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“It is difficult to understand why statisticians commonly limit their inquiries to 

Averages, and do not revel in more comprehensive views. Their souls seem as dull 
to the charm of variety as that of the native of one of our flat English counties, 
whose retrospect of Switzerland was that, if its mountains could be thrown into its 
lakes, two nuisances would be got rid of at once. An Average is but a solitary fact, 
whereas if a single other fact be added to it, an entire Normal Scheme, which 
nearly corresponds to the observed one, starts potentially into existence. Some 
people hate the very name of statistics, but I find them full of beauty and interest. 
Whenever they are not brutalised, but delicately handled by the higher methods, 
and are warily interpreted, their power of dealing with complicated phenomena is 
extraordinary. They are the only tools by which an opening can be cut through the 
formidable thicket of difficulties that bars the path of those who pursue the Science 
of man.” 

— Sir Francis Galton 
Natural Inheritance (1889), 62-3.  

 
 
“Whenever you can, count.”  

— Sir Francis Galton 
Quoted in James R. Newman, Commentary on Sir Francis Galton (1956), 1169. 
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SUMMARY 
 
Quantification of gene expression on mRNA level is one of the most important             
tasks of modern biology. High precision of such quantification is of utmost            
importance for drawing correct conclusions about cellular processes. Real-time         
quantitative polymerase chain reaction (RT-qPCR) is currently considered the most          
precise and most sensitive method of quantifying mRNA. However, the standard           
experimental procedure in RT-qPCR experiment requires the use of reference          
genes for normalization. The behaviour of popular reference genes during          
long-term biological processes, such as iPS reprogramming, development or aging,          
has never been investigated. In the initial part of my work, I investigate the              
behaviour of 12 commonly used housekeeping genes for their suitability in           
RT-qPCR experiments during a representative long-term process, iPS        
reprogramming, and find that these genes are unsuitable for normalization          
procedures due to their fluctuation, making standard RT-qPCR inapplicable to iPS           
reprogramming. Second, I proceed to develop a new methodology for RT-qPCR           
experimentation that does not require the use of reference genes. Importantly, my            
methodology increases the precision of obtained measurements while reducing         
experiment-associated labor and cost. Third, I go on to apply this new            
methodology to the investigation of the behaviour of 70 housekeeping genes           
during the iPS reprogramming, demonstrating high potential of the new          
methodology for high-throughput use. The results obtained in the course of the            
analysis reveal previously unknown patterns of gene dynamics during iPS          
reprogramming. I found a collective pattern in the rise of most ribosomal genes’             
expression, with the exception of small ribosomal subunits Rps18 and Rps9, during            
the reprogramming process. Furthermore, I found that cell systems associated with           
growth inhibition, such as apoptosis-associated genes, ubiquitin system genes, or          
tumor suppressor genes, are collectively down-regulated. Moreover, the analysis         
showed that there exists a time-dependent pattern in gene expression dynamics of            
chosen genes, and hints at the existence of an unknown event early in the              
reprogramming process. These results showcase successful application of my         
newly developed methodology for gene expression analysis in long-term biological          
processes, and its notable precision in detection of gene expression changes. 
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General Introduction 

 

0.1 Background 
 
Life Sciences are rapidly moving into the new era of quantification of biological             

processes. Life scientists increasingly feel the pressuring need for precise          
analytical instruments for quantitative data analysis. Exact sciences, such as          
physics, astronomy or optics, have developed such tools for their own use long             
ago, and it is no coincidence that these sciences are defined by Oxford English              
dictionary as “those which admit of absolute precision in their results”. 

One of the most important fields in need of precise quantification is the the field               
of gene expression measurements. Gene expression is the conversion of genomic           
information stored in the DNA into functional RNA species, the primary of which             
is messenger RNA (mRNA). Recent discoveries and research have brought to light            
many other functional RNA species, such as microRNA (miRNA), non-coding          
RNA (ncRNA), small nuclear RNA (snRNA) and others. Due to this rapid            
development of the field, the demand for fast and precise RNA profiling is             
increasing. 

Quantification of small amounts of nucleic acids, and RNA in particular, first             
became possible in 1980s with the invention of polymerase chain reaction (PCR)            
by Kary Mullis (Saiki et al. 1985). Earlier methods of determining the quantity of              
RNA or DNA were based on end-point detection. The most popular of such             
methods for RNA quantification, Northern Blot, was designed in 1977 and named            
after the DNA Southern blot invented by Sir Edwin Southern (Alwine et al. 1977).              
Northern blotting relies on visualization of RNA using denaturing gel          
electrophoresis and blotting. RNA levels are quantified directly based on the signal            
that the bands produce and are compared between samples on a single membrane.             
The disadvantages of Northern Blotting, however, are the low sensitivity (and thus            
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requirement for large amounts of RNA), sample degradation, and low accuracy           
(Lee et al. 2005; Maderazo et al. 2003; Trayhurn 1996; Zhao et al. 1996). The               
discovery of PCR reaction allowed amplification of small quantities of RNA,           
making quantification of much less abundant RNA species possible. However,          
there was a major drawback in the end-point detection methods as they did not              
account for the reaction amplification efficiency, assuming it to be same for all             
samples. Since PCR amplification efficiency may largely differ between samples,          
and the nature of the reaction itself is exponential, the comparison of the end              
product may give largely misleading results. For instance, if we make a mistake of              
only 5% in estimating reaction efficiency and assuming it to be 100% instead of              
actual 95%, the difference in amplification of only one molecule in 20 cycles of              
PCR will rise to 400,000-fold.  

To solve this problem, RT-qPCR technique was invented in 1995 (Riedy et al.             
1995). This technique monitors PCR reaction in real-time, assessing the target           
nucleic acid quantity after each PCR cycle (or, rather, assessing the quantity of the              
target nucleic acid by the associated signal). The advantage of this method            
compared to end-point detection is clear: assessment of the quantity of the target             
after each cycle can provide much more information about the reaction and hence,             
about the starting quantity or the ratio of two genes under comparison at a given               
cycle. The disadvantage of this method was the need for excessive manual labor             
which made the analysis of large number of genes, and in particular whole             
transcriptomes, problematic. 

In the following years microarrays and, lately, RNA-seq were introduced for           
this purpose. However, their lower accuracy, and, in case of RNA-seq, the reliance             
on many steps of software-based analysis (which makes the process of           
quantification a black box for the researcher) (Fig. 1), are still a hindrance for these               
techniques acceptance as precise tools for gene expression quantification, and they           
still require the confirmation by RT-qPCR which remains the gold standard           
(Canales et al. 2006; Bustin et al. 2009). 
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Figure 1. A comparison of high-throughput technology (RNA-seq) with         

RT-qPCR. The number of steps that may introduce bias or variance prior to data              
generation (i.e. before the actual experiment) differs significantly for RNA-seq and           
RT-qPCR. In case of RNA-seq at least 10 additional steps are required compared             
to RT-qPCR. Thus, precision of this technique is considered smaller, and the            
technique itself is put into the “discovery tools” category rather than “validation            
tools” category. 

 
Typically, technologies that allow measurements on large number of genes          

(such as microarrays and RNA sequencing techniques) are considered to be           
discovery tools and are characterized by lesser reliability and precision. While they            
allow to screen thousands of samples and transcripts, their drawbacks include high            
cost, the need for complicated and often subjective computer data analysis           
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procedures, and technical limitations such as unoptimized protocols, non-specific         
hybridization problems, data similarity problems stemming from inherent gene         
sequence similarities and paralogue existence, and high data variance (Jazayeri et           
al. 2012; Martin et al. 2016; Ozsolak and Milos 2011; Han et al. 2015). On the                
other hand, increased precision of measurements requires multiple replicas and          
laborious normalization techniques and are associated with greatly decreased speed          
of experimentation. The outline of the existing methods and their suitability for            
particular purpose is shown in Fig. 2.  

 
 
Figure 2. A representation of modern methods of gene expression          

measurements according to their precision and throughput abilities.        
High-precision methods, such as RT-qPCR, are used as the validation tools, while            
less precise methods, such as microarrays and RNA-seq, are used as discovery            
tools. 
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0.2 Relevance of this work in its field 
 
Real-time qPCR is currently considered the most sensitive and precise method           

of gene expression quantification. Both absolute and relative quantification are          
possible in RT-qPCR. Absolute quantification gives the absolute copy number of           
RNA fragments per volume and requires construction of so-called “standard          
curves” (the word standard in this context means “a thing used as a measure or               
norm in comparative evaluations”). This method is extremely laborious, requiring          
the amplification and gel-purification of desired standard fragment, subsequent         
measurement of the concentration, serial dilutions, separate RT-qPCR runs,         
construction of standard curves and calculations including molecular weight. In          
addition, the disadvantages include (1) the need to run the standard curve in all              
subsequent experiments to preserve all experimental conditions, (2) the influence          
of spectrophotometry or other means of concentration measurement on the          
resulting concentration values, and (3) most importantly, the assumption that the           
gel-purified, “clean” fragment will amplify with the same efficiency as the           
“non-clean” sample (also containing transcribed total RNA). Considering all these          
problems, the vast majority of researchers use another method, so-called relative           
quantification. 

 
Figure 3. Schematic representation of RT-qPCR absolute quantification        

method. (a) The RT-qPCR machine produces amplification curves of sample A           
and sample B based on fluorescence readings that are depicted as squares and             
circles in the figure. The steep rise in the fluorescence begins around cycle 20 for               
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sample A, and around cycle 30 for sample B. This means that it takes more PCR                
cycles to amplify sample B, and thus, its starting concentration must be lower than              
for sample A. To compare the starting concentrations, the RT-qPCR machine           
automatically draws a so-called “Threshold” by algorithms that differ depending          
on the machine maker. The points where the threshold crosses the amplification            
plot is called “Ct”, or Cycle Threshold, and is, in essence, an artificial fractional              
cycle number created for the purpose of comparison of two samples. (b) In order to               
obtain the absolute copy number of fragments, a standard curve must be            
constructed as depicted in this figure. The amplified, gel-purified, completely          
“clean” fragment is measured for exact concentration by spectrophotometry or          
other methods, and then diluted in at least 6 steps (blue squares). The exact              
concentration of each diluted sample is thus known. The samples are run in             
RT-qPCR machine, and the log concentration of each diluted sample is plotted            
against the resulting Ct value from the machine (blue squares). Thus, we obtain the              
correlation plot between the amount of the fragment and the Ct value. After that, it               
is possible to amplify “non-clean” fragments from genomic DNA and total RNA            
etc., and compare their Ct values with the standard. The efficiency of amplification             
here is assumed identical for “clean” and “non-clean” samples. 

 
Since absolute quantification is laborious, the standard approach recommended         

in “The Bible of RT-qPCR”, namely The Minimum Information for Publication of            
Quantitative Real-Time PCR Experiments (MIQE) guidelines, is so-called        
“relative quantification”. Relative quantification is performed with the use of a           
reference gene or a set of reference genes, and involves normalization of obtained             
Ct (cycle threshold) values of target genes to the Ct values of reference genes. This               
method is most frequently used for the analysis of gene expression change after a              
treatment. The reference genes are used because they are assumed to be constant             
(non-varied) in all experimental conditions, including the treatment. The         
expression of target gene(s) is then normalized to the expression of reference            
genes, making comparison between treated and untreated samples possible.  

However, the stability of housekeeping genes used as reference in RT-qPCR           
has been questioned by several researchers in various organisms, and it is generally             
recommended to investigate the stability of the reference genes prior to conducting            
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any experiments with them in the desired system. In particular, the housekeeping            
genes’ stability has never been investigated in long-term dynamic processes that           
take weeks or months, such as iPS reprogramming, aging, in vivo differentiation            
etc. Thus, any researchers attempting RT-qPCR analysis in these settings would be            
required to first conduct several experiments to choose an appropriate reference           
gene, if such exists at all. 

MIQE guidelines recommend normalization to reference genes as the default          
method of RT-qPCR and presents a list of requirements for conducting           
experiments using this method (Bustin et al. 2009).  

Among these requirements are: 
● Construction of calibration curves with at least three replicates 
● Measuring slope and y intercept for these curves 
● Reporting standard deviation (SD) for the replicates of these curves 
● Reporting r2 for the curves 
● Calculating efficiency of amplification from the curves 
● Reporting Linear Dynamic Range from the curves 
● Reporting method of Ct determination (since it is automated in the machine) 
● Justifying the number and choice of reference genes 
● Describing the normalization method for reference genes 
● Running at least three replicates for the main experiment and reporting SD 
(the requirements concerning reference genes are typed in italics, i.e. this work            

is needed when performing any RT-qPCR experiment with reference genes) 
 
All of these measures are designed to improve the precision of RT-qPCR            

measurements in cases when reference genes are used. For example, the calibration            
curves are run to determine the PCR efficiency because it is the most important              
parameter that affects the calculation of the ratio of gene expression change. Since             
this RT-qPCR method is based on Ct values, MIQE requires to run at least three               
replicates in all cases, including when running calibration curves, due to the fact             
that a single run gives only one Ct value and is unreliable statistically (Bustin et al.                
2009). In addition, since Ct values are automatically defined by the RT-qPCR            
machine and differ between different machines, MIQE requires to report their           
determination method. Moreover, since the whole scheme depends on stability of           
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the reference genes, their choice must be justified, their stability should be            
confirmed for all experimental conditions, and the normalization procedure should          
be clearly described. Of course, all experiments involving reference genes and           
target genes should include at least three technical replicates and, ideally, three            
inter-assay replicates (same experiment run on different plates at different times of            
the day). I want to emphasize that all of the above is defined as essential               
information that must be published with every RT-qPCR experiment,         
according to MIQE guidelines. Needless to say, this constitutes an enormous           
amount of experimental work. Eliminating the need to use reference genes without            
losing precision, thus, will constitute a vast improvement in RT-qPCR          
experimental procedure because it will result in economy of hands-on time,           
reagents, and data analysis. 

Several methods have been developed in the past decades to improve RT-qPCR            
precision, such as FPK-PCR (Lievens et al. 2012), LinRegPCR (Ramakers et al.            
2003), Cy0 (Guescini et al. 2013) and others. However, according to a recent             
analysis, these alternative methods rely on different ways of approximating a single            
amplification curve and have never yielded acceptable accuracy (Ruijter et al.           
2013). Thus, running multiple replicas remains the only way to ensure sufficient            
precision of RT-qPCR results, and this is associated with greater labor and cost of              
experimentation. In addition, the classical formula of normalization recommended         
in MIQE guidelines requires that the efficiency of PCR reaction be measured for             
both reference gene and target gene, and if the efficiency is not equal, the change               
of the reference gene is required, which involves considerable time loss and            
increased labor. Moreover, according to the guidelines, the reference genes must be            
tested for fluctuation and deemed suitable for experimentation for each particular           
biological process, which is also a time-consuming and laborious task. All these            
issues prevent RT-qPCR from becoming a trusted and fully established technique           
in the biological community. 

This work aims at solving these problems by, first, investigating the behavior of 
commonly used reference genes and then, developing a new, highly precise 
methodology that requires much less labor and reduces overall hands-on time and 
cost of experimentation. 
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0.3 Significance and purpose of this work 
 
My major vision is to establish a new conceptual direction in the field of nucleic               

acid measurements. The existing methods of experimentation and data analysis in           
the field of nucleic acid measurements do not possess satisfactory precision unless            
multiple replicas are run for each experiment, and unless a carefully crafted            
normalization strategy is applied, as described in the previous section. My goal            
here is to address this issue, and to move forward the field of nucleic acid               
quantification. As a first step towards this goal, I have developed a new approach              
to qPCR data analysis, that is based on solid mathematical principles, such as the              
Theory of Measurement (described in the next section), has doubled precision           
compared to the existing methods, and is suitable for high-throughput analysis. I            
believe that current biology needs its new Francis Galton, and I would be happy if               
my contribution could move the field in that direction, the direction of exact             
science. 

 
Goals: 
● Investigate the suitability of commonly used gene expression quantification         

tools for high-precision quantification in long-term processes 
● If necessary, develop a new high-precision tool for gene expression          

quantification 
● Apply the said tool in a system that represents a long-term dynamic process 
 

 
0.4 Originality 
 
The novelty of my approach is in the application of the principles of the Theory               

of Measurements (Hand 1996) to the solution of the precision problem in gene             
expression measurements. The Theory of Measurements (alternatively,       
Measurements Theory) is a branch of applied mathematics that is commonly used            
in physics, engineering and other exact sciences. It ensures the best performance of             
data gathering techniques and research techniques, and is considered prerequisite          
for all measurements conducted in such sciences. The Measurement Theory          
regards all measurements as observations that are not identical to the attributes            
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being measured. Rather, all measurements are considered approximations of the          
said attributes, and are represented by assigned numbers. Thus, when one wants to             
draw conclusions about a property of an object, he (she) must take into account the               
nature of the correspondence between the measurements and the property being           
measured (Krantz et al. 1971). This allows one to use reliable, proven statistical             
apparatus, including advanced statistical methods, to model complex natural         
processes. 

Since the quantitative research in biology is only gaining momentum recently,           
the Measurement Theory has not yet been integrated into biological methods. The            
measurements of gene expression, in particular, are not standardized because there           
is no international system of units, as is the case for physics which has standard               
units such as length, weight or speed, the quantities reported in biological studies             
are nearly always relative and cannot be translated into different experimental           
systems, and the statistical approaches do not rely on a set of common, firmly              
defined principles. My application of the classical principles used in exact           
sciences, namely the Measurement Theory, to the measurements of nucleic acids,           
is the first step in the direction of standardization of biological procedures.  

Thus, the novelty that I introduce is both conceptual and practical, and is based               
on integration of proven statistical methods from exact sciences into the existing            
methods in biology. This approach allowed me to increase the precision and            
reliability of measuring gene expression, greatly reducing labor and cost of           
experimentation. Moreover, my application of the Measurements Theory to the          
tracking of 70 genes’ expression dynamics during the iPS reprogramming process           
enabled me to reveal important information about the genes’ behavior. 
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Chapter 1 
Investigation of housekeeping gene dynamics during the 

iPS reprogramming process 
 

1.1 Introduction 
 
As the first step, I investigated whether the conventional method of RT-qPCR            

analysis is suitable for my research goal, namely, high-precision,         
medium-throughput gene expression quantification during the iPS reprogramming        
process. 

