3,2
x8,1 x8,2 x8,3 −εx3,2 x8,5 x8,6
x9,1 0 0 0 x9,5 0
x10,1 −x9,1 0 0 −x12,7 −x9,5
x11,1 0 εx9,1 0 x11,5 x9,1
x12,1 −x11,1 εx10,1 −εx9,1 x12,5 x12,6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 εx3,11 0 0 0
0 0 x2,9 −εx3,11 0 0

x3,7 0 x3,9 −x8,12 x3,11 0
x4,7 −εx3,7 x4,9 x4,10 x4,11 −x3,11
0 0 −εx8,12 0 0 0
0 0 x6,9 εx8,12 0 0

x1,1 − εx3,6 0 εx8,10 0 εx8,12 0
x8,7 x1,1 − εx3,6 x8,9 x8,10 x8,11 x8,12
0 0 x9,9 0 0 0
0 0 x10,9 x9,9 0 0
−x9,5 0 x11,9 0 x9,9 0
x12,7 −εx9,5 x12,9 x11,9 x12,11 x9,9

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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such that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x2,9 + εx3,7 − εx4,11 = 0,
εx3,1 − εx4,2 + x6,1 = 0,
εx3,9 + εx4,10 + x6,9 = 0,
x6,9 + x9,9 = x1,1 − εx3,6 + εx8,11,
x6,1 − x8,3 + x9,1 = 0,

⎧
⎪⎪⎨

⎪⎪⎩

x6,5 + εx8,7 + x9,5 = 0,
x7,5 − x8,3 + εx8,6 = 0,
x9,5 + x10,9 − x12,11 = 0,
−x10,1 + x11,5 + x12,6 = 0.

Note that, it follows that we have x6,9 ∈ εO and x9,9 = x1,1 − εf for some f ∈ O. Since
M is an idempotent, the following equality holds:

x1,1(1− x1,1) = εx3,11x9,1 + ε2x3,2x3,7. (5.5)

Assume that x1,1 ≡ 0 mod εO. By the assumption, the element x9,9 belongs to εO. By
comparing the (9, 1)-entries and (3, 2)-entries of M and M2, respectively, we have

x9,1 = x1,1x9,1 + x9,1x9,9 − εx3,2x9,5 ∈ εO, (5.6)

x3,2 = x1,1x3,2 + x1,1x3,2 − εx3,2x3,6 + x9,1x8,12. (5.7)

It follows from (5.25) and (5.7) that the equality

x3,2(1− 2x1,1 + εx3,6 + εx9,5(1− x1,1 − x9,9)
−1x8,12) = 0 (5.8)

holds. Thus, the elements x3,2 and x9,1 are zero, and hence x1,1 = 0. Let M be M mod εO.
As M2 = M , it suffices to show that M is the zero matrix to conclude that M itself is the
zero matrix. Let ei (1 ≤ i ≤ 12) be standard row vectors. Then, the span of e1, e5, e9 is
stable by M and the representing matrix is nilpotent. Thus, eiM = 0 holds for i = 1, 5, 9.
From the equalities

e2M = x2,1e1 + x2,9e9, e6M = x6,1e1 − x6,9e9, and e7M = x7,5e5,

we also obtain eiM = 0 for i = 2, 6, 7. Then a similar argument shows eiM = 0 for
i = 10, 11, and then for i = 3, 12, and finally for i = 4, 8.

Assume that x1,1 ≡ 1 mod εO. Then, 112 −M is an idempotent whose (1, 1)-entry is
zero modulo εO, and M = 112 follows.

On the other hand, since E1 is not isomorphic to a Heller lattice, the induced sequence

0 −→ E0 ⊗ κ −→ F 1 ⊗ κ −→ E1 ⊗ κ −→ 0

splits by Proposition 3.7.10. Thus, there is an isomorphism

F 1 ⊗ κ ≃M(0)⊕4 ⊕M(−1)⊕4,

and hence F1⊗ κ ≃M(0)⊕3⊕M(−1)⊕3 as F ′1 ≃ Z0. It follows from Proposition 5.1.5 and
Corollary 5.2.2 that F1 is neither isomorphic to Zm nor Em for all m.
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5.4 Valencies of vertices in the non-periodic component

In this section, we observe the number of arrows from each vertex in HC(Z0). From
Proposition 5.2.1, the Heller lattice Zn appears on the boundary in HC(Z0), and it follows
from Proposition 5.3.3 that we have

♯{arrows starting at En} = ♯{arrows ending at En} = 2

for all n ∈ Z. Thus, the component HC(Z0) admits the following valued subquiver with
trivial valuations:

Z−1 Z0 Z1 Z2Z−2

E−1 E0 E1 E2E−2

F0 F1 F2F−1

τ&& τ& & τ&&τ&&

τ&&τ&&τ&&τ&&

τ&&τ&&τ&&

%%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄

$$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧
%%⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄

$$❄
❄❄

❄❄

Recall that the function D : HC(Z0)0 → Z≥0 is defined by

D(X) = ♯{non-projective indecomposable direct summands of X ⊗ κ}.

It follows from Corollaries 3.7.13, 5.2.2 and Proposition 5.1.5 (2) that the function D :
HC(Z0) → Z>0 gives an additive function on the tree class T of HC(Z0). Thus, Theorem
2.5.8 implies that T is one of infinite Dynkin diagrams or Euclidean diagrams.

Given a vertex X of HC(Z0), we define a non-negative integer d(X) to be the number
of arrows from X in HC(Z0). In order to exclude some candidates for the tree class T of
HC(Z0), we introduce a pair of integers (q(M), H(M)) for M ∈ HC(Z0) as follows. If M
is isomorphic to the Heller lattice Zn, then (q(M), H(M)) = (1, n). Otherwise, we may
choose n such that a composition of irreducible morphisms f1 ◦ · · · ◦ fk : Zn →M has the
minimum length, and define (q(M), H(M)) = (k + 1, n+ k). For an A-lattice M , we also
define the equilateral triangle T (M) ⊂ HC(Z0) as follows:

• The vertices of T (M) are M , Zn and ZH(M).

• The edge T (M)1 is a chain of irreducible morphisms from Zn to M .

• The edge T (M)2 is a chain of irreducible morphisms from M to ZH(M).

• The edge T (M)3 is a chain of the Auslander–Reiten translation from ZH(M) to Zn.

The set of vertices of HC(Z0) is the disjoint union of the following three sets:

HCnp+ = {X ∈ HC(Z0) | H(X) > 0},
HCnp0 = {X ∈ HC(Z0) | H(X) = 0},
HCnp− = {X ∈ HC(Z0) | H(X) < 0}.
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Z−1 Z0 Z1 Z2Z−2

E−1 E0 E1 E2E−2 · · ·

F0 F1 F2F−1

· · ·

HCnp− HCnp0 HCnp+

&& && &&&&

&&&&&&&&

&&&&&&

%%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ % %⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄

$$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧
%%⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧ $ $❄
❄❄

❄❄

$$❄
❄❄

❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

From now on, we assume that HC(Z0) ̸= ZA∞. Then, there exists an A-lattice X such
that

(i) the A-lattice X is not isomorphic to Zm and Em for all m.

(ii) the triangle T (X) is contained in HCnp−,

(iii) the number of outgoing arrows is two for each A-lattices on the edge T (X)1 except
for ZH(X)−q(X)+1 and X, and the number of indecomposable direct summands of EX

is not 2, where EX is the middle term of the almost split sequence ending at X.

(iv) valuations of arrows in the triangle T (X) is trivial.

Z−1 Z0Zl

T (X) E0 · · ·

X

· · ·

Z1

E1

HCnp− HCnp0 HCnp+

$$❄
❄❄

❄❄

$$❄
❄❄

❄❄% %⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧
&& &&

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

By the construction of T (X), we have D(M) = 2q(M) for any M ∈ T (X). We may assume
that q(X) ≥ 3 and H(X) = −1. We set q(X) = q. Assume that the almost split sequence
ending at X is given by

E(X) : 0 −→ τX −→
p⊕

i=1

Wi −→ X −→ 0,
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where Wp ∈ T (X). Then, the neighborhood of X in HC(Z0) is given as follows.

τWp Wp

τ2X τX X

τW2 W2

...
...

