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Chapter 1

Introduction

This thesis is concerned with the large-time behavior of solutions to the Cauchy problem
with small initial data for nonlinear Schrödinger equations:{

i∂tu+
1
2
∂2xu = λ|u|p−1u, t > 0, x ∈ R,

u(0, x) = εφ(x), x ∈ R, (1.0.1)

where ε > 0 is a small parameter, p > 1, λ ∈ C. φ = φ(x) is a C-valued known function
which belongs to suitable weighted Sobolev space Hs,σ(R). u = u(t, x) is a C-valued
unknown function. The equation (1.0.1) appears in nonlinear optical fiber (see [1]). Since
the local existence in Hs,σ(R) is well-known (see e.g., [3] and the references cited therein),
we are interested in large-time behavior of solutions to (1.0.1).
　First of all, let us consider the case of λ = 0 (which we refer to as free in what follows).
In this case, it is well-known that the following estimates hold:

∥u(t)∥L2(R) ≤ Cε, ∥u(t)∥L∞(R) ≤
Cε

(1 + t)1/2
(t > 0).

Next, let us assume that these properties are still valid in the nonlinear case (1.0.1). Then
we would obtain∫ t

0

∥λ|u(s)|p−1u(s)∥L2(R)ds ≤ Cεp
∫ t

0

(1 + s)−(p−1)/2ds ≤ Cεp

when p > 3, i.e., (p − 1)/2 > 1. From this observation and the smallness of ε, one
may expect that the effect of the nonlinearity is almost negligible and (1.0.1) could be
regarded as a perturbation of the free Schrödinger equations when p > 3. According to
Tsutsumi–Yajima [76], there exists a unique global solution to (1.0.1), and the global
solution behaves like a free solution as t → ∞. On the other hand when 1 < p ≤ 3,
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the situation changes dramatically, as pointed out by Strauss [71], Barab [2], Ozawa [62],
Hayashi–Naumkin [28], and so on. Note that this threshold becomes p = 1 + 2/d in the
d-dimensional settings. In the critical case p = 3, the standard perturbative approach is
valid only for t ≲ exp(o(ε−2)) in general. This comes from the above heuristic arguement,
that is, ∫ t

0

∥λ|u(s)|2u(s)∥L2(R)ds ≤ Cε · ε2 log(1 + t).

Similarly, in the subcritical case 1 < p < 3, the standard perturbative approach is valid
only for t ≲ o(ε−2(p−1)/(3−p)), since∫ t

0

∥λ|u(s)|p−1u(s)∥L2(R)ds ≤ Cε · εp−1(1 + t)(3−p)/2.

So, our problem is to make clear how the nonlinearity affects the behavior of the solutions
for t ≳ exp(O(ε−2)) when p = 3, and for t ≳ O(ε−2(p−1)/(3−p)) when 1 < p < 3, respec-
tively.
　 The purpose of this thesis is to develop the understanding for large-time behavior of
solutions to nonlinear Schrödinger equations in terms of the detailed lifespan estimates.
Our motivation comes from the important works due to John [40] and Hörmander [35]
which deal with quasilinear wave equations in three space dimensions. Remember that
the detailed lifespan estimates obtained in [40] and [35] have close connection with the
so-called null condition introduced by Klainerman [50] and Christodoulou [6]. What we
intend here is to reveal analogous structure in nonlinear Schrödinger equations.
　This thesis is organized as follows. Chapter 2 deals with the cubic derivative nonlinear
Schrödinger equations in R. We provide a detailed lower bound estimate for the lifespan
of the solution, which can be computed explicitly from the initial data and the nonlinear
term. This is an extension and a refinement of the previous work by Sunagawa [73]. This
part is the joint work [66] with Hideaki Sunagawa. Chapter 3 is devoted to the lifespan of
solutions to subcritical nonlinear Schrödinger equations in Rd for d = 1, 2, 3. We provide
a detailed lower bound estimate for the lifespan of the solution, which can be computed
explicitly from the initial data and the nonlinear term. This is an extension, a refinement
and a generalization of the previous work by Sasaki [69]. This part is the joint work [67]
with Hideaki Sunagawa and Shunsuke Yasuda. Finally, in Chapter 4, we study a two-
component system of cubic nonlinear Schrödinger equations in R. Based on the author’s
paper [65], we provide a detailed lower bound estimate for the lifespan of the solution to
the system, which can be computed explicitly from the initial data, the masses and the
nonlinear term.
　 Before closing this chapter, we introduce some notation. For 1 ≤ p ≤ ∞, Lp(Rd)
denotes the Lebesgue space on Rd and ∥ · ∥Lp(Rd) denotes the Lp norm of Rd. We denote
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by ⟨·, ·⟩L2(Rd) the L2 inner product of Rd. For m ∈ N and 1 ≤ p ≤ ∞, we denote by

Wm,p(Rd) the Lp(Rd)-based Sobolev space of order m

Wm,p(Rd) :=
{
f ∈ Lp(Rd)

∣∣ ∂αx f ∈ Lp(Rd) (α ∈ (N ∪ {0})d, |α| ≤ m)
}

equipped with the norm

∥f∥Wm,p(Rd) :=
∑
|α|≤m

∥∂αx f∥Lp(Rd).

For s, σ ≥ 0, we denote by Hs,σ(Rd) the weighted Sobolev space

Hs,σ(Rd) :=
{
f ∈ L2(Rd)

∣∣ (1 + |x|2)σ/2(1−∆)s/2f ∈ L2(Rd)
}

equipped with the norm

∥f∥Hs,σ(Rd) := ∥(1 + |x|2)σ/2(1−∆)s/2f∥L2(Rd).

We write Hs(Rd) = Hs,0(Rd) for simplicity. We write C(I;X) for the space of continuous
functions from an interval I of R to a Banach space X. The Fourier transform of ϕ is
defined by

Fϕ(ξ) := 1

(2π)d/2

∫
Rd
e−ix·ξϕ(x) dx (ξ ∈ Rd)

and the inverse Fourier transform of ϕ is defined by

F−1ϕ(x) :=
1

(2π)d/2

∫
Rd
eix·ξϕ(ξ) dξ (x ∈ Rd).

We denote several positive constants by C, which may vary from one line to another.
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Chapter 2

The lifespan of small solutions to
cubic derivative nonlinear
Schrödinger equations in one space
dimension

2.1 Introduction

This chapter is based on the joint work [66] with Hideaki Sunagawa. Throughout this
chapter, we focus on the following initial value problem:{

i∂tu+
1
2
∂2xu = N(u, ∂xu), t > 0, x ∈ R,

u(0, x) = εφ(x), x ∈ R, (2.1.1)

where i =
√
−1, u = u(t, x) is a C-valued unknown function, ε > 0 is a small parameter

which is responsible for the size of the initial data, and φ = φ(x) is a C-valued known
function which belongs to H3 ∩ H2,1(R). N = N(u, ∂xu) is the nonlinear term which is
always assumed to be a cubic homogeneous polynomial in (u, u, ∂xu, ∂xu) with complex
coefficients.
Let us recall some known results briefly. The most well-studied case is the gauge-

invariant case, that is the case where the nonlinear term N satisfies

N(eiθz, eiθζ) = eiθN(z, ζ), (z, ζ) ∈ C× C, θ ∈ R. (2.1.2)

There are a lot of works devoted to large-time behavior of the solution to (2.1.1) under
(2.1.2) (see e.g., [75], [44], [63], [16], [28], [27], [70], [55], [26] and the references cited
therein). On the other hand, if (2.1.2) is violated, the situation becomes delicate due
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to the appearance of oscillation structure. It is pointed out in [19] (see also [18], [74],
[59]) that contribution of non-gauge-invariant terms may be regarded as a short-range
perturbation if at least one derivative of u is included, whereas, as studied in [20], [21],
[22], [23], [60], [24], etc., it turns out that contribution of non-gauge-invariant cubic terms
without derivative is quite difficult to handle. In what follows, let us assume that the
nonlinear term N satisfies

N(eiθ, 0) = eiθN(1, 0), θ ∈ R, (2.1.3)

to exclude the worst terms u3, u2u and u3 (see Section 2.6 for explicit representation of
N satisfying (2.1.3)). We also define ν : R → C by

ν(ξ) :=
1

2πi

∮
|z|=1

N(z, iξz)
dz

z2
, ξ ∈ R.

Roughly speaking, this contour integral extracts the contribution of the gauge-invariant
part in the nonlinear term N . Remark that ν(ξ) coincides with N(1, iξ) in the gauge-
invariant case (see also (2.6.7) below). Typical previous results on global existence and
large-time asymptotic behavior of solutions to (2.1.1) under (2.1.3) can be summarized in
terms of ν(ξ) as follows:

(i) If Im ν(ξ) ≤ 0 for all ξ ∈ R, then the solution exists globally in time for sufficiently
small ε. Moreover the solution satisfies

∥u(t)∥L∞(R) ≤
Cε√
1 + t

, t ≥ 0,

where the constant C is independent of ε ([19], [26], etc.).

(ii) If Im ν(ξ) = 0 for all ξ ∈ R, then the solution has a logarithmic oscillating factor in
the asymptotic profile, i.e., it holds that

u(t, x) =
1√
it
α̃(x/t) exp

(
i
x2

2t
− i|α̃(x/t)|2Re ν(x/t) log t

)
+ o(t−1/2)

as t → +∞ uniformly in x ∈ R, where α̃ is a suitable C-valued function on R
satisfying ∥α̃∥L∞(R) ≲ ε. In particular, the solution is asymptotically free if and
only if ν(ξ) vanishes identically on R ([75], [44], [16], [28], [27], [19], etc.).

(iii) If supξ∈R Im ν(ξ) < 0, then the solution gains an additional logarithmic time-decay:

∥u(t)∥L∞(R) ≤
Cε√

(1 + t){1 + ε2 log(2 + t)}
, t ≥ 0,

where the constant C is independent of ε ([70], [26], [52], etc.).
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Now, let us turn our attentions to the remaining case: Im ν(ξ0) > 0 for some ξ0 ∈ R.
To the author’s knowledge, there is no global existence result in that case, and many
interesting problems are left unsolved especially when we focus on the issue of small data
blow-up. In the previous paper by Sunagawa [73], lower bounds for the lifespan Tε of the
solution to (2.1.1) are considered in detail under the assumption (2.1.2). It is proved in
[73] that

lim inf
ε→+0

ε2 log Tε ≥
1

2 sup
ξ∈R

(
|Fφ(ξ)|2 ImN(1, iξ)

) =: τ0. (2.1.4)

He proved it by constructing an approximate solution ua which blows up at the time
t = exp(τ0/ε

2) and getting an a priori estimate not for the solution u itself but for the
difference u−ua. What is important in (2.1.4) is that this is quite analogous to the famous
results due to John [40] and Hörmander [35] which concern quasilinear wave equations
in three space dimensions (see [36], [57], [8] for analogous results on the Klein-Gordon
equation, and also [56], [41], [9], [55], [72], [78], [38], etc. for related works of them).
Remember that the detailed lifespan estimates obtained in [40] and [35] are fairly sharp
and have close connection with the so-called null condition introduced by Klainerman
[50] and Christodoulou [6]. However, the approach exploited in [73] has the following two
drawbacks:

• it heavily relies on the gauge-invariance (2.1.2),

• it requires higher regularity and faster decay as |x| → ∞ for φ than those for u(t, ·).

The purpose of this chapter is to improve these two points. To state the main result,
let us define τ̃0 ∈ (0,+∞] by

τ̃0 =
1

2 sup
ξ∈R

(
|Fφ(ξ)|2 Im ν(ξ)

) , (2.1.5)

where we associate 1/0 = +∞. Remark that the right-hand side of (2.1.5) is always
positive if φ ∈ H2,1(R), because Im ν(ξ) = O(|ξ|3) and |Fφ(ξ)|2 = O(|ξ|−4) as |ξ| → ∞.
In particular, we can easily check that τ̃0 = +∞ if Im ν(ξ) ≤ 0 for all ξ ∈ R. We also note
that τ̃0 coincides with τ0 in the gauge-invariant case. The main result of this chapter is
as follows:

Theorem 2.1.1. Assume that φ ∈ H3 ∩ H2,1(R). Suppose that the nonlinear term N
satisfies (2.1.3). Let Tε be the supremum of T > 0 such that (2.1.1) admits a unique
solution in C([0, T );H3 ∩H2,1(R)). Then we have

lim inf
ε→+0

ε2 log Tε ≥ τ̃0,
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where τ̃0 ∈ (0,+∞] is given by (2.1.5).

Remark 2.1.2. The above theorem concerns only the forward Cauchy problem (i.e., for
t > 0). For the backward Cauchy problem, we can obtain a simliar lower bound τ̃ ′0 which
can be written explicitly in terms of N and φ. Indeed, if u(t, x) is a solution to (2.1.1)
for t < 0, then u(−t, x) is also a solution to the Schrödinger equation with another cubic
derivative nonlinearity for t > 0. However, it should be noted that τ̃ ′0 does not coincide
with τ̃0 in general. For example, when N = −i|u|2u and φ ̸≡ 0, we can check that
τ̃0 = +∞ and τ̃ ′0 < +∞, whence the small data global existence is expected only for the
positive time direction. On the other hand, if Im ν(ξ) = 0 for all ξ ∈ R, then we have
τ̃0 = τ̃ ′0 = +∞. In fact, the solution exists globally in both time directions in that case.

We close this section with the contents of this chapter: Section 2.2 is devoted to a
lemma on some ordinary differential equation. In Section 2.3, we recall basic properties
of the operators J and Z, as well as the smoothing property of the linear Schrödinger
equations. After that, we will get an a priori estimate in Section 2.4, and Theorem 2.1.1
will be proved in Section 2.5. The proof of technical lemmas will be given in Section 2.6.

2.2 A lemma on ODE

In this section we introduce a lemma on some ordinary differential equation, keeping in
mind an application to (2.4.10) below.
Let κ, θ0 : R → C be continuous functions satisfying

sup
ξ∈R

|κ(ξ)| <∞, sup
ξ∈R

|θ0(ξ)| <∞, sup
ξ∈R

(
|θ0(ξ)|2 Imκ(ξ)

)
≥ 0.

We set C1 = supξ∈R |κ(ξ)| and define τ1 ∈ (0,+∞] by

τ1 =
1

2 sup
ξ∈R

(
|θ0(ξ)|2 Imκ(ξ)

) ,
where 1/0 is understood as +∞. Let β0 : [1, T )× R → C be a solution to i∂tβ0(t, ξ) =

κ(ξ)

t
|β0(t, ξ)|2β0(t, ξ), t > 1, ξ ∈ R,

β0(1, ξ) = εθ0(ξ), ξ ∈ R,
(2.2.1)

where ε > 0 is a parameter. Multipling the equation (2.2.1) by β0, and taking the
imaginary part of the result, we have ∂t

(
|β0(t, ξ)|2

)
=

2 Imκ(ξ)

t
|β0(t, ξ)|4, t > 1, ξ ∈ R,

β0(1, ξ) = εθ0(ξ), ξ ∈ R.
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Solving this ordinary differential equation by separation of variables, we have

|β0(t, ξ)|2 =
ε2|θ0(ξ)|2

1− 2ε2|θ0(ξ)|2 Imκ(ξ) log t
,

as long as the denominator is strictly positive. In view of this expression, we can see that

sup
(t,ξ)∈[1,eσ/ε2 ]×R

|β0(t, ξ)| ≤ C2ε (2.2.2)

for σ ∈ (0, τ1), where

C2 =
1√

1− σ/τ1
sup
ξ∈R

|θ0(ξ)| (< +∞),

while
sup
ξ∈R

|β0(t, ξ)| → +∞ as t→ exp(τ1/ε
2)− 0

if τ1 <∞.
Next we consider a perturbation of (2.2.1). For this purpose, let T > 1 and let θ1 :

R → C, ρ : [1, T )× R → C be continuous functions satisfying

sup
ξ∈R

|θ1(ξ)| ≤ C3ε
1+δ, sup

(t,ξ)∈[1,T )×R
t1+µ|ρ(t, ξ)| ≤ C4ε

1+δ

with some positive constants C3, C4, δ and µ. Let β : [1, T )× R → C be a solution to i∂tβ(t, ξ) =
κ(ξ)

t
|β(t, ξ)|2β(t, ξ) + ρ(t, ξ), (t, ξ) ∈ (1, T )× R,

β(1, ξ) = εθ0(ξ) + θ1(ξ), ξ ∈ R.

