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Chapter 1

Introduction

1.1 History

Let p > 3 be a fixed odd prime. We fix a complex embedding Q — C and a p-adic embedding Q — @p
of an algebraic closure Q of Q throughout the paper, where C is the field of complex numbers and @p an
algebraic closure of the field Q, of p-adic numbers. For an integer n, we denote by u,, the group of n-th

roots of unity. In 1976, Ribet [Ri] proved the converse of Herbrand’s theorem as follows:

Theorem (Ribet). Let & be an even integer satisfying 2 < k < p — 3 and By the k-th Bernoulli
number. We denote by Cl(Q(up))[p] the p-part of the ideal class group of Q(x,) on which the Galois
group Gal(Q/Q) acts by functoriality. Suppose p divides Bj. Then Cl((@(,up))[p]“lfk # 0, where w :
(Z/pZ)* — jp—1 is the Teichmiiller character such that w (a) mod p = a for all a € (Z/pZ)” and we
also denote by the same symbol w the corresponding character of Gal (Q(u,)/Q) = (Z/pZ)”~.

o0

The main ideas of Ribet’s proof is to construct a normalized Hecke eigen cusp form f = Z a(n,f)q"
n=1
of weight 2 at level p which is congruent to Eisenstein series and to consider the Galois representation p¢

over K =Q, ({a (n, f)}n>1) attached to f due to Deligne and Shimura. The following key proposition
enables us to take a Gal (@/Q)—Stable lattice T" of py such that T'/wT is not a semi-simple Gal (@/Q)—
module, where O is the ring of integers of K and w is a fixed uniformizer of ©. Then by considering
the action of Gal (Q/Q () on T/wT, Ribet constructed an unramified p-extension L of Q () and
Gal (Q (up) /Q) acts on Gal (L/Q (p1,)) via w!=%. Thus the converse of Herbrand’s theorem follows by
class field theory. By extending Ribet’s method, Mazur-Wiles [MW1] and Wiles [Wi2] proved the Iwasawa
main conjecture for Q and for totally real fields.

Now we introduce a key lemma in Ribet’s proof (which is called “Ribet’s lemma”) as follows:

Proposition A (Ribet’s lemma). Let (O, w, O/ (w)) be the ring of integers of a finite extension of Q,
where w is a fixed uniformizer of O. Let K = Frac(O) be the field of fractions of O and V' a 2-dimensional

K-vector space. For a given p-adic representation

p:G— Autg(V)



of a compact group G, let 5* be the semi-simplification of the mod (w) representation (see Section 2.1
below). Suppose p is irreducible and p* = 9, © V2, where 91,92 : G — (O/ (w))™ are characters. Then

U

there exists a G-stable lattice T' C V for which pr is the form but is not semi-simple.

2
In this thesis, we study Ribet’s lemma in a more general way. Let us keep the assumptions and the

notations of Proposition A. For each positive integer m, we consider the following condition:

(Ext,,) There exist a G-stable lattice T’ of p and two characters v; : G — O/ (@)™ (i = 1,2) such that
0— 0/ (w)" (1) = T/@™"T — Of (=)™ (1r2) = 0
is a non-split exact sequence of G-modules.

Ribet’s lemma claims that there exists an integer m > 1 for which (Ext,,) holds. Since p is irreducible, the
number of isomorphic classes of G-stable lattices is finite by Proposition 2.4.21 Thus we are interested
in the determination of the largest value of m with which (Ext,,) holds and we denote it by m (p).

Furthermore, we consider the following condition:

(RMF) The semi-simplification of the mod () representation is decomposed into two different charac-

ters.

Assume the condition (RMF), then we have m (p) = £.2 (p) — 1 by the proof of Proposition B3] at the
end of §3 and Proposition [6.1.4] where . (p) is the set of the isomorphic classes of G-stable lattices.
Now assume p is a Galois representation attached to a normalized Hecke eigen cusp form with resid-

ually reducible representation. Since the determinant det p is an odd character, the condition (RMF)

holds. We introduce a result on §.Z (p) where p comes from a modular form. The following known result
oo

is obtained by Greenberg and Monsky for the Ramanujan’s cusp form A = ¢ H (1—¢™)?* and p = 691:
n=1

Proposition B (Greenberg, Monsky). Let pa : Gal(Q/Q) — G L2(Qg91) be the 691-adic representation

attached to A. Then §.Z(pa) = 2.

Remark. The work of Greenberg and Monsky is unpublished. See [Maz, Section 12, Proposition 1] for
the statement. For the proof of more general settings, see Proposition [6.1.5] and the table after it.

1.2 Hida deformation

Before we state our main result, let us prepare some notations on Hida deformation. From now on to the
end of this paper, we fix a topological generator u of 1 + pZ,. Let O C @p be a commutative ring which
is finite flat over Z, and let ¢ be a Dirichlet character modulo M. We denote by Si (I'o (M), v, O) the
space of cusp forms of weight k, level M, Neben character 1) and Fourier coefficients in @. A normalized
Hecke eigen cusp form f is called p-ordinary if its p-th Fourier coefficient a (p, f) is a p-adic unit. Now
we prepare some notations on Hida deformation. We fix a positive integer N prime to p and let x be a
Dirichlet character modulo Np. If { € p,(r > 0) is a p"-th root of unity, we denote by ¢ the Dirichlet
character as follows:
e (Z/pT'HZ)X — @;, uwmod p" Tt (.



Now let I be an integrally closed local domain which is finite flat over A, = Zy[x][[X]] and Xarien (I) the

set of homomorphisms defined as follows:

Xaritn (1) = { p:1— @p | p(1+X) = Cwuk“’_Qa (ks Cp) € Z>a X ppee } :

We call an element of X,itn (I) an arithmetic specialization of I. Let F = Z a(n, F)q" € I[[g]] be an
n=1
I-adic normalized Hecke eigen cusp form with character y. That is,

fo = Z e(a(n, F))q" € Sk, (FO(NPWH)aXl/)sowl_kv"p(H))

n=1
is a p-ordinary normalized Hecke eigen cusp form for all ¢ € Xapien (I), where p™ is the order of ¢, and

w%" = wcﬂf’ :
Let F be an I-adic normalized Hecke eigen cusp form and Frac(II) the field of fraction of I. Hida [Hi2]

(see also Theorem [5.4.0] below) proved that there is a continuous representation

pr : Gal(Q/Q) — GLa(Frac(l))

such that for any ¢ € Xuitn (I), the residual representation pr (Kery) (see Definition .47 below) is

isomorphic to py,, .

1.3 Statement of the main result

In this thesis, we determine whether the variation of £ (p) is bounded or not when p varies in a Hida
deformation. From now on throughout the paper, we denote by ¢ the Euler function and we fix a positive
integer N prime to p. Let x be a Dirichlet character modulo Np. Let I be the same as above with m the
maximal ideal of I. Let F be an I-adic normalized Hecke eigen cusp form. We denote by Q (ttnpe) the
union of all cyclotomic fields Q (unpr) (1 € Z>1) and by Qo the cyclotomic Z,-extension of Q. Now we

are going to determine §.Z(py,_ ) when ¢ varies in Xaien (I). Our result is the following theorem:

Theorem 1.3.1 ([Yl Theorem 1.5]). Suppose p{ ¢(N) and pr (m) = 91 @ Y2 such that 9y (resp. Us3) is
unramified (resp. ramified) at p. Let W (I/m) be the Witt ring of I/m and x; : Gal (Q/Q) — W (I/m)”*
the composition of ¥; with the Teichmiiller lift: (I/m)” < W (I/m)™ . Assume the following conditions:

(Co-prime) The conductors of x; and xo are relatively prime and x; # yaw.
(Conductor) Every prime factor I of N divides the conductor of x.
We enlarge I such that I is also finite flat over AX1X2—1.

(1) For any ¢ € Xaitn (I) such that ¢(1 + X) = (,ub 2, we have

8.2 (py,) < orde, (Lp(1 — ky, X7 "X2tew)) + 1,

where w,, is a fixed uniformizer of ¢(I) and Lp(s,xflxng,w) is the Kubota-Leopoldt p-adic L-

function.



(2) Assume that
(Rank one) N =1 and h°™ (x, A, ) (see Definition below) is isomorphic to A,.
Then for any ¢ € Xaien (I) such that (1 + X) = @,ukv’_Q, we have

ﬂf(pfw) = ordy,, (Lp(1 — kyp, xthow)) + 1.

(3) Let Loo, L") be the maximal unramified abelian p-extension of Q (unpe) and the maximal
abelian p-extension unramified outside Np of Q (ptxpe). We denote by Xoo = Gal (Lo /Q (1tnpee))
and by Y, = Gal (L(oifp)/@ (Hnpos )) on which Gal (Q (unpe-) /Qoo) acts by conjugation. We denote

xixz' -1 xi'xe
by Xoo™ = Xoo ®Zp[Gal(Q(uNpoc)/Qoo)] Zp[x1x5 | and by Y = Y ®ZP[Ga1(Q(HNPm)/Qo¢)]
Zy[x7 ' xz2]. Assume the following conditions:
(Cyclic) The Axlxgl—modules XXX and YA X2 are cyclic.

(Prime ideal) The ideal generated by £, (Xflxg) (see Theorem 2Tl below) is a prime ideal in 1.

Then for any ¢ € Xapi¢n (I) such that (14 X) = Cwukv’Q, we have

8L (ps,) = orde, (Lp(1 — kg, X1 ' X2thew)) + 1.

Theorem [31] will be proved at the end of Section 6.2. Now we discuss the boundedness of §.2 (py, )

when the weight and the level vary. When we fix an r € Z>(, we define %f;:& (I) as follows:

xi(l?l:})l (I) = { ¢ € Xaritn (I) | p(1+X) = Cw“ky’_Qv (k‘@,C@) € L>a % (/‘pOC \:upr) } .
©

arith

When we fix a ¢ € ppe, we define X (I) as follows:

x;fi)th (1) ={ ¢ € Xarien (1) | (1 + X) = CuP* 2k, >2}.

When we fix a k € Z>2, we define x®

anen, (1) as follows:

0 () = { @ € Xasion (1) | (14 X) = G2, Cp € pym }
The bounded case of the variation of §.Z(py,) is the following corollary:

Corollary 1.3.2 ([Y], Corollary 1.6 (1)-(3)]). Let us keep the assumptions and the notations of Theorem
30 We denote by L5 (xy "x2) the distinguished polynomial associated to £, (x7 " x2). Then we have

the following statements:

(1) There exists an integer r € Zxq such that §.Z(py,) is bounded when ¢ varies in %g‘:})} (D).

Furthermore, we have the following inequality for 4.2 (py, ):
jjf(pfq,) <rankp I- degﬁ;’; (X1_1X2) +1
for every arithmetic specialization ¢ € xG0 (I), where rank, I is the rank of the A -module I.

arith

(2) For each integer k > 2, 1.%(py,,) is bounded when ¢ varies in if;l;)th (D).



(3) Suppose that I is isomorphic to O[[X]] with O the ring of integers of a finite extension of Q,.

Then there exists an integer r’ € Zx( such that §.2(py_) is constant when ¢ varies in f{gfh) (D).

The unbounded case of the variation of §.2(py_) is the following corollary:

Corollary 1.3.3 ([Y, Corollary 1.6 (4)]). Let us keep the assumptions and the notations of Theorem

[C3Tl Assume the condition (Rank one) or both of the conditions (Cyclic) and (Prime ideal). For each
¢ € pp=, 1-Z(py,) is unbounded when ¢ varies in .’féﬁi)th (I) if and only if L,(1 — s, x] 'x2t¢w) has a zero
in Zy.

Corollary and [[33 will be proved in Section 6.3. Let £ (ps) be the set of the isomorphic classes
of stable lattices of Hida deformation pr. Now we give a result of §.Z(pr) answering Question 4.5 1 of
[Ocd].

Corollary 1.3.4 ([Yl Corollary 1.7]). Let us keep the assumptions and the notations of Theorem [[L31]

Assume the conditions (Co-prime), (Cyclic) and (Prime ideal). Further assume the following condition
(Free lattice) There exists a stable lattice T which is free over L.
Suppose that there exists a ¢ € ppe such that L,(1—s, x] 'x2t¢w) has a zero in Z,. Then 4.Z(pr) = oco.

Corollary [L3.4] will be proved in Section 6.4.



Outline of this thesis

The outline of this thesis is as follows. In section 2, we recall the definition and some properties of lattices
and G-stable lattices. We prove that for a given p-adic Galois representation p, £.2 (p) is unique under
the assumption that the residue representation is irreducible and §.% (p) is finite under the assumption
that p is irreducible.

In section 3, we recall the Ribet’s proof of the converse of the Herbrand’s theorem and we give
two proofs of Ribet’s lemma: the original proof based on matrix operation and the proof based on the
Bruhat-Tits tree of GLy. The latter proof illustrates us to counting . (p) by means of the reducibility
ideal.

In section 4, we recall the classical Iwasawa theory of ideal class groups, especially the Iwasawa’s
construction of the Kubota-Leopoldt p-adic L-function and the main conjecture. We normalize the Iwa-
sawa’s construction slightly different from Iwasawa’s original paper for the compatibility of the arithmetic
specialization in Hida deformation ring.

In section 5, we recall Hida theory: the freeness of the space of A-adic forms, Hida’s control theorem,
duality and the construction of the Galois representation attached to an I-adic normalized Hecke eigen

cusp form by using the pseudo representation theory. In section 6, we prove our main theorem.



Notations

Frac (A) : the field of fractions of a commutative domain A
K : a finite extension of @,
O: the ring of integers of a finite extension of Q,
w : a fixed uniformizer of a discrete valuation ring
F : the residue field of a discrete valuation ring
Z (p) : the set of the isomorphic classes of Gal (@/ Q)—Stable lattices of a given p-adic representation p

Xeyc : the p-adic cyclotomic character, i.e.
Xeye : Gal (Q (pp) /Q) = Z

Keye + Gal (Quo/Q) = Gal (Q (1p=) /Q (1)) ¥ 1+ pZ,

w : the Teichmiiller character, i.e.

w s Gal (Q (ptpe) /Qoo) = Gal (Q (1) /Q) 3 p1p 1

By abuse of notation, we sometimes denote by Ycyc and keye the characters of Gal (Q/Q) composed

with Gal (@/Q) — Gal (Q (upe) /Q) and Gal (@/Q) — Gal (Qu/Q) respectively.

Dy (resp. I;) : the decomposition subgroup (resp. inertia subgroup) of Gal (@/Q) at a prime [
Frob; : the geometric Frobenius at [
Ao : the power series ring O[[X]]

A=Az,

Ay @ the power series ring Az [y for a Dirichlet character ¢

10



For an integer d which is prime to p, write d = w (d) (d) under the isomorphism
Z; :> /J,p,1 X 1+pr

and we denote by s4 such that (d) = u®?.

Let 9 be a Dirichlet character modulo M, we also denote by the same symbol v the corresponding
character of Gal (Q(uar)/Q) =2 (Z/MZ)*. We denote by 1 the trivial Dirichlet character.

For an arithmetic specialization ¢ which is defined in §1.2, we denote by ((y, ky,7,) the data such
that p(1+ X) = (,ub*=2 and 1, € Zxo such that (, € ppre \ fyre—1 €. (, is a primitive p"e-th root of
unity and. Furthermore, we write ¢, = 9¢, (cf. §1.2) for simplicity.

11



Chapter 2

Lattices and (G-stable lattices

2.1 Lattices

Definition 2.1.1. Let A be a commutative Noetherian integral domain with field of fractions K. Let V'
be a finite dimensional Frac (A)-vector space with dimp,c4)V = n. We say that an A-submodule 7" of
V is a lattice of V if and only if T is finitely generated and T ® 4 Frac (A) = V.

Remark 2.1.2. If A is a discrete valuation ring, any lattice of V is free over A.

Propostion 2.1.3 ([Bo, Chap. 7, §4.1, Proposition 2]). Let A be a commutative Noetherian integral
domain and V a finite dimensional Frac (A)-vector space. Let T be a lattice of V and 77 an A-submodule
of V.

(1) Assume there exist z,y € Frac (4)™ such that 27" C T’ C yT, then T is a lattice.
(2) Conversely, assume T” is a lattice of V, then there exist a,b € A such that a7 C T' C b~ 'T.

Proof. (1) Since T" C yT and T is finitely generated, T” is also finitely generated. Under the

assumption of (1), we also have
V =aT @4 Frac (A) C T’ @4 Frac (A) C yT @4 Frac(A) =V
hence T” is a lattice of V.

(2) We denote by {e, -, e, } the set of generators of T.. Since T ®4 Frac(A) = 7" ® 4 Frac (A),
there exists an element a € A such that ae; € T' for all i. Hence aT C T’. By changing the roles
of T and T” there exists an b € A such that bT" C T.

O

Propostion 2.1.4 ([Bd, Chap. 7, §4.1, Proposition 3]). Let A be a commutative Noetherian integral
domain and V a finite dimensional Frac (A)-vector space. If T7 and T5 are lattices of V', so are T1 N 75
and Tl + TQ.

12



Proof. Since there exist a,b € A such that aTy C To C b1 by (2) of Proposition .13, we have
alh CTiNTy, Ty + Ty C b7,

Then the proposition follows by (1) of Proposition 213l
O

Propostion 2.1.5 ([Bd, Chap. 7, §4.1, Proposition 4]). Let B be a commutative Noetherian integral

domain and A a sub ring of B. Let V be a finite dimensional Frac (A4)-vector space.
(1) For any lattice T of V, T'®4 B is a lattice of V ®pyac(a) Frac (B).
(2) Suppose B is a faithfully flat A-module. Then the following map
¢ : { lattices of V'} — {lattices of V ®gpyac(a) Frac(B)}, T+ T ®a B
is injective.
Proof. (1) We have the following equalities:
(2.1) Frac(B) @ (B®4 T) = (Frac(B) ® g B) @4 T = Frac (B) @4 T.

Since T' ®4 Frac (A) = V and Frac (B) = Frac (B) ®prac(a) Frac (A4), the last term of the above
equalities becomes to Frac (B) @pac(a) V. Hence T'® 4 B is a lattice of V ®pyac(a) Frac (B).