τWp−1 Wp−1

τW1 W1

τ
&&

τ
&&

τ
&&

τ
&&

τ&&

τ&&

$$❄
❄❄

❄❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧⑧⑧⑧⑧

33✞✞✞✞✞✞✞✞✞✞✞ 44✼
✼✼

✼✼
✼✼

✼✼
✼✼ 33✞✞✞✞✞✞✞✞✞✞✞✞ 44✼

✼✼
✼✼

✼✼
✼✼

✼✼
✼

--))
))) ..♥♥♥♥♥

55②②②②②②②② 66❊
❊❊

❊❊
❊❊

❊

--))
)))

..♥♥♥♥♥♥

55②②②②②②②② 66❊
❊❊

❊❊
❊❊

❊

(5.9)

Here, we allow the possibility that Wi ≃Wk for some i ̸= k instead of writing the valuation.
If D(Wi) = si, then the values of D of (5.9) are as follows:

2(q − 1) 2(q − 1)

2q 2q 2q

s2 s2

...
...

sp−1 sp−1

s1 s1

τ
&&

τ
&&

τ
&&

τ
&&

τ&&

τ&&

$$❄
❄❄

❄❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧⑧⑧⑧⑧ $$❄
❄❄

❄❄
❄❄

❄❄ %%⑧⑧⑧⑧⑧⑧⑧⑧⑧

%%⑧⑧⑧⑧⑧⑧⑧⑧⑧

33✞✞✞✞✞✞✞✞✞✞✞✞ 44✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼ 33✞✞✞✞✞✞✞✞✞✞✞✞ 44✼
✼✼

✼✼
✼✼

✼✼
✼✼

✼

--))
)))

) ..♥♥♥♥♥♥

55②②②②②②②② 66❊
❊❊

❊❊
❊❊

❊

--))
)))

) ..♥♥♥♥♥♥

55②②②②②②②② 66❊
❊❊

❊❊
❊❊

❊

(5.10)

Lemma 5.4.1 ([M1, Lemma 3.6]). The following statements hold:

(1) The sum of s1, s2, . . . , sp−2 and sp−1 is 2(q + 1).

(2) The inequality si ≥ q is satisfied for any i.

Proof. (1) By Lemma 3.7.12, we have

4q =
p−1∑

i=1

D(Wi) +D(Wp) =
p−1∑

i=1

si + 2(q − 1).

It follows that (1) holds.
(2) Since D is additve, we obtain that 2si ≥ 2q.

Lemma 5.4.2 ([M1, Lemma 3.7]). Suppose that q <∞. Then, d(X) is precisely three.

Proof. Lemma 5.4.1 implies that

2(q + 1) =
p−1∑

i=1

si ≥ (p− 1)q.
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Thus, the inequality −2 ≤ q(3 − p) holds. Since p and q are positive, we have p = 1, 2, 3.
If p = 1, then q = −1 from Lemma 5.4.1 (1), a contradiction. If p = 2, then s1 = 2(q + 1),
which contradicts with the maximality of q namely, the condition (iii). Therefore, we have
p = 3. Then, we may assume that the almost split sequence ending at X is of the form

0 −→ τX −→W1 ⊕W2 ⊕ Y −→ X −→ 0

with Y ∈ T (X). We show that the three non-projective indecomposable A-lattices W1, W2

and Y are pairwise non-isomorphic.
Suppose that Y ≃ Wi for some i. Since Y ∈ T (X), there exist arrows in T (X) such

that their valuations are not trivial, a contradiction.
Suppose that W1 ≃ W2. Then, the neighborhood of X in HC(Z0) is the following

valued quiver:

τY Y

τ2X τX X

τW1 W1

τ&&

τ
&&

τ&&

τ
&&

77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏
❏ 8866666666

886666666

(1,2)
66

8866
(2,1)
❏❏

77❏
❏ (1,2)

66

8866
(2,1)
❏❏

77❏❏
❏

Indeed, if we write the value W1
(a,b)−−−→ X, then clearly a = 2 by the assumption. Thus, the

almost split sequence ending at X becomes

0 −→ τX −→W⊕21 ⊕ Y −→ X −→ 0

and we have D(W1) = q + 1 from Lemma 3.7.12. Suppose that the almost split sequence
ending at W1 is

E (W1) : 0 −→ τW1 −→ τX⊕b ⊕ U1 −→W1 −→ 0,

where U1 is an A-lattice. If U1 = 0, then Lemma 3.7.12 implies that

q + 1 = D(W1) = qb,

hence q(b − 1) = 1, which contradicts with q ≥ 3. Thus, U1 ̸= 0 and q(b − 1) < 1. Since
b ≥ 1, we have b = 1.

From the almost split sequence E (W1), we have D(U1) = 2, and it implies that U1 is
indecomposable. Therefore, we have q = 3 from the inequality

4 = D(U1) +D(τ(U1)) ≥ D(τ(W1)) = q + 1.
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Note that HC(Z0) is the following valued stable translation quiver.

Z−1 Z0 Z1 Z2Z−2

E−1 E0 E1 E2E−2

· · · · · ·F0 F1 F2F−1· · · · · ·

τW1 W1 τ−1W1 τ−2W1τ2W1

U1 U2 U3U0

τ&& τ&& τ&&τ&&

τ&&τ&&τ&&τ&&

τ&&τ&&τ&&τ&&

τ&&τ&&τ&&

τ
&&

τ
&&

τ
&&

99✡✡✡✡✡✡✡ **✹
✹✹

✹✹
✹✹ 99✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹ 99✡✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹ 99✡✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹

**✹
✹✹

✹✹
✹✹

✹ 99✡✡✡✡✡✡✡

99✡✡✡✡✡✡✡✡

99✡✡✡✡✡✡✡

99✡✡✡✡✡✡✡✡ **✹
✹✹

✹✹
✹✹ 99✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹ 99✡✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹

**✹
✹✹
✹✹
✹✹
✹

(2,1)
✹✹

✹

**✹
✹✹

(1,2)
✡✡✡

99✡✡✡
(2,1)
✹✹
✹

**✹
✹✹

(1,2)
✡✡✡

99✡✡✡
(2,1)
✹✹
✹

**✹
✹✹

(1,2)
✡✡✡

99✡✡✡
(2,1)
✹✹
✹

**✹
✹✹

(1,2)
✡✡✡

99✡✡✡

99✡✡✡✡✡✡✡✡ **✹
✹✹

✹✹
✹✹ 9 9✡✡✡✡✡✡✡✡ **✹

✹✹
✹✹
✹✹
✹ 99✡✡✡✡✡✡✡✡ **✹

✹✹
✹✹

✹✹ 99✡✡✡✡✡✡✡ **✹
✹✹

✹✹
✹✹

(5.11)

It follows from Propositions 3.7.10, 5.1.5 and 5.2.2 that there is an isomorphism

τW⊕21 ⊗ κ ≃M(−3)⊕3 ⊕M(−2)⊕2 ⊕M(−1)⊕3,

a contradiction.

5.5 The shape of the non-periodic Heller component

Now, we determine the shape of the non-periodic Heller component HC(Z0).

Theorem 5.5.1 ([M1]). LetO be a complete discrete valuation ring, A = O[X,Y ]/(X2, Y 2)
and Γs(A) the stable Auslander–Reiten quiver for latt(♮)-A. Assume that the residue field
κ is algebraically closed. Then, the component HC(Z0) is isomorphic to ZA∞.

Proof. Assume that T ̸= A∞. It implies from Propositions 5.1.6 and 5.3.3 that T is one of
Ẽ6, Ẽ7, Ẽ8, F̃41 or F̃42. On the other hand, Lemma 5.4.2 implies that T is neither F̃41 nor
F̃42.

First, we suppose that HC(Z0) = ZẼ6. Then, HC(Z0) has the following subquiver with
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bounds Un and Vn:

Z−1 Z0 Z1Z−2

E−1 E0 E1

F0 F1F−1 F2

W0 W1 W2

W ′0 W ′1 W ′2

U1 U2

V1 V2

· · · · · ·

7 7❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏ 886666666 77❏
❏❏

❏❏
❏❏886666666

77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏ 886666666 77❏
❏❏

❏❏
❏❏

886666666

886666666 77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏

886666666 77❏
❏❏

❏❏
❏❏

!! !! !! !!

886666666 77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏ 886666666 !! 77❏
❏❏

❏❏
❏❏

!!

886666666 77❏
❏❏

❏❏
❏❏

886666666

(5.12)

By writing the ranks as O-modules of vertices in (5.12), we obtain:

8 4 412

20 12 4

24 1236 γ

x x′ x′′

y y′ y′′

α α′

β β′

· · · · · ·

77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏8866666666

77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏

8866666666

8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏

8866666666 77❏
❏❏

❏❏
❏❏

❏

!! !! !! !!