Induced pluripotent stem cell (iPSC) reprogramming is an artificial,         
human-induced gradual change in gene expression which allows to turn a           
differentiated somatic cell into a pluripotent cell. It usually takes a relatively long             
time (~1 month) (Takahashi and Yamanaka 2006), involves several major          
transcriptional circuits (Papp and Plath 2011), and is accompanied by many drastic            
changes in fundamental cell properties and behaviour, such as energy production           
(Panopoulos et al. 2012), changes in cell cycle progression patterns (Smith et al.             
2010), cytoskeletal organization (Li et al. 2010) and others. Currently iPS           
reprogramming is divided into three major stages, initiation, maturation and          
stabilization (David and Polo 2014). It is known that the alterations in cell             
chemistry during these stages include most basic, “housekeeping” functions such          
as cell metabolism (Panopoulos et al. 2012), speed of the cell cycle (Papp and Plath               
2011) and lipid profile (Boraas et al. 2016; Mammoto and Ingber 2009).  

Being a highly dynamic, time-dependent process, iPS reprogramming is akin to           
natural biological processes that humans are interested in investigating, such as cell            
differentiation, embryo and organ development and aging. As such, iPS          
reprogramming constitutes an ideal in vitro model system to design, build and            
validate a workflow for quantification of vast, gradual chemical changes in live            
cells. 

RT-qPCR requires a normalization strategy to ensure the reliability of the data            
(Jacob et al. 2013; De Spiegelaere et al. 2015). One common strategy is to rely on                
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the comparison of the target gene with an endogenous control (reference gene) in             
the same sample. When normalizing qPCR data to a reference gene, it is of crucial               
importance to make sure that the gene of choice is stably expressed throughout all              
experimental conditions. At present, so-called housekeeping genes are universally         
used as a reference (Piazza et al. 2017). For example, housekeeping genes such as              
actin, ubiquitin or ribosomal genes are thought to be universally required for basic             
cellular functions and to be constitutively and stably expressed in varying           
physiological and experimental conditions. However, recent works have uncovered         
that housekeeping genes’ expression levels may vary depending on the gene, cell            
type and experimental conditions. For example, one of the most frequently used            
housekeeping genes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has      
been found to be unstable depending on the type of tissue (Sullivan-Gunn et al.              
2011), metabolic process (Gong et al. 2016) or under certain experimental           
conditions (Mahoney et al. 2004). Thus, confirming the stability of the normalizing            
gene of choice in cells under study is a prerequisite for a correct analysis of gene                
expression of any target gene. The need to confirm stability of expression is even              
greater in case of iPS reprogramming, as housekeeping genes could be affected by             
dramatic changes in chemical metabolism of the cells. 

The RT-qPCR analysis of common housekeeping genes’ stability over the time           
course of iPS reprogramming has never been performed. Thus, the first step of my              
analysis was to monitor changes in the expression of common housekeeping genes            
during iPS reprogramming and determine their suitability for further         
experimentation. 
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1.2 Materials and Methods 
 
Cell culture and iPS reprogramming 
iPS reprogramming was carried out in a reprogrammable cell system previously           

described by Hikichi and colleagues (Hikichi et al. 2013). The system consists of a              
mouse neural progenitor cell line designated N31 which possesses three key           
characteristics of neural progenitors: (1) fibroblast growth factor and epidermal          
growth factor-dependent growth, (2) neural stem cell markers’ expression and (3)           
the ability to differentiate into neural lineages (described in detail in Han et.al,             
2012 and Hikichi et.al., 2013). To bypass the need for mRNA or virus introduction              
into the cells, a doxycycline-inducible cassette with four Yamanaka factors, Oct4,           
Sox2, Klf4 and c-Myc, was permanently integrated into the cell genome.           
Doxycycline addition results in the activation of the four factors and initiates            
reprogramming. Cells were seeded and kept on plastic gelatin-coated dishes in           
RHB neural stem cell media (#Y40000, Clontech Takara, Japan) supplemented          
with Ndiff (# Y40100, Clontech Takara, Japan) and 10ng/ml FGF and 10 ng/ml             
EGF until they fully attached and spread. To initiate reprogramming, the medium            
was changed to Essential 8 iPS reprogramming medium (A1517001, Thermo          
Fisher, Japan) and 1µg/ml doxycycline was added to the dish. From that point on,              
the media were changed every day to avoid pH fluctuations. The reprogramming            
was carried out until day 20, and the cell material samples (whole cell populations)              
were collected at 8 time points (on days 0, 1, 3, 5, 7, 10, 15, 20). One round of                   
reprogramming thus yielded 8 cell pellets. The experiment (one full round of            
reprogramming) was repeated three times to obtain three biological replicates for           
each time point. To confirm the success of reprogramming, cells were analysed on             
the day 20 for markers of pluripotency: (1) cell morphology, (2) alkaline            
phosphatase expression, (3) pluripotent genes Nanog and Oct4 expression         
(Supplementary Fig. 2 and Fig. 14). 

MEFs, partial iPS and fully reprogrammed iPS derived from EOS3F-24 line for            
corroborative experiment were a gift of professor A. Hotta and were maintained as             
previously described (Hotta et al. 2009). 
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Candidate genes and primer design 
Table 1 contains information about the 12 commonly used housekeeping genes           

chosen for this study, and the selected primer pairs used for amplification. All             
primers were designed according to MIQE guidelines with the aid of           
Primer-BLAST software (NCBI). Primers were designed to be specific         
preferentially for the longest isoform (transcript variant), allowing        
complementarity to other transcripts of the same gene (e.g. transcript variant 2,            
transcript variant X1 etc.), within the coding sequence. To select the best primers,             
the coding region of a gene was divided into portions spanning approximately            
200-400 bp, and primers were designed to each portion using NCBI software. After             
excluding primer pairs that, according to NCBI Blast, could produce unintended           
target amplicons, resulting primer-pairs were tested by qPCR and the best pair for             
each gene was selected for the experiment.  

 
RNA isolation and cDNA synthesis 
Total RNA was extracted with RNeasy kit (Cat# 74106, Qiagen, Japan) from            

each biological sample according to the manufacturer's instructions (on-column         
genomic DNA digestion was performed as per said instructions), and RNA           
concentration and absorbance ratios (A260/280 and A260/230) were measured by          
spectrophotometer Nanodrop 2000 Spectrophotometer (NanoDrop Technologies,      
Japan). Only the samples with A260/280 and A260/230 were used for further analysis.             
300 ng of RNA from each sample was reverse-transcribed using Omniscript RT            
Kit (Cat# 205111, Qiagen) in a total volume of 20µl to produce DNA that was               
subsequently assessed by spectrophotometric analysis and diluted to 100 ng/µl.          
Then, individual master mixes with each of the DNA-primer combination (e.g.           
‘Day 0 - Atp5f1’, ‘Day 0 - B2m’ etc.) were created for 4 technical replicas, and the                 
mixtures were distributed onto the qPCR plate (8 μl per reaction well).  

The reprogramming process (day 0 - day 20) was repeated 3 times, thus 3              
replicates were obtained for each time point. 

 
Quantitative real-time PCR 
qPCR was performed using a CFX96 Connect apparatus (BioRad, Japan). The           

reactions were carried out in triplicate using intercalating dye SYBR Green-based           
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PCR super-mix (BioRad), following the manufacturer's instructions. Each reaction         
was performed in the final volume of 8 μL, primers were used at the concentration               
of 300 nM. Thermocycler program consisted of an initial hot start cycle at 95°C for               
3 min, followed by 32 cycles at 95°C for 10 sec and 59°C for 30 sec. To confirm                  
product specificity, melting curve analysis was performed after each amplification.  

 
Immunostaining 
For immunofluorescence analyses cells were grown on glass bottom 30-mm          

dishes coated with collagen type I (IWAKI #4970-011). On the day of            
immunostaining cells were briefly washed with PBS, fixed with 4% PFA (Santa            
Cruz #sc-281692) for 15 min at room temperature and permeabilized with 0.5%            
Triton in PBS with 10% FBS addition for 30 min. Primary antibodies were applied:              
Anti-Oct4 (Santa Cruz #sc-5279, 1/250 dilution), Anti-Nanog (Abcam #ab80892,         
1/250 dilution), in PBS with 10% FBS addition, for 1 hour in room temperature.              
After washing cells were incubated with secondary antibodies: Anti-mouse Alexa          
Fluor® 594 (Cell Signaling #8890, 1/500 dilution) and Anti-rabbit Alexa Fluor®           
488 (Cell Signaling #4412, 1/500 dilution) in PBS with 10% FBS addition for 1              
hour in room temperature, then cells were washed 4 times with PBS and 2 mL PBS                
per dish was added for imaging.  

 
Alkaline phosphatase staining and imaging 
For alkaline phosphatase staining cells were briefly washed with PBS, fixed for            

5 min with 4% PFA (Santa Cruz #sc-281692) at room temperature and stained with              
Alkaline phosphatase kit II (Stemgent, #00-0055) according to the manufacturer’s          
protocol. Imaging was carried out on Olympus CKX41 inverted microscope. 

 
Statistical analyses 
The assay performance evaluation was carried out as described in MIQE           

guidelines. Reaction efficiency E was calculated as E =(-1/slope)-1x100 and          
precision was calculated as the average of all standard deviation values across            
samples for each gene. Linear dynamic range (LDR) is defined as the highest to the               
lowest quantifiable copy number established by means of a calibration curve, and            
covers at least 3 orders of magnitude, as advised. The interval at which the main               
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experiments were carried out fell into the linear portion of the calibration curve.             
The linearity was determined by means of correlation coefficients (R2). Precision           
refers to intraassay variation and is expressed as standard deviation (SD) of            
technical replicates, as advised. For BestKeeper (Pfaffl et al. 2004) analysis, Ct            
values were input directly, and geometric and arithmetic mean as well as standard             
deviation and coefficient of variance were calculated by the program, according to            
which genes were subsequently ranked from most stable to least stable. For            
NormFinder (De Spiegelaere et al. 2015) analysis, Ct values were transformed to            
linear scale and the normalization factor was calculated as the geometric mean of             
candidate reference genes included in the dataset. GeNorm software analysis was           
performed by calculating the expression stability measure as defined in the           
geNorm paper (Jacob et al. 2013), pairwise variation was determined and genes            
were ranked according to their positions. RefFinder algorithm was used to produce            
comprehensive ranking. This algorithm integrates four major programs (geNorm,         
Normfinder, BestKeeper, and the Delta Ct method) to assign a weight value to an              
individual gene and calculates the geometric mean of the weights for the overall             
final ranking. Time-course plot of the gene expression through the reprogramming           
process were performed using the JMP software (JMP®, Version v11, SAS           
Institute Inc., Cary, US). Variance analysis between time points were performed           
using ANOVA test followed by a post-hoc Tukey HSD test at p < 0.05. 

 
Results 
1.3 Assay performance evaluation 
I have chosen twelve commonly used housekeeping genes for the purpose of 

this initial analysis (Table 1). 

Gene 
symb 

Accession 
No. 

Official Full Name 
(MGI) 

Primer Pair (5′-3′) size 
(bp) 

Actb NM_007393.5 actin, beta TCGAGTCGCGTCCACC 
GGGAGCATCGTCGCCC 

157 

Atp5f1 NM_009725.4 ATP synthase, mitoch. F0 
complex, subunit B1 

GTCCAGGGGTATTACAGGCA
A 
TCAGGAATCAGCCCAAGACG 

112 
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B2m NM_009735.3 beta-2 microglobulin ACGTAACACAGTTCCACCCG 
CAGTCTCAGTGGGGGTGAAT 

150 

Gapdh NM_00128972
6.1 

glyceraldehyde-3-phosphate 
dehydrogenase 

GCACAGTCAAGGCCGAGAAT 
GCCTTCTCCATGGTGGTGAA 

151 

Gusb NM_010368.2 glucuronidase, beta AACAACACACTGACCCCTCA 
ACCACAGATCGATGCAGTCC 

140 

Hprt NM_013556.2 hypoxanthine guanine 
phosphoribosyl transferase 

CAGTCCCAGCGTCGTGATTA 
TGGCCTCCCATCTCCTTCAT 

168 

Pgk1 NM_008828.3  phosphoglycerate kinase 1 GGGTGGATGCTCTCAGCAAT 
GTTCCTGGTGCCACATCTCA 

160 

Ppia NM_008907.1 peptidylprolyl isomerase A CCCACCGTGTTCTTCGACAT 
CCAGTGCTCAGAGCTCGAAA 

116 

Rps18 NM_011296.2 ribosomal protein S18 AAGCAGACATCGACCTCACC 
CTAGACCGTTGGCCAGAACC 

171 

Tbp NM_013684.3 TATA box binding protein AGTTGGGCTTCCCAGCTAAG 
GCTACTGAACTGCTGGTGGG 

160 

Tfrc NM_00135729
8.1 

transferrin receptor AAGAGCTGCTGCAGAAAAGC 
ACGGTCTGGTTCCTCATAACC 

190 

Ywhaz NM_011740.3 tyrosine 3-monooxygenase / GATTGGAGGAAACCCCGTGT 
CCTTCTGCACCAGCTCATTT 

190 

Table 1. Summary of twelve housekeeping genes evaluated in this study.           
Accession numbers, gene descriptions, primer sequences and product sizes are          
shown. 

To evaluate the performance of the qPCR assay, I generated calibration curves            
using tenfold serial dilutions and assessed the PCR efficiency denoted E (see            
Materials and Methods), linear dynamic range (LDR) and precision, as described           
in MIQE guidelines (Bustin et al. 2009). Results are shown in Table 2. The mean               
amplification efficiency values ranged from 95% (Actb) to 163% (Gusb),          
corresponding to slopes of -3.45 and -2.39, respectively. Nine genes out of twelve             
fell within “good” range of PCR efficiency defined as 90%< E <110%, while Tfrc,              
Hprt and Gusb produced 114%, 143% and 163%, respectively. To ensure that this             
result was due to the gene behavior rather than primer design, I evaluated 4 primer               
pairs for each of these genes, designed to cover different regions of the genes, as               
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well as tested these pairs both in the parental cell line before reprogramming (N31              
cells) and after the reprogramming (iPS cells). The results for these primer pairs             
can be found in Supplementary Table 1. 

The LDR values were lowest for Hprt and Gusb and were in the range of 7-700                
ng of template. Correlation coefficients, on the other hand, varied from 0.991            
(Gusb) to 1.0 (Pgk1) and fell within acceptable range for all genes as all of them                
were >0.99. Precision values ranged from 0.12 (Hprt) to 0.38 (Gusb). Overall these             
results show good performance of the qPCR assay except for Gusb and Hprt that              
performed less well in the lower concentration ranges (less than 7 ng). 

 

Gene  E (%) Slope LDR (ng) Precision R2 

Actb 95 -3.45 0.07-700 0.18 0.999 

Atp5f1 104 -3.23 0.07-70 0.31 0.999 

B2m 100 -3.31 0.07-70 0.22 0.999 

Gapdh 96 -3.42 0.07-70 0.29 0.998 

Gusb 163 -2.39 7-700 0.38 0.991 

Hprt 143 -2.60 7-700 0.12 0.995 

Pgk1 101 -3.29 0.07-700 0.26 1.0 

Ppia 100 -3.32 0.07-70 0.15 0.997 

Rps18 99 -3.34 0.07-700 0.16 0.998 

Tbp 106 -3.18 0.7-700 0.21 0.997 

Tfrc 114 -3.02 0.07-700 0.36 0.999 

Ywhaz 102 -3.27 0.7-700 0.17 0.999 

Table 2. Assay performance characteristics showing PCR efficiency E, 
linear dynamic range (LDR), slope, precision and associated correlation 
coefficient R2 (see Materials and Methods). 
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1.4 Analysis of candidate reference genes’ stability in iPS 
reprogramming process 

 
The stability of candidate reference genes was analyzed according to four           

statistical methods of assessment, namely, the Delta Ct method, the estimation of            
the intra- and intergroup variation (NormFinder), the basic descriptive statistics          
evaluation (BestKeeper), and pairwise comparison (geNorm). The comprehensive        
ranking of the genes was also evaluated (see Materials and Methods), giving a total              
of five evaluation methods. The analysis revealed that Atp5f1 was unanimously           
chosen as the most stably expressed gene by all four algorithms, while Rps18 was              
designated as the least stable gene. Pgk1 was chosen as the second most stable              
gene by 4 out of the 5 algorithms. Gapdh was designated as the third most stable                
gene, except by the Delta Ct method which designated it as the second most stable               
gene. Thus, the order of stability for the best three genes was summarized as              
follows: Atp5f1 > Pgk1 > Gapdh. On the other hand, the three least stable genes               
were Rps18 > Hprt > Tbp / Actb (Table 3). 
 

Gene Comprehensiv
e Ranking 

Delta Ct geNorm NormFinder BestKeeper 

Value Rank SD aver. Rank M 
value 

Rank Stability  Rank SD Rank 

Atp5f1 1.00 1 1.03 1 0.362 1 0.288 1 0.40 1 

Pgk1 1.86 2 1.12 3 0.362 1 0.489 2 0.46 2 

Gapdh 2.91 3 1.11 2 0.504 2 0.516 4 0.48 3 

Tfrc 4.23 4 1.14 4 0.560 3 0.640 5 0.52 4 

Ppia 6.12 7 1.18 5 0.580 4 0.742 7 0.67 8 

Gusb 5.66 5 1.22 7 0.729 6 0.502 3 0.60 7 

Ywhaz 6.00 6 1.21 6 0.643 5 0.716 6 0.55 6 

B2m 7.11 8 1.31 8 0.790 7 0.784 8 0.54 5 

Actb 9.24 9 1.45 9 0.847 8 1.140 9 0.89 10 
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Tbp 9.74 10 1.59 10 0.952 9 1.194 10 0.86 9 

Hprt 11.00 11 2.07 11 1.154 10 1.767 11 1.35 11 

Rps18 12.00 12 2.88 12 1.441 11 2.750 12 2.11 12 

Table 3. Ranking of the candidate reference genes according to five different            
evaluation methods. Atp5f1, Pgk1 and Gapdh were ranked as the most stable            
candidate reference genes, while Rps18, Hprt, and Tbp / Actb were designated as             
the least stable ones. 

