
Title
Stable lattices in p-adic families of residually
reducible ordinary modular Galois
representations

Author(s) 厳, 冬

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72638

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Stable lattices in p-adic families of residually reducible ordinary

modular Galois representations

Dong Yan



Acknowledgements

It is an honor to thank Professor Tadashi Ochiai for his guidance. In my 4th year in my undergraduate

studies in 2012, Professor Tadashi Ochiai became my supervisor. During these years, he led me in the

right direction during moments of confusion and he also gave me fruitful suggestions and encouragements

to study this topic. My appreciation is more than words that I can say. Thanks are also due to Kenji

Sakugawa and Makoto Kawashima for valuable discussion, reading the manuscript and correcting several

mistakes. I wish to thank to my parents who gave me a lot of supports and encouragements during these

ten years when I studied in Japan. Finally, I would like to thank to my fiancée Lifan Liu, I am so thankful

that I met you and thanks to your patience in everything.

1



Contents

1 Introduction 4

1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Hida deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Statement of the main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Lattices and G-stable lattices 12

2.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Reflexive lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 G-stable lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 p-adic Galois representation and Gal
(
Q/Q

)
-stable lattices . . . . . . . . . . . . . . . . . . 18

2.5 Modular forms and their p-adic Galois representations . . . . . . . . . . . . . . . . . . . . 19

3 Ribet’s lemma 22

3.1 Ribet’s proof of the converse of Herbrand theorem . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The Bruhat-Tits tree of GL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Another proof of Ribet’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Kubota-Leopoldt p-adic L-function and Iwasawa main conjecture 29

4.1 Iwasawa-Serre isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Iwasawa’s construction of Kubota-Leopoldt p-adic L-function . . . . . . . . . . . . . . . . 31

4.3 The main conjecture of ideal class groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Hida deformation 37

5.1 The ordinary part of the space of modular forms . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 I-adic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Duality between I-adic forms and their Hecke algebras . . . . . . . . . . . . . . . . . . . . 42

5.4 Galois representation attached to I-adic normalized Hecke eigen cusp forms . . . . . . . . 45

5.5 Pseudo-representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Proof of Theorem 1.3.1 and its corollaries 53

6.1 The reducibility ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 The relation between the reducibility ideal and the Kubota-Leopoldt p-adic L-function . . 56

6.3 Proof of Corollary 1.3.2 and Corollary 1.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2



6.4 Proof of Corollary 1.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3



Chapter 1

Introduction

1.1 History

Let p ≥ 3 be a fixed odd prime. We fix a complex embedding Q ↪→ C and a p-adic embedding Q ↪→ Qp
of an algebraic closure Q of Q throughout the paper, where C is the field of complex numbers and Qp an

algebraic closure of the field Qp of p-adic numbers. For an integer n, we denote by µn the group of n-th

roots of unity. In 1976, Ribet [Ri] proved the converse of Herbrand’s theorem as follows:

Theorem (Ribet). Let k be an even integer satisfying 2 ≤ k ≤ p − 3 and Bk the k-th Bernoulli

number. We denote by Cl(Q(µp))[p] the p-part of the ideal class group of Q(µp) on which the Galois

group Gal(Q/Q) acts by functoriality. Suppose p divides Bk. Then Cl(Q(µp))[p]
ω1−k ̸= 0, where ω :

(Z/pZ)× → µp−1 is the Teichmüller character such that ω (a) mod p = a for all a ∈ (Z/pZ)× and we

also denote by the same symbol ω the corresponding character of Gal (Q(µp)/Q) ∼= (Z/pZ)×.

The main ideas of Ribet’s proof is to construct a normalized Hecke eigen cusp form f =

∞∑
n=1

a (n, f) qn

of weight 2 at level p which is congruent to Eisenstein series and to consider the Galois representation ρf

over K = Qp
(
{a (n, f)}n≥1

)
attached to f due to Deligne and Shimura. The following key proposition

enables us to take a Gal
(
Q/Q

)
-stable lattice T of ρf such that T/ϖT is not a semi-simple Gal

(
Q/Q

)
-

module, where O is the ring of integers of K and ϖ is a fixed uniformizer of O. Then by considering

the action of Gal
(
Q/Q (µp)

)
on T/ϖT , Ribet constructed an unramified p-extension L of Q (µp) and

Gal (Q (µp) /Q) acts on Gal (L/Q (µp)) via ω1−k. Thus the converse of Herbrand’s theorem follows by

class field theory. By extending Ribet’s method, Mazur-Wiles [MW1] and Wiles [Wi2] proved the Iwasawa

main conjecture for Q and for totally real fields.

Now we introduce a key lemma in Ribet’s proof (which is called “Ribet’s lemma”) as follows:

Proposition A (Ribet’s lemma). Let (O, ϖ,O/ (ϖ)) be the ring of integers of a finite extension of Qp
where ϖ is a fixed uniformizer of O. Let K = Frac(O) be the field of fractions of O and V a 2-dimensional

K-vector space. For a given p-adic representation

ρ : G→ AutK(V )
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of a compact group G, let ρ̄ss be the semi-simplification of the mod (ϖ) representation (see Section 2.1

below). Suppose ρ is irreducible and ρ̄ss ∼= ϑ1 ⊕ ϑ2, where ϑ1, ϑ2 : G→ (O/ (ϖ))
×

are characters. Then

there exists a G-stable lattice T ⊂ V for which ρ̄T is the form

(
ϑ1 ∗
0 ϑ2

)
but is not semi-simple.

