|

) <

The University of Osaka
Institutional Knowledge Archive

Development of a new high-precision
Title quantification methodology for gene expression
analysis and its application in iPS cells

Author(s) |Panina, Yulia

Citation | KPrKZE, 2019, {Et:m

Version Type|VoR

URL https://doi.org/10.18910/72609

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



OSAKA UNIVERSITY

DOCTORAL THESIS

Development of a new high-precision quantification methodology
for gene expression analysis and its application in iPS cells

Author: Yulia Panina
Supervisor: Professor Toshio Yanagida

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy in the

Laboratory for Cell Dynamics Observation
Graduate School of Frontier Biosciences / RIKEN BDR

March, 2019






“It is difficult to understand why statisticians commonly limit their inquiries to
Averages, and do not revel in more comprehensive views. Their souls seem as dull
to the charm of variety as that of the native of one of our flat English counties,
whose retrospect of Switzerland was that, if its mountains could be thrown into its
lakes, two nuisances would be got rid of at once. An Average is but a solitary fact,
whereas if a single other fact be added to it, an entire Normal Scheme, which
nearly corresponds to the observed one, starts potentially into existence. Some
people hate the very name of statistics, but I find them full of beauty and interest.
Whenever they are not brutalised, but delicately handled by the higher methods,
and are warily interpreted, their power of dealing with complicated phenomena is
extraordinary. They are the only tools by which an opening can be cut through the
formidable thicket of difficulties that bars the path of those who pursue the Science
of man.”

— Sir Francis Galton
Natural Inheritance (1889), 62-3.

“Whenever you can, count.”

— Sir Francis Galton
Quoted in James R. Newman, Commentary on Sir Francis Galton (1956), 1169.






SUMMARY

Quantification of gene expression on mRNA Ievel is one of the most important
tasks of modern biology. High precision of such quantification is of utmost
importance for drawing correct conclusions about cellular processes. Real-time
quantitative polymerase chain reaction (RT-qPCR) is currently considered the most
precise and most sensitive method of quantifying mRNA. However, the standard
experimental procedure in RT-qPCR experiment requires the use of reference
genes for normalization. The behaviour of popular reference genes during
long-term biological processes, such as iPS reprogramming, development or aging,
has never been investigated. In the initial part of my work, I investigate the
behaviour of 12 commonly used housekeeping genes for their suitability in
RT-gPCR experiments during a representative long-term process, 1PS
reprogramming, and find that these genes are unsuitable for normalization
procedures due to their fluctuation, making standard RT-qPCR inapplicable to iPS
reprogramming. Second, I proceed to develop a new methodology for RT-qPCR
experimentation that does not require the use of reference genes. Importantly, my
methodology increases the precision of obtained measurements while reducing
experiment-associated labor and cost. Third, I go on to apply this new
methodology to the investigation of the behaviour of 70 housekeeping genes
during the 1PS reprogramming, demonstrating high potential of the new
methodology for high-throughput use. The results obtained in the course of the
analysis reveal previously unknown patterns of gene dynamics during iPS
reprogramming. | found a collective pattern in the rise of most ribosomal genes’
expression, with the exception of small ribosomal subunits Rps18 and Rps9, during
the reprogramming process. Furthermore, I found that cell systems associated with
growth inhibition, such as apoptosis-associated genes, ubiquitin system genes, or
tumor suppressor genes, are collectively down-regulated. Moreover, the analysis
showed that there exists a time-dependent pattern in gene expression dynamics of
chosen genes, and hints at the existence of an unknown event early in the
reprogramming process. These results showcase successful application of my
newly developed methodology for gene expression analysis in long-term biological
processes, and its notable precision in detection of gene expression changes.
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General Introduction

0.1 Background

Life Sciences are rapidly moving into the new era of quantification of biological
processes. Life scientists increasingly feel the pressuring need for precise
analytical instruments for quantitative data analysis. Exact sciences, such as
physics, astronomy or optics, have developed such tools for their own use long
ago, and it is no coincidence that these sciences are defined by Oxford English
dictionary as “those which admit of absolute precision in their results”.

One of the most important fields in need of precise quantification is the the field
of gene expression measurements. Gene expression is the conversion of genomic
information stored in the DNA into functional RNA species, the primary of which
is messenger RNA (mRNA). Recent discoveries and research have brought to light
many other functional RNA species, such as microRNA (miRNA), non-coding
RNA (ncRNA), small nuclear RNA (snRNA) and others. Due to this rapid
development of the field, the demand for fast and precise RNA profiling is
increasing.

Quantification of small amounts of nucleic acids, and RNA in particular, first
became possible in 1980s with the invention of polymerase chain reaction (PCR)
by Kary Mullis (Saiki et al. 1985). Earlier methods of determining the quantity of
RNA or DNA were based on end-point detection. The most popular of such
methods for RNA quantification, Northern Blot, was designed in 1977 and named
after the DNA Southern blot invented by Sir Edwin Southern (Alwine et al. 1977).
Northern blotting relies on visualization of RNA wusing denaturing gel

electrophoresis and blotting. RNA levels are quantified directly based on the signal
that the bands produce and are compared between samples on a single membrane.
The disadvantages of Northern Blotting, however, are the low sensitivity (and thus
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requirement for large amounts of RNA), sample degradation, and low accuracy
(Lee et al. 2005; Maderazo et al. 2003; Trayhurn 1996; Zhao et al. 1996). The
discovery of PCR reaction allowed amplification of small quantities of RNA,

making quantification of much less abundant RNA species possible. However,
there was a major drawback in the end-point detection methods as they did not
account for the reaction amplification efficiency, assuming it to be same for all
samples. Since PCR amplification efficiency may largely differ between samples,
and the nature of the reaction itself is exponential, the comparison of the end
product may give largely misleading results. For instance, if we make a mistake of
only 5% in estimating reaction efficiency and assuming it to be 100% instead of
actual 95%, the difference in amplification of only one molecule in 20 cycles of
PCR will rise to 400,000-fold.

To solve this problem, RT-qPCR technique was invented in 1995 (Riedy et al.
1995). This technique monitors PCR reaction in real-time, assessing the target
nucleic acid quantity after each PCR cycle (or, rather, assessing the quantity of the
target nucleic acid by the associated signal). The advantage of this method
compared to end-point detection is clear: assessment of the quantity of the target
after each cycle can provide much more information about the reaction and hence,
about the starting quantity or the ratio of two genes under comparison at a given
cycle. The disadvantage of this method was the need for excessive manual labor
which made the analysis of large number of genes, and in particular whole
transcriptomes, problematic.

In the following years microarrays and, lately, RNA-seq were introduced for
this purpose. However, their lower accuracy, and, in case of RNA-seq, the reliance
on many steps of software-based analysis (which makes the process of
quantification a black box for the researcher) (Fig. 1), are still a hindrance for these
techniques acceptance as precise tools for gene expression quantification, and they
still require the confirmation by RT-qPCR which remains the gold standard

(Canales et al. 2006; Bustin et al. 2009).

12


https://paperpile.com/c/eZFUSY/u7eJ+qK6d+LHdq+DogQ
https://paperpile.com/c/eZFUSY/DCWG
https://paperpile.com/c/eZFUSY/DCWG
https://paperpile.com/c/eZFUSY/42Eo+wr56

RNA-seq RT-gPCR

[ Sample preparation ] [ Sample preparation J
[ RNA extraction J [ RNA extraction ]
[ Enrichment of desired transcripts ] [ L ]
[ Conversion into cDNA J | Conversion into cDNA ]
[ Library prep JStranded, unstranded, tags, batch variance

[ Seq read length ]N of bases

[ Seq depth ]How many reads for accurate picture?

[ Paired vs. single-end reads ]One end or both ends?

[ Trimming ]How many reads for accurate picture?

[ Alignment vs. assembly ]Map or make contigs, method of mapping?

[ Sequencing quality JHOW will you check the quality?

[ Normalization ]For depth, GC content, composition

[ Estimating abundance ]count based or abundance? count uniquely mapped reads or multiple too?
[ Test for differential expression ]Which software?

Figure 1. A comparison of high-throughput technology (RNA-seq) with
RT-qPCR. The number of steps that may introduce bias or variance prior to data

generation (i.e. before the actual experiment) differs significantly for RNA-seq and

RT-gPCR. In case of RNA-seq at least 10 additional steps are required compared
to RT-qPCR. Thus, precision of this technique is considered smaller, and the
technique itself is put into the “discovery tools” category rather than “validation
tools” category.

Typically, technologies that allow measurements on large number of genes
(such as microarrays and RNA sequencing techniques) are considered to be
discovery tools and are characterized by lesser reliability and precision. While they
allow to screen thousands of samples and transcripts, their drawbacks include high
cost, the need for complicated and often subjective computer data analysis
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procedures, and technical limitations such as unoptimized protocols, non-specific
hybridization problems, data similarity problems stemming from inherent gene
sequence similarities and paralogue existence, and high data variance (Jazayeri et
al. 2012; Martin et al. 2016; Ozsolak and Milos 2011; Han et al. 2015). On the
other hand, increased precision of measurements requires multiple replicas and

laborious normalization techniques and are associated with greatly decreased speed
of experimentation. The outline of the existing methods and their suitability for
particular purpose is shown in Fig. 2.

Microarray, Dlscovery

RNA-seq

Focused Microarray,
Next Gen. RNA-seq

Precision / Throughput

v

RT-gPCR
Validation

Number of samples

Figure 2. A representation of modern methods of gene expression
measurements according to their precision and throughput abilities.
High-precision methods, such as RT-qPCR, are used as the validation tools, while
less precise methods, such as microarrays and RNA-seq, are used as discovery
tools.
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0.2 Relevance of this work in its field

Real-time qPCR is currently considered the most sensitive and precise method
of gene expression quantification. Both absolute and relative quantification are
possible in RT-qPCR. Absolute quantification gives the absolute copy number of
RNA fragments per volume and requires construction of so-called “standard
curves” (the word standard in this context means “a thing used as a measure or
norm in comparative evaluations”). This method is extremely laborious, requiring
the amplification and gel-purification of desired standard fragment, subsequent
measurement of the concentration, serial dilutions, separate RT-qPCR runs,
construction of standard curves and calculations including molecular weight. In
addition, the disadvantages include (1) the need to run the standard curve in all
subsequent experiments to preserve all experimental conditions, (2) the influence
of spectrophotometry or other means of concentration measurement on the
resulting concentration values, and (3) most importantly, the assumption that the
gel-purified, “clean” fragment will amplify with the same efficiency as the
“non-clean” sample (also containing transcribed total RNA). Considering all these
problems, the vast majority of researchers use another method, so-called relative

quantification.
a_ b
—=— Sample A
—e— Sample B 40 7 :. Sandard|
35 4
g | 30 A
E 25 - Cq ofi
-] sampie
2 - _ _ _ __ Threshold 20 -
15 - :
- g Initial concentration
[ i f !
o . : E I : v or sampie , :
0 10 20 30 40 ] 2 3
Cycle number (Ct) Log amount of standard

Figure 3. Schematic representation of RT-qPCR absolute quantification
method. (a) The RT-qPCR machine produces amplification curves of sample A
and sample B based on fluorescence readings that are depicted as squares and
circles in the figure. The steep rise in the fluorescence begins around cycle 20 for
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sample A, and around cycle 30 for sample B. This means that it takes more PCR
cycles to amplify sample B, and thus, its starting concentration must be lower than
for sample A. To compare the starting concentrations, the RT-qPCR machine
automatically draws a so-called “Threshold” by algorithms that differ depending
on the machine maker. The points where the threshold crosses the amplification
plot is called “Ct”, or Cycle Threshold, and is, in essence, an artificial fractional
cycle number created for the purpose of comparison of two samples. (b) In order to
obtain the absolute copy number of fragments, a standard curve must be
constructed as depicted in this figure. The amplified, gel-purified, completely
“clean” fragment is measured for exact concentration by spectrophotometry or
other methods, and then diluted in at least 6 steps (blue squares). The exact
concentration of each diluted sample is thus known. The samples are run in
RT-gPCR machine, and the log concentration of each diluted sample is plotted
against the resulting Ct value from the machine (blue squares). Thus, we obtain the
correlation plot between the amount of the fragment and the Ct value. After that, it
is possible to amplify “non-clean” fragments from genomic DNA and total RNA
etc., and compare their Ct values with the standard. The efficiency of amplification
here is assumed identical for “clean” and “non-clean” samples.

Since absolute quantification is laborious, the standard approach recommended
in “The Bible of RT-qPCR”, namely The Minimum Information for Publication of
Quantitative Real-Time PCR Experiments (MIQE) guidelines, is so-called
“relative quantification”. Relative quantification is performed with the use of a
reference gene or a set of reference genes, and involves normalization of obtained
Ct (cycle threshold) values of target genes to the Ct values of reference genes. This
method is most frequently used for the analysis of gene expression change after a
treatment. The reference genes are used because they are assumed to be constant
(non-varied) in all experimental conditions, including the treatment. The
expression of target gene(s) is then normalized to the expression of reference
genes, making comparison between treated and untreated samples possible.

However, the stability of housekeeping genes used as reference in RT-qPCR
has been questioned by several researchers in various organisms, and it is generally
recommended to investigate the stability of the reference genes prior to conducting
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any experiments with them in the desired system. In particular, the housekeeping
genes’ stability has never been investigated in long-term dynamic processes that
take weeks or months, such as iPS reprogramming, aging, in vivo differentiation
etc. Thus, any researchers attempting RT-qPCR analysis in these settings would be
required to first conduct several experiments to choose an appropriate reference
gene, if such exists at all.

MIQE guidelines recommend normalization to reference genes as the default
method of RT-qPCR and presents a list of requirements for conducting
experiments using this method (Bustin et al. 2009).

Among these requirements are:

Construction of calibration curves with at least three replicates

Measuring slope and y intercept for these curves

Reporting standard deviation (SD) for the replicates of these curves
Reporting 1’ for the curves

Calculating efficiency of amplification from the curves

Reporting Linear Dynamic Range from the curves

Reporting method of Ct determination (since it is automated in the machine)
Justifying the number and choice of reference genes

Describing the normalization method for reference genes

Running at least three replicates for the main experiment and reporting SD
(the requirements concerning reference genes are typed in italics, i.e. this work

is needed when performing any RT-qPCR experiment with reference genes)

All of these measures are designed to improve the precision of RT-qPCR
measurements in cases when reference genes are used. For example, the calibration
curves are run to determine the PCR efficiency because it is the most important
parameter that affects the calculation of the ratio of gene expression change. Since
this RT-qPCR method is based on Ct values, MIQE requires to run at least three
replicates in all cases, including when running calibration curves, due to the fact
that a single run gives only one Ct value and is unreliable statistically (Bustin et al.
2009). In addition, since Ct values are automatically defined by the RT-qPCR
machine and differ between different machines, MIQE requires to report their

determination method. Moreover, since the whole scheme depends on stability of
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the reference genes, their choice must be justified, their stability should be
confirmed for all experimental conditions, and the normalization procedure should
be clearly described. Of course, all experiments involving reference genes and
target genes should include at least three technical replicates and, ideally, three
inter-assay replicates (same experiment run on different plates at different times of
the day). I want to emphasize that all of the above is defined as essential
information that must be published with every RT-qPCR experiment,
according to MIQE guidelines. Needless to say, this constitutes an enormous
amount of experimental work. Eliminating the need to use reference genes without
losing precision, thus, will constitute a vast improvement in RT-qPCR
experimental procedure because it will result in economy of hands-on time,
reagents, and data analysis.

Several methods have been developed in the past decades to improve RT-qPCR
precision, such as FPK-PCR (Lievens et al. 2012), LinRegPCR (Ramakers et al.
2003), Cy0 (Guescini et al. 2013) and others. However, according to a recent
analysis, these alternative methods rely on different ways of approximating a single

amplification curve and have never yielded acceptable accuracy (Ruijter et al.
2013). Thus, running multiple replicas remains the only way to ensure sufficient
precision of RT-qPCR results, and this is associated with greater labor and cost of
experimentation. In addition, the classical formula of normalization recommended
in MIQE guidelines requires that the efficiency of PCR reaction be measured for
both reference gene and target gene, and if the efficiency is not equal, the change
of the reference gene is required, which involves considerable time loss and
increased labor. Moreover, according to the guidelines, the reference genes must be
tested for fluctuation and deemed suitable for experimentation for each particular
biological process, which is also a time-consuming and laborious task. All these
issues prevent RT-qPCR from becoming a trusted and fully established technique
in the biological community.

This work aims at solving these problems by, first, investigating the behavior of
commonly used reference genes and then, developing a new, highly precise
methodology that requires much less labor and reduces overall hands-on time and
cost of experimentation.
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0.3 Significance and purpose of this work

My major vision is to establish a new conceptual direction in the field of nucleic
acid measurements. The existing methods of experimentation and data analysis in
the field of nucleic acid measurements do not possess satisfactory precision unless
multiple replicas are run for each experiment, and unless a carefully crafted
normalization strategy is applied, as described in the previous section. My goal
here i1s to address this issue, and to move forward the field of nucleic acid
quantification. As a first step towards this goal, I have developed a new approach
to qPCR data analysis, that is based on solid mathematical principles, such as the
Theory of Measurement (described in the next section), has doubled precision
compared to the existing methods, and is suitable for high-throughput analysis. 1
believe that current biology needs its new Francis Galton, and I would be happy if
my contribution could move the field in that direction, the direction of exact
science.