 
Then, to corroborate these results in a more commonly used cell line, I assessed              

the stability of the 12 housekeeping genes using mouse embryonic fibroblasts           
(MEFs) described by Hotta et. al. (Hotta et al. 2009). The stability was assessed              
using 3 time points for each gene, corresponding to the non-reprogrammed state            
(MEFs), partially reprogrammed state (partial iPS), and fully reprogrammed state          
(iPS). In fibroblasts, the five statistical algorithms also selected Atp5f1, Pgk1 and            
Gapdh as the best reference genes, while B2m, Actb and Hprt showed the lowest              
stability (Fig. 4). The exact ranking as obtained by the five statistical algorithms             
can be found in Supplementary Table 2. 

a 
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b 

 
Figure 4. Comprehensive stability ranking of candidate reference genes         

during iPS reprogramming of neural stem cells (N31) or mouse embryonic           
fibroblasts (MEFs). The stability is expressed as a comprehensive value for five            
algorithms: Genorm, Normfinder, Bestkeeper, Delta Ct, and RefFinder. Atp5, Pgk1          
and Gapdh are showing the best stability in both cell lines. The lowest stability              
values differed in two cell lines, the lowest score belonging to Rps18, Hprt and              
Tbp in N31 cells (a) and to B2m, Actb and Hprt in MEFs (b). 

 
 
 

1.5 Expression variability of candidate reference genes 
during the iPS reprogramming process 

 
To assess the expression variability of chosen candidate reference genes during           

the reprogramming process, qPCR was performed and the relative Ct values for            
each gene across 8 time points were obtained throughout the reprogramming           
process, from day 0 to day 20. Figure 5 shows that the mean Ct values for 12                 
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candidate genes varied from 9.99 to 24.21 cycles. The highest Ct value was             
observed for Rps18 (9.99) while the lowest value was observed for Hprt (24.21).             
To provide an initial estimation of the variability for each gene, I calculated             
standard deviation and coefficient of variation (CV). The least variable gene as            
expressed by SD value was Atp5f1 (n = 3, SD = 0.52), and the most variable was                 
Rps18 (n = 3, SD = 2.70). Atp5f1 exhibited the lowest CV value, and Actb the                
highest one. For a more comprehensive analysis, the difference between 25th and            
75th percentile was calculated in order to estimate the amplitude fluctuation.           
According to this analysis, Rps18 showed the highest variability, with an           
amplitude fluctuation of 3.89, and the least variable genes were Atp5f1 and Pgk1             
with the amplitudes 0.58 and 0.61, respectively. Thus, according to the initial            
analysis, Atp5f1 was identified as the most stable gene while Rps18 was identified             
as the least stable gene across the whole reprogramming process. 

 

 
Figure 5. Box-and-whisker plot indicating range of Ct values of candidate           

reference genes throughout iPS reprogramming. Values of three biological         
replicates taken as averages of 4 technical replicates are given. The whiskers            
represent standard deviation of n samples (n=24). 
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1.6 Time-course expression profiles of candidate reference 
genes  

 
Figure 6 shows Cycle threshold values (Ct) of candidate reference genes plotted            

against time. The cycle threshold is inversely proportional to the gene expression            
of the considered gene. Results showed that Actb, Hprt, and Rps18 displayed the             
strongest variation over time. According to this analysis, Actb expression          
decreased during the reprogramming process (R2 = 0.85), and the analysis of            
variance was found significant (p < 0.0001). Hprt and Rps18 expression decreased            
in the first week of reprogramming, increased around day 10, then decreased again.             
R2 values for Hprt and Rps18 were R2 = 0.71 and R2 = 0.20, respectively. At Day                 
20, the genes Gusb, Rps18, Tbp, and Ywhaz showed the strongest variation.  

 

 
Figure 6. Expression profile of the 12 candidate reference genes throughout           

the 20 days of the reprogramming process. Measurements were performed in           
triplicate for each day. For each gene, linear fits were applied (black lines) and the               
displayed grey areas represent the 95% confidence intervals. For visualization          
purpose, a color bar representing the log2 values of Cycle threshold was added. 
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1.7 Discussion 
 
In this chapter I have performed iPS reprogramming in murine cells and            

measured the expression patterns of the most commonly used housekeeping genes           
by conventional RT-qPCR method. I have analysed 12 most frequently used           
reference genes for suitability in RT-qPCR experiments during iPS         
reprogramming, and found that all genes analysed fluctuated by 1-2 fold           
throughout the reprogramming process.  

Using the expression data obtained by the conventional RT-qPCR method and           
five statistical algorithms published in available literature, I have identified Atp5f1,           
Pgk1 and Gapdh as the most stably expressed genes. Notably, these genes were             
grouped together by the algorithms, and they all belong to the ATP production             
process. First of all, the Atp5f1 gene, which had the highest stability rank, is a B                
subunit of the proton channel of mitochondrial F0 complex, and is a part of              
mitochondrial ATP synthase. ATP synthase is composed of F0 and F1 complexes            
and is linked by the peripheral stalk, of which B subunits are part (Ko et al. 2000).                 
The function of the subunits in this context is, apart from linking the complexes, to               
act as a stator to prevent other subunits from rotation in relation to the central               
rotary element. Atp5f1 is, thus, an essential structural element of the ATP synthase.             
The second most stable gene as determined by four algorithms was           
phosphoglycerate kinase 1 (Pgk1). It is an ATP-generating enzyme that catalyzes           
the reversible conversion of 1,3-diphosphoglycerate and ADP to        
3-phosphoglycerate and ATP and is considered an important part of the glycolytic            
pathway (Li et al. 2016). The third most stable gene was Gapdh, or glyceraldehyde              
3-phosphate dehydrogenase, which also belongs to the glycolytic pathway, and          
catalyses the conversion of glyceraldehyde 3-phosphate to D-glycerate        
1,3-bisphosphate. These results can be explained from the point of view of            
requirement for glycolysis. Recent research has shown that glycolysis is required           
for iPS reprogramming (Zhang et al. 2012) and that inhibition of glycolysis can             
impede the reprogramming process (Folmes et al. 2011). The so-called “glycolytic           
switch” is suggested to play a major part in the pluripotency switch (Teslaa and              
Teitell 2015), and it would be interesting to follow up on the dynamics of              
ATP-related genes throughout the iPS reprogramming. 
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On the other hand, my analysis has revealed that the expression pattern of the              
actin gene (Actb), often considered as a reliable reference gene in other studies             
(Ruiz-Villalba et al. 2017), steadily decreased throughout the reprogramming. As a           
result, the gene was consistently ranked as one of the most unstable genes across              
different statistical methods. This change in actin mRNA expression may reflect           
the cytoskeletal remodelling which is normally associated with iPS reprogramming          
(Boraas et al. 2016) and plays a central role in the cell fate change (Mammoto and                
Ingber 2009).  

Hprt was marked as second least stable gene in the analysis. This result is in               
agreement with previous work on reference genes in pluripotent stem cells that also             
marked Hprt unsuitable for use as a reference gene (Murphy and Polak 2002). The              
authors conducted differentiation of embryonic stem cells and measured         
housekeeping gene expression change at different time points. Induction of          
pluripotency can be viewed as a process opposite to differentiation, with           
pluripotency features gradually emerging instead of disappearing.  

The ribosomal gene Rps18 was found to vary greatly and stand out as the most               
unstable gene among all, being ranked last by all algorithms unanimously.           
Previous investigations of Rps18 have shown that this gene can be stable            
(Scharlaken et al. 2008) or unstable (Najafpanah et al. 2013) as a reference for              
qPCR experiments. My study has found that, in addition to high variability, the             
expression level of Rps18 was very high compared to the majority of other genes              
(the average of 16.09 cycles, compared to other genes having around 20 cycles on              
average), and it increased during reprogramming. This level and the increase may            
reflect the growing need of the cell in protein synthesis because of metabolic             
alterations and increased proliferation rate. Such large differences in basal          
expression and high variability make Rps18 an unsuitable candidate for          
normalization, and its use as a reference should be avoided in future works on iPS               
reprogramming.  

Overall, I concluded that the standard method of RT-qPCR, namely, relative           
quantification with the use of reference genes, is unsuitable for the analysis of gene              
expression during iPS reprogramming due to statistically significant fluctuations         
both in the housekeeping genes’ expression and in reaction efficiency.  
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Chapter 2 
 

Development of a new methodological tool for 
high-throughput quantitative analysis of gene expression 

during the iPS reprogramming process 
 

2.1 Introduction 
 
Since one of the goals of my work was to perform a medium-throughput             

analysis of the expression of genes throughout the reprogramming process, and the            
conventional method of analysis proved unsuitable for this purpose, the next step            
was to devise a satisfactory methodological tool for gene expression analysis           
during the iPS reprogramming process. To be suitable for the said purpose, the new              
method should satisfy the following requirements: 

1) Does not require the use of reference genes 
2) Does not require running a separate calibration curve analysis 
3) Increases precision while decreasing pipetting workload and cost.  
 
To satisfy the above-mentioned requirements, the new method should         

accomplish two goals in one experiment: 1) effectively determine the reaction           
efficiency (normally measured by calibration curve analysis, as required by MIQE           
guidelines), and 2) produce a single value of gene expression with increased            
precision for each sample.  

The efficiency of the reaction is defined as the increase of product per cycle as a                
fraction of the amount present at the start of the cycle (Bustin et al. 2009; Ruijter et                 
al. 2013). It is assumed that the efficiency of a qPCR reaction is stable and               
maximal before reaction saturation. Due to the exponential nature of PCR, the            
reaction efficiency can have dramatic effects on quantification measurements. It          
has been estimated that an uncorrected 0.05 difference in amplification efficiency           
between a reference gene and a target gene can lead to false estimation of the target                
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gene expression change of 432% (Rao et al. 2013). The calibration curve method is              
widely considered the most precise method for qPCR efficiency estimation (Svec           
et al. 2015). The calibration curve is built by creating a serial dilution of known               
DNA concentration and plotting the quantification cycle (Cq) values on the y-axis            
against the logarithm of the sample concentrations on the x-axis. The efficiency (E)             
is then estimated from the slope of this curve using the classical formula             
E=10-1/slope – 1; the estimation in this case is based on knowledge of the              
concentrations of all diluted samples. However, due to the insufficient precision of            
single dilution sets that could be caused by pipetting errors etc., it is often              
recommended to run at least three PCR reaction replicates for each sample to have              
three dilution sets for a single calibration curve.  

In this chapter, I develop a new mathematical approach, Pairwise Efficiency,           
that improves the precision of estimations of qPCR efficiency, while reducing the            
workload. This approach does not rely on Cq values or amplification curve            
approximations. Instead, this new method applies pairwise approach to         
fluorescence data by calculating efficiency (E) using all possible pairwise          
combinations of fluorescence readings on several amplification curves of a dilution           
set. One pair of fluorescence readings allows to calculate a single E, while pairing              
up all fluorescence values allows to produce hundreds of E values and enables             
extensive statistics. I employ three statistical steps to increase precision: 1) first, I             
introduce a new formula for E estimation from a pair of fluorescence readings             
which allows me to use pairwise approach and produce hundreds of E estimations;             
2) second, instead of using a single threshold, I define the wider boundaries for all               
curves from a dilution series, including more fluorescence values into the analysis;            
and 3) third, I use the resulting hundreds of E estimations as a large statistical               
dataset to perform more extensive and more mathematically accurate statistical          
analyses, such as analysis of value distributions, outlier removal and others.           
Because this approach is based on commonly used, robust statistical methods, it is             
systematic and can be applied in any setting and on any instrument as long as basic                
statistical principles are conserved.  

In the later part of this Chapter, I compare the new Pairwise Efficiency method              
to the current “gold standard method” from the points of view of precision and              
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accuracy. Since these terms are of exceptional importance for demonstration of the            
value of my work, I find it necessary to define these terms here. 

Precision is a measure of random error that arises in the process of             
measurement. It is related to reproducibility and repeatability, and constitutes the           
degree to which repeated measurements under unchanged conditions show the          
same results. This error always occurs when using sophisticated instruments, such           
as fluorescence readers etc., and can be attributed to measurement noise, sensor            
sensitivity or other such random factors. 
Accuracy is a measure of systematic error (error that is “built into measurement             
system”). This type of error arises due to systematic factors, such as a defect in the                
measurement instrument (e.g. the 1-meter ruler is longer than 1 meter by mistake). 
“True” value is the reference, or “measurement standard” to which a comparison            
is made. In practice, such standards may not exist. For example, a 1 meter              
standard exists in France in The International Bureau of Weights and Measures in             
Paris. In this sense, the only “true” 1 meter is in France (because it has been                
designated as such by humans). All measurements are, in this sense, trying to get              
as close as possible to that 1 meter standard, which is considered “true”. However,              
in case of biological measurements, for example, efficiency of PCR reaction E,            
such standard sample does not exist. Thus, it is impossible to measure the E of               
the sample whose E is previously known because any measurement of “true” E             
needs a standard sample (akin to 1 meter) which currently does not exist in              
biology. In fact, the lack of such internationally recognized standard samples is one             
of the major problems of modern quantitative biology.  

Thus, it is only possible to measure accuracy indirectly, by comparing the            
results of the measurements to other, existing standards (for example, microliters           
of dilution, or a chosen standard sample), which is what I do in the later part of the                  
Results. 

My results show that the application of Pairwise Efficiency makes it possible to             
nearly double the precision in qPCR efficiency measurements without increasing          
the pipetting workload and minimizing cost. In addition, I demonstrate a 2.3-fold            
improvement in precision of the estimation of gene expression ratios.  
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2.2 Materials and Methods 
 
DNA sample 
Mouse embryonic stem cell line E14Tg2a was purchased from RIKEN Cell           

bank, JP (AES0135) and was maintained as previously described. Total RNA was            
extracted using RNeasy kit (Cat# 74106, Qiagen, Japan) following the          
manufacturer's instructions. Genomic DNA digestion was performed on-column        
according to said instructions. RNA concentration and absorbance ratios (A260/280          
and A260/230) were checked with a spectrophotometer Nanodrop 2000         
Spectrophotometer (NanoDrop Technologies, Japan). To produce cDNA for qPCR         
analysis, 300 ng of total RNA were reverse-transcribed with an Omniscript RT Kit             
(Cat# 205111, Qiagen) in a total volume of 20 µl. The resulting DNA was assessed               
by spectrophotometric analysis and diluted to 100 ng/µl. 

 
Quantitative real-time PCR setup and reagents 
qPCR was performed using a CFX96 Connect apparatus (Bio-Rad, Japan).          

Hard-Shell® 96-Well PCR Plates (Cat # HSP 9601, Bio-Rad) sealed with optically            
clear adhesive seals (Microseal® ‘B’ seal, Cat # MSB1001, Bio-Rad) were used in             
all experiments. The thermocycler program consisted of an initial hot start cycle at             
95°C for 3 min, followed by 33 cycles at 95°C for 10 sec and 59°C for 30 sec.                  
Mouse actin beta (Actb) was amplified using the following primers:          
F-5’-AACCCTAAGGCCAACCGTGAA-3’, 
R-5’-ATGGCGTGAGGGAGAGCATA-3’ (with estimated product length 194bp).      
The primers were used at a concentration of 300 nM. SYBR Green-based PCR             
supermix (Bio-Rad) was used for all reactions according to manufacturer’s          
instructions. Each reaction was performed in a final volume of 8 μL. To confirm              
product specificity, a melting curve analysis was performed after each          
amplification, and agarose gel analysis was performed to ensure the amplification           
of the right product (Supplementary Fig. 3).  

 
Experiment design and PCR dataset generation 
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For the assessment of precision of my method and comparison with the classical             
calibration curve method, I produced 16 replicas of a 6-step dilution series. Two             
datasets were generated from this experiment and processed using Bio-Rad CFX           
Manager 2.0 (2.0.885.0923). Dataset 1 consists of relative fluorescence data          
obtained from the aforementioned experiment: 6 serial dilution wells * 16 replicas            
= 96 wells. Fluorescence data in Dataset 1 are expressed as RFU (Relative             
Fluorescence Units) which is a term specific to Bio-Rad software. It is important to              
note that, since my goal was to improve the accuracy of the classical calibration              
curve, all RFU values were taken as already processed by Bio-Rad software with             
the same settings that were applied to the generation of Cq values, as follows:              
Baseline Setting set to Baseline Subtracted, Cq Determination Mode set to Single            
Threshold. Dataset 2 contains automatically generated Cq values corresponding to          
Dataset 1. The threshold was automatically set at 31.07 by the Bio-Rad software. 

 
Determination of the exponential region 
The most suitable bounds of the exponential region of the respective           

amplification curves were determined experimentally (see Results). However, prior         
to the experimental estimation, I conducted an initial estimation using well-known           
conventional techniques, namely, the “first outlier” method, the First Derivative          
Maximum (FDM) and Second Derivative Maximum (SDM) approaches (Lievens         
et al. 2012; Tichopad et al. 2003). Since the initial estimation was done solely in               
order to provide a general range for experimental testing, I chose the approaches             
mentioned above, even though other more sophisticated approaches have been          
suggested (Rao et al. 2013). The lower boundary of the exponential region has             
been defined as the point at which the signal significantly rises above the baseline              
level as determined by the formula of “first outlier” detection (Tichopad et al.             
2003). The results of the formula application to the first calibration curve replica             
(wells A1 through A6) are provided in Supplementary Table 7. In agreement with             
these data, the tentative lower boundary of the exponential region was set at 10-40              
RFU. 

I also calculated the FDM and SDM values for all calibration curves. As             
expected, the values differed for samples with different initial DNA concentration,           
and were in the range of 17-23 cycles for SDM, and 18-25 cycles for FDM values.                
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Supplementary Figure 1a shows the FDM values for the whole Dataset 1 plotted             
against cycle numbers. The earliest FDM was encountered at cycle 18 in the most              
concentrated sample. The latest FDM of the dataset came at cycle 25. As shown in               
Supplementary Figure 1b, the RFU values for cycles corresponding to calculated           
FDMs fall in the range of 120-230 RFU. Thus, in accordance with these data, the               
tentative initial estimation of the upper boundary of the exponential region to use             
in the experimental test was set between 120-230 RFU. 