(2) Let Ty and T5 be lattices of V' such that B®4 T1 = B ®4 T». First we assume 77 C T3. Then
B®j (T»/T1) = 0. Since B is a faithfully flat A-module, we have To = T1. Now we consider the

general case. We have the following equalities:
(BoaTi)N(B®aTy)=B®a(ThNTy)

hence Ty N Ty, = T1 = T, by the above argument.
O

Propostion 2.1.6 (|Bd, Chap. 7, §4.1, Corollary to Proposition 4]). Let A be a discrete valuation ring

and V a finite dimensional Frac (A)-vector space. Let
p: G — AUtFrac(A) (V)

be a linear representation of a group G. We denote by A the completion of A and by V =V @ Frac(fl).

Let p be the following linear representation:

p:G— AutFraC(A)(V),g —pg)vea—p@rea).
Then the following map
(2.2) {lattices of V' } — {lattices of V' } , T — T @4 A

is bijective and the inverse map is given by maps T to T'NV, the same holds for the set of G-stable

lattices.

13



Proof. Note that T'®4 A is the completion of T i.e T ® A = I'LnT/w”T, where w is a fixed uniformizer

of A. Thus T is dense in 7. Since T ®4 A is open in V ®prac(a) Frac(fl) and T is open in V, we have
(T ®a fl) NV = T. This implies that the map (2.2) is injective. Now we prove the surjection. Let
us take a lattice L of V. For any lattice T of V, there exist two elements o and 8 of A such that
a(LoaA) cT c B Y (L®aA) by (2) of Proposition 2.3l Since every element of A can be writen by a

product of a power of w and an invertible element of A, there exist two elements a and b of A such that
a(Loy Ay cT cb Loy A),

hence
aLc TNV cb L.

Thus 7NV is a lattice of V by (1) of Proposition 213 and so 7NV is open in V. Since V is dense in
V, TNV is dense in 7. Hence T is the completion of TN V. Further if T is a G-stable lattice, we have

P9I ©aAd)=p(g)TosA=T oA
for any g € G and hence T' ® 4 A is also G-stable. If 7" is G-stable, we have
p(9)(TNV)c(TNV)
for any g € G and hence T NV is also G-stable. O

Remark 2.1.7. If we consider the lattice over a discrete valuation ring A. Proposition 2.T.6] permits us

to confine to the case where A is complete.

2.2 Reflexive lattices

In this section, we recall some properties of reflexive lattices which will be used in Hida deformation (cf.
Proposition B.4T0).

Propostion 2.2.1 ([Bo, Chap. 7, §4.1, (iv) of Proposition 3]). Let A be a commutative Noetherian
integral domain and V, W finite dimensional Frac (A)-vector spaces. Let Ty be a lattice of V and Ty a
lattice of W. We denote by Hompyac(a),7y /1y (V, W) the A-submodule of Hompyac(a) (V, W) as follows:

HomFraC(A),Tv,TW (‘/7 W) = {f € HomF‘raC(A) (‘/a W) ‘ f (TV) CTw } :
Then Hompyac(a), 1,1y (V, W) is a lattice of Hompyae(ay (V, W).

Proof. By Proposition we have that there exist A-free lattices Ly, L{, of V and Ly, L, of W such
that
L, cTy CLy,Ly CTw C Lw.
Then
Hompyac(a), Ly, 1y, (Vi W) C Homprac(a) ry 1y (Vi W) C Homprac(a)y, 2t 2y (V;W).

Since Hompyac(4),Ly 14, (V,W) is isomorphic to Homa (Ly, Ly, ), which is free of rank dimpyaca)V -
dimpyac(a)V. Hence Homprac(a) Ly 1y, (V. W) is a lattice of Hompyac(ay (VW) and the same holds for
Hompyac(a),Lt, Ly (V,W). Thus Hompyac(ay,y 1y (V, W) is a lattice of Hompyae(a) (V, W). O

14



From now on to the end of this section, we denote by A a commutative Noetherian integrally closed
domain and by V' a finite dimensional Frac (A)-vector space. We denote by V* = Hompac(a) (V, Frac (4))
the dual of V' and by V** = (V*)*. Let T be a lattice of V. We denote by T = Hompyac(4),7,4 (V, Frac (A))
and by T** = (T*)*. We may regard T is contained in T** under the canonical isomorphism V = V**.
We say that T is a reflexive lattice if T = T™*.

Propostion 2.2.2. Let the assumptions and the notations be as above. We have T and T** are reflexive

lattices for any T'.

Proof. Note that T C T** implies T* C T***. On the other hand, we have T* C (T*)** = T***. Thus
T* — Tx* and THF = TR
O

Theorem 2.2.3. Let the assumptions and the notations be as above. Then we have the following

statements:
(1) (T*)p = (Tp)* for any prime ideal p ([Bol Chap. 7, §4.1, Proposition 5]).
(2) T* = ﬂ (T*)y, where P! (A) is the set of all height 1 prime ideal of A ([Bd, Chap. 7, §4.2,
peEP(A)

Theorem 1)).

(3) T = ﬂ T, ([Bd, Chap 7, §4.2, Corollary to Theorem 1]).

peEP(A)
Proof. (1) We have (T*), C (Ty)* by definition. Conversely, let f be an element of (7},)* and
{v1,---,v,} be a set of generators of T. Then there exists an element s € A\ p such that

f (v;) € s7A for any v; and hence sf € T*.

(2) We have T* C ﬂ (T*)p by definition. Let us take an element f € ﬂ (T*)p. Since

peP1(A) pePL(A)
(T*)p = (Tp)* by (1), we have f (v) € ﬂ A, for any v € T. Under the assumption that A is a
peP(A)
Noetherian integrally closed domain, we have A = ﬂ A,
peEP(A)

(3) We have the following equalities by (1) and (2) :
pePL(A) peP1(A)

Since Ay is a principal ideal domain, we have that 7} is free over A, and hence 7" = T,. This
completes the proof of Theorem 2.2.31
O

The following theorem ensures us the existence of Gal (@ / Q) -stable I-free lattice in a Hida deformation

under the assumption that I is a regular local ring (cf. Proposition (E.4.10]).

Theorem 2.2.4 ([Oc2, Theorem 2.34]). Let the assumptions and the notations be as above. Let T be

a lattice of V. Assume that A is a regular local ring with Krull dimension < 2. Then T is free over A.
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Proof. First we assume that the Krull dimension of A is 1. Since every regular local ring with Krull
dimension 1 is a discrete valuation ring, we have every lattice is free over A.

Now we assume that the Krull dimension of A is 2. Under the assumption that A is a regular local
ring, there exists an element 2 € A such that the quotient A/xzA is a discrete valuation ring. We may
regard T** ® 4 A/xA as an A-submodule of Hom 4 (7%, A/xA) under the injection T** ®4 A/xA —
Homy (T*, A/zA). Since the module Homy (7%, A/zA) is A-torsion free, so is T** ® 4 A/x A.

Let s be the number of a minimal basis (cf. [Matl, Theorem 2.3]) of T. Then we have the following

exact sequence of A-modules:
(2.3) 0— Kerh — A% 557 0.

Since T**®4 A/x A is A-torsion free and T is a reflexive lattice, we have that T®4 A/x A is also A-torsion

free. Then the exact sequence ([Z3]) induces the following exact sequence of A/xA-modules:
(2.4) 0 — Kerh/zKerh — (A/xA)®® — T /2T — 0.

We have that s is also the number of a minimal basis of the A/xA-module T'/zT by Nakayama’s lemma.
Furthermore, since A/x A is a discrete valuation ring, T/zT is free over A/xzA and hence Ker h/ xKer h =
0. Then Ker h = 0 also by Nakayama’s lemma. This completes the proof of Theorem 2241 O

2.3 (-stable lattices

Definition 2.3.1. Let A be a commutative Noetherian integral domain and V be finite dimensional

Frac (A)-vector space with dimpac4)V = n. For a linear representation
p: G— AutFrac(A) (V)
of a group G, we say that a lattice T is a G-stable if p (G)T =T.

Propostion 2.3.2 ([Se2, Chap. 2, §1.3, Proposition 2]). Let A be a discrete valuation and V a finite

dimensional Frac (A)-vector space with dimpy,c(4)V = n. For a linear representation
p: G — Autpracay (V)
of a group G, the following are equivalent:
(1) There exists a G-stable lattice of V.
(2) There exists a basis V = ®]Frac (A) e; such that
Im (p : G = Autpyac(a) (V) = GL, (Frac (A))) € GL, (A).
(3) Let us take any basis of V' and regard p as the following homomorphism:
p: G — GL, (Frac(A)).

Then p (G) is bounded in GL,, (Frac (A4)) i.e. there exists an integer d such that ords (s;;) > d for
any s = (si;) € p(G).
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Proof. (1) implies (2) and (2) implies (3) are obvious. Let us prove (3) implies (1). Let T be a lattice
of V. We denote by w a fixed uniformizer of A. Since p (G) is bounded, there exists an integer n such

that p(g) T C @"T for all g € G. Then Z p(g) T is a lattice by Proposition [ZT.4] and it is G-stable by

geG
definition.

O
We introduce the Brauer-Nesbitt theorem as follows, for the proof see [CR] 30.16].

Theorem 2.3.3 (Brauer-Nesbitt). Let k be a field and F a k-algebra. Let M and M’ be the semi-simple
F-modules such that dim; M = dim; M’ < co. Suppose for any f € F, the characteristic polynomial of

f acting on M and M’ coincide. Then M and M’ are isomorphic as F-modules.

Let A be a discrete valuation ring. We denote by w a fixed uniformizer of A, F = A/ (w) the
residue field. Let V be a finite dimensional Frac (A)-vector space such that dimgV =n and p: G —
Autprac(ay (V) a linear representation of a group G such that p has a G-stable lattice 7. Then we denote
by pr the representation

pr : G — Auta(T)

and by pr the representation pr mod w as follows:

PT mod w : G g Aut@(T) mﬂ}w AutA/(w) (T/wT) .

SS ~v

Corollary 2.3.4. Let the assumptions and the notations be as above. We have p% = p3, for any G-
stable lattice T and T”, where 77 (resp. py) is the semi-simplification of the F[G]-module T'/wT (resp.
T /=T’).

Proof. Let us take an element g € G. Note that the characteristic polynomial of p(g) is an element of
A[X] under the assumption that p has a G-stable lattice. The characteristic polynomial of pp (¢g) and
Ppr: (g) is the mod @ reduction of the characteristic polynomial of p(g). Then the corollary follows by
applying Theorem 2333 (we let k =F, F = F[G],M = T/wT and M’ =T'/wT’).

O

We see that the semi-simplification of mod w representation is independent of the choices of G-stable
lattice. Hence we denote by p® the semi-simplification of py.
At the end of this section we introduce a condition which makes the G-stable lattice unique up to

multiplications by elements of K *:

Propostion 2.3.5 ([Oc3l Lemma 5.11]). Let the assumptions and the notations be as above. Assume 5.

is irreducible. Then for any G-stable lattice 7", there exists an element x € Frac (4)™ such that 7" = xT.

Proof. We prove this proposition by contradiction. By (2) of Proposition [ZT.3]l we may assume that there
exists a G-stable lattice 7" such that @T C T’ C T'. Since T/wT is an irreducible F[G]-module we have
T'/@wT = T/wT and hence T + @wT = T. Thus 7" = T by Nakayama’s lemma. This contradicts to our
assumption that 7" C T.

O
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2.4 p-adic Galois representation and Gal (@/ Q)-stable lattices

Let K be a finite extension of Q,. We denote by (O, w,F) the ring of integers of K, a fixed uniformizer
of O and the residue field F = O/ (w). Let V be a finite dimensional K-vector space with dimgV = n.
We induce the product topology on Auty (V) = GL,, (K).

Definition 2.4.1. A p-adic Galois representation of Gal (@/Q) is a continuous homomorphism p :
Gal (@/Q) — Autg (V).

Propostion 2.4.2 ([Sell pp.1-2]). Let p : Gal (Q/Q) — Autg (V) be a p-adic representation. Then
there exists a Gal (@/Q)—stable lattice.

Proof. Since p is continuous and Gal (Q/Q) is compact, we have p (Gal (Q/Q)) is bounded in Autg (V) =
GL,, (K). Then the proposition follows by Proposition
O

The following proposition tells us that the number of the isomorphic classes of Gal (@/Q)—stable

lattices is finite in an irreducible p-adic representation:

Propostion 2.4.3 ([Oc3|, Proposition 5.13]). Let p : Gal (Q/Q) — Autg (V) be a p-adic representation.
Assume p is irreducible, then §.2 (p) < oo.

Proof. We prove this proposition by contradiction. Assume £ (p) = co. Then there are infinitely many
Gal (@/ Q) -stable lattices up to multiplications by elements of K *. Let us take a Gal (@/ Q)—stable lattice
T. We have T'/wT is a reducible O[G]-module by Proposition For any n € Z(, we denote by .Z,
the set of O[G]-submodules M of T/w™T for which the following conditions hold:

(i) {0} C M CT/w"T.
(i) M ¢ @wT/w"T.
(iii) @ 'T/@"T ¢ M.

For any n € Z>i, since O is profinite, there exists a Gal (@/Q)—stable lattice 7" € T such that
w" CET',T' ¢ wT and @w" T ¢ T'. Thus the set £,, is non-empty for any n.

For any M, 1 € L,,4+1, we denote by M,, the image of M, under the homomorphism T/w"'HT —»
T/w™T. Now we prove M,, € L,,. We denote by L the inverse image of M,,+1 under T —» T/w”HT.
Then L is a Gal (Q/Q)-stable lattice. The conditions (i), (ii) and (iii) in %11 is equivalent to the

following conditions:
(1) @" T CLCT.
(II) L ¢ wT.
(1) @"T ¢ L.

The conditions (I) and (III) imply @w"T C L + w"T C T. The condition (II) implies L + w"T C wT.
Furthermore, we also have " T ¢ L + @w"T by the condition (III). The above arguments tell us that
M, = L+ @"T/@w"T satisfy the condition (i), (ii) and (iii) in .%,.
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For any i < j, the homomorphism 7/w’T — T/w'T induces a map from £; to £;. The above

argument tells us that { £, }nEZ>1

M= (M, My,---) € @fn Clearly we have M C T and M is Gal (@/Q)—stable. Assume M is a lattice

is an inverse system. We have T&lﬁn # &. Let us take an element
n

of V. Then there exist: an element m € Zxq such that @™ C M C T by (2) of Proposition 213l This
contradicts to the condition (iii) in £,,41 and hence M is not a lattice of V. Thus ranko M < rankeoT
and M ®o K is a proper nontrivial K[G]-submodule of V. This contradicts to the assumption that p is
irreducible and we finish the proof of Proposition 2.4.3]

O

2.5 Modular forms and their p-adic Galois representations

In this section, we summary some preliminaries and results on modular forms and their Galois represen-
tations. For more details and the proof, the reader can refer to [Hi3, Chap.5] and [Sh| for example. We
fix a positive integer M and ¢ a Dirichlet character modulo M in this section. We denote by I'g (M) and
Ty (M) the following subgroup of SLs (Z):

Lo (M) = { (Z Z) € SL (2)
a b
Iy (M):{<c d) € SL (2)

Note that we have T'g (1) = SLs (Z) . We denote by

¢=0 (mod M)},

¢c=0 (mod M),d=1 (modM)}.

h={zeC|Im(z) >0}

b
the complex upper half plane. Let f be a C-valued function, k € Z and v = (a d) € GL$ (R). We

c
define the weight k£ action of v on f as follows:

) k/2 _k az+b
flev:h—=C,z—det(y)"" (cz+d) f(cz+d>'

a b

For an =
Yy (c d

) € Iy (M), we denote by ¥ (v) = ¢ (d).

Definition 2.5.1. Let
f:p—=C

be a function. We say that f is a modular form of weight k, level M with Neben character v if f satisfies

the following conditions:
(i) flyv=fforally eI (M).
(1) fl,7 = () f for all 7 € To (M).

(ili) For any a € SLy (Z), f|, c is holomorphic at co.
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1 1
Since <O 1) eI’y (M), if f is a modular form we have f (2 + 1) = f(z) by the condition (i). Then

by the condition (iii), f (z) has the Fourier expansion f (z) = Z a(n, f)q" with ¢ = exp (2mv/=1z). We
n>0
say that f is a cusp form of weight &, level M with Neben character v if f is a modular form and further

a (0, f|,a) = 0 for all a € SLy (Z). We denote by My (I'g (M) ,1) (resp. Sk (I'o (M),%) the space of
modular forms (resp. cusp forms) of weight k, level M, Neben character .

Example 2.5.2. We define Ey 4 (z) as follows:

L(1—k =
Ek,w (Z) = (1 9 7/¢) +Zak71,¢ (ﬂ) qn’
n=1

where 041, (n) = » 1) (d)d*"". Then we have Eyy (2) € My (Do (M), ) for k > 2 (cf. [Hi3, §5.1)).
d|
We call Ey y (2) the Eisenstein series of weight k£ and Neben character 1.

Example 2.5.3. We define A (z) as follows:

Az):=[[a =g =D 7(n)q"

Then A (2) € S12 (SLs (Z)) which is called the Ramanujan’s cusp form.
Definition 2.5.4 (Hecke operators). Let n € Z~(, we denote by

a linear map such that

amT(m) = Y v®a(55f)

bl(m,n)
with ¢ (b) :== 0 if (b, M) > 1.
Note that if we decompose an integer n € Z~q into the production of prime numbers: n = l_Ilf”7

then T (n) is generated by all T (I;) (cf. [Hi3| §5.3]).

Definition 2.5.5. Let O be the ring of integers of a finite extension of Q, the Hecke algebra Hy, (I'y (M) , v, O)
(resp. hy (To (M), 4, 0)) is the O sub-algebra of Endp (My, (T'y (M) , 4, O)) (resp. Ende (Sk (To (M) , 1, 0)))
which is generated by all Hecke operators T (n).

We have the following duality theorem between the Hecke algebra hy, (I'o (M) , 4, O) and the space of
cusp forms Sy (T (M) , 1, O). For the proof, see [Hi3l §5.3, Theorem 1].

