
Title Functional roles of alpha oscillations in visual
perception and their neuroanatomical basis

Author(s) 南, 宇人

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72607

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



 

 

 

1 

 

       

 

 

Doctoral Thesis 

 

 

 

Functional roles of alpha oscillations in visual perception 

and their neuroanatomical basis 

（視覚情報処理におけるアルファ波の機能的役割

とその解剖学的基盤） 
 

 

 

 

 

 

 

 

Sorato Minami 

Nanobiology Laboratories (Prof. Yanagida),  

Graduate School of Frontier Biosciences, Osaka University  

 

 

 

March 2019 

 

 

 

 

 

 

 



 

 

 

2 

 

Abstract 
 

Introduction: Neural oscillations at around 10 Hz, called alpha oscillations, appear most 

saliently among all neural oscillations especially during the rest. In recent years, correlation 

between characteristics of alpha oscillations such as power/frequency/phase and various 

perceptual phenomena has been established. However, there has not been conclusive evidence 

about the causal contribution of alpha oscillations to visual perception. In this dissertation, I 

first focused on a phenomenon called motion-induced spatial conflict where illusory visual 

vibrations are experienced at around 10 Hz. To prove a causal link between the alpha oscillation 

and the illusory jitter perception, I utilized inter- and intra-individual variations and 

manipulations of the intrinsic alpha frequency. Second, I focused on the neuroanatomical basis 

of inter-individual differences in the alpha power and frequency, which is known to be 

correlated with several visual phenomena. To study the relationship between microstructural 

properties of white matter tracts connecting visual areas and alpha oscillations, I utilized both 

diffusion-weighted imaging (DWI) and quantitative MRI (qMRI). 

Purpose/Methods: In the first part, to verify whether the alpha oscillation contributes to the 

illusory jitter perception, I investigated whether perceived frequency of illusory jitter is 

correlated with inter/intra-individual variability in the intrinsic alpha frequency. I also invented 

a method to manipulate alpha frequency, which was enabled by amplitude modulated 

transcranial alternating current stimulation (AM-tACS). The illusory jitter frequency was 

estimated by the constant method, while the alpha frequency was measured by 

magnetoencephalography (MEG). Furthermore, I performed the source analysis on MEG 

during the observation of illusory jitter. In the second part, to investigate the relationship 

between the amplitude and frequency of alpha oscillations and microstructural properties of the 

major white matter tracts connecting visual areas and, I measured MEG during rest, DWI and 

qMRI for the same participants.  

Results/Discussion: There was a strong correlation between alpha frequency during rest and 

illusory jitter frequency across participants. Also, small fluctuation of alpha frequency within 

participant was correlated with the illusory jitter frequency. In addition, when the frequency of 

the alpha oscillation was increased or decreased by amplitude modulated-tACS, the illusory 

jitter frequency also changed reflecting the change in the alpha frequency. From these 

experiments, I found that the illusory jitter directly mirrors the intrinsic alpha frequency. 

Furthermore, the phase synchronization of alpha oscillations was found to be increased 

between IPL and IT, which are located in the dorsal and ventral areas respectively. Illusory 

jitter may arise from the cyclic correction of the dissociation between positional representation 

in dorsal and ventral visual pathways. In the second part, the power and frequency of alpha 

oscillations were found to be significantly correlated with the tissue structural properties in 

optic radiation (OR), which connects LGN and V1. The results suggest that alpha oscillations 

may originate from the interaction between LGN and V1. In conclusion, I elucidated a 

functional role of alpha oscillations in visual processing and neuroanatomical substrate 

characterizing alpha oscillations. 
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1 General introduction 

In this dissertation, I first study the functional role of alpha oscillations in visual 

processing (Chapter 2). Then, I study the neuroanatomical basis determining the characteristics 

of alpha oscillations (Chapter 3). The outline of this dissertation is as follows. 

In 1.1, I will explain previous studies related to this thesis. As the introduction for the 

Chapter 2, I will first review literature on the relationship between alpha oscillations and visual 

processing. I will specifically describe an illusory jitter called motion-induced spatial conflict, 

which is used in the main experiments (Chapter 2) of this dissertation. As the introduction for 

the Chapter 3, I will also introduce previous studies on the relationship between vision and 

microstructural properties of white matter tracts using diffusion magnetic resonance imaging 

(dMRI). In 1.2, I will explain brain imaging techniques used in the present study, which include 

magnetoencephalography (MEG), diffusion magnetic resonance imaging (dMRI), and 

quantitative MRI (qMRI). In 1.3, I will explain transcranial current stimulation techniques, 

which was used to manipulate neural oscillations. Amplitude-modulated current stimulation 

will also be introduced. In 1.4, I will present the purpose of this research. 

In 2, I will study the relationship between alpha oscillations and visual perception to 

elucidate the functional role of alpha oscillations in visual processing.  

In 3, I will study the relationship between alpha oscillations and microstructural 

properties in the visual white matter to elucidate the neuroanatomical basis of the 

inter-individual differences in alpha oscillations. 

In 4 I will give a general discussion based on these experimental results. 

 

1.1 Background for this study 

1.1.1 The relationship between alpha oscillations and visual processing 

In our brain, rhythmic synchronization phenomena are formed by enormous neural 

activities. The neural oscillations are labeled by each frequency band, such as alpha (8–13 Hz), 

beta (13–30 Hz), and gamma (30–100 Hz) band. These neural oscillations are widespread 

across cortical areas and their functional roles have been investigated for a long time. Their 

functional roles can be feature binding [1], neuronal communication [2, 3], and memory [1, 4]. 

Among these neural oscillations, the most salient signal among these neural oscillations is 

called the alpha oscillation.  
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Although alpha oscillations were originally thought to reflect idling state of the brain, 

accumulating evidences suggesting that alpha oscillations are correlated with various types of 

visual perception. For example, when attention of participants is directed to the object in the left 

visual field, alpha oscillations are dominantly suppressed in the right hemisphere. On the other 

hand, alpha oscillations remain strong in the left hemisphere. This result suggests that alpha 

oscillations are suppressed in the brain region associated with processing of the object 

information in which spatial attention is directed to objects, whereas the alpha increase may 

reflect inhibition on processing of the non-salient object information [5].  

There are also several studies that discovered the correlation between the phase of alpha 

oscillations and visual perception. In Matthewson's study [6], the experiment using 

meta-contrast stimuli was performed. A target stimulus was shown to the participants only for a 

moment and a mask stimulus was presented immediately thereafter. By separating the 

electroencephalogram (EEG) data into detected and non-detected target trials, it was found that 

the detection of the target stimulus depends on the phase of alpha oscillations at the timing of 

the target stimulus. The target tends to be perceived when the phase of the alpha oscillations is 

a trough at the time of presenting the target stimulus, and unperceived when alpha phase is the 

peak.  

The phase of alpha oscillations also affects the interaction of multiple sensory 

processing between distant regions. Several studies have shown the involvement of 

inter-regional alpha phase synchronization in visual perception. Siegel and colleagues [3] 

showed that the alpha coherence between middle temporal (MT) area processing object 

movement, and intraparietal sulcus (IPS) in the dorsal visual pathway is modulated by visual 

attention. Moreover, Driel’s study showed that the strength of alpha phase synchrony between 

auditory and visual regions depended on cross-modal attention [7]. These results suggest that 

attention selectively routes sensory information through the cortical hierarchy or cross-modal 

network by dynamically altering alpha coherence between neuronal groups across distant 

cortical areas. 

As well as the amplitude and phase of alpha oscillations, the relationship between the 

peak frequency of alpha oscillations and visual perception has also been studied. In the study by 

Haegens [8], the amplitude of the alpha oscillations during the N-back task decreased as 

compared to the resting state. On the other hand, PAF significantly increased from rest to 

0-back, and from rest/0-back to 2-back. This study suggests that the degree of load in 
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information processing correlates with the state of the alpha oscillations. In a research by 

Sokoliuk [9], it is known that the frequency of blinking illusion called Wagon Wheel illusion 

roughly matches with the frequency of alpha oscillations, which is about 9.1 Hz on average. In 

addition, the amplitude of the alpha oscillation changes at the occipital region during illusory 

perception, and the frequency of the alpha component with the largest change rate correlates 

strongly with the alpha frequency at the rest. Therefore, there is a possibility that the frequency 

of this illusion directly reflects the frequency of the alpha oscillation. Also, in a research by 

Samaha [10], they used an illusion called two-flash fusion in which the flash originally 

presented twice is only perceived once. The interstimulus interval (ISI) at which two light 

flashes could be discriminated from a single flash is known as the two-flash fusion threshold. 

The threshold became lower when participant's alpha frequency was higher. Furthermore, the 

threshold of two-flash fusion was correlated with the frequency of alpha oscillations measured 

both at the resting eye-closed condition and immediately before the stimulus presentation. 

From these results, Samaha and colleagues suggested that participants with high alpha 

frequencies, ie narrow trough phases, may be able to accommodate narrower interval two-flash 

stimuli and vice versa.  

As well as the involvement of alpha oscillations in visual perception, alpha oscillations 

are also associated with various types of the neural activities related to visual processing. For 

example, in the study by Scheeringa, a simultaneous measurement of functional magnetic 

resonance imaging (fMRI) and EEG was performed [11]. The Blood Oxgenation Level 

Dependent (BOLD) signal fluctuates according to the phase of the alpha oscillations at the 

visual onset. As is the case with the dependence of BOLD signal on alpha phase, the firing rate 

of the neuron group on the visual information processing is associated with alpha oscillations. 

Haegens and colleagues showed that the firing rate was highest at the trough of the alpha cycle 

in prefrontal regions [12]. Based on recent findings that alpha oscillations inhibit the 

excitability of postsynaptic cells in the local neuronal network, suppress network interactions, 

and consequently conform to the level of visual attention, Bonnefond and colleagues have 

recently proposed a hypothesis that the alpha phase synchronization has the top-down effect on 

local neural networks in visual information processing [13]. 
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1.1.2 Modulation of alpha oscillations by external stimulation and its effect on human 

visual perception 

As described in 1.1.1, although the correlation between alpha oscillations and visual 

information processing has been reported in many previous studies, it is not yet clear whether 

the alpha oscillations are causally involved in visual processing. One approach to clarify this 

problem is to modulate the alpha oscillations by an external stimulation, and observe the 

influence of the change in alpha oscillations on visual perception. Previous studies have 

established some methods such as presenting a cue stimulus or a cyclic sensory stimulus, 

transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and 

transcranial alternating current stimulation (tACS). 

One example is modulating the alpha oscillations by visual stimulus. This method has 

an advantage that it is possible to observe neural oscillations during external stimulation 

because the visual stimulus generates no artifacts derived from the external stimulation, unlike 

TMS and current stimulation. In the research on the discrimination task using Gabor patches 

[14], participants were provided with cues whose color were predictive of the timing of visual 

target onset. In such a case, the phase of alpha oscillations before target onset was modulated 

toward each participant’s optimal phase for stimulus discrimination, which improved the 

discrimination accuracy. A method to more directly modulate alpha oscillations is to use a 

periodic visual pattern around 10 Hz, which tunes the phase of the alpha oscillation into the 

phase of the visual stimulus. For example, in a study by Spaak [15], alpha oscillations are 

phase-locked by the cyclic visual stimulus pattern in the same frequency as the intrinsic alpha 

oscillation, and the target stimulus was randomly presented after the stimulus pattern. The 

correct rate of the discrimination task varied depending on the phase difference between the 

target stimulus and the cyclic stimulus pattern. This study suggests that not only the phase of the 

intrinsic alpha oscillations [6] but also the phase of the entrained alpha oscillations affects 

visual perception. 

Transcranial magnetic stimulation (TMS), which generates a weak current in the brain 

by changing a magnetic field, can also be used to modulate alpha oscillations. Previous studies 

have indicated that TMS targeted at the frontal, parietal, and occipital cortices increases in 

occipital alpha rhythm power [16, 17], although the underlying mechanism is unclear. A study 

using rhythmic TMS (rTMS) at the alpha frequency has reported that the intrinsic alpha 

oscillation was phase-locked to the phase of rTMS and the alpha power was enhanced at the 
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parietal area [18]. Based on these findings, recent studies have investigated the effects of rTMS 

at the alpha frequency on the performance of visual tasks [17, 19]. For example, when a 

near-threshold dot was presented in the left or right visual field during rTMS at the alpha 

frequency in the left or right hemisphere, the visibility of the target ipsilateral to the rTMS was 

increased [19]. It is believed that reducing cortical excitability by rTMS leads to the excitation 

of the other hemisphere, which results in the ipsilateral enhancement of visual attention. 

However, the direct relationship between the modulation of the intrinsic alpha oscillations by 

rTMS and the task performance has not been reported because of the huge artifact from TMS. 

In a study using TMS [20], the authors discovered that the amplitude of alpha oscillations 

induced by TMS tends to decrease during visual attention, which was also found for intrinsic 

alpha oscillations. This result suggests that alpha oscillations induced by TMS may reflect 

similar physiological mechanism as intrinsic alpha oscillations. 

As mentioned above, studies on modulation of intrinsic alpha oscillations have been 

conducted by various approaches. Among them, transcranial alternating current stimulation 

(tACS) has recently attracted attention as a method to effectively change neural activity and 

visual perception (see Section 1.2 for details). For example, a recent EEG study utilized 

sound-induced double-flash illusion [21]. In this illusion, a single flash is perceived as two 

flashes when it is accompanied by two beeps. It was confirmed that the threshold interval of the 

beep that can produce the illusion correlates with the frequency of the alpha oscillations for 

each participant. In addition, the authors showed the threshold interval of the beep changes by 

the tACS at the frequency of peak alpha frequency (PAF) ± 2 Hz. These findings suggest that 

alpha oscillations determine the temporal window for interactions between audio and visual 

regions. In this way, the modulation of neural activity due to electrical stimulation is considered 

to be an effective method for verifying the relationship between alpha oscillations and visual 

perception. However, even if electrical stimulation results in the change in perception, there is 

no guarantee that the alpha oscillations are modulated as predicted. Considering this problem, 

in order to discuss the causal relation between alpha oscillations and visual perception, I 

established a technique combining the amplitude-modulated tACS (AM-tACS) and a noise 

reduction technique (tSSS), which enables us to measure neural activities during current 

stimulation. With this technique, I investigated the relationship between the alpha oscillation 

and visual perception during current stimulation (section 2.3).  