 
Baseline treatment 
Baseline is a software parameter inside any qPCR machine software. Since the            

goal of my analysis was to directly improve the precision of the classical             
calibration curve method, the same software settings were applied to fluorescence           
data as to the generation of Cq values. The Bio-Rad software was set to Baseline               
Subtracted, and the baseline was subtracted automatically by the software          
producing Relative Fluorescence Unit values. This Bio-Rad subtraction method is          
based on either adding a constant value, or a linearly growing value to the raw               
fluorescence and thus does not eliminate the noise. 

 
Evaluation of the noise influence  
Every qPCR machine produces technical noise. To determine the properties of           

noise and the scale of noise influence, I examined the fluorescence readings in the              
beginning cycles of the Dataset 1. As shown in Supplementary Fig. 4a, the             
fluorescence readings in the beginning cycles (up to cycle 13-18, depending on the             
starting concentration) were distributed close to 0, with inclusion of negative           
readings. The minimal value of the whole dataset was -9.44 RFU. To demonstrate             
the noise distribution, I show three histograms which contain fluorescence readings           
from the following cycles: 1) Cycles 1 through 5; 2) Cycles 1 through 10; and 3)                
Cycles 5 through 10. The data were taken from dataset 1 and two more 96-well               
plates replicating serial dilutions, with the Actb gene as target (raw data of these              
two plates are available on request). The total number of data points resulted in              
2880 fluorescence readings (first 10 cycles from 96 wells in 3 plates). The result is               
shown in Supplementary Fig. 4b. The noise in the beginning cycles appeared to             
have a nearly normal distribution with a non-zero peak. The positions of the peaks              
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and the distribution did not change depending on the number of included cycles,             
which indicated that there was no detectable signal at this stage - because the              
increasing signal would have produced a shift to the right in the noise distribution              
if it existed. Thus, I concluded that the initial fluorescence readings in our system              
contain noise, and the noise has the approximate range of -10 RFU to 10 RFU. To                
ensure that all data points that I would take for analysis contain the non-noise              
signal, I concluded that the lower boundary should not be lower than 10 RFU              
which is in accordance with the boundary set by the ‘first outlier’.  

 
 
 
Results 
2.3 A new formula for estimation of amplification 

efficiency  
Since PCR amplification efficiency E is one of the most important parameters            

of the reaction which can have a dramatic effect on RT-qPCR measurements (as             
stated in the Introduction), I first approached the question of how to reduce the              
uncertainty in the estimation of E. 

For this purpose I introduced a new formula (3) for E estimation from a dilution               
set. This formula describes the relationship between two independent fluorescence          
readings in any given dilution set. The fluorescence readings are represented by            
data points on six amplification curves, in the case of one six-step serial dilution              
experiment (Fig. 7b). The E estimation in my case is based on a relationship              
between a pair of actual fluorescence readings, as opposed to the slope of the              
calibration curve, which is based on cycle fraction values (Ct or Cq).  

When devising the formula, I used the same basic assumptions that the            
calibration curve method uses (Ruijter et al. 2013; Guescini et al. 2008) when             
calculating the efficiency on a calibration curve, namely: 

1) The kinetics of a PCR reaction with a given DNA-primer set is the same               
irrespective of the initial template concentration.  
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2) The kinetics of the PCR reaction are assumed to be classical (described by              
the classical formula F=F0*(1+E)i ) 

3) The efficiency is maximal and constant before the reaction saturation. 
4) Fluorescence readings and double-stranded DNA concentration are linearly         

related to each other, and the increase in fluorescence is directly proportional to the              
increase in target concentration.  

 
Given these assumptions, any single fluorescence reading F on any one of the             

amplification curves in the dilution set can be described by the following            
equations: 

 

           (1)1 ) F i = F 0

2 D1 
 
× ( + E i  

 

           (2)1 ) F j = F 0

2 D2 
 
× ( + E j  

 
where i and j are cycle numbers for a particular fluorescence reading, Fi and Fj               

are the fluorescence readings in cycle i or cycle j, F0 is the initial fluorescence of                
the undiluted sample, D1 and D2 are dilution factors for curve 1 and curve 2 (if the                 
pair of data points are on the same curve, then D1=D2), and E is the amplification                
efficiency for the qPCR reaction for the given DNA-primer set. The dilution factor             
D is defined as the logarithm of the fold-dilution, compared to the undiluted             
sample whose logarithm of the fold-dilution, by definition, is 0. Since I applied             
twofold dilutions for mathematical clarity, D values in this case were integers from             
0 to 5. In the case of tenfold dilutions, the corresponding ‘2’ values in the formulae                
will become 10, and the dilution factors will remain unchanged. 

 
The equations 2 and 3 allow me to calculate the efficiency E for a given pair of 

fluorescence readings, such as:  
 

            (3)Ei,j = 2 (j−i)
(log (F )−log (F )+(D2−D1))2 j 2 i

− 1  
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Thus, while the estimation of efficiency across a dilution set by the calibration             

curve method is based on a single curve and produces a single E value, my new                
method, Pairwise Efficiency, calculates an array of E values based on all possible             
pairwise combinations of fluorescence readings from this dilution set, producing          
about 50-400 individual pairwise E measurements (depending on the number of           
fluorescence readings included in the exponential region taken for analysis), and           
then estimates the average efficiency from this array of E measurements.  

In one of the classical pairwise approaches, namely Walsh Averages, a set of             
data points is treated the following way. Each data point is paired up with all other                
data points in this set (including itself), thus creating all possible combinations of             
pairs. For example, the set [3,8] has three pairs: (3,3), (8,8) and (3,8). The              
difference in my approach is only that I exclude self-paired values (such as (3,3)).              
Each pair in this approach is unique, and in Walsh averages gives a unique average               
value (E value produced from this pair in my case). 

 
 
 
a 
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b 
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Figure 7. Graphical representation of the principle of Pairwise Efficiency          
method and its application to six dilution curves. (a) A graphical illustration of             
the Pairwise Efficiency method. Small portions of three amplification curves, with           
three fluorescence data points on each, are shown. Dashed line connects point A to              
point F on separate curves, and represents a single, unique pairwise E measurement             
(pair AF). All possible pairs, each one representing a unique pairwise E value, are              
shown on the right. Since some of the values occur on the same cycle (for example,                
AE, BF), and thus are excluded from the measurements, and are denoted in gray.              
(b) The amplification curves from the wells C1 through C6 are shown (RFU data              
taken from Dataset 1). Different shapes (circles, squares, triangles etc.) represent           
fluorescence readings taken by the machine after each PCR cycle. Horizontal lines            
denote the region of amplification curves from which the fluorescence data points            
were taken for analysis. Upper cutoff was set at 180 RFU, and lower cutoff was set                
at 20 RFU. In this experiment, the total of 24 fluorescence data points fall inside               
the denoted region, and unique pairs formed by these 24 points, excluding            
repetitive values occurring on the same cycle, are taken for analysis. 

In other words, after gathering all fluorescence RFU readings that fall within            
boundaries for each amplification curve, I further treat them as a statistical set             
(usually a set of 4x6=24, on my qPCR machine, or more if the machine sensor has                
higher sensitivity) and calculate all possible unique pairwise combinations from          
this set (24 RFU values) using my formula (3). As a result, I obtain a statistical                
population of unique E measurements which I can further analyse using chosen            
statistical methods. Thus, my first difference from classical approach is collecting           
more fluorescence values from a single curve, and an additional step is            
performing pairwise calculations to produce a statistical population of unique E           
measurements.  

 
 
 

2.4 Assessment of the detectability of stable amplification 
efficiency in the exponential phase 
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Next, I approached the question of defining the exponential region of the            
reaction data to ensure that non-exponential values would be properly excluded           
from the analysis. According to the mainstream view, any PCR reaction proceeds            
with stable efficiency until end-stage reagent depletion and the accumulation of           
reaction products cause a steep decline in the efficiency, and the reaction gradually             
slows down (Bar et al. 2012; Archer 2017). The calibration curve method aims at              
measuring the stable efficiency of the reaction before the saturation occurs, and            
this maximal efficiency is assumed to be identical across all dilution samples.            
However, it has been argued that the sensitivity of some qPCR machines does not              
allow detection of a weak fluorescent signal in the exponential phase of the PCR              
reaction, where the efficiency is still stable, and the signal first appears when the              
efficiency is already declining (Lievens et al. 2012; Rutledge and Stewart 2008;            
Tellinghuisen and Spiess 2014). It has also been pointed out that the analyses based              
on stable efficiency should be conducted strictly at the region before efficiency            
decline, if such a region is detectable. 

To determine if my system allows to detect the theoretical stable efficiency, I             
analyzed the fluorescence readings data from Dataset 1 (see Materials and Methods            
for description) using the following formula for the calculation of efficiency E. 

 
 

                     (4)E = 2 i
log F −log F2 i 2 0

− 1  
 
  
where i is the cycle number for a particular fluorescence reading F, and F0 is the                

initial fluorescence value of the sample. The logarithms, base 2, are used because             
the series contains 2-fold dilution sets. 

 
The formula (4) cannot be used directly for E calculation because the            

fluorescence level of the starting material F0 is unknown. The purpose of the             
analysis described below was to confirm the detectability of the stable exponential            
E region with varying F0 values. To obtain initial approximation of F0 value to test               
with formula (4), I used E values calculated using calibration curve method            
(Supplementary Table 3). Knowing the efficiency of the reaction (around 80%)           
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allowed me to produce initial F0 estimations by the standard formula. The resulting             
F0 values were in the range of 0.007 to 0.0002. I then substituted these F0 values                
in the formula (4) and analyzed the resulting E values at each cycle of the reaction                
(Fig. 8). As shown in the figure, I found that in the first cycles where               
non-background signal is detected by the machine, E displays a relatively constant            
pattern (SD=0.01), while in the later cycles it starts to decline steadily            
(Supplementary Table 4). The initial region with the small standard deviation           
lasted from cycle 13 until cycle 17 for the most concentrated sample. Varying the              
F0 value did not affect the detection of this region of relatively constant E, as other                
curves also produced a similar pattern with small variation of E in the initial 3-5               
cycles where the signal was already detected, and a steady decline after that.  

 
According to these data, my experimental system allowed the detection of           

approximately 4 fluorescence values from the exponential phase of amplification          
where the variation of efficiency does not exceed ±0.01. This result overall shows             
that the theoretical stable efficiency is detectable and can be quantified. 

 
 

 
Figure 8. A graphical representation of the efficiency (E) values across all            

cycles taken from a 6-step dilution set. Efficiency is calculated using the formula             

. The Fi and i values for calculation are taken directly fromE = 2 i
log F −log F2 i 2 0

− 1             
Dataset 1, wells A1 through A6. Since F0 value is unknown, it was selected from               
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the range of theoretically possible F0 values (covering 0.007 - 0.0002) and used in              
the formula.  

 
 
 

2.5 Experimental determination of lower and higher 
boundaries 

 
Because each dilution set produces amplification curves based on different          

concentrations of starting material, one can expect that the exponential region of            
each curve should start at a different cycle. Thus, it is necessary to experimentally              
determine the most suitable upper and lower boundaries of the exponential region            
for all curves taken together. An incorrect determination of the boundaries and            
subsequent inclusion of non-exponential values would be a major source of error in             
E estimation. To determine the most suitable boundaries for my system, I            
experimentally tested at what fluorescence range (i.e. what portion of each of the             
amplification curves) the application of Pairwise Efficiency method produces         
results with the highest precision. For the estimation of precision I applied            
modified Monte Carlo approach that was previously described by Svec et.al. for            
the evaluation of precision of the calibration curve method (Svec et al. 2015). The              
essence of Monte Carlo method is described below. To find the value a of a certain                
quantity, one chooses a random variable X, the mathematical expectation of which            
equals a: 

   

M (X) = a  
 
In practice, this method is applied by conducting n real measurements and            

obtaining n values of X, and then calculating their average. Mathematically, this            
method leads to the increase in precision of measurement due to the increased             
number of performed measurements and is based on the central limit theorem; with             
repeated measurements, the error of the arithmetic mean decreases depending on           
the number of measurements: 
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Where σсp is the error of the average value of multiple measurements; 
σ is a single measurement error; 
n is the number of measurements. 
 
The calibration curve method described in MIQE guidelines requires         

researchers to perform at least three replicative measurements of the Ct value for             
this very reason, which is to increase precision by increasing the number of             
measurements. However, since it always uses Ct values which represent only one            
data point on an amplification curve, each additional measurement must be           
obtained by manually pipetting one more replicate of the sample. In contrast,            
Pairwise Efficiency uses the whole array of fluorescence data available from the            
exponential phase of the amplification curve defined by lower and upper           
boundaries, and operates hundreds of measurements without additional pipetting         
load.  

In case of Monte Carlo simulations, for the purpose of precision estimation it is              
sometimes permissible to apply computer simulation of pseudo-random numbers to          
increase the number of measurements. Such application is described in Svec et.al.            
for assessment of precision of the calibration curve method depending on the            
number of taken replicas (one, two or three). The authors calculated PCR            
efficiency by standard calibration curve method of 6 dilution steps. For each of the              
step they performed four technical replicates. Then they randomly formed data sets            
using either one, or two, or three replicas to calculate the efficiency, and these              
replicas were taken from the set of available four replicas for each dilution step.              
Thus, the four replicas represented a sample from a “pseudo-general” population           
from which random samples were taken. 

Similarly to the method described above, I took random samplings from           
pseudo-general population, with the difference being that my population was much           
larger and contained 16 replicas instead of 4. To evaluate the precision for different              
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boundaries, I randomly drew 100 different six-sets from the general population of            
16 (Fig. 9), and calculated the precision for each combination expressed as            
standard deviation (SD). The results of this operation are displayed in Fig. 10.             
Exact SD values and other specifications can be found in Supplementary Table 5. 

The lower boundary was tested at the range of 10 RFU - 80 RFU, and the                
higher boundary was tested at the range of 120 RFU - 230 RFU (see Materials and                
Methods). 

 

 
Figure 9. Schematic representation of Monte Carlo simulation for assessment          
of precision. All 96 wells contain samples of different concentration (written           
above the plate). Technically, this constitutes 16 sets of six-step dilution series, 8             
on the left half of the plate, and 8 on the right half of the plate. These 16 sets are                    
identical and represent the general population on which Monte Carlo simulation is            
based. For each assessment of SD of a given boundary set (for example, for              
boundaries 10 RFU-180 RFU), 100 pseudo-random measurements are performed         
using Pairwise Efficiency method. Each pseudo-random measurement consists of         
averaged 3-set of randomly chosen dilution series (represented by red circles in the             
figure). The SDs of different boundaries are then compared to each other. 
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Figure 10. Determination of the most suitable RFU boundaries for a 6-step            

dilution series. Standard deviations (SD) of the efficiency values calculated by           
Monte Carlo approach using different regions of amplification curves. The average           
efficiency (E) of the 6-step dilution set was calculated based on randomly selecting             
data out of 16 set replicas. Each time different portions of the amplification curves              
were included in the calculations, defined by lower and upper boundaries. The            
lower boundary varied between 20 RFU and 80 RFU, while the upper boundary             
varied from 120 RFU to 240 RFU. The lowest SD was obtained when applying the               
following boundaries: lower at 40 RFU and upper at 120 RFU. The SD tended to               
rise when boundaries were raised. 

 
 
 
While varying the boundaries within the exponential region (for definition of           

exponential region see Materials and Methods) did not produce a significant           
difference in SD values, and the best result was obtained at the lower portion of the                
curve (40-120 RFU) (Fig. 10). The variation in the SD value did not exceed 0.001               
for the lower portion (40-120 RFU, 40-150 RFU, 20-150 RFU). This result is in              
agreement with previous studies reporting that the threshold for measurements is           
best set at the lower portion of the amplification curve because the declining             
efficiency in later cycles might significantly affect the results (Archer 2017). I            
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conclude that slight variation of lower and upper boundaries does not significantly            
affect the precision of E estimation. This is well in agreement with my data on               
exponential region estimation (see Materials and Methods) which puts the upper           
boundary at the fluorescence range 120-230 RFU and the lower boundary at the             
fluorescence range 20-40 RFU (Supplementary Figure 1). To include as many           
values as possible in my case, I decided to use 20-180 RFU boundaries, which              
allows the inclusion of approximately 4 fluorescence data points (Fig. 7b).  

 
 

2.6 Statistical elimination of outliers 
 
Statistical outliers are data points that are numerically distant (far removed)           

from the rest of the data points in the general population. Outliers occur in many               
statistical analyses and can be a chance phenomenon, a measurement error or an             
experimental error. The origin of the outliers in any particular case could be             
separately investigated if needed; however, it is not necessary to know their origin             
to conduct statistical operation on the outliers. The origin of the outliers in any              
RT-qPCR experiments could be: 

1) Electrical noise in the measurement instrument inherent to the machine 
2) Pipetting mistakes of the operator in one or more samples 
3) Dilution errors of the operator in one or more samples 
4) Other factors.  
Excluding such values from the calculations is an important additional way to            

increase precision of measurements, and in my case it is possible exactly because             
of the availability of the vast array of measurement data (hundreds of points).             
Elimination of outliers is statistically impossible when only three or four data            
points (replicates) are available, as is the case of the standard method. Thus,             
mathematically increasing the number of data points by using Pairwise Efficiency           
formula allows both direct improvement in precision, and more robust statistical           
analysis such as outlier elimination. 

In my case, I utilized the elimination of outliers technique that is often used in               
statistics to exclude unreasonable values that occur due to random measurement           
errors, and to increase the precision of measurements. First, I analyzed the            
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distribution of pairwise E values for normality in each group of pairwise E             
measurements. This analysis is necessary in order to decide which kind of method             
to use for outlier exclusion (parametric, such as three sigma rule, vs.            
non-parametric). To assess the distribution normality in a mathematically objective          
way, I used standard tools, namely, skewness, kurtosis, and chi-square test. As            
shown in Table 4, the majority of skewness values significantly deviated from 0,             
confirming distribution asymmetry.  