In this thesis, we study Ribet’s lemma in a more general way. Let us keep the assumptions and the

notations of Proposition A. For each positive integer m, we consider the following condition:

(Extm) There exist a G-stable lattice T of ρ and two characters νi : G→ O/ (ϖ)
m
(i = 1, 2) such that

0→ O/ (ϖ)
m
(ν1)→ T/ϖmT → O/ (ϖ)

m
(ν2)→ 0

is a non-split exact sequence of G-modules.

Ribet’s lemma claims that there exists an integerm ≥ 1 for which (Extm) holds. Since ρ is irreducible, the

number of isomorphic classes of G-stable lattices is finite by Proposition 2.4.2. Thus we are interested

in the determination of the largest value of m with which (Extm) holds and we denote it by m (ρ).

Furthermore, we consider the following condition:

(RMF) The semi-simplification of the mod (ϖ) representation is decomposed into two different charac-

ters.

Assume the condition (RMF), then we have m (ρ) = ♯L (ρ)− 1 by the proof of Proposition 3.3.1 at the

end of §3 and Proposition 6.1.4, where L (ρ) is the set of the isomorphic classes of G-stable lattices.

Now assume ρ is a Galois representation attached to a normalized Hecke eigen cusp form with resid-

ually reducible representation. Since the determinant det ρ is an odd character, the condition (RMF)

holds. We introduce a result on ♯L (ρ) where ρ comes from a modular form. The following known result

is obtained by Greenberg and Monsky for the Ramanujan’s cusp form ∆ = q

∞∏
n=1

(1− qn)24 and p = 691:

Proposition B (Greenberg, Monsky). Let ρ∆ : Gal(Q/Q)→ GL2(Q691) be the 691-adic representation

attached to ∆. Then ♯L (ρ∆) = 2.

Remark. The work of Greenberg and Monsky is unpublished. See [Maz, Section 12, Proposition 1] for

the statement. For the proof of more general settings, see Proposition 6.1.5 and the table after it.

1.2 Hida deformation

Before we state our main result, let us prepare some notations on Hida deformation. From now on to the

end of this paper, we fix a topological generator u of 1 + pZp. Let O ⊂ Qp be a commutative ring which

is finite flat over Zp and let ψ be a Dirichlet character modulo M . We denote by Sk (Γ0 (M) , ψ,O) the
space of cusp forms of weight k, level M , Neben character ψ and Fourier coefficients in O. A normalized

Hecke eigen cusp form f is called p-ordinary if its p-th Fourier coefficient a (p, f) is a p-adic unit. Now

we prepare some notations on Hida deformation. We fix a positive integer N prime to p and let χ be a

Dirichlet character modulo Np. If ζ ∈ µpr (r ≥ 0) is a pr-th root of unity, we denote by ψζ the Dirichlet

character as follows:

ψζ :
(
Z/pr+1Z

)× → Q×
p , u mod pr+1 7→ ζ.
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Now let I be an integrally closed local domain which is finite flat over Λχ = Zp[χ][[X]] and Xarith (I) the
set of homomorphisms defined as follows:

Xarith (I) =
{
φ : I→ Qp

∣∣ φ(1 +X) = ζφu
kφ−2, (kφ, ζφ) ∈ Z≥2 × µp∞

}
.

We call an element of Xarith (I) an arithmetic specialization of I. Let F =

∞∑
n=1

a(n,F)qn ∈ I[[q]] be an

I-adic normalized Hecke eigen cusp form with character χ. That is,

fφ :=

∞∑
n=1

φ(a(n,F))qn ∈ Skφ
(
Γ0(Np

rφ+1), χψφω
1−kφ , φ (I)

)
is a p-ordinary normalized Hecke eigen cusp form for all φ ∈ Xarith (I), where prφ is the order of ζφ and

ψφ = ψζφ .

Let F be an I-adic normalized Hecke eigen cusp form and Frac(I) the field of fraction of I. Hida [Hi2]

(see also Theorem 5.4.6 below) proved that there is a continuous representation

ρF : Gal(Q/Q)→ GL2(Frac(I))

such that for any φ ∈ Xarith (I), the residual representation ρF (Kerφ) (see Definition 5.4.7 below) is

isomorphic to ρfφ .

1.3 Statement of the main result

In this thesis, we determine whether the variation of ♯L (ρ) is bounded or not when ρ varies in a Hida

deformation. From now on throughout the paper, we denote by ϕ the Euler function and we fix a positive

integer N prime to p. Let χ be a Dirichlet character modulo Np. Let I be the same as above with m the

maximal ideal of I. Let F be an I-adic normalized Hecke eigen cusp form. We denote by Q (µNp∞) the

union of all cyclotomic fields Q (µNpr ) (r ∈ Z≥1) and by Q∞ the cyclotomic Zp-extension of Q. Now we

are going to determine ♯L (ρfφ) when φ varies in Xarith (I). Our result is the following theorem:

Theorem 1.3.1 ([Y, Theorem 1.5]). Suppose p ∤ ϕ(N) and ρF (m) ∼= ϑ1 ⊕ ϑ2 such that ϑ1 (resp. ϑ2) is

unramified (resp. ramified) at p. Let W (I/m) be the Witt ring of I/m and χi : Gal
(
Q/Q

)
→W (I/m)

×

the composition of ϑi with the Teichmüller lift: (I/m)
×
↪→W (I/m)

×
. Assume the following conditions:

(Co-prime) The conductors of χ1 and χ2 are relatively prime and χ1 ̸= χ2ω.

(Conductor) Every prime factor l of N divides the conductor of χ.

We enlarge I such that I is also finite flat over Λχ1χ
−1
2
.