 

1.1.3 Motion-Induced Spatial Conflict 
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The illusory phenomena such as flickering wheel illusion [9], two-flash fusion [10], and 

sound-induced double-flash illusion [21] as described above are candidates for the visual 

perceptual phenomenon exhibiting a strong correlation. Furthermore, there is another illusion 

in which the frequency of the alpha oscillation may be directly reflected in the visual perception. 

Here, I focus on an illusory jitter termed the motion-induced spatial conflict [22, 23] which can 

be visual vibrations perceived at the same frequency as the intrinsic alpha oscillations. The 

perceived jitter frequency of this illusion may match the intrinsic peak alpha frequency (PAF) 

and varies depending on its inter- and intra-participant variations. 

In the motion-induced spatial conflict, moving borders defined by color contrast and 

those defined by luminance contrast are placed in close proximity. Because of the influence of 

motion on spatial coding, the motion of the color contrast is thought to be perceived more 

slowly than that of the luminance contrast. As a result, the positional delay of the green bar is 

thought to be shaken back by intracerebral correction, which seems to be jittering. 

The flickering wheel illusion [9] is a phenomenon in which illusory flicker is perceived 

at around the similar frequency as the motion induced spatial conflict. This illusion is a 

phenomenon that the center of the wheel stimulus with the luminance boundary blinks at about 

10 Hz while watching the fixation point. As a phenomenon related to the illusory jitter used in 

this research, there is a phenomenon called a motion standstill on a color lattice [24]. The 

phenomenon is that the bar moving at a constant speed is perceived to be stationary when 

isoluminant red and green bars are alternately arranged and the arrangement is continuously 

switched at about 4 Hz. This phenomenon is similar to the illusory jitter in that an isoluminant 

color grid is perceived later than a physical movement. However, this phenomenon is caused 

not by comparing isoluminant color boundary and luminant boundary but from only 

isoluminant color boundary or black-white luminant boundary, so these phenomena will be 

caused by different mechanisms. 
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Figure 1.1：Motion-induced spatial conflict 
 

 

In a previous research [25], they measured the perceived frequency of this illusory jitter 

by presenting the illusory jitter (target stimulus) and a physical jitter (matching stimulus). The 

frequency of the matching stimulus was adjusted by pressing buttons until it was perceived to 

be at the same frequency as the illusory jitter. As a result, the frequency of the illusory jitter was 

found to be around 10 Hz under. Furthermore, in the power spectrum of MEG signals during 

the observation of the illusory jitter, the amplitude of alpha oscillations increased relative to the 

condition without illusory jitter. The interesting point of this finding is that the frequency of 

illusory jitter matched the frequency of neural activity increasing during illusory jitter 

perception, suggesting a link between alpha oscillations and illusory jitter. 

A previous study suggested a correlation between alpha power and illusory jitter. 

However, as shown in Figure 1.2, the neural activity at the illusory jitter perception is thought to 

be either the cause of the illusory jitter perception or the result from the illusory jitter perception. 

Therefore, it is still unclear whether the increase in power of alpha oscillations is involved in the 

generation of illusory jitter perception, or it is an epiphenomenon of the illusory jitter 

perception. Next, I propose the functional hypothesis of the alpha oscillation that the alpha 

oscillation is involved in the generation of the illusory jitter perception. 
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Figure 1.2：The relationship between alpha oscillations and illusory jitter 
 

 

1.1.4 Microstructural properties and visual perception 

Alpha oscillations in the human brain are tightly related to several types of visual 

perception. As described above, although recent studies have suggested functional roles of 

alpha oscillations in visual perception, neuroanatomical substrates for determining the 

characteristics of alpha oscillation are not well understood. One of the reasons why this 

problem has not been verified experimentally is that conventional neuroanatomical methods 

such as a chemical tract tracing [26] are invasive and only applicable to investigate fiber 

pathways in post-mortem animal brains. Therefore, direct comparison with neural oscillations 

in living animals has been difficult. Recent advancement of non-invasive neuroimaging 

methods, such as diffusion-weighted magnetic resonance imaging (dMRI) and quantitative 

magnetic resonance imaging (qMRI), have opened an avenue to investigate the relationship 

between structural properties of fiber pathways and properties of the human alpha oscillation 

measured by MEG or EEG. Here, I utilized a method to quantify the white matter property by 

measuring dMRI and qMRI (see 1.2 for details), which can non-invasively measure 

microstructural property of living human brain. These methods enable us to study the 

neuroanatomical basis of the characteristics of alpha oscillation.  

A few previous studies using dMRI have investigated the relationship between the 

tissue microstructure of white matter and perceptual ability. Thiebaut de Schotten and 

colleagues utilized a line bisection test in which participants were instructed to write rounds at 

the center of the line segment on the paper. Even in a healthy person, a small left deviation of 

the round position is observed in this test, which is known as the pseudoneglect effect. By 

comparing the dMRI data with the performance obtained from the line bisection test, it was 

found that the tendency of pseudoneglect effect was correlated with the lateralization of tract 

volume of the second branch of the superior longitudinal fasciculus (SLFⅡ). Recently, a study 

comparing stereoacuity and structural neuroimaging (dMRI and qMRI) data has suggested that 
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the individual variability in human stereoacuity is related to macromolecular tissue volume 

(MTV, see section 1.1.3) in the vertical occipital fasciculus (VOF) connecting the dorsal and 

ventral visual pathways. 

These studies suggest that the tissue properties of white matter connecting visual 

regions may be related with the characteristics of inter-regional information transmission, 

which is reflected by the individual differences in visual function. In addition to the relationship 

between dMRI and perception, previous studies examined the relationship between dMRI and 

MEG. A study by Hindriks examined whether alpha amplitude measured by MEG correlates 

with measurements on fiber pathways by performing tractography on dMRI data and counting a 

number of streamlines connecting between the brain regions defined by the Automated 

Anatomical Labeling (AAL) atlas [27]. As a result, the amplitude of the occipital alpha 

oscillations correlated with the streamline count on estimated fiber pathways between primary 

visual cortex and other visual areas. However, other lines of studies pointed out limitations in 

streamline counting approach to quantify structural connectivity. This is because it significantly 

depends on the geometric factor of fiber pathways (length and curvature) [28, 29] and estimated 

connectivity is not symmetric (i.e. estimated connectivity from area A to B significantly differ 

from that from B to A) [30]. Thus, it is not fully clear whether observed correlation between 

alpha amplitude and structural connectivity reflect tissue properties of fiber pathways or 

geometric configuration of fiber pathways.  

Alternative approach to measure properties of white matter pathways is termed 

tractometry. This approach first identified major white matter tracts known to exist by 

analyzing dMRI data with constraints from prior anatomical knowledge [31, 32] and then 

evaluate microstructural measurement obtained from dMRI and qMRI data along those tracts 

[33, 34, 35]. This approach enables us to precisely test specific hypotheses about the 

relationship between alpha oscillations and specific microstructural measurements along a 

specific white matter tract, with removing the influence of fiber length and curvature. The most 

promising candidate for characterizing the intrinsic alpha oscillation is optic radiation (OR), 

which is connecting LGN and V1. A previous study [36] has reported that alpha current 

generators appear to be in layer 4C receiving the input from LGN and layer 6 projecting back to 

LGN. This finding suggested that the intrinsic occipital alpha oscillations are generated from 

the consequence of thalamocortical interaction between LGN and V1.  
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There is another problem that has not been clarified in previous studies. Although the 

study by Hindriks and colleagues suggested that the connection strength between primary 

visual cortex and other visual areas characterizes the occipital alpha power, the involvement of 

the visual areas in the alpha frequency which is another primal characteristic of the intrinsic 

alpha oscillation has not been shown. As well as the alpha power, there are a lot of previous 

studies about the relationship between the frequency of occipital alpha oscillations and visual 

processing [8-10, 27]. Therefore, it is also necessary to investigate the relationship between the 

alpha frequency and white matter tracts connecting to visual areas. 

In order to address the above-mentioned problems, I investigated whether the tissue 

properties of the OR relate to the power and frequency of the occipital alpha oscillations 

(Chapter 3). To compare the characteristics of alpha oscillations with the microstructural 

properties of visual white matter tracts, I utilize inter-individual variations in alpha oscillations 

and microstructural properties. By combining the measurements of magnetoencephalography 

(MEG) during the resting state, dMRI, and qMRI, I quantified the characteristics of occipital 

alpha oscillations and microstructural property of several visual white matter tracts.  

 

1.2 Measurement and analysis methods 

In this chapter, I will explain several techniques to non-invasively measure neural 

activities and the brain structures. I will also explain methods to analyze the measured data. 

1.2.1 Magnetoencephalography (MEG) 
 

Magnetoencephalography (MEG) [37] is used for neural activity measurement in 

Chapter 2, 3 in this study. The features of MEG measurement will be briefly described below. 

When the brain is active, a weak current flows in the nerve cell, and a magnetic field is 

generated around it. This change in magnetic field can be measured using a very sensitive 

magnetic sensor called SQUID (Superconducting Quantum Interference Device) [38]. The 

time-space signal of the measured magnetic field is called the magnetoencephalogram (MEG). 

MEG is used not only for clinical diagnosis for epilepsy but also for studying sensory functions 

such as vision and audition higher brain functions such as language and calculation. MEG has 

high temporal resolution, and can capture magnetic field fluctuation in milliseconds order. This 

is one of the biggest advantages compared with functional MRI (fMRI) [39], which has a 
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temporal resolution of seconds order. Therefore, MEG is suitable for detecting rapid changes in 

neural activity with respect to a time-varying stimulus.  

Electroencephalography (EEG) [40] is another method for measuring neural activities 

with high temporal resolution. EEG is sensitive to extra-cellular currents generated by 

postsynaptic potentials. On the other hand, MEG is sensitive to intra-cellular currents 

associated with their synaptic potentials. Since EEG is sensitive to radial components of a 

current source in a spherical volume conductor, EEG mainly detects activity in the cortical gyri. 

On the other hand, MEG mainly detects activity originating in sulci because MEG is most 

sensitive to its tangential components.  Since electric potentials transmitted through various 

tissues having different electrical conductivities such as cerebrospinal fluid, skull and scalp are 

measured, the electric activity of the local brain area is weakened, which leads to the low spatial 

resolution.  In that respect, the magnetic permeability of the above-mentioned tissue is almost 

equal to that of air, so the spatial resolution is high in the case of MEG and the signal source can 

be estimated with higher accuracy than EEG. In summary, MEG is a brain imaging technique 

with relatively high spatial and very high temporal resolutions, which is advantageous for the 

measurement of neural oscillations. 

 

Bandlimiting and signal-averaging 

Bandlimiting and signal-averaging are fundamental signal processing methods to 

improve the SNR (signal to noise ratio). In general, the signals outside the bandwidth of 1 Hz to 

100 Hz in the frequency domain are excluded by a filter. Especially in this study, because I 

focused on the functional role of alpha oscillations, cyclic neural activities at 8 - 13 Hz, we 

mainly adapted 40 Hz low-pass filter as preprocessing for measured MEG data. However, even 

after removing the noise due to the band-limitation, the SNR is insufficient for the single trial 

data and it is difficult to extract the brain magnetic field reaction. Therefore, the 

signal-averaging method is used together to further reduce the noise. Signal-averaging is a 

widely used method especially for MEG signal processing with an aim to extract the evoked 

response. Signal-averaging of data based on the assumption that the noise is independent for 

each trial and the brain magnetic field signal is invariant in all trials in which the response to the 

same stimulus is repeatedly measured under the same condition for n  trials, the noise 

dispersion   can be reduced by n2 . Therefore, the SNR is improved by n  times. In fact, 

however, the neural activities of participants are not constant for each trial due to the influence 
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of repetitive presentation of stimuli. In order to avoid long-term measurement by repetitive 

presentation, the development of data analysis method with few trials is desired. 

 

Independent component analysis (ICA) 

In this study, independent component analysis (ICA) [41] was used for the noise 

removal as preprocessing in Chapter 2, 3. ICA is a kind of Blind Source Separation (BBS) that 

can separate unknown multivariate signals of mixing process into original signals before 

mixing. 

When there are the n  sensor signals measured by the MEG, then the data of the i  th is 

defined as )(txi , the vector in which all the sensor signals are arranged is expressed as Equation 

1 - 1. 

11)...,,2,1(,))(...,),(),(()( 21  　　　　　　　　　　　　　 lttxtxtxtx T

n  

 

Here,  represents a time as each discrete value. l  is the total number of time data. An 

unknown m -dimensional original signal is expressed as Equation 1 - 2. The original signal is an 

individual magnetic field change generated from each stimulus, which is assumed to be mixed 

in the MEG data. 

 

21)...,,2,1(,))(...,),(),(()( 21  　　　　　　　　　　　　 lttstststs T

m  

 

At this time, using the mn  mixing matrix A  of the measurement signal )(tx  and 

the original signal )(ts , I assume the relationship of Equation 1 - 3. 

 

31)()(  　　　　　　　　　　　　　　　　　　　　 tAstx  

 

In this way, ICA is a method of estimating an unknown original signal )(ts  by 

obtaining an unknown mixing matrix A  from observed data )(tx . If W  is the inverse matrix 

of A , it becomes possible to obtain the original signal as shown in Equation 1 - 4 by using the 

component ijw  of  W . 

 

41)(  　　　　　　　　　　　　　　　　　　　　
j

jiji xwts  
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Here, since the original signal )(ts  and the mixing matrix A  are unknown, a unique 

solution cannot be obtained. Therefore, in the ICA, the five hypotheses, "the components are 

independent from each other", "the distribution of the independent components basically 

follows a non-normal distribution", "the dimension of the independent component data is the 

same as or smaller than the dimension of the measured data", "mixing matrix is immutable 

regardless of time", " 　　)(Arank of mixing matrix must be full rank " are set for finding a 

solution.. 

 

SSS (the Signal Space Separation method) 

The Signal Space Separation method (SSS) [42] is a method for separating internal 

signals and external signals in the conceptual diagram at MEG measurement shown in Figure 

1.1. The blue line in Figure 1.3 covers the whole brain space, but the red line covers the entire 

brain and sensor space. Here, the blue and red spheres have the same center point. In the model 

of Figure 1.1, neural activity occurs in the blue sphere. Here, this space is referred to as "inner 

area". On the other hand, all the MEG sensors are included in the space between the blue and 

red spheres, and this space is referred to as "intermediate area" or "sensor area". Further, the 

outside of the red sphere where the interference electromagnetic noise is generated is referred to 

as an "outside region". 