 
 
Dilution set (wells) Skew Kurtosis N of E measurements 

A1-6 1.064 7.357 167 

B1-6 0.615 4.085 168 

C1-6 0.221 3.556 170 

D1-6 1.051 6.305 183 

E1-6 0.473 5.524 168 

F1-6 1.880 6.769 152 

G1-6 2.012 10.079 182 

H1-6 1.379 12.177 168 

A7-12 -0.337 2.160 168 

B7-12 0.098 4.508 149 

C7-12 0.215 2.838 204 

D7-12 0.739 2.514 168 

E7-12 0.563 3.555 188 

F7-12 -0.034 3.843 171 

G7-12 1.429 7.023 152 

H7-12 -0.148 5.319 188 

Table 4. Estimation of distribution normality. Pairwise E values of 16 dilution            
sets were analyzed for skewness and kurtosis. Skewness values that deviate from 0             
indicate asymmetry of the distribution, making it a non-normal distribution.          
Positive kurtosis values also imply deviation from normal distribution and indicate           
that the distribution is sharp (more values are close to mathematical expectation,            
and precision is higher than would be expected in the case of normal distribution).              
The right column contains the total data points for each dilution set that were taken               
for this analysis. 
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Thus, for example, the dilution set in wells A1 through A6 had 167 individual              

pairwise E measurements, skewness=1.06 and kurtosis=7.36. The frequency of E          
values below 5 was first encountered at E=0.6 (60% efficiency) on the lower end,              
and at E=1.15 (115% efficiency) on the higher end (for more information see             
Supplementary Table 6 and the next passage on Chi-square criteria). Based on            
Chi-square criteria, all pairwise E measurements that exceeded 115% and did not            
reach 65% were excluded from the calculation of average E for this dilution set. E               
value for wells A1 through A6 prior to outlier analysis was E=0.79, and after the               
removal of outliers became E=0.816. Other E values for the remaining 15 sets were              
processed on the basis of the same algorithm.  

In addition, all kurtosis values were positive, indicating that calculated pairwise           
E measurements from these dilution sets had leptokurtic distribution (Fig 11). 

 
 

 
Figure 11. A graphical representation of the distribution of pairwise E           

values for the wells A1-A12 and B1-B12. The distribution of pairwise E values is              
leptokurtic in all sets, and has a sharp appearance, indicating that the values are              
closer to mathematical expectation, and precision is higher than would be expected            
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in the case of normal distribution. In addition, the distributions are skewed and             
possess larger tail areas, indicating significant deviation from normality. 

 
 
Next, I used the Pearson's chi-squared test to test the goodness of fit of the               

frequency distribution of calculated pairwise E values. The application of this test            
is considered valid if there are at least 50 values analyzed for distribution (which is               
the case of Pairwise Efficiency), and no more than 20% of the values have              
expected frequencies below 5. The values whose frequency is less than 5 are             
considered statistically unreliable and are designated as outliers. An analysis by the            
Chi-square test showed that the majority of the distributions (12 out of 16)             
significantly deviated from normal (Supplementary Table 6 and Fig. 12). Thus,           
parametric tools designed for normally distributed values, such as quartile ranges           
or sigma rules, could not be applied in this case. Instead, when the distributions do               
not follow a fixed set of parameters (e.g. are not normal), non-parametric statistical             
tools are used; however, the selection of specific tool is left to the researcher and is                
decided case-by-case. Since Pearson’s chi-square test is a universal tool that can be             
applied to any kind of distribution (both parametrized and non-parametrized), I           
chose to use the criteria of this test to exclude outlier E values in our case. As                 
mentioned above, according to the principles of the Pearson's chi-square test, the            
values whose frequency is less than 5 are considered statistically unreliable. Based            
on this criterion, the pairwise E measurements with frequency less than 5 were             
considered outliers and were excluded from the calculation of the average E value             
of the dilution set. 
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Figure 12. A graphical representation of the distribution of pairwise E values            
for the wells H7-H12 compared to normal distribution, and the principle of            
the outlier exclusion. The distribution of pairwise E values is leptokurtic (has a             
sharp peak), indicating that the values are closer to mathematical expectation, and            
that the precision is higher than would be expected in the case of normal              
distribution. In addition, skewness is present in this distribution as compared to            
normal distribution, indicating significant deviation from normality. 

 
 
 

2.7 Comparison of Pairwise Efficiency method with the 
calibration curve-based E estimation by precision 

 
Next, I set out to compare the precision of my method to the classical              

calibration curve method. Since precision is defined as a measure of random error,             
it can be measured by the same Monte Carlo approach that was used for              
comparison of different boundaries described above in section 2.4. Again, as           
shown in Fig. 9, I took more than 100 samplings of three replicas of dilution sets at                 
random, and, for the classical calibration curve, used them to generate calibration            
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curves. Then, individual E estimations were made based on these randomly           
produced calibration curves, and standard deviation (SD) was calculated for the           
produced E values. The SD value for E estimation found to be 0.019. Next, I               
applied the same approach to the corresponding RFU values by Pairwise           
Efficiency method and calculated SD for it as well. The results are shown in Table               
5. Pairwise Efficiency produced a decrease in SD (increase in precision) of E             
estimation from SD=0.019 to SD=0.010, thus nearly two-fold. While the average E            
values were found to be 80% in both methods, Pairwise Efficiency produced a             
smaller standard deviation and a smaller difference between maximal and minimal           
E values. The dispersion of E values obtained by Pairwise Efficiency method,            
expressed as Max E - Min E, did not exceed 0.045, as opposed to 0.072 obtained                
by the calibration curve method. This means that the magnitude of random error in              
the E estimation was approximately two times lower in the case of Pairwise             
Efficiency compared to the calibration curve method. 

 
 

Approach SD Max E Min E Max-Min difference Average E 

Calibration curve 0.019 0.83 0.76 0.072 0.80 

Pairwise Efficiency 0.010 0.82 0.78 0.047 0.80 

Table 5. Comparison of the calibration curve method with the Pairwise           
Efficiency method. Standard deviations (SD) obtained from the Monte Carlo test,           
maximal and minimal efficiency values, the range between maximal and minimal           
values, and the average efficiencies are shown. While the average E value was the              
same for both methods (E=0.80), the precision of E estimation obtained by the             
Pairwise Efficiency method, expressed as standard deviation (SD), was nearly two           
times higher, and the dispersion, expressed as the difference between maximal and            
minimal calculated E values, was 1.6 times smaller. 

 
 
Next, I investigated whether this increased precision in the efficiency estimation           

would translate into increased precision of gene expression ratio measurements. To           
do that, I calculated the magnitude of possible error for the calibration curve             
method and for the Pairwise Efficiency method, using the same assumptions as            
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described in Materials and Methods. For the calculation of expression ratios in the             
case of calibration curve, I used the equations described by M. Pfaffl (Pfaffl 2001).              
The mathematical model presented in his publication is, in principle, equivalent to            
the model previously designed by Roche Diagnostics and takes into account the            
efficiency of both target and reference genes. The formula presented by Pfaffl has             
the following appearance: 

 

atior = Etarget
          △Ct   

 
where ΔCt is the difference between Ct of the sample and Ct of control at the                

same threshold. This formula was devised by Pfaffl for calculating the efficiency            
and relative expression ratio based on dilution curve for only the target gene. Since              
my dataset of 16 dilution replicas contained exactly the same amount of target gene              
(Actb) in wells with the same concentration, theoretically the calculated ratio           
between these wells should be 1. Thus, I could measure the magnitude of error in               
the determination of the ratio by measuring maximal difference between each one            
of these 16 replicas. In this case, the error would be maximal when the efficiency               
value is maximal.  

First, I determined which one of the 16 dilution sets gives the highest efficiency              
value. The analysis using the calibration curve method showed that wells D1            
through D6 produced the highest efficiency (E=0.882). Next, using this efficiency,           
I applied the aforementioned formula for the undiluted samples, considering the Ct            
sample the highest Ct from all 16 replicas, and Ct control the lowest of all. This                
resulted in a ratio = 1.606. Thus, the maximal possible error in the estimation of               
gene expression ratio when using the calibration curve method can reach up to             
60%. Similarly, I used the maximal efficiency calculated by Pairwise Efficiency           
method to estimate the magnitude of error on Dataset 1 with 16 replicas. The              
maximal efficiency value was obtained in the same wells (D1 through D6) as for              
the calibration curve, which indicates robustness of both methods for E estimation.            
Using this maximal efficiency value, I estimated F0 in all wells using my modified              
formula:  
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F 0 = F i

(1+E)i  
based on actual fluorescence values. The estimation of F0 in Pairwise           

Efficiency method in this case was analogous to the calibration curve method,            
while the way I estimate efficiency differed. I obtained the following result: Max             
F=0.00435436, Min F=0.00345735. Then I calculated the difference between         
maximal F0 and minimal F0 which yielded a ratio=1.26. Thus, the magnitude of             
possible error in ratio estimation using Pairwise Efficiency method amounts to           
26%, which amounts to an improvement of about 2.3 fold in the precision of              
gene expression ratio estimation compared to the calibration curve method. 

 
 

2.8 Comparison of Pairwise Efficiency method with the 
calibration curve-based E estimation by accuracy 

 
Accuracy is a measure of systematic error, and can only be determined by             

comparing the sample to a known standard. Biological standards for RT-qPCR do            
not exist. Thus, it is only possible to determine accuracy indirectly, for example, by              
comparing the measurements to other known values (such as dilution proportions           
etc.). 

Thus, I compared Pairwise Efficiency method to the classical method by their            
ability to reflect dilution proportions. In my case, the known values were the             
dilution proportions represented by cDNA concentrations (100 ng, 50 ng, 12.5 ng,            
3 ng) which should result in the following proportions: 1, 2, 8, 32. The closer the                
ratio result to the known dilution value, the higher the accuracy. I calculated the              
ratios and the error for the known concentrations using Pairwise Efficiency method            
and the classical calibration curve method, and then determined the error for each             
method (Table 6). 
 

Wells Conc. Efficiency F0 Ratio Error (%) Ratio (Ct) Error (%) 

A1-A6 100ng 0.73130 0.00800 1 N/A 1 N/A 

A7-A12 100ng 0.76200 0.00780     
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B1-B6 100ng 0.77170 0.00660     

B7-B12 100ng 0.77230 0.00710     

C1-C6 50ng 0.83530 0.00280 2.513 20% 2.47 19% 

C7-C12 50ng 0.79550 0.00290     

D1-D6 50ng 0.81870 0.00290     

D7-D12 50ng 0.82390 0.00300     

E1-E6 12ng 0.75780 0.00060 8.519 6% 12.73 37% 

E7-E12 12ng 0.68420 0.00110     

F1-F6 12ng 0.72470 0.00090     

F7-F12 12ng 0.70420 0.00100     

G1-G6 3ng 0.76180 0.00020 35.455 10% 57.41 44% 

G7-G12 3ng 0.66870 0.00020     

H1-H6 3ng 0.72810 0.00020     

H7-H12 3ng 0.66640 0.00020 Average 28%  67% 

Table 6. Comparison of the accuracy between Pairwise Efficiency and the           
standard calibration curve method based on the ability to detect known           
dilution proportions. The ratio between different concentrations of Actin beta was           
measured using Pairwise Efficiency or the standard calibration curve method. The           
average error for Pairwise Efficiency is 28%, while the average error for standard             
method is 67%.  
 
Pairwise Efficiency could detect known dilution proportions with much better          
accuracy compared to standard RT-qPCR method overall. It is also interesting to            
note that the error for Pairwise Efficiency was largest at the smallest volume (x2              
dilution, 20% error), while for standard method the error tended to increase with             
the dilution volume (19%, 37%, 44%). Overall, Pairwise Efficiency outperforms          
the standard method by a large margin on accuracy, being able to detect small              
quantities of RNA with much less error. 
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2.9 Discussion 
 
Quantitative PCR is an affordable and widely used technique for nucleic acid            

quantification. However, despite its popularity, this method has yet to gain full            
acceptance in the research community due to limitations in its ability to provide             
precise measurements, which may lead to low reproducibility. In chapter 1 of this             
thesis, I have shown that the housekeeping genes analyzed by conventional qPCR            
approach display high variability and are unsuitable for use in the relative            
(standard) gene expression quantification by qPCR. Instead, I introduce a new           
approach to qPCR data analysis, Pairwise Efficiency, which consists of three           
elements. First, it introduces a formula describing the relationship between two           
fluorescence readings on amplification curves, and does not rely on Cq values or a              
calibration curve for the estimation of reaction efficiency. Second, it estimates the            
boundaries of the exponential region for a group of amplification curves in order to              
determine reliable data boundaries. And third, it eliminates outliers during the           
process of calculating E values, as opposed to at the end. 

The most important advantage of the new Pairwise Efficiency method is the            
increase in data points available for analysis due to the introduction of the new              
formula for efficiency estimation. Such increase in available data enables one to            
use sophisticated statistical instruments. No other current method of RT-qPCR          
operates hundreds of data points at once, and the standard method           
(recommended by MIQE guidelines) operates 16 data points at most. This           
advantage of Pairwise Efficiency includes the following factors: 

1. While the standard method uses only one point on the amplification curve             
(Ct, or fractional cycle at the threshold), Pairwise Efficiency uses the whole array             
of available fluorescence points (RFU) in the exponential region of the           
amplification curve. This increases available statistical data from 16 to hundreds,           
and improves precision. 

2. The calculations in Pairwise Efficiency do not depend on the Ct value which              
is automatically set by the machine. Ct values depend on the algorithm, machine,             
maker, data etc, and differ for different conditions, thus introducing more           
fluctuation into the data. In contrast, Pairwise Efficiency operates only the actual            
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fluorescence data which do not depend on the settings of the machine or the              
experimenter and always stay the same. 

3. The outlier elimination process in the case of the standard method is not              
optimal: to determine “bad” reactions it uses the efficiency value obtained by the             
calibration curve. MIQE stipulates that “robust and precise qPCR assays are           
usually correlated with high PCR efficiency”, and considers the efficiency to be an             
indicator of assay quality. In cases in which the E value exceeds the theoretical              
maximum of 100%, it is taken to be the result of reaction inhibition in one of the                 
wells, generally meaning that the entire assay needs to be repeated or redesigned             
(Bustin et al. 2009). In contrast, Pairwise Efficiency allows one to analyze each             
amplification curve separately, detect outliers in the process of analysis, and           
exclude potentially bad data from the final calculation of gene expression ratio.            
This significantly reduces the amount of workload (Fig. 13). 

 

 
Figure 13. Demonstration of one of the important advantages of Pairwise           
Efficiency using data obtained from running RT-qPCR experiment on Tfrc          
gene. (a) Six-well dilution series was pipetted and RT-qPCR was run for Tfrc             
gene. Then, Ct values for each of the concentrations were plotted against the             
logarithm of known concentration. This allowed to draw a calibration curve           
(orange). This calibration curve significantly deviates from linear shape, and it is            
impossible to determine what was the cause of it. According to MIQE, this             
experiment is considered “bad”, and the entire experiment must be re-performed.           
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(b) The six amplification curves obtained from six-well serial dilution have been            
generated based on fluorescence (RFU) values. Each curve corresponds to one well            
on the plate (one PCR reaction). The grey curve can be seen deviating significantly              
from normal reaction pattern. Thus, since Pairwise Efficiency operates the data           
taken from amplification curves directly, it can detect the abnormal curve and            
exclude it from calculations. Other curves remain valid and this allows the            
researcher to use available experimental data without the need to re-perform the            
entire set. 
 

A significant advantage of Pairwise Efficiency is that it relies on actual            
fluorescence readings rather than implied data. It has been previously pointed out            
that the estimation of efficiency by the means of a calibration curve, as required by               
MIQE guidelines, is based not on existing, but rather on implied data: “the data              
from a tube is discontinuous; fluorescence is measured at the end of each cycle,              
and there is no such thing as a fluorescence after a fractional number of cycles as                
implied by the continuous functions [that the classical Cq approach involves]”           
(Jones et al. 2014). I agree with this point of view. One of the advantages of                
Pairwise Efficiency is that it is based on the analysis of actual fluorescence             
readings produced after each cycle, and does not rely on fractional cycles. 

In Pairwise Efficiency, not only can we obtain more than 150 data points from a               
single dilution set (six wells), but replication of the calibration curve three times             
could potentially increase this number up to 2556 (72 fluorescence readings, all in             
cross-pairwise relationships). This allows the use of powerful statistical         
instruments, and represents a marked advantage over other methods. 

Overall, the new method, Pairwise Efficiency, allows a nearly two-fold          
increase in the precision of efficiency estimation and a 2.3-fold increase in the             
precision of the gene ratio estimation. Thus, I have successfully devised a new             
method for qPCR data analysis that 1) does not require the use of reference genes,               
2) increases the precision of measurements, and 3) reduces labor and cost            
associated with qPCR experimentation (for further discussion of this last point see            
General Discussion at the end of this thesis). 
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Chapter 3 
Application of Pairwise Efficiency to the analysis of gene 

expression dynamics during the iPS reprogramming process 
 

3.1 Introduction 
 
After I developed a new, high-precision RT-qPCR method, Pairwise Efficiency,          

I set out to demonstrate the effectiveness of the method in revealing biological             
information in iPS reprogramming as a model system of a long-term dynamic            
process. I chose to test the new method on a set of selected genes in a time-course                 
of iPS reprogramming. My goals for this part of my work were as follows: 

1) Test the applicability of Pairwise Efficiency in medium-throughput setting 
2) Reveal the patterns of gene expression during iPS reprogramming 
3) Determine whether Pairwise Efficiency can produce significantly better        

results than previously applied methods. 
 