Goals:

e Investigate the suitability of commonly used gene expression quantification
tools for high-precision quantification in long-term processes

e If necessary, develop a new high-precision tool for gene expression
quantification

e Apply the said tool in a system that represents a long-term dynamic process

0.4 Originality

The novelty of my approach is in the application of the principles of the Theory
of Measurements (Hand 1996) to the solution of the precision problem in gene

expression measurements. The Theory of Measurements (alternatively,
Measurements Theory) is a branch of applied mathematics that is commonly used
in physics, engineering and other exact sciences. It ensures the best performance of
data gathering techniques and research techniques, and is considered prerequisite
for all measurements conducted in such sciences. The Measurement Theory
regards all measurements as observations that are not identical to the attributes
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being measured. Rather, all measurements are considered approximations of the
said attributes, and are represented by assigned numbers. Thus, when one wants to
draw conclusions about a property of an object, he (she) must take into account the
nature of the correspondence between the measurements and the property being
measured (Krantz et al. 1971). This allows one to use reliable, proven statistical

apparatus, including advanced statistical methods, to model complex natural
processes.

Since the quantitative research in biology is only gaining momentum recently,
the Measurement Theory has not yet been integrated into biological methods. The
measurements of gene expression, in particular, are not standardized because there
is no international system of units, as is the case for physics which has standard
units such as length, weight or speed, the quantities reported in biological studies
are nearly always relative and cannot be translated into different experimental
systems, and the statistical approaches do not rely on a set of common, firmly
defined principles. My application of the classical principles used in exact
sciences, namely the Measurement Theory, to the measurements of nucleic acids,
is the first step in the direction of standardization of biological procedures.

Thus, the novelty that I introduce is both conceptual and practical, and is based
on integration of proven statistical methods from exact sciences into the existing
methods in biology. This approach allowed me to increase the precision and
reliability of measuring gene expression, greatly reducing labor and cost of
experimentation. Moreover, my application of the Measurements Theory to the
tracking of 70 genes’ expression dynamics during the iPS reprogramming process
enabled me to reveal important information about the genes’ behavior.
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Chapter 1

Investigation of housekeeping gene dynamics during the
iPS reprogramming process

1.1 Introduction

As the first step, I investigated whether the conventional method of RT-qPCR
analysis is suitable for my research goal, namely, high-precision,
medium-throughput gene expression quantification during the iPS reprogramming
process.

Induced pluripotent stem cell (iPSC) reprogramming is an artificial,
human-induced gradual change in gene expression which allows to turn a
differentiated somatic cell into a pluripotent cell. It usually takes a relatively long

time (~1 month) (Takahashi and Yamanaka 2006), involves several major

transcriptional circuits (Papp and Plath 2011), and is accompanied by many drastic

changes in fundamental cell properties and behaviour, such as energy production
(Panopoulos et al. 2012), changes in cell cycle progression patterns (Smith et al.
2010), cytoskeletal organization (Li et al. 2010) and others. Currently iPS
reprogramming 1s divided into three major stages, initiation, maturation and
stabilization (David and Polo 2014). It is known that the alterations in cell
chemistry during these stages include most basic, “housekeeping” functions such

as cell metabolism (Panopoulos et al. 2012), speed of the cell cycle (Papp and Plath

2011) and lipid profile (Boraas et al. 2016; Mammoto and Ingber 2009).

Being a highly dynamic, time-dependent process, iPS reprogramming is akin to

natural biological processes that humans are interested in investigating, such as cell
differentiation, embryo and organ development and aging. As such, iPS
reprogramming constitutes an ideal in vitro model system to design, build and
validate a workflow for quantification of vast, gradual chemical changes in live
cells.

RT-qPCR requires a normalization strategy to ensure the reliability of the data
(Jacob et al. 2013; De Spiegelaere et al. 2015). One common strategy is to rely on
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the comparison of the target gene with an endogenous control (reference gene) in
the same sample. When normalizing qPCR data to a reference gene, it is of crucial
importance to make sure that the gene of choice is stably expressed throughout all
experimental conditions. At present, so-called housekeeping genes are universally
used as a reference (Piazza et al. 2017). For example, housekeeping genes such as

actin, ubiquitin or ribosomal genes are thought to be universally required for basic
cellular functions and to be constitutively and stably expressed in varying
physiological and experimental conditions. However, recent works have uncovered
that housekeeping genes’ expression levels may vary depending on the gene, cell
type and experimental conditions. For example, one of the most frequently used
housekeeping genes, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) has
been found to be unstable depending on the type of tissue (Sullivan-Gunn et al.
2011), metabolic process (Gong et al. 2016) or under certain experimental
conditions (Mahoney et al. 2004). Thus, confirming the stability of the normalizing

gene of choice in cells under study is a prerequisite for a correct analysis of gene
expression of any target gene. The need to confirm stability of expression is even
greater in case of iPS reprogramming, as housekeeping genes could be affected by
dramatic changes in chemical metabolism of the cells.

The RT-qPCR analysis of common housekeeping genes’ stability over the time
course of iPS reprogramming has never been performed. Thus, the first step of my
analysis was to monitor changes in the expression of common housekeeping genes
during 1PS reprogramming and determine their suitability for further
experimentation.
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1.2 Materials and Methods

Cell culture and iPS reprogramming

1PS reprogramming was carried out in a reprogrammable cell system previously
described by Hikichi and colleagues (Hikichi et al. 2013). The system consists of a
mouse neural progenitor cell line designated N31 which possesses three key
characteristics of neural progenitors: (1) fibroblast growth factor and epidermal
growth factor-dependent growth, (2) neural stem cell markers’ expression and (3)
the ability to differentiate into neural lineages (described in detail in Han et.al,
2012 and Hikichi et.al., 2013). To bypass the need for mRNA or virus introduction
into the cells, a doxycycline-inducible cassette with four Yamanaka factors, Oct4,
Sox2, Klf4 and c-Myc, was permanently integrated into the cell genome.
Doxycycline addition results in the activation of the four factors and initiates
reprogramming. Cells were seeded and kept on plastic gelatin-coated dishes in
RHB neural stem cell media (#Y40000, Clontech Takara, Japan) supplemented
with Ndiff (# Y40100, Clontech Takara, Japan) and 10ng/ml FGF and 10 ng/ml
EGF until they fully attached and spread. To initiate reprogramming, the medium
was changed to Essential 8 iPS reprogramming medium (A1517001, Thermo
Fisher, Japan) and 1pg/ml doxycycline was added to the dish. From that point on,
the media were changed every day to avoid pH fluctuations. The reprogramming
was carried out until day 20, and the cell material samples (whole cell populations)
were collected at 8 time points (on days 0, 1, 3, 5, 7, 10, 15, 20). One round of
reprogramming thus yielded 8 cell pellets. The experiment (one full round of
reprogramming) was repeated three times to obtain three biological replicates for
each time point. To confirm the success of reprogramming, cells were analysed on
the day 20 for markers of pluripotency: (1) cell morphology, (2) alkaline
phosphatase expression, (3) pluripotent genes Nanog and Oct4 expression
(Supplementary Fig. 2 and Fig. 14).

ME-Fs, partial 1PS and fully reprogrammed iPS derived from EOS3F-24 line for
corroborative experiment were a gift of professor A. Hotta and were maintained as
previously described (Hotta et al. 2009).
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Candidate genes and primer design

Table 1 contains information about the 12 commonly used housekeeping genes
chosen for this study, and the selected primer pairs used for amplification. All
primers were designed according to MIQE guidelines with the aid of
Primer-BLAST software (NCBI). Primers were designed to be specific
preferentially for the longest isoform (transcript variant), allowing
complementarity to other transcripts of the same gene (e.g. transcript variant 2,
transcript variant X1 etc.), within the coding sequence. To select the best primers,
the coding region of a gene was divided into portions spanning approximately
200-400 bp, and primers were designed to each portion using NCBI software. After
excluding primer pairs that, according to NCBI Blast, could produce unintended
target amplicons, resulting primer-pairs were tested by qPCR and the best pair for
each gene was selected for the experiment.

RNA isolation and cDNA synthesis

Total RNA was extracted with RNeasy kit (Cat# 74106, Qiagen, Japan) from
each biological sample according to the manufacturer's instructions (on-column
genomic DNA digestion was performed as per said instructions), and RNA
concentration and absorbance ratios (A, nse and A,gyns) were measured by
spectrophotometer Nanodrop 2000 Spectrophotometer (NanoDrop Technologies,
Japan). Only the samples with A, .5 and A, 5, Were used for further analysis.
300 ng of RNA from each sample was reverse-transcribed using Omniscript RT
Kit (Cat# 205111, Qiagen) in a total volume of 20ul to produce DNA that was
subsequently assessed by spectrophotometric analysis and diluted to 100 ng/ul.
Then, individual master mixes with each of the DNA-primer combination (e.g.
‘Day 0 - Atp5f1°, ‘Day 0 - B2m’ etc.) were created for 4 technical replicas, and the
mixtures were distributed onto the qPCR plate (8 ul per reaction well).

The reprogramming process (day 0 - day 20) was repeated 3 times, thus 3
replicates were obtained for each time point.

Quantitative real-time PCR
qPCR was performed using a CFX96 Connect apparatus (BioRad, Japan). The
reactions were carried out in triplicate using intercalating dye SYBR Green-based
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PCR super-mix (BioRad), following the manufacturer's instructions. Each reaction
was performed in the final volume of 8 uL, primers were used at the concentration
of 300 nM. Thermocycler program consisted of an initial hot start cycle at 95°C for
3 min, followed by 32 cycles at 95°C for 10 sec and 59°C for 30 sec. To confirm
product specificity, melting curve analysis was performed after each amplification.

Immunostaining

For immunofluorescence analyses cells were grown on glass bottom 30-mm
dishes coated with collagen type I (IWAKI #4970-011). On the day of
immunostaining cells were briefly washed with PBS, fixed with 4% PFA (Santa
Cruz #sc-281692) for 15 min at room temperature and permeabilized with 0.5%
Triton in PBS with 10% FBS addition for 30 min. Primary antibodies were applied:
Anti-Oct4 (Santa Cruz #sc-5279, 1/250 dilution), Anti-Nanog (Abcam #ab80892,
1/250 dilution), in PBS with 10% FBS addition, for 1 hour in room temperature.
After washing cells were incubated with secondary antibodies: Anti-mouse Alexa
Fluor® 594 (Cell Signaling #8890, 1/500 dilution) and Anti-rabbit Alexa Fluor®
488 (Cell Signaling #4412, 1/500 dilution) in PBS with 10% FBS addition for 1
hour in room temperature, then cells were washed 4 times with PBS and 2 mL PBS
per dish was added for imaging.

Alkaline phosphatase staining and imaging

For alkaline phosphatase staining cells were briefly washed with PBS, fixed for
5 min with 4% PFA (Santa Cruz #sc-281692) at room temperature and stained with
Alkaline phosphatase kit II (Stemgent, #00-0055) according to the manufacturer’s
protocol. Imaging was carried out on Olympus CKX41 inverted microscope.

Statistical analyses

The assay performance evaluation was carried out as described in MIQE
guidelines. Reaction efficiency E was calculated as E =(-1/slope)-1x100 and
precision was calculated as the average of all standard deviation values across
samples for each gene. Linear dynamic range (LDR) is defined as the highest to the
lowest quantifiable copy number established by means of a calibration curve, and
covers at least 3 orders of magnitude, as advised. The interval at which the main
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experiments were carried out fell into the linear portion of the calibration curve.
The linearity was determined by means of correlation coefficients (R?). Precision
refers to intraassay variation and is expressed as standard deviation (SD) of
technical replicates, as advised. For BestKeeper (Pfaffl et al. 2004) analysis, Ct

values were input directly, and geometric and arithmetic mean as well as standard
deviation and coefficient of variance were calculated by the program, according to
which genes were subsequently ranked from most stable to least stable. For
NormFinder (De Spiegelaere et al. 2015) analysis, Ct values were transformed to
linear scale and the normalization factor was calculated as the geometric mean of

candidate reference genes included in the dataset. GeNorm software analysis was
performed by calculating the expression stability measure as defined in the
geNorm paper (Jacob et al. 2013), pairwise variation was determined and genes

were ranked according to their positions. RefFinder algorithm was used to produce
comprehensive ranking. This algorithm integrates four major programs (geNorm,
Normfinder, BestKeeper, and the Delta Ct method) to assign a weight value to an
individual gene and calculates the geometric mean of the weights for the overall
final ranking. Time-course plot of the gene expression through the reprogramming
process were performed using the JMP software (JMP®, Version vl1, SAS
Institute Inc., Cary, US). Variance analysis between time points were performed
using ANOVA test followed by a post-hoc Tukey HSD test at p < 0.05.

Results
1.3 Assay performance evaluation

I have chosen twelve commonly used housekeeping genes for the purpose of
this initial analysis (Table 1).

Gene | Accession Official Full Name Primer Pair (5'-3") size
symb | No. MGI) (bp)
Actb NM _007393.5 | actin, beta TCGAGTCGCGTCCACC 157
GGGAGCATCGTCGCCC
Atp5fl | NM_009725.4 | ATP synthase, mitoch. FO GTCCAGGGGTATTACAGGCA | 112
complex, subunit B1 A
TCAGGAATCAGCCCAAGACG
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B2m NM_009735.3 | beta-2 microglobulin ACGTAACACAGTTCCACCCG | 150
CAGTCTCAGTGGGGGTGAAT

Gapdh | NM 00128972 | glyceraldehyde-3-phosphate | GCACAGTCAAGGCCGAGAAT | 151

6.1 dehydrogenase GCCTTCTCCATGGTGGTGAA

Gusb | NM 010368.2 | glucuronidase, beta AACAACACACTGACCCCTCA | 140
ACCACAGATCGATGCAGTCC

Hprt NM 013556.2 | hypoxanthine guanine CAGTCCCAGCGTCGTGATTA | 168

phosphoribosyl transferase | TGGCCTCCCATCTCCTTCAT

Pgkl NM 008828.3 | phosphoglycerate kinase 1 GGGTGGATGCTCTCAGCAAT 160
GTTCCTGGTGCCACATCTCA

Ppia NM_008907.1 | peptidylprolyl isomerase A | CCCACCGTGTTCTTCGACAT 116
CCAGTGCTCAGAGCTCGAAA

Rps18 | NM 011296.2 | ribosomal protein S18 AAGCAGACATCGACCTCACC | 171
CTAGACCGTTGGCCAGAACC

Tbp NM 013684.3 | TATA box binding protein | AGTTGGGCTTCCCAGCTAAG 160
GCTACTGAACTGCTGGTGGG

Tfrc NM 00135729 | transferrin receptor AAGAGCTGCTGCAGAAAAGC | 190

8.1 ACGGTCTGGTTCCTCATAACC

Ywhaz | NM_011740.3 | tyrosine 3-monooxygenase / | GATTGGAGGAAACCCCGTGT | 190

CCTTCTGCACCAGCTCATTT

Table 1. Summary of twelve housekeeping genes evaluated in this study.
Accession numbers, gene descriptions, primer sequences and product sizes are
shown.

To evaluate the performance of the qPCR assay, I generated calibration curves
using tenfold serial dilutions and assessed the PCR efficiency denoted E (see
Materials and Methods), linear dynamic range (LDR) and precision, as described
in MIQE guidelines (Bustin et al. 2009). Results are shown in Table 2. The mean
amplification efficiency values ranged from 95% (Actb) to 163% (Gusb),
corresponding to slopes of -3.45 and -2.39, respectively. Nine genes out of twelve
fell within “good” range of PCR efficiency defined as 90%< E <110%, while Tfrc,
Hprt and Gusb produced 114%, 143% and 163%, respectively. To ensure that this
result was due to the gene behavior rather than primer design, I evaluated 4 primer

pairs for each of these genes, designed to cover different regions of the genes, as
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well as tested these pairs both in the parental cell line before reprogramming (N31
cells) and after the reprogramming (iPS cells). The results for these primer pairs
can be found in Supplementary Table 1.

The LDR values were lowest for Hprt and Gusb and were in the range of 7-700
ng of template. Correlation coefficients, on the other hand, varied from 0.991
(Gusb) to 1.0 (Pgkl) and fell within acceptable range for all genes as all of them
were >0.99. Precision values ranged from 0.12 (Hprt) to 0.38 (Gusb). Overall these
results show good performance of the qPCR assay except for Gusb and Hprt that
performed less well in the lower concentration ranges (less than 7 ng).

Gene E (%) Slope LDR (ng) | Precision R?

Actb 95 -3.45 0.07-700 0.18 0.999
Atp5fl 104 -3.23 0.07-70 0.31 0.999
B2m 100 -3.31 0.07-70 0.22 0.999
Gapdh 96 -3.42 0.07-70 0.29 0.998
Gusb 163 -2.39 7-700 0.38 0.991
Hprt 143 -2.60 7-700 0.12 0.995
Pgkl 101 -3.29 0.07-700 0.26 1.0

Ppia 100 -3.32 0.07-70 0.15 0.997
Rps18 99 -3.34 0.07-700 0.16 0.998
Tbp 106 -3.18 0.7-700 0.21 0.997
Tfrc 114 -3.02 0.07-700 0.36 0.999
Ywhaz 102 -3.27 0.7-700 0.17 0.999

Table 2. Assay performance characteristics showing PCR efficiency E,
linear dynamic range (LDR), slope, precision and associated correlation
coefficient R* (see Materials and Methods).
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1.4 Analysis of candidate reference genes’ stability in iPS
reprogramming process

The stability of candidate reference genes was analyzed according to four
statistical methods of assessment, namely, the Delta Ct method, the estimation of
the intra- and intergroup variation (NormFinder), the basic descriptive statistics
evaluation (BestKeeper), and pairwise comparison (geNorm). The comprehensive
ranking of the genes was also evaluated (see Materials and Methods), giving a total
of five evaluation methods. The analysis revealed that Atp5fl was unanimously
chosen as the most stably expressed gene by all four algorithms, while Rps18 was
designated as the least stable gene. Pgkl was chosen as the second most stable
gene by 4 out of the 5 algorithms. Gapdh was designated as the third most stable
gene, except by the Delta Ct method which designated it as the second most stable
gene. Thus, the order of stability for the best three genes was summarized as
follows: Atp5fl > Pgkl > Gapdh. On the other hand, the three least stable genes
were Rps18 > Hprt > Tbp / Actb (Table 3).