Theorem 2.5.6 (Duality). The following pairing
(2.5) hi (Lo (M) 1, 0) x Sk (To (M) ,4,0) = O, (h, f) = a(1,h- f)
is perfect i.e. we have the following isomorphisms:

Sy (Co (M) 4, 0) = Home (hy (To (M) , 4, 0),0),

hk (FO (M)a¢70) :>HOH1(9 (Sk: (FO(M)J/J»O%O)
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We call that a cusp form f is a normalized Hecke eigen cusp formifa (1, f) = 1land T (n) f = a(n, f) f

for all T (n). For example the Ramanujan’s cusp form A is a normalized Hecke eigen cusp form.

Definition 2.5.7. We say that a Galois representation p is unramified at a prime [ if p(I;) = {1},

otherwise we say that p is ramified at [.

Theorem 2.5.8 (Deligne-Shimura). Let k € Z>2 and f € S; (I'g (M), 1, O) a normalized Hecke eigen
cusp form, where O is the ring of integers of a finite extension of QQ,. Then there exists a p-adic Galois
representation

ps : Gal (Q/Q) — GL3 (Frac (0))

such that
(1) The representation py is irreducible and unramified outside the primes dividing Mp.

(2) For the geometric Frobenius element Frob; at 11 Mp,
tr py (Froby) = a(l, f),
det ps (Frob;) = (1) "1,
At the end of this section we recall the Chebotarev density theorem (cf. [Sell §2.2] for our later use

Theorem 2.5.9 (Chebotarev density theorem). We denote by ¥ a finite set of primes and Gy, the Galois
group of the largest algebraic extension of Q unramified outside ¥. Then { Frob; |l ¢ ¥} is a density
subset of Gfy;.
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Chapter 3

Ribet’s lemma

3.1 Ribet’s proof of the converse of Herbrand theorem

In 1976, Ribet [Ri] proved the converse of Herbrand theorem as follows:

Theorem 3.1.1 (Ribet). Let k be an even integer satisfying 2 < k < p—3. We denote by C1(Q(1,))[p] the
p-part of the ideal class group of Q(p,) on which the Galois group Gal (Q () /Q) acts by functoriality.
Suppose p divides L (1 — k, 1). Then Cl(Q(p,))[p]* " # 0.

We prove Theorem B.I.1] in this section. However the tools we used is slightly different from Ribet’s
original proof. These tools also illustrates the proof of our main theorem.

First we recall the following theorem (see [Dal §6] for example).

Theorem 3.1.2. Let the assumptions and the notations be as in Theorem B.I.Jl Under the assumption
that p divides L (1 — k, 1), there exists a normalized Hecke eigen cusp form f € S (SLs (Z)) such that
f = E; (mod (w)), where E, = Ey1 (cf. Example 25.2) and w is a fixed uniformizer of the ring of

integers of K = Q, ({a (n, f)}nZI)'

By class field theory we see that to prove Theorem 3.1l it is equivalent to construct an unramified
abelian p-elementary extension L (i.e. Gal(L/Q (up)) = (Z/pZ)®") of Q (1) on which Gal (Q (i) /Q)
acts via w!=*. We construct the field L by using the Galois representation p; attached to f (cf. Theorem
25.8). We denote by ¥ = {p, o0 }. Since pys is unramified outside X, py must factor through Gx. From

now on to the end of this section, we write
pr: Gy — GLy (K).
We denote by O the ring of integers of K and by F the residue field.
Lemma 3.1.3. The mod (w) representation of py is reducible, Furthermore we have g% = F[1]&F[w*~'].

Proof. Let us take a Gal (Q/Q)-stable lattice T of py. Since f = Ej, (mod (w)) by Theorem BI2, we
have tr pys (Frob;) = 1 + (*~! (mod (w)) for all [ # p. Thus trps(9) = 1+ w* 1 (g9) (mod w) for all
g € Gy by Theorem Since

det p (9) =271 (trpf (9)2 —trpy (92)) )
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we also have det py (9) = w* ! (9) (mod @) for all g € Gx:. Thus the lemma follows by applying Theorem
233 to M = (T'/wT)™ and M' =F (1) & F (w*~1).
O

Since f = E) (mod (w)), we have a(p, f) = 1 (mod w) and hence a (p, f) is a p-adic unit. By a

theorem of Mazur-Wiles (see Theorem [5.49] for the statement in more general case), there exists a basis

€1 0
ps I, =
* €2

with €1 unramified and 1 (Frob,) = a (p, f). Thus

(X —e1(9) (X —e2(9) = (X = 1) (X """ (g)) (mod w)

of ps such that

k—1

for any g € D), by Lemma [3.I.3] Since k is an even integer, we have €, = @" ™" is ramified at p. Choose

an element go € I, such that 1 # e (go) (mod w) and choose a basis of py such that

e 0 (1 0
(3.1) ps |p,= <* 52> and py (go) = (0 - (go)) :

a(g) b(9)

Write pf (g) = for any g € Gx. By the following equalities
c(g) d(g)

(3.2) { trps(g09) = alg) + e2 (90) d(g) € O
trp(g) = a(g) +d(g) € O.

we have €2 (go) — 1 € O*. Thus a(g),d(g) € O for any g € Gx. By modulo (=), we have @ (g) and d (g)

are the solution for x and y of the following equation:

(33) { 7422 (90)y = 1452 (90) ' (9)

r+y=1+wk1(g).

Thus we have a(g) = 1 (mod @) and d(g) = w*~!(g) (mod w) for any g € G by the equality (BI)).

Furthermore, we have the following equality

(3.4) b(g)c(g)=algg)—alg)alg) e (w)

for any g, g € Gx.

We denote by B (resp. C) the O-submodule of V' which is generated by b(g) (resp. ¢(g)) for all
g € Gx. Since py has a Gy-stable lattice by Proposition B and C are bounded by Proposition
Also by the irreducibility of py we have B and C' are non-zero ideals. We introduce two operations

as follows:

Operation 1. Let B = (w”) with n € Z. We replace py to

-1
1 0 1 0
w1 el w1

a(g) b(g)
c(g) d(g)

and we use the same symbol ps (g) = ( ) and B as above. Then by a matrix calculation we

have B = O after this operation.
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Then B = O by Operation [[I Thus we have C' C (w) by the equality (34). Let ej,es be O-basis

corresponding to this representation and we denote by T' = Oe; @& Oes. Then we have that pp is of the

*
form b1 and is not semi-simple.
ok

By using the arguments above in more general settings, we can prove the following proposition :

Propostion 3.1.4 (|Ri, Proposition 2.1]). Let K be a finite extension of Q, and V' a K-vector space of
dimension 2. Let p: G — Autg (V) be a linear representation of a group G such that p has a G-stable
lattice. Suppose p is irreducible and p*® = 19 @ 93, where 91 and 1, are characters. Then there exists a

!

G-stable lattice 1" such that pp is of the form but is not semi-simple.

2

Under the above preparation we are ready to prove Theorem B.1.1]

Proof of Theorem B.1.1l By the above arguments we have that there exists a Gx-stable lattice T such
a(g) b(g)

hat pr : G — GLy (0),
that pr : G — GLg ( )gH<c(g) 1(0)

(i) pr |p,= (61 O).
* E2

1 *
(il) pp = (0 k_1> and pp is not semi-simple.
w

) has the following properties:

By restriction py to Gal (Qx/Q (up)), we get the following homomorphism:

Gal (Qs/Q(up)) = B/wB =TF,g+ b(g).

Since the group Gal (Q (1) /Q) has order prime to p, we have that the above homomorphism is surjective.
Let L be the abelian extension of Q (y,) corresponding to

Ker (Gal (Qs/Q (1p)) = F)

and we denote by b the following isomorphism:
b:G = Gal(L/Q(py)) = F,g = b(g)-

We have p; is unramified outside ¥. Furthermore by the condition (i) we have b(I,) = 0. Thus
the extension L/Q (p,) is unramified everywhere. By a matrix calculation we have that 5(595_1) =
w7k (s)b(g) for any g € Gal(Qx/Q (1)) and s € Gx.. Thus L is the desired field and this completes
the proof of Theorem B.T.11

3.2 The Bruhat-Tits tree of GL,

In this section, we introduce the tree structure of the homothetic classes of G-stable lattices in a linear
representation of dimension 2 over a discrete valuation ring. This tree structure also gives us another
proof of Ribet’s lemma. For more details on this theory, the reader can refer to [Be], [BC3] and [Se2].

From now on to the end of this chapter, we fix a discrete valuation ring A with w a fixed uniformizer
of A and F = A/ (w) the residue field. Let V be a finite-dimensional Frac (A)-vector space.
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Definition 3.2.1. Let T and T” be lattices of V. We say that T and T” are homothetic if there exists
an element A\ € Frac (A)™ such that 77 = AT

Let 2 be the set of lattices in V' up to homotheties. For a lattice T', we denote by [T] its equivalence

class up to homotheties.

Definition 3.2.2. Let x and z’ be the points of 2. We say that z is a neighbor of z’ if x # 2z’ and
there exist lattices T, T" of V such that x = [T],2’ = [T'] and wT C T' C T.

Lemma 3.2.3. Let z and 2’ be the points of 2". Suppose z is a neighbor of ', then 2’ is also a neighbor

of x.

Proof. Let T,T' be the lattices of V such that © = [T],2’ = [T'] and @T C T C T. Then wT’ C wT C
T. O

We recall the definition of graph as follows:
Definition 3.2.4. A graph I is consisted by a data (vertT',edgeT, (o,t),%) such that

(1) vertT is a set which is called the vertex set of T'.

(2) edgeT is a set which is called the edge set of T'.

(3) (o,t) and i are the following maps

(0,t) :edgel’ = vertI' x vert ', y — (0 (y) ,t (y,)),
i:edgel’ — edgel',y — i(y)
which satisfy i (y) # y,4 (i (y)) =y and o (y) = ¢ (i (y)).

An element in x € vertT is called a vertex of I'. An element y € edgeT is called an edge and i (y) is

called the inverse edge of y. The vertex o (y) is called the origin of y and ¢ (y) is called the terminus of y.
We endow 2~ a graph structure as follows:

(vert) The vertex set is 2.

(edge) We draw an edge from z to z’ if = is a neighbor of 2’ for the points z, 2’ € 2 .

Then £ is a graph by Lemma 323 In 27, a path from = to 2/, which is denoted by Path, ./ is a
sequence T = xg,T1,...,Tn = &' of points in 2~ such that x; is a neighbor of x;,1. The integer n is the
length of the path. Define d (x,z’) the distance form x to =’ which is the minimal length of a path from
x to . We call Path, ,» a path without backtracking if z; # =, for any i # j.

Theorem 3.2.5 ([Se2, Chapter II, Theorem 1]).

(1) The graph £ is connected i.e. for x # o’ € 2, there exists a path without backtracking Path,,

from z to 2’.

(2) Suppose n = 2. Then the graph 2" is a tree i.e. for x # 2’ € 2, there exists a unique path

Path, ,» without backtracking from x to '
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Proof. We denote by « = [T] and 2’ = [T”] such that 7" C T and 7" ¢ wT. We have the sequence of
lattices
T/:TnCTn_l cC---CTy=T

such that T;_1/T; = A/ (w) as A-modules (i = 1,--- ,n) by the Jordan-Hélder sequence for T/T”. This
implies T;_ is a neighbor of T; and hence [T},], [T},—1], - - - , [To] is a path form z to 2’. Assume [T;] = [T}]
for some ¢ < j, then 77 C wT which contradicts to our assumption. This completes the proof of (1).
We keep the notations as above and consider the case n = 2. By the arguments above we have
d(z,z') = n. We prove that there exists a unique path without backtracking form z to 2’ by induction
on n. It is obvious if n = 1 and hence it is suffices to show that there exists a unique lattice T,,_; such
that T,, C T,,—1 C Tp and [T},—1] is a neighbor of [T},]. Suppose we have two distinct neighbors [T},_1]
rank 2 and T;,—1 # T),_; we have T, /wT,, = wT,_1/wT, ® @T),_,/wT,. Hence T,, = wT,,_1 + wT)_,
by Nakayama’s lemma. Then T,, C w1 which contradicts to our assumption. This completes the proof
of Theorem O

and [T, _4] of [T,] such that T;,_1 and T),_; lives between T}, and Tj under inclusion. Since T, is free of

From now on to the end of this section we assume n = 2.

Propostion 3.2.6 ([BC3, §2.1]). Let x = [T] and n € Z( be a fixed integer. Then there is a bijection
between the set of the points z’ in 2" such that d (z,z’) = n and the set of lattices w"T C T" C T such
that T/T" = A/ (w)" as an A-module.

Proof. Let «’ = [T'] such that d(z,2’) = n and T" ¢ T. Then there exists a basis { e1, ez } such that
T = Aey ® Aey and T = Ae; & Aw"ey. Hence T/T' = A/ (w)".

For the converse let us choose a lattice T” satisfying @"T C T" C T and T/T’" = A/ (w)". Then there
exists a basis { e, e } such that T = Ae; @ Aes and T7 = Ae; @ Aw™es. For 0 < i < n we denote by
T, = Ae; ® Aw'ey and by x; = [T;]. Then z,, = [T'], 21, ,x¢ = [T] is a path without backtracking
from z to 2’. Thus d (z,z') = n.

O

Definition 3.2.7. In the tree 27, we define the segment [z, '] as follows:

oaf] = { {#}  (@=u)
’ Path, ,»  (z # ),

where Path, , is the unique path without backtracking form z to z’.
Definition 3.2.8. A subset C of 2" is called a convex if the segment [x,2'] C C for any x,2’ € C.

Definition 3.2.9. Let © = [T] be a point in 2. A half-line L, with origin = is a union of segments
UnZ [z, @], where H C T is a direct summand of T and z,, = [H + @"T.

n=1

3.3 Another proof of Ribet’s lemma

We keep our notation as in the previous section and we assume dimg V' = 2. First we reformulate Ribet’s

lemma for more general setting as follows:
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Propostion 3.3.1. Let p: G — AutgV be an irreducible linear representation of a group G such that
p has a G-stable lattice. Assume p* = 1 @ Jo, where ¢; : G — F* are characters (i = 1,2). Then there
41

exists a G-stable lattice T" such that pr is of the form (
2

*
) but not semi-simple.

Let us keep the assumptions and the notations of Proposition B.3.1] from now on to the end of this

section. We denote by € (p) the set of x € 2 satistying p(g) = z for any g € G.

Lemma 3.3.2 ([BC3| Proposition 11-(a)]). Let x = [T] € € (p). Then T is a G-stable lattice and hence
€ (p) is non-empty.

Proof. For any g € G, we have p(g)T = w™9T. Since p(G) is bounded by Proposition we have

n(g) =0.
O

Lemma implies that € (p) is exactly the set of the homothetic (cf. Definition B21]) class of
G-stable lattice.

Lemma 3.3.3 ([BC3| §3.1]). The tree € (p) is a convex.

Proof. Let z,2’ € € (p) then p(g) [z, 2] is also a segment with extremities « and 2’ for any g € G. Since
there is only one segment with extremities « and =/, we have p (g) [z, 2'] = [z, 2/].
O

Lemma 3.3.4 ([BC3| Lemme 10]). The representation p is irreducible if and only if the tree € (p) is
bounded.

Proof. We may assume K is complete by Proposition Assume % (p) is unbounded. Since ¥ (p) is
a convex it contains a half-line L, with origin « = [T']. Then there a sequence of points { [T3,] },,~; such
that @"T C T,, C T and T/T,, = A/w"™ A as an A-module. Under the assumption that K is compl_ete, we
have that N72 7T, is a free A-submodule of T" of rank 1 and N92 7, is stable by G. Hence p is reducible.
Assume p is reducible. There exists a K-subspace W of dimension 1. Let us take an element z = [T] €
% (p) and we denote by H = T N'W. Then H is an A-submodule of rank 1 and H is a direct summand
of T. Then there exists a half line L, in € (p) by Definition B:229l This implies € (p) is unbounded.
O

Propostion 3.3.5 ([BC3| Proposition 11-(d)]). Let z = [T] be an element of € (p) and we denote by 7,

the mod w representation pp. Then we have the following statements:
(1) The point = has no neighbor in €'(p) if and only if the representation p, is irreducible.

(2) The point = has exactly one neighbor in € (p) if and only if the representation 7, is reducible

but indecomposable.

(3) The point x € €(p), then x has exactly two neighbors in €(p) if and only if the representation

P, is decomposed into two distinct characters.
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Proof. Let = [T]. Since (1) is proved in Proposition 2.3.5] we begin with (2). Assume x has two distinct
neighbors [T1] and [T»] such that wT C T; C T for i = 1,2. Then T/wT = T1/wT & Tz /wT as F[G]-
modules. Then 7, is decomposable. For the converse assume T/wT = X7 © X5 as F[G]-modules. We
denote by T; the inverse image of X; in T — T'/wT (i = 1,2). Then [T1] and [T3] are distinct neighbors
of z = [T].

Now we prove (3). Assume Assume z has more than two distinct neighbors in €'(p). Let T1,T%,T5
be the representatives of three neighbors such that wT C T; C T (i = 1,2,3). Then we have

T/wT =T /wT & Ty/wT

as F[G]-modules. Since the Jordan-Hélder components of T'/wT is unique up to F[G]-isomorphism there
exist i,j € {1,2,3} such that i # j,T/wT = T;/wT & T;/wT and T;/wT = T;/wT as F[G]-modules.
Then we have p,, is decomposed into two equal characters. Now we assume p, is decomposed into two
equal characters i.e. T/wT = X; ® X such that X; = X5 as F[G]-modules. We denote by T; the inverse
image of X; in T — T/wT and by X; = Fu;(i = 1,2). Since X; = Xo, X3 := F(v; +v3) is also a
G-stable F-vector subspace of T/@wT. We denote by T3 the inverse image of X3 in T — T/wT. Then
[T5] is a also a neighbor of x which is distinct from [T3] and [T3]. Thus x has more than two distinct
neighbors in € (p).

O

Under above preparations we are ready to prove Ribet’s lemma.