Previous works in the field of quantification of gene expression in stem cells             

have centered on mouse embryonic stem cells (ESCs), and have been mostly            
conducted in the low-throughput settings. For example, a study by E. Willems and             
colleagues in 2006 has identified Actin Beta and Gapdh as the most stable genes in               
mouse embryos and in differentiating mouse and human ES cells (Willems et al.             
2006) among 10 genes. This study applied classical tools geNorm and NormFinder            
to draw a ranking on the genes, similarly to what I did in iPS cells in Chapter 1,                  
and did not focus on time-course or range analysis. A subsequent study by S.              
Mamo in 2007 focused on 12 reference genes in mouse oocytes and embryos, and              
pointed out the instability of housekeeping genes, while suggesting that Ppia,           
H2afz and Hprt I as the most stable genes in the embryos (Mamo et al. 2007). The                 
same team has later published a 2008 study in rabbit oocytes and preimplantation             
stage embryos. The team identified H2afz, Hprt I and Ywhaz as the most stable              
reference genes, while indicating that Ubc, Tbp and B2m were the least stable and              
unsuitable for normalization in qPCR experiments in pluripotent stem cells (Mamo           
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et al. 2008). A 2011 study subsequently analyzed mouse embryonic stem cells and             
found that Sdha, Tbp and Ywhaz were the most stable genes during the             
differentiation of embryonic stem cells in vitro (Veazey and Golding 2011).           
Another study, performed in human embryonic stem cells in 2013, on the other             
hand, identified B2m and Rpl13a as the most stable genes during differentiation            
(Vossaert et al. 2013). A large-scale study conducted in human ESCs was done by              
Synnergren and colleagues (Synnergren et al. 2007). This study used microarrays           
to analyse housekeeping gene dynamics, and has also arrived at the conclusion that             
conventionally used housekeeping genes, such as HPRT, Actin, Gapdh, fluctuate in           
differentiating human ESCs. This study has identified a special set of housekeeping            
genes for use as a reference in pluripotent stem cell experiments. The next largest              
study, judging by scale, was done in 2015 by the same team and again in               
differentiating human ESCs, and has expanded the set of analyzed genes because            
of rising concerns about variability of the housekeeping genes. This study used            
large-scale datasets to perform global transcriptional analysis. It included 9          
different datasets and 144 microarray to identify a set of non-varying genes, while             
highlighting the fact that commonly used Actb, Gapdh, Hprt1, Ppia, Sdha and B2m             
varied substantially during human ESC differentiation. This study put Hprt1 and           
B2m in the group of highly varied genes (Holmgren et al. 2015). 

Only one study so far has been conducted on iPS cells, where the team              
investigated the stability of commonly used housekeeping genes during iPS          
differentiation (not reprogramming). This small-scale study on 16 genes has          
identified Actb, C1orf43, PSMB4, Gapdh and HMBS as the most stable genes            
during iPS differentiation. There are no studies on housekeeping genes during the            
iPS reprogramming process, and the existing studies are limited in their scale.            
Thus, the stability of common housekeeping genes and the newly suggested           
housekeeping genes (Synnergren et al. 2007; Holmgren et al. 2015), as well as and              
their performance compared to conventional housekeeping genes, still needs to be           
investigated in iPS systems, especially during the reprogramming process. 

In this chapter, I demonstrate the application of the developed high-precision           
qPCR method, Pairwise Efficiency, to uncover gene expression patterns in 70           
housekeeping genes during the iPS reprogramming. I have included a portion of            
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recently discovered genes, mentioned above in relation to large-scale studies, as           
well as conventionally used genes, such as Gapdh, ActB and ribosomal genes.  

3.2 Materials and Methods 
 
Cell culture 
The iPS reprogramming was carried out in a reprogrammable cell system           

previously described in Hikichi et. al., 2012, and applied in Panina et.al., 2018. The              
details of the experimental procedures are described in Materials and Methods           
section for Chapter 1. In short, neural progenitor cells were cultured in a suitable              
medium and iPS reprogramming was carried out without cell split for 20 days.             
Samples were collected on Days 0, 5, 10 and 15 for this experiment. 

 
RNA isolation and cDNA synthesis 
The RNA isolation and DNA synthesis was carried out as described in            

Materials and Methods section for Chapter 1 and Chapter 2.  
 
Experiment design and PCR dataset generation 
The experiment was designed according to the requirements of the newly           

developed Pairwise Efficiency method. Since four time points during the          
reprogramming process were to be analyzed, I divided the 96-well PCR plate into             
four parts. Every part out of the four could host four target genes for analysis.               
Thus, 70 genes analyzed resulted in 17.5 plates. No other replicas were necessary             
because Pairwise Efficiency allows the analysis based on six-well approach for           
each gene-DNA combination (for pipetting layout principle see Fig. 19). The           
Baseline Subtracted PCR datasets were generated from each PCR run and           
processed using Bio-Rad CFX Manager 2.0 (2.0.885.0923). These datasets were          
imported for analysis into the Pairwise Efficiency software (unpublished).  

 
Quantitative real-time PCR 
RT-qPCR was performed with a CFX96 Connect apparatus (BioRad) and the           

reagents as described in Materials and Methods section for Chapter 1 and Chapter             
2. 
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Results 
3.3 The preparation of cell samples and the standard 

pluripotency check 
To monitor gene expression during the iPS reprogramming process, I prepared           

mouse neural progenitor cells and reprogrammed them to pluripotency as described           
in the Materials and Methods. For gene expression measurements cells were           
harvested at Day 0, Day 5, Day 10 and Day 15, and the completion of               
reprogramming by Day 15 was confirmed by alkaline phosphatase staining and           
immunostaining for pluripotency markers Nanog and Oct4 (Fig. 14). While the           
alkaline phosphatase has started to appear, albeit very little, at Day 5 (Fig. 14A),              
the pluripotency markers Nanog and Oct4 were expressed on the last day of the              
reprogramming (Fig. 14B) but could not yet be detected by immunofluorescence           
on Day 10 (data not shown). The levels of pluripotency markers Nanog and Oct4              
in RNA samples was also confirmed by qPCR in the process of gene expression              
analysis (see the following sections of the Results). 
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Figure 14. Standard tests confirming successful reprogramming of neural         
progenitors into the pluripotent iPS cells. A. Alkaline phosphatase staining of           
the neural progenitor cell line at different days throughout the iPS reprogramming            
process. Nascent colonies possessing expressed alkaline phosphatase are depicted         
in dark red. B. The results of the immunofluorescent analysis of nascent colonies             
for pluripotency markers Nanog and Oct4 at the end of the reprogramming (Day             
15). 

 
 

3.4 The choice of housekeeping genes for the investigation 
of iPS reprogramming 

 
Next, using previously published articles, I assembled a list of 70 housekeeping            

genes for expression pattern analysis (Table 7). The list contained a portion of             
commonly used genes and the genes recently identified by microarray analysis as            
stable and suitable for qPCR normalization in differentiating human embryonic          
stem cells (Synnergren et al. 2007; Holmgren et al. 2015).  

 
 

Gene ID Function 

Aasdh NM_173765.3 
Unknown function, possibly post-translational 
modification 

Actb NM_007393.5 Cytoskeleton 

Ada NM_001272052.1 Purine metabolism, possibly immune 

Alas1 NM_001291835.1 Mitochondrial, porphyrin metabolism 

Alb NM_009654.4 Blood serum albumin 

Atp5f1 NM_009725.4 ATP generation 

B2m NM_009735.3 Immune system 

Car6 NM_009802.2 Carbonic anhydrase, only in salivary glands 

Cdc14a NM_001080818.2 Centrosome separation, cytokinesis 

Cox4i1 NM_009941.3 Electron transport chain 

Cpne2 NM_153507.2 Calcium-mediated intracellular processes 
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Crebbp NM_001025432.1 Acetylates histones and other proteins 

Cript NM_019936.3 PDZ-binding protein 

Def8 NM_001253783.1 
Lysosome peripheral distribution, possibly bone 
resorption 

Dtwd2 NM_026854.3 Unknown function (location only cervix) 

Eef1d NM_029663.2 Translation 

Eln NM_007925.4 Cytoskeleton 

Fbxl12 NM_013911.3 Ubiquitin ligase component 

Fh1 NM_010209.2 ATP (TCA cycle) 

Foxp4 NM_001110824.1 
Transcriptional repressor that represses 
lung-specific expression, possibly other? 

G6pdx NM_008062.2 
Oxidative pentose-phosphate pathway (addition 
to glycolysis) 

Gapdh NM_001289726.1 ATP generation 

Got1 NM_010324.2 ATP generation 

Gtf2h3 NM_181410.3 Transcription 

Gusb NM_010368.2 Digestion system 

H13 NM_001159551.1 Immune system 

Hddc2 NM_027168.2 Unknown function (only in brain) 

Hmbs NM_001110251.1 Heme biosynthesis 

Hprt NM_013556.2 Nucleotide salvage 

Idh3a NM_029573.2 ATP generation 

Kiaa0141 NM_024179.5 Apoptosis 

Ldha NM_001136069.2 ATP generation 

Mdh1 NM_001316675.1 ATP generation 

Mlh3 NM_001304475.1 mutL 

Mpi NM_025837.2 Glycosylation 

Nubp1 NM_011955.2 
Assembly of an Fe-S cluster, centrosome 
duplication, negative regulator of cilia 

Pdha1 NM_008810.3 ATP generation 
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Pfkp NM_001291071.1 ATP generation 

Pgam1 NM_023418.2 ATP generation 

Pgk1 NM_008828.3 ATP generation 

Plekha1 NM_001346515.1 Membrane signaling 

Pole NM_011132.2 DNA polymerase 

Ppia NM_008907.1 Possibly immunosuppression 

Pten NM_008960.2 Stopping cell cycle 

Ripk3 NM_001164107.1 Signaling, apoptosis 

Rnd1 NM_172612.3 Cytoskeleton (Rho GTPase) 

Rnf7 NM_011279.3 Component of ubiquitin ligase 

Rpl13a NM_009438.5 ribosome 

RPL15 NM_001359897.1 ribosome 

Rpl7 NM_011291.5 ribosome 

Rplp1 NM_018853.3 ribosome 

Rps11 NM_013725.4 ribosome 

Rps18 NM_011296.2 ribosome 

Rps3 NM_012052.2 ribosome 

Rps9 NM_029767.2 ribosome 

Sdha NM_023281.1 Electron transport chain 

Slc4a1ap NM_001347328.1 Kanadaptin in h., mRNA export 

Slc5a11 NM_146198.2 Sodium-depend. transport across membranes 

Snrpb NM_009225.2 Pre-mRNA splicing 

Srp72 NM_025691.1 ER protein traffic 

Srsf7 NM_001195485.1 Pre-mRNA splicing 

Stim1 NM_009287.4 Ca2+ entry, Ca2+ sensor in ER 

Tbp NM_013684.3 Transcription 

Tfrc NM_001357298.1 Iron uptake 

Tmem41b NM_153525.5 Motor neuron development, autophagy 

Tubb5 NM_011655.5 Cytoskeleton 
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Ubc NM_019639.4 Ubiquitin 

Vim NM_011701.4 Cytoskeleton 

Vsnl1 NM_012038.4 Insulin secretion  

Ywhaz NM_001253805.1 Signaling 

Table 7. 70 housekeeping genes assembled from literature. The list includes           
commonly used housekeeping genes as well as newly suggested genes from the            
works on embryonic stem cells. The description of the genes’ function is based on              
Gene Ontology database. 

 

3.5 Housekeeping genes’ expression dynamics during the 
iPS reprogramming 

I then performed qPCR of these genes at all four time points using Pairwise              
Efficiency approach. First, I have found that out of 70 genes, 8 were not expressed               
in neural progenitors or reprogrammed iPS cells. Even though their expression was            
reported in the previous works by Synnergren group among newly suggested           
genes, my Gene Ontology analysis revealed that they, in fact, are very unlikely to              
be expressed in pluripotent stem cells. For example, according to NCBI expression            
and Gene Ontology data, carbonic anhydrase Car6 is only found in salivary glands,             
the Alb gene coding for blood serum albumin would naturally be found only in              
samples containing blood, etc., and thus the absence of these genes from iPS cells              
in my experiment is rather logical, or least not implausible. The discrepancy with             
the Synnergren’s data may be due to lower precision of the methods they used for               
identification of these genes (please also note that Synnergren group did not            
perform Gene Ontology analysis to check for gene function).  

The changes in expression levels of the remaining 62 genes are shown in Figure              
15. For clarity, the initial analysis on gene expression change was conducted as             
follows. The fold-change of gene expression during the reprogramming process          
was estimated and assigned to one of the three groups: 1) The expression level              
equal to that of Day 0 (i.e. no change compared to non-reprogrammed cells), 2) the               
expression level is at least 1.5 times greater (because the expression change under             
1.5 times fold can potentially be attributed to random error in measurements), but             
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less than 3-times fold, and 3) gene expression change of more than 3-times fold              
(Fig. 15).  

 

 
Figure 15. A heatmap representing overall changes in 62 housekeeping          

genes’ expression throughout the iPS reprogramming process. Four time points          
during the reprogramming are indicated under the heatmaps, and the gene names            
are written on the left. The dark blue color represents no expression change, and              
Day 0 is taken as the “time point zero” before initiation of reprogramming. Thus,              
all tiles on Day 0 are colored dark blue. Blue color represents the expression              
change of more than statistically significant 1.5-fold, but less than 3-fold. Light            
blue represents gene expression change greater than 3-fold, compared to time point            
zero (Day 0). 

 
I have found that, out of 62 genes, no genes showed constant expression levels              

(that would be shown as dark blue on all four time points) during the iPS               
reprogramming. Moreover, 80% of all genes displayed changes in gene expression           
levels that were more than 3-times fold at least on one of the days of               
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reprogramming (light blue tiles). Only 20% of all genes stayed within the 3-times             
fold change in expression levels (medium blue tiles), and fluctuated more than            
1.5-times fold, but not greater than 3-times. 

3.6 Clustering analysis of the gene expression dynamics 
during the iPS reprogramming 

To reveal patterns in gene expression change, I applied standard clustering           
approach (Euclidean distance analysis) based on the expression data. The rising           
and falling levels of the genes were visualized by the dual-color heatmap tiling,             
where green represented rising levels, and red represented falling levels (Figure           
16).  

 

 
 
Figure 16. A heatmap with the application of standard clustering analysis,           

Euclidean distance measure, representing the grouping of 62 housekeeping         
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genes by their expression change throughout the iPS reprogramming process.          
Four time points during the reprogramming are indicated under the heatmap, and            
the gene names are shown on the right. The green color represents positive             
expression change (increase in the expression), and red color represents negative           
expression change (decrease). White color represents no change in expression, and           
all tiles on Day 0 are colored white. The standard dendrogram on the left shows the                
grouping of the genes by their similarity of expression dynamics.  

 
 

 
First of all, the clustering analysis revealed that the biggest change in genes’             

levels occurred early in the reprogramming process, represented in my          
experimental system by Day 5. On that day, the biggest variation in expression             
level was found. These expression changes subsided at later stages (Day 10 and             
Day 15), and these two days were found to be more similar to each other than to                 
the Day 5. The dark green color (which indicates greater change compared to point              
zero than the light green color) appeared only on Day 5 in all genes analyzed, and                
the green became lighter as the reprogramming progressed. This indicates that the            
positive gene expression change is greatest at the earlier stages of reprogramming,            
and is flattened out closer to the end of the process. On the other hand, the negative                 
gene expression change is greatest (judging by fold-change) in the later stages of             
the reprogramming, because the red-colored tiles become darker as the          
reprogramming progresses to its final stages represented by Day 15.  

Second, the algorithm revealed high similarity between gene expression pattern          
of all ribosomal genes, which were grouped together by the algorithm. The            
ribosomal genes Rps11, Rpl7, Rpl13a, Rps3, Rplp1 and Rpl15 were on the far end              
of the rising spectrum, and the biggest rise in these genes’ level occurred early in               
the reprogramming, represented in this experiment by Day 5. On the other, falling             
side of the spectrum, I have found cell type-specific genes such as Vimentin,             
Elastin, Pten, Plekha1 and Ada. In addition, ubiquitin-related genes Ubc and           
Fbxl12, and glycolysis-related genes Pgk1 and Pgam1 were also grouped at the            
low end of the spectrum. For the interpretation of these data see Discussion. 
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3.7 Analysis of the overall tendency of selected genes to 
fluctuate during the iPS reprogramming 

 
Finally, to analyze the tendency of selected genes to rise or decline throughout             

the whole reprogramming process, I have counted the number of rising and            
declining genes on each day of the reprogramming and plotted these numbers            
against the day of reprogramming (Fig. 17). 

 
 
 

 
Figure 17. The tendency of selected genes to fluctuate throughout the whole            

reprogramming process. Red line represents the number of positively affected          
genes, blue line indicates the number of negatively affected genes. Day 0 is             
excluded from the graph because the value of each gene on that day is taken as a                 
reference and is compared against. The number of positively affected genes           
continues to rise during the reprogramming, while the number of negatively           
affected genes is falling approximately after day 6, if we take into account the              
inherent standard deviation. 
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This analysis has shown that, first of all, in the group of selected housekeeping              

genes, there is a tendency to downregulate gene expression in the beginning of             
reprogramming. This tendency is greatest in the beginning of the process, and            
reaches its peak approximately on Day 5. As the reprogramming progresses, this            
tendency is diminished, and the number of downregulated genes decreases with           
time. On the other hand, the number of positively regulated housekeeping genes            
whose expression is rising during the reprogramming, is constantly growing, with           
the lowest point falling on Day 5, and continuing to rise further into the              
reprogramming process. These data are in agreement with the heatmap clustering           
analysis (Fig. 16) that shows the number of green tiles, corresponding to positively             
regulated genes, rising, while the number of red tiles is falling. 

 

3.8 Comparison of the results for 10 housekeeping genes 
obtained in Chapter 1 with the results obtained in Chapter 3 

 
As an additional way to validate the new Pairwise Efficiency method I            

performed the comparison of general tendencies for 10 housekeeping genes that           
were analyzed both by standard method (in Chapter 1) and by Pairwise Efficiency             
(Chapter 3). Theoretically, if the new method were to improve precision of            
measurements, the general tendency (“increase” or “decrease”) should be         
preserved; in other words, the differences in gene expression analysis should be            
quantitative rather than qualitative. 
 