Gene | Comprehensiv | Delta Ct geNorm NormFinder BestKeeper
e Ranking
Value [Rank | SD aver. | Rank | M Rank | Stability | Rank | SD | Rank
value
Atp5f1 | 1.00 1 1.03 1 0362 |1 0.288 1 0.40] 1
Pgkl 1.86 2 1.12 3 0362 |1 0.489 2 0.46| 2
Gapdh |2.91 3 1.11 2 0.504 |2 0.516 4 0.48|3
Tfrc 4.23 4 1.14 4 0.560 |3 0.640 5 0.52| 4
Ppia 6.12 7 1.18 5 0.580 |4 0.742 7 0.67(8
Gusb | 5.66 5 1.22 7 0.729 |6 0.502 3 0.60( 7
Ywhaz | 6.00 6 1.21 6 0.643 |5 0.716 6 0.55[6
B2m |7.11 8 1.31 8 0.790 |7 0.784 8 0.54|5
Actb |9.24 9 1.45 9 0.847 |8 1.140 9 0.89( 10
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Tbp 9.74 10 1.59 10 0952 |9 1.194 10 0.86|9

Hprt 11.00 |11 2.07 11 1.154 |10 1.767 11 1.35| 11

Rpsl18 [12.00 |12 2.88 12 1.441 11 2.750 12 2,11 12

Table 3. Ranking of the candidate reference genes according to five different
evaluation methods. Atp5fl, Pgkl and Gapdh were ranked as the most stable
candidate reference genes, while Rps18, Hprt, and Tbp / Actb were designated as
the least stable ones.

Then, to corroborate these results in a more commonly used cell line, I assessed
the stability of the 12 housekeeping genes using mouse embryonic fibroblasts
(MEFs) described by Hotta et. al. (Hotta et al. 2009). The stability was assessed
using 3 time points for each gene, corresponding to the non-reprogrammed state
(MEFs), partially reprogrammed state (partial iPS), and fully reprogrammed state
(iPS). In fibroblasts, the five statistical algorithms also selected Atp5f1, Pgkl and
Gapdh as the best reference genes, while B2m, Actb and Hprt showed the lowest
stability (Fig. 4). The exact ranking as obtained by the five statistical algorithms

can be found in Supplementary Table 2.
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Figure 4. Comprehensive stability ranking of candidate reference genes
during iPS reprogramming of neural stem cells (N31) or mouse embryonic
fibroblasts (MEFs). The stability is expressed as a comprehensive value for five
algorithms: Genorm, Normfinder, Bestkeeper, Delta Ct, and RefFinder. Atp5, Pgkl
and Gapdh are showing the best stability in both cell lines. The lowest stability
values differed in two cell lines, the lowest score belonging to Rps18, Hprt and
Tbp in N31 cells (a) and to B2m, Actb and Hprt in MEFs (b).

1.5 Expression variability of candidate reference genes
during the iPS reprogramming process

To assess the expression variability of chosen candidate reference genes during
the reprogramming process, qPCR was performed and the relative Ct values for
each gene across 8 time points were obtained throughout the reprogramming
process, from day 0 to day 20. Figure 5 shows that the mean Ct values for 12
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candidate genes varied from 9.99 to 24.21 cycles. The highest Ct value was
observed for Rps18 (9.99) while the lowest value was observed for Hprt (24.21).
To provide an initial estimation of the variability for each gene, I calculated
standard deviation and coefficient of variation (CV). The least variable gene as
expressed by SD value was Atp5fl (n = 3, SD = 0.52), and the most variable was
Rpsl18 (n = 3, SD = 2.70). Atp5fl exhibited the lowest CV value, and Actb the
highest one. For a more comprehensive analysis, the difference between 25" and
75™ percentile was calculated in order to estimate the amplitude fluctuation.
According to this analysis, Rpsl8 showed the highest variability, with an
amplitude fluctuation of 3.89, and the least variable genes were AtpS5fl and Pgkl
with the amplitudes 0.58 and 0.61, respectively. Thus, according to the initial
analysis, Atp5fl was identified as the most stable gene while Rps18 was identified
as the least stable gene across the whole reprogramming process.
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Figure 5. Box-and-whisker plot indicating range of Ct values of candidate
reference genes throughout iPS reprogramming. Values of three biological
replicates taken as averages of 4 technical replicates are given. The whiskers
represent standard deviation of n samples (n=24).
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1.6 Time-course expression profiles of candidate reference
genes

Figure 6 shows Cycle threshold values (Ct) of candidate reference genes plotted
against time. The cycle threshold is inversely proportional to the gene expression
of the considered gene. Results showed that Actb, Hprt, and Rps18 displayed the
strongest variation over time. According to this analysis, Actb expression
decreased during the reprogramming process (R* = 0.85), and the analysis of
variance was found significant (p < 0.0001). Hprt and Rps18 expression decreased
in the first week of reprogramming, increased around day 10, then decreased again.
R? values for Hprt and Rps18 were R? = 0.71 and R? = 0.20, respectively. At Day
20, the genes Gusb, Rps18, Tbp, and Ywhaz showed the strongest variation.

Cycle threshold
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Figure 6. Expression profile of the 12 candidate reference genes throughout
the 20 days of the reprogramming process. Measurements were performed in
triplicate for each day. For each gene, linear fits were applied (black lines) and the
displayed grey areas represent the 95% confidence intervals. For visualization
purpose, a color bar representing the log2 values of Cycle threshold was added.
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1.7 Discussion

In this chapter I have performed iPS reprogramming in murine cells and
measured the expression patterns of the most commonly used housekeeping genes
by conventional RT-qPCR method. 1 have analysed 12 most frequently used
reference genes for suitability in RT-gPCR experiments during iPS
reprogramming, and found that all genes analysed fluctuated by 1-2 fold
throughout the reprogramming process.

Using the expression data obtained by the conventional RT-qPCR method and
five statistical algorithms published in available literature, I have identified Atp5£1,
Pgkl and Gapdh as the most stably expressed genes. Notably, these genes were
grouped together by the algorithms, and they all belong to the ATP production
process. First of all, the Atp5fl gene, which had the highest stability rank, is a B
subunit of the proton channel of mitochondrial FO complex, and is a part of
mitochondrial ATP synthase. ATP synthase is composed of FO and F1 complexes
and is linked by the peripheral stalk, of which B subunits are part (Ko et al. 2000).
The function of the subunits in this context is, apart from linking the complexes, to

act as a stator to prevent other subunits from rotation in relation to the central
rotary element. Atp5f1 is, thus, an essential structural element of the ATP synthase.
The second most stable gene as determined by four algorithms was
phosphoglycerate kinase 1 (Pgkl). It is an ATP-generating enzyme that catalyzes
the reversible conversion of 1,3-diphosphoglycerate and ADP to
3-phosphoglycerate and ATP and is considered an important part of the glycolytic
pathway (Li et al. 2016). The third most stable gene was Gapdh, or glyceraldehyde

3-phosphate dehydrogenase, which also belongs to the glycolytic pathway, and
catalyses the conversion of glyceraldehyde 3-phosphate to D-glycerate
1,3-bisphosphate. These results can be explained from the point of view of
requirement for glycolysis. Recent research has shown that glycolysis is required
for iPS reprogramming (Zhang et al. 2012) and that inhibition of glycolysis can

impede the reprogramming process (Folmes et al. 2011). The so-called “glycolytic

switch” is suggested to play a major part in the pluripotency switch (Teslaa and
Teitell 2015), and it would be interesting to follow up on the dynamics of

ATP-related genes throughout the iPS reprogramming.
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On the other hand, my analysis has revealed that the expression pattern of the
actin gene (Actb), often considered as a reliable reference gene in other studies
(Ruiz-Villalba et al. 2017), steadily decreased throughout the reprogramming. As a

result, the gene was consistently ranked as one of the most unstable genes across
different statistical methods. This change in actin mRNA expression may reflect
the cytoskeletal remodelling which is normally associated with 1PS reprogramming

(Boraas et al. 2016) and plays a central role in the cell fate change (Mammoto and
Ingber 2009).

Hprt was marked as second least stable gene in the analysis. This result is in

agreement with previous work on reference genes in pluripotent stem cells that also
marked Hprt unsuitable for use as a reference gene (Murphy and Polak 2002). The

authors conducted differentiation of embryonic stem cells and measured
housekeeping gene expression change at different time points. Induction of
pluripotency can be viewed as a process opposite to differentiation, with
pluripotency features gradually emerging instead of disappearing.

The ribosomal gene Rps18 was found to vary greatly and stand out as the most
unstable gene among all, being ranked last by all algorithms unanimously.
Previous investigations of Rpsl8 have shown that this gene can be stable
(Scharlaken et al. 2008) or unstable (Najafpanah et al. 2013) as a reference for
qPCR experiments. My study has found that, in addition to high variability, the

expression level of Rps18 was very high compared to the majority of other genes
(the average of 16.09 cycles, compared to other genes having around 20 cycles on
average), and it increased during reprogramming. This level and the increase may
reflect the growing need of the cell in protein synthesis because of metabolic
alterations and increased proliferation rate. Such large differences in basal
expression and high variability make Rpsl8 an unsuitable candidate for
normalization, and its use as a reference should be avoided in future works on iPS
reprogramming.

Overall, I concluded that the standard method of RT-qPCR, namely, relative
quantification with the use of reference genes, is unsuitable for the analysis of gene
expression during iPS reprogramming due to statistically significant fluctuations
both in the housekeeping genes’ expression and in reaction efficiency.
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Chapter 2

Development of a new methodological tool for
high-throughput quantitative analysis of gene expression
during the iPS reprogramming process

2.1 Introduction

Since one of the goals of my work was to perform a medium-throughput
analysis of the expression of genes throughout the reprogramming process, and the
conventional method of analysis proved unsuitable for this purpose, the next step
was to devise a satisfactory methodological tool for gene expression analysis
during the iPS reprogramming process. To be suitable for the said purpose, the new
method should satisfy the following requirements:

1) Does not require the use of reference genes

2) Does not require running a separate calibration curve analysis

3) Increases precision while decreasing pipetting workload and cost.

To satisfy the above-mentioned requirements, the new method should
accomplish two goals in one experiment: 1) effectively determine the reaction
efficiency (normally measured by calibration curve analysis, as required by MIQE
guidelines), and 2) produce a single value of gene expression with increased
precision for each sample.

The efficiency of the reaction is defined as the increase of product per cycle as a

fraction of the amount present at the start of the cycle (Bustin et al. 2009; Ruijter et
al. 2013). It is assumed that the efficiency of a qPCR reaction is stable and
maximal before reaction saturation. Due to the exponential nature of PCR, the
reaction efficiency can have dramatic effects on quantification measurements. It
has been estimated that an uncorrected 0.05 difference in amplification efficiency
between a reference gene and a target gene can lead to false estimation of the target
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gene expression change of 432% (Rao et al. 2013). The calibration curve method is

widely considered the most precise method for qPCR efficiency estimation (Svec
et al. 2015). The calibration curve is built by creating a serial dilution of known
DNA concentration and plotting the quantification cycle (Cq) values on the y-axis
against the logarithm of the sample concentrations on the x-axis. The efficiency (E)
is then estimated from the slope of this curve using the classical formula
E=10-1/slope — 1; the estimation in this case is based on knowledge of the
concentrations of all diluted samples. However, due to the insufficient precision of
single dilution sets that could be caused by pipetting errors etc., it is often
recommended to run at least three PCR reaction replicates for each sample to have
three dilution sets for a single calibration curve.

In this chapter, I develop a new mathematical approach, Pairwise Efficiency,
that improves the precision of estimations of JPCR efficiency, while reducing the
workload. This approach does not rely on Cq values or amplification curve
approximations. Instead, this new method applies pairwise approach to
fluorescence data by calculating efficiency (E) using all possible pairwise
combinations of fluorescence readings on several amplification curves of a dilution
set. One pair of fluorescence readings allows to calculate a single E, while pairing
up all fluorescence values allows to produce hundreds of E values and enables
extensive statistics. I employ three statistical steps to increase precision: 1) first, I
introduce a new formula for E estimation from a pair of fluorescence readings
which allows me to use pairwise approach and produce hundreds of E estimations;
2) second, instead of using a single threshold, I define the wider boundaries for all
curves from a dilution series, including more fluorescence values into the analysis;
and 3) third, I use the resulting hundreds of E estimations as a large statistical
dataset to perform more extensive and more mathematically accurate statistical
analyses, such as analysis of value distributions, outlier removal and others.
Because this approach is based on commonly used, robust statistical methods, it is
systematic and can be applied in any setting and on any instrument as long as basic
statistical principles are conserved.

In the later part of this Chapter, I compare the new Pairwise Efficiency method
to the current “gold standard method” from the points of view of precision and
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accuracy. Since these terms are of exceptional importance for demonstration of the
value of my work, I find it necessary to define these terms here.

Precision is a measure of random error that arises in the process of
measurement. It is related to reproducibility and repeatability, and constitutes the
degree to which repeated measurements under unchanged conditions show the
same results. This error always occurs when using sophisticated instruments, such
as fluorescence readers etc., and can be attributed to measurement noise, sensor
sensitivity or other such random factors.

Accuracy is a measure of systematic error (error that is “built into measurement
system”). This type of error arises due to systematic factors, such as a defect in the
measurement instrument (e.g. the 1-meter ruler is longer than 1 meter by mistake).

“True” value is the reference, or “measurement standard” to which a comparison

is made. In practice, such standards may not exist. For example, a 1 meter
standard exists in France in The International Bureau of Weights and Measures in
Paris. In this sense, the only “true” 1 meter is in France (because it has been
designated as such by humans). All measurements are, in this sense, trying to get
as close as possible to that 1 meter standard, which is considered “true”. However,
in case of biological measurements, for example, efficiency of PCR reaction E,
such standard sample does not exist. Thus, it is impossible to measure the E of
the sample whose E is previously known because any measurement of “true” E
needs a standard sample (akin to 1 meter) which currently does not exist in
biology. In fact, the lack of such internationally recognized standard samples is one
of the major problems of modern quantitative biology.

Thus, it is only possible to measure accuracy indirectly, by comparing the
results of the measurements to other, existing standards (for example, microliters
of dilution, or a chosen standard sample), which is what I do in the later part of the
Results.

My results show that the application of Pairwise Efficiency makes it possible to
nearly double the precision in qPCR efficiency measurements without increasing
the pipetting workload and minimizing cost. In addition, I demonstrate a 2.3-fold
improvement in precision of the estimation of gene expression ratios.
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2.2 Materials and Methods

DNA sample

Mouse embryonic stem cell line E14Tg2a was purchased from RIKEN Cell
bank, JP (AES0135) and was maintained as previously described. Total RNA was
extracted using RNeasy kit (Cat# 74106, Qiagen, Japan) following the
manufacturer's instructions. Genomic DNA digestion was performed on-column
according to said instructions. RNA concentration and absorbance ratios (A,qs0
and  A,qny) Wwere checked with a spectrophotometer Nanodrop 2000
Spectrophotometer (NanoDrop Technologies, Japan). To produce cDNA for qPCR
analysis, 300 ng of total RNA were reverse-transcribed with an Omniscript RT Kit
(Cat# 205111, Qiagen) in a total volume of 20 ul. The resulting DNA was assessed
by spectrophotometric analysis and diluted to 100 ng/pl.

Quantitative real-time PCR setup and reagents

qPCR was performed using a CFX96 Connect apparatus (Bio-Rad, Japan).
Hard-Shell® 96-Well PCR Plates (Cat # HSP 9601, Bio-Rad) sealed with optically
clear adhesive seals (Microseal® ‘B’ seal, Cat # MSB1001, Bio-Rad) were used in
all experiments. The thermocycler program consisted of an initial hot start cycle at
95°C for 3 min, followed by 33 cycles at 95°C for 10 sec and 59°C for 30 sec.
Mouse actin beta (Actb) was amplified using the following primers:
F-5’-AACCCTAAGGCCAACCGTGAA-3’,
R-5’-ATGGCGTGAGGGAGAGCATA-3’ (with estimated product length 194bp).
The primers were used at a concentration of 300 nM. SYBR Green-based PCR
supermix (Bio-Rad) was used for all reactions according to manufacturer’s
instructions. Each reaction was performed in a final volume of 8 uL. To confirm
product specificity, a melting curve analysis was performed after each
amplification, and agarose gel analysis was performed to ensure the amplification
of the right product (Supplementary Fig. 3).

Experiment design and PCR dataset generation
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For the assessment of precision of my method and comparison with the classical
calibration curve method, I produced 16 replicas of a 6-step dilution series. Two
datasets were generated from this experiment and processed using Bio-Rad CFX
Manager 2.0 (2.0.885.0923). Dataset 1 consists of relative fluorescence data
obtained from the aforementioned experiment: 6 serial dilution wells * 16 replicas
= 96 wells. Fluorescence data in Dataset 1 are expressed as RFU (Relative
Fluorescence Units) which is a term specific to Bio-Rad software. It is important to
note that, since my goal was to improve the accuracy of the classical calibration
curve, all RFU values were taken as already processed by Bio-Rad software with
the same settings that were applied to the generation of Cq values, as follows:
Baseline Setting set to Baseline Subtracted, Cq Determination Mode set to Single
Threshold. Dataset 2 contains automatically generated Cq values corresponding to
Dataset 1. The threshold was automatically set at 31.07 by the Bio-Rad software.