Proof of Proposition B.3.1] We have that € (p) is a convex and bounded by Lemma[33:3]and Lemma
B3 respectively. Thus there exists a point € € (p) such that = has exactly one neighbor. This implies
that p, is decomposable but not semi-simple by (2) of Proposition This completes the proof if we
assume 97 = 5. Now we assume 91 # ¥2. Then every point of € (p) has at most two neighbors by (3)
of Proposition Since € (p) is bounded and convex, we have that € (p) a segment. Let z and 2’
.. _ . Y1 * (92 %
be the extremities of € (p). Then one of {p,, 7, } is of the form 0 192) the other is ( 0 ?91> and
both of them are not semi-simple. This completes the proof of Proposition [3.3.11
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Chapter 4

Kubota-Leopoldt p-adic L-function

and Iwasawa main conjecture

In this section, we introduce the Iwasawa theory for ideal class groups. For more details on this theory,
the reader can refer to [Iwl], [Iw2], [MW1], [Oc2] and [Wi2].

4.1 Iwasawa-Serre isomorphism

Let I" be a multiplicative topological group which is isomorphic to 1 + pZ, and v a fixed topological
generator of I'. Let O be the ring of integers of a finite extension of Q,. Then we have the following

theorem:

Theorem 4.1.1 (Iwasawa-Serre isomorphism). Let the notations be the same as above. Then we have

the following isomorphism of O-algebras:
O[] = Ao,y 1+ X.

Proof. Let T',, = T'/T?" for any n € Z>1. Then I, is cyclic of order p”, generated by v mod ", We
denote by w, (X) = (1+ X)pn — 1 for any n € Z>1. Then we have the following isomorphism:

O[] = O[X]/ (wn (X))

vy mod TP" = 1+ X mod (w, (X))

and the following commutative diagram:

O] —— O[X]/ (wm (X))

i |

for m > n. We finish the proof by the following lemma.
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Lemma 4.1.2. Let the notations be the same as the beginning of this section, then we have the following
isomorphism:
Ao 5 lim O[X]/ (w, (X)).

Proof. Let w be a fixed uniformizer of O. Since O = I&n(’)/ (@)™, we have

(4.1) lm O[X]/ (wn (X)) = lim O[X]/ (@™, wp (X))

s

On the other hand, we also have the following equality:

(4.2) Ao = Im O[X)/(X™) = lim O[X]/(="", X™).

Let us admit the following claim for a while.

Claim 1. (1) When we fix m and n, there exist integers m{ and nj such that (=™, X") C

(@™, wy (X)) for any m’ > mg n' > ny.

(2) When we fix m’ and n’, there exist integers mq and ng such that (@™, w, (X)) C (@™, X")
for any m > mg, n > ng.
Thus Jim O[X]/ (@™, wy, (X)) is isomorphic to Jim O[X]/(w™ , X™") by the following claim. Combine

the equalities 1) and ([E2), we finish the proof glf iemma EZT0
We will show Claim [I in the rest of the proof. We denote by e the ramification index of K over
Qp ie. (w)® = (p). First let us fix the integers fix m and n. Let r = max{m,n}, nj = p" and
mph = m. Then w, (X) € (wp(X)). Since w, (X) = XP" 4 p" - f(X) with f(X) € Ap, we have
XP" € (w (X), @) C (@™, wn (X)). Now we fix the integers m’ and n’. Let ng be a integer such that
eng > m' and p™ > n’. Then p™ C (™) and XP"° C (X™). This implies wy, (X) € (@™, X"). We
/

finish the proof of Calin [Il by letting mg = m/.
O

At the end of this section, we introduce a lemma on the ring Ap for our later use.

Lemma 4.1.3 ([Hi3| §7.1, Lemma 1]). Let O be the ring of integers of a finite extension of Q, with w a

fixed uniformizer of O. Let a € O* and b € (w). Then the following ring isomorphism is an isomorphism

AoﬁAo,A(X)F—)A(aX+b).

Proof. Let A(X) = Z ¢nX™. Then we have the following expansion of A (aX + b):

m=0

A(aX +b) = i <§: Ca@™ b ™ <:1)> xm.

m=0 \n=m

o0
Since b € (w), the coefficient Z cpa™pn ™ <n> is p-adically absolutely convergent and hence the map
m
n=m

is well-definied. The inverse map is given by sending A (X) to A (a™*X —a~'b).
O
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4.2 Iwasawa’s construction of Kubota-Leopoldt p-adic L-function

Let ¥ be an arbitrary Dirichlet character. Kubota-Leopoldt (see [Iw2l, §3, Theorem 2]) showed that there
exists a p-adic continuous function L, (s, ) for s € Z, — {1} (also continuous at s = 1 if ¢ is non-trivial)

with the following interpolation property for k € Z>1:
Lp(l - kﬂ/’) = (1 - wwik(p)pkil)l’(l - kawwik)a

where L(s,w™") is the Dirichlet L-function. In this subsection, we introduce the following theorem of

Iwasawa’s construction (cf. [Iwl]) of L, (s,):

Theorem 4.2.1 (Iwasawa). Let x be a primitive Dirichlet character modulo Np with (N, p) = 1. Then

there exists a unique power series £, (x) such that

Lp (1 - ktva'%p‘*’) (X # w_l)

v (Lp (X)) = { (Y () uFe —1) Ly (1 = ko) (x =w™?)

for any arithmetic specialization ¢ € Xarith (Ay)-

Let K be a finite extension of Q, such that K contains the field Q, (x). We denote by O the ring
of integers of K. We denote by I' = 1 4 pZ, and by I',, = 1+ pZy /1 +p" 1z, for any n € Z>;. For
any a € Z with (a, Np) = 1, we denote by 7, (a) the image of @ mod Np in T',, under the following
isomorphism:

(Z/Np"TZ)* 3T, x (Z/NpZ)™ .

We denote by &, (x) € K[I',,] as follows:

mx):ﬁ Y ax (@) (a).

0<a<Np"ti
(a,Np)=1

Lemma 4.2.2. For m > n > 1, &, (x) maps to &, (x) under the projection map K[I';,] - K[I',].

Proof. Tt is sufficient to show &, (x) maps to &, (x). Recall that

(0= Y ax(@) s (@)
Np

0<a<Np"t2
(a,Np)=1

For any 0 < a < Np™*!, note that the set {a+kan+1}0<k<p,1
(Z/Np™+?) * (Z/Npm+1) " then the image of &1 (x) under K[['y41] = K[I'y] is

maps to {a} under the map

p
Ny T? > ax (@) (@) =& (x)-
0<a<Np"t?t
(a,Np)=1

We fix an integer ¢ # £1 such that (¢, Np) = 1. For any n € Z>1, we denote by 7, (x) as follows:
1 (x) = (1 = ex(¢) m (€) &n (X) -

31



For any a € Z, we denote by a,, € [0, Np"*!) the unique integer such that a,, = ac (mod Np”“) and
let 7, (a) be the integer such that

(4.3) an = ac+ry, (a) Np"t
Lemma 4.2.3. We have the following equalities:

(4.4) () =x (@) D ma(a)x(@)m(a)

0<a<Np"t!
(a,Np)=1

for all n > 1.

Proof. Since we have x (a,) = x (ac) and 7, (a,) = v (ac),

M=o L @@ Y () (a) v (ae)

0<a<Np"ti 0<a<Npmt!
(a,Np)=1 (a,Np)=1
1 1
= Npntl >, ax(@m ()~ Npitt Y (an—ra(@ N x(an) v (an) -
0<a<Np™t! 0<a<Np"t+!
(a,Np)=1 (a,Np)=1

Note that the map (Z/Np”“Z) *Xg (Z/Np”‘HZ) s bijective. Then the above equalities becomes to

M (X) = Z 7n (@) X (@n) vn (an)

0<a<Np"ti
(a,Np)=1

=X (C) Tn (C) Z Tn (a) X (a) Tn (a) .
i

O

We have 7, (x) € O[I';] for all n > 1 by Lemma .23l Furthermore, since 7,, (x) maps to n, (x)
under O[',,] — O[] for all m > n. Therefore we can define an element 1 (x) € O[[T']] which is the limit

of nn (x)
For any n, k € Z>1, we denote by vy, the homomorphism of O-algebras as follows:

(4.5) Uk 2 O[0] = O/Np" 1O, v, (a) = (a)*~' mod Np"H1O.
By Lemma [£.2.3] we have the following equalities:

(4.6) Uk (12 (00)) = x5 () Y ra(a) xw' " (a) ¥ 1P mod NptTTO.

0<a<Np"tl
(a,Np)=1

Lemma 4.2.4. We have the following equality:

_ -1 _
(4.7) k- O (1 (X)) = (xw' * (¢) & = 1) il > xw'*(a)d* mod Npmt'O.
p 0<a<Np"t?i
(a,Np)=1
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Proof. By the equality ([@3)) we have
af = a*ck 4 ka* 71, (a) Np™T! mod (Np”“)2 .
By multiplying xw!~* (a) to both sides of the congruence above, we have
(4.8) xw' ™ (@) af = xw'F (a) a¥c" + xw'F (a) ka* 1, (a) Np™ T mod (Np”“)2 .
On the other hand by the equality (0], we have
(4.9) kg (n (X)) = xw' % (c) Z xw'* (@) ka* "1k 1y, (@) mod Np™H1O.

0<a<Np"tt
(a,Np)=1

Combine the equality [@L8]) and ([@3]), we have

1-k k 1-k k .k
_ xwt " (a)ay — xw' " (a) a®c
kv (02 () = xw' () Y oS mod Np™+0
0<a<Np™t!
(a,Np)=1
1 _ _ _
= 4an+1 Z le k (ac) aI:L _ le k (C) Ck Z le k (a) ak
0<a<Np"t! 0<a<Np™+1
(a,Np)=1 (a,Np)=1
mod Np" 0.
Using the equalities yw!=* (ac) = yw!=* (a,) and Z xw' 7 (an) ak = Z xw!™* (a) a*,
0<a<Np"t?! 0<a<Np"t?!
(a,Np)=1 (a,Np)=1
we have
1ok By L 1—k k 1
Bk (0 (1) = (1= (0)€") oy S ' (a)a® mod NpHO.
0<a<Np"t?!
(a,Np)=1
O
Lemma 4.2.5. We have the following equality
. -1 - - - —k
nll—{%om Z xw? k(a)ak:(l—xwl k(p)p* 1)L(1—k,xw1 )
0<a<Np"t

(a,Np)=1

Proof. Let us consider an integer a such that 0 < a < Np™*! and (a, N) > 1. Since the conductor of y is
Np with (N, p) = 1 and the conductor of w is p, we must have the integer a is not prime to the conductor

of xw!™* and hence xyw'~* (a) = 0. Thus

1 ~ 1 _ 1 _
NprtL > lek(a)ak:W > lek(a)ak*W Y, w' T (a)d

0<a<Np™t! 0<a<Npnt! 0<a<Np"t!
(a,Np)=1 (a,p)>1

1 _ 1 _ _

= Nprtl Z xw! k(a) a® — N ,H_lXWl k(p)Pk Z xw' k(a> a”
P 0<a<Npn+t1l p 0<a<Npm
1 _ 1 _ _ _

= N+t Z xw' k(a) a® — N anl k(P)Pk ! Z xw' k(a) a”.
p 0<a<Npnti p 0<a<Np"
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By [Iw2, §2.3, Lemma 1] and [[w2, §2.2, Theorem 1], we have

. 1 1—k k_ -k
nh_)rr;om Z xw' " (a)a” =~k L(1—k,xw'").
0<a<Npn+tl

This completes the proof of Lemma

Under the above preparation, we are ready to prove Theorem 211

Proof of Theorem [4.2.Tl Note that the limit of vy, for n — oo, defines a continuous homomorphism

of O-algebras as follows:
(4.10) v s O[[T)] = O, (a) — (a)k~!

for every (a, Np) = 1. Let d be element in Z, such that (c) = u?. Combine Lemma 24 and Lemma
25 we have

(4.11) ve (n (%) = (xw (¢)u? = 1) L, (1 — k, xw)
for all k € Z>1. On the other hand, we have the following isomorphism
(4.12) O[] = Ao, u s u (1 + X)

of O-algebras by Theorem .11

CIfx = w Tl

under ([£.12).

- If x # w™!. We denote by Q (x) the element in Ap corresponding to 7 (x) under (EI2) and by

U (x) = xw (¢)u2? (1 4+ X)*— 1. Choose an element ¢ such that ¢/ (x) is a unit in Ao and we denote

by £, (00 = 7

Choose ¢ = u and we denote by £, (x) the element in Ap corresponding to 7 (x)

Since the equality ([II) holds for infinitely many u* — 1 € pZ,, £, (x) is unique. This completes the
proof of Theorem E.2.71

At the end of this section, we introduce the following theorem for later use:

Theorem 4.2.6 (Ferrero-Washington [FW]). Let us keep the assumptions and the notations of Theorem
21 Then the element £, (x) is not divisible by w, where w is a uniformizer of Z,[x].

4.3 The main conjecture of ideal class groups

First we recall some properties of Fitting ideals and characteristic ideals to obtain the Mazur-Wiles’
theorem (the Iwasawa main conjecture for ideal class groups). The reader can refer to [No|, [Nu] and
[OS, Appendix] for more details.

Let R be a Noetherian integrally closed domain and M a finitely generated R-module. Let v =
{v1,--+,v.} be a set of generators of M. We say that an element (aq,---,a,) C R" is a relation for
{v1, -+ ,vr }if ayv1 + -+ -+ arv,. = 0. Let Fittg (M) be the ideal of R which is generated by detA for all

r X r matrix satisfying the following condition:
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(Rely) Every rows of A is a relation of {vq, - ,v, }.

It may be shown that Fittg (M) is independent of the choices of the generators of M (cf. [Nu, Proposition
3]), hence depends only on M. We call Fittg (M) the R-Fitting ideal of M.
Assume M is R-torsion, we define the characteristic ideal charp (M) C R of M as follows:

charg (M) { a € R |ordp (a) > lengthp , Mp, for all height one prime ideal of R},

where lengthy , Mp is the length of the Rp-module Mp. We define charp (M) = (0) if M is R-torsion
free.

We have the following properties for Fitting ideal and characteristic ideal:

Propostion 4.3.1. Let R be a Noetherian integrally closed domain. Then we have the following state-

ments:

(1) Let M — M’ be a surjective homomorphism of finitely generated R-modules. Then we have
Fittg (M) C Fittg (M') ([Nu, Lemma 5]).

(2) Let R’ be a Noetherian R-algebra and M be a finitely generated R-module. Then we have
Fittgr (M ®@g R') = Fittg (M) R" (JOS, Proposition A.2]).

(3) Let I be an ideal of R and M a faithful R-module. Then we have Then we have Fittg (M/IM) C
I ([Nul Corollary 14]).

(4) Assume R is a unique factorization domain and let M be a finitely generated R-module. Then
we have Fittg (M) C charg (M) ([OS| Proposition A.6]).

Now we recall the Theorem of Mazur and Wiles at the end of this section. Let ¢ be a Dirichlet charac-

ter. We assume the conductor of ¢ is Np with (N, p) = 1. Let L, be the maximal unramified abelian p-

extension of Q (np) and X = Gal (Lo /Q (pnp=)). Then X¥ is a Z,[4][[Gal (Q (unp) /Q (pinp=))]] =
Zp[Y][[1 + pZ,)]-module. The following map

Zp[Y][[Gal (Q (uvp) /Q (unp))]] = Ay, § = w™ (1 4+ X) 7

is an isomorphism by Theorem L T.T]. We fix this isomorphism to the end this section and we consider

XY as a Ay-module.

Theorem 4.3.2 (Iwasawa [[w3]). Let the assumptions and the notations be as above. Then XY is a

finitely generated torsion A,-module.

The Iwasawa main conjecture for ideal class group claims that the characteristic ideal of XY is

generated by Kubota-Leopoldt p-adic L-function as follows:

Conjecture 4.3.3 (Iwasawa main conjecture). Let the assumptions and the notations be as above. Then

we have the following equality:
chary, (X2) = (£, (v71)).

Conjecture is proved by Mazur-Wiles [MWT] for Q and Wiles [Wi2] for totally real fields:
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Theorem 4.3.4 (Mazur-Wiles [Wi2, Theorem 1.2]). Let the assumptions and the notations be as above.

Then we have the following equalities:
chary, (X%) = Fitta, (X2) = (£, (v 1))
i.e. Conjecture [4.3.3]is true.

Let us give some remarks on the proof of Mazur-Wiles. To prove Conjecture 3.3] it is sufficient
to prove either (£, (¢~')) C chara,(X%) or charp,(X%) C (£, (™)) by the analytic class number
formula. Mazur-Wiles proved that (£, (¢~')) C Fitta,(X%). Hence Theorem E3.4] follows by (4) of
Proposition 3.1
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Chapter 5

Hida deformation

In this chapter, we review some fundamental results on Hida theory. For more details on this theory, the

reader can refer to Chapter 7 of [Hi3].

5.1 The ordinary part of the space of modular forms

In this section, we construct the ordinary part of the space of modular forms.

Lemma 5.1.1. [Hi3, §7.2, Lemma 1] Let O be the ring of integers of a finite extension of Q,. For the
pair (M, h) such that M is a finitely generated free O-module and h is an element of Endp (M), we

have the following statements:

(1) The limit lim h™ (z) converges in M for any z € M and lim A™ is an idempotent of
n—oo n—oo
Endop (M).

(2) For an element x € M such that there exists an element o € O such that h (z) = ax, we have

the following equality:

. n!
g ) =

{ z (e O0X)
0 (agOX).

Proof. Let d be the rank of the O-module M and {aq,--- ,aq} the set of all eigenvalues of h. We may
enlarge O such that O contains { a1, -+ ,aq }. Since O is a discrete valuation ring, there exists a basis of
M such that h = A + B where

a 0
1 a9 O 0 *
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and B is a nilpotent element. Since O* = O/ (w) x (1 + wO) and O/ (w) is finite, we have the following

equality for every eigenvalue a;:

n—oQ

(5.1) lim " :{ L (a; € 0%)
: 0 (a; g O%).

Combine the equality (5.I) and the equality h™ = (A4 B)™ = A™ + nlA"'~1B 4 ..., We have the
following equality:

1
1
lim n™ =
n— oo 0
0 0
after change the order of ay,--- ,aq. This completes the proof of Lemma [B.1.1]

We apply Lemma 5.1 to the pair (T (p) , My (T (M) , 1, O)). Define

e:= lim T(p)m

n— 00
and

Mlcc)rd (FO (M) ) wa O) = eMlSrd (FO (M) ,¢, O) .