(1) For any φ ∈ Xarith (I) such that φ(1 +X) = ζφu
kφ−2, we have

♯L (ρfφ) ≤ ordϖφ(Lp(1− kφ, χ−1
1 χ2ψφω)) + 1,

where ϖφ is a fixed uniformizer of φ(I) and Lp(s, χ
−1
1 χ2ψφω) is the Kubota-Leopoldt p-adic L-

function.
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(2) Assume that

(Rank one) N = 1 and hord (χ,Λχ) (see Definition 5.3.2 below) is isomorphic to Λχ.

Then for any φ ∈ Xarith (I) such that φ(1 +X) = ζφu
kφ−2, we have

♯L (ρfφ) = ordϖφ(Lp(1− kφ, χψφω)) + 1.

(3) Let L∞, L
(Np)
∞ be the maximal unramified abelian p-extension of Q (µNp∞) and the maximal

abelian p-extension unramified outside Np of Q (µNp∞). We denote by X∞ = Gal (L∞/Q (µNp∞))

and by Y∞ = Gal
(
L
(Np)
∞ /Q (µNp∞)

)
on which Gal (Q (µNp∞) /Q∞) acts by conjugation. We denote

by X
χ1χ

−1
2∞ = X∞ ⊗Zp[Gal(Q(µNp∞)/Q∞)] Zp[χ1χ

−1
2 ] and by Y

χ−1
1 χ2

∞ = Y∞ ⊗Zp[Gal(Q(µNp∞)/Q∞)]

Zp[χ−1
1 χ2]. Assume the following conditions:

(Cyclic) The Λχ1χ
−1
2
-modules X

χ1χ
−1
2∞ and Y

χ−1
1 χ2

∞ are cyclic.

(Prime ideal) The ideal generated by Lp
(
χ−1
1 χ2

)
(see Theorem 4.2.1 below) is a prime ideal in I.

Then for any φ ∈ Xarith (I) such that φ(1 +X) = ζφu
kφ−2, we have

♯L (ρfφ) = ordϖφ(Lp(1− kφ, χ−1
1 χ2ψφω)) + 1.

Theorem 1.3.1 will be proved at the end of Section 6.2. Now we discuss the boundedness of ♯L
(
ρfφ
)

when the weight and the level vary. When we fix an r ∈ Z≥0, we define X
(>r)
arith (I) as follows:

X
(>r)
arith (I) =

{
φ ∈ Xarith (I)

∣∣ φ(1 +X) = ζφu
kφ−2, (kφ, ζφ) ∈ Z≥2 × (µp∞ \ µpr )

}
.

When we fix a ζ ∈ µp∞ , we define X
(ζ)
arith (I) as follows:

X
(ζ)
arith (I) =

{
φ ∈ Xarith (I)

∣∣ φ(1 +X) = ζukφ−2, kφ ≥ 2
}
.

When we fix a k ∈ Z≥2, we define X
(k)
arith (I) as follows:

X
(k)
arith (I) =

{
φ ∈ Xarith (I)

∣∣ φ(1 +X) = ζφu
k−2, ζφ ∈ µp∞

}
.

The bounded case of the variation of ♯L (ρfφ) is the following corollary:

Corollary 1.3.2 ([Y, Corollary 1.6 (1)-(3)]). Let us keep the assumptions and the notations of Theorem

1.3.1. We denote by L∗
p

(
χ−1
1 χ2

)
the distinguished polynomial associated to Lp

(
χ−1
1 χ2

)
. Then we have

the following statements:

(1) There exists an integer r ∈ Z≥0 such that ♯L (ρfφ) is bounded when φ varies in X
(>r)
arith (I).

Furthermore, we have the following inequality for ♯L (ρfφ):

♯L (ρfφ) ≤ rankΛχI · degL∗
p

(
χ−1
1 χ2

)
+ 1

for every arithmetic specialization φ ∈ X
(>r)
arith (I), where rankΛχI is the rank of the Λχ-module I.

(2) For each integer k ≥ 2, ♯L (ρfφ) is bounded when φ varies in X
(k)
arith (I).
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(3) Suppose that I is isomorphic to O[[X]] with O the ring of integers of a finite extension of Qp.

Then there exists an integer r′ ∈ Z≥0 such that ♯L (ρfφ) is constant when φ varies in X
(>r′)
arith (I).

The unbounded case of the variation of ♯L (ρfφ) is the following corollary:

Corollary 1.3.3 ([Y, Corollary 1.6 (4)]). Let us keep the assumptions and the notations of Theorem

1.3.1. Assume the condition (Rank one) or both of the conditions (Cyclic) and (Prime ideal). For each

ζ ∈ µp∞ , ♯L (ρfφ) is unbounded when φ varies in X
(ζ)
arith (I) if and only if Lp(1− s, χ−1

1 χ2ψζω) has a zero

in Zp.

Corollary 1.3.2 and 1.3.3 will be proved in Section 6.3. Let L (ρF ) be the set of the isomorphic classes

of stable lattices of Hida deformation ρF . Now we give a result of ♯L (ρF ) answering Question 4.5 1 of

[Oc1].

Corollary 1.3.4 ([Y, Corollary 1.7]). Let us keep the assumptions and the notations of Theorem 1.3.1.

Assume the conditions (Co-prime), (Cyclic) and (Prime ideal). Further assume the following condition

(Free lattice) There exists a stable lattice T which is free over I.

Suppose that there exists a ζ ∈ µp∞ such that Lp(1−s, χ−1
1 χ2ψζω) has a zero in Zp. Then ♯L (ρF ) =∞.

Corollary 1.3.4 will be proved in Section 6.4.
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Outline of this thesis

The outline of this thesis is as follows. In section 2, we recall the definition and some properties of lattices

and G-stable lattices. We prove that for a given p-adic Galois representation ρ, ♯L (ρ) is unique under

the assumption that the residue representation is irreducible and ♯L (ρ) is finite under the assumption

that ρ is irreducible.