Determination of the exponential region

The most suitable bounds of the exponential region of the respective
amplification curves were determined experimentally (see Results). However, prior
to the experimental estimation, I conducted an initial estimation using well-known
conventional techniques, namely, the “first outlier” method, the First Derivative
Maximum (FDM) and Second Derivative Maximum (SDM) approaches (Lievens
et al. 2012; Tichopad et al. 2003). Since the initial estimation was done solely in

order to provide a general range for experimental testing, I chose the approaches
mentioned above, even though other more sophisticated approaches have been
suggested (Rao et al. 2013). The lower boundary of the exponential region has

been defined as the point at which the signal significantly rises above the baseline
level as determined by the formula of “first outlier” detection (Tichopad et al.

2003). The results of the formula application to the first calibration curve replica
(wells A1 through A6) are provided in Supplementary Table 7. In agreement with
these data, the tentative lower boundary of the exponential region was set at 10-40
RFU.

I also calculated the FDM and SDM values for all calibration curves. As
expected, the values differed for samples with different initial DNA concentration,
and were in the range of 17-23 cycles for SDM, and 18-25 cycles for FDM values.
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Supplementary Figure 1a shows the FDM values for the whole Dataset 1 plotted
against cycle numbers. The earliest FDM was encountered at cycle 18 in the most
concentrated sample. The latest FDM of the dataset came at cycle 25. As shown in
Supplementary Figure 1b, the RFU values for cycles corresponding to calculated
FDMs fall in the range of 120-230 RFU. Thus, in accordance with these data, the
tentative initial estimation of the upper boundary of the exponential region to use
in the experimental test was set between 120-230 RFU.

Baseline treatment

Baseline is a software parameter inside any qPCR machine software. Since the
goal of my analysis was to directly improve the precision of the classical
calibration curve method, the same software settings were applied to fluorescence
data as to the generation of Cq values. The Bio-Rad software was set to Baseline
Subtracted, and the baseline was subtracted automatically by the software
producing Relative Fluorescence Unit values. This Bio-Rad subtraction method is
based on either adding a constant value, or a linearly growing value to the raw
fluorescence and thus does not eliminate the noise.

Evaluation of the noise influence

Every qPCR machine produces technical noise. To determine the properties of
noise and the scale of noise influence, I examined the fluorescence readings in the
beginning cycles of the Dataset 1. As shown in Supplementary Fig. 4a, the
fluorescence readings in the beginning cycles (up to cycle 13-18, depending on the
starting concentration) were distributed close to 0, with inclusion of negative
readings. The minimal value of the whole dataset was -9.44 RFU. To demonstrate
the noise distribution, I show three histograms which contain fluorescence readings
from the following cycles: 1) Cycles 1 through 5; 2) Cycles 1 through 10; and 3)
Cycles 5 through 10. The data were taken from dataset 1 and two more 96-well
plates replicating serial dilutions, with the Actb gene as target (raw data of these
two plates are available on request). The total number of data points resulted in
2880 fluorescence readings (first 10 cycles from 96 wells in 3 plates). The result is
shown in Supplementary Fig. 4b. The noise in the beginning cycles appeared to
have a nearly normal distribution with a non-zero peak. The positions of the peaks
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and the distribution did not change depending on the number of included cycles,
which indicated that there was no detectable signal at this stage - because the
increasing signal would have produced a shift to the right in the noise distribution
if it existed. Thus, I concluded that the initial fluorescence readings in our system
contain noise, and the noise has the approximate range of -10 RFU to 10 RFU. To
ensure that all data points that I would take for analysis contain the non-noise
signal, I concluded that the lower boundary should not be lower than 10 RFU
which is in accordance with the boundary set by the “first outlier’.

Results
2.3 A new formula for estimation of amplification

efficiency

Since PCR amplification efficiency E is one of the most important parameters
of the reaction which can have a dramatic effect on RT-qPCR measurements (as
stated in the Introduction), I first approached the question of how to reduce the
uncertainty in the estimation of E.

For this purpose I introduced a new formula (3) for E estimation from a dilution
set. This formula describes the relationship between two independent fluorescence
readings in any given dilution set. The fluorescence readings are represented by
data points on six amplification curves, in the case of one six-step serial dilution
experiment (Fig. 7b). The E estimation in my case is based on a relationship
between a pair of actual fluorescence readings, as opposed to the slope of the
calibration curve, which is based on cycle fraction values (Ct or Cq).

When devising the formula, I used the same basic assumptions that the
calibration curve method uses (Ruijter et al. 2013; Guescini et al. 2008) when

calculating the efficiency on a calibration curve, namely:
1) The kinetics of a PCR reaction with a given DNA-primer set is the same
irrespective of the initial template concentration.
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2) The kinetics of the PCR reaction are assumed to be classical (described by
the classical formula F=F0*(1+E)i )

3) The efficiency is maximal and constant before the reaction saturation.

4) Fluorescence readings and double-stranded DNA concentration are linearly
related to each other, and the increase in fluorescence is directly proportional to the
increase in target concentration.

Given these assumptions, any single fluorescence reading F on any one of the
amplification curves in the dilution set can be described by the following

equations:
F,==v x(1+E)’ (1)
i 5 DI
F,=21v x(1+E)’ )
J 5 D2

where i and j are cycle numbers for a particular fluorescence reading, F; and F;
are the fluorescence readings in cycle i or cycle j, F, is the initial fluorescence of
the undiluted sample, D1 and D2 are dilution factors for curve 1 and curve 2 (if the
pair of data points are on the same curve, then D1=D2), and E is the amplification
efficiency for the qPCR reaction for the given DNA-primer set. The dilution factor
D is defined as the logarithm of the fold-dilution, compared to the undiluted
sample whose logarithm of the fold-dilution, by definition, is 0. Since I applied
twofold dilutions for mathematical clarity, D values in this case were integers from
0 to 5. In the case of tenfold dilutions, the corresponding ‘2’ values in the formulae
will become 10, and the dilution factors will remain unchanged.

The equations 2 and 3 allow me to calculate the efficiency E for a given pair of
fluorescence readings, such as:

(logy(F )i )—logy (F l-)+(D2—D 1))

E,; =2 = —1 3)
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Thus, while the estimation of efficiency across a dilution set by the calibration
curve method is based on a single curve and produces a single E value, my new
method, Pairwise Efficiency, calculates an array of E values based on all possible
pairwise combinations of fluorescence readings from this dilution set, producing
about 50-400 individual pairwise E measurements (depending on the number of
fluorescence readings included in the exponential region taken for analysis), and
then estimates the average efficiency from this array of E measurements.

In one of the classical pairwise approaches, namely Walsh Averages, a set of
data points is treated the following way. Each data point is paired up with all other
data points in this set (including itself), thus creating all possible combinations of
pairs. For example, the set [3,8] has three pairs: (3,3), (8,8) and (3,8). The
difference in my approach is only that I exclude self-paired values (such as (3,3)).
Each pair in this approach is unique, and in Walsh averages gives a unique average
value (E value produced from this pair in my case).
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Figure 7. Graphical representation of the principle of Pairwise Efficiency
method and its application to six dilution curves. (a) A graphical illustration of
the Pairwise Efficiency method. Small portions of three amplification curves, with
three fluorescence data points on each, are shown. Dashed line connects point A to
point F on separate curves, and represents a single, unique pairwise E measurement
(pair AF). All possible pairs, each one representing a unique pairwise E value, are
shown on the right. Since some of the values occur on the same cycle (for example,
AE, BF), and thus are excluded from the measurements, and are denoted in gray.
(b) The amplification curves from the wells C1 through C6 are shown (RFU data
taken from Dataset 1). Different shapes (circles, squares, triangles etc.) represent
fluorescence readings taken by the machine after each PCR cycle. Horizontal lines
denote the region of amplification curves from which the fluorescence data points
were taken for analysis. Upper cutoff was set at 180 RFU, and lower cutoff was set
at 20 RFU. In this experiment, the total of 24 fluorescence data points fall inside
the denoted region, and unique pairs formed by these 24 points, excluding
repetitive values occurring on the same cycle, are taken for analysis.

In other words, after gathering all fluorescence RFU readings that fall within
boundaries for each amplification curve, I further treat them as a statistical set
(usually a set of 4x6=24, on my qPCR machine, or more if the machine sensor has
higher sensitivity) and calculate all possible unique pairwise combinations from
this set (24 RFU values) using my formula (3). As a result, I obtain a statistical
population of unique E measurements which I can further analyse using chosen
statistical methods. Thus, my first difference from classical approach is collecting
more fluorescence values from a single curve, and an additional step is
performing pairwise calculations to produce a statistical population of unique E
measurements.

2.4 Assessment of the detectability of stable amplification
efficiency in the exponential phase
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Next, I approached the question of defining the exponential region of the
reaction data to ensure that non-exponential values would be properly excluded
from the analysis. According to the mainstream view, any PCR reaction proceeds
with stable efficiency until end-stage reagent depletion and the accumulation of
reaction products cause a steep decline in the efficiency, and the reaction gradually
slows down (Bar et al. 2012; Archer 2017). The calibration curve method aims at

measuring the stable efficiency of the reaction before the saturation occurs, and
this maximal efficiency is assumed to be identical across all dilution samples.
However, it has been argued that the sensitivity of some qPCR machines does not
allow detection of a weak fluorescent signal in the exponential phase of the PCR
reaction, where the efficiency is still stable, and the signal first appears when the
efficiency is already declining (Lievens et al. 2012; Rutledge and Stewart 2008;

Tellinghuisen and Spiess 2014). It has also been pointed out that the analyses based
on stable efficiency should be conducted strictly at the region before efficiency
decline, if such a region is detectable.

To determine if my system allows to detect the theoretical stable efficiency, |
analyzed the fluorescence readings data from Dataset 1 (see Materials and Methods
for description) using the following formula for the calculation of efficiency E.

logH F l-—long 0

E=2" 1 -1 (4)

where i is the cycle number for a particular fluorescence reading F, and F,, is the
initial fluorescence value of the sample. The logarithms, base 2, are used because
the series contains 2-fold dilution sets.

The formula (4) cannot be used directly for E calculation because the
fluorescence level of the starting material FO is unknown. The purpose of the
analysis described below was to confirm the detectability of the stable exponential
E region with varying FO values. To obtain initial approximation of FO value to test
with formula (4), I used E values calculated using calibration curve method
(Supplementary Table 3). Knowing the efficiency of the reaction (around 80%)
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allowed me to produce initial FO estimations by the standard formula. The resulting
FO values were in the range of 0.007 to 0.0002. I then substituted these FO values
in the formula (4) and analyzed the resulting E values at each cycle of the reaction
(Fig. 8). As shown in the figure, I found that in the first cycles where
non-background signal is detected by the machine, E displays a relatively constant
pattern (SD=0.01), while in the later cycles it starts to decline steadily
(Supplementary Table 4). The initial region with the small standard deviation
lasted from cycle 13 until cycle 17 for the most concentrated sample. Varying the
FO value did not affect the detection of this region of relatively constant E, as other
curves also produced a similar pattern with small variation of E in the initial 3-5
cycles where the signal was already detected, and a steady decline after that.

According to these data, my experimental system allowed the detection of
approximately 4 fluorescence values from the exponential phase of amplification
where the variation of efficiency does not exceed £0.01. This result overall shows
that the theoretical stable efficiency is detectable and can be quantified.
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Figure 8. A graphical representation of the efficiency (E) values across all
cycles taken from a 6-step dilution set. Efficiency is calculated using the formula

logyF ;=logy F
E=2 i

— 1 . The F, and i values for calculation are taken directly from
Dataset 1, wells Al through A6. Since F, value is unknown, it was selected from
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the range of theoretically possible F, values (covering 0.007 - 0.0002) and used in
the formula.

2.5 Experimental determination of lower and higher
boundaries

Because each dilution set produces amplification curves based on different
concentrations of starting material, one can expect that the exponential region of
each curve should start at a different cycle. Thus, it is necessary to experimentally
determine the most suitable upper and lower boundaries of the exponential region
for all curves taken together. An incorrect determination of the boundaries and
subsequent inclusion of non-exponential values would be a major source of error in
E estimation. To determine the most suitable boundaries for my system, I
experimentally tested at what fluorescence range (i.e. what portion of each of the
amplification curves) the application of Pairwise Efficiency method produces
results with the highest precision. For the estimation of precision I applied
modified Monte Carlo approach that was previously described by Svec et.al. for
the evaluation of precision of the calibration curve method (Svec et al. 2015). The

essence of Monte Carlo method is described below. To find the value a of a certain
quantity, one chooses a random variable X, the mathematical expectation of which
equals a:

M ((X) =a

In practice, this method is applied by conducting n real measurements and
obtaining n values of X, and then calculating their average. Mathematically, this
method leads to the increase in precision of measurement due to the increased
number of performed measurements and is based on the central limit theorem; with
repeated measurements, the error of the arithmetic mean decreases depending on
the number of measurements:
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o o
cp \/E
Where o, is the error of the average value of multiple measurements;

o 1s a single measurement error;
n is the number of measurements.

The calibration curve method described in MIQE guidelines requires
researchers to perform at least three replicative measurements of the Ct value for
this very reason, which is to increase precision by increasing the number of
measurements. However, since it always uses Ct values which represent only one
data point on an amplification curve, each additional measurement must be
obtained by manually pipetting one more replicate of the sample. In contrast,
Pairwise Efficiency uses the whole array of fluorescence data available from the
exponential phase of the amplification curve defined by lower and upper
boundaries, and operates hundreds of measurements without additional pipetting
load.

In case of Monte Carlo simulations, for the purpose of precision estimation it is
sometimes permissible to apply computer simulation of pseudo-random numbers to
increase the number of measurements. Such application is described in Svec et.al.
for assessment of precision of the calibration curve method depending on the
number of taken replicas (one, two or three). The authors calculated PCR
efficiency by standard calibration curve method of 6 dilution steps. For each of the
step they performed four technical replicates. Then they randomly formed data sets
using either one, or two, or three replicas to calculate the efficiency, and these
replicas were taken from the set of available four replicas for each dilution step.
Thus, the four replicas represented a sample from a “pseudo-general” population
from which random samples were taken.

Similarly to the method described above, I took random samplings from
pseudo-general population, with the difference being that my population was much
larger and contained 16 replicas instead of 4. To evaluate the precision for different
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boundaries, I randomly drew 100 different six-sets from the general population of
16 (Fig. 9), and calculated the precision for each combination expressed as
standard deviation (SD). The results of this operation are displayed in Fig. 10.
Exact SD values and other specifications can be found in Supplementary Table 5
The lower boundary was tested at the range of 10 RFU - 80 RFU, and the
higher boundary was tested at the range of 120 RFU - 230 RFU (see Materials and

Methods).
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Figure 9. Schematic representation of Monte Carlo simulation for assessment
of precision. All 96 wells contain samples of different concentration (written
above the plate). Technically, this constitutes 16 sets of six-step dilution series, 8
on the left half of the plate, and 8 on the right half of the plate. These 16 sets are
identical and represent the general population on which Monte Carlo simulation is
based. For each assessment of SD of a given boundary set (for example, for
boundaries 10 RFU-180 RFU), 100 pseudo-random measurements are performed
using Pairwise Efficiency method. Each pseudo-random measurement consists of
averaged 3-set of randomly chosen dilution series (represented by red circles in the
figure). The SDs of different boundaries are then compared to each other.
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Figure 10. Determination of the most suitable RFU boundaries for a 6-step
dilution series. Standard deviations (SD) of the efficiency values calculated by
Monte Carlo approach using different regions of amplification curves. The average
efficiency (E) of the 6-step dilution set was calculated based on randomly selecting
data out of 16 set replicas. Each time different portions of the amplification curves
were included in the calculations, defined by lower and upper boundaries. The
lower boundary varied between 20 RFU and 80 RFU, while the upper boundary
varied from 120 RFU to 240 RFU. The lowest SD was obtained when applying the
following boundaries: lower at 40 RFU and upper at 120 RFU. The SD tended to
rise when boundaries were raised.

While varying the boundaries within the exponential region (for definition of
exponential region see Materials and Methods) did not produce a significant
difference in SD values, and the best result was obtained at the lower portion of the
curve (40-120 RFU) (Fig. 10). The variation in the SD value did not exceed 0.001
for the lower portion (40-120 RFU, 40-150 RFU, 20-150 RFU). This result is in
agreement with previous studies reporting that the threshold for measurements is
best set at the lower portion of the amplification curve because the declining
efficiency in later cycles might significantly affect the results (Archer 2017). I
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conclude that slight variation of lower and upper boundaries does not significantly
affect the precision of E estimation. This is well in agreement with my data on
exponential region estimation (see Materials and Methods) which puts the upper
boundary at the fluorescence range 120-230 RFU and the lower boundary at the
fluorescence range 20-40 RFU (Supplementary Figure 1). To include as many
values as possible in my case, I decided to use 20-180 RFU boundaries, which
allows the inclusion of approximately 4 fluorescence data points (Fig. 7b).

2.6 Statistical elimination of outliers

Statistical outliers are data points that are numerically distant (far removed)
from the rest of the data points in the general population. Outliers occur in many
statistical analyses and can be a chance phenomenon, a measurement error or an
experimental error. The origin of the outliers in any particular case could be
separately investigated if needed; however, it is not necessary to know their origin
to conduct statistical operation on the outliers. The origin of the outliers in any
RT-qPCR experiments could be:

1) Electrical noise in the measurement instrument inherent to the machine

2) Pipetting mistakes of the operator in one or more samples

3) Dilution errors of the operator in one or more samples

4) Other factors.

