|

) <

The University of Osaka
Institutional Knowledge Archive

Analysis of Temperature Distribution with Radial
Title Symmetrical Cooling Terminal around Moving Heat
Source

Author (s) ¥ﬁ52unawa, Akira; Takemata, Hiroyuki; Okamoto,

Citation |Transactions of JWRI. 1978, 7(2), p. 275-277

Version Type|VoR

URL https://doi.org/10.18910/7261

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Analysis of Temperature Distribution with Radial Symmetrical
Cooling Terminal around Moving Heat Source?

Akira MATSUNAWA#, Hiroyuki TAKEMATA##* and lkuo OKAMOTO#*##*

Nomenclature: The following nomenclature will be used
throughout this paper;
q : heat input, [cal/s]

q' : heat input per unit length (=g/h), [cal/s-cm]
h : thickness of plate, [cm]
v : speed of source, [cm/s]
t : time, [s]
T : temperature, [°C]
T, : temperature at cooling terminal, [°C]
Ty : reference temperature, [°C]
K : heat conductivity, [cal/s-cm-°C]
1/24: thermal diffusivity, [cm?/s]

R : radius of cooling terminal, [cm]

non-dimensional heat input (=Avq/27K (T, f——TO))

n :

6 : normalized temperature (=(T— To)/(Tf— Tp))

A : non-dimensional radius of cooling terminal
(=AvR)

P : normalized radius (=r/R) (0SSP =1)

Assumptions: Mathematical analyses were conducted

under the following assumptions;

1) The physical properties of the plate, i.e., K and A are
independent of the temperature and the position.

2) The moving speed v and the rate of heat input g are
constant.

3) Heat losses from the surface by convection and radia-
tion are neglected.

4) Cooling terminal of constant temperature T, is placed
over the equidistant plane from the moving source.

Point Heat Source: The basic differential equation of heat
conduction is expressed as the following form in the fixed

co-ordinate (x, y, 2).
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W37 32T 9T 92T @
of 9x2  0y2 622

Supposing that a point heat source g is supplied on the
surface of semi-infinite plate and moves along the x-axis

with the constant speed of v, one can rewrite Equation (1)
into the moving co-ordinate system (&, y, z) whose
origin is taken at the heat source.
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where, £€=x —vi.
Taking
T— TO =9Xp_ (_7\1)5 )(I)(E’y’ Z) (3)’

Equation (2) under the quasi-stationary state becomes

29 | 3% 4 22®

282 Tayz azz” (W)?@=0 ),
or in polar co-ordinate (r, a, ),
__d_(ri) (;\ )2(,@) 0 (5)

Therefore, the temperature is solved from the general
solution of Equation (4) and Equation (3).

T—T, =—};exp.(—)\vr cosacos ) x

[C} exp. (A\vr) + C, exp. (—Avr)] 6)
The boundary conditions are
T=Tyat r=R
—27rK (8T/or)—q as r—0 ).

Therefore, the solution under question becomes

4 T—Ty= 27[K 1exp [—2Avr (1 + cos acos B)] x

1 —exp. [-2Av (R — )]
1 —exp. [-2AvR]

or in non-dimensional form1)
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%:% exp. [—pA (1 + cos a cos B)] x
1—exp. [-2A(1 —P)]
1 —exp. [-2A] ).

Here, the term, i.e.,
_1—exp. [-2A(1 —p)]
1 —exp. [-2A] (10)
represents the cooling factor that depends on the radius
A. It is evident that

fmA=1 for 05 <1,

and Equation (9) coincides completely with Rosenthal’s
solution2) of

6__1
panl a2 [-Avr (1 + cos a cos 8)] (1D,

since pA = (r/R) (AvR) = Avr.

In Figures 1 and 2 are shown the behaviors of 7 against A
and the temperature distribution behind a source along
the moving axis (£ —axis) for several A—values. In these
calculations, Ty was taken to zero.

1.0

Fig. 1 Behavior of cooling factor against radius of cooling
terminal (Three dimensional case)

1.0
_9___’_1-&“‘-"
n " AA 1-@2
T
A
_ Avg
" E XK
A = AYR
@lc0s [ r=E
Az
1.0{ s {25 A=50 A=75 A=10 A=15
0 5 10 15

PA(=nvr)

Fig. 2 Temperature distribution behind point heat source
along moving axis when cooling terminal is placed
around a source
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Linear Heat Source: In two dimensional heat flow, there
is no heat flux in the z—direction. Thus 87/0z =0 and
Equation (4) is expressed in cylindrical co-ordinate (r, a)
as the form of

d2® 1do

T 2P =
g~ (We=o (12).

The solution of temperature is, therefore, given by

T—-Ty= 3 hK exp. [—Avr cos a]-Kq(Avr) x

KO (A.VR) 10 (AVI")

=Ty (uR) Ky (o) | s,
under the boundary conditions of
T=T, at r=R
—27er( )—>q'—q/h as r—0 (14).

Equation (13) can be also written in non-dimensional
form as

. exp. [-pAcos @] Ky (PA) x

n 77/\
Ko(/\) 10 (pA)
Ty (M) Kq (e

Here, the non-dimensional plate thickness 7 is defined by

= (Avh)/A = (Avh)/(AvR) = h/R.

The cooling term of Equation (15) is
Ko(A) Iy (o)
Io(A) Ky (pD)

Figure 3 shows the change of ¥’ with A, in which the
three dimensional cooling term, i.e., ¥ of Equation (10)
is also represented by dotted lines. As seen in the figure,
behaviors of ¥ and Y’ are very similar except in smaller
values of A, and they coincide at higher A-values. It is,
therefore, possible to express Equation (15) as the fol-
lowing form in higher values of A.

(15).

(16).
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Fig. 3 Behavior of cooling factor against radius of cooling
terminal (Solid line for linear source and dotted line for
point source)



Temperature Field with Cooling Terminal around Source

6 _1
A &P [—pA cos a] ‘K (PA) x
[ 1 —exp. [-2A(1 —p)]
1 —exp. (—27)
It is also evident that Equation (15) coincides with the

solution by Rosenthal in two-dimensional heat flow at
very high values of A,

] for A>4 (17).
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