8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏ 8866666666 !! 77❏

❏❏
❏❏

❏❏
❏

!!

8866666666 77❏
❏❏

❏❏
❏❏

❏

8866666666

(5.13)

Thus, we have the following system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

β + β′ = y′ · · · · · · · · · (1)
α+ α′ = x′ · · · · · · · · · (2)
x+ y = 40 · · · · · · · · · (3)
x′ + y′ = 24 · · · · · · · · · (4)

⎧
⎪⎪⎨

⎪⎪⎩

x+ x′ = 24 + α · · · · · · · · · (5)
y + y′ = 24 + β · · · · · · · · · (6)
x′ + x′′ = 12 + α′ · · · · · · · · · (7)
y′ + y′′ = 12 + β′ · · · · · · · · · (8)

From the equations (1), (2), (5) and (6), we have x = 24 − α′ and y = 24 − β′. Using
these equations and (3), we have α′ + β′ = 8. On the other hand, the equations (4),(7),
(8) and α′ + β′ = 8 imply x′′ + y′′ = 8. Thus, we have γ = 0, a contradiction. Therefore,
HC(Z0) ̸= ZẼ6.

Next we suppose that HC(Z0) = ZẼ7. Then, HC(Z0) has the following subquiver with
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upper bounds Un:

F−2 F−1 F0 F1

G−2 G−1 G0 G1 G2W ′−1 W ′0 W ′1 W ′2

W−1 W0 W1 W2

V0 V1 V2

U1 U2

· · · · · ·

77❏
❏❏

❏❏
❏❏

!!

88666666
886666666

!!
77❏

❏❏
❏❏

❏

77❏
❏❏

❏❏
❏❏

!!

886666666
886666666

!!
77❏

❏❏
❏❏

❏❏

77❏
❏❏

❏❏
❏❏

!!

886666666
886666666

!!
77❏

❏❏
❏❏

❏❏

886666666 77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏ 886666666

886666666 77❏
❏❏

❏❏
❏❏ 886666666 77❏

❏❏
❏❏

❏❏

77❏
❏❏

❏❏
❏❏ 886666666

!! !!

886666666 77❏
❏❏

❏❏
❏❏

77❏
❏❏

❏❏
❏❏

(5.14)
By writing the ranks as O-modules of vertices in (5.14), we obtain:

48 36 24 12

72 56 40 24 12y y′ y′′ y′′′

x x′ x′′ x′′′

α α′ α′′

γ γ′

· · · · · ·

77❏
❏❏

❏❏
❏❏

❏ !!

8866666666
8866666666

!! 77
❏❏

❏❏
❏❏

❏❏

77❏
❏❏

❏❏
❏❏

❏ !!

8866666666
8866666666

!! 77
❏❏

❏❏
❏❏

❏❏

77❏
❏❏

❏❏
❏❏

❏ !!

8866666666
8866666666

!! 77
❏❏

❏❏
❏❏

❏❏

8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏ 886666666

8866666666 77❏
❏❏

❏❏
❏❏

❏ 8866666666 77❏
❏❏

❏❏
❏❏

❏

77❏
❏❏

❏❏
❏❏

❏ 8866666666

!! !!

886666666 77❏
❏❏

❏❏
❏❏

77❏
❏❏

❏❏
❏❏

(5.15)
where these unknown letters are the ranks of the corresponding vertices. Thus, we have
the following system of linear equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+ y = 80 · · · · · · · · · (1)
x′ + y′ = 60 · · · · · · · · · (2)
x′′ + y′′ = 40 · · · · · · · · · (3)
x′′′ + y′′′ = 24 · · · · · · · · · (4)
x+ x′ = 56 + α · · · · · · · · · (5)
x′ + x′′ = 40 + α′ · · · · · · · · · (6)
x′′ + x′′′ = 24 + α′′ · · · · · · · · · (7)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y + y′ = 56 · · · · · · · · · (8)
y′ + y′′ = 40 · · · · · · · · · (9)
y′′ + y′′′ = 24 · · · · · · · · · (10)
x′ + γ = α+ α′ · · · · · · · · · (11)
x′′ + γ′ = α′ + α′′ · · · · · · · · · (12)
γ + γ′ = α′ · · · · · · · · · (13)

From the equations (1), (2), (5) and (8), we have α = 28. Similarly, the equations
(2), (3), (6) and (9) yield α′ = 20. By adding both sides of the equations (11) and (12), we
obtain the equation

x′ + x′′ + γ + γ′ = α+ 2α′ + α′′.

From (6) and (13), the left hand side of the above equation is 40 + 2α′. Then, from (3),
(4), (7), (10), we have

60 = (x′′ + x′′′) + (y′′ + y′′′) = 64,
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a contradiction.
Finally, we assume that HC(Z0) = ZẼ8. Then, HC(Z0) has the following subquiver

with upper bounds Vn with H(K5) = 5:

W1 W2 W3

V2 V3 V4 V5U ′2 U ′3 U ′4

U3 U4 U5

K4 K5

· · · · · ·

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

22♦♦♦♦♦♦♦♦♦♦ ::❖❖
❖❖❖

❖❖❖
❖❖ 22♦♦♦♦♦♦♦♦♦♦ ::❖❖

❖❖❖
❖❖❖

❖❖

(5.16)
By writing the ranks as O-modules of vertices in (5.16), we obtain

32 32 40

48 44 48 60y y′ y′′

x x′ x′′

α β

· · · · · ·

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

::❖❖
❖❖❖

❖❖❖
❖❖

!!

22♦♦♦♦♦♦♦♦♦♦
22♦♦♦♦♦♦♦♦♦♦

!! ::
❖❖❖

❖❖❖
❖❖❖

❖

22♦♦♦♦♦♦♦♦♦♦♦ ::❖❖
❖❖❖

❖❖❖
❖❖❖ 22♦♦♦♦♦♦♦♦♦♦ ::❖❖

❖❖❖
❖❖❖

❖❖

(5.17)
such that these unknown values satisfy the following system of linear equations:

⎧
⎪⎪⎨

⎪⎪⎩

x+ y = 60 · · · · · · · · · (1)
x′ + y′ = 60 · · · · · · · · · (2)
x′′ + y′′ = 68 · · · · · · · · · (3)
x+ x′ = 44 + α · · · · · · · · · (4)

⎧
⎪⎪⎨

⎪⎪⎩

x′ + x′′ = 48 + β · · · · · · · · · (5)
y + y′ = 44 · · · · · · · · · (6)
y′ + y′′ = 48 · · · · · · · · · (7)
α+ β = x′ · · · · · · · · · (8)

From (1), (2), (4) and (6), we obtain

120 = x+ x′ + y + y′ = 88 + α,

and hence, α = 32. Similarly, using equations (2), (3), (5) and (7), we have β = 32. The
equation (8) implies that x′ = 64, which contradicts with the equation (2). Thus, the
above system of linear equations has no solutions, and we conclude that HC(Z0) ̸= ZẼ8.
Therefore, we have HC(Z0) = ZA∞.

5.6 Endomorphims of periodic Heller lattices

Lemma 5.6.1 ([M2, Lemma 3.1 and 4.1]). The following statements holds.

(1) An endomorphism ρ ∈ EndA(Zλ
n) is determined by ρ(cλ1,1), . . . , ρ(c

λ
n,1).
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(2) An endomorphism ρ ∈ EndA(Z∞n ) is determined by ρ(d1,1), . . . , ρ(dn,1).

Proof. Let ρ ∈ EndA(Zλ
n). For any k = 1, 2, . . . , n, since ρ is an A-module homomorphism,

we have Xρ(cλk,1) = ρ(Xcλk,1) = ρ(cλk,2) and ρ(cλk,4) = ε−1XY ρ(cλk,1). Assume that n = 1.

In this case, Y ρ(cλk,1) = ερ(cλk,3) − λρ(cλk,2) holds. Thus, ρ ∈ EndA(Zλ
n) is determined by

ρ(cλ1,1). Now, we assume that n > 1. Then, we have

ρ(cλk,3) =

{
ε−1(Y ρ(cλ1,1) + λρ(cλ1,2)) k = 1,
ε−1(Y ρ(cλk,1) + λρ(cλk,2) + ρ(cλk−1,2)) k ̸= 1.

(2) The proof of (2) is similar.

Lemma 5.6.2 ([M2, Lemma 3.2 and 4.2]). The following statements hold.