Excluding such values from the calculations is an important additional way to
increase precision of measurements, and in my case it is possible exactly because
of the availability of the vast array of measurement data (hundreds of points).
Elimination of outliers is statistically impossible when only three or four data
points (replicates) are available, as is the case of the standard method. Thus,
mathematically increasing the number of data points by using Pairwise Efficiency
formula allows both direct improvement in precision, and more robust statistical
analysis such as outlier elimination.

In my case, I utilized the elimination of outliers technique that is often used in
statistics to exclude unreasonable values that occur due to random measurement
errors, and to increase the precision of measurements. First, I analyzed the
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distribution of pairwise E values for normality in each group of pairwise E
measurements. This analysis is necessary in order to decide which kind of method
to use for outlier exclusion (parametric, such as three sigma rule, vs.
non-parametric). To assess the distribution normality in a mathematically objective
way, | used standard tools, namely, skewness, kurtosis, and chi-square test. As
shown in Table 4, the majority of skewness values significantly deviated from 0,
confirming distribution asymmetry.

Dilution set (wells) Skew Kurtosis N of E measurements
A1-6 1.064 7.357 167
B1-6 0.615 4.085 168
C1-6 0.221 3.556 170
D1-6 1.051 6.305 183
E1-6 0.473 5.524 168
F1-6 1.880 6.769 152
G1-6 2.012 10.079 182
H1-6 1.379 12.177 168

A7-12 -0.337 2.160 168
B7-12 0.098 4.508 149
C7-12 0.215 2.838 204
D7-12 0.739 2.514 168
E7-12 0.563 3.555 188
F7-12 -0.034 3.843 171
G7-12 1.429 7.023 152
H7-12 -0.148 5.319 188

Table 4. Estimation of distribution normality. Pairwise E values of 16 dilution
sets were analyzed for skewness and kurtosis. Skewness values that deviate from 0
indicate asymmetry of the distribution, making it a non-normal distribution.
Positive kurtosis values also imply deviation from normal distribution and indicate
that the distribution is sharp (more values are close to mathematical expectation,
and precision is higher than would be expected in the case of normal distribution).
The right column contains the total data points for each dilution set that were taken
for this analysis.
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Thus, for example, the dilution set in wells A1 through A6 had 167 individual
pairwise E measurements, skewness=1.06 and kurtosis=7.36. The frequency of E
values below 5 was first encountered at E=0.6 (60% efficiency) on the lower end,
and at E=1.15 (115% efficiency) on the higher end (for more information see
Supplementary Table 6 and the next passage on Chi-square criteria). Based on
Chi-square criteria, all pairwise E measurements that exceeded 115% and did not
reach 65% were excluded from the calculation of average E for this dilution set. E
value for wells Al through A6 prior to outlier analysis was E=0.79, and after the
removal of outliers became E=0.816. Other E values for the remaining 15 sets were
processed on the basis of the same algorithm.

In addition, all kurtosis values were positive, indicating that calculated pairwise
E measurements from these dilution sets had leptokurtic distribution (Fig 11).

Wells

A1.AB
A7.A12
B1.B6
B7.B12

0.5 1.0 1.5 2.0

Figure 11. A graphical representation of the distribution of pairwise E
values for the wells A1-A12 and B1-B12. The distribution of pairwise E values is
leptokurtic in all sets, and has a sharp appearance, indicating that the values are
closer to mathematical expectation, and precision is higher than would be expected
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in the case of normal distribution. In addition, the distributions are skewed and
possess larger tail areas, indicating significant deviation from normality.

Next, I used the Pearson's chi-squared test to test the goodness of fit of the
frequency distribution of calculated pairwise E values. The application of this test
is considered valid if there are at least 50 values analyzed for distribution (which is
the case of Pairwise Efficiency), and no more than 20% of the values have
expected frequencies below 5. The values whose frequency is less than 5 are
considered statistically unreliable and are designated as outliers. An analysis by the
Chi-square test showed that the majority of the distributions (12 out of 16)
significantly deviated from normal (Supplementary Table 6 and Fig. 12). Thus,
parametric tools designed for normally distributed values, such as quartile ranges
or sigma rules, could not be applied in this case. Instead, when the distributions do
not follow a fixed set of parameters (e.g. are not normal), non-parametric statistical
tools are used; however, the selection of specific tool is left to the researcher and is
decided case-by-case. Since Pearson’s chi-square test is a universal tool that can be
applied to any kind of distribution (both parametrized and non-parametrized), I
chose to use the criteria of this test to exclude outlier E values in our case. As
mentioned above, according to the principles of the Pearson's chi-square test, the
values whose frequency is less than 5 are considered statistically unreliable. Based
on this criterion, the pairwise E measurements with frequency less than 5 were
considered outliers and were excluded from the calculation of the average E value
of the dilution set.
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Figure 12. A graphical representation of the distribution of pairwise E values
for the wells H7-H12 compared to normal distribution, and the principle of
the outlier exclusion. The distribution of pairwise E values is leptokurtic (has a
sharp peak), indicating that the values are closer to mathematical expectation, and
that the precision is higher than would be expected in the case of normal
distribution. In addition, skewness is present in this distribution as compared to
normal distribution, indicating significant deviation from normality.

2.7 Comparison of Pairwise Efficiency method with the
calibration curve-based E estimation by precision

Next, I set out to compare the precision of my method to the classical
calibration curve method. Since precision is defined as a measure of random error,
it can be measured by the same Monte Carlo approach that was used for
comparison of different boundaries described above in section 2.4. Again, as
shown in Fig. 9, I took more than 100 samplings of three replicas of dilution sets at
random, and, for the classical calibration curve, used them to generate calibration
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curves. Then, individual E estimations were made based on these randomly
produced calibration curves, and standard deviation (SD) was calculated for the
produced E values. The SD value for E estimation found to be 0.019. Next, I
applied the same approach to the corresponding RFU values by Pairwise
Efficiency method and calculated SD for it as well. The results are shown in Table
5. Pairwise Efficiency produced a decrease in SD (increase in precision) of E
estimation from SD=0.019 to SD=0.010, thus nearly two-fold. While the average E
values were found to be 80% in both methods, Pairwise Efficiency produced a
smaller standard deviation and a smaller difference between maximal and minimal
E values. The dispersion of E values obtained by Pairwise Efficiency method,
expressed as Max E - Min E, did not exceed 0.045, as opposed to 0.072 obtained
by the calibration curve method. This means that the magnitude of random error in
the E estimation was approximately two times lower in the case of Pairwise
Efficiency compared to the calibration curve method.

Approach SD Max E Min E Max-Min difference Average E
Calibration curve 0.019 0.83 0.76 0.072 0.80
Pairwise Efficiency 0.010 0.82 0.78 0.047 0.80

Table 5. Comparison of the calibration curve method with the Pairwise
Efficiency method. Standard deviations (SD) obtained from the Monte Carlo test,
maximal and minimal efficiency values, the range between maximal and minimal
values, and the average efficiencies are shown. While the average E value was the
same for both methods (E=0.80), the precision of E estimation obtained by the
Pairwise Efficiency method, expressed as standard deviation (SD), was nearly two
times higher, and the dispersion, expressed as the difference between maximal and
minimal calculated E values, was 1.6 times smaller.

Next, I investigated whether this increased precision in the efficiency estimation
would translate into increased precision of gene expression ratio measurements. To
do that, I calculated the magnitude of possible error for the calibration curve
method and for the Pairwise Efficiency method, using the same assumptions as
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described in Materials and Methods. For the calculation of expression ratios in the
case of calibration curve, I used the equations described by M. Pfaffl (Pfaffl 2001).
The mathematical model presented in his publication is, in principle, equivalent to

the model previously designed by Roche Diagnostics and takes into account the
efficiency of both target and reference genes. The formula presented by Pfaffl has
the following appearance:

. ACt
ratio = Emrget

where ACt is the difference between Ct of the sample and Ct of control at the
same threshold. This formula was devised by Pfaffl for calculating the efficiency
and relative expression ratio based on dilution curve for only the target gene. Since
my dataset of 16 dilution replicas contained exactly the same amount of target gene
(Actb) in wells with the same concentration, theoretically the calculated ratio
between these wells should be 1. Thus, I could measure the magnitude of error in
the determination of the ratio by measuring maximal difference between each one
of these 16 replicas. In this case, the error would be maximal when the efficiency
value is maximal.

First, I determined which one of the 16 dilution sets gives the highest efficiency
value. The analysis using the calibration curve method showed that wells DI
through D6 produced the highest efficiency (E=0.882). Next, using this efficiency,
I applied the aforementioned formula for the undiluted samples, considering the Ct
sample the highest Ct from all 16 replicas, and Ct control the lowest of all. This
resulted in a ratio = 1.606. Thus, the maximal possible error in the estimation of
gene expression ratio when using the calibration curve method can reach up to
60%. Similarly, I used the maximal efficiency calculated by Pairwise Efficiency
method to estimate the magnitude of error on Dataset 1 with 16 replicas. The
maximal efficiency value was obtained in the same wells (D1 through D6) as for
the calibration curve, which indicates robustness of both methods for E estimation.
Using this maximal efficiency value, I estimated FO in all wells using my modified
formula:
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based on actual fluorescence values. The estimation of FO in Pairwise

Efficiency method in this case was analogous to the calibration curve method,
while the way I estimate efficiency differed. I obtained the following result: Max
F=0.00435436, Min F=0.00345735. Then I calculated the difference between
maximal FO and minimal FO which yielded a ratio=1.26. Thus, the magnitude of
possible error in ratio estimation using Pairwise Efficiency method amounts to
26%, which amounts to an improvement of about 2.3 fold in the precision of
gene expression ratio estimation compared to the calibration curve method.

2.8 Comparison of Pairwise Efficiency method with the
calibration curve-based E estimation by accuracy

Accuracy is a measure of systematic error, and can only be determined by
comparing the sample to a known standard. Biological standards for RT-qPCR do
not exist. Thus, it is only possible to determine accuracy indirectly, for example, by
comparing the measurements to other known values (such as dilution proportions
etc.).

Thus, I compared Pairwise Efficiency method to the classical method by their
ability to reflect dilution proportions. In my case, the known values were the
dilution proportions represented by cDNA concentrations (100 ng, 50 ng, 12.5 ng,
3 ng) which should result in the following proportions: 1, 2, 8, 32. The closer the
ratio result to the known dilution value, the higher the accuracy. I calculated the
ratios and the error for the known concentrations using Pairwise Efficiency method
and the classical calibration curve method, and then determined the error for each
method (Table 6).

Wells Conc. Efficiency FO Ratio Error (%) Ratio (Ct) Error (%)
A1-A6  100ng 0.73130 0.00800 1 N/A 1 N/A
A7-A12 100ng 0.76200 0.00780
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B1-B6 100ng 0.77170 0.00660

B7-B12 100ng 0.77230 0.00710
C1-C6 50ng 0.83530 0.00280 2.513 20% 2.47 19%
C7-C12 50ng 0.79550 0.00290
D1-D6  50ng 0.81870 0.00290
D7-D12 50ng 0.82390 0.00300
E1-E6  12ng 0.75780 0.00060 8.519 6% 12.73 37%
E7-E12 12ng 0.68420 0.00110
F1-F6  12ng 0.72470 0.00090
F7-F12  12ng 0.70420 0.00100
G1-G6 3ng 0.76180 0.00020 35.455 10% 57.41 44%
G7-G12 3ng 0.66870 0.00020
H1-H6  3ng 0.72810 0.00020
H7-H12 3ng 0.66640 0.00020 Average 28% 67%

Table 6. Comparison of the accuracy between Pairwise Efficiency and the
standard calibration curve method based on the ability to detect known
dilution proportions. The ratio between different concentrations of Actin beta was
measured using Pairwise Efficiency or the standard calibration curve method. The
average error for Pairwise Efficiency is 28%, while the average error for standard
method is 67%.

Pairwise Efficiency could detect known dilution proportions with much better
accuracy compared to standard RT-qPCR method overall. It is also interesting to
note that the error for Pairwise Efficiency was largest at the smallest volume (x2
dilution, 20% error), while for standard method the error tended to increase with
the dilution volume (19%, 37%, 44%). Overall, Pairwise Efficiency outperforms
the standard method by a large margin on accuracy, being able to detect small
quantities of RNA with much less error.
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2.9 Discussion

Quantitative PCR 1is an affordable and widely used technique for nucleic acid
quantification. However, despite its popularity, this method has yet to gain full
acceptance in the research community due to limitations in its ability to provide
precise measurements, which may lead to low reproducibility. In chapter 1 of this
thesis, I have shown that the housekeeping genes analyzed by conventional gPCR
approach display high variability and are unsuitable for use in the relative
(standard) gene expression quantification by qPCR. Instead, I introduce a new
approach to qPCR data analysis, Pairwise Efficiency, which consists of three
elements. First, it introduces a formula describing the relationship between two
fluorescence readings on amplification curves, and does not rely on Cq values or a
calibration curve for the estimation of reaction efficiency. Second, it estimates the
boundaries of the exponential region for a group of amplification curves in order to
determine reliable data boundaries. And third, it eliminates outliers during the
process of calculating E values, as opposed to at the end.

The most important advantage of the new Pairwise Efficiency method is the
increase in data points available for analysis due to the introduction of the new
formula for efficiency estimation. Such increase in available data enables one to
use sophisticated statistical instruments. No other current method of RT-qPCR
operates hundreds of data points at once, and the standard method
(recommended by MIQE guidelines) operates 16 data points at most. This
advantage of Pairwise Efficiency includes the following factors:

1. While the standard method uses only one point on the amplification curve
(Ct, or fractional cycle at the threshold), Pairwise Efficiency uses the whole array

of available fluorescence points (RFU) in the exponential region of the

amplification curve. This increases available statistical data from 16 to hundreds,
and improves precision.
2. The calculations in Pairwise Efficiency do not depend on the Ct value which

is automatically set by the machine. Ct values depend on the algorithm, machine,

maker, data etc, and differ for different conditions, thus introducing more
fluctuation into the data. In contrast, Pairwise Efficiency operates only the actual
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fluorescence data which do not depend on the settings of the machine or the
experimenter and always stay the same.

3. The outlier elimination process in the case of the standard method is not
optimal: to determine “bad” reactions it uses the efficiency value obtained by the
calibration curve. MIQE stipulates that “robust and precise qPCR assays are
usually correlated with high PCR efficiency”, and considers the efficiency to be an
indicator of assay quality. In cases in which the E value exceeds the theoretical
maximum of 100%, it is taken to be the result of reaction inhibition in one of the
wells, generally meaning that the entire assay needs to be repeated or redesigned
(Bustin et al. 2009). In contrast, Pairwise Efficiency allows one to analyze each

amplification curve separately, detect outliers in the process of analysis, and
exclude potentially bad data from the final calculation of gene expression ratio.
This significantly reduces the amount of workload (Fig. 13).
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Figure 13. Demonstration of one of the important advantages of Pairwise
Efficiency using data obtained from running RT-qPCR experiment on Tfrc
gene. (a) Six-well dilution series was pipetted and RT-qPCR was run for Tfrc
gene. Then, Ct values for each of the concentrations were plotted against the
logarithm of known concentration. This allowed to draw a calibration curve
(orange). This calibration curve significantly deviates from linear shape, and it is
impossible to determine what was the cause of it. According to MIQE, this
experiment is considered “bad”, and the entire experiment must be re-performed.
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(b) The six amplification curves obtained from six-well serial dilution have been
generated based on fluorescence (RFU) values. Each curve corresponds to one well
on the plate (one PCR reaction). The grey curve can be seen deviating significantly
from normal reaction pattern. Thus, since Pairwise Efficiency operates the data
taken from amplification curves directly, it can detect the abnormal curve and
exclude it from calculations. Other curves remain valid and this allows the
researcher to use available experimental data without the need to re-perform the
entire set.

A significant advantage of Pairwise Efficiency is that it relies on actual
fluorescence readings rather than implied data. It has been previously pointed out
that the estimation of efficiency by the means of a calibration curve, as required by
MIQE guidelines, is based not on existing, but rather on implied data: “the data
from a tube i1s discontinuous; fluorescence is measured at the end of each cycle,
and there is no such thing as a fluorescence after a fractional number of cycles as
implied by the continuous functions [that the classical Cq approach involves]”
(Jones et al. 2014). 1 agree with this point of view. One of the advantages of

Pairwise Efficiency is that it is based on the analysis of actual fluorescence
readings produced after each cycle, and does not rely on fractional cycles.

In Pairwise Efficiency, not only can we obtain more than 150 data points from a
single dilution set (six wells), but replication of the calibration curve three times
could potentially increase this number up to 2556 (72 fluorescence readings, all in
cross-pairwise relationships). This allows the use of powerful statistical
instruments, and represents a marked advantage over other methods.

Overall, the new method, Pairwise Efficiency, allows a nearly two-fold
increase in the precision of efficiency estimation and a 2.3-fold increase in the
precision of the gene ratio estimation. Thus, I have successfully devised a new
method for qPCR data analysis that 1) does not require the use of reference genes,
2) increases the precision of measurements, and 3) reduces labor and cost
associated with qPCR experimentation (for further discussion of this last point see
General Discussion at the end of this thesis).
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Chapter 3

Application of Pairwise Efficiency to the analysis of gene
expression dynamics during the iPS reprogramming process

3.1 Introduction

After I developed a new, high-precision RT-qPCR method, Pairwise Efficiency,
I set out to demonstrate the effectiveness of the method in revealing biological
information in iPS reprogramming as a model system of a long-term dynamic
process. I chose to test the new method on a set of selected genes in a time-course
of 1PS reprogramming. My goals for this part of my work were as follows:

1) Test the applicability of Pairwise Efficiency in medium-throughput setting

2) Reveal the patterns of gene expression during iPS reprogramming

3) Determine whether Pairwise Efficiency can produce significantly better
results than previously applied methods.

