

Title	Note on complex K-groups of compact Lie groups with fundamental group of prime order
Author(s)	Minami, Haruo
Citation	Osaka Journal of Mathematics. 1998, 35(3), p. 547–551
Version Type	VoR
URL	https://doi.org/10.18910/7263
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Minami, H. Osaka J. Math. 35 (1998), 547–551

NOTE ON COMPLEX *K*-GROUPS OF COMPACT LIE GROUPS WITH FUNDAMENTAL GROUP OF PRIME ORDER

HARUO MINAMI

(Received April 9, 1997)

1. Let G be a compact connected simply-connected Lie group and Γ a central subgroup of prime order p. Held and Suter [1] and Hodgkin [3] present two kinds of methods which can be used to determine the structure of $K^*(G/\Gamma)$, where K denotes the complex K-functor.

The purpose of this note is to describe a simple method for the computation of $K^*(G/\Gamma)$, which uses equivariant complex K-theory. Special cases of this method have been applied for calculating, e.g., $K^*(PE_6)$ in [5] and $K^*(PSp(n))$ in [6]. We shall also use the structure theorem on $K^*(G)$ [2] and in addition that on $K^*(L^n(p))$ [4], where $L^n(p)$ denotes the lens space. As a result we can get the structure of $K^*(G/\Gamma)$ as an algebra. Using the notations explained later our result can be stated as follows.

Theorem ([1], [3]). Let G, Γ and p be as above. Then $K^*(G/\Gamma) = \Lambda_R(\beta(\zeta_2), \dots, \beta(\zeta_r), \beta(\rho_{r+1}), \dots, \beta(\rho_\ell), \beta(\kappa))/((V-1)\beta(\kappa))$ where $\ell = \operatorname{rank} G$ and $R = \mathbb{Z}[V]/(p^s(V-1), \dots, p^s(V-1)^{p-1}, V^p - 1, (V-1)^{s(p-1)+1}).$

The rest of this note is devoted to our proof of the theorem together with the explanation of the symbols for the generators.

2. Let ρ_1, \dots, ρ_ℓ be the fundamental irreducible representations of G with $\ell = \operatorname{rank} G$. Let V denote the canonical non-trivial complex one-dimensional representation of Γ . And let V^k denote the k-fold tensor product of V and qV^k the direct sum of q copies of V^k . Since G admits at least one faithful representation, all the ρ_i 's are not trivial on Γ . So by Schur's lemma we may assume that the restrictions of the first ρ_1, \dots, ρ_r to Γ can be written as

$$\rho_i | \Gamma = p^{s_i} n_i V^{k_i}$$

with $1 \le k_i \le p-1$, $(p, n_i) = 1$ and $s_1 \le s_i$ for all i and the rest are trivial on Γ .

H. MINAMI

Set $s = s_1$ and denote by V itself the line bundle $G \times_{\Gamma} V \to G/\Gamma$. Then the order of V-1 in $\tilde{K}(G/\Gamma)$ is a power of p since V is induced from the canonical line bundle over a certain lens space $L^m(p)$. So using ρ_1 we see that $p^s(V-1) = 0$ in $\tilde{K}(G/\Gamma)$, so that there exists a stable isomorphism

$$(2.1) C: G \times p^s V \cong G \times \mathbf{C}^{p^s}$$

of Γ -vector bundles over G.

Let B(qV) and S(qV) be the unit ball and sphere in qV respectively and let $\Sigma^{qV} = B(qV)/S(qV)$ in which the pinched S(qV) serves as base point. Let $L^m(p) = S((m+1)V)/\Gamma$ as usual and write again V for the line bundle $S((m+1)V) \times_{\Gamma} V \to L^m(p)$. Set m = t(p-1) + r with $0 \le r < p-1$. By [4] we then have

(2.2)
$$\tilde{K}(L^m(p)) = \mathbf{Z}_{p^{t+1}}\{V-1,\cdots,(V-1)^r\} \oplus \mathbf{Z}_{p^t}\{(V-1)^{r+1},\cdots,(V-1)^{p-1}\}.$$

And its ring structure is given by the relations $V^p = 1$ and $(V - 1)^{m+1} = 0$.

Let K_{Γ} denote the equivariant complex K-functor associated with Γ . Then for a free Γ -space X we have a canonical isomorphism $K_{\Gamma}(X) \cong K(X/\Gamma)$ which will be identified below. Let us put n = s(p-1). Then by (2.2) we see that $p^s(V-1) = 0$ in $\tilde{K}(L^n(p))$ and hence we have a stable isomorphism

$$T: S((n+1)V) \times \mathbb{C}^{p^s} \cong S((n+1)V) \times p^s V$$

of Γ -vector bundles over S((n+1)V). This gives rise to an element τ of $\tilde{K}_{\Gamma}(\Sigma^{(n+1)V})$ in a canonical manner such that its restriction to the origin of B((n+1)V) is $p^s(1-V)$ in $R(\Gamma)$, the complex representation ring of Γ .