 
Figure 1.3：Conceptual diagram of spatial segmentation on the signal reconstruction by SSS 

 

 

As is widely known, the magnetic field B  of the sensor area can be written as a 

quasi-static Maxwell's equation as follows. 
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510,0  　　　　　　　　　　　　　　　　　　　　　BJB   

 

 

Here, 0  represents vacuum permeability. The sensor of the MEG system obtains 

0 B  because the current density becomes 0J  when the source volume is not present. 

This curl-free magnetic field B  can thus be expressed as the gradient of the scalar potential. 

 

610  　　　　　　　　　　　　　　　　　　　　　　　　　　　B  

 

Considering Equations 1 - 6,   must satisfy Laplace equation 02  . In the 

spherical coordinate ),,( r , the solution of the Laplace equation can be expanded by a 

spherical harmonic function as follows. 
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Here,   ,m

l  is a spherical harmonic function. 

Substituting Equations 1 - 7 into Equations 1 - 6, the magnetic field can be expressed as 

follows. 
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Since l  is an infinite number, the number from the inside and outside also becomes 

infinite, and this expansion formula reconstructs the magnetic field accurately. In practice, 

however, since the magnetic field B  is mostly described by a finite number l , internal and 

external derived numbers such as coefficients can be expressed in matrix form. 

In the spherical harmonic coordinate standard, the MEG data B  can be expressed as 

follows. 
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91 　　　　　　　　　　　　　　　　　　　　　　　　 outoutinin SxSxB  

 

Here, inS  and outS  are matrices containing the gradient of the spherical harmonics on 

Equations 1 - 8, and inx  and outx  are matrices containing coefficients m

l  and m

l . 

Expressions 1 - 9 can be omitted as follows. 
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Here, S  derived from the SSS can be divided into subspaces inS  and outS , each 

associated with an internal biomagnetic field signal and an external interference signal. inx  and 

outx  indicate internal and external derived coefficients.  

From Equations 1 - 10, the coefficients inx  and outx  can be calculated from the pseudo 

inverse matrix S  as follows. 

 

   111ˆˆ
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outin  

By using the internally derived inS  and the calculated coefficient inx̂ , only the 

estimated biomagnetic field can be reconstructed as follows. 

121ˆ  　　　　　　　　　　　　　　　　　　　　　　　　　　　　 ininin SxB  

 

 

tSSS (the temporally extended signal space separation method) 

The temporally extended signal space separation method (tSSS) [43] is an extension of 

the Maxwell filter described in the previous section to the time dimension. Since the result of 

tSSS does not depend on preconditions and user's experience, it is considered that noise can be 

removed more efficiently.  

In tSSS, firstly, inB  and outB  which are spatially reconstructed for each sensor and 

each sample are subtracted from measurement data )(tB . 
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Data inb  and outb  are convolved with mn matrix inB  and outB . Here, m  is a 

sensor and n  is a sample. The singular value decomposition is as follows. 
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The inV  and sV  columns span the waveform )(tbin  and )(tbs , and the subspace 

intersections between the waveforms can be estimated by QR special position decomposition. 
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Here, m

T IQQ   and 
mmR   are satisfied. The mm  matrix C  is constructed 

from the mn  matrix inQ  and sQ   as follows. 
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When special position decomposition is used, it becomes as follows. 

171 　　　　　　　　　　　　　　　　　　　　　 T

CZYSC  

 

Here, the diagonal matrix CS  contains the singular value k  of the matrix C . This 

singular value defines the principal angle k  of the two subspaces: kk  )cos( . The 

intersection of the subspace contains the waveform corresponding to 1C

k . The upper limit 

value of subspace correlation on MaxFilter is set to 0.90 in this study. If the p  value exceeds 

the upper limit of the correlation, this program will have a projection operator )( TLLI  . Here, 

)( pnL   contains the crossing waveform (the first p  column of matrix ZQS ). These 

waveforms are finally projected as follows. 

181)(ˆ  　　　　　　　　　　　　　　　　　　　　　　　 in

T
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By the above operation, only the estimated biomagnetic field can be reconstructed. 
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Mapping by isomagnetic curves and source reconstruction 
 

The MEG system used in this study has 360 sensors that cover the entire head of 

participants. By visualizing the channel data with a topographic map, it is possible to roughly 

identify the area related to the task, such as motor cortex and visual cortex. However, this area 

estimation depends greatly on the position of the head in the MEG helmet and the anatomical 

structure of the head. 

In order to specify more detailed signal sources of MEG signals, researchers usually 

estimate the position of the electric activity from the magnetic field. In such case, it is required 

to solve the inverse problem for the source localization. In general, because the number of 

source configurations is much greater than the number of MEG sensors, there are no unique 

solutions to the inverse problem, even in the absence of noise. Although there is no unique 

solution, several methods using models based on prior knowledge of brain activity have been 

developed. The simplest approach is the equivalent current dipole estimation. This method 

assumes that the measured MEG signals are explained by one or a few current dipoles, and 

calculate the dipole parameters (the position and moment of the signal source) that minimize 

the square error between the measured magnetic field and theoretical value of the magnetic 

field generated from the assumed current dipoles. 

A single dipole estimation method is a model assuming single current dipole with 

maximum amplitude, which can be applied in the case where a single magnetic field signal 

source (localized neural activity) is assumed from physiological knowledge and the measured 

magnetic field shows bipolar distribution. This technique has been applied for a long time to 

estimate sensory-evoked magnetic fields including visually-evoked and somatosensory-evoked 

magnetic fields. However, single dipole is inadequate for modeling complex brain activities 

arising from multiple signal sources. In order to obtain an appropriate solution, a model 

including accurate knowledge about neural activity is essential. However, it is generally very 

difficult to decide the number of dipoles.  

To deal with more complicated signal patterns, a method called beamformer is used. 

The beamformer is constructing a spatial filter to estimate the contribution of a single brain 

position to the measured field. A spatial filter is calculated by minimizing the source power or 

variance in a certain time width at the lattice point, and the current value is estimated. 

Beamformer has several approaches using different calculation algorithms, such as 

Minimum-Norm Estimates (MNE) [44], Low Resolution Brain Electromagnetic Tomography 
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(LORETA) [45], Linearly Constrained Minimum Variance Method (LCMV) [46], Dynamic 

Imaging of Coherent Sources (DICS) [47], and so on. The DICS used in this study (Experiment 

2.4) is an algorithm which uses a spatial filter to localize coherent brain regions and provides 

the time courses of neural activity. This method allows investigation of the inter-regional 

interactions in a specific frequency band by imaging power and coherence estimates within the 

human brain. 

 
1.2.2 Diffusion-weighted magnetic resonance imaging (dMRI) 

Diffusion-weighted magnetic resonance imaging (dMRI) is a method to measure the 

magnitude and orientation of diffusion of water molecules [48, 49]. Since diffusion of water 

molecules in white matter is restricted by fiber tracts, water molecules preferentially diffuse 

toward parallel direction to fiber orientation. Therefore, dMRI measurements provide fiber 

orientation distribution in each white matter voxel, based on anisotropy of water diffusion 

restricted by fiber tracts.  

Analysis on dMRI data in individual voxel provides useful information to infer white 

matter microstructure. For example, one could calculate fractional anisotropy [50] in each 

white matter voxel by quantifying a degree of diffusion anisotropy in dMRI measurements. 

Alternatively, one could also calculate Orientation Dispersion Index (ODI) [51], which aims to 

quantify spatial configuration of the neurite structures. dMRI-based microstructural 

measurements, such as FA and ODI, have been often used to evaluate inter-subject differences 

in white matter microstructure [52-54]. 

In addition to the microstructural measurements, analysis on dMRI data provides a 

position and trajectory of white matter tracts, by using tractography [49, 55-57]. Tractography 

is a method to track orientation of dMRI signal, and generate candidates of white matter 

connections. In a common practice, tractography is often restricted by anatomical prior 

information to reduce false positive estimates [31, 32, 58]. For example, one could use 

anatomical knowledge on connection between lateral geniculate nucleus (LGN) and primary 

visual cortex (V1) to restrict tractography, in order to estimate the optic radiation in a consistent 

manner with post-mortem anatomical studies [59]. 

By combining microstructural measurements and tractography, we could quantify 

microstructural measurements along white matter tracts of interest. Since dMRI measurements 

can be performed from living human brains, this approach open the avenue for studying the 
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relationship between specific white matter tracts and development [60, 33], aging [34], diseases 

[61, 62], and perceptual function [63-65]. 

In this dissertation, I used a dMRI index proposed in the previous studies, called 

Orientation Dispersion Index (ODI). It is thought that ODI indicates the spatial configuration of 

the neurite structures [51, 66, 67]. 

1.2.3 quantitative magnetic resonance imaging (qMRI) 

T1-weighted image has been often used to measure tissue properties. However, it is 

difficult to compare an intensity of T1-weighted image across brain areas and subjects, since 

image intensity significantly affected by inhomogeneity of the measurements [68]. In order to 

solve this problem, a technique called quantitative MRI (qMRI) has been developed to quantify 

neuroanatomical images [34, 69]. 

 Sereno and colleagues combines proton-density weighted image and T1-weighted 

image, and then measures the nonuniformity of radiofrequency field (B1), so that more 

quantitative MRI index was calculated [69]. Mezer and colleagues combined the Spin-echo 

Inversion Recovery (SEIR) method which is less affected by the bias and the high resolution 

scan (Spoiled gradient echo method), to measure high resolution quantitative MRI data. Their 

measurements provide quantification of the volume of non-proton macromolecules 

(Macromolecular Tissue Volume; MTV).  

These measurements from qMRI have been proven to be highly reproducible [34] and 

also be correlated with histological measurements on myelin [70]. Furthermore, by combining 

with dMRI-based tractography, we could measure qMRI measurements along white matter 

tracts in order evaluate white matter disorder [34] and aging [52]. In this dissertation, I used 

MTV to measure microstructural properties of white matter tracts. 

1.2.4 Current stimulation 

There are mainly two types of non-invasive brain stimulation methods, magnetic 

stimulation and electrical stimulation. In magnetic stimulation such as transcranial magnetic 

stimulation (TMS) [71], neuronal axons are directly stimulated by pulsed magnetic field change, 

whereas transcranial direct current stimulation (tDCS) [72] changing the membrane potential of 

neurons affects firing rate. Although the current used in tDCS is about 1 mA, which is very 

weak, it has been shown that permeation of current through the scalp can cause long-term 

change in neural activity. It is thought that tDCS changes the excitability of the targeted brain 

region depending on the polarity of the electrode and its effect lasts from several minutes to 
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several days after the end of stimulation. Stimulation by the anode side may temporarily 

enhances the excitability of the site under stimulation and improve the cognitive function. On 

the other hand, stimulation by the cathode side suppresses the excitability of neurons. From 

such effects, the possibility of application such as the rehabilitation effect on patients with 

stroke and the effect of improving cognitive ability in healthy participants is beginning to be 

studied. 

Transcranial Alternating Current Stimulation (tACS) [73] is a transformation method of 

tDCS, which has been demonstrated to be effective in recent years, to AC stimulation. Previous 

studies have demonstrated that it is possible to change neural activity sufficiently by flowing 

tDCS with about 1 mA for 5 - 10 minutes [72]. Therefore, also in tACS, it is expected that a 

biophysical meaningful current reaches the cerebral cortex and weakly influence the membrane 

potential of nerve cells. One of the features of tACS not found in tDCS is a 

frequency-dependent effect in the brain. It is expected that the neural oscillation is amplified by 

the current stimulation causing resonance phenomena when giving tACS close in frequency to 

the periodical activity in the brain. Based on these characteristics, tACS is considered to be 

suitable for changing neural activity having specific periodicity such as alpha oscillation. In 

addition, a certain effect is expected also for visual perception having periodicity like the 

illusory jitter used in this study. 

A problem in handling tACS is that tACS itself causes artifacts in measured signals. 

Since tACS current is overwhelmingly larger than neural oscillations, the observation of neural 

oscillations is difficult during current stimulation. For this reason, the assumption that tACS 

entrains the neural oscillations in a specific frequency has not been demonstrated by actually 

observing changes in neural activity. Previous studies have evaluated the effect of tACS on 

neural oscillations from observing some sustained effect after giving tACS. For example, it has 

been reported that the amplitude of the alpha oscillation remains to be increased after the 

occipital area is stimulated for about 10 minutes in the alpha band (8 - 13 Hz). In addition, when 

tACS in the delta band (0.5 - 4 Hz) is given during sleep, it is observed that the phase-locked 

EEG persists even after the current stimulation [74]. 

As described above, since the current noise is too large in the conventional tACS, it is 

difficult to measure the electroencephalogram during the electrical stimulation. Therefore, in 

this research, in order to reduce the current noise, we adopted a method of amplitude 

modulation of high frequency tACS. 
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In recent years, Witkowski and colleagues succeeded in measuring MEG data that does 

not include current-derived noise by using an alternating current stimulus whose amplitude is 

modulated in the high frequency [75]. For example, the amplitude of the tACS with 2 mA 

having a carrier frequency of 220 Hz is modulated so that the modulation frequency is 11 Hz. 

This method enables us to observe the neural activity at around target frequency band during 

the current stimulation (see 2.3 Method). 

1.3 The purpose of this thesis 

From the above background, I will describe the purpose of this research. The aim of this 

research is to essentially understand the characteristics of the alpha oscillation. To that end, I 

investigate alpha oscillation from two viewpoints and comprehensively discuss the findings. In 

particular, I think it is vital to investigate both visual functional role and neuroanatomical 

substrate of alpha oscillations. Based on this motivation, I mainly conducted two experiments. 