In section 3, we recall the Ribet’s proof of the converse of the Herbrand’s theorem and we give

two proofs of Ribet’s lemma: the original proof based on matrix operation and the proof based on the

Bruhat-Tits tree of GL2. The latter proof illustrates us to counting ♯L (ρ) by means of the reducibility

ideal.

In section 4, we recall the classical Iwasawa theory of ideal class groups, especially the Iwasawa’s

construction of the Kubota-Leopoldt p-adic L-function and the main conjecture. We normalize the Iwa-

sawa’s construction slightly different from Iwasawa’s original paper for the compatibility of the arithmetic

specialization in Hida deformation ring.

In section 5, we recall Hida theory: the freeness of the space of Λ-adic forms, Hida’s control theorem,

duality and the construction of the Galois representation attached to an I-adic normalized Hecke eigen

cusp form by using the pseudo representation theory. In section 6, we prove our main theorem.
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Notations

Frac (A) : the field of fractions of a commutative domain A

K : a finite extension of Qp

O: the ring of integers of a finite extension of Qp

ϖ : a fixed uniformizer of a discrete valuation ring

F : the residue field of a discrete valuation ring

L (ρ) : the set of the isomorphic classes of Gal
(
Q/Q

)
-stable lattices of a given p-adic representation ρ

χcyc : the p-adic cyclotomic character, i.e.

χcyc : Gal (Q (µp∞) /Q)
∼→ Z×

p

κcyc : Gal (Q∞/Q)
∼→ Gal (Q (µp∞) /Q (µp))

χcyc→ 1 + pZp

ω : the Teichmüller character, i.e.

ω : Gal (Q (µp∞) /Q∞)
∼→ Gal (Q (µp) /Q)

χcyc→ µp−1

By abuse of notation, we sometimes denote by χcyc and κcyc the characters of Gal
(
Q/Q

)
composed

with Gal
(
Q/Q

)
↠ Gal (Q (µp∞) /Q) and Gal

(
Q/Q

)
↠ Gal (Q∞/Q) respectively.

Dl (resp. Il) : the decomposition subgroup (resp. inertia subgroup) of Gal
(
Q/Q

)
at a prime l

Frobl : the geometric Frobenius at l

ΛO : the power series ring O[[X]]

Λ : = ΛZp .

Λψ : the power series ring ΛZp[ψ] for a Dirichlet character ψ

10



For an integer d which is prime to p, write d = ω (d) ⟨d⟩ under the isomorphism

Z×
p

∼→ µp−1 × 1 + pZp

and we denote by sd such that ⟨d⟩ = usd .

Let ψ be a Dirichlet character modulo M , we also denote by the same symbol ψ the corresponding

character of Gal (Q(µM )/Q) ∼= (Z/MZ)×. We denote by 1 the trivial Dirichlet character.

For an arithmetic specialization φ which is defined in §1.2, we denote by (ζφ, kφ, rφ) the data such

that φ(1 +X) = ζφu
kφ−2 and rφ ∈ Z≥0 such that ζφ ∈ µprφ \ µprφ−1 i.e. ζφ is a primitive prφ -th root of

unity and. Furthermore, we write ψφ = ψζφ (cf. §1.2) for simplicity.
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Chapter 2

Lattices and G-stable lattices

2.1 Lattices

Definition 2.1.1. Let A be a commutative Noetherian integral domain with field of fractions K. Let V

be a finite dimensional Frac (A)-vector space with dimFrac(A)V = n. We say that an A-submodule T of

V is a lattice of V if and only if T is finitely generated and T ⊗A Frac (A) = V .

Remark 2.1.2. If A is a discrete valuation ring, any lattice of V is free over A.

Propostion 2.1.3 ([Bo, Chap. 7, §4.1, Proposition 2]). Let A be a commutative Noetherian integral

domain and V a finite dimensional Frac (A)-vector space. Let T be a lattice of V and T ′ an A-submodule

of V .

(1) Assume there exist x, y ∈ Frac (A)
×

such that xT ⊂ T ′ ⊂ yT , then T ′ is a lattice.

(2) Conversely, assume T ′ is a lattice of V , then there exist a, b ∈ A such that aT ⊂ T ′ ⊂ b−1T .

Proof. (1) Since T ′ ⊂ yT and T is finitely generated, T ′ is also finitely generated. Under the

assumption of (1), we also have

V = xT ⊗A Frac (A) ⊂ T ′ ⊗A Frac (A) ⊂ yT ⊗A Frac (A) = V

hence T ′ is a lattice of V .

(2) We denote by { e1, · · · , er } the set of generators of T . Since T ⊗A Frac (A) = T ′ ⊗A Frac (A),

there exists an element a ∈ A such that aei ∈ T ′ for all i. Hence aT ⊂ T ′. By changing the roles

of T and T ′ there exists an b ∈ A such that bT ′ ⊂ T .

Propostion 2.1.4 ([Bo, Chap. 7, §4.1, Proposition 3]). Let A be a commutative Noetherian integral

domain and V a finite dimensional Frac (A)-vector space. If T1 and T2 are lattices of V , so are T1 ∩ T2
and T1 + T2.
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Proof. Since there exist a, b ∈ A such that aT1 ⊂ T2 ⊂ b−1T1 by (2) of Proposition 2.1.3, we have

aT1 ⊂ T1 ∩ T2, T1 + T2 ⊂ b−1T1.

Then the proposition follows by (1) of Proposition 2.1.3.