The following lemma asserts that an estimate similar to (2.2.2) remains valid if (2.2.1) is
perturbed by ρ and θ1:

Lemma 2.2.1. Let σ ∈ (0, τ1). We set T∗ = min{T, eσ/ε2}. For ε ∈ (0,M−1/δ], we have

sup
(t,ξ)∈[1,T∗)×R

|β(t, ξ)| ≤ C2ε+Mε1+δ,

where

M =

(
2C3 +

C4

µ

)
eC1(1+3C2+3C2

2 )σ.
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Proof. We put w(t, ξ) = β(t, ξ)− β0(t, ξ) and

T∗∗ = sup
{
T̃ ∈ [1, T∗)

∣∣∣ sup
(t,ξ)∈[1,T̃ )×R

|w(t, ξ)| ≤Mε1+δ
}
.

Note that T∗∗ > 1, because of the estimate

|w(1, ξ)| = |θ1(ξ)| ≤ C3ε
1+δ ≤ M

2
ε1+δ

and the continuity of w. Since w satisfies

i∂tw =
κ(ξ)

t

(
|w + β0|2(w + β0)− |β0|2β0

)
+ ρ,

we see that

∂t
(
|w|2

)
= 2 Im

(
w · i∂tw

)
≤ 2

t
C1

(
M2ε2+2δ + 3C2Mε2+δ + 3C2

2ε
2
)
|w|2 + |w||ρ|

≤ 2

t
C̃ε2|w|2 + C4ε

1+δ

t1+µ
|w|

for t ∈ [1, T∗∗), where C̃ = C1(1+3C2+3C2
2). By the Gronwall-type argument, we obtain

|w(t, ξ)| ≤
(
|θ1(ξ)|+

∫ t

1

C4ε
1+δ

2s1+µ+C̃ε2
ds

)
eC̃ε

2 log t

≤
(
C3ε

1+δ +
C4ε

1+δ

2(µ+ C̃ε2)

)
eC̃σ

≤ M

2
ε1+δ

for (t, ξ) ∈ [1, T∗∗) × R. This contradicts the definition of T∗∗ if T∗∗ < T∗. Therefore we
conclude T∗∗ = T∗. In other words, we have

sup
(t,ξ)∈[1,T∗)×R

|w(t, ξ)| ≤Mε1+δ,

whence
|β(t, ξ)| ≤ |β0(t, ξ)|+ |w(t, ξ)| ≤ C2ε+Mε1+δ

for (t, ξ) ∈ [1, T∗)× R. This completes the proof.
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2.3 Preliminaries related to the Schrödinger opera-

tor

This section is devoted to preliminaries related to the operator L = i∂t +
1
2
∂2x.

2.3.1 The operators J and Z
We introduce J = x+ it∂x and Z = x∂x + 2t∂t, which have good compatibility with the
operator L. Then the following relations hold

[∂x,J ] = 1, [L,J ] = 0, [∂x,Z] = ∂x, [L,Z] = 2L,

where [·, ·] stands for the commutator of two linear operators. Another important relation
is

J ∂x = Z + 2itL, (2.3.1)

which will play the key role in our analysis. Next we set

(U(t)ϕ)(x) = ei
t
2
∂2xϕ(x) =

1√
2πit

∫
R
ei

(x−y)2
2t ϕ(y)dy

for t > 0. We will occasionally abbreviate U(t) to U if it causes no confusion. The
following lemma is well-known.

Lemma 2.3.1. We have

∥v∥L∞(R) ≤ t−1/2
∥∥FU−1v

∥∥
L∞(R) + Ct−3/4(∥v∥L2(R) + ∥J v∥L2(R))

for t > 0.

We skip the proof of this lemma (see the series of papers by Hayashi and Naumkin
[16]–[24]).

2.3.2 A smoothing property

In this subsection, we recall a smoothing property of the linear Schrödinger equations,
which will be used effectively in Step 3 of §2.4.1. As is well-known, the standard energy
method causes a derivative loss when the nonlinear term involves the derivatives of the
unknown function. To overcome this difficulty we make use of smoothing effect. Among
various kinds of smoothing properties, we will follow the approach of [25], whose original
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idea is due to Doi [10] (see also [5] and the references cited therein for the history and
more information of this subject). Let H be the Hilbert transform, that is,

Hv(x) := 1

π
p.v.

∫
R

v(y)

x− y
dy.

With a non-negative weight function Φ(x), let us define the operator SΦ by

SΦv(x) :=

{
cosh

(∫ x

−∞
Φ(y) dy

)}
v(x)− i

{
sinh

(∫ x

−∞
Φ(y) dy

)}
Hv(x).

Note that SΦ is L2-automorphism and both ∥SΦ∥L2→L2 and ∥S−1
Φ ∥L2→L2 are dominated

by C exp(∥Φ∥L1(R)). Roughly speaking, the operator SΦ is chosen so that

[L,SΦ] = −iΦSΦ|∂x|+ ‘harmless terms’,

and the first term in the right-hand side enables us to gain the half-derivative |∂x|1/2.
More precisely, we have the following two lemmas:

Lemma 2.3.2 ([25]). Let v = v(t, x) and ψ = ψ(t, x) be C-valued smooth functions.
We set Φ(t, x) = η(|ψ|2 + |ψx|2) with η ≥ 1. Then there exists the constant C, which is
independent of η, such that

d

dt
∥SΦv(t)∥2L2(R) +

∥∥∥√Φ(t)SΦ|∂x|1/2v(t)
∥∥∥2
L2(R)

≤ Ce
Cη∥ψ(t)∥2

H1(R)
(
η∥ψ(t)∥2W 2,∞ + η3∥ψ(t)∥6W 1,∞ + η∥ψ(t)∥H1∥Lψ(t)∥H1

)
∥v(t)∥2L2(R)

+ 2
∣∣∣⟨SΦv(t),SΦLv(t)⟩L2(R)

∣∣∣ .
Lemma 2.3.3 ([25]). Let v = v(x) and ψ = ψ(x) be C-valued smooth functions. Suppose
that q1 and q2 are quadratic homogeneous polynomials in (ψ, ψ, ψx, ψx). We set Φ(x) =
η(|ψ|2 + |ψx|2) with η ≥ 1. Then there exists the constant C, which is independent of η,
such that∣∣∣⟨SΦv,SΦq1(ψ, ψx)∂xv⟩L2(R)

∣∣∣+ ∣∣∣⟨SΦv,SΦq2(ψ, ψx)∂xv
⟩
L2(R)

∣∣∣
≤ Cη−1e

Cη∥ψ∥2
H1(R)

∥∥∥√ΦSΦ|∂x|1/2v
∥∥∥2
L2(R)

+ Ce
Cη∥ψ∥2

H1(R)

(
1 + η2∥ψ∥4H1(R) + η2∥ψ∥4W 1,∞(R)

)
∥ψ∥2W 2,∞(R)∥v∥2L2(R).

For the proof, see Section 2 in [25] (see also the appendix of [52]).
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2.4 A priori estimate

Throughout this section, we fix σ ∈ (0, τ̃0) and T ∈ (0, eσ/ε
2
], where τ̃0 is defined by

(2.1.5). Let u ∈ C([0, T );H3 ∩H2,1(R)) be a solution to (2.1.1) for t ∈ [0, T ), and we set
α(t, ξ) = F

[
U(t)−1u(t, ·)

]
(ξ), where U(t) is given in Section 2.3. We also put

E(T ) = sup
t∈[0,T )

(
(1 + t)−γ(∥u(t)∥H3(R) + ∥J u(t)∥H2(R)) + sup

ξ∈R
(⟨ξ⟩2|α(t, ξ)|)

)
with γ ∈ (0, 1/12) and ⟨ξ⟩ = (1+|ξ|2)1/2. The goal of this section is to prove the following:

Lemma 2.4.1. Assume that the nonlinear term N satisfies (2.1.3). Let σ, T and γ be as
above. Then there exist positive constants ε0 and K, not depending on T , such that

E(T ) ≤ ε2/3 (2.4.1)

implies
E(T ) ≤ Kε,

provided that ε ∈ (0, ε0].

We divide the proof of this lemma into two subsections. We remark that many parts
of the proof below are similar to that of Section 3 in [19], although we need modifications
to fit for our purpose.

2.4.1 L2-estimates

In this part, we consider the bound for ∥u(t)∥H3(R) + ∥J u(t)∥H2(R). By virtue of the
inequality

∥u(t)∥H3(R) + ∥J u(t)∥H2(R)

≤ C
(
∥u(t)∥L2(R) + ∥∂3xu(t)∥L2(R) + ∥J u(t)∥L2(R) + ∥∂xJ ∂xu(t)∥L2(R)

)
, (2.4.2)

it suffices to show that each term in the right-hand side can be dominated by Cε(1 + t)γ.
We are going to estimate these four terms by separate ways.

Step 1: Estimate for ∥u(t)∥L2(R). First we remark that the assumption (2.4.1) yields

∥u(t)∥W 2,∞(R) ≤
Cε2/3

(1 + t)1/2

for t ∈ [0, T ). Indeed, the Sobolev embedding H1(R) ↪→ L∞(R) and (2.4.1) yield

∥u(t)∥W 2,∞(R) ≤ C∥u(t)∥H3(R) ≤ Cε2/3
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for t ≤ 1, while it follows from Lemma 2.3.1 that

∥u(t)∥W 2,∞(R) ≤
C

t1/2
sup
ξ∈R

(
⟨ξ⟩2|α(t, ξ)|

)
+

C

t3/4
(
∥u(t)∥H2(R) + ∥J u(t)∥H2(R)

)
≤ Cε2/3

t1/2

for t ∈ [1, T ). Now, by the standard energy method, we have

d

dt
∥u(t)∥L2(R) ≤ ∥N(u, ux)∥L2(R) ≤ C∥u(t)∥2W 1,∞(R)∥u(t)∥H1(R) ≤

Cε2

(1 + t)1−γ
,

whence

∥u(t)∥L2(R) ≤ ∥u(0)∥L2(R) +

∫ t

0

Cε2

(1 + τ)1−γ
dτ

≤ Cε+ Cε2(1 + t)γ

≤ Cε(1 + t)γ (2.4.3)

for t ∈ [0, T ).

Step 2: Estimate for ∥J u(t)∥L2(R). If t ≤ 1, there is no difficulty because we do not have

to pay attentions to possible growth in t. Indeed, since

∥JN(u(t), ux(t))∥L2(R) ≤ C(1 + t)∥u∥2W 1,∞(R)(∥J u∥H1(R) + ∥u∥H1(R)) ≤ Cε2,

we have

∥J u(t)∥L2(R) ≤ C∥u(0)∥H0,1(R) +

∫ 1

0

∥JN(u(τ), ux(τ))∥L2(R)dτ ≤ Cε+ Cε2

for t ≤ 1. To consider the remaining case t ≥ 1, let us first recall a remarkable lemma
due to Hayashi–Naumkin [19]:

Lemma 2.4.2. Assume that the nonlinear term N satisfies (2.1.3). Then the following
decomposition holds:

JN(u, ux) = L(tP ) +Q,

where P is a cubic homogeneous polynomial in (u, u, ux, ux), and Q satisfies

∥Q∥L2(R) ≤ C∥u∥2W 2,∞(R)(∥u∥H1(R) + ∥J u∥H2(R) + ∥Zu∥H1(R))

+
C

t
∥u∥W 2,∞(R)(∥J u∥H2(R) + ∥u∥H1(R))

2

for t ≥ 1.
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We will give a sketch of the proof in Section 2.6. Now we are going to apply this lemma.
Let t ∈ [1, T ). Since the above decomposition and the commutative relation [L,J ] = 0
allow us to rewrite the original equation as

L(J u− tP ) = Q,

the standard energy method yields

∥J u(t)− tP∥L2(R) ≤ C(ε+ ε2) +

∫ t

1

∥Q(τ)∥L2(R)dτ.

By the relation (2.3.1), we have

∥Zu∥H1(R) ≤ ∥J ∂xu∥H1(R) + 2t∥N(u, ux)∥H1(R)

≤ Cε2/3(1 + t)γ + Cε2t(1 + t)−1+γ

≤ Cε2/3(1 + t)γ,

which leads to

∥Q(t)∥L2(R) ≤
Cε2

(1 + t)1−γ
.

Also we have

∥P∥L2(R) ≤ C∥u∥2W 1,∞(R)∥u∥H1(R) ≤
Cε2

(1 + t)1−γ
.

Summing up these, we have

∥J u(t)∥L2(R) ≤ t∥P∥L2(R) + ∥J u(t)− tP∥L2(R) ≤ Cε(1 + t)γ (2.4.4)

for t ∈ [1, T ).

Step 3: Estimate for ∥∂3xu(t)∥L2(R). As we have mentioned in Section 2.3, the standard

energy method causes a derivative loss. So we make use of smoothing effect. We apply
Lemma 2.3.2 with v = ∂3xu, ψ = u and η = ε−2/3. Then we obtain

d

dt
∥SΦ∂

3
xu(t)∥2L2(R) +

∥∥∥√ΦSΦ|∂x|1/2∂3xu
∥∥∥2
L2(R)

≤ CB(t)∥∂3xu∥2L2(R) + 2
∣∣∣⟨SΦ∂

3
xu,SΦ∂

3
xN(u, ux)

⟩
L2(R)

∣∣∣ ,
where

B(t) = e
Cε−2/3∥u∥2

H1(R)

(
ε−2/3∥u(t)∥2W 2,∞(R) + ε−2∥u(t)∥6W 1,∞(R)

+ ε−2/3∥u(t)∥H1(R)∥N(u, ux)∥H1(R)

)
.
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Since (2.4.1) yields

∥u(t)∥H1(R) ≤ C∥α(t)∥H0,1(R) ≤ C

(∫
R

dξ

⟨ξ⟩2

)1/2

sup
ξ∈R

(
⟨ξ⟩2|α(t, ξ)|

)
≤ Cε2/3,

we see that B(t) can be dominated by Cε2/3(1 + t)−1. Also we observe that the usual
Leibniz rule leads to

∂3xN(u, ux) = q1(u, ux)∂x(∂
3
xu) + q2(u, ux)∂x(∂3xu) + ρ1,

where q1, q2 are defined by

q1(z, ζ) =
∂N

∂ζ
(z, ζ), q2(z, ζ) =

∂N

∂ζ
(z, ζ), (2.4.5)

and ρ1 satisfies
∥ρ1∥L2(R) ≤ C∥u∥2W 2,∞(R)∥u∥H3(R).

By Lemma 2.3.3, we have∣∣∣⟨SΦ∂
3
xu,SΦ∂

3
xN(u, ux)

⟩
L2(R)

∣∣∣
≤
∣∣⟨SΦ∂

3
xu,SΦq1(u, ux)∂x(∂

3
xu)⟩L2(R)

∣∣+ ∣∣⟨SΦ∂
3
xu,SΦq2(u, ux)∂x(∂3xu)⟩L2(R)

∣∣
+ C∥SΦ∂

3
xu∥L2(R)∥SΦρ1∥L2(R)

≤ Cε2/3e
Cε−2/3∥u∥2

H1(R)

∥∥∥√ΦSΦ|∂x|1/2∂3xu
∥∥∥2
L2(R)

+ Ce
Cε−2/3∥u∥2

H1(R)

(
1 + ε−4/3∥u∥4H1(R) + ε−4/3∥u∥4W 1,∞(R)

)
∥u∥2W 2,∞(R)∥∂3xu∥2L2(R)

+ Ce
Cε−2/3∥u∥2

H1(R)∥u∥2W 2,∞(R)∥u∥2H3(R)

≤ C0ε
2/3
∥∥∥√ΦSΦ|∂x|1/2∂3xu

∥∥∥2
L2(R)

+
Cε8/3

(1 + t)1−2γ

with some positive constant C0 not depending on ε. Piecing the above estimates all
together, we obtain

d

dt
∥SΦ∂

3
xu(t)∥2L2(R) ≤

(
2C0ε

2/3 − 1
)∥∥∥√ΦSΦ|∂x|1/2∂3xu

∥∥∥2
L2(R)

+
C(ε2 + ε8/3)

(1 + t)1−2γ

≤ Cε2

(1 + t)1−2γ
,

provided that ε ≤ (2C0)
−3/2. Integrating with respect to t, we have

∥SΦ∂
3
xu(t)∥2L2(R) ≤ CeCε

2/3

ε2 + Cε2(1 + t)2γ ≤ Cε2(1 + t)2γ,
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whence

∥∂3xu(t)∥L2(R) ≤ e
Cε−2/3∥u(t)∥2

H1(R)∥SΦ∂
3
xu(t)∥L2(R) ≤ Cε(1 + t)γ (2.4.6)

for t ∈ [0, T ).