First, to examine the role of alpha oscillation in visual perceptual information processing, I 

conduct the experiments combining human psychophysical experiments and 

electroencephalogram measurements, and examine the relationship between the characteristics 

of alpha oscillations and illusory jitter perception (chapter 2). Next, in order to investigate the 

involvement of the fundamental characteristics such as the power and frequency of alpha 

oscillations in the microstructural properties of the white matter tracts, I performed dMRI 

measurement and compared it with the MEG data at the rest (chapter 3). 
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2 The relationship between alpha oscillations and illusory jitter 

2.1 Effects of inter-individual variation in resting state PAF on jitter frequency 
 

2.1.1 Methods 

Participants 

Twelve (3 females; age range: 22–53 yr) participants (all males; age range: 22–53 yr) 

took part in the experiments 1. All participants gave their written informed consent to 

participate and had normal or corrected-to-normal vision. The ethics committee of the National 

Institute of Information and Communications Technology (NICT) approved all experimental 

procedures. 

 

MEG measurement 

MEG measurement was conducted in a magnetically shielded room, using a 

360-channel whole head MEG system (Neuromag® 360, Elekta) composed of 204 planar 

gradiometers, 102 magnetometers, and 54 axial gradiometers. A sampling frequency of 

magnetic signals was at 1000 Hz. Two hundred planar gradiometer channels were used for the 

analysis as they have relatively high signal-to-noise ratios. The planar gradiometers consist of 

two coils measuring spatial derivatives of magnetic fields along the surface. Pairs of planar 

gradiometers were located at 102 positions and measure the derivatives in orthogonal directions 

(x and y). First, I performed a Fast Fourier Transforms (FFT) analysis for each planar 

gradiometer and summed the power of the two gradient components at the same location, 

termed combined channels. I then plotted a topographic map and selected channels whose 

amplitude were maximum. In this experiment, artifacts generated from blinks or heart beats 

were removed by independent component analysis (ICA); bandpass filtering between 1 and 40 

Hz was then applied before FFT analysis. 

Apparatus and visual stimuli 

Visual stimuli were presented on a translucent screen in a magnetically shielded room 

by using an LCD projector (PT-DZ680, Panasonic). The span of projector was 34.8 × 26.1 deg 

of the visual angle (800 × 600 resolution) and refresh rate was a 60 Hz. 

To estimate the perceived frequency of an illusory jitter, a visual stimulus for illusory 

jitter was presented in the upper visual field. Simultaneously, a visual stimulus for physical 

jitter was presented in the lower visual field. For both visual stimuli of illusory and physical 
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jitter, a vertical bar [0.5 × 2.9 deg (W × H)] at the center of a red square [2.9 × 2.9 deg (W × H)] 

moved across a black background at the speed of 5.1 deg/s (Figure 2.1.2A). The center of the 

red square was located 3.6 deg above or below a fixation point. The luminance of a green bar 

for the illusory jitter was isoluminant with the surrounding red square, whereas that of a bar for 

the physical jitter was black. The black bar physically moved sinusoidally in horizontal 

directions to mimic an illusory jitter. At the first phase of the experiment, I adjusted the green 

luminance for the illusory jitter [CIE 1931: x = 0.36, y = 0.61, luminance = 19.2–25.9 cd/m
2
] to 

be perceptually isoluminant with red [CIE 1931: x = 0.66, y = 0.34, luminance = 21.8 cd/m
2
] 

using a flicker method [76] on each participant. All visual stimuli were made using 

Psychtoolbox 3 [77] that runs on Matlab. 

Procedure for experiment 1 

To investigate the effects of inter-individual variation in resting state PAF on jitter 

frequency, I compared the perceived jitter frequency of each individual participant with resting 

state PAF. To estimate PAF, I measured MEG data in the resting condition in a session which is 

separate from the illusory jitter frequency measurement. Participants were instructed to open 

and close their eyes for 30 s in response to a sound cue in a dark room, which was repeated 6 

times. Therefore, I obtained MEG data for total 3 min in the eyes-open and -closed resting 

conditions.  

 

Figure 2.1.1：Time course of the MEG measurement in the resting condition 

 

To estimate perceived jitter frequency (Figure 2.1.2B), I conducted the psychophysical 

experiment whose trial composed of a 2-s stimulus presentation period and a 2-s response 

period. Participants were instructed to judge whether a physical jitter, presented in the lower 

visual field, was faster than an illusory jitter, presented in the upper visual field, by pushing one 

of two buttons. The frequency of the physical jitter was selected randomly from seven levels 
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(5.5, 6.7, 7.5, 8.6, 10.0, 12.0, and 15 Hz). In total, twenty trials were repeated for each 

frequency of the physical jitter.  

     

 
Figure 2.1.2: Visual stimuli for estimation of illusory jitter frequency 

 

Analysis 

I analyzed MEG data by using FieldTrip toolbox [78] running on Matlab. Data 

throughout the manuscript are presented by mean ± SEM. Details of n for each experiment 

indicate the number of participants. A significant p-value was 0.05. 

I first applied FFT analysis on MEG data within 10-s time windows (10,000 

time-points) shifted by 1 s and averaged 126 spectra (21 spectra per each 30-s period). I then 

selected 5 combined channels (10 planar gradiometers) which had the largest alpha amplitude 

for each participant. From these, I defined the peak alpha frequency (PAF) and the peak alpha 

power (PAP) from the frequency of the maximum power in the alpha band (8–13 Hz). As a 

control, I also estimated the peak beta frequency. Linear regression was applied to fit a linear 

model to the log-transformed spectrum in the beta range (13–30 Hz) [8]. The fitted linear trend 

(1/f component) was subtracted from the spectrum because of the smaller peaks in the beta 

range. I then defined the peak beta frequency (PBF) and power (PBP) from the frequency which 

had the maximum power in the beta band (15–25 Hz). The value of the PBP was estimated 

using the original spectrum before subtracting the linear trend was used. I estimated the beta 

frequency/power only during the eyes-closed resting condition because the beta peak did not 

clearly appear during the eyes-open resting condition for a few participants. 

For the psychophysical data, I plotted the response rate as a function of physical jitter 

frequency and fitted a cumulative Gaussian function for each participant. The frequency of 

perceived illusory jitter was defined as the frequency corresponding to a 50% response rate. 

Finally, I calculated the correlations between the perceived jitter frequency and the peak 
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alpha/beta amplitude/frequency (n = 12). 

 

2.1.2 Results 
 

 
Figure 2.1.3: The distribution map of selected gradiometer channels and power spectra of all 

participants 
 

 

Figure 2.1.4：The correlation between the amplitude/frequency of the neural oscillations and 

the frequency of illusory jitter. 
 

I show a typical power spectrum of MEG in the eye-closed resting condition in Figure 

2.1.4A. A peak clearly appeared in the alpha band (8–13 Hz). Figure 2.1.4B shows the function 

of the physical jitter frequency for the same participant. The PAF in the eyes-closed resting 

condition (8.8 Hz) of this participant matched well with the perceived jitter frequency (8.6 Hz). 

Figure 2.1.3 shows the spectra of all participants. I then statistically compared the individual 
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resting alpha frequency with the illusory jitter frequency for all participants (n = 12, Figure 

2.1.4C). I found there was a significant correlation between the illusory jitter frequency and 

PAF during the eyes-closed resting condition (r = 0.84, p = 0.0007). The perceived jitter 

frequency was also significantly correlated with PAF during the eyes-open resting condition (r 

= 0.87, p = 0.0002). Overall, PAFs in the eyes-closed condition were slightly lower than those 

in the eyes-open condition (9.5 ± 0.2 vs 10.0 ± 0.3 Hz, respectively; t(11) = 2.34, p = 0.039, 

two-tailed paired t-test) I think this tendency may reflect the decrease in PAF along drowsiness 

or decreased alertness [79, 80]. I confirmed that the PAF during illusory jitter perception, 

measured in the following experiment for source localization, was also significantly correlated 

with illusory jitter frequency (r = 0.80, p = 0.005). In contrast to PAF, the peak amplitude of the 

alpha oscillation was not correlated with the perceived jitter frequency (eyes-closed: r = −0.16, 

p = 0.62, Figure 2.1.4D; eyes-open: r = −0.37, p = 0.24). In addition, neither the PBF nor the 

PBP were correlated with perceived jitter frequency (BPF: r = 0.17, p = 0.60, Figure 2.1.4E; 

BPB: r = −0.21, p = 0.52, Figure 2.1.4F). These tendencies indicated that the illusory jitter 

frequency is associated only with the intrinsic PAF, rather than with the PAP, PBF or PBP. 

2.1.3 Discussion 

This experiment revealed that the the perceived frequency of the illusory jitter 

correlated with the inter-individual variation in the alpha frequency. The measurement of the 

alpha frequency at the resting state is conducted, separated from a session for estimating the 

illusory jitter frequency. Therefore, the frequency of the resting intrinsic alpha oscillation is not 

affected by the perception of illusory jitter. This finding implies that the illusory jitter 

perception is derived from the rhythm of the intrinsic alpha oscillation rather than that the 

perceived illusory jitter modulates the frequency of the intrinsic alpha oscillations.  

As well as this experiment, there are several previous studies indicating the correlation 

between the illusory perception and the alpha oscillation. A study using a flickering wheel 

illusion [9] whose center at the periphery is perceived as flickering showed that the frequency 

of alpha amplitude most largely modulated by the flicker perception was significantly 

correlated with the individual PAF measured during the resting state. Although the study has 

not directly shown the correlation between the perceived flicker frequency and PAF during the 

resting state, partly because of relatively large variations (2–20 Hz) in the perceived flicker 

frequency, the phenomenon might be related to the current finding in the sense that the 

frequency of the intrinsic alpha oscillations is tightly related to the visual perception. The result 
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in my experiment is novel in the sense that the PAF during rest was correlated with illusory 

jitter frequency itself. Sound-induced double flash illusion is also a similar phenomenon with 

the motion-induced spatial conflict. In this illusion, an illusory double flash is perceived while 

one flash is simultaneously presented with two sounds [21]. A threshold of the sound interval 

for illusory flash perception is around 100 ms, and the threshold was negatively correlated with 

the individual alpha frequency in the task. Moreover, a threshold of the inter-stimulus interval 

at which two continuous flashes can be distinguished from a single flash was negatively 

correlated with the eye-closed resting PAF [10]. These findings are compatible with the finding 

in my study showing that the alpha frequency during the rest and during illusory jitter 

perception was correlated with perceived jitter frequency. 

 

2.2 Effect of intra-participant variation of PAF on jitter frequency 

2.2.1 Methods 

Participants 
 

Ten (all males; age range: 22–53 yr) took part in this experiment. All participants gave their 

written informed consent to participate and had normal or corrected-to-normal vision. The 

ethics committee of the National Institute of Information and Communications Technology 

(NICT) approved all experimental procedures. 

 

MEG measurement 

 I used the same measurement parameters and conducted the same preprocessing of 

MEG data as in Section 2.1. However, this measurement was conducted with a sampling rate of 

5000 Hz. 

 

Apparatus and visual stimuli 

 Apparatus and parameters for visual stimulus presentation are the same as Chapter 2.1. 

 

 

Procedure for experiment 2 

In experiment 2 (Figure 2.2.1), I studied how spontaneous fluctuations in intrinsic alpha 

frequency within participants affected illusory jitter frequency. MEG was continuously 

measured during the experiment including each trial consisted of 8 s. After the blank period of 2 
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s (pre-stimulus period), visual stimuli for illusory jitter were presented in both the lower and 

upper visual fields for 2 s (stimulus period). After the blank period of 2 s (post-stimulus period), 

following the stimulus period, the color of a fixation point turned to red from white  for 2 s 

(response period). At this time, the participants were instructed to judge whether the frequency 

of illusory jitter in the current trial was faster or slower than the pre-memorized mean frequency 

by pushing one of two buttons. At the first phase of this experiment, participants were 

instructed to go through a practice with the same stimulus and task. In total, participants 

completed one or two practice sessions (50 or 100 trials) until the average response rate within 

a session became 40%–60%. Once the practice was completed, participants engaged in 300 

trials for the main experiment. 

 

 

Figure 2.2.1：Time course of visual stimuli to estimate the perceived frequency of illusory 

jitter. 
 

 

Analysis  

I analyzed MEG data by using FieldTrip toolbox running on Matlab, ANOVA by using 

IBM SPSS. Data throughout the manuscript are presented by mean ± SEM. Details of n for each 

experiment indicate the number of participants. A significant p-value was 0.05. 

Trials were divided into faster and slower perceived jitter trials based on behavioral 

response. To equate the number of trials between faster and slower jitter trials, and thus the 

signal-to-noise ratio of MEG data, 100 trials were randomly chosen from each group of trials. 

I selected 5 combined channels (10 planar gradiometers) which had the largest alpha 

amplitude from an averaged spectrum of data without using the response period of 200 (100 
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faster and slower) trials. I performed FFT analysis with a Hanning taper on the data of 4 

periods (−2 to −1 s, −1–0 s, 0–1 s, 1–2 s, 5000 time-points each). Then the data were 

zero-padded to 10 s (50,000 time-points). I averaged the spectrum across 100 faster and 

slower trials separately. PAF of each group of trials was defined as the frequency of 

maximum amplitude in the alpha band. I performed paired t-test (n = 10) to compare the 

frequency of four periods between the faster and slower trials. Bonferroni correction was used 

to correct p-values. 

To examine how the amplitude and phase of alpha oscillations affect illusory jitter 

frequency, I calculated the amplitude and phase at each time-frequency point by using 

wavelet analysis (−1.5–1.5 s from stimulus onset at 50 ms intervals, frequencies increasing 

logarithmically from 3 to 40 Hz while the number of cycles in each wavelet increases linearly 

from 3 to 12 cycles). Then I calculated the amplitude difference and phase opposition sum 

[81] between the faster and slower trials at each point in the time-frequency plane for each 

participant. For the statistical analysis, I utilized a method called “Permutation + z-score Test” 

[81]. Namely, the amplitude difference and phase opposition sum were recomputed after 

randomly permuting the faster and slower jitter trials. The permutation test was repeated for 

1000 times. Subsequently, I expressed the difference between the original dataset and the mean 

of all permutations in units of standard deviation across all permutations. I obtained the 

time-frequency map of p-values by using means of the normal cumulative distribution function. 