Propostion 2.1.5 ([Bo, Chap. 7, §4.1, Proposition 4]). Let B be a commutative Noetherian integral

domain and A a sub ring of B. Let V be a finite dimensional Frac (A)-vector space.

(1) For any lattice T of V , T ⊗A B is a lattice of V ⊗Frac(A) Frac (B).

(2) Suppose B is a faithfully flat A-module. Then the following map

ϕ : { lattices of V } → { lattices of V ⊗Frac(A) Frac (B) } , T 7→ T ⊗A B

is injective.

Proof. (1) We have the following equalities:

(2.1) Frac (B)⊗B (B ⊗A T ) = (Frac (B)⊗B B)⊗A T = Frac (B)⊗A T.

Since T ⊗A Frac (A) = V and Frac (B) = Frac (B) ⊗Frac(A) Frac (A), the last term of the above

equalities becomes to Frac (B)⊗Frac(A) V. Hence T ⊗A B is a lattice of V ⊗Frac(A) Frac (B).

(2) Let T1 and T2 be lattices of V such that B ⊗A T1 = B ⊗A T2. First we assume T1 ⊂ T2. Then

B ⊗A (T2/T1) = 0. Since B is a faithfully flat A-module, we have T2 = T1. Now we consider the

general case. We have the following equalities:

(B ⊗A T1) ∩ (B ⊗A T2) = B ⊗A (T1 ∩ T2)

hence T1 ∩ T2 = T1 = T2 by the above argument.

Propostion 2.1.6 ([Bo, Chap. 7, §4.1, Corollary to Proposition 4]). Let A be a discrete valuation ring

and V a finite dimensional Frac (A)-vector space. Let

ρ : G→ AutFrac(A) (V )

be a linear representation of a group G. We denote by Â the completion of A and by V̂ = V ⊗K Frac(Â).

Let ρ̂ be the following linear representation:

ρ̂ : G→ AutFrac(Â)(V̂ ), g 7→ ρ̂ (g) (v ⊗ α 7→ ρ (g) v ⊗ α) .

Then the following map

(2.2) { lattices of V } → { lattices of V̂ } , T 7→ T ⊗A Â

is bijective and the inverse map is given by maps T̂ to T̂ ∩ V , the same holds for the set of G-stable

lattices.
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Proof. Note that T ⊗A Â is the completion of T i.e T ⊗ Â = lim←−
n

T/ϖnT , where ϖ is a fixed uniformizer

of A. Thus T is dense in T̂ . Since T ⊗A Â is open in V ⊗Frac(A) Frac(Â) and T is open in V , we have

(T ⊗A Â) ∩ V = T . This implies that the map (2.2) is injective. Now we prove the surjection. Let

us take a lattice L of V . For any lattice T̂ of V̂ , there exist two elements α and β of Â such that

α(L⊗A Â) ⊂ T̂ ⊂ β−1(L⊗A Â) by (2) of Proposition 2.1.3. Since every element of Â can be writen by a

product of a power of ϖ and an invertible element of Â, there exist two elements a and b of A such that

a(L⊗A Â) ⊂ T̂ ⊂ b−1(L⊗A Â),

hence

aL ⊂ T̂ ∩ V ⊂ b−1L.

Thus T̂ ∩ V is a lattice of V by (1) of Proposition 2.1.3 and so T̂ ∩ V is open in V . Since V is dense in

V̂ , T̂ ∩ V is dense in T̂ . Hence T̂ is the completion of T̂ ∩ V . Further if T is a G-stable lattice, we have

ρ(g)(T ⊗A Â) = ρ (g)T ⊗A Â = T ⊗A Â

for any g ∈ G and hence T ⊗A Â is also G-stable. If T̂ is G-stable, we have

ρ (g) (T̂ ∩ V ) ⊂ (T̂ ∩ V )

for any g ∈ G and hence T̂ ∩ V is also G-stable.

Remark 2.1.7. If we consider the lattice over a discrete valuation ring A. Proposition 2.1.6 permits us

to confine to the case where A is complete.

2.2 Reflexive lattices

In this section, we recall some properties of reflexive lattices which will be used in Hida deformation (cf.

Proposition 5.4.10).

Propostion 2.2.1 ([Bo, Chap. 7, §4.1, (iv) of Proposition 3]). Let A be a commutative Noetherian

integral domain and V,W finite dimensional Frac (A)-vector spaces. Let TV be a lattice of V and TW a

lattice of W . We denote by HomFrac(A),TV ,TW (V,W ) the A-submodule of HomFrac(A) (V,W ) as follows:

HomFrac(A),TV ,TW (V,W ) = { f ∈ HomFrac(A) (V,W ) | f (TV ) ⊂ TW } .

Then HomFrac(A),TV ,TW (V,W ) is a lattice of HomFrac(A) (V,W ).

Proof. By Proposition 2.1.3 we have that there exist A-free lattices LV , L
′
V of V and LW , L

′
W of W such

that

L′
V ⊂ TV ⊂ LV , L′

W ⊂ TW ⊂ LW .

Then

HomFrac(A),LV ,L′
W
(V,W ) ⊂ HomFrac(A),TV ,TW (V,W ) ⊂ HomFrac(A),L′

V ,LW
(V,W ) .