Step 4: Estimate for ∥∂xJ ∂xu(t)∥L2(R). We also make use of Lemmas 2.3.2 and 2.3.3 in

this step. By using the commutation relation [L, ∂xZ] = 2∂xL and the Leibniz rule for
Z, we have

L∂xZu = q1(u, ux)∂x(∂xZu) + q2(u, ux)∂x(∂xZu) + ρ2,

where q1, q2 are given by (2.4.5), and ρ2 satisfies

∥ρ2∥L2(R) ≤ C∥u∥2W 2,∞(R)(∥u∥H2(R) + ∥Zu∥H1(R)).

Since the relation (2.3.1) leads to

∥Zu∥H1(R) ≤ ∥J ∂xu∥H1(R) + 2t∥N(u, ux)∥H1(R) ≤ Cε2/3(1 + t)γ,

we see that

∥ρ2∥L2(R) ≤
Cε2

(1 + t)1−γ
.

Thus, in the same way as Step 3, we have

d

dt
∥SΦ∂xZu(t)∥2L2(R) ≤

Cε2

(1 + t)1−2γ
,

which yields

∥∂xZu(t)∥L2(R) ≤ Cε(1 + t)γ.

Finally, by using the relation (2.3.1) again, we obtain

∥∂xJ ∂xu(t)∥L2(R) ≤ ∥∂xZu∥L2(R) + 2t∥∂xN(u, ux)∥L2(R)

≤ Cε(1 + t)γ + 2t
Cε2

(1 + t)1−γ

≤ Cε(1 + t)γ (2.4.7)

for t ∈ [0, T ).

Final step. Substituting (2.4.3), (2.4.4), (2.4.6) and (2.4.7) into (2.4.2), we arrive at the
desired estimate

∥u(t)∥H3(R) + ∥J u(t)∥H2(R) ≤ Cε(1 + t)γ

for t ∈ [0, T ).
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2.4.2 Estimates for α

In this part, we will show ⟨ξ⟩2|α(t, ξ)| ≤ Cε for (t, ξ) ∈ [0, T ) × R under the assump-
tion (2.4.1). If t ≤ 1, the Sobolev embedding H1(R) ↪→ L∞(R) yields this estimate
immediately. Hence we may assume T > 1 and t ∈ [1, T ) in what follows.
Now let us introduce a useful lemma, which is due to Hayashi–Naumkin [19], though

the expression is slightly different. We write αω(t, ξ) = α(t, ξ/ω) for ω ∈ R\{0}.

Lemma 2.4.3. Assume that the nonlinear term N satisfies (2.1.3). Then, for l ∈ {0, 1, 2},
the following decomposition holds:

F [U(t)−1∂lxN(u, ux)](ξ) =
(iξ)lν(ξ)

t
|α|2α+

ξei
t
3
ξ2

t
µ1,l(ξ)α

3
3

+
ξei

2t
3
ξ2

t
µ2,l(ξ)

(
α−3

)3
+
ξeitξ

2

t
µ3,l(ξ)|α−1|2α−1 +Rl, (2.4.8)

where µ1,l(ξ), µ2,l(ξ), µ3,l(ξ) are polynomials in ξ of order at most 2 + l, and Rl(t, ξ)
satisfies

2∑
l=0

∥Rl(t)∥L∞(R) ≤
C

t5/4
(
∥u(t)∥H3(R) + ∥J u(t)∥H2(R)

)3
for t ≥ 1.

The proof of this lemma will be given in Section 2.6. It follows from this lemma that

⟨ξ⟩2i∂tα = FU−1(1− ∂2x)Lu
= FU−1N(u, ux)−FU−1∂2xN(u, ux)

=
⟨ξ⟩2ν(ξ)

t
|α|2α+ V +R0 −R2, (2.4.9)

where

V (t, ξ) =
ξeitξ

2/3

t
p1(ξ)α

3
3 +

ξe2itξ
2/3

t
p2(ξ)α−3

3 +
ξeitξ

2

t
p3(ξ)|α−1|2α−1

with pk(ξ) = µk,0(ξ)− µk,2(ξ) (k = 1, 2, 3). We deduce from (2.4.1) and (2.4.9) that

|∂tα(t, ξ)| ≤
Cε2

⟨ξ⟩2t
, (t, ξ) ∈ [1, T )× R.

Also, by using the identity

ξeiωtξ
2

t
A(t, ξ) = i∂t

(
−iξeiωtξ2

1 + iωtξ2
A(t, ξ)

)
− teiωtξ

2

∂t

(
ξA(t, ξ)

t(1 + iωtξ2)

)
,
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we see that V can be rewritten as i∂tV1 + V2 with suitable V1, V2 satisfying

|V1(t, ξ)| ≤
Cε2

t1/2
, |V2(t, ξ)| ≤

Cε2

t3/2
.

Note that

sup
ξ∈R

∣∣∣∣ ξ

1 + iωtξ2

∣∣∣∣ ≤ C

t1/2

if ω ∈ R\{0}. Now we set β(t, ξ) = ⟨ξ⟩2α(t, ξ)− V1(t, ξ) and κ(ξ) = ⟨ξ⟩−4ν(ξ). Then we
have

i∂tβ(t, ξ) =
κ(ξ)

t
|β(t, ξ)|2β(t, ξ) + ρ(t, ξ), (2.4.10)

where

ρ(t, ξ) =
κ(ξ)

t

(∣∣⟨ξ⟩2α∣∣2⟨ξ⟩2α− |β|2β
)
+ V2(t, ξ) +R0(t, ξ)−R2(t, ξ).

Remark that ρ can be regarded as a remainder because we have

|ρ(t, ξ)| ≤ C

t
·
(
Cε2/3

)2 · Cε2
t1/2

+
Cε2

t3/2
+

C

t5/4
·
(
Cε2/3tγ

)3 ≤ Cε2

t1+µ

with µ = 1/4− 3γ > 0. Moreover we have

|β(1, ξ)− ε⟨ξ⟩2Fφ(ξ)|

≤ C
∥∥(1− ∂2x)

(
U(1)−1u(1, ·)− εφ

)∥∥1/2
L2(R)

∥∥(1− ∂2x)
(
U(1)−1u(1, ·)− εφ

)∥∥1/2
H0,1(R)

+ sup
ξ∈R

|V1(1, ξ)|

≤ C

(∫ 1

0

∥∥N(u(t), ux(t))
∥∥
H2(R)dt

)1/2

ε1/2 + Cε2

≤ Cε2,

where we have used the Gagliardo-Nirenberg inequality ∥ϕ∥L∞ ≤ C∥ϕ∥1/2L2 ∥∂xϕ∥1/2L2 . There-
fore we can apply Lemma 2.2.1 with θ0(ξ) = ⟨ξ⟩2Fφ(ξ) and τ1 = τ̃0 to obtain |β(t, ξ)| ≤
Cε, whence

⟨ξ⟩2|α(t, ξ)| ≤ |β(t, ξ)|+ |V1(t, ξ)| ≤ Cε

for (t, ξ) ∈ [1, T )× R, as desired.
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2.5 Proof of Theorem 2.1.1

Now we prove Theorem 2.1.1. First we state a standard local existence result without a
proof. Let t0 ≥ 0 be fixed, and consider the initial value problem{

Lu = N(u, ux), t > t0, x ∈ R,
u(t0, x) = ψ(x), x ∈ R. (2.5.1)

Lemma 2.5.1. Let the nonlinear term N be a cubic homogeneous polynomial in (u, u, ux, ux).
Let ψ ∈ H3 ∩H2,1(R). Then there exists T0 = T0(∥ψ∥H3(R)) > 0, independent of t0, such
that (2.5.1) has a unique solution u ∈ C ([t0, t0 + T0);H

3 ∩H2,1(R)).

See [45], [30], [4], [44], [25], etc., for more details on local existence theorems.

Proof of Theorem 2.1.1. Let Tε be the lifespan defined in the statement of Theorem 2.1.1.
We remark that Lemma 2.5.1 with t0 = 0 and ψ = εφ implies Tε > 0. Next we set

T ∗ = sup{T ∈ [0, Tε) |E(T ) ≤ ε2/3}.

Note that T ∗ > 0 if ε is suitably small, because of the estimate E(0) ≤ Cε ≤ (1/2)ε2/3 and
the continuity of [0, Tε) ∋ T 7→ E(T ). Now, we take σ ∈ (0, τ̃0) and assume T ∗ ≤ eσ/ε

2
.

Then Lemma 2.4.1 with T = T ∗ yields

E(T ∗) ≤ Kε ≤ 1

2
ε2/3

if ε ≤ min{ε0, (2K)−3}. By the continuity of [0, Tε) ∋ T 7→ E(T ), we can choose ∆ > 0
such that

E(T ∗ +∆) ≤ ε2/3.

This contradicts the definition of T ∗. Therefore we must have T ∗ ≥ eσ/ε
2
if ε is suitably

small. Consequently, we have
lim inf
ε→+0

ε2 log Tε ≥ σ.

Since σ ∈ (0, τ̃0) is arbitrary, we arrive at the desired conclusion.

2.6 Proof of Lemmas 2.4.2 and 2.4.3

In this section, we will prove Lemmas 2.4.2 and 2.4.3 along the idea of [19].
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2.6.1 Proof of Lemma 2.4.2

At first we will prove Lemma 2.4.2. We observe that the nonlinear term N satisfying
(2.1.3) can be written as N = F +G, where

F = a1u
2ux + a2uu

2
x + a3u

3
x + b1u2ux + b2uu2x + b3u3x (2.6.1)

+ c1u2ux + c2|u|2ux + c3uu2x + c4|ux|2u+ c5|ux|2ux

and

G = λ1|u|2u+ λ2|u|2ux + λ3u
2ux + λ4|ux|2u+ λ5uu

2
x + λ6|ux|2ux (2.6.2)

with aj, bj, cj, λj ∈ C. Note that G is gauge-invariant, while F is not. By using the
identities

ϕ∂xψ = (∂xϕ)ψ +
1

it

(
ϕJψ − (J ϕ)ψ

)
(2.6.3)

and

ϕ∂xψ = −(∂xϕ)ψ +
1

it

(
(J ϕ)ψ − ϕJψ

)
, (2.6.4)

we see that F can be rewritten as ∂xF1 +
1
it
F2, where

F1 =
a1
3
u3 +

a2
3
u2ux +

a3
3
u2xu+

b1
3
u3 +

b2
3
u2ux +

b3
3
uu2x

+ (c2 − c1)|u|2u+ c3|u|2ux + c4u
2ux + c5|ux|2u

and

F2 =
a2
3
u
(
uJ ux − uxJ u

)
− 2a3

3
ux
(
uJ ux − uxJ u

)
− b2

3
u
(
uJ ux − uxJ u

)
+

2b3
3
ux
(
uJ ux − uxJ u

)
+ (c2 − 2c1)u

(
uJ u− uJ u

)
− c3u

(
uxJ u− uJ ux

)
− c4u

(
uJ ux − uxJ u

)
− c5u

(
uxJ ux − uxJ ux

)
.

We deduce from the relation (2.3.1) that

JN(u, ux) = (Z + 2itL)F1 +
1

it
JF2 + JG = L(tP ) +Q,

where P = 2iF1 and Q = (Z + 2)F1 +
1
it
JF2 + JG. By the Leibniz rule for Z, we have

∥(Z + 2)F1∥L2 ≤ C∥u∥2W 1,∞

(
∥Zu∥H1 + ∥u∥H1

)
.
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On the other hand, since G is gauge-invariant, we can use the identity

J (f1f2f3) = (J f1)f2f3 + f1(J f2)f3 − f1f2J f3

to obtain
∥JG∥L2 ≤ C∥u∥2W 1,∞

(
∥J u∥H1 + ∥u∥L2

)
.

In order to get the L2-bound for 1
it
JF2, we apply the identities

J (f1f2f3) = it
{
∂x(f1f2f3)− (∂xf1)f2f3

}
+ (J f1)f2f3,

J (f1f2f3) = it
{
∂x(f1f2f3) + (∂xf1)f2f3

}
+ (J f1)f2f3

to each term of F2 multiplied by J , and use the inequality

∥J ∂xϕ∥L∞ ≤ C
(
∥J ϕ∥H2 + ∥ϕ∥H1

)
.

Then we have

∥JF2∥L2 ≤ Ct∥u∥2W 2,∞

(
∥J u∥H2 + ∥u∥H1

)
+ C∥u∥W 2,∞

(
∥J u∥H2 + ∥u∥H1

)2
.

Piecing them together, we arrive at the desired decomposition.

2.6.2 Proof of Lemma 2.4.3

Before proceeding to the proof of Lemma 2.4.3, we introduce some notations. We put(
M(t)ϕ

)
(x) = ei

x2

2t ϕ(x),
(
D(t)ϕ

)
(x) =

1√
it
ϕ
(x
t

)
, W(t)ϕ = FM(t)F−1ϕ,

so that U(t) is decomposed into U(t) = M(t)D(t)FM(t) = M(t)D(t)W(t)F . Note that

∥(W(t)− 1)ϕ∥L∞ + ∥(W(t)−1 − 1)ϕ∥L∞ ≤ Ct−1/4∥ϕ∥H1 , (2.6.5)

which comes from the inequalities |eiθ − 1| ≤ C|θ|1/2 and ∥ϕ∥L∞ ≤ C∥ϕ∥1/2L2 ∥∂xϕ∥1/2L2 .
In what follows, we will occasionally omit “(t)” from M(t), D(t), W(t) if it causes no
confusion, and we will write Dω = D(ω) for ω ∈ R\{0}.

Lemma 2.6.1. We have

∥FU−1[f1f2f3]∥L∞ + ∥FU−1[f1f2f3]∥L∞ ≤ C

t1/2
∥f1∥L2∥f2∥L2

(
∥f3∥L2 + ∥J f3∥L2

)
.
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Proof. From the relation FU−1 = W−1D−1M−1 and the estimate ∥W−1ϕ∥L∞ ≤ Ct1/2∥ϕ∥L1 ,
it follows that

∥FU−1[f1f2f3]∥L∞ ≤ Ct1/2∥D−1M−1[f1f2f3]∥L1

= Ct1/2 · t−1/2∥f1f2f3∥L1

≤ C∥f1∥L2∥f2∥L2∥f3∥L∞

≤ Ct−1/2∥f1∥L2∥f2∥L2

(
∥f3∥L2 + ∥J f3∥L2

)
.

We have used the inequality ∥f∥L∞ ≤ Ct−1/2∥f∥1/2L2 ∥J f∥1/2L2 in the last line. The estimate

for ∥FU−1(f1f2f3)∥L∞ can be shown in the same way.

Next we set (Eω(t)f)(y) = eiω
ty2

2 f(y) and Aω(t) = V(t)−1Eω−1(t)− E ω−1
ω (t)Dω.

Lemma 2.6.2. For ω ∈ R\{0}, we have

∥Aω(t)f∥L∞ ≤ Ct−1/4∥f∥H1 .

Proof. It follows from the relation W(t)−1 = U(1
t
) that

W(t)−1Eω−1(t)f(ξ) =

√
t

2πi

∫
R
ei

t
2
(ξ−y)2ei

ω−1
2
ty2f(y) dy

= ei
ω−1
2ω

tξ2

√
t

2πi

∫
R
ei
ωt
2 (

ξ
ω
−y)

2

f(y) dy

= E
ω−1
ω (t)DωW(−ωt)f(ξ).

Hence we deduce from (2.6.5) that

∥Aω(t)f∥L∞ = ∥E
ω−1
ω (t)Dω(W(−ωt)− 1)f∥L∞

≤ C∥(W(−ωt)− 1)f∥L∞

≤ Ct−1/4∥f∥H1 .