We also define S¢™ (Tg (M), 9, 0) = eS (T (M), %, O) in the same way. We call an element f €
M (Do (M) ,4,0) (resp. f € S (I (M),4,0)) a p-ordinary modular form (resp. p-ordinary cusp
form). By (2) of Lemma [5.1] we have the following corollary:

Corollary 5.1.2. Let f € M{™ (T (M), 1, O) be a normalized Hecke eigen form. Then f is p-ordinary
if and only if the p-th Fourier coefficient a (p, f) of f is a p-adic unit.

5.2 I-adic forms

Let N be a positive integer which is prime to p and x a Dirichlet character modulo Np throughout this
chapter. Recall that I is an integrally closed local domain which is finite flat over A,. We refer to the

notations of the arithmetic specialization.

Definition 5.2.1. We call F = Z a(n, F)q" € I[[q]] an [-adic modular form (resp. I-adic cusp form)
n=0

with Dirichlet character x if for each ¢ € Xapien (I) ,
f<p = Z ® (a’ (nv }—)) q" € Ml(c);d (FO (ano-ﬁ—l) aX@bngl_kvaD (]I))
n=0

(resp. f, € S,‘g;d (To (Np™# ™), xwow' ™%, ¢ (I))) is the g-expansion of a p-ordinary modular form (resp.

p-ordinary cusp form).
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We denote by M°™ (x,T) (resp. S°'(x,I)) the [-module of all I-adic modular forms (resp. I-adic

cusp forms) with Dirichlet character x.

Example 5.2.2 (A,-adic Eisenstein series). First we define the p-stabilization of the Eisenstein series
By (2) (cf. Example 25.2) as follows :

EY) (2) = Ery (2) — ¥ (0) p* ' Epy (p2)
:(1—¢@ﬁﬁ%ﬂL(P—h¢)+§: o, () g

2 n=1
where o”) 1w Z Y (d)d* L.
(d, p) 1
We denote by
1 (x#w™)
H(0) =
W1+ X)—1 (x=w1).
and by &, = Z a(n, &) q" € Frac (Ay) [[¢]] where
n=1
271L, () /H (x) (n=0)
EI=Y S (@t (1 X) (0> 0).
d|n
(d;p)=1

Then for any ¢ € Xarith (Ay),

= Y @, @t @
(@

_ (»)
=a (n’Ekw,qu,w“kw) .

Furthermore we have

¢ (a(0,E)) =27"Ly (1 — ky, xtpw)
=27 (1 — X¥pw (P) pk‘p_l) L (1 - kwxzpwwl_kw)

(0 E(i),xw k“")
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by Theorem 2l If x # w™!, we have &, is a Ay-adic form. When x = w™?!, we have (u? (14 X) — 1) &,

is a A,,-1-adic form.

We introduce the following structure theorem of the I-modules M (y,I) and S (y,1):

Theorem 5.2.3 ([Hi3, §7.3, Theorem 1]).
(1) The I-modules M (y,T) and S (x,I) are finitely generated and torsion-free I.

(2) Assume I = Ap where O is the ring of integers of a finite extension of Q,, then the Ap-modules
Merd (y,T) and S°™ (x, 1) are also free over Ap.

Proof. Since the proof are the same for M°™ (y,I) and S° (y, 1), we prove only for M (y,I). By
definition, M°™ (x,I) is an I-submodule of the ring of power series I[[g]]. Hence M°™ (x,1) is I-torsion
free.

Let M be an arbitrary finitely generated free I-submodule of M (y,I). First we prove that the
I-rank of M is bounded. Write M = @;Zlﬂfj. Then there exist integers ny,--- ,n, € Zq such that the

determinant of the r x r matrix (a (n;, F;)) is non-zero. We denote by D the above determinant.

1<ij<r

Notice that I is isomorphic to 1&1] / 03;17% where {P; }, is a countable collection of height 1 primes

j
of I by Lemma [5.5:4l Then there exists an element ¢ € Xarien (I) with {, = 1 such that ¢ (D) # 0 by

the Weierstrass preparation theorem. We denote by f,; € M ,S;d (I‘O (Np) , xw!Fe, (9) the specialization
1<i,j<r’

Z ¢ (a(n,Fj))q" for each j. Then we have ¢ (D) is the determinant of the 7 xr matrix (a (n,, f;))
n=1

Thus we have the following inclusion:
@_10f,; C M{™ (To (Np), xw' ™, 0).

Since the O-rank of M, ,S:Jd (Lo (Np) , xw'=*¢, O) is bounded independently of the integer k,, by [Hi3| §7.2,
Theorem 1], we have rank;M is bounded.

Now let r be the maximal number of linearly independent elements of M°™ (x,T) and { Fy,--- , F, }
a set consisted by linearly independent elements of M°™ (y,I). We denote by ny,---,n, and D the
same symbol as above. Then { Fy,---,F, } is a basis of M4 (y,I) ® Frac (I). Let us take an element

F € M°*4 (x,T). Then there exist elements x1,--- ,z, € Frac (I) such that F = Za:j]:j and hence
j=1

(52) (a‘ (niv"t‘j))1§i_’j§r St (Ila v axr) = (a’ (nivf))lgigr .
The equality (B.2) implies Dz; € T and hence
DM (x,I) C @_,IF;.

Thus
MO (x,I) 5 DM (x, 1)

is a finitely generated I-module.
Now assume I = Ap and we prove the freeness of M°™ (y, Ap). We fix an integer k € Z>» and we
denote by p the principal ideal generated by X — (u’“_2 — 1). Let ¢ be an element of X,ith (Ao) such
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that k, = k and (, = 1. Under the assumption that I = Ap, we have pM°™ (y, Ap) = Ker ¢ and hence
Mo (x,Ao) /pM° (x,Ap) can be embedded into MPrd (Fo (Np) ,le’k,O). Let us take elements
Fi, o, Frof M (y, Ap) such that { F; mod pM°4 (y, Aop) } is an O-basis of M (y, Ao) /pM°* (x, Ao)
and we denote by M = @}_;AoF;. By the following commutative diagram:

0 — M — Mo (x, Ao) —_— Coker (1) — 0
pr erp lxp
0O —— M —— M (y, Ap) — Coker (1) — 0

l l |

M/pM —=— M (x,Ao) /pM° (x,A0) — Coker (+) /pCoker (1).

we have Coker (1) /pCoker (1) = 0. Thus Coker (1) = 0 by Nakayama’s lemma and M°™ (y,Ap) = M =

We introduce the following control theorem:
Theorem 5.2.4 (Hida [Hi3| §7.3, Theorem 3]]). Assume I = Ap, then we have the following equalities:
@ (M (x, 1)) = M (To (Np"et)  xtppw 2, 0 (1))
o (57 (. 1) = Sg (Do (Np"= 1), xthpw! 2, 0 (1))
for any ¢ € Xaitn (1) .

Proof. Let us fix an element ¢ € Xapi¢n (I) which we denote by g. Let ko = ki, Co = (o, 70 = Ty, and
Yo = 4, for simplicity. We have @ (S (x,I)) C S,‘zgd (Lo (Nprot) , xtow' =, O[(o]) by the definition
of I-adic cusp form. Let us take an element f € Sggd (Fo (NpTO‘H) , xWow! ko, (’)[Co]). We may enlarge I
such that (o € I. Write &, (X) = &, in Example and we denote by H' (x) the image of H (x) under
the following isomorphism:

I5LX e G lu™ X + ¢ tu — 1.

Let
F=fxH () x & (Gru™X + ¢ lu —1) x {27 og (u) (p~' — 1)} "
Then for any ¢ such that k, > ko and r,, > ro, we have
P (F) = fx (GoG M TR = 1) X (GG M TR — 1) x {27 Mog (w) (p — 1)}

€ Sp (Lo (NP ™) xthow! ™, O[Go]) x MEIL, (Fo (07 s gty '™ 50, OLC,])
C S (o (Np™#) , xtppw' 2, 0[¢,)) -

The above equalities tell us that ¢ (F) is a p-ordinary cusp form for almost all ¢, hence F is a I-adic

cusp form by [Wi2] Lemma 3.1]. Furthermore if ¢ = g, we have the following equality:
_ _ —1 1, s
wo (F) = fx{2 Nog (u) (p T N} x{2 Yw* —1)¢ (1—s) ls=0} -

Since 271 (u® — 1) (p (1 — 5) [s=0 = 27 'log (u) (p~' — 1) by [Hi3} §3.5, Theorem 2], we have ¢ (F) = f.
O
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5.3 Duality between [-adic forms and their Hecke algebras

We keep our notation as in the previous section. First we define I-adic Hecke operators acting on
Mo (x, Ay) and S° (x,A,). Let n be a positive integer. We define 7' (n) the following I-module
homomorphism:

I[g)] = I[g)], F =T (n) F =Y a(m,T (n) F)q"
m=0
such that
am.Tm)F) = Y 6 1+X)" x 66 a (55 F),

b|(m,n)

with x (1) = 0 if (b, Np) > 1. If F is an element in M°™ (y, 1), we have the following equalities:

platmTmF) = 3 curteDxma(E 1)

b|(m,n)
s b\ et mn
= b(%:n) Y (u)™ (w(b)) x (b) a (bT7 fsa)
S e ()

=a(m,T(n) f,).

for any ¢ € Xaitn (I). The last equality follows by Definition 54l This shows that ¢ (T (n)F) =
T (n) (¢ (F)). Therefore T (n) acts on M°™ (x,I) and S°9 (y,T).

Definition 5.3.1. We say that an [-adic cusp form F is a Hecke eigen cusp form if there exists a
sequence { Cy, } such that T (n) F = C, F. We say that a Hecke eigen cusp form F is normalized if

a(l,F)=1.

nEZZl

We denote by S°™ (y, Frac (I)) = S (x,I) @ Frac (I). Since S°*¢ (x, 1) is a finitely generated torsion-
free T-module by Theorem 523 S (y, Frac (I)) is a finitely dimensional Frac (I)-vector space.

Definition 5.3.2. The Hecke algebra h°™ (y, 1) (resp. h°*d (x, Frac (I))) is a I-subalgebra (resp. Frac (I)-
subalgebra) of Endy (5°™ (x,1)) (resp. Endpacay (S (x, Frac (I)))) which is generated by T (n) for all
n 6 Z>0.

We define the following pairing:
(5.3) <, >: o (y, Frac (I)) x S° (y, Frac (I)) — Frac (), (h, F) + a (1, hF).
Theorem 5.3.3 (Hida [Hi3|, §7.3, Theorem 5)).
(1) The pairing (53] induces the following isomorphism of I-modules:

(5.4) S (x,T) = Homy (h" (x,1),1).
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(2) When I = Ap, (B3) also induces the following isomorphism of Ap-modules:
hOYd (Xa AO) :> Hoon (Sord (Xa AO) 7AO) .
Thus the Hecke algebra h°™® (y, Ap) is also a Ap-free module of finite rank.

Proof. (1) First we prove that the pairing (53) is non-degenerated. Assume (h, F) = 0 for all h.
We have
a(n,F)=a(1,T(n)F) =0,

thus F = 0. Assume (h, F) = 0 for all 7. We have the following equalities:
0=(h,T(n)F)=a(1,hT (n)F)=a(l,T(n)hF)=a(n,hF),

for all n and F. Thus h = 0 and (&3] is a non-degeneracy pairing.

Now let us take an element A € Homy (hord (x;Ay) ,AX). Then A induces the following homomor-
phism:

A ho™ (x, Frac (A,)) — Frac (Ay),aT (n) = aX (T (n)).
By the non-degeneracy of the pairing (B.3]), we have F = Z AT (n))¢" € 89 (x, Frac (A,))

n=1

satisfies (h, F) = A (h) . Furthermore we have A (T (n)) = A (T (n)) € A, thus F € S (y,T).

(2) Write ho™d = hord (x, Ap) and S = §°'d (v, Ap) for simplicity. We denote by (hord)** the
following Ap-module:
(hord)** = HOHIAO (HomAO (hord,A@) ,AO) .

By (1), we see that to prove (1), it is sufficient to show h°™d = (hord)

We have (hord);* = hg"! for each height 1 prime ideal p of Ap by (3) of Theorem Thus
Z = (ho'd)™ /herd s a finite module by [NSW| Remark after Definition 5.1.4]. Since Ao is a
regular local ring of Krull dimension 2, (hord)** is Ap-free by Proposition 2.2.2] and Theorem [2.2.4]

Thus we have the following isomorphism:
(5.5) (h‘"d)***/p (h°9) ™™ 5 Hom ((hord)**/p (hord)™ 70) :

where p is the prime ideal of Ap which is generated by X — (uk_2 — 1) for a fixed integer k € Z>».
On the other hand since S°*¢ is Ap-free, by the isomorphism (5.4)) and Theorem [5.2.4] we have the

following isomorphism of O-modules:
(56) (hord)*”ﬁ*/p (hord)*** ~ Sord/psord ~ Sgrd (FO (Np) 7 le—k7 O) )

We denote by h™ (Lo (Np), xw'™",0) = ehi (Lo (Np),xw' ™", 0) as in §5.1. Then the pairing
[23) defined in Theorem also induces the following isomorphism of O-modules:

(5.7) Sgrd (Fo (Np), xw' %, O) 5 Homp (hzrd (Fo (Np), xw' %, (9) ,(9)
Combine (BH), (&.0) and (E1), we have the following isomorphism:

(5.8) Homo ( ()™ /p ()™, 0) 5 Homo (" (T (Np) , xo' 7, 0) ,0).
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Since we have the following exact sequence
0 — hod — (R )™ = Z 0,
by tensor Ap/pAo we have
(5.9) Torh,, (7, Ao /pho) = h/ph™™® = (h)™ /b ()™ = Z/pZ 0.
Since Z is finite, so is Tor) o (Z,Ao/pAo). Then the exact sequence (B.9) implies

(5.10) 0= h (To (Np) , xw'™*,0) = (1) [ ()™ = Z/pZ >0

since the image of h°™® /ph°'d is the sub-algebra of the O-free algebra (hord)** / q (hord) ™ generated
by all T (n). The exact sequence (5I0) induces the following exact sequence:

0 — Homo ((h‘“d)**/p (h"rd)** ,o) — Homo (hz“‘ (ro (Np), xw' ", O) ,0) — Exth (Z/pZ,0) = 0.

Since Exty, (Z/pZ,0) = 0 by (B.8), we have Z/pZ = 0. Thus hod = (hord)** by Nakayama’s
lemma.

O
Remark 5.3.4.

(1) By the proof of Theorem [£.33] there is a one-to-one correspondence between the set of I-algebra
homomorphisms h°™ (y,I) — I and the set of all normalized Hecke eigen cusp form of S (y,I).

(2) Note that the freeness of h°™d (y, Ap) is also proved in [Hil, Theorem 3.1] without using Ap-adic
forms. Also notice that Hida’s papers [Hill Corollary 3.2] and [Hi2l Theorem 1.2] give us two
different proofs of the control theorem for the Hecke algebra h*d (y, Ap).

By Theorem [5.2.4] we know that a normalized Hecke eigen cusp form can be lifted to a Ay-adic cusp

form. However we do not know if it is a Hecke eigen form. We have the following lifting theorem:

Theorem 5.3.5 (Hida [Hi3| §7.4, Theorem 7]). Let ¢ € p,r(r > 0) be a primitive p"-th root of unity and
feSk (Fo (Np”rl)  xYwF, (9) a p-ordinary normalized Hecke eigen cusp form of weight k£ > 2. Then
there exist an integrally closed local domain I which is finite flat over A,, an I-adic normalized Hecke
eigen cusp form F € S° (y, 1) and an element ¢ € X.ien (I) such that o(F) = f.

Proof. We may assume ¢ € O. We have already known that f can be lifted into a A,-adic cusp form by
Theorem .24l Let h™d (T (Np™*1) , xexw! ™%, O) be the Hecke algebra of Sg™d (I'g (Np™1) , xvpew' =%, 0).
Let Af be the following O-algebra homomorphism

Mgt B (Do (NP xpew' ™%,0) = O, T (n) — a(n, f)

by the duality theorem of classical modular form (cf. [Hi3, §5.3, Theorem 1]). By definition we have
that there exists an canonical homomorphism h°*¢ (x, Ap) — h%rd (FO (N pTH) , chwpk’ O) which sends
T (n) to T (n) of b (Fo (Npr“‘l) , Xewr Tk, (’)). Then we have the following Ap-algebra homomorphism:

A h (x, Ao) = b (Do (Np™1) , xexw! ™, 0) 24 0,7 (n) = a(n, f) .
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Note that if we regard A as a Ap-module homomorphism, A factors through Aep.

Let p C Ker A be a minimal prime ideal of h°*4 (x, Ap) . Then H := h°*d (x, Ap) /p is a finite extension
of Ap and let I be the integral closure of Ay in Frac (H) . We denote by Ay the surjective homomorphism
hord (x, Ao) ®a, H — H. Then there exists an algebra homomorphism ¢ : H — O such that A = ¢ o \g.

oo

Let F = Z A (T (n))¢™. Then Theorem follows by letting I be the integral closure of Ap in
n=1

Frac (H) and by extending ¢ to I.
O

Example 5.3.6. Let A € S13(SLy(Z)) be the Ramanujan’s cusp form (cf. Example Z5.3]). Suppose
that A is p-ordinary. We denote by A* = A (¢q) — BA (¢P) € S12 T (p) ,Z,), where (3 is the unique root
of 2% — 7 (p) z + p'! with p-adic absolute |3| < 1. The Z,-module S%< (T'o (p) , Z,) is of rank 1 which is
generated by A* by [Mi, Theorem 4.6.17 (2)], thus

(5.11) h (T (p) , Zp) = Zyp,

where h$x (T (p) , Zyp) = eh$sd (T (p) , Zyp) with e = nlLH;OT(p)n! (cf. §5.1). We denote by pi2 the ideal
of A which is generated by X — (u'® —1). Since the A-module S°¢ (w!!, A) is free of finite rank by
Theorem and

SO (11 A) / p12 89 (W, A) 5 Sa (To (p)  Zp)

by Theorem £.2.4, we have

pord (wu,A)/plghord (wu, A) = Homp (Sord (wn,A) 7A)/plgHomA (Sord (wn, A) ,A)
(5.12) = h$5 (To (p) , Zy)
by (2) of Theorem (533

ho'd is a A-algebra, let ¢ : A — ho'd (w“,A) be the structural homomorphism. We have ¢

is surjective by (E11)), (512) and Nakayama’s lemma. Furthermore, ¢ is injective since A% (w'!, A) is

Since

A-torsion free. Thus h°*d (wn, A) is isomorphic to A as a A-algebra and there exists a unique A-adic
normalized Hecke eigen cusp form Fa € S°¢ (w', A) such that ¢ (Fa) = A*, where k, = 12 and ¢, = 1.