To combine the time-frequency maps of p-values across participants, I converted the p-value 

into an equivalent z-score with the inverse normal cumulative distribution function. The 

z-scores are combined across observers and finally turned back into probabilities [82]. To 

correct for multiple comparisons, I analyzed the distributions of p-values with the false 

discovery rate (FDR) procedure [83] to compute a p-threshold that set the expected rate of 

falsely rejected null hypotheses to 5%. 
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2.2.2 Results 
 

 
Figure 2.2.2: The distribution map of selected gradiometer channels and power spectra 

of all participants 

 

 

 
Figure 2.2.3: Dependence of perceived jitter frequency on the intra-participant variation 

of alpha frequency 

 

Figure 2.2.3A shows a power spectrum showing a clear difference for the 1-s period just 

before stimulus onset. I found that PAF of slower trials was 1.2 Hz slower than that for faster 

trials [PAF for slower trials = 9.2 Hz, PAF for faster trials = 10.4 Hz]. Figure 2.2.3B shows the 

difference in PAF between the faster and slower trials. The difference was averaged across 

participants (n = 10, Figure 2.2.2 for the spectra of all participants). I found a significant 

difference in PAF for the 1-s period just before stimulus onset by applying the Bonferroni 

correction for multiple comparisons across four 1-s periods surrounding the stimulus onset [t(9) 

= 3.68, p = 0.020, Bonferroni-corrected two-tailed paired t-test]. I also found the marginally 

significant difference in PAF for the 1-s period during the stimulus presentation (0–1 s) [t(9) = 

2.79, p = 0.084, Bonferroni-corrected two-tailed paired t-test].  
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To test how the power and phase of alpha oscillations affect perception of illusory 

jitter frequency, I calculated the power and phase at each time-frequency bin (from −1.5 s to 

1.5 s from stimulus onset at 50 ms intervals, frequencies increasing logarithmically from 3 to 

40 Hz while the number of cycles in each wavelet increases linearly from 3 to 12 cycles) by 

using the data in the experiment 2. Figure 2.2.4 shows the p-value distributions for the power 

difference and phase opposition sum between slow and fast PAF groups at around the stimulus 

onset computed by using permutation + z-score test. As a result, there was no time-frequency 

point with significant p-value about the power difference and phase opposition sum from 

z-score that satisfy a false discovery rate (FDR) of 5%. These results support the idea that 

illusory jitter specifically reflects the frequency of alpha oscillations. 

 

Figure 2.2.4: Time and frequency map of p-value for the power difference and phase opposition 

sum between slow and fast PAF groups at around the stimulus onset computed by using 

permutation + z-score test. 
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2.2.3 Discussion 

The experiment 2 in my study indicated a change in PAF just before stimulus onset 

correlated with the perceived jitter frequency, which suggests that the illusory jitter frequency 

changed along the spontaneous fluctuation of PAF just before the stimulus presentation. While 

several studies [6, 14, 15, 84-88] have reported across-trial changes in visual perception 

correlated with the alpha phase at the stimulus onset, I think this is the first finding that has 

reported an association between the spontaneous fluctuation of alpha frequency and perception. 

A significant point of this experiment is that the spontaneous fluctuation of the intrinsic 

alpha oscillations was utilized without modulating the alpha oscillations by external stimulation. 

In the case that alpha oscillation is modulated by an external stimulation, it is difficult to verify 

that the observed change is equal to the change in the intrinsic alpha oscillation due to the 

artifacts from external stimulation. Since the spontaneous fluctuation of the alpha oscillation is 

the intrinsic phenomenon, which enables us to more clearly elucidate the relationship between 

the alpha oscillations and the visual perception. 

As the task in the current experiment was based on memorized mean of illusory jitter 

frequency, I cannot completely exclude the possibility that a fluctuation of the pre-stimulus 

PAF was associated with a non-perceptual process such as memory of the mean illusory jitter 

frequency. However, I think that the results of experiments 1 and 2 consistently suggest the 

tight coupling between PAF and illusory jitter frequency. I believe that the participantive 

response in this experiment (relatively fast or slow jitter) primarily reflects a perception instead 

of a non-perceptual process. 

Experiments 1 and 2 in my study suggest that the illusory jitter frequency is correlated 

not only with inter-individual but with intra-participant variation in the alpha frequency. 

Nonetheless, it remains possible that a direct causal link between neural oscillation at the alpha 

frequency and jitter perception does not exist. To obtain more direct evidence for the 

involvement of neural oscillations in the illusory jitter perception, I performed experiment 3 to 

determine whether manipulation of PAF by current stimulation results in a change in the 

perceived jitter frequency. 
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2.3 Effect of the manipulation of PAF by AM-tACS on jitter frequency 

2.3.1 Methods 
 

Participants 
 

Twelve participants (all males; age range: 22–53 yr) took part in the experiments 3. 

Three (all males; age range: 22–38 yr) and 8 (all males; age range: 20–53 yr) participants took 

part in the two control experiments to study the possible involvement of phosphine perception. 

Six participants (all males; age range: 22–38 yr) took part in the control experiment for eye 

movements. All participants gave their written informed consent to participate and had normal 

or corrected-to-normal vision. The ethics committee of the National Institute of Information 

and Communications Technology (NICT) approved all experimental procedures. 

 

 

MEG measurement 

 I used the same measurement parameters of MEG data as in Section 2.2 (a sampling 

rate of 5000 Hz). In the analysis, I applied the temporal signal space separation (tSSS) [43] with 

bandpass filtering between 1 and 40 Hz. I then removed artifacts originating from blinks or 

heart beats by ICA before FFT analysis. 

 

Apparatus and visual stimuli 

 Apparatus and parameters for visual stimulus presentation are the same as Chapter 2.1 

and 2.2. 
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Figure 2.3.1：The time course of stimulus and task in experiment 3 
 

 

 

Procedure for experiment 3 

In experiment 3, I tried to modulate the individual PAF by current stimulation. During 

the current stimulation, I measured both PAF and the illusory jitter frequency. I used a 

commercial stimulator for controlling current stimulation (NeuroConn, DC-stimulator MR) in 

the magnetically shielded room. Two electrodes (5 × 7 cm
2
) were placed at the parietal and 

occipital areas with saline solution. The positions roughly correspond to Pz and Oz in 10–20 

Electroencephalography (EEG) system, respectively (Figure 2.3.2A). The DC-stimulator was 

connected to the battery-driven stimulator device located outside the magnetically shielded 

room. The outer stimulator delivered electrical currents via a twisted pair of wires with a 

peak-to-peak intensity of 2 mA. The current output of the DC-stimulator was proportional to 

the electric potential generated by a multifunction DAQ (USB-6211, National Instruments). 

The DAQ was controlled via a Data acquisition toolbox running on Matlab.  

 

 

Figure 2.3.2: (A) The position of current stimulation for each participant. (B) The 

waveform of current stimulation from the DC-stimulator MR (Neuro Conn) controlled by the 

electric potential which is generated by a multifunction DAQ 

 

In order to measure the MEG during current stimulation, I utilized amplitude 
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modulation (AM) of electric current [75]. The amplitude modulated (AM) waveforms can be 

described by a combination formula of trigonometric functions related to time and voltage, 

including in the carrier waveforms and modulated waveforms. 

The voltage cv  of the carrier waveforms is 1-19, where the amplitude is cV , and the 

angular frequency of signal waveforms is )2( cc f  . 

 

191cos  　　　　　　　　　　　　　　　　　　　　　　　　　 tVv ccc   

 

 

Similarly, the voltage sv  of the signal waveforms can be expressed as 1-20, where the 

amplitude is sV , and the angular frequency of the signal waveforms  is )2( ss f  . 

 

 

201cos  　　　　　　　　　　　　　　　　　　　　　　　　　 tVv sss   

 

 

At this time, the amplitude mV  of the modulated carrier waveforms is 1-21.  

 

201cos  　　　　　　　　　　　　　　　　　　　　　　　　　 tVv sss   

 

 

The modulated waveform mv  is described as 1-22.  
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Here, cs VVm   is a modulation degree, which is defined as a ratio between the 

amplitude of the signal waveforms and the amplitude of the carrier waveforms. sc    is 

called an upper waveforms, and sc    is called a lower waveforms.  

In the frequency spectrum of the AM waveforms, as can be seen from Figure 2.3.3, the 

peaks are only in three positions c , sc   , sc   , ideally no noticeable peak appears at 

the modulation frequency s . From the above points, AM-tACS has an advantage that MEG 
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measurement can be performed without generating current noises in the target frequency band 

while giving current stimulation of modulation frequency s .  

In this experiment, I will take this advantage and aim to manipulate the frequency of 

illusory jitter into the modulation frequency of AM-tACS and also try to observe the change in 

alpha oscillations during current stimulation. 

 
 

Figure 2.3.3: Frequency spectrum of AM-tACS with carrier frequency of 200 Hz and 

modulation frequency of 10 Hz 
 

This waveform pattern reduces the artifact of current stimulation at the modulated 

frequency. In this experiment, the carrier frequency was set 200 Hz and its amplitude was 

modulated at PAF ± 1 Hz Figure 2.3.2B). I measured PAF in the eyes-open resting state for 1 

min in a session before the main experiment for each participant. This frequency was used to set 

the frequency of current stimulation.  

The current stimulation conditions were kept constant at either PAF + 1 Hz, no 

stimulation, or PAF − 1 Hz in each block of 64 s. The current amplitude was ramped up and 

ramped down at the first/last 4 s of the block, respectively. The average of current amplitude 

was kept constant for the middle 56-s when the psychophysical experiment was conducted. 
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During the no stimulation condition, no current stimulation was generated over the whole 

period of the block. The order of stimulation within each set of three blocks was either PAF + 

1 Hz, no stimulation, and PAF − 1 Hz or PAF − 1 Hz, no stimulation, and PAF + 1 Hz. The 

set of three blocks was repeated 5 times in random order. There were 14 trials (4 s each) for the 

measurement of illusory jitter frequency in each block. Then participants were instructed to 

judge whether a physical jitter stimulus in the lower visual field was faster than an illusory jitter 

stimulus in the upper visual field. Seven physical jitter frequencies were repeated twice in 

random order within each block. In total, 20 trials were conducted of each physical jitter 

frequency in each of three current stimulation conditions. I continuously recorded MEG 

responses in this experiment. 

 

Retinal stimulation control 

To investigate a possible effect of the retinal stimulation [89-91] for illusory jitter 

perception, I asked participants whether they perceived phosphene after the experiment 3. 

Furthermore, to test whether participants can distinguish three current stimulation conditions, 

possibly with phosphene or a cutaneous sensation, I performed another experiment on 3 

participants in experiment 3 (all males; age range: 22–38 yr). The participants conducted the 

same task as experiment 3 in a block of 64 s whose current stimulation conditions were selected 

either AM-tACS at PAF ± 1 Hz or no stimulation. Then participants were instructed to report 

which current stimulation was given by pushing one of three buttons. In total, there were 21 

blocks in each of three current stimulation conditions.  

Finally, to study the possible effect of subthreshold retinal stimulation by current 

stimulation on the perception of illusory jitter, I repeated experiment 3 with the central 

electrode (C3-C4) for 8 participants (all males; age range: 20–53 yr). This setting of electrode 

position was anticipated to have similar retinal effects (if any), without modulating the PAF. 

 

Eye movement control 

I also repeated experiment 3 for 6 participants (4 participants in the main experiment 

showing relatively large modulation in PAF and 2 new participants) during simultaneous 

measurement of eye movements using EyeLink 1000 Plus (SR Research). I measured only 

left-eye data. I then computed the standard deviation of eye position and velocity, blink rate, 
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and microsaccade rate. It is assumed that the standard deviation of the eye position and velocity 

correspond to fixation precision and drift amplitude [92], respectively. I used an unsupervised 

clustering method [93] for microsaccade detection. 

 

Analyses 

I analyzed MEG data by using FieldTrip toolbox running on Matlab, ANOVA by using 

IBM SPSS, and multinomial logistic regression by using SAS. Data throughout the manuscript 

are presented by mean ± SEM. Details of n for each experiment indicate the number of 

participants. A significant p-value was 0.05. 

I analyzed the data of each block after excluding the ramp-up and ramp-down periods. I 

first applied a 40-Hz low-pass filter to the raw MEG data after applying the tSSS method [43]. 

Although an AM signal contains power only at around the carrier frequency in theory, the 

artifacts still exist because of the nonlinearity of the DAQ system generating the current 

stimulus. So I applied tSSS to remove AM-tACS artifacts at around the AM frequency. In the 

tSSS method, I reconstructed MEG data consisting of waveforms that were derived from neural 

activity inside the scalp. I removed the waveforms derived from the artifacts originating outside 

the scalp. After preprocessing, the data were divided into 10 × 56-s data for three conditions 

(AM-tACS at PAF ± 1 Hz, or no stimulation). I performed FFT analysis with a Hanning taper 

on the data of each block (5000 time-points) that were zero-padded to 10 s (50,000 time-points). 

FFT analysis were applied at 1-s time windows (5000 time-points) that were zero-padded to 10 

s (50,000 time-points), shifted by 1 s. I averaged 560 spectra (56 spectra per each 56-s period). 

Finally, I selected 5 combined channels (10 planar gradiometers) which had the largest alpha 

amplitude and defined PAF as the frequency of maximum power in the alpha band (8–13 Hz). 

To verify the removal of the electrical artifact from the MEG data, I computed a 

correlation of the topographic map of the alpha amplitude map (8–13 Hz) between the no 

stimulation and current stimulation conditions before and after the tSSS (n = 12, Figure 2.3.4). 

As for the psychophysical data, I plotted the response rate as a function of physical jitter 

frequency and fitted a cumulative Gaussian function in each stimulation condition of each 

participant. I defined the individual illusory jitter frequency for each condition as the frequency 

corresponding to a 50% response rate. 

Finally, I calculated the correlation between the change in the illusory jitter frequency 



 

 

 

42 

 

and the change in the PAF (either PAF + 1/PAF − 1 Hz vs no stimulation or PAF + 1 vs PAF 

− 1, n = 12). 

Retinal stimulation control 

As for the discrimination experiment, I tested whether participants can distinguish 

among current stimulation conditions. Therefore, I used a multinomial logistic regression 

analysis (n = 3) to test whether the response category (PAF + 1 Hz, PAF − 1 Hz, and no 

stimulation) can be predicted by the frequency of current stimulation (PAF + 1 Hz, PAF − 1 

Hz, and no stimulation).  

As for the experiment with the central electrodes, I used two-way repeated measures 

ANOVA (n = 12 and n = 8 for parieto-occipital and central electrodes, respectively) to test 

whether the frequency of current stimulation (PAF + 1 Hz, PAF − 1 Hz, and no stimulation) 

and electrode position (parieto-occipital and central) affect the PAF and illusory jitter 

frequency. 