Now we are going to prove Lemma 2.4.3. For simplicity of exposition, we consider only
the case where

N(u, ux) = λ|ux|2ux + au3x + bu3x + c|ux|2ux. (2.6.6)
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General cubic terms N satisfying (2.1.3) (or, equivalently, N = F + G with (2.6.1) and
(2.6.2)) can be treated in the same way. Note that

ν(ξ) = iξ3
∫ 2π

0

(
λeiθ − ae3iθ + be−3iθ − ce−iθ

)
e−iθ

dθ

2π
= iλξ3

if N is given by (2.6.6), whereas

ν(ξ) = λ1 + i(λ2 − λ3)ξ + (λ4 − λ5)ξ
2 + iλ6ξ

3 (2.6.7)

if N = F +G with (2.6.1), (2.6.2).
First we consider the case of l = 0. We put α(s) = (iξ)sα so that ∂sxu = MDWα(s).

We also set
(
Mω(t)f

)
(y) = eiω

y2

2t f(y). Then it follows that

N(u, ux) = λM|DWα(1)|2DWα(1) + aM3(DWα(1))3

+ bM−3(DWα(1))3 + cM−1|DWα(1)|2DWα(1)

=
λ

t
MD

[
|Vα(1)|2Vα(1)

]
+
a

t
M3D

[
(Wα(1))3

]
+
b

t
M−3D

[
(Wα(1))3

]
+
c

t
M−1D

[
|Wα(1)|2Wα(1)

]
.

By the relation FU−1MωD = W−1Eω−1, we have

FU−1N(u, ux) =
λ

t
W−1

[
|Wα(1)|2Wα(1)

]
+
a

t
W−1E2

[
(Wα(1))3

]
+
b

t
W−1E−4

[
(Wα(1))3

]
+
c

t
W−1E−2

[
|Wα(1)|2Wα(1)

]
=
λ

t
iξ3|α|2α +

a

t
E

2
3D3

[
−iξ3α3

]
+
b

t
E

4
3D−3

[
iξ3α3

]
+
c

t
E2D−1

[
−iξ3|α|2α

]
+

Ω0

t
,

where

Ω0 =− λ
(
|α(1)|2α(1) − |Wα(1)|2Wα(1)

)
+ λ
(
W−1 − 1

)[
|Wα(1)|2Vα(1)

]
− aE

2
3 (t)D3

[
(α(1))3 − (Wα(1))3

]
+ aA3(t)

[
(Wα(1))3

]
− bE

4
3 (t)D−3

[
(α(1))3 − (Wα(1))3

]
+ bA−3(t)

[
(Wα(1))3

]
− cE2(t)D−1

[
|α(1)|2α(1) − |Wα(1)|2Wα(1)

]
+ cA−1(t)

[
|Wα(1)|2Wα(1)

]
.
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By virtue of (2.6.5) and Lemma 2.6.2, we see that

∥Ω0∥L∞ ≤ C

t1/4
(∥u∥H2 + ∥J u∥H1)3.

Therefore we obtain (2.4.8) with l = 0 by putting µ1,0(ξ) = −i a
27

√
3
ξ2, µ2,0(ξ) =

−b
27

√
3
ξ2,

µ3,0(ξ) = cξ2.
Next we consider the case of l = 1. It follow from the identity (2.6.4) that

∂xN(u, ux) = λ|ux|2uxx + 3au2xuxx + 3bu2xuxx + c|ux|2uxx +
1

it
r1,

where r1 = (λux + cux)
(
(J ux)ux − uxJ ux

)
. By Lemma 2.6.1, we obtain

∥FU−1r1∥L∞ ≤ C

t1/2
(
∥u∥H1 + ∥J u∥H1

)3
.

We also set h1 = λ|ux|2uxx + 3au2xuxx + 3bu2xuxx + c|ux|2uxx so that

FU−1∂xN(u, ux) = FU−1h1 +
1

it
FU−1r1.

Then, as in the previous case, we have

FU−1h1

= −λ
t
ξ4|α|2α +

3a

t
E

2
3D3

[
ξ4α3

]
+

3b

t
E

4
3D−3

[
ξ4α3

]
+
c

t
E2D−1

[
−ξ4|α|2α

]
+

Ω1

t
,

where

Ω1 =− λ
(
|α(1)|2α(2) − |Wα(1)|2Wα(2)

)
+ λ
(
W−1 − 1

)[
|Wα(1)|2Vα(2)

]
− 3aE

2
3 (t)D3

[
(α(1))2α(2) − (Wα(1))2Wα(1)

]
+ 3aA3(t)

[
(Wα(1))2Wα(2)

]
− 3bE

4
3 (t)D−3

[
(α(1))2α(2) − (Wα(1))2Wα(2)

]
+ 3bA−3(t)

[
(Wα(1))2Wα(2)

]
+ cE2(t)D−1

[
|α(1)|2α(2) − |Wα(1)|2Wα(2)

]
+ cA−1(t)

[
|Wα(1)|2Wα(2)

]
.

By (2.6.5) and Lemma 2.6.2, we have

∥Ω1∥L∞ ≤ C

t1/4
(∥u∥H3 + ∥J u∥H2)3.

Therefore, by setting µ1,1(ξ) = a
27

√
3
ξ3, µ2,1(ξ) = b

27
√
3i
ξ3, µ3,1(ξ) = −icξ3, we obtain

(2.4.8) with l = 1.
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Finally we consider the case of l = 2. From the identities (2.6.3) and (2.6.4), it follows
that

∂2xN(u, ux) = λux · ux∂x(uxx) + cux · ux∂x(uxx) + (λuxx + cuxx)∂x
(
|ux|2

)
+ 3aux

(
2u2xx + ux∂x(uxx)

)
+ 3bux

(
2u2xx + ux∂x(uxx)

)
+

1

it
∂xr1

= h2 +
1

it
r2,

where h2 = −λ|uxx|2ux + 9au2xxux + 9bu2xxux − c|uxx|2ux and

r2 = λux
(
(J uxx)ux − uxxJ ux

)
+ cux

(
(J ux)uxx − uxJ uxx

)
+ (λuxx + cuxx)

(
(J ux)ux − uxJ ux

)
+ 3aux

(
uxJ uxx − (J ux)uxx

)
− 3bux

(
uxJ uxx − (J ux)uxx

)
+ ∂xr1.

We deduce as before that

FU−1h2

= −λ
t
iξ5|α|2α +

9a

t
E

2
3D3

[
iξ5α3

]
+

9b

t
E

4
3D−3

[
−iξ5α3

]
− c

t
E2D−1

[
− iξ5|α|2α

]
+

Ω2

t

with

∥Ω2∥L∞ ≤ C

t1/4
(∥u∥H3 + ∥J u∥H2)3.

We also have

∥FU−1r2∥L∞ ≤ C

t1/2
(
∥u∥H2 + ∥J u∥H2

)3
by virtue of Lemma 2.6.1. Now we set µ1,2(ξ) =

ai
27

√
3
ξ4, µ2,2(ξ) =

b
27

√
3
ξ4, µ3,2(ξ) = −cξ4.

Then we arrive at (2.4.8) with l = 2. This completes the proof of Lemma 2.4.3.
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Chapter 3

The lifespan of small solutions to
subcritical nonlinear Schrödinger
equations in dimension d ≤ 3

3.1 Introduction

This chapter is based on the joint work [67] with Hideaki Sunagawa and Shunsuke Yasuda.
We consider the following initial value problem:{

i∂tu+
1

2
∂2xu = λ|u|p−1u, t > 0, x ∈ R,

u(0, x) = εφ(x), x ∈ R,
(3.1.1)

where i =
√
−1, u = u(t, x) is a C-valued unknown function, λ ∈ C and p > 1. φ = φ(x)

is a prescribed C-valued function which belongs to a suitable weighted Sobolev space, and
ε > 0 is a small parameter which is responsible for the size of the initial data. We are
interested in the lifespan Tε for the solution u(t, x) to (3.1.1) in the case of p < 3 and
Imλ > 0. Before going into details, let us summarize the backgrounds briefly.
First we consider the simpler case p > 3. In this case, small data global existence for

(3.1.1) is well-known. Moreover, the solution behaves like the free solution in the large
time (see [76]). On the other hand when 1 < p ≤ 3, the situation changes dramatically,
as pointed out by Strauss [71], Barab [2], Ozawa [62], Hayashi–Naumkin [28], and so on.
Note that this threshold becomes p = 1 + 2/d in the d-dimensional settings.
Next let us turn our attention to the critical case p = 3. In [28], it has been shown that

the solution to (3.1.1) with p = 3 and λ ∈ R behaves like

u(t, x) =
1√
it
α̃(x/t)ei{x

2/(2t)−λ|α̃(x/t)|2 log t} + o(t−1/2) in L∞(Rx)
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as t → ∞ with a suitable C-valued function α̃ satisfying ∥α̃∥L∞(R) ≤ Cε. An important
consequence of this asymptotic expression is that the solution decays like O(t−1/2) in
L∞(Rx), while it does not behave like the free solution unless λ = 0. In other words, the
additional logarithmic factor in the phase reflects the long-range character of the cubic
nonlinear Schrödinger equations in one space dimension. This result has been extended
in [12] to the case where p is less than and sufficiently close to 3. When λ ∈ C, the
situation changes slightly. Indeed, it has been verified in [70] that the small data solution
to (4.1.1) decays like O(t−1/2(log t)−1/2) in L∞(Rx) as t→ ∞ if p = 3 and Imλ < 0. This
gain of additional logarithmic time decay should be interpreted as another kind of long-
range effect (see also [72] for a closely related result for the Klein-Gordon equation). The
above-mentioned result has been extended in [48], [49], [14], [39], etc., to the subcritical
case p < 3 and Imλ < 0. However, it should be noted that these results essentially rely
on the a priori L2-bound for the solution u coming from the conservation law

∥u(t, ·)∥2L2(R) − 2 Imλ

∫ t

0

∥u(τ, ·)∥p+1
Lp+1(R)dτ = ∥u(0, ·)∥2L2(R),

which is valid only when Imλ ≤ 0. In what follows, we focus on the remaining case p ≤ 3
and Imλ > 0. This is the worst situation for small data global existence because the
nonlinearity must be considered as a long-range perturbation and the a priori L2-bound
for u is violated. To the author’s best knowledge, there is no positive result in that case.
As for the lifespan Tε, the standard perturbative argument yields a lower estimate in the
form

Tε ≥
{

eC/ε
2

(when p = 3)
Cε−2(p−1)/(3−p) (when 1 < p < 3)

with some C > 0, provided that ε is suitably small (see Chapter 1, as well as Section 3.3
below for more detail). In other words, we have

lim inf
ε→+0

∫ Tε

1

( ε

t1/2

)p−1

dt > 0.

However, this estimate does not tell us the dependence of Tε on Imλ. So we are led to
the question: how does Tε depend on Imλ? In the cubic case (p = 3), the following more
precise estimate for Tε has been derived in [73] and [66]:

lim inf
ε→+0

(ε2 log Tε) ≥
1

2 Imλ sup
ξ∈R

|Fφ(ξ)|2
,

as we have seen in Chapter 2. This gives an answer to the question raised above for the
cubic case. In fact, more general cubic nonlinear terms depending also on ∂xu have been
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treated in [73] and [66] (see also [58] for a related work). When p < 3 and Imλ > 0, the
situation is the most delicate and quite little is known so far. To the author’s knowledge,
there is only one result which concerns the dependence of Tε on Imλ in the case of p < 3:

Proposition 3.1.1 (Sasaki [69]). Assume 2 ≤ p < 3, Imλ > 0 and (1 + x2)φ ∈ Σ. Let
Tε be the supremum of T > 0 such that (3.1.1) admits a unique solution u ∈ C([0, T ); Σ).
Then we have

lim inf
ε→+0

(
ε2(p−1)/(3−p)Tε

)
≥

 3− p

2(p− 1) Imλ sup
ξ∈R

|Fφ(ξ)|p−1


2/(3−p)

,

where Σ = {f ∈ L2(R) | ∥f∥Σ <∞} with ∥f∥Σ = ∥f∥L2(R) + ∥∂xf∥L2(R) + ∥xf∥L2(R).

However, the approach exploited in [69] has the following two drawbacks:

• the detailed lifespan estimate is unknown in the case of 1 < p < 2,

• it requires faster decay as |x| → ∞ for φ than that for u(t, ·).

The purpose of this chapter is to improve these two points and to give a higher dimensional
generalization. In what follows, we consider a d-dimensional generalization of (3.1.1). For
the notational convenience, we write the power p of the nonlinearity as p = 1 + 2θ/d so
that the condition 1 < p < 1 + 2/d is interpreted as 0 < θ < 1. Then we are led to the
following initial value problem:{

i∂tu+
1

2
∆u = λ|u|2θ/du, t > 0, x ∈ Rd,

u(0, x) = εφ(x), x ∈ Rd,
(3.1.2)

where ∆ = (∂/∂x1)
2 + · · · + (∂/∂xd)

2 for x = (x1, . . . , xd) ∈ Rd. To state the main
result, let us introduce some notation. We define Σs := Hs ∩ H0,s(Rd) with the norm
∥f∥Σs := ∥f∥Hs(Rd) + ∥f∥H0,s(Rd). We set U(t) := exp( it

2
∆) so that the solution v to the

free Schrödinger equation

i∂tv +
1

2
∆v = 0, v(0, x) = ϕ(x)

can be written as v(t) = U(t)ϕ. The main result is as follows.

Theorem 3.1.2. Let 1 ≤ d ≤ 3, 0 < θ < 1 and λ ∈ C with Imλ > 0. Assume

d/2 < s < min{2, 1 + 2θ/d} (3.1.3)
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and φ ∈ Σs. Let Tε be the supremum of T > 0 such that (3.1.2) admits a unique solution
u satisfying U(·)−1u ∈ C([0, T ); Σs). Then we have

lim inf
ε→+0

(
ε2θ/dTε

1−θ) ≥ (1− θ)d

2θ Imλ sup
ξ∈Rd

|Fφ(ξ)|2θ/d
. (3.1.4)

Remark 3.1.3. The assumption (3.1.3) is never satisfied when d ≥ 4. That is the reason
why Theorem 3.1.2 is available only for d ≤ 3. When d = 1 or 2, (3.1.3) is satisfied for
any 0 < θ < 1. In particular, our result can be viewed as an extension of Proposition 3.1.1
because it corresponds to the case of d = 1, 1/2 ≤ θ < 1 and s = 1 in Theorem 3.1.2.
On the other hand, when d = 3, (3.1.3) is satisfied only if θ > 3/4 (or, equivalently,
3/2 < p < 5/3 with p = 1+2θ/3). The author does not know whether the same assertion
holds true or not when d ≥ 4 or d = 3 with θ ≤ 3/4.

Remark 3.1.4. The author does not know whether (3.1.4) is optimal or not. An example
of the blowing-up solution to (3.1.1) with arbitrarily small ε > 0 has been given by Kita
[47] under a particular choice of φ and some additional restrictions on λ and p. However,
it seems difficult to specify the lifespan for the blowing-up solution given in [47].

Now, let us explain the differences between the approach of [69] and ours. The method
of [69] consists of two steps: the first step is to construct a suitable approximate solution
ua which blows up at the expected time, and the second step is to get an a priori estimate
not for the solution u itself but for their difference u−ua (see also [73] for the cubic case).
Drawbacks of this approach come from the first step. In fact, according to Remark 1.3 in
[69], this approach can not be used in the case 1 < p < 2. Remark that this implies the
method of [69] is not suitable for d-dimensional settings when d ≥ 2, because our main
interest is the case of p < 1 + 2/d. Also, in view of Proposition 3.1 in [69], the additional
decay assumption on φ as |x| → ∞ (i.e., higher regularity for Fφ) seems essential for
the method of [69]. On the other hand, our approach presented below does not rely on
approximate solutions at all. Instead, we will reduce the original PDE (3.1.2) to a simpler
ordinary differential equation satisfied by A(t, ξ) = F

[
U(t)−1u(t, ·)

]
(ξ) up to a harmless

remainder term R (see (3.5.1) below). An ODE lemma prepared in Section 3.4 below will
allow us to get an a priori bound for u directly. Similar idea has been used in [66] for
one-dimensional cubic derivative nonlinear Schrödinger equations, but we must be more
careful because we are considering the situation in which the degree of the nonlinearity is
lower.
We close this section with the contents of this chapter. In the next section, we state

basic lemmas which will be useful in the subsequent sections. In Section 3.3, we will derive
a rough lower estimate for Tε, that is, lim inf

ε→+0
(ε2θ/dT 1−θ

ε ) > 0. Section 3.4 is devoted to an
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ODE lemma which plays an important role in getting an a priori bound for the solution.
After that, Theorem 3.1.2 will be proved in Section 3.5 by means of the so-called bootstrap
argument. Finally, in Section 3.6, we discuss the critical case θ = 1.