5.4 Galois representation attached to I-adic normalized Hecke

eigen cusp forms

We keep the notations of the previous section. We denote by m the maximal ideal of I and by K = Frac (I).

Definition 5.4.1. A Galois representation p : Gal (Q/Q) — GL2(K) is continuous if there exists a
Gal (Q/Q)- stable lattice T C K®? such that pr : Gal (Q/Q) — Auty(T) is continuous with respect to
the m-adic topology on Auty (T).

Remark 5.4.2. Since I is a ring of Krull dimension 2, K is not locally compact in any non-discrete
topology on K ([Bd, VI, §9.3]). This implies that the image of a continuous representation Gal (@/ Q) —
GL; (K), with non-discrete topology on K, is very small. Hence one takes the m-adic topology on Auty (T).

45



Lemma 5.4.3. If the Gal (Q/Q)-stable lattice T in Definition .41 is free over I. Then Auty(T) is
topologically isomorphic to GLs (I), where we take the topology on GLg (T) — 194,

Proof. We have (]I/mi)€B2 =~ T/m‘T, hence Endy i (T/m'T) is topologically isomorphic to (H/mi)®4.
Thus End; (T) = @Endﬂ/mi (T/miT) is topologically isomorphic to 194

O
We recall the Artin-Rees lemma for proving Lemma

Theorem 5.4.4 (Artin-Rees lemma). Let M be a module which is finitely generated over a Noetherian
ring A and N a submodule of M. Let I be an ideal of A. Then there exists an integer ¢ € Z~ such that

for any integer n > c,
I"MNN=I"°(I°MNN).

The following lemma tells us that the continuity of p in Definition [5.4.1] is independent on the choice
of Gal (@/Q)—stable lattice T:

Lemma 5.4.5. Let us keep the notations of Definition .41l Let T and T’ be the Gal (@/Q)—stable

lattices of K®2. Then if pr is continuous so is pr.

Proof. We may regard End; (T) (resp. Endj (T’)) the set of K-homomorphisms f : K®2 — K%?2 such
that f(T) C T (resp. f(T’) C T’). Then End;(T) and End; (T’) are lattices of Endg (K®?) by [Bd,
Chap. 7, §4.1, (iv) of Proposition 3]. Then by multiplication an element in K* we may assume that
Endy (T") C Endy (T) by Proposition 213l By Theorem [5:4.4] we have that there there exists a ¢ € Zsg

such that for any n > ¢,
(5.13) m"End; (T) N Endy (T) = m™~ ¢ (m°End; (T) N End; (T')) .

Furthermore we may assume that Endy (T") C m°Endy (T), thus the induced topology on Endy (T') from
End; (T) coincide with the m-adic topology on Endy (T’). O

Let F be an I-adic normalized Hecke eigen cusp form. Hida associates a continuous Galois represen-

tation over K to F as follows:

Theorem 5.4.6 (Hida [Hi2, Theorem 2.1]). There exists a continuous irreducible representation pr :
Gal (Q/Q) — GLs (K) satisfying following properties:

1. pr is unramified outside Np.

2. For the geometric Frobenius element Frob; at [ Np, we have:
tr px(Frob;) = a (I, F),
det pr(Frob;) = x(1){I) (1 + X)*" .

We prove Theorem [5.4.6] in the next section. Now let us introduce the residual representation of the

representation modulo a prime ideal of I:
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Definition 5.4.7. For a prime ideal P of I, a Galois representation
pr (P) : Gal (Q/Q) — GL; (Frac (I/P))

is called a residual representation of pr modulo P if px (P) is semi-simple, continuous under the m-adic
topology of Frac (I/P) and satisfies the following properties:

1. pr (P) is unramified outside Np.

2. For the geometric Frobenius element Frob; at I Np,
tr p=(P)(Frob;) = a (I, F) mod P,
det p=(P)(Frob;) = x(1){I) (1 + X)* mod P.

Although pr may not have Gal (@/ (@) -stable lattice which is isomorphic to I®2, we have the following
proposition (see [Hi3, §7.5, Corollary 1] and see also [MW2], §9]).

Propostion 5.4.8 (Hida, Mazur-Wiles). For every prime ideal P, the residual representation pz (P)

exists and is unique up to isomorphism over an algebraic closure of Frac(I/P).

Proof. First suppose that P is of height 1. Let us take a Gal (@/Q)—stable lattice T. Since I is a
Krull domain by [Bol Chap 7, §4.1, Corollary to Theorem 2], Ip is a discrete valuation ring. Hence
Tp =T @plp = I[;‘? and we can review pr as pr : Gal (Q/Q) — GLz (Ip). We denote by pr (P) the

semi-simplification of the following representation:

Gal (Q/Q) 25 GL, (Ip) ™% GLy (Ip/Plp) = GLy (Frac (I/P)).

Since Tp is free of rank 2 over Ip, the m-adic topology of Endy, (Tp) and H%4 coincide (where we take
the product topology on I x (I'\ P) and the m-adic topology of Ip = (I x (I\P))/ ~ is the quotient
topology on I x I\ {P }). Thus pr (P) is continuous.

Now we suppose P = m. Let us take a ¢ € Xarien (I) and we denote by P, = Ker ¢. Since

tr pr (Py) (Frob;) = a (I, F) mod P, = a(l, f,),

det p7 (P,) (Froby) = x(){1) (1 + X)* mod P, = xth,w' e (1) 1k~

for all I { Np and py, is irreducible, we have pz (P,) is isomorphic to py, by the Brauer-Nesbitt theorem
(Theorem Z33)) and the Chebotarev density theorem (Theorem Z59). Thus we denote by prx (m) the
representation ﬁj‘i, The uniqueness of pr (P) follows also by Theorem [Z3.3] and Theorem O

We introduce the following local property of pr due to Mazur and Wiles:

Theorem 5.4.9 (Wiles [Will, Theorem 2.2.2]). With the same notations as above, the restriction of pr
to D, is given up to equivalence by
€1 0
pF |p,~
* 99}

with €1 unramified and ; (Frob,) = a (p, F).
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At the end of this section, we introduce the following list of cases where the condition (Free lattice)

in Corollary [[34] is known to be true.

Propostion 5.4.10 (Mazur-Wiles, Tilouine, Mazur-Tilouine). The condition (Free lattice) holds if one

of the following conditions is satisfied:
(1) The ring I is regular.
(2) The tame level N of F is equal to 1 and the ring I is Gorenstein (Mazur-Wiles [MW2] §9]).

(3) Let x|z/pzyx = w® Then a # 0,1 (mod p — 1) and the ring I is Gorenstein (Tilouine [Ti,
Theorem 4.4]).

(4) The residual representation pz (m) is irreducible (Mazur-Tilouine [MT) §2 Corollary 6]).

If I is a regular local ring, then T** := Homy (Homy (T, I),1) (cf. §2.2) of a Gal (Q/Q)-stable lattice
T of pr is free over I by Proposition and Theorem 2.2.41

5.5 Pseudo-representations

In this section we prove Theorem [5.4.6] by using pseudo-representations due to Wiles. Let R be a
topological algebra and

P a(g) b(9)
p:Cal(Q/Q) = GLa (R) g~ <c<g> d<g>>

continuous linear representation such that

(1) p is unramified outside a finite set of primes X.

-1 0
(2) plo) = ( 0 1) , where ¢ is the complex conjugation.

Then p must factors through G the Galois group of the largest algebraic extension of Q which is unramified

outside X by the assumption (1). We denote by a,d and z the functions as follows:
a:G— R,g—alg),
d:G— R,g—d(g),

z:GXxG— R,(g1,92) — b(g1)c(g2).

By matrix calculation, we have the following properties:

(P1) a,d and z are continuous.
(P2) a(g192) = a(g1) a(gz) +2(91,92) ,d(9192) = d(g1) d(g2) + 2 (g2, 91) and

7 (9192, 9392) = a (g1) a (g9a) x (92, 93) + a(gs) d (g92) x (g1, g3)
+a(g1)d(93)x(92,94) +d(g2)d(93) x (91,94) -
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(P3) a(1)=d(1) =d(0) =1,a(c) = —1 and z (g,h) =z (h,g) = 0 for any g € Gal (Q/Q) ,h € {1,0}.

(P4) 2 (g1,92) % (93, 94) = 2 (91, 94) 7 (93, g2) -
Proof. The properties (P1), (P3) and (P4) follow by definition. We prove the property (P2). Since

(5.14) (a(9192) b(9192)><a(91) b(!h)) <a(gg) b(g2)>
6(9192) d(gng) C(gl) d(gl) 0(92) d(gg)

by calculating the right hand of the equality (5.14]) we have the following equalities:

(5.15) a(g192) = a(g1) a(g2) +b(g1) c(g2),
(5.16) d(g192) = d(g1) d(g2) +b(g2) c(g1),
(5.17) b(g192) = a(g1) b(g2) +b(g1) d(g2),
(5.18) c(9192) = a(g2) c(91) +c(g2) d(91) -

Then the first two assertions of (P2) follows by the equalities (B.15) and (&16]). The last assertion of (P2)
follows by replacing the equality (BI8]) to g1 = g3, 92 = g4 and by taking the product of the equalities

GI7) and (GIS). O

Definition 5.5.1. Let G be a topological group and R a topological algebra. We denote by 7 = (a,d, x)
such that a,d are functions of G into R and z is a function of G x G into R. We say that « is a

pseudo-representation of G into R if a,d and x satisfies the conditions (P1)-(P4).

For a pseudo-representation © = (a,d, z) of G into R, we denote by
trr:G— R,g—a(g) +d(g)

the trace of m and by
detm: G — R,g—a(g)d(g) —x(g,9)

the determinant of 7. The following two propositions are used to prove Theorem [5.4.0]

Propostion 5.5.2. Let m = (a,d, x) be a pseudo-representation of a topological group G into a topo-
logical integral domain R. Then there exists a continuous representation p, : G — GLs (Frac (R)) such

that tr p, = tr 7 and det p, = det 7.

Proof. First we assume that x (g,h) = 0 for all g,h € G. Then we have a (gh) = a(g)a (h) and d (gh) =
a(g) 0

0 d(g)
Next we assume there exist elements s,t € G such that z (s,t) # 0. We define

d(g)d(h). We denote by pr : G+ GL2 (R),g ( > . Then the proposition follows.

. rac (o) bl)
pﬂ..G'—)GLQ (F (R))ng (c(g) d(g)>

such that b(g) = < and ¢(g) = z(s,g). Then the remain of the proof is to check that p, is a
x

homomorphism.
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z(g1,t)x (5’92).

5.0) By the property (P4), we have z (g1,t) 2 (s,g92) =
x (s,

(1) Note that b(g1)c(g2) =
x(g1,92) x (s,t). Hence
a(g192) = a(g1)a(g2) +z(91,92) = a(g1) a(g2) +b(g1) c(g2) -

We can also prove
d(g192) = d(g1)d(g2) + b (g2) c(g1)

by the same way.
(2) Note that

a(g1)z (g92,t) + x (91,t) d (g2)

.1 = .
(5.19) a(g1)b(g2) +b(g1) d(g2) TG0
By the property (P2) we have the following equality:
(5.20) (9192, 9394) = a(g1) a(g4) x (92, 93) + a (g4) d (g2) x (g1, g3)

+a(g1)d(g3)x (92, 94) +d(92) d(g3) x (91, 94) -
Put g4 = 1 and g3 = ¢t. Then the above equality (E.20) becomes to
(5.21) 7 (g192,t) = a(g1) x (92,t) + d (g2) (g1, 1)

by the property (P3). Combine the equalities (5.19) and (5.2I]), we have

z (9192, 1)

Tl b(9192) -

a(g1)b(g2) +b(g1)d(g2) =
Note that
(5.22) a(g2)c(g1) +c(g2)d(g1) = alg2) (s, 91) + x (s,92) d(g1) .-
Replace {g1,92,93,94 } to {s,1,01,92 } then the equality (5:20) becomes to

(s,9192) = a(g2)  (s,91) + d(g1) 2 (s, g2)

by the property (P3). Since ¢ (g192) = x (8, 9192), this shows that p, is a homomorphism.

O

Propostion 5.5.3. Let a and b be ideals of I. We denote by 7 (a) (resp. 7 (b)) a pseudo-representation
into I/a (resp. I/b). Suppose there exist a dense subset ¥ C G and functions

Tr: X —>1I/anb,

Det : ¥ = T/anb

such that
tra (¢) (g) = Tr(g) mod ¢
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and
det 7 (¢) (g) = Det (g) mod ¢

for all g € ¥ and ¢ € {a,b} (we call that 7 (a) and 7 (b) are compatible in this situation). Then there
exists a pseudo-representation 7 (a N b) from G into I/a N b such that

tr(anb)(g) =Tr(g)

and
det 7 (aNb) (g9) = Det (g)

for all g € X.
Proof. We consider the following exact sequence:
(5.23) 0—=T/anb5T/a®l/b ST/a+b—0

such that ¢ (z mod aNb) = (x mod a,z mod b) and a((z mod a,y mod b)) = z — y mod a + b. We
denote by 7 := 7 (a) @ 7 (b) the pseudo-representation with values in I/a @ 1/b. Since 7 (a) and 7 (b) are

compatible, we have the following equalities:

a(trm(g)) = a(trm (a) (9),trm (a) (9))
(Tr (g) mod a,Tr (g) mod b)

o
0.

Hence tr7 (g) € Im ¢ by the equality (5.23]). Write 7 = (a,d, z), then we have the following equalities:

a(g) =27 (trw(g) — trm(gc)) € Im,
d(g) =271 (trm (g9) +trm(gc)) € Ime
and

z(g,h) =a(gh) —a(g)a(h) € Im:.

Thus 7 has values in I/a N b. We denote by 7 (aNb) =+~ ox. This completes the proof of Proposition

bEa3
O

Under the above preparation, we are ready to proof Theorem [5.4.0]

Proof of Theorem We denote by ¥ = {Frob; | [ { Np} which is dense in G by Theorem
We denote by
Tr: ¥ — I, Frob; — a (I, F)

and by
Det : & — I, Frob; — x(1){1) (1 + X)*".

Let S = {P;},2, be a countable subset of { Ker ¢ | ¢ € Xarign (I) }. For any P; = Ker ¢; € S, we denote
by fi = ¢; (F) and by py, the Galois representation attached to f; due to Deligne and Shimura. Then
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py, are pseudo-representation and compatible. By Proposition [5.5.3 there exists a pseudo-representation
i = (as,d;, x;) of G into I/ Ni_; P; such that

trm; (g) mod O;;ll Pi=trmi—1(g)

for all g € G.
Since
a(g)=2"" (trm(g) —trm(ge)),
d(g) =2"" (trm (g) + trm (g¢))
and

z(g,h) =a(gh) —a(g)a(h),
we have ({a; (9)};,{d: (9)}, . {zi (g, h)},) € @ H/ﬂ;»:l P; for any g, h € G. Since N2, @ H/ﬂ;zl P; = (0)
by the following lemma, we have I = 1£n I/ ﬂ;zl P; hence 7 := 1'&11771- is a pseudo-representation of G into
I. Then pr is the representation p, in Proposition This completes the proof of Theorem

Lemma 5.5.4. Let R be a commutative Noether integral domain and S be a countable collection of
height 1 prime ideal of R, then we have NpcsP = (0).

Proof. Let us take a * € R. Since R is Noetherian, primary decomposition exists for ideals ([Matl
Theorem 6.8]). Hence the radical of x is a finite intersection of height 1 prime ideals. Thus there are only

finite height 1 prime ideals which contain z. This completes the proof of Lemma (5.4 O
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Chapter 6

Proof of Theorem [1.3.1] and its

corollaries

6.1 The reducibility ideal

We recall the following lemma due to Bellaiche and Chenevier:

Lemma 6.1.1 (Bellaiche-Chenevier [BCI), Lemme 1]). Let (A, m) be a complete local domain such that
char(A/m) # 2, where m is the maximal ideal of A. Let p : G — GLa(Frac(A)) be a linear representation
of a group G satisfying tr p(G) C A and trpmodm = ) + Js,91 # Vo, where 91,95 : G — (A/m)”
are characters. Let gy € G be an element satisfying 91 (go) # U2(go) and A1, A2 € A the roots of the
characteristic polynomial of p(go). Choose a basis {ej,ea} of the representation p such that p(go)e; =
Aie; (1 =1,2). Write p(g) = (a(g) b(9)

clg) d(g)
Let I C A be an ideal such that there exist two characters vy, ve : G — (A/I)* such that

for any g € G.

tr p(g) mod I = v1(g) + v2(g)

for any g € G. Assume v; modm = 91, v, mod m = 1 without loss of generality. Then for any g,¢" € G,
we have a(g),d(g) € A, a(g) mod I = v1(g),d(g) mod I = vs(g), and b(g)c(g’) € I.

We omit the proof of the lemma, since it is done in the similar way as the arguments in §3.1.

Remark 6.1.2. If char(A/m) = 2, the statement holds assuming an extra condition on the determinate
(cf. [BCIl Lemme 1}).

Definition 6.1.3. Let (4, m) be a complete local domain such that char(A/m) # 2, where m is the
maximal ideal of A. Let p : G — GLa(Frac(A)) be a linear representation of a group G satisfying
trp(G) C A and trpmodm = ) + 9,91 # o, where 91,95 : G — (A/m)” are characters. For any

c(g) d(g)
the ideal of A which is generated by b(g)c(g’) for all g,¢" € G.

b
g € G, write p(g) = <a(g) (g)) with respect to the basis taken as in Lemma [G.T.Il We define I(p)
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The ideal I(p) is well-defined by LemmalG.T.Tl Under the above preparation, we are ready to determine
8% (p) of a p-adic representation p.