Since HomFrac(A),LV ,L′
W
(V,W ) is isomorphic to HomA (LV , L

′
W ), which is free of rank dimFrac(A)V ·

dimFrac(A)V . Hence HomFrac(A),LV ,L′
W
(V,W ) is a lattice of HomFrac(A) (V,W ) and the same holds for

HomFrac(A),L′
V ,LW

(V,W ). Thus HomFrac(A),TV ,TW (V,W ) is a lattice of HomFrac(A) (V,W ).
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From now on to the end of this section, we denote by A a commutative Noetherian integrally closed

domain and by V a finite dimensional Frac (A)-vector space. We denote by V ∗ = HomFrac(A) (V,Frac (A))

the dual of V and by V ∗∗ = (V ∗)∗. Let T be a lattice of V . We denote by T ∗ = HomFrac(A),T,A (V,Frac (A))

and by T ∗∗ = (T ∗)∗. We may regard T is contained in T ∗∗ under the canonical isomorphism V
∼→ V ∗∗.

We say that T is a reflexive lattice if T = T ∗∗.

Propostion 2.2.2. Let the assumptions and the notations be as above. We have T ∗ and T ∗∗ are reflexive

lattices for any T .

Proof. Note that T ⊂ T ∗∗ implies T ∗ ⊂ T ∗∗∗. On the other hand, we have T ∗ ⊂ (T ∗)∗∗ = T ∗∗∗. Thus

T ∗ = T ∗∗∗ and T ∗∗ = T ∗∗∗∗.

Theorem 2.2.3. Let the assumptions and the notations be as above. Then we have the following

statements:

(1) (T ∗)p = (Tp)
∗ for any prime ideal p ([Bo, Chap. 7, §4.1, Proposition 5]).

(2) T ∗ =
∩

p∈P 1(A)

(T ∗)p, where P
1 (A) is the set of all height 1 prime ideal of A ([Bo, Chap. 7, §4.2,

Theorem 1]).

(3) T ∗∗ =
∩

p∈P 1(A)

Tp ([Bo, Chap 7, §4.2, Corollary to Theorem 1]).

Proof. (1) We have (T ∗)p ⊂ (Tp)
∗ by definition. Conversely, let f be an element of (Tp)

∗ and

{ v1, · · · , vr } be a set of generators of T . Then there exists an element s ∈ A \ p such that

f (vi) ∈ s−1A for any vi and hence sf ∈ T ∗.

(2) We have T ∗ ⊂
∩

p∈P 1(A)

(T ∗)p by definition. Let us take an element f ∈
∩

p∈P 1(A)

(T ∗)p. Since

(T ∗)p = (Tp)
∗ by (1), we have f (v) ∈

∩
p∈P 1(A)

Ap for any v ∈ T . Under the assumption that A is a

Noetherian integrally closed domain, we have A =
∩

p∈P 1(A)

Ap.

(3) We have the following equalities by (1) and (2) :

T ∗∗ = (T ∗)∗ =
∩

p∈P 1(A)

(
(T ∗)p

)∗
=

∩
p∈P 1(A)

T ∗∗
p .

Since Ap is a principal ideal domain, we have that Tp is free over Ap and hence T ∗∗
p = Tp. This

completes the proof of Theorem 2.2.3.

The following theorem ensures us the existence of Gal
(
Q/Q

)
-stable I-free lattice in a Hida deformation

under the assumption that I is a regular local ring (cf. Proposition 5.4.10).

Theorem 2.2.4 ([Oc2, Theorem 2.34]). Let the assumptions and the notations be as above. Let T be

a lattice of V . Assume that A is a regular local ring with Krull dimension ≤ 2. Then T is free over A.
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Proof. First we assume that the Krull dimension of A is 1. Since every regular local ring with Krull

dimension 1 is a discrete valuation ring, we have every lattice is free over A.

Now we assume that the Krull dimension of A is 2. Under the assumption that A is a regular local

ring, there exists an element x ∈ A such that the quotient A/xA is a discrete valuation ring. We may

regard T ∗∗ ⊗A A/xA as an A-submodule of HomA (T ∗, A/xA) under the injection T ∗∗ ⊗A A/xA ↪→
HomA (T ∗, A/xA). Since the module HomA (T ∗, A/xA) is A-torsion free, so is T ∗∗ ⊗A A/xA.

Let s be the number of a minimal basis (cf. [Mat, Theorem 2.3]) of T . Then we have the following

exact sequence of A-modules:

(2.3) 0→ Kerh→ A⊕s h→ T → 0.

Since T ∗∗⊗AA/xA is A-torsion free and T is a reflexive lattice, we have that T ⊗AA/xA is also A-torsion

free. Then the exact sequence (2.3) induces the following exact sequence of A/xA-modules:

(2.4) 0→ Kerh/xKerh→ (A/xA)
⊕s → T/xT → 0.

We have that s is also the number of a minimal basis of the A/xA-module T/xT by Nakayama’s lemma.

Furthermore, since A/xA is a discrete valuation ring, T/xT is free over A/xA and hence Kerh/xKerh =

0. Then Kerh = 0 also by Nakayama’s lemma. This completes the proof of Theorem 2.2.4.

2.3 G-stable lattices

Definition 2.3.1. Let A be a commutative Noetherian integral domain and V be finite dimensional

Frac (A)-vector space with dimFrac(A)V = n. For a linear representation

ρ : G→ AutFrac(A) (V )

of a group G, we say that a lattice T is a G-stable if ρ (G)T = T .

Propostion 2.3.2 ([Se2, Chap. 2, §1.3, Proposition 2]). Let A be a discrete valuation and V a finite

dimensional Frac (A)-vector space with dimFrac(A)V = n. For a linear representation

ρ : G→ AutFrac(A) (V )

of a group G, the following are equivalent:

(1) There exists a G-stable lattice of V .

(2) There exists a basis V = ⊗ni=1Frac (A) ei such that

Im
(
ρ : G→ AutFrac(A) (V ) ∼= GLn (Frac (A))

)
⊂ GLn (A) .

(3) Let us take any basis of V and regard ρ as the following homomorphism:

ρ : G→ GLn (Frac (A)) .