Previous works in the field of quantification of gene expression in stem cells
have centered on mouse embryonic stem cells (ESCs), and have been mostly
conducted in the low-throughput settings. For example, a study by E. Willems and
colleagues in 2006 has identified Actin Beta and Gapdh as the most stable genes in
mouse embryos and in differentiating mouse and human ES cells (Willems et al.

2006) among 10 genes. This study applied classical tools geNorm and NormFinder
to draw a ranking on the genes, similarly to what I did in iPS cells in Chapter 1,
and did not focus on time-course or range analysis. A subsequent study by S.
Mamo in 2007 focused on 12 reference genes in mouse oocytes and embryos, and
pointed out the instability of housekeeping genes, while suggesting that Ppia,
H2afz and Hprt I as the most stable genes in the embryos (Mamo et al. 2007). The
same team has later published a 2008 study in rabbit oocytes and preimplantation

stage embryos. The team identified H2afz, Hprt I and Ywhaz as the most stable
reference genes, while indicating that Ubc, Tbp and B2m were the least stable and
unsuitable for normalization in qPCR experiments in pluripotent stem cells (Mamo
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et al. 2008). A 2011 study subsequently analyzed mouse embryonic stem cells and
found that Sdha, Tbp and Ywhaz were the most stable genes during the
differentiation of embryonic stem cells in vitro (Veazey and Golding 2011).

Another study, performed in human embryonic stem cells in 2013, on the other
hand, identified B2m and Rpll3a as the most stable genes during differentiation
(Vossaert et al. 2013). A large-scale study conducted in human ESCs was done by

Synnergren and colleagues (Synnergren et al. 2007). This study used microarrays
to analyse housekeeping gene dynamics, and has also arrived at the conclusion that
conventionally used housekeeping genes, such as HPRT, Actin, Gapdh, fluctuate in
differentiating human ESCs. This study has identified a special set of housekeeping
genes for use as a reference in pluripotent stem cell experiments. The next largest
study, judging by scale, was done in 2015 by the same team and again in
differentiating human ESCs, and has expanded the set of analyzed genes because
of rising concerns about variability of the housekeeping genes. This study used
large-scale datasets to perform global transcriptional analysis. It included 9
different datasets and 144 microarray to identify a set of non-varying genes, while
highlighting the fact that commonly used Actb, Gapdh, Hprtl, Ppia, Sdha and B2m
varied substantially during human ESC differentiation. This study put Hprtl and
B2m in the group of highly varied genes (Holmgren et al. 2015).

Only one study so far has been conducted on iPS cells, where the team

investigated the stability of commonly used housekeeping genes during iPS
differentiation (not reprogramming). This small-scale study on 16 genes has
identified Actb, Clorf43, PSMB4, Gapdh and HMBS as the most stable genes
during iPS differentiation. There are no studies on housekeeping genes during the
1PS reprogramming process, and the existing studies are limited in their scale.
Thus, the stability of common housekeeping genes and the newly suggested
housekeeping genes (Synnergren et al. 2007; Holmgren et al. 2015), as well as and
their performance compared to conventional housekeeping genes, still needs to be

investigated in 1PS systems, especially during the reprogramming process.

In this chapter, | demonstrate the application of the developed high-precision
qPCR method, Pairwise Efficiency, to uncover gene expression patterns in 70
housekeeping genes during the iPS reprogramming. I have included a portion of
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recently discovered genes, mentioned above in relation to large-scale studies, as
well as conventionally used genes, such as Gapdh, ActB and ribosomal genes.

3.2 Materials and Methods

Cell culture

The iPS reprogramming was carried out in a reprogrammable cell system
previously described in Hikichi et. al., 2012, and applied in Panina et.al., 2018. The
details of the experimental procedures are described in Materials and Methods
section for Chapter 1. In short, neural progenitor cells were cultured in a suitable
medium and iPS reprogramming was carried out without cell split for 20 days.
Samples were collected on Days 0, 5, 10 and 15 for this experiment.

RNA isolation and ¢cDNA synthesis
The RNA isolation and DNA synthesis was carried out as described in
Materials and Methods section for Chapter 1 and Chapter 2.

Experiment design and PCR dataset generation

The experiment was designed according to the requirements of the newly
developed Pairwise Efficiency method. Since four time points during the
reprogramming process were to be analyzed, I divided the 96-well PCR plate into
four parts. Every part out of the four could host four target genes for analysis.
Thus, 70 genes analyzed resulted in 17.5 plates. No other replicas were necessary
because Pairwise Efficiency allows the analysis based on six-well approach for
each gene-DNA combination (for pipetting layout principle see Fig. 19). The
Baseline Subtracted PCR datasets were generated from each PCR run and
processed using Bio-Rad CFX Manager 2.0 (2.0.885.0923). These datasets were
imported for analysis into the Pairwise Efficiency software (unpublished).

Quantitative real-time PCR
RT-qPCR was performed with a CFX96 Connect apparatus (BioRad) and the

reagents as described in Materials and Methods section for Chapter 1 and Chapter
2.
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Results
3.3 The preparation of cell samples and the standard
pluripotency check

To monitor gene expression during the iPS reprogramming process, I prepared
mouse neural progenitor cells and reprogrammed them to pluripotency as described
in the Materials and Methods. For gene expression measurements cells were
harvested at Day 0, Day 5, Day 10 and Day 15, and the completion of
reprogramming by Day 15 was confirmed by alkaline phosphatase staining and
immunostaining for pluripotency markers Nanog and Oct4 (Fig. 14). While the
alkaline phosphatase has started to appear, albeit very little, at Day 5 (Fig. 14A),
the pluripotency markers Nanog and Oct4 were expressed on the last day of the
reprogramming (Fig. 14B) but could not yet be detected by immunofluorescence
on Day 10 (data not shown). The levels of pluripotency markers Nanog and Oct4
in RNA samples was also confirmed by qPCR in the process of gene expression
analysis (see the following sections of the Results).

Day 0 Day 5 Day 10 Day 15

Anti-Nanog Anti-Oct4
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Figure 14. Standard tests confirming successful reprogramming of neural
progenitors into the pluripotent iPS cells. A. Alkaline phosphatase staining of
the neural progenitor cell line at different days throughout the iPS reprogramming
process. Nascent colonies possessing expressed alkaline phosphatase are depicted
in dark red. B. The results of the immunofluorescent analysis of nascent colonies
for pluripotency markers Nanog and Oct4 at the end of the reprogramming (Day
15).

3.4 The choice of housekeeping genes for the investigation
of iPS reprogramming

Next, using previously published articles, I assembled a list of 70 housekeeping
genes for expression pattern analysis (Table 7). The list contained a portion of
commonly used genes and the genes recently identified by microarray analysis as
stable and suitable for qPCR normalization in differentiating human embryonic
stem cells (Synnergren et al. 2007; Holmgren et al. 2015).

Gene ID Function

Unknown function, possibly post-translational ‘

Aasdh NM_173765.3 modification

Actb NM_007393.5 Cytoskeleton

Ada NM_001272052.1 Purine metabolism, possibly immune

Alas1 NM_001291835.1 Mitochondrial, porphyrin metabolism ‘
Alb NM _009654.4 Blood serum albumin

Atp5f1 NM_009725.4 ATP generation

B2m NM_009735.3 Immune system

Car6 NM_009802.2 Carbonic anhydrase, only in salivary glands ‘
Cdc14a NM_001080818.2 Centrosome separation, cytokinesis

Cox4i1 NM_009941.3 Electron transport chain

Cpne2 NM_153507.2 Calcium-mediated intracellular processes ‘
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Crebbp
Cript

Def8
Dtwd2
Eef1d
Eln
Fbxl12
Fh1

Foxp4

G6pdx
Gapdh
Got1
Gtf2h3
Gusb
H13
Hddc2
Hmbs
Hprt
ldh3a
Kiaa0141
Ldha
Mdh1
MIh3
Mpi

Nubp1
Pdha1

NM_001025432.1
NM_019936.3

NM_001253783.1
NM_026854.3
NM_029663.2
NM_007925.4
NM_013911.3
NM_010209.2

NM_001110824.1

NM_008062.2
NM_001289726.1
NM_010324.2
NM_181410.3
NM_010368.2
NM_001159551.1
NM_027168.2
NM_001110251.1
NM_013556.2
NM_029573.2
NM_024179.5
NM_001136069.2
NM_001316675.1
NM_001304475.1
NM_025837.2

NM_011955.2
NM_008810.3

Acetylates histones and other proteins
PDZ-binding protein

Lysosome peripheral distribution, possibly bone
resorption

Unknown function (location only cervix)
Translation

Cytoskeleton

Ubiquitin ligase component

ATP (TCA cycle)

Transcriptional repressor that represses
lung-specific expression, possibly other?

Oxidative pentose-phosphate pathway (addition
to glycolysis)

ATP generation
ATP generation
Transcription
Digestion system
Immune system
Unknown function (only in brain)
Heme biosynthesis
Nucleotide salvage
ATP generation
Apoptosis

ATP generation
ATP generation
mutL

Glycosylation

Assembly of an Fe-S cluster, centrosome
duplication, negative regulator of cilia

ATP generation
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Pfkp
Pgam1
Pgk1
Plekha1
Pole
Ppia
Pten
Ripk3
Rnd1
Rnf7
Rpl13a
RPL15
Rpl7
Rplp1
Rps11
Rps18
Rps3
Rps9
Sdha
Slc4atap
Slc5a11
Snrpb
Srp72
Srsf7
Stim1
Tbp
Tfrc
Tmem41b
Tubb5

NM_001291071.1
NM_023418.2
NM_008828.3
NM_001346515.1
NM_011132.2
NM_008907.1
NM_008960.2
NM_001164107.1
NM_172612.3
NM_011279.3
NM_009438.5
NM_001359897.1
NM_011291.5
NM_018853.3
NM_013725.4
NM_011296.2
NM_012052.2
NM_029767.2
NM_023281.1
NM_001347328.1
NM_146198.2
NM_009225.2
NM_025691.1
NM_001195485.1
NM_009287.4
NM_013684.3
NM_001357298.1
NM_153525.5
NM_011655.5

ATP generation

ATP generation

ATP generation

Membrane signaling

DNA polymerase

Possibly immunosuppression
Stopping cell cycle

Signaling, apoptosis
Cytoskeleton (Rho GTPase)
Component of ubiquitin ligase
ribosome

ribosome

ribosome

ribosome

ribosome

ribosome

ribosome

ribosome

Electron transport chain
Kanadaptin in h., mRNA export
Sodium-depend. transport across membranes
Pre-mRNA splicing

ER protein traffic

Pre-mRNA splicing

Ca2+ entry, Ca2+ sensor in ER
Transcription

Iron uptake

Motor neuron development, autophagy

Cytoskeleton
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Ubc NM_019639.4 Ubiquitin

Vim NM_011701.4 Cytoskeleton
Vsnl1 NM_012038.4 Insulin secretion
Ywhaz NM_001253805.1 Signaling

Table 7. 70 housekeeping genes assembled from literature. The list includes
commonly used housekeeping genes as well as newly suggested genes from the
works on embryonic stem cells. The description of the genes’ function is based on
Gene Ontology database.

3.5 Housekeeping genes’ expression dynamics during the
iPS reprogramming

I then performed qPCR of these genes at all four time points using Pairwise
Efficiency approach. First, I have found that out of 70 genes, 8 were not expressed
in neural progenitors or reprogrammed iPS cells. Even though their expression was
reported in the previous works by Synnergren group among newly suggested
genes, my Gene Ontology analysis revealed that they, in fact, are very unlikely to
be expressed in pluripotent stem cells. For example, according to NCBI expression
and Gene Ontology data, carbonic anhydrase Car6 is only found in salivary glands,
the Alb gene coding for blood serum albumin would naturally be found only in
samples containing blood, etc., and thus the absence of these genes from iPS cells
in my experiment is rather logical, or least not implausible. The discrepancy with
the Synnergren’s data may be due to lower precision of the methods they used for
identification of these genes (please also note that Synnergren group did not
perform Gene Ontology analysis to check for gene function).

The changes in expression levels of the remaining 62 genes are shown in Figure
15. For clarity, the initial analysis on gene expression change was conducted as
follows. The fold-change of gene expression during the reprogramming process
was estimated and assigned to one of the three groups: 1) The expression level
equal to that of Day 0 (i.e. no change compared to non-reprogrammed cells), 2) the
expression level is at least 1.5 times greater (because the expression change under
1.5 times fold can potentially be attributed to random error in measurements), but
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less than 3-times fold, and 3) gene expression change of more than 3-times fold

(Fig. 15).
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Figure 15. A heatmap representing overall changes in 62 housekeeping
genes’ expression throughout the iPS reprogramming process. Four time points
during the reprogramming are indicated under the heatmaps, and the gene names
are written on the left. The dark blue color represents no expression change, and
Day 0 is taken as the “time point zero” before initiation of reprogramming. Thus,
all tiles on Day 0 are colored dark blue. Blue color represents the expression
change of more than statistically significant 1.5-fold, but less than 3-fold. Light
blue represents gene expression change greater than 3-fold, compared to time point
zero (Day 0).

I have found that, out of 62 genes, no genes showed constant expression levels
(that would be shown as dark blue on all four time points) during the iPS
reprogramming. Moreover, 80% of all genes displayed changes in gene expression
levels that were more than 3-times fold at least on one of the days of
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reprogramming (light blue tiles). Only 20% of all genes stayed within the 3-times
fold change in expression levels (medium blue tiles), and fluctuated more than
1.5-times fold, but not greater than 3-times.

3.6 Clustering analysis of the gene expression dynamics

during the iPS reprogramming

To reveal patterns in gene expression change, I applied standard clustering
approach (Euclidean distance analysis) based on the expression data. The rising
and falling levels of the genes were visualized by the dual-color heatmap tiling,

where green represented rising levels, and red represented falling levels (Figure
16).
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Figure 16. A heatmap with the application of standard clustering analysis,
Euclidean distance measure, representing the grouping of 62 housekeeping
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genes by their expression change throughout the iPS reprogramming process.
Four time points during the reprogramming are indicated under the heatmap, and
the gene names are shown on the right. The green color represents positive
expression change (increase in the expression), and red color represents negative
expression change (decrease). White color represents no change in expression, and
all tiles on Day 0 are colored white. The standard dendrogram on the left shows the
grouping of the genes by their similarity of expression dynamics.

First of all, the clustering analysis revealed that the biggest change in genes’
levels occurred early in the reprogramming process, represented in my
experimental system by Day 5. On that day, the biggest variation in expression
level was found. These expression changes subsided at later stages (Day 10 and
Day 15), and these two days were found to be more similar to each other than to
the Day 5. The dark green color (which indicates greater change compared to point
zero than the light green color) appeared only on Day 5 in all genes analyzed, and
the green became lighter as the reprogramming progressed. This indicates that the
positive gene expression change is greatest at the earlier stages of reprogramming,
and is flattened out closer to the end of the process. On the other hand, the negative
gene expression change is greatest (judging by fold-change) in the later stages of
the reprogramming, because the red-colored tiles become darker as the
reprogramming progresses to its final stages represented by Day 15.

Second, the algorithm revealed high similarity between gene expression pattern
of all ribosomal genes, which were grouped together by the algorithm. The
ribosomal genes Rps11, Rpl7, Rpl13a, Rps3, Rplpl and Rpl15 were on the far end
of the rising spectrum, and the biggest rise in these genes’ level occurred early in
the reprogramming, represented in this experiment by Day 5. On the other, falling
side of the spectrum, I have found cell type-specific genes such as Vimentin,
Elastin, Pten, Plekhal and Ada. In addition, ubiquitin-related genes Ubc and
Fbx112, and glycolysis-related genes Pgkl and Pgaml were also grouped at the
low end of the spectrum. For the interpretation of these data see Discussion.
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3.7 Analysis of the overall tendency of selected genes to
fluctuate during the iPS reprogramming

Finally, to analyze the tendency of selected genes to rise or decline throughout
the whole reprogramming process, I have counted the number of rising and
declining genes on each day of the reprogramming and plotted these numbers
against the day of reprogramming (Fig. 17).
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Figure 17. The tendency of selected genes to fluctuate throughout the whole
reprogramming process. Red line represents the number of positively affected
genes, blue line indicates the number of negatively affected genes. Day 0 is
excluded from the graph because the value of each gene on that day is taken as a
reference and is compared against. The number of positively affected genes
continues to rise during the reprogramming, while the number of negatively
affected genes is falling approximately after day 6, if we take into account the
inherent standard deviation.
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This analysis has shown that, first of all, in the group of selected housekeeping
genes, there is a tendency to downregulate gene expression in the beginning of
reprogramming. This tendency is greatest in the beginning of the process, and
reaches its peak approximately on Day 5. As the reprogramming progresses, this
tendency is diminished, and the number of downregulated genes decreases with
time. On the other hand, the number of positively regulated housekeeping genes
whose expression is rising during the reprogramming, is constantly growing, with
the lowest point falling on Day 5, and continuing to rise further into the
reprogramming process. These data are in agreement with the heatmap clustering
analysis (Fig. 16) that shows the number of green tiles, corresponding to positively
regulated genes, rising, while the number of red tiles is falling.

3.8 Comparison of the results for 10 housekeeping genes
obtained in Chapter 1 with the results obtained in Chapter 3

As an additional way to validate the new Pairwise Efficiency method I
performed the comparison of general tendencies for 10 housekeeping genes that
were analyzed both by standard method (in Chapter 1) and by Pairwise Efficiency
(Chapter 3). Theoretically, if the new method were to improve precision of
measurements, the general tendency (“increase” or “decrease”) should be
preserved; in other words, the differences in gene expression analysis should be
quantitative rather than qualitative.