Eye movement control 

I used one-way repeated measures ANOVA (n = 6) to test whether the frequency of 

current stimulation (PAF + 1 Hz, PAF − 1 Hz, no stimulation) affects the PAF, illusory jitter 

frequency, standard deviation of eye position and velocity, blink rate, and microsaccade rate. 

 

2.3.2 Results 
 

I recorded MEG responses to observe the change in PAF by AM-tACS at the 

parieto-occipital area. Simultaneously, I measured illusory jitter frequency during current 

stimulation. Similar to the psychophysical measurement during experiment 1, participants were 

instructed to judge whether a physical jitter in the lower visual field was faster than an illusory 

jitter in the upper visual field. There were three conditions of AM-tACS consisting of AM 

frequency of PAF + 1 or PAF − 1 Hz, and no stimulation.  
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Figure 2.3.4: Topographic maps of the alpha power for each current stimulation condition 

of experiment 3 for all participants 
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Figure 2.3.5: Distribution maps of selected channels and the power spectra of MEG data for all 

participants 
 

 
Figure 2.3.6: Manipulation of alpha frequency and illusory jitter by AM-tACS 
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Figure 2.3.7: Control experiments to study the possible involvement of retinal stimulation by 

AM-tACS 
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Figure 2.3.8: Difference in eye movements across different current stimulation conditions 

 

After I confirmed that the MEG signals during current stimulation are free from its 

artifact (Figure 2.3.4), I analyzed the modulation in PAF by current stimulation. Figure 2.3.6A 

shows an example of the power spectrums for three current stimulation conditions after 

applying tSSS (Figure 2.3.5 for the averaged positions of the channels and the spectra of all 

participants). I found that the PAF during AM-tACS at PAF + 1 and PAF − 1 Hz was higher 

(10.1 Hz) and lower (8.1 Hz) than PAF in the no stimulation condition (9.3 Hz), respectively. 

Further, the illusory jitter frequency for the same participant during PAF + 1 or PAF − 1 Hz 

was faster (10.6 Hz) or slower (9.1 Hz) than the no stimulation condition (9.9 Hz), 

respectively (Figure 2.3.6B). Figure 2.3.6C shows a relationship between the change in PAF 
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and illusory jitter frequency, which was relative to the no stimulation condition for both PAF 

+ 1 and PAF − 1 Hz conditions, for all participants (n = 12). Figure 2.3.6D shows a 

relationship between differences in PAF and illusory jitter frequency between PAF + 1 and 

PAF − 1 Hz stimulation conditions for all participants (n = 12). Each of these plots showed a 

strong correlation [r = 0.72, p = 0.0001; r = 0.90, p = 0.0006, respectively].  

It is widely known that tACS at around the PAF induces phosphene due to direct 

stimulation of the retina [89-91]. People may wonder whether phosphene, or cutaneous 

perception originating from AM-tACS may have an effect on the measurement of illusory jitter 

frequency during current stimulation. However, I do not think this suggestion is plausible 

because no participant reported that they perceived phosphene in the experiment 3, and an 

additional experiment indicated that participants could not discriminate current stimulation 

conditions (Figure 2.3.7A).  

To further verify the possible effect of subthreshold retinal current stimulation on 

illusory jitter frequency, I repeated experiment 3 (n = 8) with the central electrode (C3-C4), and 

anticipated that the experiment has similar or even larger retinal effects (if any), without 

changing the PAF. As a result, I found that the modulation in PAF and illusory jitter frequency 

was not significant for the central stimulation [F(2, 14) = 0.64, p = 0.54, F(2, 14) = 0.23, p = 

0.80, respectively, two-way repeated measures ANOVA, the simple main effect of current 

frequency] (Figure 2.3.7B), while the change was significant for parieto-occipital stimulation 

[F(2, 22) = 6.15, p = 0.008, F(2, 22) = 6.37, p = 0.007, respectively, two-way repeated measures 

ANOVA, the simple main effect of current frequency]. These results suggest that the change in 

illusory jitter frequency correlated with the modulation in PAF by parieto-occipital stimulation 

didn’t derive from a retinal artifact.  

There is still another possibility that illusory jitter perception induces a small eye 

movement at the same frequency. In the case, the eye movement may be reflected as an increase 

in neural activity at the same frequency. Motion perception in the Enigma illusion is known to 

be driven by microsaccades [94]. I do not believe that the possibility is probable because the 

PAF in the resting state (experiment 1) and that before the stimulus onset (experiment 2), which 

cannot be affected by illusory jitter, showed a clear relationship with the perceived frequency of 

illusory jitter. However, I cannot fully eliminate the possibility that the differences in eye 

movements affected both the PAF and illusory jitter frequency, resulting in the correlation 

between them. To test this possibility, I repeated the experiment 3 (n = 6) while measuring eye 
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movements. While I replicated the change in the PAF and illusory jitter frequency by current 

stimulation [F(2, 10) = 7.15, p = 0.012; F(2, 10) = 15.93, p = 0.001, respectively, one-way 

repeated measures ANOVA], There was no variability among fixation precision, drift 

amplitude, blink rates, or microsaccade rates across current stimulation conditions [F(2, 10) = 

0.19, p = 0.83; F(2, 10) = 0.29, p = 0.76; F(2, 10) = 0.82, p = 0.47; F(2, 10) = 1.14, p = 0.36, 

respectively, one-way repeated measures ANOVA]. This result excludes the possibility that the 

correlation between the PAF and illusory jitter frequency is mediated by the difference in eye 

movements or blinks Figure 2.3.8. 

2.3.3 Discussion 

The experiment 3 in my study indicated that the PAF during AM-tACS was modulated 

toward the target frequency, and simultaneously, the perceived jitter frequency was also 

changed. This finding suggested that the manipulation of PAF by AM-tACS resulted in the 

corresponding change in illusory jitter frequency. In this results, PAF was manipulated for only 

approximately half of the 12 participants so PAF was unchanged for the other half (Figure 

2.3.5). Although the different effects of AM-tACS across participants may be related in part to 

the impedance of electrodes or skull thickness, I cannot identify the exact cause. Thus, in the 

future work, it will be necessary to elucidate the appropriate experimental condition to 

modulate the alpha frequency. 

Consistent with my hypothesis that alpha oscillation is associated with the perception of 

illusory jitter, changes in illusory jitter frequency were only found for the participants whose 

PAF was modulated. These findings support the possibility that change of PAF induced by 

AM-tACS resulted in change in illusory jitter frequency. My pilot experiment suggested that 

modulation in PAF by current stimulation was not sustained after current stimulation offset. I 

think it is consistent with the fact that intrinsic alpha entrainment by tACS or transcranial 

magnetic stimulation (TMS) continues stable only for maximally a few oscillatory cycles after 

stimulation offset [95]. Therefore, I think that measurement of neural oscillation during the 

stimulation was crucial. Here, I succeeded in the simultaneous measurement by combining a 

AM-tACS and a noise reduction technique (tSSS). To the best of my knowledge, this result is 

the first time that manipulation of PAF has been demonstrated. My study also ascertains the 

validity of AM-tACS for inducing neural oscillations by its envelope, a technique that has 

rarely been tested [75]. 
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2.4 Alpha activity during illusory jitter perception 

2.4.1 Methods 

Participants 

Ten participants (2 females; age range: 22–53 yr) took part in the experiment for source 

localization. All participants gave their written informed consent to participate and had normal 

or corrected-to-normal vision. The ethics committee of the National Institute of Information 

and Communications Technology (NICT) approved all experimental procedures. 

 

MEG measurement 

 I used the same measurement parameters of MEG data as in Section 2.1 (a sampling 

rate of 1000 Hz). In the analysis, I applied the temporal signal space separation (tSSS) with 

bandpass filtering between 1 and 40 Hz. I then removed artifacts originating from blinks or 

heart beats by ICA before FFT analysis. 

 

Apparatus and visual stimuli 

 Apparatus and parameters for visual stimulus presentation are the same as Chapter 2.1  

 

Source localization experiment 

To research which brain areas are associated with illusory jitter perception, I performed 

a source localization experiment. The stimulus was the same as in experiment 2 (Figure 2.2.1) 

except that a luminance of the green bar was either isoluminant with (main condition in which 

participants perceive illusory jitter, 200 trials) or darker/brighter than (control conditions in 

which participants rarely perceive illusory jitter, 100 trials each) that of a surrounding red 

square. 

 

Analysis 

I performed a source localization using Dynamic Imaging of Coherent Sources (DICS) 

[47]. I applied the DICS on the Fourier spectra of a 2-s pre-stimulus period and a 2-s stimulus 

period at around the alpha band (8–13 Hz), and calculated the power at the stimulus period 

relative to the power during the pre-stimulus period. 

I used one-way repeated measures ANOVA (n = 10) to test whether the stimulus 

condition (dark, isoluminant, and bright) affects the relative alpha amplitude in the left inferior 

parietal lobe (IPL), the coherence between the left IPL and left IT, and the coherence between 

the left IPL and left superior occipital area (SO). I anatomically defined all regions of interest 
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(ROI) based on the Automated Anatomical Labeling (AAL) atlas [96]. 

2.4.2 Results 

 

First, I confirmed whether the illusory jitter was perceived only in the isoluminant 

condition as in the previous study [25]. As a result, as shown in Figure 2.4.1, the rate of illusory 

jitter perception was approximately 80% in the isoluminant condition, whereas that of illusory 

jitter perception was less than 10% in the dark and the bright conditions. 

 
 

Figure 2.4.1: Perception rate of illusory jitter in the dark, isoluminant, and bright conditions 
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Figure 2.4.2: Source localization analysis of alpha oscillation during illusory jitter perception 

 

 

 

I took the difference of the relative power between the isoluminant and dark conditions 

averaged across all participants (n = 10, Figure 2.4.2A). To equate the number of trials across 

conditions, I randomly selected 100 trials from the isoluminant condition. I observed enhanced 

alpha power around the left inferior parietal lobe (IPL) (Figure 2.4.2B). I confirmed a very 

similar spatial pattern of the contrast between the isoluminant and bright conditions. I found 

that relative alpha amplitude averaged within the anatomically-defined left IPL was 

significantly larger in the isoluminant condition than in the dark and bright conditions (F(2, 18) 

= 4.65, p = 0.024, one-way repeated-measures ANOVA, isoluminant vs bright; t(9) = 3.45, p = 

0.022, isoluminant vs dark; t(9) = 3.21, p = 0.032, Bonferroni-corrected two-tailed paired t test). 
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I then calculated the difference in alpha coherence between conditions to further investigate the 

underlying mechanisms. I found that alpha coherence between the left IPL and the left inferior 

temporal area (IT) was significantly larger in the isoluminant condition than in the control two 

conditions (Figure 2.4.2C, F(2, 18) = 6.74, p = 0.007, one-way repeated-measures ANOVA, 

isoluminant vs bright: t(9) = 3.19, p = 0.033, isoluminant vs dark: t(9) = 3.13, p = 0.036, 

Bonferroni-corrected two-tailed paired t test). On the other hand, alpha coherence between the 

left IPL and the left superior occipital area (SO) did not show significant difference across 

conditions (Figure 2.4.2D, F(2, 18) = 0.46, p = 0.64, one-way repeated-measures ANOVA). I 

think that the increase of coherence between the left IPL and IT does not merely reflect that of 

alpha amplitude in the left IPL. 

2.4.3 Discussion 
 

In experiment 4, I found significantly higher alpha coherence between the IPL and IT in 

the isoluminant condition than in the control conditions. The IPL and IT can be generally 

regarded as the higher areas in the dorsal and ventral streams, respectively. Based on this 

finding, I propose a functional hypothesis of alpha oscillations in visual processing. In the 

motion-induced spatial conflict, moving borders defined by color contrast are perceived to be 

jittering when they are placed in close proximity with those defined by luminance contrast. I 

assume that there are two positional representations of visual stimuli; one in the dorsal and the 

other in the ventral visual pathway. The dorsal stream has high temporal and low spatial 

resolution, whereas the ventral stream has low temporal and high spatial resolution, and these 

two systems behave complementary to each other. In the dorsal pathway where positional 

information is calculated based on speed of motion, the position of a green bar is delayed 

relative to the surrounding red square because of the slower perceived speed of the green bar 

than the red square. In the ventral pathway where positional information is calculated based on 

object detection, the position of the green bar relative to the red square is correctly represented 

at each time point. Here, dissociation between motion-based delayed representation of color 

contrasts and shape-based correct representation is cyclically resolved, causing the 

color-defined edge to make a small, apparent jump, catching up to the luminance edge. I 

speculate that the conflict in positional representation between the dorsal and ventral visual 

areas is resolved at a specific phase of intrinsic alpha oscillation, which is why illusory jitter is 

perceived at the frequency of the intrinsic alpha oscillations. In other words, alpha oscillation 

may involve the interaction between motion and shape processing, which are generally 
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believed to be rather independent. My hypothesis that the illusory jitter is perceived at the 

frequency of intrinsic alpha oscillations suggest that alpha oscillations control the timing of 

interactions between motion-based and shape-based positional representations, which goes 

beyond previous studies suggesting that alpha oscillations are related to the timing of local 

processing [5].  

 

 
 

Figure 2.4.3: The functional role of alpha oscillation 

 

The experiment 4 in my study also indicated that the alpha amplitude in the left IPL 

was significantly increased in the isoluminant condition, compared with the control conditions. 

One possible interpretation for this increase in alpha power is that alpha activities in the IPL 

are related to the generation of illusory jitter. In the motion-induced spatial conflict, as I 

mentioned in the previous paragraph, the position of a green bar in the IPL is delayed, which 

is compensated by the correct positional information in the IT. In Figure 2.4.4, if the 

compensation of the delayed positional representation is reflected in the burst of the spikes or 

gamma oscillations in the IPL at a specific phase of alpha oscillations, the activities of the IPL 

neurons on top of the intrinsic alpha oscillations might result in the increased alpha power, as 

shown in Figure 2.4.2B. Since the burst firing reflecting neuronal representations can be 

regarded as the gamma band activities [48, 56], the increase in alpha power might reflect the 

consequence of cross-frequency phase-amplitude coupling between alpha and gamma 

oscillations. According to these speculations, the alpha coherence between the IPL and IT, as 

well as the increased alpha power in the IPL, might be causally related to illusory jitter 

perception. In order to examine these possibilities in more detail, it is necessary to perform 
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additional experiments.  