(1) Let ρ ∈ radEndA(Zλ
n). If we write

ρ(cλk,1) =
n∑

l=1

u(k)l,1 c
λ
l,1 +A(k), A(k) ∈ SpanO{cλi,j | j ̸= 1},

where u(k)l,1 ∈ O, then the following statements hold.

(a) det(u(k)l,1 )l,k ∈ εO.

(b) u(k)n,1 ∈ εO for all k = 1, 2, . . . , n.

(2) Let ρ ∈ radEndA(Z∞n ). If we write

ρ(dk,1) =
n∑

l=1

v(k)l,1 dl,1 +B(k), B(k) ∈ SpanO{di,j | j ̸= 1},

where v(k)l,1 ∈ O, then the following statements hold.

(c) det(v(k)l,1 )l,k ∈ εO.

(d) v(k)n,1 ∈ εO for all k = 1, 2, . . . , n.

Proof. (1) (a) Let ρ ∈ radEndA(Zλ
n). Assume that

ρ(cλk,1) =
n∑

l=1

u(k)l,1 c
λ
l,1 +A(k) (5.18)

as above. We show that if the matrix C := (u(k)l,1 )l,k is invertible, then ρ is surjective. As

XY cλl,1 = εcλl,4 holds for all l = 1, . . . , n, we have

(ρ(cλ1,4), . . . , ρ(c
λ
n,4)) = (cλ1,4, . . . , c

λ
n,4)C.
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Thus, cλ1,4, . . . , c
λ
n,4 are contained in the image of ρ. By (5.18), we have

ρ(cλk,2) =
n∑

l=1

u(k)l,1 c
λ
l,2 +XA(k).

For each k, sinceXA(k) belongs to SpanO{cλl,4 | l = 1, . . . , n}, there exists x(k) ∈ SpanO{cλl,4 |
l = 1, . . . , n} such that ρ(x(k)) = XA(k). Hence, we have

(ρ(cλ1,2 − x(1)), . . . , ρ(cλn,2 − x(n))) = (cλ1,2, . . . , c
λ
n,2)C.

Therefore, cλ1,2, . . . , c
λ
n,2 belong to the image of ρ. Finally, we show that cλ1,3, . . . , c

λ
n,3 belong

to the image of ρ. By the equation (5.18), we have

Y ρ(cλk,1) = u(k)1,1(εc
λ
1,3 + λcλ1,2) +

n∑

l=2

u(k)l,1 (εc
λ
l,3 + λcλl,2 + cλl−1,2) + Y A(k)

=
n∑

l=1

εu(k)l,1 c
λ
l,3 +

n∑

l=1

λu(k)l,1 c
λ
l,2 +

n−1∑

l=1

u(k)l+1,1c
λ
l,2 + Y A(k).

On the other hand, Y ρ(cλk,1) is ερ(cλk,3) + ρ(λcλk,2) + ρ(λcλk−1,1). Let y(k) ∈ Zλ
n such that

ρ(y(k)) =
∑n

l=1 λu
(k)
l,1 c

λ
l,2 +

∑n−1
l=1 u(k)l+1,1c

λ
l,2 + Y A(k). Then, we have

ερ(cλk,3) =
n∑

l=1

εu(k)l,1 c
λ
l,3 + ρ(−λcλk,2 − cλk−1,2 + y(k)). (5.19)

Put z(k) = −λcλk,2−cλk−1,2+y(k). By the construction of z(k), we note that ρ(z(k)) belongs

to SpanO{cλi,2, cλi,4 | i = 1, . . . , n}. Since the restriction of ρ to SpanO{cλi,2, cλi,4 | i = 1, . . . , n}
is a bijection from SpanO{cλi,2, cλi,4 | i = 1, . . . , n} to itself, the equation (5.19) implies that

there exists z′(k) ∈ Zλ
n such that z(k) = εz′(k). Then, we have

(ρ(cλ1,3 − z′(1)), . . . , ρ(cλn,3 − z′(n))) = (cλ1,3, . . . , c
λ
n,3)C.

This completes the proof of the statement (1).
(b) The statement for n = 1 is clear by (1). In order to prove this statement for n > 1,

we compute f(Y cλk,1 − λXcλk,1 −Xcλk−1,1) in two ways. Since Y cλk,1 = εcλk,3 + λck,2 + cλk−1,2
and cλk,2 = Xcλk,1, we have

ρ(Y cλk,1 − λXcλk,1 −Xcλk−1,1) = εf(cλk,3). (5.20)
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Now, we assume that A(k) =
∑n

l=1(u
(k)
l,2 c

λ
l,2 + u(k)l,3 c

λ
l,3 + u(k)l,4 c

λ
l,4). For k > 1, the left-hand

side of (5.20) is

n−1∑

l=1

(u(k)l+1,1 − u(k−1)l,1 )cλl,2 − u(k−1)n,1 cλn,2

+ ε
n∑

l=1

u(k)l,1 c
λ
l,3 +

n−1∑

l=1

(εu(k)l,1 − 2λu(k)l,3 − u(k−1)l,3 − u(k)l+1,3)c
λ
l,4 + (εu(k)n,1 − 2λu(k)n,3 − u(k−1)n,3 )cλn,4.

Thus, the coefficients u(k)l+1,1 − u(k−1)l,1 (l = 1, . . . , n− 1) and u(k−1)n,1 belong to εO. It implies
that strictly lower triangular entries of the matrix C belong to εO. On the other hand, by
the statement (1), we have

detC ≡ u(1)1,1 · · · u
(n)
n,1 +

∑

e ̸=σ∈Sn

u((σ(1))1,1 · · · u(σ(n))n,1 ≡ 0 mod εO,

where Sn is the symmetric group of degree n and e is its identity element. Hence, u(k)k,1 ≡ 0

modulo εO for some k. Since u(k+1)
k+1,1 − u(k)k,1 ∈ εO (k = 1, . . . , n− 1), the assertion follows.

(2) (c) We show that any ρ such that the matrix D := (v(k)l,1 )l,k is invertible is surjective.
As XY dl,4 = εdl,4 holds for l = 1, . . . , n, we have

(ρ(d1,4), . . . , ρ(dn,4)) = (d1,4, . . . , dn,4)D.

Hence, d1,4, . . . , dn,4 are contained in the image of ρ.

Assume that n = 1. By acting X to the both sides of ρ(d1,1) = v(1)1,1d1,1+B(1), we have

ερ(d1,2) = εv(1)1,1d1,2 +XB(1).

Thus, we get εv(1)1,1d1,2 = ερ(d1,2)− εtd1,4 for some t ∈ O since XB(1) ∈ εOd1,4. It implies
that

d1,2 = ρ((v(1)1,1)
−1d1,2 − (v(1)1,1)

−2td1,4)).

By letting Y act on the both sides of ρ(d1,1) = v(1)1,1d1,1 +B(1), we have

ρ(d1,3) = v(1)1,1d1,3 + Y B(1) = v(1)1,1d1,3 + sd1,4 = v(1)1,1d1,3 + ρ(sv(1)1,1d1,4)

for some s ∈ O since Y A(1) ∈ Od1,4, and hence d1,3 = ρ((v(1)1,1)
−1d1,3 − (av(1)1,1)

−2sd1,4)).
Therefore, the morphism ρ is surjective.

Next, we assume that n > 1. We note that

Xρ(dk,1) =

{
ερ(d1,2) if k = 1,
ρ(dk,2) if k ̸= 1,

Y ρ(dk,1) =

{
ρ(εdk,3 + dk+1,2) if k ̸= n,
ρ(dn,3) if k = n,
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X

(
n∑

l=1

v(k)l,1 dl,1 +B(k)

)
= εv(k)1,1d1,2 +

n∑

l=2

v(k)l,1 dl,2 +XB(k),

Y

(
n∑

l=1

v(k)l,1 dl,1 +B(k)

)
=

n−1∑

l=1

v(k)l,1 (εdl,3 + dl+1,2) + v(k)n,1dn,3 + Y B(k),

and we also note that XB(k) and Y B(k) belong to SpanO{di,4 | i = 1, . . . , n}.
Assume that k = 1. Then, the equality

ερ(d1,2) = εv(1)1,1dl,2 +
n∑

l=2

v(1)l,1 d1,2 +XB(1).

implies that v(1)l,1 (l = 2, 3, . . . , n) are in εO and XB(1) ≡ 0 modulo εO. Thus, there exists
x(1) ∈ Z∞n such that ερ(x(1)) = XB(1). If k > 1, then, for each k, there exists x(k) ∈ Z∞n
such that ρ(x(k)) = XB(k). Therefore, it is easy to see that

(ρ(d1,2 − x(1)), . . . , ρ(dn,2 − x(n))) = (d1,2, . . . , dn,2)

⎛

⎜⎜⎜⎜⎝

v(1)1,1 εv(2)1,1 εv(n)1,1

ε−1v(1)2,1 v(2)2,1 v(n)2,1
...