Then ρ (G) is bounded in GLn (Frac (A)) i.e. there exists an integer d such that ordϖ (sij) ≥ d for

any s = (sij) ∈ ρ (G).

16



Proof. (1) implies (2) and (2) implies (3) are obvious. Let us prove (3) implies (1). Let T be a lattice

of V . We denote by ϖ a fixed uniformizer of A. Since ρ (G) is bounded, there exists an integer n such

that ρ (g)T ⊂ ϖnT for all g ∈ G. Then
∑
g∈G

ρ (g)T is a lattice by Proposition 2.1.4 and it is G-stable by

definition.

We introduce the Brauer-Nesbitt theorem as follows, for the proof see [CR, 30.16].

Theorem 2.3.3 (Brauer-Nesbitt). Let k be a field and F a k-algebra. LetM andM ′ be the semi-simple

F -modules such that dimkM = dimkM
′ < ∞. Suppose for any f ∈ F , the characteristic polynomial of

f acting on M and M ′ coincide. Then M and M ′ are isomorphic as F -modules.

Let A be a discrete valuation ring. We denote by ϖ a fixed uniformizer of A, F = A/ (ϖ) the

residue field. Let V be a finite dimensional Frac (A)-vector space such that dimKV = n and ρ : G →
AutFrac(A) (V ) a linear representation of a group G such that ρ has a G-stable lattice T . Then we denote

by ρT the representation

ρT : G→ AutA(T )

and by ρ̄T the representation ρT mod ϖ as follows:

ρT mod ϖ : G
ρT→ AutO(T )

mod ϖ−→ AutA/(ϖ) (T/ϖT ) .

Corollary 2.3.4. Let the assumptions and the notations be as above. We have ρssT
∼= ρssT ′ for any G-

stable lattice T and T ′, where ρssT (resp. ρssT ′) is the semi-simplification of the F[G]-module T/ϖT (resp.

T ′/ϖT ′).

Proof. Let us take an element g ∈ G. Note that the characteristic polynomial of ρ (g) is an element of

A[X] under the assumption that ρ has a G-stable lattice. The characteristic polynomial of ρT (g) and

ρT ′ (g) is the mod ϖ reduction of the characteristic polynomial of ρ (g). Then the corollary follows by

applying Theorem 2.3.3 (we let k = F, F = F[G],M = T/ϖT and M ′ = T ′/ϖT ′).

We see that the semi-simplification of mod ϖ representation is independent of the choices of G-stable

lattice. Hence we denote by ρss the semi-simplification of ρT .

At the end of this section we introduce a condition which makes the G-stable lattice unique up to

multiplications by elements of K×:

Propostion 2.3.5 ([Oc3, Lemma 5.11]). Let the assumptions and the notations be as above. Assume ρT

is irreducible. Then for any G-stable lattice T ′, there exists an element x ∈ Frac (A)
×
such that T ′ = xT .

Proof. We prove this proposition by contradiction. By (2) of Proposition 2.1.3 we may assume that there

exists a G-stable lattice T ′ such that ϖT ⊊ T ′ ⊊ T . Since T/ϖT is an irreducible F[G]-module we have

T ′/ϖT = T/ϖT and hence T ′ +ϖT = T . Thus T ′ = T by Nakayama’s lemma. This contradicts to our

assumption that T ′ ⊊ T .
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2.4 p-adic Galois representation and Gal
(
Q/Q

)
-stable lattices

Let K be a finite extension of Qp. We denote by (O, ϖ,F) the ring of integers of K, a fixed uniformizer

of O and the residue field F = O/ (ϖ). Let V be a finite dimensional K-vector space with dimKV = n.

We induce the product topology on AutK (V ) ∼= GLn (K).

Definition 2.4.1. A p-adic Galois representation of Gal
(
Q/Q

)
is a continuous homomorphism ρ :

Gal
(
Q/Q

)
→ AutK (V ).

Propostion 2.4.2 ([Se1, pp.1-2]). Let ρ : Gal
(
Q/Q

)
→ AutK (V ) be a p-adic representation. Then

there exists a Gal
(
Q/Q

)
-stable lattice.

Proof. Since ρ is continuous and Gal
(
Q/Q

)
is compact, we have ρ

(
Gal

(
Q/Q

))
is bounded in AutK (V ) ∼=

GLn (K). Then the proposition follows by Proposition 2.3.2.

The following proposition tells us that the number of the isomorphic classes of Gal
(
Q/Q

)
-stable

lattices is finite in an irreducible p-adic representation:

Propostion 2.4.3 ([Oc3, Proposition 5.13]). Let ρ : Gal
(
Q/Q

)
→ AutK (V ) be a p-adic representation.

Assume ρ is irreducible, then ♯L (ρ) <∞.

Proof. We prove this proposition by contradiction. Assume ♯L (ρ) =∞. Then there are infinitely many

Gal
(
Q/Q

)
-stable lattices up to multiplications by elements of K×. Let us take a Gal

(
Q/Q

)
-stable lattice

T . We have T/ϖT is a reducible O[G]-module by Proposition 2.3.5. For any n ∈ Z>0, we denote by Ln

the set of O[G]-submodules M of T/ϖnT for which the following conditions hold:

(i) { 0 } ⊊M ⊊ T/ϖnT .

(ii) M ⊈ ϖT/ϖnT .

(iii) ϖn−1T/ϖnT ⊈M .

For any n ∈ Z≥1, since O is profinite, there exists a Gal
(
Q/Q

)
-stable lattice T ′ ⊊ T such that

ϖn ⊄= T ′, T ′ ̸⊂ ϖT and ϖn−1T ̸⊂ T ′. Thus the set Ln is non-empty for any n.