One possible approach for testing the causal contribution of the alpha coherence for 

illusory jitter perception is to investigate whether the suppression of alpha coherence between 

the left IPL and IT, possibly by applying focal tACS [43, 97] at the left IPL and IT with the 

opposite or randomly different phases, deteriorates the perception of illusory jitter. If the 

increases in alpha power and coherence during the illusory jitter perception reflect neural 

responses necessary for the perception, suppression of alpha coherence will affect the 

perception. The approach for testing the causal contribution of the burst spikes in the IPL and 

thus the increased alpha power for illusory jitter perception is to first identify neurons in the 

monkey parietal area showing the burst responses at a specific phase of alpha oscillations, and 

then investigate whether deactivation of these neurons, possibly by using muscimol, decreases 

the alpha power in the IPL and deteriorates illusory jitter perception (though I need to invent a 

method to measure illusory jitter perception of monkey).  

 

 

Figure 2.4.4：Two candidates for contributing to illusory jitter perception 
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3 Microstructural properties of visual white matter tracts correlated with 

the inter-individual differences in alpha oscillations 
 

3.1 Methods 

Participants 

A total of 24 participants were recruited in the study (3 females; 22–53 years). All 

participants gave their written informed consent to participate and had normal or 

corrected-to-normal vision. The ethics committee of the National Institute of Information and 

Communications Technology (NICT) approved all experimental procedures. 

The present study consisted of MEG and MRI experiments measuring occipital alpha 

oscillations and the tissue property of the visual white matter tracts, respectively. In each 

measurement, the inter-individual variations in (1) the peak power/frequency of alpha/beta 

oscillations during resting state; (2) the tissue properties of visual white tracts, were studied. 

MEG and MRI measurements were conducted on different days. 

Quantification and Statistical Analysis 

Analyses of MEG data were performed using FieldTrip toolbox running on MATLAB. 

Data throughout the manuscript are presented by mean ± SEM. Details of n for each experiment 

is the number of participants. A p-value of 0.05 was used to define significance. 

MEG measurement 

In a magnetically shielded room, I measured MEG data by using a 360-channel whole 

head MEG system (Neuromag® 360, Elekta) consisting of 204 planar gradiometers, 102 

magnetometers, and 54 axial gradiometers. Magnetic signals were recorded at a sampling 

frequency of 1,000 Hz. Two hundred four planar gradiometers which have high signal-to-noise 

ratios were used for the analysis. The planar gradiometers consisted of two coils that measure 

spatial derivatives of magnetic fields along the surface. Pairs of planar gradiometers, which is 

located at 102 positions, measure the derivatives in orthogonal directions (x and y). I first 

performed a fast Fourier transform (FFT) analysis for each planar gradiometer. I then summed 

the power of the two gradient components at the same location, termed combined channels, 

before plotting a topographic map or selecting channels showing the maximum amplitude. I 

removed artifacts originating from blinks or heart beats using independent component analysis 

(ICA). I then applied bandpass filtering between 1 and 40 Hz before FFT analysis. 

MEG data were measured during the resting state. Participants opened and closed their 
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eyes for 30 s in response to a sound cue in a dark room; this was repeated 6 times. Therefore, I 

obtained MEG data for 3 min in the eyes-open and closed resting conditions. 

I first applied an FFT analysis on the data within 10-s time windows (10,000 

time-points) shifted by 1 s and averaged 126 spectra (21 spectra per each 30-s period). I then 

selected 5 combined channels (10 planar gradiometers, refer above) with the largest alpha 

power for each participant. From these, I defined the peak alpha frequency (PAF) and the peak 

alpha power for each participant from the frequency showing the maximum power in the alpha 

band (8–13 Hz). As a control, I also estimated the peak beta frequency. Linear regression was 

applied to fit a linear model to the log-transformed spectrum in the beta range (13–30 Hz) [8], 

and the fitted linear trend (1/f component) was subtracted from the spectrum because this 

component obscures the smaller peaks in the beta range. I then defined the peak beta frequency 

and power from the frequency showing the maximum power in the beta band (15–25 Hz) for 

each participant. For the estimation of the peak beta power, the original spectrum before 

subtracting the linear trend was used. 

Structural MRI data acquisition 

All MRI data were acquired at CiNet, National Institute of Information and 

Communications Technology, and Osaka University. 

Anatomical MRI data acquisition and tissue segmentation 

T1-weighted MP-RAGE image (1 mm isotropic; TR, 1900 ms; TE, 2.48 ms) were 

measured from all participants (N = 24). An automated procedure in Freesurfer software 

(https://surfer.nmr.mgh.harvard.edu/) was used to determine white/gray matter border which 

was used for subsequent diffusion MRI (dMRI) analyses. The total scan time of acquisition of 

the anatomical MRI data was approximately 15 minutes for each participant. 

Diffusion MRI data acquisition 

dMRI data were measured from all participants (N = 24) using a 3T SIEMENS Prisma 

scanner with a 32-channel head coil. For data acquisition, dual-spin echo planar imaging (EPI; 

TR, 3300 ms; TE, 66.4 ms; multi-band factor, 3; partial Fourier, 5/8; voxel size, 2 × 2 × 2 mm
3
) 

were implemented in multi-band accelerated EPI pulse sequence provided by the Center for 

Magnetic Resonance Research, Department of Radiology, University of Minnesota 

(https://www.cmrr.umn.edu/multiband/).  

Diffusion weighting with b = 300, 1000, 2000 s/mm
2
 were carried out along 6, 30, 64 
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isotropically distributed directions respectively. Each data was acquired with a pair of reversed 

phase-encoding directions (A-P and P-A). In the dMRI session, non-diffusion-weighted with b 

= 0 images were acquired with eight pairs of A-P and P-A directions to minimize EPI distortion. 

The total scan time of dMRI was approximately 25 minutes for each participant.  

Quantitative MRI data acquisition 

Quantitative MRI (qMRI) data were measured from all participants (N = 24) using a 3T 

SIEMENS Trio Tim scanner with a 32-channel head coil. These measurements were followed 

for protocols described in a previous publication [98]. Four Fast Low Angle Shot (FLASH) 

images were measured with flip angles of 4°, 10°, 20°, and 30° (TR, 12 ms; TE, 2.41 ms), and a 

scan resolution of 1 mm isotropic. Five additional spin echo inversion recovery (SEIR) scans 

were also measured with an EPI readout (TR, 3 s; TE, 49 ms; 2× acceleration) to remove field 

inhomogeneities. The inversion times were 50, 200, 400, 1200, and 2400 ms. In-plane 

resolution and slice thickness of the additional scan was 2 × 2 mm
2
 and 4 mm, respectively. The 

total scan time of qMRI was approximately 35 minutes for each participant. 

 

Diffusion MRI data analysis 

Preprocessing 

DMRI images were corrected for susceptibility-induced distortions using FSL TOPUP 

tools [99]. Eddy current distortions and participant motion in the dMRI images were corrected 

using FSL EDDY tools [100]. Finally, dMRI images were aligned into T1-weighted MPRAGE 

image.  

Estimation of ODI 

After preprocessing, Neurite Orientation Dispersion and Density Imaging (NODDI) 

model was fitted to dMRI data by using NODDI MATLAB toolbox to obtain orientation 

dispersion index (ODI) maps in individual voxels [51].  

Tractography on the optic radiation 

The optic radiation (OR) was identified by using a dedicated method (ConTrack) [101], 

because there are known challenges to estimate human OR by using a standard tractography for 

a whole brain, in order to track the crossing fibers around Meyer’s loop [102]. First, the 

approximate location of the lateral geniculate nucleus (LGN) was estimated on manual 
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inspection of T1-weighted image and deterministic tractography from the optic chiasm. Then a 

8-mm radius sphere was placed, which covered the LGN endpoints of streamlines from the 

optic chiasm. Second, the location of the primary visual cortex (V1) was identified by using a 

probabilistic atlas of retinotopic visual areas [103]. Using ConTrack, Then 100,000 candidate 

streamlines connecting LGN and V1 (angle threshold, 90 deg; step size, 1 mm) were sampled. 

Tracking was restricted using the white matter mask generated by tissue segmentation. Top 

50,000 streamlines with a higher score in ConTrack scoring process [104] were selected. 

Further details on the methods to identify the OR using ConTrack are described in previous 

papers [104, 105]. 

Tractography on the VOF and pArc 

For identifying VOF and pArc, it is essential to use tractography algorithm with better 

sensitivity for resolving crossing fibers [106]. For this reason, a constrained spherical 

deconvolution (CSD; Lmax = 8) [107] was used to estimate fiber orientation distribution in each 

voxel using MRTrix3 [108]. Then, a probabilistic tractography was implemented in MRTrix to 

generate 2 million streamlines for each dMRI dataset (step size = 0.2 mm; maximum angle 

between successive steps = 9 deg; minimum length = 10 mm; maximum length = 250 mm; FOD 

amplitude stopping criterion = 0.05). The seed voxels for tracking was randomly chosen from 

the gray-white matter interface region [109]. Finally, the VOF and pArc were identified from 

whole-brain streamlines using automated pipelines implemented as a part of AFQ toolbox 

(https://github.com/yeatmanlab/AFQ/tree/master/vof). 

Across-session averaging and outlier exclusion 

Each streamline of the identified white matter tracts (VOF, pArc, and OR) was merged 

from two dMRI sessions with reversed phase encoding directions. Then outlier streamlines 

were excluded based on criteria used in previous studies [106] for subsequent evaluation of 

tissue property. 

Quantitative MRI data analysis 

By using the mrQ software package (https://github.com/mezera/mrQ) in MATLAB, 

both the FLASH and SEIR scans were processed to produce the macromolecular tissue volume 

(MTV) maps [110]. After RF coil bias was corrected by the mrQ analysis pipeline with 

SEIR-EPI scans and accurate proton density (PD). T1 fits were then produced across the brain. 

The maps of MTV were produced by computing the fraction of one voxel that is non-water 

(cerebrospinal fluid (CSF) voxels were classed as approximately 100% water). Here CSF was 
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defined by voxels from within the ventricles. Finally, MTV maps are aligned to MPRAGE 

image in order to register them with dMRI data.  The full analysis pipeline can be found in 

previous publications [110]. 

Evaluating the tissue property of white matter tracts 

The tissue property (MTV) of each visual white matter tract was evaluated using the 

methods used in previous studies [33]. Briefly, each streamline to 100 equidistant nodes was 

resampled. The tissue property (MTV) was calculated at each node of each streamline. The 

property at each node was then summarized by taking a weighted average of microstructural 

measurement (MTV) on individual streamlines within that node. Based on the Mahalanobis 

distance from a tract core, the weight of each streamline was assigned. The first and last 10 

nodes near gray or white matter interface in which the tract is likely to be heavily intersected 

with the superficial U-fiber system were excluded. The profile of each tract with a vector of 

remaining 80 nodes and averaged 80 values was summarized to estimate subject-specific single 

number summary on MTV for each tract. MTV along each tract was averaged across the left 

and right hemisphere. 

Statistical comparisons 

I calculated Pearson correlation coefficient between the amplitude and frequency of 

alpha/beta oscillations in the resting condition and the tissue properties in white matter tracts 

for each participant. When the correlation was computed, Bonferroni correction for multiple 

comparisons across two tract tissue properties (MTV and ODI) was applied for p-values 

because we do not have a strong hypothesis about which measure is more important for 

explaining the amplitude/frequency of alpha oscillations. A p-value of 0.05 was used to define 

significance. 

 

3.2 Results 

In order to investigate the relationship between characteristics of alpha oscillations and 

tissue structure property of white matter fibers in the visual area, I first measured MEG from 24 

participants at the eye-open and closed resting states, and determined the occipital peak alpha 

power (PAP) and frequency (PAF). Figure 3.1 shows the spectra of MEG of all participants in 

the eye-open and closed resting conditions measured from 10 planar gradiometers showing the 

maximum amplitude. 
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Figure 3.1: The power spectra of MEG data for all participants (A) and distribution maps of 

selected channels averaged across participants (B). 

 

 

Second, dMRI and qMRI data were obtained from the same subject and performed 

probabilistic tractography on the dMRI dataset to identify the trajectory of focused visual white 

matter tracts (optic radiation, OR) following the anatomical prescriptions in previous studies 

(see Methods). The OR is the geniculo-cortical pathway carrying signals between the lateral 
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geniculate nucleus (LGN) and primary visual cortex [59]. The tissue property along these 

visual white matter tracts were evaluated using the qMRI-based microstructural measurement, 

Macromolecular Tissue Volume (MTV) that quantifies the non-proton neural tissue density 

[49], and the Orientation Dispersion Index (ODI) that indicates the spatial configuration of the 

neurite structures [51]. 

I then quantitatively compared the power of individual alpha oscillations in the resting 

condition with the MTV in the OR (n = 24; Figure 3.2). As a result, I found a significant 

correlation between PAP in the eyes-closed resting condition and the MTV in the OR (r = 0.49, 

p = 0.031, Figure 3.2A). The correlation between the resting state PAF in the eyes-open 

condition and the MTV in the OR was also found to be significant (r = 0.52, p = 0.019, Figure 

3.2B). Thus, the tendency of the correlation between PAP and the MTV in the OR was consist 

across the eye-closed and open conditions. 

Unlike MTV, the ODI in the OR was not significantly correlated with PAP in the 

eyes-closed resting condition (r = 0.37, p = 0.16, Figure 3.2C). On the other hand, the 

correlation between the resting state PAP in the eyes-open condition and the ODI in the OR was 

found to be significant (r = 0.47, p = 0.039, Figure 3.2D).  
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Figure 3.2: Dependence of peak alpha power on inter-individual variation in the tissue 

properties of the OR. 

 

Next, I quantitatively compared the frequency of individual alpha oscillations in the 

resting condition with the MTV in the OR (n = 24; Figure 3.3). Unlike PAP, there was no 

significant correlation between PAF in the eyes-closed and eyes-open resting conditions and 

the MTV in the OR (eyes closed: r = 0.11, p = 1.0, Figure 3.3A; eyes open: r = −0.15, p = 

0.98, Figure 3.3B). On the other hand, I found a significant negative correlation between PAF 

in the eyes-open resting condition and the ODI in the OR (r = −0.52, p = 0.018, Figure 3.3D). 