3.2 Basic lemmas

In this section, we introduce several lemmas that will be useful in the subsequent sections.

Lemma 3.2.1. Let s > d/2. There exists a constant C such that

∥ϕ∥L∞(Rd) ≤
C

(1 + t)d/2
∥U(t)−1ϕ∥Σs

for t ≥ 0.

Proof. We start with the standard Gagliardo-Nirenberg-Sobolev inequality:

∥ϕ∥L∞(Rd) ≤ C∥ϕ∥1−d/2s
L2(Rd)∥(−∆)s/2ϕ∥d/2s

L2(Rd). (3.2.1)

We also introduce M(t) = exp( i|x|
2

2t
) for t > 0. Then we can check that

U(t)|x|sU(t)−1ϕ = M(t)(−t2∆)s/2M(t)−1ϕ

(see e.g., [30]), from which it follows that

td/2∥ϕ∥L∞(Rd) = td/2∥M(t)−1ϕ∥L∞(Rd)

≤ C∥M(t)−1ϕ∥1−d/2s
L2(Rd)∥(−t

2∆)s/2M(t)−1ϕ∥d/2s
L2(Rd)

≤ C∥ϕ∥1−d/2s
L2(Rd)∥|x|

sU(t)−1ϕ∥d/2s
L2(Rd)

for t > 0. Combining the two inequalities above, we obtain

(1 + t)d/2∥ϕ∥L∞(Rd) ≤
C(1 + t)d/2

(1 + td/2)
∥ϕ∥1−d/2s

L2(Rd)

(
∥(−∆)s/2ϕ∥d/2s

L2(Rd) +
∥∥|x|sU(t)−1ϕ

∥∥d/2s
L2(Rd)

)
≤ C

(
∥ϕ∥Hs(Rd) + ∥U(t)−1ϕ∥H0,s(Rd)

)
= C∥U(t)−1ϕ∥Σs .

Lemma 3.2.2. Let γ ∈ (0, 1] and s > d/2 + 2γ. There exists a constant C such that

∥ϕ∥L∞(Rd) ≤
1

td/2
∥FU(t)−1ϕ∥L∞(Rd) +

C

td/2+γ
∥U(t)−1ϕ∥H0,s(Rd)

for t ≥ 1.
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See Lemma 2.2 in [28] for the proof.
Next we define Gp : C → C with p > 1 by Gp(z) = |z|p−1z for z ∈ C. Note that the

nonlinear term in (3.1.2) can be written by λG1+2θ/d(u) with 0 < θ < 1 and Imλ > 0.
The following lemmas are concerned with estimates for Gp:

Lemma 3.2.3. For z, w ∈ C, we have∣∣Gp(z)−Gp(w)
∣∣ ≤ p(|z|+ |w|)p−1|z − w|.

Proof. Without loss of generality, we may assume |z| > |w|. For ν > 0, we observe the
relations

|z|ν − |w|ν = (|z| − |w|)
∫ 1

0

ν
(
t|z|+ (1− t)|w|

)ν−1
dt

and

sup
t∈[0,1]

(
t|z|+ (1− t)|w|

)ν−1|w| ≤

{
(|z|+ |w|)ν−1|w| (if ν ≥ 1)

|w|ν (if ν < 1)

}
≤ (|z|+ |w|)ν .

Then we have∣∣(|z|ν − |w|ν)w
∣∣ ≤ ∣∣|z| − |w|

∣∣ · ν(|z|+ |w|
)ν ≤ ν

(
|z|+ |w|

)ν |z − w|.

We apply the above inequality with ν = p− 1 to obtain∣∣Gp(z)−Gp(w)
∣∣ ≤ ∣∣(|z|p−1 − |w|p−1)w

∣∣+ |z|p−1|z − w| ≤ p
(
|z|+ |w|

)p−1|z − w|.

Lemma 3.2.4. Let 0 ≤ s < min{2, p}. There exists a constant C such that

∥Gp(ϕ)∥Hs(Rd) ≤ C∥ϕ∥p−1
L∞(Rd)∥ϕ∥Hs(Rd)

and
∥U(t)−1Gp(ϕ)∥H0,s(Rd) ≤ C∥ϕ∥p−1

L∞(Rd)∥U(t)
−1ϕ∥H0,s(Rd)

for t ≥ 0.

For the proof, see Lemma 3.4 in [11], Lemma 2.3 in [28], etc.

Corollary 3.2.5. Let d/2 < s < min{2, p}. There exists a constant C such that

∥U(t)−1Gp(ϕ)∥Σs ≤
C

(1 + t)d(p−1)/2
∥U(t)−1ϕ∥pΣs

for t ≥ 0.

34



Proof. By Lemmas 3.2.4 and 3.2.1, we have

∥U(t)−1Gp(ϕ)∥Σs = ∥Gp(ϕ)∥Hs(Rd) +
∥∥U(t)−1Gp(ϕ)

∥∥
H0,s(Rd)

≤ C∥ϕ∥p−1
L∞(Rd)

(
∥ϕ∥Hs(Rd) + ∥U(t)−1ϕ∥H0,s(Rd)

)
≤ C

(1 + t)d(p−1)/2
∥U(t)−1ϕ∥pΣs .

Lemma 3.2.6. Let γ ∈ (0, 1/2] and d/2 + 2γ < s < min{2, p}. Then there exists a
constant C such that∥∥∥∥FU(t)−1Gp(ϕ)−

1

td(p−1)/2
Gp

(
FU(t)−1ϕ

)∥∥∥∥
L∞(Rd)

≤ C

td(p−1)/2+γ
∥U(t)−1ϕ∥p

H0,s(Rd)

for t ≥ 1.

This lemma can be shown in almost the same way as the derivation of (3.16) and (3.17)
in [28] (see also Lemma 2.2 in [48]), so we skip the proof.

3.3 A rough lower estimate for the lifespan

In what follows, we write N(u) = λ|u|2θ/du = λG1+2θ/d(u) and Φ = ∥φ∥Σs , where s
satisfies (3.1.3). The goal of this section is to derive a rough lower estimate for Tε. The
argument of this section is quite standard and any new idea is not needed, so we shall be
brief.

Proposition 3.3.1. Let Tε be the lifespan defined in the statement of Theorem 3.1.2.
There exists D0 > 0 such that Tε ≥ D0ε

−2θ/(1−θ)d. Moreover the solution u satisfies

∥U(t)−1u(t)∥Σs ≤ 2Φε (3.3.1)

for t ≤ D0ε
−2θ/(1−θ)d.

Proof. Since the local existence in Σs is well-known (see e.g., [3] and the references cited
therein), what we have to do is to see the solution u(t) stays bounded as long as t is less
than the expected value.
Let T > 0 and let u(t) be the solution to (3.1.2) in the time interval [0, T ). We set

E(T ) = sup
t∈[0,T )

∥U(t)−1u(t)∥Σs .
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Then, it follows from Corollary 3.2.5 that∥∥U(t)−1N(u)
∥∥
Σs

≤ CE(T )2θ/d+1

(1 + t)θ

for t < T . Therefore the standard energy integral method leads to

E(T ) ≤ ∥u(0)∥Σs + C

∫ T

0

∥∥U(t)−1N(u)
∥∥
Σs
dt

≤ ε∥φ∥Σs + CE(T )2θ/d+1

∫ T

0

dt

(1 + t)θ

≤ Φε+ C∗E(T )
2θ/d+1T 1−θ,

where the constant C∗ is independent of ε and T . With this C∗, we choose D0 > 0 so that

C∗3
1+2θ/dΦ2θ/dD0

1−θ ≤ 1.

Now we prove Proposition 3.3.1 via the bootstrap arguement. We assume a weak bound
E(T ) ≤ 3Φε. Then the above estimate yields the stronger bound

E(T ) ≤ Φε+ C∗(3Φε)
2θ/d+1(D0ε

−2θ/d(1−θ))1−θ ≤ 2Φε

if T ≤ D0ε
−2θ/d(1−θ). This shows that the solution u(t) can exist as long as t ≤ D0ε

−2θ/d(1−θ).
In other words, we have Tε ≥ D0ε

−2θ/d(1−θ). We also have the desired estimate (3.3.1).

Remark 3.3.2. In the proof of Proposition 3.3.1, we do not use any information on the
sign of Imλ. We need something more to clarify the dependence of Tε on Imλ, that is
our main purpose of the present work.

3.4 An ODE Lemma

In this section, we introduce an ODE lemma which will be used effectively in Section 3.5
and Section 3.8. The argument in this section is a modification of that of §2 in [66] to fit
for the present purpose.
We suppose 0 < a < 1, b > 0 and λ ∈ C with Imλ > 0, so that we will choose a = θ

and b = 2θ
d
in Section 3.5. Let ψ0 : Rd → C be a continuous function satisfying

Ψ0 := sup
ξ∈Rd

|ψ0(ξ)| <∞.

We set q = b
2(1−a) and define τ1 > 0 by

1

τ1
:=
(
2q ImλΨ0

b
)1/(1−a)

.
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For fixed t∗ > 0, let η0 : [t∗, T )× Rd → C be a solution to{
i∂tη0 =

λ

ta
|η0|bη0, t > t∗, ξ ∈ Rd,

η0(t∗, ξ) = εψ0(ξ), ξ ∈ Rd,
(3.4.1)

where ε > 0 is a parameter. It is immediate to check that

|η0(t, ξ)|b =
(ε|ψ0(ξ)|)b

1 + 2q Imλ|ψ0(ξ)|bεbt1−a∗ − 2q Imλ|ψ0(ξ)|bεbt1−a
,

as long as the denominator is strictly positive. In view of this expression, we see that

sup
(t,ξ)∈[t∗,σε−2q ]×Rd

|η0(t, ξ)| ≤ C0ε (3.4.2)

for σ ∈ (0, τ1), where

C0 =
Ψ0(

1− (σ/τ1)1−a
)1/b .

Next we consider a perturbation of (4.3.1). Let T > t∗ and let ψ1 : Rd → C, ρ :
[t∗, T )× Rd → C be continuous functions satisfying

|ψ1(ξ)| ≤ C1ε
1+δ

and

|ρ(t, ξ)| ≤ C2ε
1+b+δ

ta

with some positive constants C1, C2 and δ. Let η : [t∗, T )× Rd → C be a solution to{
i∂tη =

λ

ta
|η|bη + ρ, t ∈ (t∗, T ), ξ ∈ Rd,

η(t∗, ξ) = εψ0(ξ) + ψ1(ξ), ξ ∈ Rd.

The following lemma asserts that an estimate similar to (3.4.2) remains valid if (4.3.1) is
perturbed by ρ and ψ1:

Lemma 3.4.1. Let σ ∈ (0, τ1) and let η(t, ξ) be as above. We set T∗ = min{T, σε−2q} for
0 < ε ≤ min{1,M−1/δ}. We have

|η(t, ξ)| ≤ C0ε+Mε1+δ ≤ (C0 + 1)ε

for (t, ξ) ∈ [t∗, T∗)× Rd, where

M = 2

(
C2

1 +
C2

2

2C3

)1/2

exp

(
C3σ

1−a

2(1− a)

)
with

C3 = 2|λ|(b+ 1)(2C0 + 1)b +
1

2
.
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Proof. We set w = η − η0 and

T∗∗ = sup
{
T̃ ∈ [t∗, T∗)

∣∣∣ sup
(t,ξ)∈[t∗,T̃ )×Rd

|w(t, ξ)| ≤Mε1+δ
}
.

We observe that

i∂tw =
λ

ta

(
|η0 + w|b(η0 + w)− |η0|bη0

)
+ ρ, w(t∗, ξ) = ψ1(ξ).

We also note that T∗∗ > t∗, because of the estimate

|w(t∗, ξ)| = |ψ1(ξ)| ≤ C1ε
1+δ ≤ M

2
ε1+δ

and the continuity of w. Now we set

f(t, ξ) = |w(t, ξ)|2 + C2
2

2C3

ε2+2δ.

Then it follows from Lemma 3.2.3 that

∂tf(t, ξ) = 2 Im
(
i∂tw · w

)
≤ 2|λ|

ta
(b+ 1)

(
2|η0|+ |w|

)b
|w|2 + |ρ||w|

≤ 2|λ|(b+ 1)

ta

(
2C0ε+Mε1+δ

)b
|w|2 + |w| · C2ε

1+b+δ

ta

≤ εb

ta

{(
C3 −

1

2

)
|w|2 + |w| · C2ε

1+δ

}
≤ εb

ta

(
C3|w|2 +

C2
2

2
ε2+2δ

)
=
C3ε

b

ta
f(t, ξ)

for t ∈ (t∗, T∗∗), as well as

f(t∗, ξ) ≤ (C1ε
1+δ)2 +

C2
2

2C3

ε2+2δ ≤
(
C2

1 +
C2

2

2C3

)
ε2+2δ.

These lead to

f(t, ξ) ≤ f(t∗, ξ) exp

(∫ σε−2q

t∗

C3ε
b

τa
dτ

)

≤
(
C2

1 +
C2

2

2C3

)
ε2+2δ exp

(
C3σ

1−a

1− a
εb−2q(1−a)

)
≤
(
M

2
ε1+δ

)2

,
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whence

|w(t, ξ)| ≤
√
f(t, ξ) ≤ M

2
ε1+δ

for (t, ξ) ∈ [t∗, T∗∗)× Rd. This contradicts the definition of T∗∗ if T∗∗ < T∗. Therefore we
conclude that T∗∗ = T∗. In other words, we have

sup
(t,ξ)∈[t∗,T∗)×Rd

|w(t, ξ)| ≤
√
f(t, ξ) ≤Mε1+δ.

Going back to the definition of w, we have

|η(t, ξ)| ≤ |η0(t, ξ)|+ |w(t, ξ)| ≤ C0ε+Mε1+δ

for (t, ξ) ∈ [t∗, T∗)× Rd, as desired.

Next we consider the case of a = 1 and b = 2/d. We suppose λ ∈ C with Imλ > 0. Let
φ0 : Rd → C be a continuous function satisfying

sup
ξ∈Rd

|φ0(ξ)| <∞.

We define τ2 > 0 by

τ2 :=
d

2 Imλ sup
ξ∈Rd

|φ0(ξ)|2/d
.

Let β0 : [1, T )× Rd → C be a solution to{
i∂tβ0 =

λ

t
|β0|2/dβ0, t > 1, ξ ∈ Rd,

β0(1, ξ) = εφ0(ξ), ξ ∈ Rd,
(3.4.3)

where ε > 0 is a parameter. Then it is easy to see that

|β0(t, ξ)|2/d =
(ε|φ0(ξ)|)2/d

1− 2

d
Imλ|φ0(ξ)|2/dε2/d log t

,

as long as the denominator is strictly positive. In view of this expression, we can see that

sup
(t,ξ)∈[1,eσ/ε2/d ]×Rd

|β0(t, ξ)| ≤ D0ε (3.4.4)

for σ ∈ (0, τ2), where

D0 =
1

(1− (σ/τ2))d/2
sup
ξ∈Rd

|φ0(ξ)|.
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Next we consider a perturbation of (3.4.3). Let T > 1 and let φ1 : Rd → C, ρ : [1, T ) ×
Rd → C be continuous functions satisfying

sup
ξ∈Rd

|φ1(ξ)| ≤ D1ε
1+δ, sup

(t,ξ)∈[1,T )×Rd
t1+µ|ρ(t, ξ)| ≤ D2ε

1+δ

with some positive constants D1, D2, δ and µ. Let β : [1, T )× Rd → C be a solution to{
i∂tβ =

λ

t
|β|2/dβ + ρ, t ∈ (1, T ), ξ ∈ Rd,

β(1, ξ) = εφ0(ξ) + φ1(ξ), ξ ∈ Rd.

The following lemma asserts that an estimate similar to (3.4.2) remains valid if (3.4.3) is
perturbed by ρ and φ1:

Lemma 3.4.2. Let σ ∈ (0, τ2) and let β(t, ξ) be as above. We set T∗ = min{T, eσ/ε2/d}
for 0 < ε ≤ min{1,M−1/δ}. We have

|β(t, ξ)| ≤ D0ε+Mε1+δ ≤ (D0 + 1)ε

for (t, ξ) ∈ [1, T∗)× Rd, where

M =

(
2D1 +

D2

µ

)
eD3σ

with
D3 = |λ|(1 + 2/d)(2C0 + 1)2/d.