Consider the exact sequence for the pair (B((n+1)V), S((n+1)V)) in K_{Γ} -theory together with (2.2) when m = n. Then it is seen that τ equals the Thom element of $\tilde{K}_{\Gamma}(\Sigma^{(n+1)V})$ up to a multiple of unit of $R(\Gamma)$. The discussion proceeds by viewing this unit as 1 for brevity. Consider the exact sequence for the cofibration

$$S((n+1)V) \times G \xrightarrow{i} B((n+1)V) \times G \xrightarrow{j} \Sigma^{(n+1)V} \wedge G_+$$

where G_+ denotes the disjoint union of G and a single point + which is taken to be the base point of G_+ . Then $j^* : \tilde{K}^*_{\Gamma}(\Sigma^{(n+1)V} \wedge G_+) \to K_{\Gamma}(B((n+1)V) \times G) = K^*(G/\Gamma)$ becomes a zero map because $j^*(\tau) = p^s(1-V) = 0$ by (2.1). Hence we have a short exact sequence

(2.3)
$$0 \to K^*(G/\Gamma) \xrightarrow{I} K^*_{\Gamma}(S((n+1)V) \times G) \xrightarrow{\delta} K^*(G/\Gamma) \to 0$$

under the identification of the Thom isomorphism $K^*(G/\Gamma) \cong \tilde{K}^*_{\Gamma}(\Sigma^{(n+1)V} \wedge G_+)$. So what we next have to do is to determine the structure of the middle group of (2.3). 3. We now consider the generators of two groups of (2.3). Let X be a compact free Γ -space. Write V for the line bundle $X \times_{\Gamma} V \to X/\Gamma$ as in §2. Moreover let $f: X \to GL(n, \mathbb{C})$ be a Γ -map where $GL(n, \mathbb{C})$ is the general linear group with the trivial Γ -action. Then such a map defines a unique element of $K_{\Gamma}^{-1}(X)$, denoted by $\beta(f)$, as follows. The assignment $(x, v) \mapsto (x, f(x)v)$ with $x \in X, v \in \mathbb{C}^n$ yields an isomorphism $\theta: X \times \mathbb{C}^n \cong X \times \mathbb{C}^n$ of Γ -vector bundles over X. We get a Γ -vector bundle over the reduced suspension $S(X_+)$ of X_+ by clutching two *n*-dimensional product vector bundles over separate cones of X by θ . The reduced vector bundle of this is just $\beta(f)$.

Obviously ρ_i gives rise to $\beta(\rho_i) \in K^{-1}(G/\Gamma)$ for $r+1 \leq i \leq \ell$ and $\rho_i \circ \pi$ does $\beta(\rho_i \circ \pi) \in K_{\Gamma}^{-1}(S((n+1)V) \times G)$, denoted by the same symbol $\beta(\rho_i)$ for brevity, where π denotes the projection $S((n+1)V) \times G \to G$.

Define $\bar{\rho}_i: S((n+1)V) \times G \to GL(d_i, \mathbb{C})$ with $d_i = \text{degree}_i$ for $1 \leq i \leq r$ by $\bar{\rho}_i(x,g)(v) = \pi((p^{s_i-s}n_iT)^{-k_i}(x,\rho_i(g)v))$ with $x \in S((n+1)V)$, $g \in G$, $v \in \mathbb{C}^{d_i}$. Here qT denotes the direct sum of q copies of T and π the projection of $S((n+1)V) \times W$ to the second factor. Then $\bar{\rho}_i$ becomes a Γ -map, so that this gives rise to $\beta(\bar{\rho}_i)$ of $K_{\Gamma}^{-1}(S((n+1)V) \times G)$. Furthermore let us put $f(x,g)(v) = \pi(T^p(x,v))$ with $x \in S((n+1)V)$, $g \in G$, $v \in \mathbb{C}^{p^s}$ and write ν for $\beta(f)$ which $f: S((n+1)V) \times G \to GL(p^s, \mathbb{C})$ defines. Then by definition and by making use of (2.1) we have the following.

(3.1)
$$I(\beta(\rho_i)) = \beta(\rho_i) \ (r+1 \le i \le \ell), \ \delta(\nu) = 1 + V + \dots + V^{p-1}, \\ \delta(\beta(\bar{\rho}_i)) = -n_i(1 + V + \dots + V^{k_i-1}) \ (1 \le i \le r)$$

From (3.1) and the fact that $(p, k_1) = 1$, $(p, n_1) = 1$ it follows that there exist two polynomials a(X), $b(X) \in \mathbb{Z}[X]$ such that if we put

$$\gamma = a(V)\beta(\bar{\rho}_1) + b(V)\nu \in K_{\Gamma}^{-1}(S((n+1)V) \times G)$$

then

$$\delta(\gamma) = 1$$

By (3.1) and (3.2) we see that there exist more elements $\beta(\zeta_i)$ $(2 \le i \le r)$ and $\beta(\kappa)$ of $K^{-1}(G/\Gamma)$ such that