Gene Tendency by Classical Tendency by Pairwise Efficiency 

Atp5f1 Decrease Decrease 

B2m Unclear Fluctuate 

Gapdh Fluctuate Fluctuate 

Gusb Unclear Fluctuate 

Hprt Increase Increase 

Pgk1 Decrease Decrease 
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Ppia Decrease Decrease 

Rps18 Increase Increase 

Tbp Unclear Fluctuate 

Tfrc Unclear Fluctuate 

Tendency Match (%)  100% 

Table 8. Comparison of the general tendencies of the gene expression change            
results obtained by the standard calibration curve method (Chapter 1) and           
Pairwise Efficiency method (Chapter 3). The general tendency for 10 genes was            
recorded in the table, using either “decrease”, “increase” or “fluctuate” (meaning           
that on some days the expression increased, and on some days it decreased). The              
label “unclear” indicates that the linear fit applied to the genes in Chapter 1 could               
not identify a clear tendency due to large dispersion of obtained Ct data. As shown               
in the table, the data obtained by both methods match in 100% of the cases by                
tendency.  
 
The analysis revealed that 60% of the genes measured by the standard method had              
a clear tendency to either decrease or increase, according to linear fit performed in              
Chapter 1, and 40% of the genes did not have a clear tendency due to large                
dispersion of Ct values which was reflected in a horizontal line in the linear fit               
analysis. Such cases were designated as “unclear” (because a linear fit would not             
identify fluctuation if it existed). In case of Pairwise Efficiency, the gene            
expression tendency was labelled as “increase” (in cases where all of the days of              
reprogramming had an increase in gene expression), “decrease” (when the gene           
expression decreased on all days) and “fluctuate” (in cases when on some days the              
expression increased, while on other days it decreased). The analysis in the Table 8              
shows that the “fluctuation” tendency matched with the “unclear” tendency in all            
of the cases, and in all cases the “decrease” and “increase” tendencies matched.             
This comparison is not quantitative but rather qualitative because linear fit cannot            
be directly quantitatively compared with euclidean distance clustering analysis. 

To further demonstrate that the results in Chapter 1 correspond well to the             
results in Chapter 3, I plotted the Ct values of eight genes for direct comparison of                
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tendencies (Fig. 18). This analysis has shown that the changes in gene expression             
in Ct values were very similar, and the characteristic drops and rises were             
conserved, as expected. For example, a characteristic rise in Ct value for B2m gene              
between Day 0 and Day 5 was observed in both cases, a significant drop in Ct                
values for Pgk1 gene on Day 10 was observed in both cases, the rise on Day 5 and                  
drop on Day 10 for Ppia gene was observed in both cases, etc. It is necessary to                 
remember that Ct values themselves are NOT COMPARABLE between different          
experiments (this is another disadvantage of the standard qPCR method), because           
Ct threshold is set separately for each experiment by qPCR machine.  

 
Fig. 18. A direct comparison by Ct values of the results obtained in             

Chapter 1 and the results obtained in Chapter 3. A. An excerpt from the linear               
fit analysis conducted in Chapter 1 for eight genes. In this case, the cells were               
collected on days 0, 1, 3, 5, 7, 10, 15 and 20, and each day had three technical                  
replicas, all of which is depicted in dotted circles. B. Ct values for eight genes               
taken from reprogramming experiment in Chapter 3. In this case, the samples were             
collected only on days 0, 5, 10 and 15. Each day has six dots because it was a                  
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six-step serial dilution. The drops and rises of the genes are similar in part A and                
part B for the days that can be compared (0, 5, 10, 15).  

3.9 Discussion 
 
In this chapter, I have applied the newly developed method, Pairwise           

Efficiency, to the measurement and analysis of gene expression change throughout           
the iPS reprogramming process. The selection of four time points, which resulted            
in four separate DNA samples in the RT-qPCR experiment, and 70 housekeeping            
genes amounts to 280 separate DNA-primer combinations. Since six replicas were           
run for each combination, as required by Pairwise Efficiency method, a total of             
1680 amplification curves were obtained, making it a medium-throughput analysis.          
This showcases successful application of Pairwise Efficiency method in         
medium-throughput settings. 

Moreover, the analysis of RT-qPCR data produced by Pairwise Efficiency,          
could reveal previously unnoticed patterns in gene expression change during the           
reprogramming process.  

First of all, the heatmap clustering analysis has detected a surge in            
housekeeping gene expression change early in the reprogramming process which          
was represented by Day 5, that subsided at later stages, represented by Day 10 and               
Day 15. The clustering results are supported by the analysis of changes in affected              
gene numbers. According to this analysis, the beginning stage of the           
reprogramming is associated with a surge in negative gene regulation, which           
subsides at later stages, and positive gene regulation, the growth of which is also              
diminished with time. Thus, it can be said that housekeeping genes are affected by              
iPS reprogramming mostly at the beginning of the process. This fact was            
previously unknown, as the reprogramming was seen as a continuous, uniform           
process that gradually progressed from “non-pluripotency state” to “pluripotency         
state” (Buganim et al. 2013). There is no research that I am aware of that points out                 
at non-uniform patterns of change in gene expression during the reprogramming,           
especially for housekeeping genes. 

Second, the applied clustering algorithm has detected high similarity in the rise            
of ribosomal genes’ levels, and placed these genes grouped together on the positive             
end of the spectrum. The rise in the expression of ribosomal genes, and the              
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similarity was previously unknown, as the ribosomal genes were assumed to be            
housekeeping and constantly expressed in all cell types. However, the rise in the             
ribosomal genes’ expression would logically follow from the concept of iPS           
reprogramming that assumes the increase in cell viability and cell cycle           
progression.  

Third, the algorithm has placed cell type-specific genes on the negative side of             
the spectrum. For example, such genes as the Elastin (Eln) and Vimentin (Vim)             
which are components of the cytoskeleton specific to certain cell types or states             
(particularly, Vimentin is implicated in epithelial-to-mesenchymal transition),       
Plekha1 (pleckstrin homology domain-containing gene related to membrane        
signaling), Pten (tumor suppressor), Ripk3 (receptor-interacting serine-threonine       
kinase implicated in apoptosis), Ada (immune system-related gene) and others          
were found to be downregulated. In addition, ubiquitin system-related genes Ubc           
and Fbxl12 were also found on the negative side of the spectrum, and their              
expression decreased. It is worth noting that many of these genes are considered             
housekeeping, however, their downregulation also logically follows from the         
reprogramming concept. For example, tumor suppressor Pten inhibits cell cycle          
progression, and its downregulation should be vital to the progression of           
reprogramming. Similarly, the ubiquitin system and apoptosis genes can also be           
expected to be down-regulated during the reprogramming process, especially at the           
initial stages of forced expression of pluripotency-related transcription factors.         
Previous works (such as Synnergren et al. 2007) have failed to notice these patterns              
presumably because their experimental tools lacked the precision of Pairwise          
Efficiency. 

I further discuss the implications of these findings in the General Discussion. 
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General Discussion 
 
The purpose of this work was to 1) investigate the suitability of commonly used              

tools for gene expression quantification with high-precision in long-term         
processes; 2) to develop a high-precision tools if deemed necessary; and 3) to             
apply the said tool in a system representative of a long-term dynamic process. In              
the first chapter, I conducted basic analysis of the expression of 12 housekeeping             
genes by the conventional qPCR method, as required in MIQE guidelines. This            
analysis has revealed high variability of housekeeping genes during the          
reprogramming process, if analyzed by conventional RT-qPCR. Thus, in the          
second chapter, I developed a new tool that 1) would not require the use of               
reference genes, 2) would be high-precision and high-throughput, and 3) would           
decrease the hands-on time for RT-qPCR experimentation as well as the cost of the              
experiments. In the third chapter, I have successfully applied this tool to the             
quantification of gene expression during the iPS reprogramming process and          
revealed new, previously unknown patterns in gene expression change during          
this process. All of this demonstrates the general usefulness and scientific           
advantage of my method, Pairwise Efficiency, over the existing methods of gene            
expression analysis. Below, I will discuss the implications of this work, and further             
possible directions of its development. 

First of all, in the first chapter I have applied a common method of              
high-precision gene expression analysis, RT-qPCR, as described in MIQE         
guidelines (Bustin et al. 2009). Then, I have put the resulting Ct values to the               
statistical analysis using five previously established algorithms. I have found, that,           
according to this method, the expression of housekeeping genes varied throughout           
the reprogramming process more than 2-fold for all genes, and reached variation of             
4-cycle-fold for some genes, notably the ribosomal gene Rps18. I have also found             
that a group of genes associated with ATP production (Atp5f1, Pgk1 and Gapdh)             
stood out among the 12 genes analyzed, and was deemed the most stable group by               
the algorithms applied in the analysis. The results of this chapter prompted me to              
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conclude that a new, more precise method without the use of reference genes was              
needed to properly analyze long-term dynamic processes. 

In the second chapter, I have developed such method by the application of the              
principles of the Measurement Theory to the RT-qPCR data analysis. This new            
method, Pairwise Efficiency, has allowed me to improve the precision of           
measurements nearly two-told, while reducing labor and cost of experimentation.          
In addition, this new method does not require the use of reference genes. In this               
chapter, I have also conducted a comparative analysis of Pairwise Efficiency with            
the classical calibration curve method using common approaches previously         
described in literature. Notably, the procedure of classical calibration curve with           
the use of reference genes requires the researcher to determine PCR efficiency            
coefficients for each gene analyzed, including the reference genes (Bustin et al.            
2009). Thus, the classical calibration curve method would require at least 42 wells             
to properly analyse gene expression, while Pairwise Efficiency would only require           
12 wells. In addition, if the efficiency of PCR reaction for the reference gene and               
the target gene differ, the calibration curve approach requires a change of reference             
gene or primer because it is not applicable in cases where the efficiency is              
different. In contrast, my new method, Pairwise Efficiency, does not require the            
use of reference genes at all, and accounts for efficiency in every sample, thus              
removing the need for new primer design or the search for a new reference gene.               
In other words, while the classical calibration curve approach would require           
multiple runs of the RT-qPCR machine, Pairwise Efficiency requires only one           
run for each gene, and allows to correct for efficiency differences in the process of               
data analysis (Fig. 19). This opens wide possibilities for high-throughput use of            
Pairwise Efficiency, including automation of the experimental process.  
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Figure 19. A schematic representation of the differences in the          

experimental procedure for Pairwise Efficiency approach compared to the         
standard widely used calibration curve method. Pairwise Efficiency requires         
only one run with 12 wells for the analysis of one target gene in two samples                
(untreated sample, labelled “Control” in the figure, and treated sample, labelled           
“ACID” or “Acid” in the figure). However, the standard calibration curve method            
requires to separately run the calibration curves for the target and reference genes             
(one run of the PCR machine with 36 wells), and THEN additionally run the actual               
experiment with the target gene, reference gene, and Control and Acid samples            
(second run of the PCR machine with 12 wells). Furthermore, since the precision             
of the classical approach is two times lower than the Pairwise Efficiency approach,             
it frequently requires additional runs to account for insufficient precision. 

 
 
As the final part of my work, I have applied Pairwise Efficiency to the analysis               

of gene expression dynamics during the iPS reprogramming process. For the           
purpose of this analysis, I have searched the available literature and selected 70             
housekeeping genes that have been previously implicated in the stem cell research            
(Synnergren et al. 2007; Holmgren et al. 2015). I have included both commonly             
used and newly suggested genes in my analysis. Pairwise Efficiency allowed me to             
identify previously unnoticed patterns of gene expression change during the iPS           
reprogramming process. 
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First of all, the clustering analysis of gene expression pattern indicated that the             
biggest change in gene expression occurs early in the reprogramming process. This            
fact was previously unknown. The iPS reprogramming was commonly seen as           
progressing through three stages, initiation, maturation and stabilization (David         
and Polo 2014). My analysis has shown that the gene expression patterns do not              
change equally, and the biggest change occurs early (represented in my system by             
Day 5), while the later phases show less expression change (Fig. 16). Since the              
immunostaining for pluripotency markers and the alkaline phosphatase expression         
analysis has shown no marker presence on Day 5, I conclude that the biggest              
change in the gene expression occurs prior to the appearance of the markers of              
pluripotency alkaline phosphatase, Nanog and Oct4. 

Second, the clustering analysis of RT-qPCR data obtained by Pairwise          
Efficiency method revealed that ribosomal genes have similar expression change          
pattern, are grouped together, and exhibit positive expression change (ribosomal          
gene increase) overall. This result was previously unknown, but it is well in             
agreement with the concept of iPS reprogramming, where the change in           
pluripotency state from less pluripotent to more pluripotent is associated with the            
increase in cell cycle progression and speed (Ghule et al. 2011; Kapinas et al.              
2013; Ruiz et al. 2011; Xu et al. 2013). The increase in cell cycle speed would                
logically be associated with the increased need for ribosomal RNA synthesis, and            
the ribosomal gene expression would go up, as was uncovered by my analysis. The              
confirmation of this fact, as well as further investigation (for example, the            
measurements of nucleoli size or modern RNA staining techniques) would shed           
more light on these cellular events. 

Third, and most interestingly, the clustering analysis has grouped several          
ATP-generating genes into two categories: the genes whose expression decreases          
following a similar pattern (“decreasing genes”), and the genes whose expression           
fluctuates throughout the reprogramming. For example, such genes as Pgk1 and           
Pgam1 have been grouped together as decreasing, and placed next to each other on              
the clustering tree. Interestingly, Pgk1 and Pgam1 represent consequent steps in           
glycolysis, as depicted in Fig. 20. Pgk1 is a phosphoglycerate kinase that catalyses             
the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate, and        
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Pgam1 is a phosphoglycerate mutase that catalyzes the conversion of          
3-phosphoglycerate to 2-phosphoglycerate (2-PGA) in the glycolytic pathway.  

 

 
Figure 20. A scheme of the part of the glycolytic pathway, in which the              

enzymes Pgk1 and Pgam1 are the subsequent steps in the occuring set of             
reactions, and are situated next to each other in the pathway. It is interesting to               
see that the clustering analysis based on Pairwise Efficiency data has identified            
similarity in the pattern of their change during iPS reprogramming and placed these             
genes next to each other in the clustering tree. 

 
 
On the other hand, Pfkp, Idh3a and Pdha1 were clustered next to each other on               

the other, “increasing” part of the clustering spectrum. Pfkp is a key regulatory             
enzyme in glycolysis, a phosphofructokinase that catalyzes the irreversible         
conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, Idh3a is an        
isocitrate dehydrogenase which is a key enzyme in the tricarboxylic acid (TCA)            
cycle that takes place in the mitochondria, and Pdha is pyruvate dehydrogenase, a             
part of mitochondrial matrix multienzyme complex that provides the primary link           
between glycolysis and TCA cycle. Thus, the clustering of these three enzymes            
together on the increasing spectrum is extremely interesting and may indicate a            
switch step occurring between glycolysis, and oxidative phosphorylation in         
mitochondria. More research on the gene expression change that would include all            
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genes involved in ATP generation may shed more light on the regulation of these              
switches during iPS reprogramming. 

It is also interesting to note that, while most ribosomal genes were found to              
decrease during the iPS reprogramming process, some ribosomal genes displayed a           
fluctuating pattern (Rps18 and Rps9). Both of these genes belong to the small             
ribosomal subunit. It is compelling to speculate that these two genes might play a              
distinctive role in regulating the production of ribosomes and by that, regulate the             
cell growth and division state. Indeed, recent research has also pointed at such             
possibility, simulating the behaviour of ribosomal genes and identifying them as a            
major speed-regulating hub for cell cycle progression (Lin and Amir 2018). 

Since this analysis has only been done on a small portion of genes, namely              
so-called housekeeping genes, it cannot reveal the changes in expression patterns           
of other genes. However, some conclusions can be drawn about the genes            
analyzed. First of all, in case of housekeeping genes, there exists a strong tendency              
to downregulate some genes and upregulate others in the beginning of the            
reprogramming, and the strength of down- or up-regulation reaches its peak           
approximately on days 5-7 of the reprogramming in this cell system. After that,             
the number of negatively regulated genes starts to decline, and the speed at which              
the number of positively regulated genes rises slows down. According to the            
obtained data, the overall reprogramming process related to housekeeping genes is           
“finished” by day 10 (Fig. 17), after which day the tendencies of the genes to               
fluctuate flatten out. This conclusion is supported by the clustering analysis that            
has placed Day 10 and Day 15 as similar to each other, while Day 5 was found to                  
be dissimilar in the gene expression pattern (Fig. 16). Moreover, another           
interesting finding is that the number of positively regulated genes continues to            
rise, and the number of negatively regulated genes rises sharply in the beginning of              
the reprogramming but starts falling after the “break point” that could be            
approximately placed around day 7. The existence of such a “break” in the course              
of the reprogramming is speculative, however, my multiple unpublished data on           
the speed of colony formation also indicates that fully formed colonies of truly             
round shape appear approximately between days 5-7 (Fig. 21).  
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Figure 21. Colony formation during the iPS reprogramming of neural          
progenitors. The truly round-shaped colonies with a characteristic “glow”         
indicative of reprogrammed cells appear between days 5-7. 

 
 
The gene expression data obtained in this work also hints at the existence of              

an unknown event, after which the tendencies of genes to fluctuate flatten out,             
and this event, according to the data, happens between days 5-8, prior to the              
expression of pluripotency markers (Fig. 14). More research that would include           
other days of the reprogramming process, and other gene groups, is needed to draw              
further conclusions and confirm the existence of the said event and reveal more             
information about it.  

Finally, the obtained data on the number of positively and negatively regulated            
genes shows overall increase in rising genes, while the number of falling genes             
first increases sharply at Day 5, and then decreases back. This sharp increase and              
subsequent decrease in the number of down-regulated genes could depend on the            
selection of genes. However, another possibility is that some genes that were            
downregulated in the beginning, “want to return back”, as if the process has             
bounced back. Among such genes we can name glutamic-oxaloacetic transaminase          
Got1, which is a part of glycolysis pathway, DNA polymerase epsilon Pole, which             
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is a central catalytic subunit of DNA polymerase, or mannose phosphate isomerase            
Mpi, a part of glycosylation pathway. It is interesting to speculate that there may be               
an existence of a negative feedback loop, an inherent tendency of the cell to              
preserve general homeostasis, i.e. to make genes return to the balanced state. 