Proof. We set w = β − β0 and

T∗∗ = sup
{
T̃ ∈ [1, T∗)

∣∣∣ sup
(t,ξ)∈[1,T̃ )×Rd

|w(t, ξ)| ≤Mε1+δ
}
.

Note that T∗∗ > 1, because of the estimate

|w(1, ξ)| = |φ1(ξ)| ≤ D1ε
1+δ ≤ M

2
ε1+δ

and the continuity of w. We observe that

i∂tw =
λ

t

(
|β0 + w|2/d(β0 + w)− |β0|2/dβ0

)
+ ρ.
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Then it follows from Lemma 3.2.3 that

∂t
(
|w|2

)
= 2 Im

(
i∂tw · w

)
≤ 2|λ|

t
(1 + 2/d)

(
2|β0|+ |w|

)2/d
|w|2 + |ρ||w|

≤ 2|λ|
t

(1 + 2/d)
(
2D0ε+Mε1+δ

)2/d
|w|2 + |ρ||w|

≤ 2

t
D3ε

2/d|w|2 + D2ε
1+δ

t1+µ
|w|

for t ∈ (1, T∗∗). By the Gronwall-type arguement, we obtain

|w(t, ξ)| ≤
(
|φ1(ξ)|+

∫ t

1

D2ε
1+δ

2s1+µ+D3ε2/d
ds

)
eD3ε2/d log t

≤
(
D1ε

1+δ +
D2ε

1+δ

2(µ+D3ε2/d)

)
eD3σ

≤ M

2
ε1+δ

for (t, ξ) ∈ [1, T∗∗)× Rd. This contradicts the definition of T∗∗ if T∗∗ < T∗. Therefore we
conclude that T∗∗ = T∗. In other words, we have

sup
(t,ξ)∈[1,T∗)×Rd

|w(t, ξ)| ≤Mε1+δ,

whence
|β(t, ξ)| ≤ |β0(t, ξ)|+ |w(t, ξ)| ≤ D0ε+Mε1+δ

for (t, ξ) ∈ [1, T∗)× Rd, as desired.

3.5 Bootstrap argument in the large time

Now we are ready to pursue the behavior of the solution u(t) of (3.1.2) for t ≳ o(ε−2θ/d(1−θ)).
For this purpose, we set t∗ = ε−θ/(1−θ)d, and let ε be small enough to satisfy εθ/(1−θ)d < D0.
Then, since t∗ ≤ D0ε

−2θ/(1−θ)d, Proposition 3.3.1 gives us E(t∗) ≤ 2Φε. Next we set

τ0 :=

 (1− θ)d

2θ Imλ sup
ξ∈Rd

|Fφ(ξ)|2θ/d


1/(1−θ)
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and fix σ ∈ (0, τ0), T ∈ (t∗, σε
−2θ/d(1−θ)]. Note that the right-hand side in (3.1.4) is equal

to τ 1−θ0 , and that τ0 = τ1, when we choose a = θ and b = 2θ
d
. For the solution u(t) in the

interval t ∈ [0, T ), we put

E(T ) = sup
t∈[0,T )

∥U(t)−1u(t)∥Σs

as in the proof of Proposition 3.3.1. The following lemma is the main step toward Theorem
3.1.2.

Lemma 3.5.1. Let σ and T be as above. Then there exist constants ε0 > 0 and K > 4Φ,
which are independent of T , such that the estimate E(T ) ≤ Kε implies the better estimate
E(T ) ≤ Kε/2 if ε ∈ (0, ε0].

Proof. It suffices to consider t ∈ [t∗, T ), because we already know that E(t∗) ≤ 2Φε. For
t ∈ [t∗, T ), we set A(t, ξ) = F

[
U(t)−1u(t, ·)

]
(ξ) and

R(t, ξ) = F
[
U(t)−1N(u(t, ·))

]
(ξ)− t−θN(A(t, ξ)),

so that

i∂tA = FU(t)−1

(
i∂t +

1

2
∆

)
u = FU(t)−1N(u) =

λ

tθ
|A|2θ/dA+R. (3.5.1)

Next we take γ = (2s − d)/8 ∈ (0, 1/2]. Note that s − d/2 = 4γ > 2γ. Since R can be
written as

R(t, ξ) = λ
(
FU(t)−1G1+2θ/d(u)− t−θG1+2θ/d(FU(t)−1u)

)
,

Lemma 3.2.6 yields

|R(t, ξ)| ≤ C

tθ+γ
E(T )2θ/d+1 ≤ Cε1+2θ/d

tθ
K1+2θ/dt−γ∗ ≤ Cε1+2θ/d+γθ/2d(1−θ)

tθ

if E(T ) ≤ Kε and K1+2θ/dεγθ/2d(1−θ) ≤ 1. Moreover, when we put ψ(ξ) = A(t∗, ξ) −
εFφ(ξ), we have

|ψ(ξ)| ≤ C∥U(t∗)−1u(t∗, ·)− εφ∥1−d/2s
L2(Rd)∥U(t∗)

−1u(t∗, ·)− εφ∥d/2s
H0,s(Rd)

≤ C

(∫ t∗

0

∥U(t)−1N(u)∥L2(Rd) dt

)1−d/2s

(Cε)d/2s

≤ C

(∫ ε−θ/(1−θ)d

0

(2Φε)1+2θ/d

(1 + t)θ
dt

)1−d/2s

(Cε)d/2s

≤ Cε1+3θ(1/d−1/2s),
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where we have used the Gagliardo-Nirenberg-Sobolev inequality (3.2.1), Lemma 3.2.4,
Lemma 3.2.1 and Proposition 3.3.1. Therefore we can apply Lemma 3.4.1 with η = A,
a = θ, b = 2θ/d, δ = min{3θ(1/d− 1/2s), γθ/2d(1− θ)}, ψ0 = Fφ, ψ1 = ψ and ρ = R to
obtain

|A(t, ξ)| ≤ (C0 + 1)ε

for (t, ξ) ∈ [t∗, T )× Rd, where

C0 =
1

(1− (σ/τ0)1−θ)d/2θ
sup
ξ∈Rd

|Fφ(ξ)|.

Note that C0 is independent of ε, K and T . By this estimate and Lemma 3.2.2, we have

∥u(t)∥L∞(Rd) ≤ t−d/2∥A(t, ·)∥L∞(Rd) + Ct−d/2−γ∥U(t)−1u(t)∥Σs

≤ t−d/2
(
(C0 + 1)ε+ CKεt−γ∗

)
≤ t−d/2

(
Cε+ CKε1+γθ/d(1−θ)

)
≤ Cεt−d/2,

if Kεγθ/d(1−θ) ≤ 1. By the standard energy inequality combined with Lemma 3.2.4, we
obtain

sup
t∗≤t<T

∥U(t)−1u(t)∥Σs ≤ ∥U(t∗)−1u(t∗)∥Σs exp
(∫ T

t∗

C∥u(t)∥2θ/d
L∞(Rd)dt

)
≤ 2Φε exp

(
Cε2θ/d

∫ σε−2θ/d(1−θ)

0

dt

tθ

)
≤
(
2ΦeC⋆

)
ε

for t ∈ [t∗, T ), where the constant C⋆ is independent of ε, K and T . Now we set K =
4ΦeC⋆ . Then we arrive at the desired estimate E(T ) ≤ Kε/2.

Proof of Theorem 3.1.2. Let Tε be the lifespan defined in the statement of Theorem 3.1.2.
We fix σ ∈ (0, τ0) and set

T ∗ = sup
{
t ∈ [0, Tε)

∣∣ E(t) ≤ Kε
}
,

where K is given in Lemma 3.5.1. Now we assume T ∗ ≤ σε−2θ/d(1−θ). Then, Lemma 3.5.1
with T = T ∗ implies E(T ∗) ≤ Kε/2 if ε ≤ ε0. By the continuity of [0, Tε) ∋ T 7→ E(T ),
we can choose δ̃ > 0 such that E(T ∗ + δ̃) ≤ Kε, which contradicts the definition of T ∗.
Therefore we must have T ∗ ≥ σε−2θ/d(1−θ) if ε ≤ ε0. As a consequence, we obtain

lim inf
ε→+0

ε2θ/dTε
1−θ ≥ σ1−θ.

Since σ ∈ (0, τ0) is arbitrary, we arrive at the desired estimate (3.1.4).
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3.6 The critical case

We consider the critical case θ = 1, that is,{
i∂tu+

1

2
∆u = λ|u|2/du, t > 0, x ∈ Rd,

u(0, x) = εφ(x), x ∈ Rd,
(3.6.1)

where λ ∈ C with Imλ > 0. As mentioned in Section 3.1, one dimensional case (d = 1)
has been covered in the previous works [73] and [66]. Minor modifications of the method
in the previous sections allow us to treat the case of d = 2, 3.

Theorem 3.6.1. Let 1 ≤ d ≤ 3 and λ ∈ C with Imλ > 0. Assume φ ∈ Σs with s
satisfying (3.1.3). Let Tε be the supremum of T > 0 such that (3.6.1) admits a unique
solution u satisfying U(·)−1u ∈ C([0, T ); Σs). Then we have

lim inf
ε→+0

(
ε2/d log Tε

)
≥ d

2 Imλ sup
ξ∈Rd

|Fφ(ξ)|2/d
.

Since the proof of Theorem 3.6.1 is almost the same as that for Theorem 3.1.2, we only
prove an a priori estimate for the solution to (3.6.1).

Throughout this section, we fix σ ∈ (0, τ2) and T ∈ (0, eσ/ε
(2/d)

], where

τ2 :=
d

2 Imλ sup
ξ∈Rd

|Fφ(ξ)|2/d
.

Let u be a solution to (3.6.1) satisfying U(·)−1u ∈ C([0, T ); Σs). We set

α(t, ξ) := F
[
U(t)−1u(t, ·)

]
(ξ).

We also define

E(T ) := sup
(t,ξ)∈[0,T )×Rd

(|α(t, ξ)|) + sup
0≤t<T

[
(1 + t)−γ(∥U(t)−1u(t)∥Σs)

]
with γ = (2s− d)/8 ∈ (0, 1/2]. Our goal here is to prove the following:

Lemma 3.6.2. Let σ, T and γ be as above. Then there exist positive constants ε0 and
K > C̃ + 1, where C̃ is defined by (3.6.4) below, not depending on T , such that

E(T ) ≤ Kε (3.6.2)

implies the stronger estimate

E(T ) ≤ K

2
ε,

provided that ε ∈ (0, ε0].

We divide the proof of this lemma into two subsections.

44



3.6.1 L2-estimates

In the first part, we consider the bound for ∥U(t)−1u(t)∥Σs . We first remark that Lemma 3.2.2
and the assumption (3.6.2) lead to

∥u(t)∥L∞(Rd) ≤
Cε

td/2

for t ≥ 1. Note that s−d/2 = 4γ > 2γ. Indeed the Sobolev embeddingHs(Rd) ↪→ L∞(Rd)
yields

∥u(t)∥L∞(Rd) ≤ C∥u(t)∥Hs(Rd) ≤ Cε

for t ≤ 1. From these, we have

∥u(t)∥L∞(Rd) ≤
Cε

(1 + t)d/2
(3.6.3)

for t ∈ [0, T ). It follows from Lemma 3.2.4, (3.6.3) and the assumption (3.6.2) that

∥∥U(t)−1N(u(t))
∥∥
Σs

≤ C∥u(t)∥1+2/d

L∞(Rd)∥U(t)
−1u(t)∥Σs ≤

Cε1+2/d

(1 + t)1−γ

for t < T . Therefore the standard energy integral method leads to

∥U(t)−1u(t)∥Σs ≤ ∥u(0)∥Σs + C

∫ t

0

∥∥U(τ)−1N(u(τ))
∥∥
Σs
dτ

≤ ε∥φ∥Σs + Cε1+2/d

∫ t

0

dτ

(1 + τ)1−γ

≤ C∗ε(1 + t)γ,

where the positive constant C∗ is independent of ε and T .

3.6.2 Estimates for α

In this part, we will show |α(t, ξ)| ≤ Cε for (t, ξ) ∈ [0, T ) × Rd under the assumption
(3.6.2). When 0 ≤ t ≤ 1, the desired estimate follows immediately from the Sobolev
embedding Hs(Rd) ↪→ L∞(Rd) and (3.6.2). Hence we have only to consider the case of
T > 1 and t ∈ [1, T ). We have

i∂tα = FU(t)−1

(
i∂t +

1

2
∆

)
u = FU(t)−1N(u) =

λ

t
|α|2/dα +R1,
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where

R1(t, ξ) = F
[
U(t)−1N(u(t, ·))

]
(ξ)− t−1N(α(t, ξ))

= λ
(
FU(t)−1G1+2/d(u)− t−1G1+2/d(FU(t)−1u)

)
.

The proof of Lemma 3.2.6 yields

|R1(t, ξ)| ≤
Cε2/d+1

t1+γ
.

Moreover we have

|α(1, ξ)− εFφ(ξ)|
≤ C∥U(1)−1u(1, ·)− εφ∥1−d/2s

L2(Rd)∥U(1)
−1u(1, ·)− εφ∥d/2s

H0,s(Rd)

≤ C

(∫ 1

0

∥U(τ)−1N(u(τ))∥L2(Rd) dτ

)1−d/2s

(Cε)d/2s

≤ C

(∫ 1

0

ε1+2/d

(1 + τ)1−γ
dτ

)1−d/2s

(Cε)d/2s

≤ Cε1+3(1/d−1/2s),

where we have used the Gagliardo-Nirenberg-Sobolev inequality (3.2.1), Lemma 3.2.4,
Lemma 3.2.1 and Proposition 3.3.1.
Therefore we can apply Lemma 3.4.2 with β = α, δ = min{3(1/d − 1/2s), 2/d}, φ0 =

Fφ, φ1 = α(1)− εFφ and ρ = R1 to obtain

|α(t, ξ)| ≤ (C̃ + 1)ε

for (t, ξ) ∈ [1, T )× Rd, where

C̃ =
1

(1− (σ/τ2))d/2
sup
ξ∈Rd

|Fφ(ξ)|. (3.6.4)

Now we set K = 2max{C∗, C̃ + 1}. Then we arrive at the desired estimate E(T ) ≤
Kε/2.
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Chapter 4

The lifespan of small solutions to a
system of cubic nonlinear
Schrödinger equations in one space
dimension

4.1 Introduction

This chapter is based on the author’s work [65]. We consider the following initial value
problem: {

Lmjuj = Fj(u), t > 0, x ∈ R,
uj(0, x) = εφj(x), x ∈ R (4.1.1)

for j = 1, . . . , N , where Lm = i∂t +
1
2m
∂2x, i =

√
−1, mj ∈ R\{0} and u = (uj(t, x))1≤j≤N

is a CN -valued unknown function. The nonlinear term F = (Fj)1≤j≤N is assumed to be a
cubic homogeneous polynomial in (u, u). Also we assume that the system (4.1.1) satisfies
the so-called gauge invariance:

Fj(e
im1θz1, . . . , e

imNθzN) = eimjθFj(z1, . . . , zN)

for j = 1, . . . , N and θ ∈ R, z = (zj)1≤j≤N ∈ CN . ε > 0 is a small parameter which is
responsible for the size of the initial data, and φ = (φj(x))1≤j≤N is a CN -valued known
function which belongs to (H1 ∩H0,1(R))N . We are interested in large-time behavior of
the small amplitude solution for (4.1.1).
Let us recall the backgrounds briefly. We begin with the single case (N = 1):

i∂tu+
1

2
∂2xu = λ|u|2u, t > 0, x ∈ R (4.1.2)
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with λ ∈ R. According to Hayashi–Naumkin [28], the solution to (4.1.2) with small initial
data exists globally in time and the global solution behaves like

u(t, x) =
1√
it
α̃(x/t) exp

(
i
x2

2t
− iλ|α̃(x/t)|2 log t

)
+ o(t−1/2)

as t → +∞ uniformly in x ∈ R, where α̃ is a suitable C-valued function on R satisfying
∥α̃∥L∞(R) ≲ ε. An important consequence of this asymptotic expression is that the solution
decays like O(t−1/2) in L∞(Rx), while it does not behave like the free solution unless λ = 0.
In other words, the additional logarithmic factor in the phase reflects the long-range
character of the cubic nonlinear Schrödinger equations in one space dimension. If λ ∈ C
in (4.1.2), another kind of long-range effect can be observed. Shimomura [70] showed that
the small data solution to (4.1.2) exists globally in time and decays like O(t−1/2(log t)−1/2)
in L∞(Rx) as t→ ∞ if Imλ < 0. This gain of additional logarithmic time decay should be
interpreted as another kind of long-range effect. If Imλ > 0, Sunagawa [73] and Sagawa–
Sunagawa [66] have derived the following more precise estimate for the lifespan Tε of the
solution to (4.1.2) with initial data u(0, x) = εϕ(x):

lim inf
ε→+0

(ε2 log Tε) ≥
1

2 Imλ sup
ξ∈R

|Fϕ(ξ)|2
, (4.1.3)

as we have mentioned in previous chapters. This estimate tells us the dependence of Tε
on Imλ. Roughly speaking, the estimate (4.1.3) is derived from the ordinary differential
equation {

i∂tf(t, ξ) =
λ
t
|f(t, ξ)|2f(t, ξ), t > 1, ξ ∈ R,

f(1, ξ) = εFϕ(ξ), ξ ∈ R.