... · · ·
...

ε−1v(1)1,1 v(2)n,1 v(n)n,1

⎞

⎟⎟⎟⎟⎠
.

Since the determinant of the rightmost matrix in the above equation equals to detD, each
element di,2 belongs to the image of ρ.

For each k = 1, 2, . . . , n, let y(k) and z(k) be elements of Z∞n such that ρ(y(k)) = Y B(k)

and ρ(z(k)) =
∑n−1

l=1 v(k)l,1 dl+1,2. Then, we have the equations

ερ(dk,3) =
n−1∑

l=1

εv(k)l,1 dl,3 + v(k)n,1dn,3 + ρ(y(k) + z(k)− dk+1,2) for k = 1, 2, . . . , n− 1

and

ρ(dn,3 − y(n)− z(n)) =
n−1∑

l=1

εv(n)l,1 dl,3 + v(n)n,1dn,3.

As ρ(y(k)+z(k)−dk+1,2) belongs to SpanO{di,2, di,4 | i = 1, . . . , n}, ρ(y(k)+z(k)−dk+1,2) ≡ 0
modulo εO. Since the restriction of ρ to SpanO{di,2, di,4 | i = 1, . . . , n} is a bijection from
SpanO{di,2, di,4 | i = 1, . . . , n} to itself, one can define w(k) ∈ Z∞n by

ρ(w(k)) :=

{
ε−1ρ(y(k) + z(k)− dk+1,2) if k ̸= n,
ρ(y(k) + z(k)) if k = n.
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This gives the following equation:

(ρ(d1,3−w(1)), . . . , ρ(dn,3−w(n))) = (d1,3, . . . , dn,3)

⎛

⎜⎜⎜⎜⎝

v(1)1,1 v(n−1)1,1 εv(n)1,1
... · · ·

...
...

v(1)n−1,1 v(n−1)n−1,1 εv(n)n−1,1
ε−1v(1)n,1 ε−1v(n−1)n,1 v(n)n,1

⎞

⎟⎟⎟⎟⎠

Since the determinant of the rightmost matrix in the above equation equals to detD, each
element di,3 belongs to the image of ρ. Therefore, the A-morphism ρ is surjective.

(d) The statement for n = 1 is clear by (1). In order to prove this statement for
n > 1, we compute ρ(Y dk,1 − Xdk+1,1), for k = 1, 2, . . . , n− 1, in two ways. Set W (k) =
Y B(k)−XB(k+ 1). Since Y dk,1 = εdk,3 + dk+1,2 and dk,2 = Xdk,1, we have

ρ(Y dk,1 −Xdk+1,1) = ερ(dk,3).

On the other hand, we have

ρ(Y dk,1−Xdk+1,1) = −εv
(k+1)
1,1 d1,2+

n∑

l=2

(v(k)l−1,1− v(k+1)
l,1 )dl,2+

n−1∑

l=1

εv(k)l,1 dl,3+ v(k)n,1dn,3+W (k).

Thus, we have

v(k)l−1,1 − v(k+1)
l,1 ≡ 0 mod εO, v(k)n,1 ≡ 0 mod εO l = 2, . . . , n, k = 1, . . . , n− 1.

This means the strictly lower entries of the matrix D belong to εO. By the statement (1),

detD ≡ v(1)1,1v
(2)
2,1 · · · v

(n)
n,1 +

∑

e ̸=σ∈Sn

sgn(σ)v(σ(1))1,1 · · · v(σ(n))n,1 ≡ v(1)1,1v
(2)
2,1 · · · v

(n)
n,1 mod εO,

where Sn is the symmetric group of degree n and e is its identity element. Now, the claim
is clear.

5.7 Almost split sequences ending at periodic Heller lattices

First, we construct the almost split sequence ending at Zλ
n , where λ ̸=∞. For each n > 1,

we define an endomorphism Φλ
n : Zλ

n → Zλ
n by

cλk,1 5−→
{

cλn,4 if k = n,
0 otherwise.

Recall that the projective cover of Zλ
n is given by

πn,λ : A⊕2n −→ Zλ
n

ei 5−→
{

cλk,1 if i = 2k− 1, k = 1, 2, . . . , n,
cλk,3 if i = 2k, k = 1, 2, . . . , n.
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Lemma 5.7.1 ([M2, Lemma 3.3]). Let Φλ
n be the endomorphism of Zλ

n as above. Then,
the following statements hold.

(1) Φλ
n does not factor through πn,λ.

(2) For any ρ ∈ radEndA(Zλ
n), Φ

λ
nρ factors through πn,λ.

Proof. (1) Suppose that Φλ
n factors through the map πn,λ. Let ψ = (ψ1, . . . ,ψ2n) : Zλ

n →
A⊕2n such that Φλ

n = πn,λψ. Put

ψk(c
λ
i,1) = a(i)k,1 + a(i)k,2X + a(i)k,3Y + a(i)k,4XY.

By comparing coefficients in πn,λψ(cλk,1) with those in Φλ
n(c

λ
k,1), we have the following

equations:
εa(i)2s−1,4 + a(i)2s,2 − λa

(i)
2s,3 − a(i)2s+2,3 = 0 if s ̸= n, (5.21)

εa(i)2n−1,4 + a(i)2n,2 − λa
(i)
2n,3 =

{
1 if i = n,
0 otherwise.

(5.22)

On the other hand, as ψk(cλi,2) = Xψk(cλi,1), it follows from εψk(cλi,3) = Y ψk(cλi,1)−λψk(cλi,2)−
ψk(cλi−1,2) that

εψk(c
λ
i,3) = −(λa

(i)
k,1 − a(i−1)k,1 )X + a(i)k,1Y + (a(i)k,2 − λa

(i)
k,3 − a(i−1)k,3 )XY, (5.23)

where a(0)k,3 = 0, 1 ≤ k ≤ 2n and 1 ≤ i ≤ n. In order to obtain a contradiction, we show

that a(n)2n,2 − λa
(n)
2n,3 ∈ εO. By the equation (5.23), this is equivalent to a(n−1)2n,3 ∈ εO. The

equation (5.21) implies that a(n−1)2n,3 ∈ εO if and only if a(n−1)2n−2,2 − λa(n−1)2n−2,3 ∈ εO. By

repeating this procedure, we deduce that the claim is equivalent to a(1)2,2 − λa(1)2,3 ∈ εO.

However, a(1)2,2 − λa
(1)
2,3 ∈ εO follows from the equation (5.23). Now, we obtain

1 = εa(n)2n−1,4 + a(n)2n,2 − λa
(n)
2n,3 ∈ εO,

a contradiction.
(2) Let ρ ∈ radEndA(Zλ

n). We put

ρ(cλk,1) =
n∑

i=1

(u(k)i,1 c
λ
i,1 + u(k)i,2 c

λ
i,2 + u(k)i,3 c

λ
i,3 + u(k)i,4 c

λ
i,4).

Lemma 5.6.2 yields that there exists f(k)n.1 ∈ O such that εf(k)n.1 = u(k)n,1 for each k. We define

an A-module homomorphism ψ : Zλ
n → A⊕2n by ψ(cλk,1) = (0, . . . , 0, f(k)n,1XY, 0). Then, it is

easy to check that ψ is well-defined and Φλ
nρ(c

λ
k,1) = u(k)n,1c

λ
n,4 = πn,λψ(cλk,1).
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Therefore, we have obtained the following proposition.

Proposition 5.7.2 ([M2, Proposition 3.4]). Consider the following pull-back diagram:

0 Z−λn Eλ
n Zλ

n 0

0 Z−λn A⊕2n Zλ
n 0

!! !! !! !!

!! !!
πn,λ

!! !!
""

Φλ
n

""

Then, the upper exact sequence is the almost split sequence ending at Zλ
n .

Proof. The statement follows from Proposition 3.5.8 and Lemma 5.7.1.