Gene Tendency by Classical Tendency by Pairwise Efficiency
Atp5f1 Decrease Decrease
B2m Unclear Fluctuate
Gapdh Fluctuate Fluctuate
Gusb Unclear Fluctuate
Hprt Increase Increase
Pgk1 Decrease Decrease
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Ppia Decrease Decrease

Rps18 Increase Increase

Tbp Unclear Fluctuate

Tfrc Unclear Fluctuate
Tendency Match (%) 100%

Table 8. Comparison of the general tendencies of the gene expression change
results obtained by the standard calibration curve method (Chapter 1) and
Pairwise Efficiency method (Chapter 3). The general tendency for 10 genes was
recorded in the table, using either “decrease”, “increase” or “fluctuate” (meaning
that on some days the expression increased, and on some days it decreased). The
label “unclear” indicates that the linear fit applied to the genes in Chapter 1 could
not identify a clear tendency due to large dispersion of obtained Ct data. As shown
in the table, the data obtained by both methods match in 100% of the cases by
tendency.

The analysis revealed that 60% of the genes measured by the standard method had
a clear tendency to either decrease or increase, according to linear fit performed in
Chapter 1, and 40% of the genes did not have a clear tendency due to large
dispersion of Ct values which was reflected in a horizontal line in the linear fit
analysis. Such cases were designated as “unclear” (because a linear fit would not
identify fluctuation if it existed). In case of Pairwise Efficiency, the gene
expression tendency was labelled as “increase” (in cases where all of the days of
reprogramming had an increase in gene expression), “decrease” (when the gene
expression decreased on all days) and “fluctuate” (in cases when on some days the
expression increased, while on other days it decreased). The analysis in the Table 8
shows that the “fluctuation” tendency matched with the “unclear” tendency in all
of the cases, and in all cases the “decrease” and “increase” tendencies matched.
This comparison is not quantitative but rather qualitative because linear fit cannot
be directly quantitatively compared with euclidean distance clustering analysis.

To further demonstrate that the results in Chapter 1 correspond well to the
results in Chapter 3, I plotted the Ct values of eight genes for direct comparison of
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tendencies (Fig. 18). This analysis has shown that the changes in gene expression
in Ct values were very similar, and the characteristic drops and rises were
conserved, as expected. For example, a characteristic rise in Ct value for B2m gene
between Day 0 and Day 5 was observed in both cases, a significant drop in Ct
values for Pgkl gene on Day 10 was observed in both cases, the rise on Day 5 and
drop on Day 10 for Ppia gene was observed in both cases, etc. It is necessary to
remember that Ct values themselves are NOT COMPARABLE between different
experiments (this is another disadvantage of the standard qPCR method), because
Ct threshold is set separately for each experiment by qPCR machine.
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Fig. 18. A direct comparison by Ct values of the results obtained in
Chapter 1 and the results obtained in Chapter 3. A. An excerpt from the linear
fit analysis conducted in Chapter 1 for eight genes. In this case, the cells were
collected on days 0, 1, 3, 5, 7, 10, 15 and 20, and each day had three technical
replicas, all of which is depicted in dotted circles. B. Ct values for eight genes
taken from reprogramming experiment in Chapter 3. In this case, the samples were
collected only on days 0, 5, 10 and 15. Each day has six dots because it was a
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six-step serial dilution. The drops and rises of the genes are similar in part A and
part B for the days that can be compared (0, 5, 10, 15).

3.9 Discussion

In this chapter, I have applied the newly developed method, Pairwise
Efficiency, to the measurement and analysis of gene expression change throughout
the 1PS reprogramming process. The selection of four time points, which resulted
in four separate DNA samples in the RT-qPCR experiment, and 70 housekeeping
genes amounts to 280 separate DNA-primer combinations. Since six replicas were
run for each combination, as required by Pairwise Efficiency method, a total of
1680 amplification curves were obtained, making it a medium-throughput analysis.
This showcases successful application of Pairwise Efficiency method in
medium-throughput settings.

Moreover, the analysis of RT-qPCR data produced by Pairwise Efficiency,
could reveal previously unnoticed patterns in gene expression change during the
reprogramming process.

First of all, the heatmap clustering analysis has detected a surge in
housekeeping gene expression change early in the reprogramming process which
was represented by Day 5, that subsided at later stages, represented by Day 10 and
Day 15. The clustering results are supported by the analysis of changes in affected
gene numbers. According to this analysis, the beginning stage of the
reprogramming 1is associated with a surge in negative gene regulation, which
subsides at later stages, and positive gene regulation, the growth of which is also
diminished with time. Thus, it can be said that housekeeping genes are affected by
iPS reprogramming mostly at the beginning of the process. This fact was
previously unknown, as the reprogramming was seen as a continuous, uniform
process that gradually progressed from “non-pluripotency state” to “pluripotency
state” (Buganim et al. 2013). There is no research that I am aware of that points out
at non-uniform patterns of change in gene expression during the reprogramming,
especially for housekeeping genes.

Second, the applied clustering algorithm has detected high similarity in the rise
of ribosomal genes’ levels, and placed these genes grouped together on the positive
end of the spectrum. The rise in the expression of ribosomal genes, and the
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similarity was previously unknown, as the ribosomal genes were assumed to be
housekeeping and constantly expressed in all cell types. However, the rise in the
ribosomal genes’ expression would logically follow from the concept of iPS
reprogramming that assumes the increase in cell viability and cell cycle
progression.

Third, the algorithm has placed cell type-specific genes on the negative side of
the spectrum. For example, such genes as the Elastin (Eln) and Vimentin (Vim)
which are components of the cytoskeleton specific to certain cell types or states
(particularly, Vimentin is implicated in epithelial-to-mesenchymal transition),
Plekhal (pleckstrin homology domain-containing gene related to membrane
signaling), Pten (tumor suppressor), Ripk3 (receptor-interacting serine-threonine
kinase implicated in apoptosis), Ada (immune system-related gene) and others
were found to be downregulated. In addition, ubiquitin system-related genes Ubc
and Fbxl12 were also found on the negative side of the spectrum, and their
expression decreased. It is worth noting that many of these genes are considered
housekeeping, however, their downregulation also logically follows from the
reprogramming concept. For example, tumor suppressor Pten inhibits cell cycle
progression, and its downregulation should be vital to the progression of
reprogramming. Similarly, the ubiquitin system and apoptosis genes can also be
expected to be down-regulated during the reprogramming process, especially at the
initial stages of forced expression of pluripotency-related transcription factors.
Previous works (such as Synnergren et al. 2007) have failed to notice these patterns

presumably because their experimental tools lacked the precision of Pairwise
Efficiency.
I further discuss the implications of these findings in the General Discussion.
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General Discussion

The purpose of this work was to 1) investigate the suitability of commonly used
tools for gene expression quantification with high-precision in long-term
processes; 2) to develop a high-precision tools if deemed necessary; and 3) to
apply the said tool in a system representative of a long-term dynamic process. In
the first chapter, I conducted basic analysis of the expression of 12 housekeeping

genes by the conventional qPCR method, as required in MIQE guidelines. This
analysis has revealed high wvariability of housekeeping genes during the
reprogramming process, if analyzed by conventional RT-qPCR. Thus, in the
second chapter, I developed a new tool that 1) would not require the use of

reference genes, 2) would be high-precision and high-throughput, and 3) would
decrease the hands-on time for RT-qPCR experimentation as well as the cost of the
experiments. In the third chapter, I have successfully applied this tool to the

quantification of gene expression during the iPS reprogramming process and
revealed new, previously unknown patterns in gene expression change during
this process. All of this demonstrates the general usefulness and scientific
advantage of my method, Pairwise Efficiency, over the existing methods of gene
expression analysis. Below, I will discuss the implications of this work, and further
possible directions of its development.

First of all, in the first chapter I have applied a common method of
high-precision gene expression analysis, RT-qPCR, as described in MIQE
guidelines (Bustin et al. 2009). Then, I have put the resulting Ct values to the

statistical analysis using five previously established algorithms. I have found, that,
according to this method, the expression of housekeeping genes varied throughout
the reprogramming process more than 2-fold for all genes, and reached variation of
4-cycle-fold for some genes, notably the ribosomal gene Rps18. I have also found
that a group of genes associated with ATP production (Atp5fl, Pgkl and Gapdh)
stood out among the 12 genes analyzed, and was deemed the most stable group by
the algorithms applied in the analysis. The results of this chapter prompted me to
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conclude that a new, more precise method without the use of reference genes was
needed to properly analyze long-term dynamic processes.

In the second chapter, I have developed such method by the application of the
principles of the Measurement Theory to the RT-qPCR data analysis. This new
method, Pairwise Efficiency, has allowed me to improve the precision of
measurements nearly two-told, while reducing labor and cost of experimentation.
In addition, this new method does not require the use of reference genes. In this
chapter, I have also conducted a comparative analysis of Pairwise Efficiency with
the classical calibration curve method using common approaches previously
described in literature. Notably, the procedure of classical calibration curve with
the use of reference genes requires the researcher to determine PCR efficiency
coefficients for each gene analyzed, including the reference genes (Bustin et al.

2009). Thus, the classical calibration curve method would require at least 42 wells
to properly analyse gene expression, while Pairwise Efficiency would only require
12 wells. In addition, if the efficiency of PCR reaction for the reference gene and
the target gene differ, the calibration curve approach requires a change of reference
gene or primer because it is not applicable in cases where the efficiency is
different. In contrast, my new method, Pairwise Efficiency, does not require the
use of reference genes at all, and accounts for efficiency in every sample, thus
removing the need for new primer design or the search for a new reference gene.
In other words, while the classical calibration curve approach would require
multiple runs of the RT-qPCR machine, Pairwise Efficiency requires only one
run for each gene, and allows to correct for efficiency differences in the process of
data analysis (Fig. 19). This opens wide possibilities for high-throughput use of
Pairwise Efficiency, including automation of the experimental process.
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Figure 19. A schematic representation of the differences in the
experimental procedure for Pairwise Efficiency approach compared to the
standard widely used calibration curve method. Pairwise Efficiency requires
only one run with 12 wells for the analysis of one target gene in two samples
(untreated sample, labelled “Control” in the figure, and treated sample, labelled
“ACID” or “Acid” in the figure). However, the standard calibration curve method

requires to separately run the calibration curves for the target and reference genes
(one run of the PCR machine with 36 wells), and THEN additionally run the actual
experiment with the target gene, reference gene, and Control and Acid samples
(second run of the PCR machine with 12 wells). Furthermore, since the precision
of the classical approach is two times lower than the Pairwise Efficiency approach,
it frequently requires additional runs to account for insufficient precision.

As the final part of my work, I have applied Pairwise Efficiency to the analysis
of gene expression dynamics during the iPS reprogramming process. For the
purpose of this analysis, I have searched the available literature and selected 70
housekeeping genes that have been previously implicated in the stem cell research
(Synnergren et al. 2007; Holmgren et al. 2015). I have included both commonly
used and newly suggested genes in my analysis. Pairwise Efficiency allowed me to

identify previously unnoticed patterns of gene expression change during the iPS
reprogramming process.
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First of all, the clustering analysis of gene expression pattern indicated that the
biggest change in gene expression occurs early in the reprogramming process. This
fact was previously unknown. The iPS reprogramming was commonly seen as
progressing through three stages, initiation, maturation and stabilization (David
and Polo 2014). My analysis has shown that the gene expression patterns do not

change equally, and the biggest change occurs early (represented in my system by
Day 5), while the later phases show less expression change (Fig. 16). Since the
immunostaining for pluripotency markers and the alkaline phosphatase expression
analysis has shown no marker presence on Day 5, I conclude that the biggest
change in the gene expression occurs prior to the appearance of the markers of
pluripotency alkaline phosphatase, Nanog and Oct4.

Second, the clustering analysis of RT-qPCR data obtained by Pairwise
Efficiency method revealed that ribosomal genes have similar expression change
pattern, are grouped together, and exhibit positive expression change (ribosomal
gene increase) overall. This result was previously unknown, but it is well in

agreement with the concept of iPS reprogramming, where the change in
pluripotency state from less pluripotent to more pluripotent is associated with the
increase in cell cycle progression and speed (Ghule et al. 2011; Kapinas et al.
2013; Ruiz et al. 2011; Xu et al. 2013). The increase in cell cycle speed would
logically be associated with the increased need for ribosomal RNA synthesis, and

the ribosomal gene expression would go up, as was uncovered by my analysis. The
confirmation of this fact, as well as further investigation (for example, the
measurements of nucleoli size or modern RNA staining techniques) would shed
more light on these cellular events.

Third, and most interestingly, the clustering analysis has grouped several

ATP-generating genes into two categories: the genes whose expression decreases

following a similar pattern (“decreasing genes”), and the genes whose expression
fluctuates throughout the reprogramming. For example, such genes as Pgkl and
Pgam1 have been grouped together as decreasing, and placed next to each other on
the clustering tree. Interestingly, Pgkl and Pgaml represent consequent steps in
glycolysis, as depicted in Fig. 20. Pgkl is a phosphoglycerate kinase that catalyses
the reversible conversion of 1,3-diphosphoglycerate to 3-phosphoglycerate, and
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Pgaml 1is a phosphoglycerate mutase that catalyzes the conversion of
3-phosphoglycerate to 2-phosphoglycerate (2-PGA) in the glycolytic pathway.

1,3BP-Glycerate

Pgk1 l

3P-Glycerate

l Pgam1

2P-Glycerate

Figure 20. A scheme of the part of the glycolytic pathway, in which the
enzymes Pgkl and Pgaml are the subsequent steps in the occuring set of
reactions, and are situated next to each other in the pathway. It is interesting to
see that the clustering analysis based on Pairwise Efficiency data has identified
similarity in the pattern of their change during iPS reprogramming and placed these
genes next to each other in the clustering tree.

On the other hand, Pfkp, Idh3a and Pdhal were clustered next to each other on
the other, “increasing” part of the clustering spectrum. Pfkp is a key regulatory
enzyme in glycolysis, a phosphofructokinase that catalyzes the irreversible

conversion of fructose-6-phosphate to fructose-1,6-bisphosphate, Idh3a is an
isocitrate dehydrogenase which is a key enzyme in the tricarboxylic acid (TCA)

cycle that takes place in the mitochondria, and Pdha is pyruvate dehydrogenase, a
part of mitochondrial matrix multienzyme complex that provides the primary link
between glycolysis and TCA cycle. Thus, the clustering of these three enzymes
together on the increasing spectrum is extremely interesting and may indicate a
switch step occurring between glycolysis, and oxidative phosphorylation in
mitochondria. More research on the gene expression change that would include all
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genes involved in ATP generation may shed more light on the regulation of these
switches during iPS reprogramming.

It is also interesting to note that, while most ribosomal genes were found to
decrease during the iPS reprogramming process, some ribosomal genes displayed a
fluctuating pattern (Rps18 and Rps9). Both of these genes belong to the small
ribosomal subunit. It is compelling to speculate that these two genes might play a

distinctive role in regulating the production of ribosomes and by that, regulate the
cell growth and division state. Indeed, recent research has also pointed at such
possibility, simulating the behaviour of ribosomal genes and identifying them as a
major speed-regulating hub for cell cycle progression (Lin and Amir 2018).

Since this analysis has only been done on a small portion of genes, namely
so-called housekeeping genes, it cannot reveal the changes in expression patterns
of other genes. However, some conclusions can be drawn about the genes
analyzed. First of all, in case of housekeeping genes, there exists a strong tendency
to downregulate some genes and upregulate others in the beginning of the
reprogramming, and the strength of down- or up-regulation reaches its peak
approximately on days 5-7 of the reprogramming in this cell system. After that,
the number of negatively regulated genes starts to decline, and the speed at which
the number of positively regulated genes rises slows down. According to the
obtained data, the overall reprogramming process related to housekeeping genes is
“finished” by day 10 (Fig. 17), after which day the tendencies of the genes to
fluctuate flatten out. This conclusion is supported by the clustering analysis that
has placed Day 10 and Day 15 as similar to each other, while Day 5 was found to
be dissimilar in the gene expression pattern (Fig. 16). Moreover, another
interesting finding is that the number of positively regulated genes continues to
rise, and the number of negatively regulated genes rises sharply in the beginning of
the reprogramming but starts falling after the “break point” that could be
approximately placed around day 7. The existence of such a “break” in the course
of the reprogramming is speculative, however, my multiple unpublished data on
the speed of colony formation also indicates that fully formed colonies of truly
round shape appear approximately between days 5-7 (Fig. 21).

87


https://paperpile.com/c/eZFUSY/lKGI

Figure 21. Colony formation during the iPS reprogramming of neural
progenitors. The truly round-shaped colonies with a characteristic “glow”
indicative of reprogrammed cells appear between days 5-7.

The gene expression data obtained in this work also hints at the existence of
an unknown event, after which the tendencies of genes to fluctuate flatten out,
and this event, according to the data, happens between days 5-8, prior to the
expression of pluripotency markers (Fig. 14). More research that would include
other days of the reprogramming process, and other gene groups, is needed to draw
further conclusions and confirm the existence of the said event and reveal more
information about it.