This ordinary differential equation can be solved explicitly as follows:

|f(t, ξ)|2 = ε2|Fϕ(ξ)|2

1− 2 Imλ|Fϕ(ξ)|2ε2 log t
,

as long as the denominator is strictly positive. Hence the solution f(t, ξ) blows up at

ε2 log t =
1

2 Imλ sup
ξ∈R

|Fϕ(ξ)|2
.

This observation implies that the small data solution u(t, x) of (4.1.2) with Imλ > 0 may
blow up in finite time. An example of the blowing-up solution to (4.1.2) with arbitrarily
small ε > 0 has been given by Kita [47] under a particular choice of ϕ when Imλ > 0.
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However, it seems difficult to specify the lifespan for the blowing-up solution given in [47],
and the optimality of (4.1.3) is left to be unknown. Next let us turn our attentions to
the system case (N ≥ 2). An interesting feature in the system case is that the behavior
of solutions are affected by the combinations of the masses as well as the structure of the
nonlinearity (see e.g., [7], [14], [15], [31], [34], [37], [43], [46], [51], [52], [53], [61], [64], [68],
[77], etc.). In [52], several structural conditions on F have been introduced under which
small data global existence holds, and time-decay properties of the global solutions have
been investigated. As a result, we come up with the following question: what happens if
the structural conditions on F given in [52] are violated? However, it seems difficult to
treat the general N -component system (4.1.1). As the first step we consider the following
two-component system (N = 2):

Lm1u1(t, x) = λ|u2(t, x)|2u1(t, x), t > 0, x ∈ R,
Lm2u2(t, x) = µ|u1(t, x)|2u2(t, x), t > 0, x ∈ R,
u1(0, x) = εφ(x), u2(0, x) = εψ(x), x ∈ R

(4.1.4)

with m1, m2 ∈ R\{0}, λ, µ ∈ C and φ, ψ ∈ H1 ∩ H0,1(R). This kind of the two-
component nonlinear Schrödinger system appears in physics (see [32] and [33]). The
approach of Li–Sunagawa [52] implies small data global existence and boundedness of the
solution u = (u1, u2) for (4.1.4) under the either of the following three conditions:

• Imλ < 0,

• Imµ < 0,

• Imλ = Imµ = 0.

According to [52], large-time behavior of the solution for (4.1.4) deeply relates to the
following system of ordinary differential equations: i∂tA1(t, ξ) =

λ
t
|A2(t, ξ)|2A1(t, ξ), t > 1, ξ ∈ R,

i∂tA2(t, ξ) =
µ
t
|A1(t, ξ)|2A2(t, ξ), t > 1, ξ ∈ R,

A1(1, ξ) = εFm1φ(ξ), A2(1, ξ) = εFm2ψ(ξ), ξ ∈ R,
(4.1.5)

where Fm denotes the scaled Fourier transform which will be defined in the next section.
We note that global existence and boundedness of the solution A = (A1, A2) to the reduced
system (4.1.5) holds in this case. We check it for Imλ < 0 (the same is true for the other
cases). Multiplying the equations of system (4.1.5) by A1 and A2 respectively, and taking
the imaginary part of the result, we have

∂t(|A1(t, ξ)|2) = 2 Imλ
t

|A1(t, ξ)|2|A2(t, ξ)|2, t > 1, ξ ∈ R,
∂t(|A2(t, ξ)|2) = 2 Imµ

t
|A1(t, ξ)|2|A2(t, ξ)|2, t > 1, ξ ∈ R,

A1(1, ξ) = εFm1φ(ξ), A2(1, ξ) = εFm2ψ(ξ), ξ ∈ R.
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Therefore we see

∂t(| Imµ||A1(t, ξ)|2 − Imλ|A2(t, ξ)|2) =
2 Imλ(| Imµ| − Imµ)

t
|A1|2|A2|2 ≤ 0

for Imµ ̸= 0, and

∂t(|A1(t, ξ)|2 + |A2(t, ξ)|2) =
2 Imλ

t
|A1|2|A2|2 ≤ 0

for Imµ = 0. Hence we obtain

|A1(t, ξ)|2 + |A2(t, ξ)|2 ≤ Cε2(|Fm1φ(ξ)|2 + |Fm2ψ(ξ)|2)

for t ≥ 1 and some constant C > 0. This observation yields global existence and bound-
edness of the solution u = (u1, u2) to the original system (4.1.4) (see [52] for details).
However, the remaining cases are left unsolved so far, that is,

• Imλ > 0 and Imµ > 0,

• Imλ > 0 and Imµ = 0,

• Imλ = 0 and Imµ > 0.

The aim of this chapter is to clarify large-time behavior of the solution to (4.1.4) with
Imλ > 0 and Imµ > 0. Since the solution of the reduced system (4.1.5) blows up at
finite time when Imλ > 0 and Imµ > 0 (see Section 4.3 for details), it could be natural
to expect that the lifespan of the solution to the original system (4.1.4) is characterized
by the blow-up time of the solution to the reduced system (4.1.5). We will justify the half
of this expectation.
To state the main result, let us define τ0 ∈ (0,+∞] by

τ0 :=
1

2
inf
ξ∈R

{
log(Imµ|Fm1φ(ξ)|2)− log(Imλ|Fm2ψ(ξ)|2)

Imµ|Fm1φ(ξ)|2 − Imλ|Fm2ψ(ξ)|2

}
. (4.1.6)

We remark that if Imµ|Fm1φ(ξ
∗)|2 = Imλ|Fm2ψ(ξ

∗)|2 at some ξ∗ ∈ R, then we define

log(Imµ|Fm1φ(ξ
∗)|2)− log(Imλ|Fm2ψ(ξ

∗)|2)
Imµ|Fm1φ(ξ

∗)|2 − Imλ|Fm2ψ(ξ
∗)|2

=
1

Imµ|Fm1φ(ξ
∗)|2

.

We also remark that the right-hand side of (4.1.6) is always positive. Because of |Fm1φ(ξ)| <
+∞, |Fm2ψ(ξ)| < +∞ and mean value theorem, we have

log(Imµ|Fm1φ(ξ)|2)− log(Imλ|Fm2ψ(ξ)|2)
Imµ|Fm1φ(ξ)|2 − Imλ|Fm2ψ(ξ)|2

≥ min

{
inf
ξ∈R

(
1

2 Imµ|Fm1φ(ξ)|2

)
, inf

ξ∈R

(
1

2 Imλ|Fm2ψ(ξ)|2

)}
> 0.

The main result of this chapter is as follows:
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Theorem 4.1.1. Assume that φ, ψ ∈ H1∩H0,1(R), and that λ, µ ∈ C with Imλ > 0 and
Imµ > 0. Let Tε be the supremum of T > 0 such that (4.1.4) admits a unique solution
u = (u1, u2) ∈ (C([0, T );H1 ∩H0,1(R)))2. Then we have

lim inf
ε→+0

ε2 log Tε ≥ τ0, (4.1.7)

where τ0 ∈ (0,+∞] is given by (4.1.6).

Remark 4.1.2. From this result, we clarify that the lower bound estimate for the lifespan
of the solution to (4.1.4) holds when Imλ > 0 and Imµ > 0. Moreover the lower bound
estimate (4.1.7) is different from single case one (4.1.3) in general. It is caused by the
initial data and the structure of the nonlinearities on the system (4.1.4) (see Section 4.3 for
details). Therefore Theorem 4.1.1 tells us another kind of large-time behavior of solutions
which does not correspond to the single case and heavily depends on the initial data and
the structure of the nonlinearities on the system. This is new knowledge on the system
case. However the author does not know whether (4.1.7) is optimal or not.

Remark 4.1.3. As for the remaining cases, that is,

• Imλ > 0 and Imµ = 0,

• Imλ = 0 and Imµ > 0,

the solution of the reduced system (4.1.5) grow up at t→ +∞. Therefore it is natural to
expect that the solution of the original system (4.1.4) also grow up at t→ +∞. However
the author does not know whether this expectation is true or not. Even the small data
global existence is not trivial at all, and what we can show by the present approach is
only lim inf

ε→+0
ε2 log Tε = +∞.

We close this section with the contents of this chapter. In the next section, we state
preliminaries. Section 4.3 is devoted to a lemma on some system of ordinary differential
equations. In this section, we derive the Riccati-type differential equation from the re-
duced system (4.1.5). This is the new ingredient of the proof. After that, we will get an
a priori estimate in Section 4.4, and Theorem 4.1.1 will be proved in Section 4.5.

4.2 Preliminaries

In this section, we summarize basic facts related to the Schrödinger operator Lm = i∂t +
1
2m
∂2x. We set Jm(t) = x+ it

m
∂x. It is well-known that this operator has good compatibility

with Lm as follows:
[Lm,Jm(t)] = 0, [∂x,Jm(t)] = 1,
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where [·, ·] stands for the commutator of two linear operators. Next we set the free
Schrödinger evolution operator

(Um(t)ϕ)(x) := ei
t

2m
∂2xϕ(x) =

√
|m|
2πt

e−i
π
4
sgn(m)

∫
R
eim

(x−y)2
2t ϕ(y)dy

for m ∈ R\{0} and t > 0. We also introduce the scaled Fourier transform Fm by

(Fmϕ)(ξ) := |m|1/2e−i
π
4
sgn(m)Fϕ(mξ) =

√
|m|
2π

e−i
π
4
sgn(m)

∫
R
e−imyξϕ(y)dy,

as well as auxiliary operators

(Mm(t)ϕ)(x) := eim
x2

2t ϕ(x), (D(t)ϕ)(x) :=
1√
t
ϕ
(x
t

)
,

Wm(t)ϕ := FmMm(t)F−1
m ϕ,

so that Um(t) can be decomposed into

Um(t) = Mm(t)D(t)FmMm(t) = Mm(t)D(t)Wm(t)Fm.

In what follows, we will occasionally omit “(t)” from Jm(t), Um(t), Mm(t), D(t) and
Wm(t), if it causes no confusion.

Lemma 4.2.1. Let m, µ1, µ2, µ3 be non-zero real constants satisfying m = µ1 +µ2 +µ3.
For smooth C-valued functions f1, f2 and f3, we have

Jm(f1f2f3) =
µ1

m
(Jµ1f1)f2f3 +

µ2

m
f1(Jµ2f2)f3 +

µ3

m
f1f2(J−µ3f3).

Lemma 4.2.2. Let m be a non-zero real constant. We have

∥ϕ−MmDFmU−1
m ϕ∥L∞ ≤ Ct−3/4(∥ϕ∥L2 + ∥Jmϕ∥L2)

and
∥ϕ∥L∞ ≤ t−1/2∥FmU−1

m ϕ∥L∞ + Ct−3/4(∥ϕ∥L2 + ∥Jmϕ∥L2)

for t ≥ 1.

Lemma 4.2.3. Let m be a non-zero real constant. For smooth C-valued functions f1, f2
and f3, we have

∥FmU−1
m (f1f2f3)∥L∞ ≤ C∥f1∥L2∥f2∥L2∥f3∥L∞ .

We skip the proof of these lemmas (see e.g., §3 of [52] and its references cited therein).
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4.3 A technical lemma

In this section, we introduce a lemma on some system of ordinary differential equations
which will be used effectively in the next section. Throughout this section, we always
assume that λ, µ ∈ C with Imλ > 0 and Imµ > 0. Let φ0, ψ0 : R → C be continuous
functions satisfying

sup
ξ∈R

|φ0(ξ)| <∞, sup
ξ∈R

|ψ0(ξ)| <∞.

We define τ1 ∈ (0,∞] by

τ1 :=
1

2
inf
ξ∈R

{
log(Imµ|φ0(ξ)|2)− log(Imλ|ψ0(ξ)|2)

Imµ|φ0(ξ)|2 − Imλ|ψ0(ξ)|2

}
.

We remark that if Imµ|φ0(ξ
∗)|2 = Imλ|ψ0(ξ

∗)|2 at some ξ∗ ∈ R, then we define

log(Imµ|φ0(ξ
∗)|2)− log(Imλ|ψ0(ξ

∗)|2)
Imµ|φ0(ξ∗)|2 − Imλ|ψ0(ξ∗)|2

=
1

Imµ|φ0(ξ∗)|2
.

Let (α0(t, ξ), β0(t, ξ)) be a solution to i∂tα0(t, ξ) =
λ
t
|β0(t, ξ)|2α0(t, ξ), t > 1, ξ ∈ R,

i∂tβ0(t, ξ) =
µ
t
|α0(t, ξ)|2β0(t, ξ), t > 1, ξ ∈ R,

α0(1, ξ) = εφ0(ξ), β0(1, ξ) = εψ0(ξ), ξ ∈ R,
(4.3.1)

where ε > 0 is a parameter. If φ0(ξ
∗) = 0 or ψ0(ξ

∗) = 0 at some ξ∗ ∈ R, then we can
immediately solve the system (4.3.1) to find that |α0(t, ξ

∗)|2 + |β0(t, ξ∗)|2 ≤ Cε2. In what
follows, we consider (4.3.1) at ξ ∈ R with φ0(ξ) ̸= 0 and ψ0(ξ) ̸= 0. At first we consider
the case of ξ ∈ R with Imµ|φ0(ξ)|2 > Imλ|ψ0(ξ)|2. Multiplying the equations of system
(4.3.1) by α0 and β0 respectively, and taking the imaginary part of the result, we have

∂t(|α0(t, ξ)|2) = 2 Imλ
t

|α0(t, ξ)|2|β0(t, ξ)|2, t > 1, ξ ∈ R,
∂t(|β0(t, ξ)|2) = 2 Imµ

t
|α0(t, ξ)|2|β0(t, ξ)|2, t > 1, ξ ∈ R,

α0(1, ξ) = εφ0(ξ), β0(1, ξ) = εψ0(ξ), ξ ∈ R.

Therefore we see
∂t(Imµ|α0(t, ξ)|2 − Imλ|β0(t, ξ)|2) = 0,

so that

Imµ|α0(t, ξ)|2 − Imλ|β0(t, ξ)|2 = ε2(Imµ|φ0(ξ)|2 − Imλ|ψ0(ξ)|2) (4.3.2)

=: ε2G(ξ),
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to obtain the Riccati-type differential equation

∂t(|β0(t, ξ)|2) =
2

t
|β0(t, ξ)|2{Imλ|β0(t, ξ)|2 + ε2G(ξ)}.

Solving this Riccati-type equation, and applying the result to (4.3.2), we have

|α0(t, ξ)|2 = ε2
(
Imλ

Imµ
|ψ0(ξ)|2

G(ξ)

Imµ|φ0(ξ)|2t−2ε2G(ξ) − Imλ|ψ0(ξ)|2
+
G(ξ)

Imµ

)
,

|β0(t, ξ)|2 = ε2|ψ0(ξ)|2
G(ξ)

Imµ|φ0(ξ)|2t−2ε2G(ξ) − Imλ|ψ0(ξ)|2
,

as long as the denominators are strictly positive. Similarly if ξ ∈ R with Imµ|φ0(ξ)|2 <
Imλ|ψ0(ξ)|2, we can see that

|α0(t, ξ)|2 = ε2|φ0(ξ)|2
G̃(ξ)

Imλ|ψ0(ξ)|2t−2ε2G̃(ξ) − Imµ|φ0(ξ)|2
,

|β0(t, ξ)|2 = ε2

(
Imµ

Imλ
|φ0(ξ)|2

G̃(ξ)

Imλ|ψ0(ξ)|2t−2ε2G̃(ξ) − Imµ|φ0(ξ)|2
+
G̃(ξ)

Imλ

)
,

where G̃(ξ) := Imλ|ψ0(ξ)|2 − Imµ|φ0(ξ)|2. At last, we consider the remaining case ξ ∈
R with Imµ|φ0(ξ)|2 = Imλ|ψ0(ξ)|2. From (4.3.2), we can see that Imµ|α0(t, ξ)|2 =
Imλ|β0(t, ξ)|2 to obtain

∂t(|β0(t, ξ)|2) =
2 Imλ

t
|β0(t, ξ)|4.