The comparison of the results obtained in Chapter 1 and Chapter 3 showed that              
the general tendencies of gene expression match, as expected. It is worth noting             
that the classical qPCR method gives the result in Ct values (cycle numbers). It is               
necessary to take into account that the growth of Ct indicates a decrease in the               
amount of target gene in a sample, and a drop in Ct indicates an increase in the                 
amount of the gene in the sample. The results for the reference genes obtained in               
Chapter 1 correspond to the results obtained in Chapter 3 of the study not only in                
terms of general trends, but also in terms of the oscillations happening on different              
days. Moreover, both chapters’ results suggest that the main changes occur at the             
initial stage of the process, which is also confirmed by the results of processing the               
initial data using the Euclidean distance measure (clustering) method.  

Overall, the application of Pairwise Efficiency has uncovered several previously          
unnoticed patterns of gene expression during the iPS reprogramming that were           
impossible to identify by the existing methods of gene quantification. This shows            
that Pairwise Efficiency is superior in both precision and throughput to the existing             
data analysis approaches, and has a great potential as a new method of             
high-precision gene expression measurements. 

Thus, I have successfully accomplished the goals of this work by developing a             
new high-precision of method of gene expression measurements and successfully          
applying it to a representative long-term process, the iPS reprogramming. 
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Supplementary Information 
 
Supplementary Tables 
 

Cell type Gene Pair 
# 

Primer sequence Slope E 
(%) 

R2 

Fully 
reprogram
med iPS 
cells 

Gusb 1 F: AACAACACACTGACCCCTCA 
R: ACCACAGATCGATGCAGTCC 

1.054 93 0.953 

Gusb 2 F: TGGCTGGGTGTGGTATGAAC 
R: GGTGACCTCCCTCATGTTCC 

0.722 161 0.931 

Gusb 3 F: GGTGGAACATGAGGGAGGTC 
R: AGGGTATGAGGGGTCAGTGT 

0.926 111 0.983 

Gusb 4 F: GGCCTCTAGATAGCCTTGAGC 
R: ACACGCACTCCATTTTAGGGA 

0.342 660 0.736 

Hprt 1 F: GTTGGGCTTACCTCACTGCT 
R: TAATCACGACGCTGGGACTG 

0.526 274 0.923 

Hprt 2 F: GATCAGTCAACGGGGGACAT 
R: GGTCCTTTTCACCAGCAAGC 

0.529 271 0.886 

Hprt 3 F: ACAGGCCAGACTTTGTTGGA 
R: ACTTGCGCTCATCTTAGGCT 

0.699 170 0.962 

Hprt 4 F: CAGTCCCAGCGTCGTGATTA 
R: TGGCCTCCCATCTCCTTCAT 

1.01 99 0.995 

Tfrc 1 F: AAACTGGCTGAAACGGAGGA 
R: AGATCCAGCCTCACGAGGAG 

1.157 82 0.997 

Tfrc 2 F: AAGAGCTGCTGCAGAAAAGC 
R: ACGGTCTGGTTCCTCATAACC 

1.049 94 0.997 

Tfrc 3 F: GTTCGTACAGCAGCGGAAGT 
R: GGAAGTAGTCTCCACGAGCG 

1.073 91 0.985 

Tfrc 4 F: AGCAAAGTCTGGCGAGATGAA 
R: CCACATAACCCTCGGGAGAC 

1.189 79 0.989 

Parental Gusb 1 F: AACAACACACTGACCCCTCA -2.39 163 0.991 
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cells 
(N31) 

R: ACCACAGATCGATGCAGTCC 

Gusb 2 F: TGGCTGGGTGTGGTATGAAC 
R: GGTGACCTCCCTCATGTTCC 

-1.69 289 0.988 

Gusb 3 F: GGTGGAACATGAGGGAGGTC 
R: AGGGTATGAGGGGTCAGTGT 

-2.32 170 0.980 

Gusb 4 F: GGCCTCTAGATAGCCTTGAGC 
R: ACACGCACTCCATTTTAGGGA 

-1.30 486 0.955 

Hprt 1 F: GTTGGGCTTACCTCACTGCT 
R: TAATCACGACGCTGGGACTG 

-2.23 181 0.979 

Hprt 2 F: GATCAGTCAACGGGGGACAT 
R: GGTCCTTTTCACCAGCAAGC 

-1.49 367 0.976 

Hprt 3 F: ACAGGCCAGACTTTGTTGGA 
R: ACTTGCGCTCATCTTAGGCT 

-1.40 423 0.960 

Hprt 4 F: CAGTCCCAGCGTCGTGATTA 
R: TGGCCTCCCATCTCCTTCAT 

-2.60 143 0.995 

Tfrc 1 F: AAACTGGCTGAAACGGAGGA 
R: AGATCCAGCCTCACGAGGAG 

-3.16 107 0.987 

Tfrc 2 F: AAGAGCTGCTGCAGAAAAGC 
R: ACGGTCTGGTTCCTCATAACC 

-3.02 114 0.999 

Tfrc 3 F: GTTCGTACAGCAGCGGAAGT 
R: GGAAGTAGTCTCCACGAGCG 

-3.08 111 0.972 

Tfrc 4 F: AGCAAAGTCTGGCGAGATGAA 
R: CCACATAACCCTCGGGAGAC 

-3.28 102 0.991 

Supplementary Table 1. Assay performance characteristics on 4 different         
primer pairs for Gusb, Hprt and Tfrc evaluated in parental cell line and in              
fully reprogrammed iPS cells. PCR efficiency E, slope, and associated          
correlation coefficient R2 are shown. The serial dilutions in fully reprogrammed           
iPS cells were twofold.The efficiency for twofold dilutions was calculated using           
the formula E=2^(1/slope)-1*100. The serial dilutions in parental cells were          
tenfold, and the formula for calculating efficiency was E=10^(1/slope)-1*100. In          
fully reprogrammed iPS cells, the primer pair closest to 100% efficiency was #1             
for Gusb (E=93%), #4 for Hprt (E=99%), and #2 for Tfrc (E=94%). The efficiency              
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for the same sets of primers differed in parental cells, giving E=163% for Gusb,              
E=143% for Hprt, and E=114% for Tfrc. The best pair of primers for each gene               
(Gusb #1, Hprt #4 and Tfrc #2) was chosen for the main experiment. 
 
 
 

Gene Comprehensiv
e Ranking 

Delta Ct geNorm NormFinder BestKeeper 

Value Rank SD aver. Rank M 
value 

Rank Stability  Rank SD Rank 

Atp5f1 1.57 1 0.49 1 0.333 5 0.099 1 0.077 1 

Pgk1 1.68 2 0.50 2 0.168 1 0.251 2 0.247 2 

Gapdh 3.44 3 0.55 5 0.168 1 0.417 7 0.322 4 

Ppia 3.66 4 0.56 3 0.197 2 0.353 4 0.323 5 

Gusb 4.53 5 0.59 4 0.300 4 0.311 3 0.345 7 

Tbp 5.18 6 0.60 6 0.467 7 0.400 5 0.285 3 

Tfrc 6.88 7 0.62 7 0.253 3 0.458 8 0.422 10 

Ywhaz 7.20 8 0.64 8 0.415 6 0.414 6 0.367 8 

Rps18 8.80 9 0.65 10 0.532 9 0.564 10 0.337 6 

Hprt 9.00 10 0.70 9 0.501 8 0.464 9 0.395 9 

Actb 11.00 11 0.74 11 0.560 10 0.631 11 0.429 11 

B2m 12.00 12 1.03 12 0.638 11 0.961 12 0.879 12 

Supplementary Table 2. Ranking of the candidate reference genes’ stability          
during reprogramming according to five different evaluation methods in         
mouse embryonic fibroblasts (MEFs). Atp5f1, Pgk1 and Gapdh were ranked as           
the most stable candidate reference genes overall, while Hprt, Actb and B2m were             
designated as the least stable ones. 
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 wells 1-6 wells 7-12 

A 0.801 0.794 

B 0.838 0.823 

C 0.797 0.814 

D 0.882 0.770 

E 0.778 0.795 

F 0.763 0.779 

G 0.808 0.726 

H 0.839 0.776 

Supplementary Table 3. Efficiency values obtained by the standard curve          
method for all 16 replicas of a dilution set. The efficiency values E calculated by               
the classical calibration curve method are shown for the corresponding wells on the             
96-well plate (for pipetting layout see Fig. S2). The Cq data for E calculation was               
taken from Dataset 2.  
 
 

Cycle F0=0.007 F0=0.0035 F0=0.00175 F0=0.000875 F0=0.0004375 F0=0.0002188 

0 0 0 0 0 0 0 

1 0 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 0 0 0 0 0 

5 0 0 0 0 0 0 

6 0 0 0 0 0 0 

7 0 0 0 0 0 0 

8 0 0 0 0 0 0 

9 0 0 0 0 0 0 

10 0 0 0 0 0 0 

11 0 0 0 0 0 0 

12 0 0 0 0 0 0 

13 0.8 0 0 0 0 0 

14 0.8 0.83 0 0 0 0 

15 0.81 0.81 0.79 0 0 0 
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16 0.81 0.82 0.8 0 0 0 

17 0.8 0.82 0.8 0.73 0.82 0 

18 0.78 0.81 0.8 0.78 0.82 0 

19 0.76 0.79 0.81 0.79 0.82 0.81 

20 0.72 0.76 0.79 0.79 0.81 0.8 

21 0.69 0.73 0.77 0.78 0.82 0.82 

22 0.66 0.7 0.74 0.76 0.8 0.81 

23 0.62 0.67 0.71 0.74 0.78 0.8 

24 0.6 0.64 0.68 0.71 0.76 0.79 

25 0.57 0.61 0.65 0.68 0.73 0.76 

26 0.54 0.58 0.62 0.65 0.7 0.74 

27 0.52 0.56 0.59 0.63 0.67 0.71 

28 0.5 0.54 0.57 0.6 0.65 0.68 

29 0.48 0.51 0.55 0.58 0.62 0.66 

30 0.46 0.49 0.53 0.55 0.6 0.63 

31 0.44 0.48 0.51 0.53 0.58 0.61 

32 0.43 0.46 0.49 0.51 0.55 0.59 

Supplementary Table 4. The efficiency values calculated with the formula for           
the mean efficiency (4) with varying F0. The values corresponding to the region             
with relatively constant efficiency (SD=0.01) are denoted in red. 
 
 
Boundaries SD Max E Min E Max-Min difference Average E 

20-150 0.0124 0.8346 0.7779 0.0567 0.8012 

30-150 0.0125 0.8339 0.7790 0.0549 0.8039 

40-150 0.0124 0.8311 0.7806 0.0505 0.8005 

50-150 0.0132 0.8404 0.7750 0.0655 0.8028 

60-150 0.0145 0.8485 0.7776 0.0709 0.8044 

      

40-120 0.0113 0.8234 0.7798 0.0436 0.8012 

40-150 0.0124 0.8311 0.7806 0.0505 0.8005 

40-180 0.0116 0.8191 0.7675 0.0516 0.7894 

40-210 0.0137 0.8274 0.7690 0.0583 0.7926 

40-240 0.0165 0.8296 0.7568 0.0728 0.7852 
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Supplementary Table 5. Standard deviations, maximal and minimal efficiency         
(E) values and their difference, as well as average efficiency for differently set             
boundaries are shown. The minimal standard deviation (SD written in bold) is            
derived when setting the lower boundary at 40 RFU, and the upper boundary at              
120 RFU , which falls within the exponential region of the curve. The lowest              
difference between the maximal E value and the minimal E value (Max-Min            
difference, in bold) is also observed with the same boundaries (40 - 120 RFU).              
Note that the average efficiency value tends to decline when the upper boundary is              
increased in the curve (150, 180, 210, 240) which agrees well with the notion of               
progressively declining efficiency with the gradual reaction saturation at later          
cycles. Overall, this result shows that the optimal region for mean efficiency            
calculation lies within the exponential region of the curve, and that the standard             
deviation will rise if fluorescence readings from later cycles are included in the             
calculations. 
 
 
Wells А1-А6 А7-А12 В1-В6 В7-В12 С1-С6 С7-С12 D1-D6 D7-D12 

N of data points 218 208 215 233 228 211 205 204 

Math. expectation 0.836 0.804 0.822 0.817 0.819 0.821 0.880 0.820 

SD 0.096 0.112 0.083 0.085 0.053 0.079 0.101 0.071 

Chi-square value 33.727 21.701 12.491 14.503 11.556 15.515 10.004 22.780 

Degrees of freedom 9 10 9 8 5 7 9 7 

Expected chi-square 16.919 18.307 16.919 15.507 11.07 14.067 16.919 14.067 

Does it fit? No No Yes No No No Yes No 

Wells E1-E6 E7-E12 F1-F6 F7-F12 G1-G6 G7-G12 H1-H6 H7-H12 

N of data points 207 199 247 224 209 199 183 227 

Math. expectation 0.812 0.807 0.796 0.804 0.830 0.783 0.840 0.798 

SD 0.054 0.079 0.060 0.083 0.062 0.059 0.067 0.080 

Chi-square value 7.049 29.687 13.195 5.821 20.549 33.988 19.465 36.350 

Degrees of freedom 5 7 6 8 6 6 6 8 

Expected chi-square 11.07 14.067 12.592 16.919 12.592 12.592 12.592 16.919 

Does it fit? Yes No No Yes No No No No 

Supplementary Table 6. The results of Chi-square test on all 16 identical            
six-sets from Dataset 1. Chi-square test was performed on the groups of pairwise             
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E measurements for each of the six-sets, as indicated. The number of data points              
(after the removal of statistically unreliable values whose frequency was less than            
5, as per Chi-square criteria), the mathematical expectation of each group, standard            
deviation (SD) of each group, the chi-square value obtained for each group, the             
degrees of freedom for each group, and the expected Chi value based on the              
degrees of freedom, are shown. According to the Chi-square test principles, if the             
Chi-square value exceeds the expected Chi value, the distribution significantly          
deviates from normal, and parametric statistical instruments, such as quartile          
ranges or sigma, cannot be applied. Since all 16 six-sets were identical, and the              
number of non-normally distributed groups was significantly higher (12 out of 16),            
the analysis of outliers for these data should be performed using non-parametric            
tools. 
 
 

Cycle A1 A2 A3 A4 A5 A6 

3 0.4 0.94 -0.09 1.3 0.31 0.33 

4 0.13 0.27 0.21 0.53 0.08 0.77 

5 0.1 0.17 0.27 0.24 0.33 0.43 

6 -0.01 0.08 0.27 0.26 0.22 0.25 

7 -0.05 0.02 0.17 0.23 0.14 0.12 

8 0.01 -0.01 0.14 0.16 0.08 0.09 

9 0.02 -0.02 0.1 0.12 0.08 0.09 

10 0.03 0 0.04 0.1 0.04 0.06 

11 0.02 0 0.04 0.08 0.01 0.06 

12 0.02 0 0.04 0.07 0.02 0.04 

13 0.05 0.01 0.04 0.05 0 0.02 

14 0.08 0.03 0.05 0.04 0.01 0.01 

15 0.13 0.05 0.05 0.05 0.01 0.01 

16 0.2 0.09 0.07 0.05 0.01 0.01 

17 0.3 0.15 0.09 0.05 0.02 0.01 

18 0.41 0.23 0.13 0.07 0.03 0.01 

19 0.51 0.33 0.2 0.1 0.05 0.02 

20 0.6 0.42 0.28 0.14 0.08 0.03 

21 0.67 0.51 0.36 0.2 0.13 0.06 
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22 0.71 0.57 0.43 0.27 0.19 0.1 

23 0.72 0.61 0.49 0.33 0.25 0.15 

24 0.72 0.64 0.53 0.39 0.32 0.2 

Supplementary Table 7. The ‘first outliers’ calculated by the formula from           
Tichopad et.al, 2003. The ‘first outlier’ values calculated for the wells A1 through             
A6 are denoted in red. The relatively constant values preceding them are denoted             
in blue. The fluorescence values from Dataset 1 for these wells in the             
corresponding cycles were A1=14.09 RFU, A2=16.7 RFU, A3=21.28 RFU,         
A4=27.19 RFU, A5=37.11 RFU, A6=28.2 RFU. Hence, the minimal fluorescence          
value was RFU=14.09, and the maximal fluorescence value was RFU=37.11. Thus,           
the tentative lower boundary of the exponential region can be set at approximately             
10-40 RFU, depending on the actual curve. 
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Supplementary Figures 
 
a 

 
 b 

 
Supplementary Figure 1. The first derivative (FD) values and the          
corresponding fluorescence (RFU) values for 16 replicas of a 6-step serial           
dilution set taken from Dataset 1. (a) First derivative values of 96 amplification              
curves were plotted against the cycle at which they were obtained. As the dilution              
factor increases, the FD values are delayed and come at later cycles. The maximum              
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of the first derivative (FDM) for the most concentrated sample corresponds to            
cycle 18, while for the least concentrated sample this occurs at cycle 25. (b) The               
obtained FDM values were plotted against corresponding fluorescence units at the           
same cycle. Horizontal lines across the boxes denote the mean. Black dots indicate             
individual values, and the colors correspond to dilution (most concentrated sample           
- dark blue, least concentrated sample - light blue). The majority of FDM values              
roughly correspond to a RFU of 150-230. 
 
 
 

 
Supplementary Figure 2. The whole set of alkaline phosphatase staining          
throughout the iPS reprogramming course. Day 20 and Day 25 were excluded            
from mRNA analysis in Chapter 3 due to high apoptotic markers’ expression (data             
not shown) which probably resulted from overgrowth of the colonies at this late             
stage, since the cells were not once split during the course of the experiment. 
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a        b 

 
Supplementary Figure 3. Agarose gel of the PCR product and melting curve            
analysis. (a) Agarose gel confirms the amplification of the expected product,           
showing a band at 194 bp. (b) Melting curve analysis shows no primer dimers and               
a single sharp peak, as expected. 
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Supplementary Figure 4. Noise values and distribution in the beginning cycles           
of amplification. (a) Amplification curves showing the beginning cycles for 96           
qPCR reactions from Dataset 1. The noise is distributed close to zero and the noise               
phase appears to continue up to cycle 13. (b) Distribution of the noise across 2880               
qPCR reactions taken from Dataset 1. The graph shows three groups of noise             
values: cycles 1-5, cycles 5-10 and cycles 1-10. All groups have nearly normal             
distribution with a non-zero mean, not shifting with increasing cycles, and the            
maximal data values reach approximately 10 fluorescence units. 
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