Propostion 6.1.4. Let (O, w,F) be the ring of integers of a finite extension of Q, with w a fixed
uniformizer of O and F the residue field. Let V' be a vector space of dimension 2 over K = Frac(O) and
p: G — Autg (V) a continuous irreducible representation of a compact group G.
Assume that
trpmod w = Y1 + Vo, # Vs,

where 1,95 : G — F* are characters. Then we have
orde1(p) +1 =16 (p) =1L (p),
where € (p) is the set of G-stable lattices up to multiplication by elements of K* (cf. §3.3).

Note that the first equality ordI(p) + 1 = #§%(p) is a special case of Bellaiche-Graftieaux [BG|

Théoreme 4.1.3] (see also the remark immediately after it).

Proof. We first show ord,I(p) + 1 = %€ (p). Fix a go € G such that 91(go) # ¥2(go). The characteristic
polynomial of p(gp)
X2 —trp(go) X + det p(go)

has roots Ay # A2 in A such that A\; mod @ = ¥;(go)(¢ = 1,2) by Hensel’s lemma. Choose a basis {e;, e2}
a(g) b(g)

c(g) d(g)
B be the module of O generated by b(g) for all g € G. Since p is irreducible, we have B # (0). Since p

is continuous and G is compact, there exists a G-stable lattice. Hence Im p is bounded in GLy (K) by
Proposition We have B = O and the following properties by Operation [T (cf. §3.1).

of the representation p such that p(go)e; = \je; (i = 1,2). Write p(g) = ( for all g € G. Let

(2) There exists a h € G such that @ { b(h).

Since BC' = I(p) by Lemma [B6.1.1] we must have C' = I(p) = (w)™ for a positive integer n. This also
means that we have chosen a G-stable lattice T' such that

p:pT:G*)GLQ(O)

and T/wT is not semi-simple. By reduction mod (@)’ (i = 1,2,...,n), we obtain the G-stable lattices
Ty,---,T, such that [T;] # [T;] if i # j. Then n+ 1 = ordI(p) + 1 < 1€ (p).

Let € (p) = m+ 1. We have €(p) is a segment [z, Z,,] by the proof of Proposition B3] at the end of
§3.3. Let T, T, be the representatives of x, z,, such that T,,, C T and T/T,, = O/ (w)™ as an O-module.
a(g) blg)

Hence there exists a basis of T such that pr : G — GL2(0O), g —
c(g) d(g)

) satisfies @™ | ¢(g) for

any g € G. Then
amod (@)™ : G — (O/ (w)™)™, g — a(g) mod (=)™
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and
dmod (@)™ : G = (0/ (w)™)™ ,g — d(g) mod (=)™

are two characters. Thus I (p) C (@)™ by Lemma and #€'(p) < ordI(p) + 1.
Next we prove §%(p) = 1% (p). Suppose §€(p) = n+ 1. Since € (p) is a segment, there exist the

following representatives of the points in % (p):
Top2--- 2Ty
such that
(i) [T3] is a neighbor of [T;_,] and Ty/T; = O/ (w)’ as an O-module for i = 1,--- ,n.
(ii) To, T, are mod w not semi-simple lattices and the others are not.

Thus it is sufficient to show that for ¢ # j, T; and T} are non-isomorphic as O[G]-modules.

1. Suppose we have f : Ty = T,, as O[G]-modules. Then wT,, C f (T1) C T,, since [T}] is a neighbor
of [Tp]. Since T, is a mod w not semi-simple lattice, we have f (T1) = wT,,—1 by (2) of Proposition
Thus we have the following isomorphism:

(6.1) Ty /wTy = wly—1/wT, = FlY1] (resp. F[d])

as an F[G]-module. Since T /wTy (resp. wTy,—1/wTy,) is the unique F[G]-submodule of Ty /wwTy
(resp. T, /wT,) of dimension 1, the isomorphism (6.1]) implies that there is no mod w not semi-
simple stable lattice T such that 7'/wT has a submodule which is isomorphic to O/ (w) [J2] (resp.
O/ (w) [91]). This contradicts to Proposition B3l

2. Suppose we have f : T; = T} as O[G]-modules for some 0 < i < j < n. Since Ty is a mod @ not
semi-simple lattice and Ty, T, are non-isomorphic as O[G]-modules, we have [f (@'Tp)] = [To] i.e.
f (wiTo) = w!Ty for some [. Thus

O/ (W)Z = To/ﬂ = To/wiilTj

as an O-module. This implies d ([Ty], [T;]) = ¢ by Proposition On the other hand, [T] is an
edge of the segment % (p), there exists an unique point y € € (p) such that d ([To],y) = i. This
contradicts to i # j.

O

Now we give an example by using Proposition [6.1.4]to determine §.2(py), where p; is the Galois rep-
resentation attached to a normalized Hecke eigen cusp form f. Let A € S15(SL2(Z)) be the Ramanujan’s
cusp form (cf. Example 2Z53) and

pa : Gal (Q/Q) — GL2(Qp)

the Galois representation attached to A.
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Propostion 6.1.5. The ideal I(pa) C Z, defined as in Definition is the minimal ideal such that

there exists an integer a € Z such that for any prime [ # p,
(1) = 1% + 1" mod I(pa).

Proof. Since pp is unramified outside { p,o00 }, pa must factor through G, o3 which is the Galois group
of the maximal Galois extension of Q unramified outside {p, o0 }. Let v1,v0 : Gyp ooy — (Zyp/I(pa))*be
the character such that

tr pmod I(pa) = vy + va.

Also by the fact that pa is unramified outside { p, 00 }, v1 and v, must factor through Gal (Q (pp) /Q)
by class field theory. Thus 1, and ¥ must be power .y modI (pa). For the Frobenius element Frob,
with prime [ # p, we have Yyc(Frob;) = [ and det pa (Frob;) = [

Theorem [2.5.9

. Thus the proposition follows by the

O

Serre and Swinnerton-Dyer showed that pa is reducible if and only if p = 2,3,5,7 and 691 (see [Swll
Corollary to Theorem 4]). [Sw2] also showed the congruence mod p™ for p = 3,5,7 and 691 (see [Sw2],
page 77 for p = 691, Theorem 4 for p = 5,7 and the table after Theorem 6 for p = 3). Then combined

with our arguments, we have the following table for odd primes.

p 3157|691
120pa) [ T14]2] 2

6.2 The relation between the reducibility ideal and the Kubota-
Leopoldt p-adic L-function

We prove Theorem [[31] in this section. We denote by v a topological generator of Gal (Q/Q) such

that Keyo(y) = w and by Kuniv the universal cyclotomic character as follows:

Funiv : Gal (Q/Q) — Gal (Quo/Q) = 1+ pZy — A,

where 1+ pZ, < A} is the homomorphism defined by sending u to 1 + X. By Theorem [5.4.9, we have

€1 0
pF |D,~ N
2

with e; unramified. Recall that pz (m) 2 X;@X,. Then for any g € D,, {€1(g),22(g9) } and { X1 (9),X2(9) }
are the set of the roots of the mod m characteristic polynomial of pz(g): X2—trpz(g)X +detpr(g) mod m,
hence they must be coincide. Thus €; =X |p, and & = X, |p, under the assumption that X, (resp. X3)
is unramified (resp. ramified). We denote by I, the inertia group of p and we choose a gy € I, such that

X1(90) # Xa(90)-
Let {e1, 2} be a basis of Frac (I)®? such that

(6:2) pf<go>=<é 52&0),/}; I, = ( 0)

56



e o = (10 35

9,9 € Gal(Q/Q) by Lemma Recall that I(pr) is the ideal of I generated by b(g)c(g’) for all
9,9 € Gal(Q/Q). Since px (m) is reducible, we have I (pr) C m by Lemma G111

> for any g € Gal(Q/Q). We have a(g),d(g) and b(g)c(¢’) € T for any

Lemma 6.2.1. Let us take the basis of Frac(I)®2 to be the same as the beginning of this section. For
any ¢ € Xarien (I), let @y, be a fixed uniformizer of ¢(I). Then

orde, (p(I(pF))) + 1 =1L (py,)-

Proof. For any ¢ € Xaitn (I), we denote by P = Ker ¢ and by Ip the localization of I at P. Then Ip is

a discrete valuation ring with xcy. a fixed uniformizer of I». For the Galois representation

pp : Gal (Q/Q) ®5 GLy(Frac(I)) = GLa(Frac(Ip)),
let B be the Ip-submodule of Frac(Ip) generated by b(g) for all g € Gal (@/Q) Since pg is irreducible,
B # (0). Since pr is continuous, by Definition [F.4.1] there exists a lattice T C Frac(I)®? which is stable
under Gal(Q/Q)-action. Then Tp = T®;lp is a stable lattice of pp and Im pp is bounded by Proposition
Thus we may assume B = Ip by Operation [l (cf. §3.1). Then Im pp C GLs (Ip) for this new pp
by Lemma
We denote by p, the Galois representation

pe : Gal(Q/Q) 25 GLy(Ip) — GLa(p(Ip)), g <Z¢ (6) dulg)

and by py_ the Galois representation associated to f,,. Since
tr p, (Froby) = tr py_ (Froby) , det p,, (Frob;) = det py, (Froby)

for all primes [ { Np, we have the semi-simplification of p, and py_ are isomorphic by Theorem
and Theorem 2.5.91 Then by the fact that py, is irreducible, we have that the representations p, and
py, are isomorphic. Thus I (ps,) = ¢ (I (pr)) by the definition of I (py,) and Lemma follows by
Proposition

O

Lemma 6.2.2. Let us take the basis of Frac(I)®? to be the same as the beginning of this section. Let
J be the ideal of I generated by trpr(g) — x1(9) — X2Keyckuniv(g) for all g € Gal (Q/Q) and J’ the ideal
generated by a(g) — x1(g) for all g € Gal (Q/Q). Then we have the following statements:

(1) Ipr) = T = J".
(2) Suppose N = 1. Then pr (m) =1 @Y, where 1 is the trivial character.

Proof. We first show J = J’. Since trpr = x1 + X2Keyckuniv mod J, a(g) = x1(g) mod J or a(g) =
X2Keyckuniv(g) mod J for all g € Gal (Q/Q) by LemmaBG.IIl By equality ([6.2) we have that the character
a mod m = Y, is unramified at p, thus a(g) = x1(g) mod J for all g € Gal (Q/Q). This implies J' C J.
We also have J C J’ since

tr pr(g) — x1(9) — X2Keychuniv(9) = (alg) — x1(9)) + (alg™") — x1(g~"))det pr(g) € J'.
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Now we prove I(pr) = J'. We have b(g)c(g’) € J for any g,¢' € Gal(Q/Q) by Lemma hence
I(pFr) C J=J. Let K be the abelian extension of Q corresponding to

Ker (v: Gal(@/Q) — (I/1(p7))" , g~ a(g)mod (p7))

Then v factors through Gal (K/Q). Write a(g) = x1(g) (1 + m(g)) where m(g) € m. Then v (g) =
Xx1(g) mod I(pr)-(1 4+ m(g)) mod I(pr). Note that v is unramified outside N by the equality (6.2]), hence
K is a subfield of Q(uy) by class field theory. On the other hand, the kernel of the map (I/I(pF))”* —
(I/m)™ is a pro-p group, thus (1 +m(g)) mod I(px) must be trivial under the assumption p { ¢(NN). This
implies x1(g9) = a(g) (mod I (px)), hence J' C I(pF). Specially when N = 1, we have that a mod I (pr)
is an unramified character. Thus a mod I (px) is trivial by class field theory (the Galois group of the
maximal unramified abelian extension of a number field F' is isomorphic to the ideal class group of F).
O

Lemma tells us that I(px) is a closed ideal in T under the m-adic topology.

Propostion 6.2.3. Let us take the basis of Frac(I)®2 to be the same as at the beginning of this section.
Let LOO,LE,JX ?) be the maximal unramified abelian p-extension of Q (unp~) and the maximal abelian
p-extension unramified outside Np of Q (np). We denote by Xo = Gal(Loo/Q (pnp=)) and by
Yoo = Gal (LEJOVP) /Q (,uNpac)> on which Ay, = Gal (Q (unp~) /Qs) acts by conjugation. Then we have

the following statements:

(1) L,(x7'x2)I C I(pF).

1 1
(2) Suppose the A, | —1-modules XXX and Y& ** are cyclic. Then I (pF) is principal.

Proof. (1) We have xi(g) = a(g) mod I(pr) and x2kcyckuniv(g) = d(g) mod I(pr) for all g €
Gal (@/ Q) by Lemma [G.T.T] and Lemma We prove the proposition by using Wiles’ construc-
tion (cf. [Wi2l, Section 6]) of an uramified extension Ny, of Q(pnpes).

Let B (resp. C) be an I-submodule of Frac(Il) generated by b(g) (resp. ¢(g)) for all g € Gal (Q/Q).
Then the modules B and C' are finitely generated by Lemma [6.T.011 We denote by b the function

b: Gal (@/Q) — B, g b(g)
and we endow B with the m-adic topology.

Step 1 We show the map b is continuous in this first step. Since pr is continuous, by Definition
B4l there exists a lattice T C Frac(I)®? which is stable under Gal(Q/Q)-action such that
pr : Gal(Q/Q) — Auty(T) is continuous with respect to the m-adic topology of Auty(T). We
denote by V; = Frac(I)e; and by T, = TNV; (i =1,2). Then px (T;) C T. For any ze; € Ty
and yey € Ty, we have

pr (9) (ze1) = a(g) vey +c(g) vea,
pr (9) (ye2) = b(g) yer + d (g) yea.

Since a(g) € I by Lemma 61T a(g)zes € TNVy, = Ty and c¢(g)xes = pr(g) (xe1) —
a(g)xzes € TNV =Ty We also have b(g) ye; € Ty by the same argument. This implies that
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T1 @ T is also a stable lattice of Frac (]I)@2. We replace T with Ty @ Ts. The representation
pr : Gal(Q/Q) — Auty(T) is also continuous by Theorem [l We may regard B as an

I-submodule of Homp(Ts, Ty) via the injective homomorphism as follows:
B < Homy (T2, T1), b(g) — b(g)(ye2) = b(g) - yer
for all yes € To. Then b is the following map:
Gal (Q/Q) = Auty (T) — Homy(To, Ty).
The homomorphism Auty(T) — Homy(Ts, Ty) is continuous under the m-adic topology, hence

b is continuous.

Step 2 In this step, we construct an abelian p-extension of Q (punpe) by the following homomor-
phism:
T — b
b: Gal (Q/Q (unp=)) = B — B/I(pr)B

Let Ny be the abelian extension of Q (jnpe) corresponding to Ker b and we denote by the

same symbol b

(6.3) b: G = Gal (Noo/Q (inp=)) = B/I(pr)B
For any h € Gal (@/Q) and g € Gal (@/Q (/J,Npoo)), a matrix calculation shows that

E(hgh_ ) X1X2 Kcylc unlv(h)g( )

Let 4 be a topological generator of Gal (Q (unpe)/Q (np)) which is sent to v under the
canonical isomorphism Gal (Q (tnp-) /Q (unp)) — Gal (Quoo/Q). The above arguments tell
us that b (G) is a Agt = Zp[x1x3 '][[X]]-module under the surjection

-1, -1, -1
X1Xo K

Zp[[Gal (Q (pnp=) /Q)) 7 =" A 1 wTI AT e 1 X

and Gal (Q(unp=)/Qs) acts on b(G) via x1x5 '
Step 3 In this step, we show that the canonical homomorphism b(G) ®x _, I — B/I(pF)B is
IX

an isomorphism. The injectivity follows from the assumption that I is ﬂat over A St by

applying the base extension ®s _, I to the equality ([.3). For any g € Gal (Q/Q), consider

X1Xo

the commutator [g, go] € Gal (Q/Q (in=p=)) We have
_ A—1 e
b([gago]) = N (X2’€cyc"€uniV(9)) ! b(g)7

where A\ = £5(go). Since A Z 1 mod m, we have b (g, 90)) @X2Keychuniv(g) ~——= € b(G)@a
I

Step 4 In this step, we show that the extension No,/Q(pnpe) is unramified everywhere. Note
that Noo/Q (tnpee) is unramified since all [ { Np since the representation pr is unramified at
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such . We have b(I,) = 0 by the equality (€2)) and hence N /Q(pnpe) is also unramified
at p.

Let L&Y be the maximal abelian p-extension of Q(unpe-) which is unramified outside N. Let
us take a prime [|N and we denote by LY the maximal subfield of LY which is unramified
at [. We denote by K, = Q (Np’"“) and by K, | the completion of K, at a prime [ dividing !

with O, its ring of integers. Then there exists an surjective homomorphism

(6.4) lim [ 07, Gal (L&V)/Lg@))

T

by class field theory. Note that Ly ) /ng is a p-extension, then the homomorphism (6.4

induces the following surjective homomorphism:

(6.5) lim [ F, — Gal (LgfoW/LgQ),
T

where F,. | is the residue field of O, . Now I; acts trivially on ££11_[]FTX 1» hence
T

X1X3 "

Gal (L@/LEQ) = {0}

because we have x1x5 ! has conductor divisible by N under the assumptions (Co-prime) and

(Conductor). Thus the extension Noo/Q(unp=) is also unramified at the primes dividing N.

Step 5 We fix the Iwasawa-Serre isomorphism as follows:

(6.6) Zplxixa NGal (Q (unp=) /Q (up))]] = Ay o7 e w1+ X) 7

Then we have the following I-homomorphisms:

L I-b(G)®s _, 15 B/I(pF)B.

X1Xg X1X

—1
(6.7) X222 @,
By (1)-(3) of Proposition 3.1l we have the following inclusion relation of Fitting ideals:

1 —1
Fitta ,(XX** )I=Fitty(X&™* @ , I) C Fitty(B/I(pF)B) C I(pF).
X1Xo

X1Xg

By the Iwasawa main conjecture (Theorem of Mazur-Wiles cf. Theorem B.3.4)) we have

Fitty (XXX )=£p(Xf1X2)Axlx;1'

X1Xg

Thus £,(x; *x2)I C I(pz). This completes the proof of (1) of the proposition.
(2) Similarly, we denote by MCSONP ) the abelian extension of Q (unpe) corresponding to
Ker (¢ : Gal (Q/Q (unp=)) = C/I (pF) C, g ©(g))

and by H = Gal (MéoNp)/(@ (uNpoo)). Then ¢ (H) is a Axfl ,~-module under the surjection

X

-1
X1 X2KcycKuniv

Zp[[Gal (Q (pnp=) /Q) 71 "= A s u T 14 X
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and the map ¢(H)®s , I — C/I(pr)C induced by € is an isomorphism by the same arguments
X1 X2

as in Step 3. Hence we have the surjective homomorphism as follows:

—1
(6.8) Yol ¥ @n I C/I(pF)C.
X7 X

-1
Note that in the equality (6.8), we endowed Yzi! ** with the A «;'-module structure under the

isomorphism as follows:
Zp[x1 ' x2)[[Gal (Q (uvpe=) /Q (unp))]] =5 Aoty 7 > u(l + X).