Next, we construct the almost split sequence ending at Z∞n . Recall that the projective
cover of Z∞n is given by

πn,∞ : A⊕2n −→ Z∞n

ei 5−→

⎧
⎪⎪⎨

⎪⎪⎩

d1,1 if i = 1,
d1,2 if i = 2,
dk,3 if i = 2k+ 1, k = 1, 2, . . . , n− 1,
dk,1 if i = 2k, k = 2, 3, . . . , n.

Now, for each n ≥ 1, we define an endomorphism Φ∞n : Z∞n → Z∞n by

dk,1 5−→
{

dn,4 if k = n,
0 otherwise.

Clearly, Φ∞n gives an endomorphism of Z∞n . First, we construct the almost split sequence
ending at Z∞1 by using Φ∞1 .

Lemma 5.7.3 ([M2, Lemma 4.3]). Let Φ∞1 : Z∞1 → Z∞1 as above. Then, the following
statements hold.

(1) Φ∞1 does not factor through π1,∞.

(2) For any ρ ∈ radEndA(Z∞1 ), Φ∞1 ρ factors through π1,∞.

Proof. (1) Suppose that there exists ψ = (ψ1,ψ2) : Z∞1 → A ⊕ A such that Φ∞1 = π1,∞ψ.
Then, we have

d1,4 = Φ∞1 (d1,1) = π1,∞ψ(d1,1) = ψ1,∞(d1,1)d1,1 + ψ2(d1,1)d1,2. (5.24)

If we put

ψ1(d1,1) = a1 + a2X + a3Y + a4XY, ψ2(d1,1) = b1 + b2X + b3Y + b4XY,
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where a1, . . . , a4, b1, . . . , b4 ∈ O, the rightmost side of (5.24) equals to

a1d1,1 + (εa2 + b1)d1,2 + a3d1,3 + (εa4 + b3)d1,4.

Thus, we have ψ2(d1,1) = −εa2 + b2X + (1 − εa4)Y + b4XY . Multiplying X to ψ2(d1,1),
we have

εψ2(d1,2) = Xψ2(d1,1) = −εa2X + (1− εa4)XY,

a contradiction.
(2) Let ρ ∈ radEndA(Z∞1 ). We write ρ(d1,1) = αd1,1 + B(1), where α ∈ O and B(1) ∈

SpanO{d1,2, d1,3, d1,4}. By Lemma 5.6.2, α = εα′ for some α′ ∈ O. Define an A-module
homomorphism ψ : Z∞1 → A ⊕ A by ψ(d1,1) = α′XY e1. Then, since π1,∞(α′XY e1) =
α′XY d1,1 = εα′d1,4, we have Φ∞1 f(d1,1) = αd1,4 = π1,∞ψ(d1,1).

From now on, we construct the almost split sequence ending at Z∞n for n ≥ 2.

Lemma 5.7.4 ([M2, Lemma 4.4]). Let Φ∞n : Z∞n → Z∞n as above. Then, the following
statements hold.

(1) Φ∞n does not factor through πn,∞.

(2) For any ρ ∈ radEndA(Z∞n ), Φ∞n ρ factors through πn,∞.

Proof. (1) Suppose that there exists ψ = (ψk)k=1,...,2n : Z∞n → A⊕2n such that Φ∞n =
πn,∞ψ. We put

ψl(dk,1) = a(k)l,1 + a(k)l,2X + a(k)l,3 Y + a(k)l,4XY.

Then, we notice that, for all k = 1, . . . , n and l = 1, . . . , 2n, a(k)l,1 belongs to εO since
XY dk,1 = εdk,4 for all k = 1, . . . , n. By comparing the coefficient of dn,4 in Φ∞n (dn,1) with

that in πn,∞ψ(dn,1), we have εa(n)2n,4 − a(n)2n−1,3 = 1. In order to obtain a contradiction we

show that a(n)2n−1,3 ∈ εO.
For s = 1, . . . , n and t = 1, . . . , n− 1, by comparing the coefficient of dt,4 in Φ∞n (ds,1)

with that in πn,∞ψ(ds,1), we obtain the following equations:

εa(s)1,4 + a(s)2,3 + a(s)3,2 = 0 t = 1, (5.25)

−a(s)2t−1,3 + εa(s)2t,4 + a(s)2t+1,3 = 0 t > 1. (5.26)

On the other hand, for t = 1, . . . , 2n, the following equations hold:

ψt(ds,2) = Xψt(ds,1) = a(s)t,1X + a(s)t,3XY s ̸= 1 (∗)
εψt(ds,3) + ψt(ds+1,2) = Y ψt(ds,1) = a(s)t,1Y + a(s)t,2XY s ̸= n (∗∗)

In particular, it follows from (∗) that ψ2n−1(dn,2) = a(n)2n−1,1X + a(n)2n−1,3XY holds. As

a(n)2n−1,1 ∈ εO, a(n)2n−1,3 belongs to εO if and only if ψ2n−1(dn,2) belongs to εA. It is equivalent
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to a(n−1)2n−1,2 ∈ εO by the equation (∗∗). Then, it follows from the equation (4.4.2) that

a(n−1)2n−1,2 ∈ εO if and only if a(n−1)2n−3,3 ∈ εO. By repeating this procedure, we deduce that

a(n)2n−1,3 ∈ εO if and only if a(1)3,2 ∈ εO. Since εψ2(d1,2) = Xψ2(d1,1) = a(1)2,1X + a(1)2,3XY , a(1)2,3

belongs to εO. It implies that a(1)3,2 ∈ εO by (5.25).
(2) Let ρ ∈ radEndA(Z∞n ). We put

ρ(dk,1) =
n∑

l=1

v(k)l,1 dl,1 +B(k),

where B(k) ∈ SpanO{di,j | j ̸= 1}. By Lemma 5.6.2, there are e(k)n,1 such that v(k)n,1 =

εe(k)n,1. Define an A-module homomorphism ψ = (ψk)k=1,...,2n : Z∞n → A⊕2n by ψ(dk,1) =

(0, . . . , 0, e(k)n,1XY ). Then, it is easy to check that Φ∞n ρ(dk,1) = v(k)n,1dn,4 = πn,∞ψ(dk,1).

Summing up, we obtain the following proposition.

Proposition 5.7.5 ([M2, Proposition 4.5]). Consider the following pull-back diagram:

0 Z∞n E∞n Z∞n 0

0 Z∞n A⊕2n Z∞n 0

!! !! !! !!

!! !!
πn,∞

!! !!
""

Φ∞
n

""

Then, the upper exact sequence is the almost split sequence ending at Z∞n .

Proof. The statement follows from Proposition 3.5.8 and Lemmas 5.7.3 and 5.7.4.

5.8 The shape of the Heller component containing Zλ
n (λ ̸=∞)

We denote by Eλ
n the middle term of the almost split sequence ending at Zλ

n . By Proposition
5.7.2, the A-lattice Eλ

n is of the form

Eλ
n = {(x, y) ∈ A⊕2n ⊕ Zλ

n | πn,λ(x) = Φλ
n(y)}.
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Then, an O-basis of the A-lattice Eλ
n is given as follows:

Eλ
n = O(εe2 − λXe1 − Y e1)⊕O(εXe2 −XY e1)⊕O(Y e2 + λXe2)⊕O(XY e2)

n⊕

k=2

(
O(εe2k + λXe2k−1 − Y e2k−1 +Xe2k−3)⊕O(εXe2k −XY e2k−1)

⊕O(Y e2k + λXe2k +Xe2k−2)⊕O(XY e2k)

)

n−1⊕

k=1

(
Oaλk,1 ⊕Oaλk,2 ⊕ bλk,3 ⊕Obλk,4

)

⊕O(aλn,1 −Xe2n)⊕Oaλn,2 ⊕Oaλn,3 ⊕Oaλn,4

Lemma 5.8.1 ([M2, Lemma 3.5]). The following statements hold.

(1) There is an isomorphism Eλ
n ⊗ κ ≃M(λ)n−1 ⊕M(λ)n+1 ⊕M(−λ)⊕2n .

(2) We have an isomorphism τ(Eλ
n)⊗ κ ≃M(−λ)n+1 ⊕M(−λ)n+1M(λ)⊕2n .

(3) Eλ
n is a non-projective indecomposable A-lattice.

Proof. (1) We define A-submodules of Eλ
n ⊗ κ as follows.