(3.3)
$$I(\beta(\zeta_i)) = \beta(\bar{\rho}_i) + n_i(1 + V + \dots + V^{k_i - 1})\gamma \quad (2 \le i \le r),$$
$$I(\beta(\kappa)) = (1 + V + \dots + V^{p-1})\beta(\bar{\rho}_1) + n_1k_1\nu.$$

4. Let $1 \leq k \leq n+1$. Denote by the same symbol the images of $\beta(\bar{\rho}_i)$'s and $\beta(\rho_j)$'s of $K_{\Gamma}^{-1}(S((n+1)V) \times G)$ by $(i \times 1)^* : K_{\Gamma}^{-1}(S((n+1)V) \times G) \to K_{\Gamma}^{-1}(S(kV) \times G)$

H. MINAMI

G) where *i* denotes an inclusion $S(kV) \subset S((n+1)V)$. And write ν for the image of the Thom element of $K^{-1}(S^{2k-1}) \cong \mathbb{Z}$ by the transfer $K^{-1}(S^{2k-1}) \to K_{\Gamma}^{-1}(S(kV))$.

Let k-1 = t(p-1) + r with $0 \le r < p-1$ and set

$$R_{k} = \mathbf{Z}[V] / \left(p^{t+1}(V-1), \cdots, p^{t+1}(V-1)^{r}, \\ p^{t}(V-1)^{r+1}, \cdots, p^{t}(V-1)^{p-1}, V^{p}-1, (V-1)^{k} \right).$$

We will show that

(4.1)
$$K_{\Gamma}^*(S(kV) \times G) = \Lambda_{R_k}(\nu, \beta(\bar{\rho}_1), \cdots, \beta(\bar{\rho}_r), \beta(\rho_{r+1}), \cdots, \beta(\rho_\ell))/((V-1)\nu)$$

by induction on k.

Choose a circle subgroup S^1 of G which contains Γ and view this S^1 as S(V). Then using the multiplication $S(V) \times G \to G$ yields a homeomorphism $S(V) \times_{\Gamma} G \approx S^1 \times G$ and so we have $K^*_{\Gamma}(S(V) \times G) \cong K^*(S^1 \times G)$. According to [2] $K^*(G) = \Lambda(\beta(\rho_1), \dots, \beta(\rho_\ell))$. From this and the definition of $\beta(\bar{\rho}_i)$'s and $\beta(\rho_j)$'s it can be easily checked that $K^*_{\Gamma}(S(V) \times G) = \Lambda(\nu, \beta(\bar{\rho}_1), \dots, \beta(\bar{\rho}_r), \beta(\rho_{r+1}), \dots, \beta(\rho_\ell))$.

Next consider the exact sequence for the pair $(S((k+1)V) \times G, S(V) \times G)$ in K_{Γ} -theory. Because of $S((k+1)V)/S(V) \approx \Sigma^V \wedge S(kV)_+$ we then obtain an exact sequence

$$\cdots \to K_{\Gamma}^{*}(S(V) \times G) \xrightarrow{\delta} K_{\Gamma}^{*}(S(kV) \times G)$$
$$\xrightarrow{J} K_{\Gamma}^{*}(S((k+1)V) \times G) \xrightarrow{I} K_{\Gamma}^{*}(S(V) \times G) \to \cdots$$

under the identification of the Thom isomorphism $K_{\Gamma}^*(S(kV) \times G) \cong \tilde{K}_{\Gamma}^*(\Sigma^V \wedge (S(kV) \times G)_+)$. And we see that there hold the equalities J(1) = 1 - V, $J(\nu) = \nu$ and $\delta(\nu) = 1 + V + \cdots + V^{p-1}$. By making use of these formulas we can proceed with the induction on k and we have (4.1) consequently.

Proof of Theorem. We have $\delta(\nu\beta(\bar{\rho}_1)) = \beta(\kappa)$ in addition to (3.1), (3.2) and (3.3). Using these formulas the theorem follows immediately from (4.1) when k = n + 1 and the exactness of (2.3).

References

- R.P. Held and U. Suter: On the unitary K-theory of compact Lie groups with finite fundamental group, Quart. J. Math. Oxford, (2) 24 (1973), 343-356.
- [2] L. Hodgkin: On the K-theory of Lie groups, Topology, 6 (1967), 1-36.
- [3] L. Hodgkin: The equivariant Künneth theorem in K-theory, Lecture Notes in Math. 496 (1975), 1-101.
- [4] T. Kambe: The structure of K_{Λ} -rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135–146.

- [5] H. Minami: On the K-theory of PE₆, Osaka J. Math. 32 (1995), 1113-1130.
- [6] H. Minami: On the K-theory of the projective symplectic groups, Publ. RIMS, Kyoto Univ. 31 (1995), 1045-1063.

Department of Mathematics Nara University of Education Takabatake, Nara 630-8528, Japan