Solving this equation, we have

|α0(t, ξ)|2 =
ε2|φ0(ξ)|2

1− 2ε2|ψ0(ξ)|2 Imλ log t
, |β0(t, ξ)|2 =

ε2|ψ0(ξ)|2

1− 2ε2|ψ0(ξ)|2 Imλ log t
.

Note that the solution (α0(t, ξ), β0(t, ξ)) blows up at the time t = eτ1/ε
2
, which comes

from the minimum time that the denominators Imµ|φ0(ξ)|2t−2ε2G(ξ) − Imλ|ψ0(ξ)|2 = 0
at some ξ ∈ R. This is the reason why τ0 appears in the lower bound estimate (4.1.7).
Therefore we see that

sup
(t,ξ)∈[1,eσ/ε2 ]×R

(|α0(t, ξ)|2 + |β0(t, ξ)|2) ≤ C2
1ε

2 (4.3.3)

for σ ∈ (0, τ1), where

C1 =
√
max{A,B,D}
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and

A = sup
ξ∈R,

Imµ|φ0(ξ)|
2

Imλ|ψ0(ξ)|2
>1

(|φ0(ξ)|2 + |ψ0(ξ)|2)
Imµ|φ0(ξ)|2
Imλ|ψ0(ξ)|2 − 1(

Imµ|φ0(ξ)|2
Imλ|ψ0(ξ)|2

)1− σ
τ1 − 1

+
G(ξ)

Imµ

 ,

B = sup
ξ∈R,

Imµ|φ0(ξ)|
2

Imλ|ψ0(ξ)|2
<1

(|φ0(ξ)|2 + |ψ0(ξ)|2)
Imλ|ψ0(ξ)|2
Imµ|φ0(ξ)|2 − 1(

Imλ|ψ0(ξ)|2
Imµ|φ0(ξ)|2

)1− σ
τ1 − 1

+
G̃(ξ)

Imλ

 ,
D = sup

ξ∈R,
Imµ|φ0(ξ)|

2

Imλ|ψ0(ξ)|2
=1

[
1

1− σ
τ1

(|φ0(ξ)|2 + |ψ0(ξ)|2)

]
.

Next we consider a perturbation of (4.3.1). Let T > 1 and let φ1, ψ1 : R → C, ρ,
ν : [1, T )× R → C be continuous functions satisfying

sup
ξ∈R

(|φ1(ξ)|+ |ψ1(ξ)|) ≤ C2ε
1+δ, sup

(t,ξ)∈[1,T )×R
t1+ω(|ρ(t, ξ)|+ |ν(t, ξ)|) ≤ C3ε

1+δ

with some positive constants C2, C3, δ and ω. Let (α1(t, ξ), β1(t, ξ)) be the solution to i∂tα1(t, ξ) =
λ
t
|β1(t, ξ)|2α1(t, ξ) + ρ(t, ξ), t > 1, ξ ∈ R,

i∂tβ1(t, ξ) =
µ
t
|α1(t, ξ)|2β1(t, ξ) + ν(t, ξ), t > 1, ξ ∈ R,

α1(1, ξ) = εφ0(ξ) + φ1(ξ), β1(1, ξ) = εψ0(ξ) + ψ1(ξ), ξ ∈ R,

The following lemma asserts that an estimate similar to (4.3.3) remains valid if (4.3.1) is
perturbed by ρ, ν and φ1, ψ1:

Lemma 4.3.1. Let σ ∈ (0, τ1). We set T∗ = min{T, eσ/ε2}. For ε ∈ (0,M−1/δ], we have

sup
(t,ξ)∈[1,T∗)×R

(|α1(t, ξ)|+ |β1(t, ξ)|) ≤
√
2C1ε+Mε1+δ,

where

M =

(
2C2 +

C3

ω

)
e

Imλ+Imµ
2

(1+3C1+4C2
1 )σ.

Proof. We put w(t, ξ) = α1(t, ξ)− α0(t, ξ), z(t, ξ) = β1(t, ξ)− β0(t, ξ) and

T∗∗ = sup
{
T̃ ∈ [1, T∗)

∣∣∣ sup
(t,ξ)∈[1,T̃ )×R

(|w(t, ξ)|+ |z(t, ξ)|) ≤Mε1+δ
}
.
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Note that T∗∗ > 1, because of the estimate

|w(1, ξ)|+ |z(1, ξ)| = |φ1(ξ)|+ |ψ1(ξ)| ≤ C2ε
1+δ ≤ M

2
ε1+δ

and the continuity of w and z. Since w satisfies

i∂tw =
λ

t

(
|z + β0|2(w + α0)− |β0|2α0

)
+ ρ,

we see that

∂t
(
|w|2

)
= 2 Im

(
w · i∂tw

)
≤ 2 Imλ

t

{(
M2ε2+2δ + 3C1Mε2+δ + 2C2

1ε
2
)
|w||z|+ C2

1ε
2|w|2

}
+ |w||ρ|

for t ∈ [1, T∗∗). Similarly we see that

∂t
(
|z|2
)
≤ 2 Imµ

t

{(
M2ε2+2δ + 3C1Mε2+δ + 2C2

1ε
2
)
|w||z|+ C2

1ε
2|z|2

}
+ |z||ν|

for t ∈ [1, T∗∗). From these, we have

∂t(|w|2 + |z|2) ≤ 2

t
C̃ε2(|w|2 + |z|2) + C3ε

1+δ

t1+ω
(|w|2 + |z|2)1/2,

where C̃ = Imλ+Imµ
2

(1 + 3C1 + 4C2
1). By the Gronwall-type argument, we obtain

(|w|2 + |z|2)1/2 ≤
(
(|φ1(ξ)|2 + |ψ1(ξ)|2)1/2 +

∫ t

1

C3ε
1+δ

2s1+ω+C̃ε2
ds

)
eC̃ε

2 log t

≤
(
C2ε

1+δ +
C3ε

1+δ

2(ω + C̃ε2)

)
eC̃σ

≤ M

2
ε1+δ

for (t, ξ) ∈ [1, T∗∗)× R. Hence

|w(t, ξ)|+ |z(t, ξ)| ≤
√
2(|w|2 + |z|2)1/2 ≤ M√

2
ε1+δ.

This contradicts the definition of T∗∗ if T∗∗ < T∗. Therefore we conclude T∗∗ = T∗. In
other words, we have

sup
(t,ξ)∈[1,T∗)×R

|w(t, ξ)|+ |z(t, ξ)| ≤Mε1+δ,

whence

|α1(t, ξ)|+ |β1(t, ξ)| ≤ |α0(t, ξ)|+ |β0(t, ξ)|+ |w(t, ξ)|+ |z(t, ξ)| ≤
√
2C1ε+Mε1+δ

for (t, ξ) ∈ [1, T∗)× R. This completes the proof.
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4.4 A priori estimate

This section is devoted to getting an a priori estimate for the solution to (4.1.1). Through-
out this section, we fix σ ∈ (0, τ0) and T ∈ (0, eσ/ε

2
], where τ0 is defined by (4.1.6). Let

u = (u1, u2) ∈ (C([0, T );H1 ∩H0,1(R)))2 be a solution to (4.1.1) for t ∈ [0, T ). We set

α(t, ξ) := Fm1

[
Um1(t)

−1u1(t, ·)
]
(ξ), β(t, ξ) := Fm2

[
Um2(t)

−1u2(t, ·)
]
(ξ).

We also define

E(T ) := sup
(t,ξ)∈[0,T )×R

(|α(t, ξ)|+ |β(t, ξ)|)

+ sup
0≤t<T

[
(1 + t)−γ(∥u1(t)∥H1 + ∥u2(t)∥H1 + ∥Jm1u1(t)∥L2 + ∥Jm2u2(t)∥L2)

]
with γ ∈ (0, 1/12). The goal of this section is to prove the following:

Lemma 4.4.1. Let σ, T and γ be as above. Then there exist positive constants ε0 and
K, not depending on T , such that

E(T ) ≤ ε2/3 (4.4.1)

implies the stronger estimate
E(T ) ≤ Kε,

provided that ε ∈ (0, ε0].

We divide the proof of this lemma into two subsections. We remark that many parts
of the proof below are similar to that of Section 3 in [52], although we need modifications
to fit for our purpose.

4.4.1 L2-estimates

In the first part, we consider the bound for ∥u1(t)∥H1 , ∥u2(t)∥H1 , ∥Jm1u1(t)∥L2 and
∥Jm2u2(t)∥L2 . We first remark that Lemma 4.2.2 and the assumption (4.4.1) lead to

∥u1(t)∥L∞ + ∥u2(t)∥L∞ ≤ Cε2/3

t1/2

for t ≥ 1. Indeed the Sobolev embedding H1(R) ↪→ L∞(R) yields

∥u1(t)∥L∞ + ∥u2(t)∥L∞ ≤ C(∥u1(t)∥H1 + ∥u2(t)∥H1) ≤ Cε2/3
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for t ≤ 1. From these, we have

∥u1(t)∥L∞ + ∥u2(t)∥L∞ ≤ Cε2/3√
1 + t

for t ∈ [0, T ). Now we see from the standard energy method that

d

dt
(∥u1(t)∥H1 + ∥u2(t)∥H1)

≤ |λ|(2∥u1(t)∥L∞∥u2(t)∥L∞∥u2(t)∥H1 + ∥u2(t)∥2L∞∥u1(t)∥H1)

+ |µ|(2∥u1(t)∥L∞∥u2(t)∥L∞∥u1(t)∥H1 + ∥u1(t)∥2L∞∥u2(t)∥H1)

≤ Cε2

(1 + t)1−γ
,

whence

∥u1(t)∥H1 + ∥u2(t)∥H1 ≤ ε(∥φ∥H1 + ∥ψ∥H1) +

∫ t

0

Cε2

(1 + s)1−γ
ds ≤ Cε(1 + t)γ. (4.4.2)

Next we deduce from Lemma 4.2.1 that

Jm1(|u2|2u1) =
m2

m1

(Jm2u2)u2u1 −
m2

m1

(Jm2u2)u2u1 + |u2|2(Jm1u1).

We also remember the commutation relation [Lm1 ,Jm1 ] = 0. From these, it follows that

Lm1Jm1u1 = λ

(
m2

m1

(Jm2u2)u2u1 −
m2

m1

(Jm2u2)u2u1 + |u2|2(Jm1u1)

)
.

Therefore the standard energy method leads to

∥Jm1u1∥L2 ≤ ε∥xφ∥L2 +

∫ t

0

Cε2

(1 + s)1−γ
ds ≤ Cε(1 + t)γ. (4.4.3)

In the same way, we have

∥Jm2u2∥L2 ≤ Cε(1 + t)γ. (4.4.4)

Collecting (4.4.2), (4.4.3) and (4.4.4), we arrive at the desired estimate

∥u1(t)∥H1 + ∥u2(t)∥H1 + ∥Jm1u1(t)∥L2 + ∥Jm2u2(t)∥L2 ≤ Cε(1 + t)γ

for t ∈ [0, T ).
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4.4.2 Estimates for α and β

In this part, we will show |α(t, ξ)| + |β(t, ξ)| ≤ Cε for (t, ξ) ∈ [0, T ) × R under the
assumption (4.4.1). When 0 ≤ t ≤ 1, the desired estimate follows immediately from the
Sobolev embedding H1(R) ↪→ L∞(R) and (4.4.1). Hence we have only to consider the
case of T > 1 and t ∈ [1, T ). We have

i∂tα(t, ξ) = Fm1U−1
m1

[Lm1u1] = Fm1U−1
m1

[λ|u2|2u1]

=
λ

t
|β(t, ξ)|2α(t, ξ) + ρ1(t, ξ),

where

ρ1(t, ξ) =
λ

t
W−1

m1

[
|Wm2β|2Wm1α

]
− λ

t
|β|2α.

In the same way, we have

i∂tβ(t, ξ) = Fm2U−1
m2

[Lm2u2] = Fm2U−1
m2

[µ|u1|2u2]

=
µ

t
|α(t, ξ)|2β(t, ξ) + ρ2(t, ξ),

where
ρ2(t, ξ) =

µ

t
W−1

m2

[
|Wm1α|2Wm2β

]
− µ

t
|α|2β.

Note that the inequality ∥(Wm−1)ϕ∥L∞+∥(W−1
m −1)ϕ∥L∞ ≤ Ct−1/4∥ϕ∥H1 and Lemma 4.2.3

lead to

|ρ1(t, ξ)|+ |ρ2(t, ξ)| ≤
Cε2

t1+ω

with ω = 1/4− 3γ > 0. Moreover we have

|α(1, ξ)− εFm1φ(ξ)|
≤ C∥u1(1, ·)− Um1(1)εφ∥

1/2

L2 ∥Jm1(1){u1(1, ·)− Um1(1)εφ}∥
1/2

L2

= C∥u1(1, ·)− Um1(1)εφ∥
1/2

L2 ∥Jm1(1)u1(1, ·)− Um1(1)xεφ∥
1/2

L2

≤ C

(∫ 1

0

∥λ|u2(s)|2u1(s)∥L2ds

)1/2

ε1/2

≤ Cε2,

where we have used the Gagliardo-Nirenberg inequality ∥ϕ∥L∞ ≤ C∥ϕ∥1/2L2 ∥∂xϕ∥1/2L2 and
the relation Jm(t) = Um(t)xUm(t)−1. In the same way, we have

|β(1, ξ)− εFm2ψ(ξ)| ≤ Cε2.

Therefore we can apply Lemma 4.3.1 with φ0(ξ) = Fm1φ(ξ), ψ0(ξ) = Fm2ψ(ξ), δ = 1,
ω = 1/4− 3γ > 0 and τ1 = τ0 to obtain

|α(t, ξ)|+ |β(t, ξ)| ≤ Cε.
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4.5 Proof of Theorem 4.1.1

Now we prove Theorem 4.1.1. At first, local existence of the solution to (4.1.4) is proved
in a standard way applying the contraction mapping principle (see [3]). Let Tε be the
lifespan defined in the statement of Theorem 4.1.1. Next we set

T ∗ = sup{T ∈ [0, Tε) |E(T ) ≤ ε2/3}.

Note that T ∗ > 0 if ε is suitably small, because of the estimate E(0) ≤ Cε ≤ 1
2
ε2/3 and

the continuity of [0, Tε) ∋ T 7→ E(T ). Now, we take σ ∈ (0, τ0) and assume T ∗ ≤ eσ/ε
2
.

Then Lemma 4.4.1 with T = T ∗ yields

E(T ∗) ≤ Kε ≤ 1

2
ε2/3

if ε ≤ min{ε0, (2K)−3}. By the continuity of [0, Tε) ∋ T 7→ E(T ), we can choose ∆ > 0
such that

E(T ∗ +∆) ≤ ε2/3.

This contradicts the definition of T ∗. Therefore we must have T ∗ ≥ eσ/ε
2
if ε is suitably

small. As a consequence, we obtain

lim inf
ε→+0

ε2 log Tε ≥ σ.

Since σ ∈ (0, τ0) is arbitrary, we arrive at the desired conclusion.
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non-linéaire en dimension 1 d’espace, Ann. Inst. H. Poincaré Anal. Non Linéaire,
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(2013), no.4, 661–690.

[32] M. Hisakado, T. Iizuka and M. Wadati, Coupled hybrid nonlinear Schrödinger equa-
tion and optical solitons, J. Phys. Soc. Japan 63 (1994), 2887–2894.

[33] M. Hisakado and M. Wadati, Integrable multi-component hybrid nonlinear
Schrödinger equations, J. Phys. Soc. Japan 64 (1995), 408–413.

[34] H. Hirayama, Well-posedness and scattering for a system of quadratic derivative
nonlinear Schrödinger equations with low regularity initial data, Commun. Pure
Appl. Anal., 13 (2014), 1563–1591.

64
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