E(λ, n)1 := Spanκ

⎧
⎨

⎩

(εe2 − λXe1 − Y e1), (εXe2 −XY e1)
(εe2k + λXe2k−1 − Y e2k−1 +Xe2k−3),
(εXe2k −XY e2k−1)

∣∣∣∣∣∣
k = 2, . . . , n

⎫
⎬

⎭

E(λ, n)2 := Spanκ
{

aλk,3, aλk,4
∣∣ k = 1, . . . , n

}

E(λ, n)3 := Spanκ

⎧
⎪⎪⎨

⎪⎪⎩

(Y e2 + λXe2), (XY e2),
(Y e2k + λXe2k +Xe2k−2 − aλk−1,1),
(XY e2k − aλk−1,2),
(aλn,1 −Xe2n), aλn,2,

∣∣∣∣∣∣∣∣
k = k = 2, . . . , n

⎫
⎪⎪⎬

⎪⎪⎭

E(λ, n)4 := Spanκ
{

aλk,1, aλk,2
∣∣ k = 1, . . . , n− 1

}

Then, there are isomorphisms E∞n ⊗ κ = E(λ, n)1 ⊕ E(λ, n)2 ⊕ E(λ, n)3 ⊕ E(λ, n)4 and

E(λ, n)1 ≃ E(λ, n)2 ≃M(−λ)n, E(λ, n)3 ≃M(λ)n+1, E(λ, n)4 ≃M(λ)n−1.

(2) This follows from Lemmas 3.7.11, 5.1.3 and the statement (1).
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(3) Suppose that Eλ
n is decomposable. We write Eλ

n = E1⊕E2 with E1 ̸= 0 ̸= E2 as A-
lattices. Then, the ranks of the A-lattices E1 and E2 are divisible by four. The statement
(1) implies that E1⊗ κ ≃M(−λ)⊕2n and E2⊗ κ ≃M(λ)n+1⊕M(λ)n−1. Assume that n is
odd. If n = 1, then, E2 is not isomorphic to any Heller lattice, and it is indecomposable.
Let 0 → τE2 → Z−λn ⊕ W → E2 → 0 be the almost split sequence ending at E2. By
Lemma 5.1.3, we have τE2 ⊗ κ ≃ Ω̃(M(λ)n+1) ≃ M(−λ)n+1. On the other hand, the
induced sequence

0→ (τE2 ⊗ κ)→ (Z−λ1 ⊗ κ)⊕ (W ⊗ κ)→ (E2 ⊗ κ)→ 0

splits, which contradicts with Proposition 5.1.5 (3). Now, suppose that n > 1. Then,
E2⊗κ ≃M(λ)n−1⊕M(λ)n+1 and E2 is indecomposable. Indeed, if E2 = E2,1⊕E2,2 with
E2,1 ̸= 0 ̸= E2,2 as A-lattices and E2,1 ⊗ κ ≃ M(λ)n+1, then we have a splitable exact
sequence

0 −→M(−λ)n+1 −→W ⊕M(λ)n ⊕M(−λ)n −→M(λ)n+1 −→ 0

for some W ∈ mod-A, a contradiction. Thus, E2 is indecomposable. Then, the indecom-
posability of Eλ

n follows by the same method as in the proof of n = 1.
Assume that n is even. Then, E2 is indecomposable since the rank of any direct

summand of Eλ
n is divisible by four. In this case, we can prove the indecomposability of

Eλ
n by using similar arguments.

Corollary 5.8.2. For any n > 0 and λ ∈ κ, the Heller component HC(Zλ
n) has no loops.

Lemma 5.8.3 ([M2, Lemma 3.7]). Let C be a component of stable Auslander–Reiten
quiver of A. Then, C has infinitely many vertices.

Proof. The assertion follows from Corollary 3.6.7.

Now, we are ready to determine the shape of HC(Zλ
n).

Theorem 5.8.4 ([M2, Theorem 3.8]). Let O be a complete discrete valuation ring, κ its
residue field and A = O[X,Y ]/(X2, Y 2). Assume that κ is algebraically closed and λ ̸=∞.
Then HC(Z0

n) ≃ ZA∞/⟨τ⟩ if λ = 0, otherwise HC(Zλ
n) ≃ ZA∞/⟨τ2⟩. Moreover, any Heller

lattice Zλ
n appears on the boundary of HC(Zλ

n).

Proof. Lemma 5.8.1 implies that every Heller lattice Zλ
n appears on the boundary of

HC(Zλ
n)(= HC(Z−λn )). It follows from Proposition 3.7.6 and Lemma 5.8.3 that the tree

class T of HC(Zλ
n) is one of A∞, B∞, C∞, D∞ or A∞∞.

Let F be the middle term of the almost split sequence ending at Eλ
n . Then, F is the

direct sum of Z−λn and an A-lattice F λ
n . By Proposition 3.7.10, we have

F λ
n ⊗ κ ≃M(λ)n+1 ⊕M(λ)n−1 ⊕M(−λ)n+1 ⊕M(−λ)n−1 ⊕M(λ)n ⊕M(−λ)n.
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Suppose that F λ
n is not indecomposable. Then, there is an indecomposable direct summand

W of F λ
n such that the almost split sequence ending at W is of the form 0→ τW → E−λn →

W → 0. As rank(Eλ
n) = 8n, we have rank(W ) = 4n. If W is a Heller lattice, then W ⊗ κ

must be isomorphic to M(λ)n⊕M(−λ)n. Then, F λ
n /W is indecomposable, and it is not a

Heller lattice by Proposition 5.1.5. Let 0 → τ(F λ
n /W ) → E−λn ⊕ G → F λ

n /W → 0 be the
almost split sequence ending at F λ

n /W . Then, the induced exact sequence

0→ τF λ
n /W ⊗ κ→ E−λn ⊗ κ⊕G⊗ κ→ F λ

n /W ⊗ κ→ 0

splits, a contradiction. Thus, W is not a Heller lattice. This implies that the induced exact
sequence

0→ τW ⊗ κ→ E−λn ⊗ κ→W ⊗ κ→ 0

splits. However, one can check that this situation does not occur for any W by using
Proposition 5.8.1. Therefore, F λ

n is an indecomposable A-lattice, and T = A∞.

5.9 The shape of the Heller component containing Z∞n

In the last of this chapter, we determine the shape of the Heller component containing the
Heller lattice Z∞n .

Lemma 5.9.1 ([M2, Lemma 4.6]). (1) An O-basis of E∞1 is given by

O(εe2−Xe1)⊕OXe2⊕O(εY e2−XY e1)⊕OXY e2⊕O(b1,1+Y e2)⊕Ob1,2⊕Ob1,3⊕Ob1,4.

(2) There is an isomorphism E∞1 ⊗ κ ≃M(∞)⊕21 ⊕M(∞)2.

(3) We have an isomorphism (τE∞1 )⊗ κ ≃M(∞)⊕21 ⊕M(∞)2.

(4) E∞1 is a non-projective indecomposable A-lattice.

Proof. (1) Straightforward.
(2) We put

E(∞, 1)1 := Spanκ{(εe2 −Xe1), (εY e1 −XY e1)},
E(∞, 1)2 := Spanκ{b1,2, b1,4},
E(∞, 1)3 := Spanκ{(Xe2), (XY e2), (b1,1 + Y e2), b1,3}.

Then, it is easy to check that E(∞, 1)1 ≃ E(∞, 1)2 ≃M(∞)1 and E(∞, 1)3 ≃M(∞)2.
(3) This follows from Lemmas 3.7.11, 5.1.3 and the statement (2).
(4) Suppose that E∞1 is decomposable. We write E∞1 = E1 ⊕ E2 as A-lattices with

E1 ̸= 0 ̸= E2. Then, the ranks of E1 and E2 are divisible by four. Thus, one can
assume that E1 ⊗ κ ≃ M(∞)⊕21 , E2 ⊗ κ ≃ M(∞)2, and E1 and E2 are indecomposable.
Then, the A-lattice E2 is not isomorphic to any Heller lattices by Proposition 5.1.5. Let
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0 → τE2 → Z∞1 ⊕W → E2 → 0 be the almost split sequence ending at E2. By applying
−⊗ κ, the induced sequence

0→ τE2 ⊗ κ→ Z∞1 ⊗ κ⊕W ⊗ κ→ E2 ⊗ κ→ 0

splits, which contradicts with Proposition 5.1.5 (3).

By the definition of Eλ
2 , we have

E∞2 =O(εe2 −Xe1)⊕O(Xe2)⊕O(Xe3 − Y e2)⊕O(XY e2)

⊕O(εe3 +Xe4 − Y e1)⊕O(εXe3 −XY e1)⊕O(εY e3 +XY e4)⊕O(XY e3)

⊕Ob1,1 ⊕Ob1,2 ⊕Ob1,3 ⊕Ob1,4

⊕O(b2,1 − Y e3)⊕Ob2,2 ⊕Ob2,3 ⊕Ob2,4.