By the equalitys ([6.7)) and (68), there exists a gp € Xoo (resp. go € Yoo) such that B/I(pr)B
(resp. C/I(pz)C) is generated by b(gp) (resp. ¢(gc)). By Nakayama’s lemma, B (resp. O) is
generated by b(gp) (resp. ¢(g¢)) over I. This implies I (pr) = BC = (b(g) c(g9¢)).

O

Define the Eisenstein ideal I(x, I) the ideal of h°™ (, I) which is generated by T'(1)—1—x (1) () (1 + X)*™
for all primes [ # p and T'(p) — 1.

Corollary 6.2.4. Let the assumptions and the notations be as in Theorem [[3.Jl Assume the condition
(Rank one). We have I (pr) =L, (x) L

Proof. We have xy; = 1 by Lemma and hence £, (x)I C I (pr) by Proposition Thus it is
suffices to prove I (pr) C L, (x) 1.

Since Ao (x,I) = hd(x,Ay) ®a, I, h°™¥ (x,1) is isomorphic to I by the assumption (Rank one).
Since N =1, I (pr) is generated by a(l, F) — 1 — x (1) (I) (1 + X)*" for all primes | # p by Lemma [6.2.2]
and Theorem [Z5.9 We also have ¢(p, F) — 1 = &1 (Frob,) — 1 = a(Frob,) — 1 € I (pr) by Theorem
and Lemma Thus the canonical isomorphism I — k™ (y, 1) sends I (pr) to the Eisenstein ideal
I(x,I). On the other hand, the canonical homomorphism

L/, 001 =P 06D (101, £, ()

is an isomorphism by [Wi2, Theorem 4.1]. This implies I (pr) C L, (x) L.

The next corollary is obviously deduced from (2) of Proposition 6223

Corollary 6.2.5. Let the assumptions and the notations be as in Theorem [[L3.1l Assume the conditions
(Cyeclic) and (Prime ideal). We have I (pr) = L, (x7 " x2) L.

Now we prove Theorem [[.3.11

Proof of Theorem [I.3.1l For any ¢ € Xuieh (I), let @, be a fixed uniformizer of (I). Then

(6.9) orde, (¢ (I (pF)) < orde, (¢ (Lp(x1 'x2)))

by (1) of Proposition Under the assumption that x; # xow, we have
(6.10) ¥ (cp(Xf1X2)) = Ly(1 — ke, XIIXwaw)
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by Theorem 2.1l Furthermore, we have

(6.11) orde, (¢ (I (7)) +1=48Z(py,),

by combining Proposition [6.T.4] and Lemma [6.2.Tl Combine the inequality ([6.9]) and the equalities (610,
(E110), we have the following inequality:

(6.12) 8.2 (py,) < orde, (Lp(1 — ke, X7 "X2tbew)) + 1.

If we assume the condition (Rank one) or both of the conditions (Cyclic) and (Prime ideal), we have
I(pF) = Ly(x7  x2)I by Corollary and Corollary Thus the inequality ([GI2) becomes equal.
Specially when (Rank one) satisfied, x1 = 1 and x2 = x by Lemma This completes the proof of
Theorem [L3.11

6.3 Proof of Corollary and Corollary

We prove Corollary and Corollary [[L3.3] by calculating the order of the integral values of Kubota-

Leopoldt p-adic L-function in this section. The following lemma is useful to our calculation:

Lemma 6.3.1. Let O be the ring of integers of a finite extension of Q, and F'(X) € O[X] a distinguished
polynomial. Then there exists an integer r € Zx( such that for any (k,() € Z>o X (tpoe \ fpr),

ord,, (F (Cu® ~1)) = (pdigf;;)ri)—v

where 7¢ is the order of (.

Proof. Decompose

F(X) = H(X_ai)

and choose an integer r > 0 such that ord,(«a;) > — for all a;. Then for any (k,() € Z>q x

v
(p—1)p"

(tpo= \ tpr), we have the following equality:

ordp(CulC —1—a;) =ord, (¢(exp (k-log(u)) = 1)+ (¢ — 1) — o)

B 1
where exp and log are the p-adic exponential and logarithm functions. Thus we have the following
equality:
n
degF(X)
ord, (F (¢Cuf —1)) = ord,(Cuf =1 — ) = —=—~_.
P (P (G~ 1) = Yoy )= per)

Let us return to the proof of Corollary
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Proof of Corollary First we prove (1) of Corollary [L32] By (1) of Theorem [[.31] it is sufficient

to show that there exists an r € Zx>( such that
orde, (Ly(1 — ky, X;1X21/}LPW)) <rankp I- degﬁz (Xflxg)

for any ¢ € %arlth (I). Since £,(x; "x2) is not divisible by a uniformizer of Z,[x; *x2] by Theorem EZ6]

the Weierstrass preparation theorem enables one to decompose

L,(x1'x2) = L (x1 'x2) U,

where L7 (Xflxg) is a distinguished polynomial and U a unit in A
Ly (X;1X2) . Then there exists an integer r € Z>¢ such that

e We apply Lemma [6.3.1] to

deg L% (x7 X2
(6.13) ord, (¢ (£} (x1'x2))) = M

for any ¢ € xii:l)x D).

Let us take an element ¢ € %im})l( I) and consider the extension of the discrete valuation rings

() D Zy[x][¢p]. Since [Frac(o(l)) : Frac(Zy[x][¢,])] < ranka I, so is the ramification index e,. Under
the assumption p t ¢ (V), the extension of p-adic fields Q, (x) /Q, is unramified. Thus the ramification
index in the extension Z,[x][¢,] D Z, is (p — 1) p"# 1. Then by the equality (EI3)), we have

orde,, (Ly(1 = ky, xflxgd)@w)) = orde, (go (E; (Xflxg)))

degly (x7"x2)
(p—1)pe!

= epdegly) (xflxg)

<ranky I degé;zl,lx2 (X).

=e,(p—1)pe!

This completes the proof of (1) of Corollary and (2) is easily deduced from (1).
Now we prove (3) of Corollary [L3:2] Assume that I is isomorphic to O[[X]] with O the ring of integers
of a finite extension K of Q,. Let f1(X), -, fm(X) be the generators of I (px).

(r1) For each i =1,--- ,m, decompose

where P;(X) is a distinguished polynomial and U;(X) a unit in O[[X]]. Let

We apply Lemma 6.3l to F'(X). Then there exists an integer 71 € Z>¢ such that

degP;(X)

(6.14) ordpp (fi(X)) = piord,@ + B Dpo 1

for any ¢ € %a;:ﬁ) ().
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(ro) We denote by (,, a primitive m-th root of unity for an integer m > 0. We denote by ro the
following integer:
ro =max{j € Zxo | (p € K}.

Let us take an element ¢ € %E(;:fl) (I). Write K, = Frac (¢ (I)) for short. First we assume 75 > 0.

Then we have K N Q, (¢,) = Qp (¢pr2) and Gal (K,/Q, (¢,)) = Gal (K/Q, ((pr=)) - Since I is
isomorphic to O[[X]], the residue degree of the extensions K,/Q, (¢,) and K/Qy ({,m2) coincide,
so are the ramification index. Hence the ramification index of K, over Q,, is e(p — 1)p"# !, where
e is the ramification index of K over Q,((yr2). If 7o = 0, we may enlarge O to O’ = O[(,] since
O[Cy] = O'[¢,] for p € %;i:ﬁ) (I). Then the argument above also holds, i.e. there exists a constant

e such that the ramification index of K, over Q, is e(p — 1)p"¢~!. Note that e is the ramification
index of K (¢p) /Q, () if 72 = 0.

(r3) Since £,(x7 x2)I C I (pr) and @ { L,(x; 'x2), we have the following set

is nonempty. Let
l=min{degP;(X)|ie Z}

and let us take an integer r3 € Z>q such that
(6.15) (p— D)p"~pord,w + degP;(X) > L.

for any i ¢ Z.

’

Let ' = max {ry,72,73 } and let us take a ¢ € .’{gifh) (I). Then we have the following equality:
(6.16) £2(ps,) = min {01, 0 (/:(X)) | 1 <7 <} +1.

Since the ramification index of K, over Q, is e(p — 1)p"» !, we have

(6.17) ordg, ¢ (fi(X)) = e(p — Dp"e~tpordyw + e - degPi(X)

for each 1 < i <n by the equality (@I4]). Thus

(6.18) min { orde_ ¢ (fi(X)) |1 <i<n} =el

by the equality (G.I5). Combine the equalities (6.I6) and (G.I8), we have that §.2(ps,) = el + 1 is

constant. This completes the proof of Corollary [[.3.2]

Proof of Corollary 1.3.3l Now we assume the condition (Rank one) or both of the conditions (Cyclic)
and (Prime ideal). We have §.2(py,) = ordw, (Lp (1 — ky, X7 'X2%pw)) + 1 by (2) and (3) of Theorem
L3l We fix a ¢ € ppe. First we assume that L,(1 — s, ] ' x2®cw) has a zero sg € Z,. Let {k,} be the

sequence defined as follows:
(i) kn =50+ p"if 5o € Z,

n (o9}
(i) ky, = Zaipi if s = Zaipi such that 0 < a; <p—1 and sy € Z.
i=0 i=0
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Then §.2(py,) is unbounded when &, runs over the sequence {kn}

Assume L, (1 — S,X1_1X2’L/}<w) has no zero in Z, and we show ord, (Lp (1 — kwxl_lxgwgw)) is
bounded by contradiction. Suppose that orde, (Lp (1 — kw,xflxgwgw)) is unbounded. Then there
exists a sequence {k,} such that k, > 2 and

lim L, (1 — kn,xflxgwgw) =0.

n—roo

Since Z, is compact and L, is a continuous function, L, (s,xflxgwgw) must have zero in Z,. This
contradicts to our assumption and hence §.£(py,) is bounded. This completes the proof of Corollary

L33

6.4 Proof of Corollary 1.3.4]

We denote by F the residue field I/m. The following lemma is a generalization of the arguments in [Maz,

Appendix I ] for more general settings.

Lemma 6.4.1. Let the assumptions and the notations be as in Theoren [[L3.1J] Assume the conditions
(Co-prime), (Cyclic), (Prime ideal) and (Free lattice). Let T be a Gal (Q/Q)-stable lattice which is free
over I. Then T ®p ¢(I) is a mod w, not semi-simple lattice for any ¢ € Xarien (I).

Proof. We have I (pr) = L,(x; " x2)I under the conditions (Co-prime), (Cyclic) and (Prime ideal) by
Corollary Let us take a Gal (Q/Q)-stable lattice T = I%? and we consider the following represen-
tation:

p=prr: Gal (Q/Q) — GLy (I).

The condition (Prime ideal) enables us to define Frac (I/L,(xi x2)I) and Frac (I/L,(x7 'x2)I) is of
characteristic zero by Theorem We denote by p mod £,(x; "x2)I the representation as follows:

mod L, (x7 x2)1
i

p mod L,(x7 'x2)I : Gal (Q/Q) 5 GL, (I) GLa (I/L£,(x1 "x2)I) -

Since trp mod LP(Xflxg)H is the sum of two characters, we have p mod Ep(xl_lxg)ﬂ is reducible by the
Theorem 233 Let {v1,v2} be a basis corresponding to p mod L, (x7 "x2)I such that (I/£,(x7 'x2)I) v1
is stable under p mod Ep(xflxg)ﬂ. Let ©; € T be a lift of v; (i = 1,2) and M = I; @ [05. Then by the

following commutative diagram:

0 —— M — T — Coker (¢) — 0
lX£p(X;1X2) lx%(xfl)cz) J{Xﬁp(X;IXZ)
0 —— M —t T — Coker (¢) — 0

l l l

M/ﬁp(xflx2)M = M/ﬁp(xflxg)M ——— Coker (¢) /ﬁp(xflxg)Coker(L),

we have Coker (¢) = 0 by Nakayama’s lemma and hence T = I#; & 1. Since (I/£,(x7 "x2)I) v1 is stable
under p mod £,(x7 "x2)L, we have that T/ = 1%, & L,,(x7 ' x2)I#2 is also a Gal (Q/Q)-stable I-free lattice
and T/T' 2 T/L,(x; " x2)L
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For any ¢ € Xarigh (I), we denote by T and 7" the Gal (Q/Q)-stable lattice T @5 ¢(I) and T’ @5 ¢(I)
respectively. Let §.2(py,) = n + 1. Since I (pr) = L,(x1 *x2)L, we have the following isomorphism:

/T =T e) [ @y o) S (/) @10 S (1/L0q X)) @1 9D S o)/ ()"

Thus d ([T, [T"]) = n by Proposition B2:6l We have 8% (py,) = £€ (py,) Proposition[G.1.4l Furthermore
we have ¢ (pfw) is a segment by the proof of Proposition B3l Thus [T] has exactly one neighbor in
Z (pfw). This implies that T" is a mod w,, not semi-simple Gal (@/Q)—stable lattice by (3) of Proposition
19.3.0)

O

Under the above preparation, we return to the proof of Corollary [L3.4]

Proof of Corollary .34l Let us take an integer | € Z~q. By Corollary [[.3.3] we know that there exists
an arithmetic specialization ¢ € Xy ¢ such that £.2(ps, ) =n+1>1

Now we the above element ¢ and we denote by P = Kery. Let T be the Gal (@/Q)—stable lattice
with which (Free lattice) holds. We denote by T' = T ® ¢(I) and let

T T>TReM=T
be the reduction map. We have T' is mod w, not semi-simple by Lemma [6.4.1] Let

Z (pfw) = { [T]7 [Tl]v T 7[Tn] }

such that for any 1 <i <mn, T/T; = o(I)/ (ww)i as a ¢ (I)-module. We denote by T; = 7~ (T}). Since
PT C T; C T, we have that T; is a lattice. By the definition of T; we have that T, is stable under the
action of Gal (Q/Q). Thus we have the following chain of Gal (Q/Q)-stable I-lattices

TOTyD>---D>T,.

For i # j, if there exists an I[Gal (Q/Q)]-isomorphism Z : T; = T}, then = induces a ¢(I)[Gal (Q/Q)]-
isomorphism
Tl:)TJ,’U®1D—)E(U)®1

in T®yp(I). For ¢ # j, we have that T; and T} are non-isomorphic by Proposition [6.1.4l This contradicts
to our assumption and hence T; and T; are non-isomorphic to each other. This implies that §.Z(pr) >

n+ 1 > m and completes the proof of Corollary [.3.4l

Remark 6.4.2. Corollary [[L3:4] is also satisfied if we assume the conditions (Co-prime), (Rank one),

(Prime ideal) and (Free lattice) obviously.

6.5 Examples

We give two examples at the end of this paper. Let (p, ko) be the irregular pair i.e. p divides the

numerator of the ko-th Bernoulli number By,. We give two examples as follows:
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1. (p, ko) = (691,12). Let A € S12 (SL2(Z)) be the Ramanujan’s cuspform. Since dimegSi2 (SL2(Z)) =

1, there exists an unique A-adic normalized Hecke eigen cusp form F € S°'(w!!, A) such that for

the arithmetic specialization ¢ € Xarien (A) with k, = 12,(, =1,
o (F) =A%

By Example we know that h°"d(w!, A) is isomorphic to A. Thus I (pr) = L, (w') I by
Corollary The ideal (£,(w'!)) is equal to (X —a,u) with a,u € pZ, \ p?Z, which is

calculated by Iwasawa-Sims (see [Wal §1]). Then we have the following statements:

i) £Z(ps,) is unbounded when ¢ varies in =D (A by Corollary [L3.3l
fe arith
(ii) §Z(py,) = 2 is constant when ¢ varies in x>0 (A) by (1) and (3) of Corollary

arith
(iii) For each k > 2, §.Z(py,) is bounded with maximum value ord,(L,(1 — k, xw)) + 1 when ¢
varies in £ (A) by (i) and (ii).
(iv) Since I = A is a regular local ring, for a stable A-lattice T, we have that T** is a A-free
lattice by (1) of Proposition 4210l Hence the condition (Free lattice) is satisfied and we have

8.2 (pF) = oo by Corollary L34

Remark 6.5.1. Mazur [Maz, Appendix II] tells us that for the irregular pairs (p, ko) with p < 107
and kg < 8000 such that p | By,, the corresponding Hecke algebra h°™(y, A) is isomorphic to A
except for the pair (p, ko) = (547,486). Thus we can apply Theorem [[31] (2) for these pairs.

. (p, ko) = (547,486). By [Maz, Appendix II], there is a conjugate pair of newforms of weight 486
with the required Eisenstein congruence condition and the field which generated by the Fourier
coefficients over Q, is Q, (/—p) for both of them. Furthermore, the corresponding Hida Hecke
algebra ho'd(w*® A) is finite flat of rank two over A. We denote by fiss, fiss the corresponding

cusp forms.

Let F (resp. F') be the I-adic normalized Hecke eigen cusp form associated to figs (resp. fise)-
Note that I is an integral closure of a quotient of h°*4(w*84 A) by a minimum prime ideal of A by
the proof of Theorem Hence Frac(l) is a quadratic extension of Frac(A). The ideal generated
by (L,(w*®)) is equal to (X — ayass) with agass € pZy, \ p*Z;, which is calculated by Iwasawa-Sims
(see also [Wal, §1]). Then §.2(py,) < 3 when we have ¢ varies in %;i&)] (I) by (1) of Corollary .32
Note that the condition (Cyclic) holds for F (this is because the Vandiver’s conjecture is true for
p = 547), thus I(px) is a principal ideal which is generated by a factor of X —a,,4ss in I by Corollary
The same holds for F’.
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