The PAF in the eyes-closed condition was also marginally significant (r = −0.44, p = 0.058, 

Figure 3.3C). 
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Figure 3.3: Dependence of peak alpha frequency on inter-individual variation in the tissue 

properties of the OR. 

 

To confirm that the correlation between the characteristics of neural oscillations and the 

tissue properties in the OR is restricted to the alpha band, I next estimated the peak power and 

frequency of beta oscillations in the resting conditions. I then compared the power of individual 

beta oscillations in the resting condition with the MTV in the OR (n = 24; Figure 3.4). As a 

result, there was no significant correlation between the peak beta power in the resting 

conditions and MTV in the OR (eyes closed: r = −0.06, p = 1.0, Figure 3.4A; eyes open: r = 

−0.17, p = 0.84, Figure 3.4B). I also confirm that ODI in the OR was not significantly 

correlated with the peak beta power in the resting conditions (eyes closed: r = −0.035, p = 1.0, 

Figure 3.4C; eyes open: r = −0.29, p = 0.34, Figure 3.4D). 
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Figure 3.4: Dependence of peak beta power on inter-individual variation in the tissue properties 

of the OR. 

 

Moreover, I compared the frequency of individual beta oscillations in the resting 

condition with the MTV/ODI in the OR (n = 24; Figure 3.5). As was found for the peak beta 

power, there was no significant correlation between the peak beta frequency in the resting 

conditions and MTV in the OR (eyes closed: r = 0.28, p = 0.37, Figure 3.5A; eyes open: r = 0.28, 

p = 0.36, Figure 3.5B). ODI in the OR was not also significantly correlated with the peak beta 

frequency in the resting conditions (eyes closed: r = 0.22, p = 0.60, Figure 3.5C; eyes open: r = 

0.41, p = 0.092, Figure 3.5D). These results suggest that the tissue properties in the OR are 

associated with the intrinsic alpha oscillations, not with the beta oscillations. 
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Figure 3.5: Dependence of peak beta frequency on inter-individual variation in the tissue 

properties of the OR. 
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Next, to examine whether the correlation between neuroanatomical properties and alpha 

oscillations is selective to the OR, I identified another major white matter tracts, which are the 

vertical occipital fasciculus (VOF) and posterior arcuate (pArc) (see Methods). The VOF is the 

association fiber across the visual ventral stream (hV4, LO, VO) and visual dorsal stream 

(Posterior IPS, V3A/B) [50, 106]. The pArc is an association fiber located posterior to the 

lateral sulcus and connecting the parietal cortex and the inferotemporal cortex [111]. I then 

quantitatively compared the power of individual alpha oscillations in the resting condition with 

the MTV in the VOF (n = 24; Figure 3.6). I confirmed that there was no significant correlation 

between PAP in the resting conditions and the MTV in the VOF (eyes closed: r = 0.43, p = 

0.070, Figure 3.6A, eyes open: r = 0.37, p = 0.15, Figure 3.6B). ODI in the VOF was not also 

significantly correlated with the PAP in the resting conditions (eyes closed: r = −0.22, p = 0.60, 

Figure 3.6C; eyes open: r = −0.30, p = 0.31, Figure 3.6D). 

 
Figure 3.6: Dependence of peak alpha power on inter-individual variation in the tissue 

properties of the VOF. 

 

Moreover, I compared the frequency of individual alpha oscillations in the resting 

condition with the MTV/ODI in the VOF (n = 24; Figure 3.7). Again, there was no significant 
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correlation between the PAF in the resting conditions and MTV in the VOF (eyes closed: r = 

0.18, p = 0.80, Figure 3.7A; eyes open: r = 0.088, p = 1.0, Figure 3.7B). ODI in the VOF was 

not also significantly correlated with the PAF in the resting conditions (eyes closed: r = −0.089, 

p = 1.0, Figure 3.7C; eyes open: r = −0.18, p = 0.79, Figure 3.7D). 

 

 

 
Figure 3.7: Dependence of peak alpha frequency on inter-individual variation in the tissue 

properties of the VOF. 
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I also quantitatively compared the power of individual alpha oscillations in the resting 

condition with the MTV in the pArc (n = 24; Figure 3.8). I confirmed that there was no 

significant correlation between PAP in the resting conditions and the MTV in the pArc (eyes 

closed: r = 0.43, p = 0.068, Figure 3.8A, eyes open: r = 0.42, p = 0.085, Figure 3.8B). ODI in 

the pArc was not also significantly correlated with the PAP in the resting conditions (eyes 

closed: r = −0.10, p = 1.0, Figure 3.8C; eyes open: r = −0.22, p = 0.60, Figure 3.8D). 

 

 

 
Figure 3.8: Dependence of peak alpha power on inter-individual variation in the tissue 

properties of the pArc. 
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Finally, I compared the frequency of individual alpha oscillations in the resting 

condition with the MTV/ODI in the pArc (n = 24; Figure 3.9). There was no significant 

correlation between the PAF in the resting conditions and MTV in the pArc (eyes closed: r = 

0.16, p = 0.93, Figure 3.9A; eyes open: r = 0.20, p = 0.70, Figure 3.9B). ODI in the pArc was 

not also significantly correlated with the PAF in the resting conditions (eyes closed: r = 0.041, p 

= 1.0, Figure 3.9C; eyes open: r = 0.068, p = 1.0, Figure 3.9D). These results suggest that the 

characteristics of alpha oscillations are associated with the tissue properties in OR rather than 

with VOF and pArc. 

 

 
Figure 3.9: Dependence of peak alpha frequency on inter-individual variation in the tissue 

properties of the VOF. 

 

3.3 Discussion 

In this study, the peak power and frequency of the intrinsic alpha oscillations were 

correlated with MTV and ODI of the OR, respectively. In order to understand the selectivity on 

the relationship between alpha characteristics and tissue properties, it is necessary to elucidate 

how each MRI index reflects the microstructural properties. Macromolecular tissue volume 

(MTV) is an index derived from proton density (PD), which is a quantitative index obtained by 

qMRI. MTV represents the density of tissue macromolecules other than proton. By definition, 
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the formula (PD + MTV = 1) holds between MTV and PD. Therefore, quantitative MTV can be 

calculated from quantitative PD. The quantitativeness of MTV has also been confirmed in the 

phantom experiment and measurements using different coils and scanners by Mezer and 

colleagues [110]. Although these findings indicated reliable quantitativeness of MTV, there are 

some unclear points about its physiological interpretation. While the macromolecules qualified 

by MTV include myelin, cell membranes, proteins, and so on, it is unclear how each 

macromolecule affects MTV. Although recent studies have reported the relationships between 

the MTV of the white matter tracts and various biophysical properties, concrete physiological 

interpretation of MTV has not been shown yet. On the other hand, the phantom experiment by 

Mezer and colleagues indicated that the MTV reliably quantifies the lipid volume [110]. Since 

myelin has a much higher lipid content than the other brain components, it is expected that the 

MTV reflects the lipid volume of the myelin in the brain. Therefore, the current result suggests 

that the amplitude of the intrinsic alpha oscillations might be associated with the myelin density 

in the OR. 

ODI is an index quantifying the spatial configuration of the neurite structures [51]. The 

ODI model has more spatial constraints than FA which quantifies the degree of anisotropy of a 

diffusion process in both the intra- and extra-cellular spaces in the same manner. Thus, the 

physiological interpretation of ODI is more complex model than FA. Moreover, since ODI is an 

index obtained by dMRI which measures dynamic diffusion of proton, it is difficult to verify 

the relationship between dMRI index and macromolecules (e.g. lipid) in phantom experiment. 

The value of ODI also depends greatly on the position in the brain. Since the microstructural 

properties such as the alignment of the axons differ across brain regions, the physiological 

interpretation of ODI optimized for the neurite structures of each brain region is required for 

each brain region. From these reasons, ODI also has some unclear points about the 

physiological interpretation. On the other hand, it is widely accepted that lower ODI value 

corresponds to more aligned directions of the neurite structures. Therefore, the negative 

correlation between the peak alpha frequency and the ODI in the OR (Figure 3.3) suggests that 

the more strictly the direction of the neurite structures is aligned, the higher the peak alpha 

frequency is. 

In summary, the current findings that both the power and frequency of the intrinsic 

alpha oscillations were correlated with the microstructural properties of the OR suggests tight 

relationship between OR and intrinsic alpha oscillations. Currently, it is no clear interpretation 

why the alpha power was correlated with MTV, not ODI, of OR while the alpha frequency was 
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correlated with ODI, not MTV, of OR. For more detailed mechanism characterizing the 

intrinsic alpha oscillations, it is indispensable to investigate the physiological significance of 

MTV and ODI by a new framework such as simulating the proton in the white matter tracts. 

Beta oscillations are also observed in the occipital area, although they are much weaker 

than alpha oscillations. The tissue property of OR was correlated neither with the amplitude of 

beta bands nor with the frequency. One possibility is that the neuroanatomical substrate 

characterizing beta oscillation is located in the white matter tracts connecting sensory areas 

other than visual areas. In fact, given that beta oscillations are also dominant in the motor cortex, 

the tissue properties of white matter tracts such as the superior longitudinal fasciculus (SLF), 

connecting motor and parietal areas, may be related to characteristics of beta oscillations. 

Another possibility is that signal-to-noise ratio of MEG signals in the beta band was not 

adequate. Generally, at the resting state, the amplitude of the beta oscillations tends to be much 

weaker than that of alpha oscillations. Therefore it was difficult to reliably estimate the peak 

power or frequency of beta oscillations. Given that beta activity is activated during a 

perceptually attentive state, compared with the resting state [112], it might be possible to find 

the correlation between the characteristics of beta oscillations during task and tissue properties 

of white matter tracts in the future.  
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4 General discussion 

In 2.1, I found that the perceived illusory jitter correlated the inter-individual 

differences in the frequency of intrinsic alpha oscillations. Moreover, in chapter 3, it was 

suggested that the inter-individual differences in the frequency of the intrinsic alpha oscillations 

is correlated with the tissue properties of the OR. The OR connects the LGN and the primary 

visual cortex, and has bidirectional fibers, which are the tracts from LGN to V1 and those from 

V1 to LGN.  

A previous study has shown that alpha activities were simultaneously observed in the 

V1 Layer 4C and Layer 6 [36]. Given that the V1 Layer 4C has the projection from LGN, and 

the V1 Layer 6 has the projection to LGN, the result is consistent with our results suggesting 

that the occipital alpha oscillation is derived from the thalamo-cortical interaction between 

LGN and V1. While the experiment 4 in chapter 2 implied the involvement of the alpha 

oscillation in the cortico-cortical network between dorsal and ventral areas, no significant 

correlation between the tissue properties in VOF/pArc and the characteristics of alpha 

oscillations was found. These findings suggest that the rhythms of the intrinsic alpha 

oscillations is generated by the network between thalamus and lower visual areas, and the 

rhythms are inherited to higher visual areas for further processing. 

On the other hand, there are a lot of previous studies advocating the candidates of the 

alpha rhythm generators such as a cortico-cortical loop, thalamo-cortical loop other than the 

LGN - V1 loop. For example, it has been reported that the alpha power in V1 increased during 

the microstimulation at the gamma band in V4 [2], providing a possibility that alpha 

oscillations are generated by the interaction between the visual cortices, such as the feedback 

processing from V4 to V1. The feedback processing from V4 to V1 in the low frequency band 

(alpha/beta) suppresses the feedforward processing from V1 to V4 in gamma frequency for 

non-attended objects. Therefore, the feedback processing in alpha may preferentially route 

information for processing only salient object [113, 114]. In addition, Saalmann and colleagues 

[115] have reported that the alpha phase synchronizations between pulvinar and V4, pulvinar 

and TEO, or TEO and V4 were intensified during the attention to objects. Moreover, the 

granger causalities from pulvinar to V4/TEO were also increased during the attention to objects. 

If the pulvinar controls of processing of V4 and TEO, the pulvinar may have the top-down 

effect on the cortico-cortical system generating the intrinsic alpha oscillation. According to a 

study by Michael and colleagues, it is thought that the pulvinar has projections to various visual 

cortices including dorsal and ventral areas, and can also receive the input from each region 
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[116]. Perhaps, not only the top-down information processing from the pulvinar to the visual 

cortex, but also the mutual information exchange may contribute to the generation of the alpha 

oscillation. Given the spatial resolution of dMRI and qMRI, optic radiation defined in the 

current study may at least partly contain the tracts between the pulvinar and the lower visual 

cortices. Therefore it is possible that the interaction between pulvinar and lower visual regions 

may create the rhythm in the alpha band.  

To further understand the mechanism underlying the generation of alpha oscillations, it 

is necessary to conduct an invasive physiological experiment using non-human primates. One 

possible approach is to measure how the activation or deactivation of pulvinar/LGN by external 

stimulation modulates the intrinsic alpha oscillations. For this purpose, measuring alpha 

oscillations from the entire visual areas of monkey by ECoG electrodes while the 

microstimulation is provided to the pulvinar/LGN would be a powerful approach. 
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Conclusion 

In the first study, I investigated the relationship between the frequency of alpha 

oscillations and illusory jitter, and found that illusory jitter frequency is correlated with both 

inter- and intra-participant differences of PAF. Moreover, it has been shown that the 

manipulation of PAF by current stimulation resulted in the change in illusory jitter frequency. 

These findings that the intrinsic occipital alpha oscillations are consciously experienced as an 

illusory vibration at the same frequency suggests the direct contribution of alpha oscillation in 

creating temporal characteristics of human visual percept. The measurement of alpha activity 

during illusory jitter perception indicated that the alpha power in the left IPL and alpha 

coherence between the IPL and IT were increased during illusory jitter perception, which 

suggested that the illusory jitter may reflect the temporal dynamics of recurrent neural 

processes mediating the integration between motion-based spatial prediction and subsequent 

processing. In the second study, I compared the characteristics of the resting alpha oscillations 

with the tissue properties in the white matter tracts. I found that the power and frequency of 

alpha oscillations were significantly correlated with the tissue properties in optic radiation (OR) 

connecting the LGN and V1, which suggested that the characteristics of the occipital alpha 

oscillations reflect the tissue properties in OR. In summary, this study elucidated a functional 

role of alpha oscillations in visual perception and the neuroanatomical basis characterizing the 

alpha oscillations. 
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