Lemma 5.9.2 ([M2, Lemma 4.7]). The following statements hold.

(1) There is an isomorphism E∞2 ⊗ κ ≃ ⊕M(∞)⊕22 ⊕M(∞)1 ⊕M(∞)3.

(2) We have an isomorphism (τnE∞2 )⊗ κ ≃M(∞)⊕22 ⊕M(∞)1 ⊕M(∞)3.

(3) E∞2 is a non-projective indecomposable A-lattice.

Proof. (1) We put

E(∞, 2)1 := Spanκ{(εe2 −Xe1), (εXe3 −XY e1), (εe3 +Xe4 − Y e1), (εY e3 +XY e4)},
E(∞, 2)2 := Spanκ{b1,2, b1,3, b1,4, b2,4},
E(∞, 2)3 := Spanκ{(Xe2), (Xe3 − Y e2 − b1,1), (XY e2), (XY e3 − b2,2), (b2,1 − Y e3), b2,3}
E(∞, 2)4 := Spanκ{b1,1, b2,2}

Then, it is easy to check that E(∞, 2)1 ≃ E(∞, 2)2 ≃ M(∞)2, E(∞, 2)3 ≃ M(∞)3 and
E(∞, 2)4 ≃M(∞)1.

(2) This follows from Lemmas 3.7.11, 5.1.3 and the statement (1).
(3) Suppose that E∞2 is decomposable. We write E∞2 ≃ E1 ⊕ E2 as A-lattices with

E1 ̸= 0 ̸= E2. Then, we may assume that E1⊗κ ≃M(∞)⊕22 and E2⊗κ ≃M(∞)1⊕M(∞)3.
Note that the A-lattice E2 is not isomorphic to any Heller lattices and it is indecomposable.
Let 0→ τE2 → Z∞2 ⊕W → E2 → 0 be the almost split sequence ending at E2. It follows

from Lemma 5.1.3 that (τE2) ⊗ κ ≃ Ω̃(M(∞)1 ⊕M(∞)3) ≃ M(∞)1 ⊕M(∞)3. Then,
the induced sequence 0 → τE2 ⊗ κ → (Z∞2 ⊗ κ) ⊕ (W ⊗ κ) → E2 ⊗ κ → 0 splits, which
contradicts with Proposition 5.1.5 (3).
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From now on, we assume that n > 2. Then, an O-basis of the A-lattice E∞n is given as
follows:

E∞n = O(εe2 −Xe1)⊕O(Xe2)⊕O(Y e2 −Xe3)⊕O(XY e2)

⊕O(εe3 +Xf4 − Y e1)⊕O(εXe3 −XY e1)⊕O(Y e3 +Xe5)⊕O(XY e3)
n−3⊕

k=1

(
O(εe2k+3 +Xe2k+4 − Y e2k+2)⊕O(εXe2k+3 −XY e2k+2)

⊕O(Y e2k+3 +Xe2k+5)⊕O(XY e2k+3)

)

⊕O(εe2n−1 +Xe2n − Y e2n−2)⊕O(εXe2n−1 −XY e2n−2)

⊕O(εY e2n−1 +XY e2n)⊕O(XY e2n−1)
n−1⊕

k=1

(
Obk,1 ⊕Obk,2 ⊕ bk,3 ⊕Obk,4

)

⊕O(bn,1 − Y2n−1)⊕Obn,2 ⊕Obn,3 ⊕Obn,4

Lemma 5.9.3 ([M2, Lemma 4.8]). The following statements hold.

(1) There is an isomorphism E∞n ⊗ κ ≃M(∞)⊕2n ⊕M(∞)n+1 ⊕M(∞)n−1.

(2) We have an isomorphism (τE∞n )⊗ κ ≃M(∞)⊕2n ⊕M(∞)n−1 ⊕M(∞)n+1.

(3) E∞n is a non-projective indecomposable A-lattice.

Proof. (1) The statement is true for n = 1, 2 by Lemmas 5.9.1 and 5.9.2. Assume that
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n > 2. We define A-submodules of E∞n ⊗ κ as follows.

E(∞, n)1 := Spanκ

⎧
⎪⎪⎨

⎪⎪⎩

(εe2 −Xe1), (εXe3 −XY e1)
(εe2k+1 +Xe2k+2 − Y e2k−1),
(εXe2l+3 −XY e2l+2),
(εY e2n−1 +XY e2n)

∣∣∣∣∣∣∣∣

k = 1, . . . , n− 1,
l = 1, . . . , n− 2

⎫
⎪⎪⎬

⎪⎪⎭

E(∞, n)2 := Spanκ

{
b1,2, bk,3, bl,4

∣∣∣∣
k = 1, . . . , n− 1,
l = 1, . . . , n

}

E(∞, n)3 := Spanκ

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Xe2, XY e2,
(Y e2 −Xe3 + b1,1),
(Y e2k+1 +Xe2k+3 + bk+,1),
(XY e2l+1 − bl+1,2),
(bn,1 − Y e2n−1), bn,3,

∣∣∣∣∣∣∣∣∣∣

k = k = 1, . . . , n− 2,
l = l = 1, . . . , n− 1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

E(∞, n)4 := Spanκ

{
bs,1, bt,2

∣∣∣∣
s = 1, . . . , n− 1,
t = 2, . . . , n

}

Then, it is easy to check that

E∞n ⊗ κ = E(∞, n)1 ⊕ E(∞, n)2 ⊕ E(∞, n)3 ⊕ E(∞, n)4,

E(∞, n)1 ≃ E(∞, n)2 ≃M(∞)n,

E(∞, n)3 ≃M(∞)n+1,

E(∞, n)4 ≃M(∞)n−1.

(2) This follows from Lemmas 3.7.11, 5.1.3 and the statement (1).
(3) We can prove the indecomposability of Eλ

n by using similar arguments of the proof
of the case λ ̸=∞.

Corollary 5.9.4. HC(Z∞n ) ̸= HC(Z∞m ) whenever n ̸= m. Moreover, HC(Z∞n ) has no loops.

Now, we determine the shape of HC(Z∞n ).

Theorem 5.9.5 ([M2, Theorem 4.10]). Let O be a complete discrete valuation ring,
κ its residue field and A = O[X,Y ]/(X2, Y 2). Assume that κ is algebraically closed.
Then, HC(Z∞n ) ≃ ZA∞/⟨τ⟩. Moreover, the Heller lattice Z∞n appears on the boundary of
HC(Z∞n ).

Proof. Lemmas 5.9.1, 5.9.2 and 5.9.3 imply that every Heller lattice Z∞n appears on the
boundary of HC(Z∞n ). It follows from Proposition 3.7.6 and Lemma 5.8.3 that the tree
class T of HC(Z∞n ) is one of A∞, B∞, C∞, D∞ or A∞∞.



5. Heller components: the case of the symmetric Kronecker algebra 125

Let F be the middle term of the almost split sequence ending at E∞n . Then, F is the
direct sum of Z∞n and an A-lattice F∞n . By Proposition 3.7.10, we have

F∞n ⊗ κ ≃M(∞)⊕2n+1 ⊕M(∞)⊕2n−1 ⊕M(∞)⊕2n .

Suppose that F∞n is not indecomposable. Then, there is an indecomposable direct summand
W of F∞n such that the almost split sequence ending at W is of the form 0→ τW → E∞n →
W → 0. As rank(E∞n ) = 8n, we have rank(W ) = 4n. If W is a Heller lattice, then W ⊗ κ
must be isomorphic to M(∞)n ⊕M(∞)n. Then, F∞n /W is indecomposable, and it is not
a Heller lattice by Proposition 5.1.5. Let 0 → τ(F∞n /W ) → E∞n ⊕ G → F∞n /W → 0 be
the almost split sequence ending at F∞n /W . Then, the induced exact sequence

0→ τF∞n /W ⊗ κ→ E∞n ⊗ κ⊕G⊗ κ→ F∞n /W ⊗ κ→ 0

splits, a contradiction. Thus, W is not a Heller lattice. This implies that the induced exact
sequence

0→ τW ⊗ κ→ E∞n ⊗ κ→W ⊗ κ→ 0

splits. However, one can check that this situation does not occur for any W . Therefore,
F∞n is an indecomposable A-lattice, and T = A∞.
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