Finally, the obtained data on the number of positively and negatively regulated
genes shows overall increase in rising genes, while the number of falling genes
first increases sharply at Day 5, and then decreases back. This sharp increase and
subsequent decrease in the number of down-regulated genes could depend on the
selection of genes. However, another possibility is that some genes that were
downregulated in the beginning, “want to return back”, as if the process has
bounced back. Among such genes we can name glutamic-oxaloacetic transaminase
Gotl, which is a part of glycolysis pathway, DNA polymerase epsilon Pole, which
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is a central catalytic subunit of DNA polymerase, or mannose phosphate isomerase
Mpi, a part of glycosylation pathway. It is interesting to speculate that there may be
an existence of a negative feedback loop, an inherent tendency of the cell to
preserve general homeostasis, i.e. to make genes return to the balanced state.

The comparison of the results obtained in Chapter 1 and Chapter 3 showed that
the general tendencies of gene expression match, as expected. It is worth noting
that the classical QPCR method gives the result in Ct values (cycle numbers). It is
necessary to take into account that the growth of Ct indicates a decrease in the
amount of target gene in a sample, and a drop in Ct indicates an increase in the
amount of the gene in the sample. The results for the reference genes obtained in
Chapter 1 correspond to the results obtained in Chapter 3 of the study not only in
terms of general trends, but also in terms of the oscillations happening on different
days. Moreover, both chapters’ results suggest that the main changes occur at the
initial stage of the process, which is also confirmed by the results of processing the
initial data using the Euclidean distance measure (clustering) method.

Overall, the application of Pairwise Efficiency has uncovered several previously
unnoticed patterns of gene expression during the iPS reprogramming that were
impossible to identify by the existing methods of gene quantification. This shows
that Pairwise Efficiency is superior in both precision and throughput to the existing
data analysis approaches, and has a great potential as a new method of
high-precision gene expression measurements.

Thus, I have successfully accomplished the goals of this work by developing a
new high-precision of method of gene expression measurements and successfully
applying it to a representative long-term process, the iPS reprogramming.
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Supplementary Information

Supplementary Tables
Cell type | Gene | Pair | Primer sequence Slope | E R?
# (%)
Fully Gusb |1 F: AACAACACACTGACCCCTCA 1.054 |93 0.953
reprogram R: ACCACAGATCGATGCAGTCC
med iPS
cells Gusb |2 F: TGGCTGGGTGTGGTATGAAC 0.722 [ 161 |0.931
R: GGTGACCTCCCTCATGTTCC
Gusb |3 F: GGTGGAACATGAGGGAGGTC 0.926 (111 |0.983
R: AGGGTATGAGGGGTCAGTGT
Gusb |4 F: GGCCTCTAGATAGCCTTGAGC 0.342 | 660 |0.736
R: ACACGCACTCCATTTTAGGGA
Hprt 1 F: GTTGGGCTTACCTCACTGCT 0.526 (274 10.923
R: TAATCACGACGCTGGGACTG
Hprt |2 F: GATCAGTCAACGGGGGACAT 0.529 | 271 |0.886
R: GGTCCTTTTCACCAGCAAGC
Hprt |3 F: ACAGGCCAGACTTTGTTGGA 0.699 [ 170 |0.962
R: ACTTGCGCTCATCTTAGGCT
Hprt |4 F: CAGTCCCAGCGTCGTGATTA 1.01 {99 ]0.995
R: TGGCCTCCCATCTCCTTCAT
Tfrc 1 F: AAACTGGCTGAAACGGAGGA 1.157 | 82 0.997
R: AGATCCAGCCTCACGAGGAG
Tfrc 2 F: AAGAGCTGCTGCAGAAAAGC 1.049 |94 |0.997
R: ACGGTCTGGTTCCTCATAACC
Tfrc 3 F: GTTCGTACAGCAGCGGAAGT 1.073 |91 0.985
R: GGAAGTAGTCTCCACGAGCG
Tfrc 4 F: AGCAAAGTCTGGCGAGATGAA 1.189 |79 ]0.989
R: CCACATAACCCTCGGGAGAC
Parental Gusb |1 F: AACAACACACTGACCCCTCA -2.39 [ 163 10.991
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cells
(N31)

R: ACCACAGATCGATGCAGTCC

Gusb F: TGGCTGGGTGTGGTATGAAC -1.69 | 289 |0.988
R: GGTGACCTCCCTCATGTTCC

Gusb F: GGTGGAACATGAGGGAGGTC -2.32 | 170 |0.980
R: AGGGTATGAGGGGTCAGTGT

Gusb F: GGCCTCTAGATAGCCTTGAGC -1.30 | 486 |0.955
R: ACACGCACTCCATTTTAGGGA

Hprt F: GTTGGGCTTACCTCACTGCT -2.23 | 181 |0.979
R: TAATCACGACGCTGGGACTG

Hprt F: GATCAGTCAACGGGGGACAT -1.49 | 367 |0.976
R: GGTCCTTTTCACCAGCAAGC

Hprt F: ACAGGCCAGACTTTGTTGGA -1.40 423 |0.960
R: ACTTGCGCTCATCTTAGGCT

Hprt F: CAGTCCCAGCGTCGTGATTA -2.60 | 143 |0.995
R: TGGCCTCCCATCTCCTTCAT

Tfrc F: AAACTGGCTGAAACGGAGGA -3.16 | 107 |0.987
R: AGATCCAGCCTCACGAGGAG

Tfrc F: AAGAGCTGCTGCAGAAAAGC -3.02 | 114 |0.999
R: ACGGTCTGGTTCCTCATAACC

Tfrc F: GTTCGTACAGCAGCGGAAGT -3.08 | 111 |0.972
R: GGAAGTAGTCTCCACGAGCG

Tfrc F: AGCAAAGTCTGGCGAGATGAA -3.28 | 102 |0.991
R: CCACATAACCCTCGGGAGAC

Supplementary Table 1. Assay performance characteristics on 4 different

primer pairs for Gusb, Hprt and Tfrc evaluated in parental cell line and in

fully reprogrammed iPS cells. PCR efficiency E, slope, and associated

correlation coefficient R* are shown. The serial dilutions in fully reprogrammed

iPS cells were twofold.The efficiency for twofold dilutions was calculated using

the formula E=2"(1/slope)-1*100. The serial dilutions in parental cells were

tenfold, and the formula for calculating efficiency was E=10"(1/slope)-1*100. In

fully reprogrammed iPS cells, the primer pair closest to 100% efficiency was #1
for Gusb (E=93%), #4 for Hprt (E=99%), and #2 for Tfrc (E=94%). The efficiency
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for the same sets of primers differed in parental cells, giving E=163% for Gusb,
E=143% for Hprt, and E=114% for Tfrc. The best pair of primers for each gene
(Gusb #1, Hprt #4 and Tfrc #2) was chosen for the main experiment.

Gene | Comprehensiv | Delta Ct geNorm NormFinder BestKeeper
e Ranking
Value [Rank | SD aver. | Rank | M Rank | Stability | Rank | SD | Rank
value

Atp5f1 | 1.57 1 0.49 1 0333 |5 0.099 1 0.077| 1

Pgkl 1.68 2 0.50 2 0.168 |1 0.251 2 0.247(2

Gapdh |3.44 3 0.55 5 0.168 |1 0.417 7 0.322(4

Ppia 3.66 4 0.56 3 0.197 |2 0.353 4 0.323]5

Gusb |4.53 5 0.59 4 0300 |4 0.311 3 0.345(7

Tbp 5.18 6 0.60 6 0.467 |7 0.400 5 0.285(3

Tfrc 6.88 7 0.62 7 0.253 |3 0.458 8 0.422 10

Ywhaz | 7.20 8 0.64 8 0415 |6 0.414 6 0.367| 8

Rps18 | 8.80 9 0.65 10 0.532 |9 0.564 10 0.337] 6

Hprt 9.00 10 0.70 9 0.501 |8 0.464 9 0.395(9

Actb 11.00 |11 0.74 11 0.560 |10 0.631 11 0.429 11

B2m 12.00 |12 1.03 12 0.638 |11 0.961 12 0.879] 12

Supplementary Table 2. Ranking of the candidate reference genes’ stability
during reprogramming according to five different evaluation methods in
mouse embryonic fibroblasts (MEFs). Atp5f1, Pgkl and Gapdh were ranked as
the most stable candidate reference genes overall, while Hprt, Actb and B2m were
designated as the least stable ones.
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wells 1-6 wells 7-12

A 0.801 0.794
B 0.838 0.823
C 0.797 0.814
D 0.882 0.770
E 0.778 0.795
F 0.763 0.779
G 0.808 0.726
H 0.839 0.776

Supplementary Table 3. Efficiency values obtained by the standard curve
method for all 16 replicas of a dilution set. The efficiency values E calculated by
the classical calibration curve method are shown for the corresponding wells on the
96-well plate (for pipetting layout see Fig. S2). The Cq data for E calculation was
taken from Dataset 2.
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16 0.81 0.82 0.8 0 0 0

17 0.8 0.82 0.8 0.73 0.82 0

18 0.78 0.81 0.8 0.78 0.82 0

19 0.76 0.79 0.81 0.79 0.82 0.81
20 0.72 0.76 0.79 0.79 0.81 0.8
21 0.69 0.73 0.77 0.78 0.82 0.82
22 0.66 0.7 0.74 0.76 0.8 0.81
23 0.62 0.67 0.71 0.74 0.78 0.8
24 0.6 0.64 0.68 0.71 0.76 0.79
25 0.57 0.61 0.65 0.68 0.73 0.76
26 0.54 0.58 0.62 0.65 0.7 0.74
27 0.52 0.56 0.59 0.63 0.67 0.71
28 0.5 0.54 0.57 0.6 0.65 0.68
29 0.48 0.51 0.55 0.58 0.62 0.66
30 0.46 0.49 0.53 0.55 0.6 0.63
31 0.44 0.48 0.51 0.53 0.58 0.61
32 0.43 0.46 0.49 0.51 0.55 0.59

Supplementary Table 4. The efficiency values calculated with the formula for
the mean efficiency (4) with varying F0. The values corresponding to the region
with relatively constant efficiency (SD=0.01) are denoted in red.

Boundaries SD Max E Min E Max-Min difference Average E
20-150 0.0124 0.8346 0.7779 0.0567 0.8012
30-150 0.0125 0.8339 0.7790 0.0549 0.8039
40-150 0.0124 0.8311 0.7806 0.0505 0.8005
50-150 0.0132 0.8404 0.7750 0.0655 0.8028
60-150 0.0145 0.8485 0.7776 0.0709 0.8044
40-120 0.0113 0.8234 0.7798 0.0436 0.8012
40-150 0.0124 0.8311 0.7806 0.0505 0.8005
40-180 0.0116 0.8191 0.7675 0.0516 0.7894
40-210 0.0137 0.8274 0.7690 0.0583 0.7926
40-240 0.0165 0.8296 0.7568 0.0728 0.7852
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Supplementary Table 5. Standard deviations, maximal and minimal efficiency
(E) values and their difference, as well as average efficiency for differently set
boundaries are shown. The minimal standard deviation (SD written in bold) is
derived when setting the lower boundary at 40 RFU, and the upper boundary at
120 RFU , which falls within the exponential region of the curve. The lowest
difference between the maximal E value and the minimal E value (Max-Min
difference, in bold) is also observed with the same boundaries (40 - 120 RFU).
Note that the average efficiency value tends to decline when the upper boundary is
increased in the curve (150, 180, 210, 240) which agrees well with the notion of
progressively declining efficiency with the gradual reaction saturation at later
cycles. Overall, this result shows that the optimal region for mean efficiency
calculation lies within the exponential region of the curve, and that the standard
deviation will rise if fluorescence readings from later cycles are included in the

calculations.

Wells A1-A6 A7-A12 B1-B6 B7-B12 C1-C6 C7-C12 D1-D6 D7-D12
N of data points 218 208 215 233 228 211 205 204
Math. expectation 0.836 0.804 0.822 0.817 0.819 0.821 0.880 0.820
SD 0.096 0.112 0.083 0.085 0.053 0.079 0.101 0.071
Chi-square value 33.727 21.701 12491 14503 11.556 15.515 10.004 22.780
Degrees of freedom 9 10 9 8 5 7 9 7
Expected chi-square 16.919 18.307 16.919 15507 11.07 14.067 16.919 14.067
Does it fit? No No Yes No No No Yes No

Wells E1-E6 E7-E12 F1-F6 F7-F12 G1-G6 G7-G12 H1-H6 H7-H12
N of data points 207 199 247 224 209 199 183 227
Math. expectation 0.812 0.807 0.796 0.804 0.830 0.783 0.840 0.798
SD 0.054 0.079 0.060 0.083 0.062 0.059 0.067 0.080
Chi-square value 7.049 29.687 13.195 5821 20.549 33.988 19.465 36.350
Degrees of freedom 5 7 6 8 6 6 6 8
Expected chi-square 11.07 14.067 12592 16.919 12592 12592 12592 16.919
Does it fit? Yes No No Yes No No No No

Supplementary Table 6. The results of Chi-square test on all 16 identical
six-sets from Dataset 1. Chi-square test was performed on the groups of pairwise
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E measurements for each of the six-sets, as indicated. The number of data points
(after the removal of statistically unreliable values whose frequency was less than
5, as per Chi-square criteria), the mathematical expectation of each group, standard
deviation (SD) of each group, the chi-square value obtained for each group, the
degrees of freedom for each group, and the expected Chi value based on the
degrees of freedom, are shown. According to the Chi-square test principles, if the
Chi-square value exceeds the expected Chi value, the distribution significantly
deviates from normal, and parametric statistical instruments, such as quartile
ranges or sigma, cannot be applied. Since all 16 six-sets were identical, and the
number of non-normally distributed groups was significantly higher (12 out of 16),
the analysis of outliers for these data should be performed using non-parametric

tools.

Cycle A1 A2 A3 A4 A5 A6
3 0.4 0.94 -0.09 1.3 0.31 0.33
4 0.13 0.27 0.21 0.53 0.08 0.77
5 0.1 0.17 0.27 0.24 0.33 0.43
6 -0.01 0.08 0.27 0.26 0.22 0.25
7 -0.05 0.02 0.17 0.23 0.14 0.12
8 0.01 -0.01 0.14 0.16 0.08 0.09
9 0.02 -0.02 0.1 0.12 0.08 0.09
10 0.03 0 0.04 0.1 0.04 0.06
11 0.02 0 0.04 0.08 0.01 0.06
12 0.02 0 0.04 0.07 0.02 0.04
13 0.05 0.01 0.04 0.05 0 0.02
14 0.08 0.03 0.05 0.04 0.01 0.01
15 0.13 0.05 0.05 0.05 0.01 0.01
16 0.2 0.09 0.07 0.05 0.01 0.01
17 0.3 0.15 0.09 0.05 0.02 0.01
18 0.41 0.23 0.13 0.07 0.03 0.01
19 0.51 0.33 0.2 0.1 0.05 0.02
20 0.6 0.42 0.28 0.14 0.08 0.03
21 0.67 0.51 0.36 0.2 0.13 0.06
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22 0.71 0.57 0.43 0.27 0.19 0.1

23 0.72 0.61 0.49 0.33 0.25 0.15

24 0.72 0.64 0.53 0.39 0.32 0.2
Supplementary Table 7. The ‘first outliers’ calculated by the formula from
Tichopad et.al, 2003. The ‘first outlier’ values calculated for the wells A1 through
A6 are denoted in red. The relatively constant values preceding them are denoted
in blue. The fluorescence values from Dataset 1 for these wells in the
corresponding cycles were A1=14.09 RFU, A2=16.7 RFU, A3=21.28 RFU,
A4=27.19 RFU, A5=37.11 RFU, A6=28.2 RFU. Hence, the minimal fluorescence
value was RFU=14.09, and the maximal fluorescence value was RFU=37.11. Thus,
the tentative lower boundary of the exponential region can be set at approximately
10-40 RFU, depending on the actual curve.
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Supplementary Figures
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Supplementary Figure 1. The first derivative (FD) values and the
corresponding fluorescence (RFU) values for 16 replicas of a 6-step serial
dilution set taken from Dataset 1. (a) First derivative values of 96 amplification
curves were plotted against the cycle at which they were obtained. As the dilution
factor increases, the FD values are delayed and come at later cycles. The maximum
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of the first derivative (FDM) for the most concentrated sample corresponds to
cycle 18, while for the least concentrated sample this occurs at cycle 25. (b) The
obtained FDM values were plotted against corresponding fluorescence units at the
same cycle. Horizontal lines across the boxes denote the mean. Black dots indicate
individual values, and the colors correspond to dilution (most concentrated sample
- dark blue, least concentrated sample - light blue). The majority of FDM values
roughly correspond to a RFU of 150-230.

Day 5 Day 7

Day 10 Day 15 Day 20 Day 25
Supplementary Figure 2. The whole set of alkaline phosphatase staining
throughout the iPS reprogramming course. Day 20 and Day 25 were excluded
from mRNA analysis in Chapter 3 due to high apoptotic markers’ expression (data
not shown) which probably resulted from overgrowth of the colonies at this late

stage, since the cells were not once split during the course of the experiment.
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-d(RFU)/T

Supplementary Figure 3. Agarose gel of the PCR product and melting curve
analysis. (a) Agarose gel confirms the amplification of the expected product,
showing a band at 194 bp. (b) Melting curve analysis shows no primer dimers and
a single sharp peak, as expected.
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Supplementary Figure 4. Noise values and distribution in the beginning cycles
of amplification. (a) Amplification curves showing the beginning cycles for 96
qPCR reactions from Dataset 1. The noise is distributed close to zero and the noise
phase appears to continue up to cycle 13. (b) Distribution of the noise across 2880
qPCR reactions taken from Dataset 1. The graph shows three groups of noise
values: cycles 1-5, cycles 5-10 and cycles 1-10. All groups have nearly normal
distribution with a non-zero mean, not shifting with increasing cycles, and the
maximal data values reach approximately 10 fluorescence units.
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