For any Mn+1 ∈ Ln+1, we denote by Mn the image of Mn+1 under the homomorphism T/ϖn+1T ↠
T/ϖnT . Now we prove Mn ∈ Ln. We denote by L the inverse image of Mn+1 under T ↠ T/ϖn+1T .

Then L is a Gal
(
Q/Q

)
-stable lattice. The conditions (i), (ii) and (iii) in Ln+1 is equivalent to the

following conditions:

(I) ϖn+1T ⊊ L ⊊ T .

(II) L ⊊ ϖT .

(III) ϖnT ⊈ L.

The conditions (I) and (III) imply ϖnT ⊊ L + ϖnT ⊊ T . The condition (II) implies L + ϖnT ⊊ ϖT .

Furthermore, we also have ϖn−1T ̸⊂ L+ϖnT by the condition (III). The above arguments tell us that

Mn = L+ϖnT/ϖnT satisfy the condition (i), (ii) and (iii) in Ln.
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For any i < j, the homomorphism T/ϖjT ↠ T/ϖiT induces a map from Lj to Li. The above

argument tells us that {Ln }n∈Z≥1
is an inverse system. We have lim←−

n

Ln ̸= ∅. Let us take an element

M = (M1,M2, · · · ) ∈ lim←−
n

Ln. Clearly we haveM ⊂ T andM is Gal
(
Q/Q

)
-stable. AssumeM is a lattice

of V . Then there exists an element m ∈ Z≥1 such that ϖmT ⊂M ⊂ T by (2) of Proposition 2.1.3. This

contradicts to the condition (iii) in Lm+1 and hence M is not a lattice of V . Thus rankOM < rankOT

and M ⊗O K is a proper nontrivial K[G]-submodule of V . This contradicts to the assumption that ρ is

irreducible and we finish the proof of Proposition 2.4.3.

2.5 Modular forms and their p-adic Galois representations

In this section, we summary some preliminaries and results on modular forms and their Galois represen-

tations. For more details and the proof, the reader can refer to [Hi3, Chap.5] and [Sh] for example. We

fix a positive integer M and ψ a Dirichlet character modulo M in this section. We denote by Γ0 (M) and

Γ1 (M) the following subgroup of SL2 (Z):

Γ0 (M) =

{(
a b

c d

)
∈ SL2 (Z)

∣∣∣∣∣ c ≡ 0 (mod M)

}
,

Γ1 (M) =

{(
a b

c d

)
∈ SL2 (Z)

∣∣∣∣∣ c ≡ 0 (mod M) , d ≡ 1 (mod M)

}
.

Note that we have Γ0 (1) = SL2 (Z) . We denote by

h = {z ∈ C| Im (z) > 0}

the complex upper half plane. Let f be a C-valued function, k ∈ Z and γ =

(
a b

c d

)
∈ GL+

2 (R). We

define the weight k action of γ on f as follows:

f |k γ : h→ C, z 7→ det (γ)
k/2

(cz + d)
−k
f

(
az + b

cz + d

)
.

For any γ =

(
a b

c d

)
∈ Γ0 (M), we denote by ψ (γ) = ψ (d).

Definition 2.5.1. Let

f : h→ C

be a function. We say that f is a modular form of weight k, level M with Neben character ψ if f satisfies

the following conditions:

(i) f |k γ = f for all γ ∈ Γ1 (M).

(ii) f |k γ = ψ (γ) f for all γ ∈ Γ0 (M).

(iii) For any α ∈ SL2 (Z), f |k α is holomorphic at ∞.
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Since

(
1 1

0 1

)
∈ Γ1 (M), if f is a modular form we have f (z + 1) = f (z) by the condition (i). Then

by the condition (iii), f (z) has the Fourier expansion f (z) =
∑
n≥0

a (n, f) qn with q = exp
(
2π
√
−1z

)
. We

say that f is a cusp form of weight k, level M with Neben character ψ if f is a modular form and further

a (0, f |k α) = 0 for all α ∈ SL2 (Z). We denote by Mk (Γ0 (M) , ψ) (resp. Sk (Γ0 (M) , ψ) the space of

modular forms (resp. cusp forms) of weight k, level M , Neben character ψ.

Example 2.5.2. We define Ek,ψ (z) as follows:

Ek,ψ (z) :=
L (1− k, ψ)

2
+

∞∑
n=1

σk−1,ψ (n) qn,

where σk−1,ψ (n) =
∑
d|n

ψ (d) dk−1. Then we have Ek,ψ (z) ∈ Mk (Γ0 (M) , ψ) for k ≥ 2 (cf. [Hi3, §5.1]).

We call Ek,ψ (z) the Eisenstein series of weight k and Neben character ψ.

Example 2.5.3. We define ∆ (z) as follows:

∆ (z) :=

∞∏
n=1

q (1− qn)24 =

∞∑
n=1

τ (n) qn.

Then ∆ (z) ∈ S12 (SL2 (Z)) which is called the Ramanujan’s cusp form.

Definition 2.5.4 (Hecke operators). Let n ∈ Z>0, we denote by

T (n) :Mk (Γ0 (M) , ψ)→Mk (Γ0 (M) , ψ) , f 7→ T (n) f

a linear map such that

a (m,T (n) f) =
∑

b|(m,n)

ψ (b) bk−1a
(mn
b2
, f
)

with ψ (b) := 0 if (b,M) > 1.

Note that if we decompose an integer n ∈ Z>0 into the production of prime numbers: n =
∏
i

l
eli
i ,

then T (n) is generated by all T (li) (cf. [Hi3, §5.3]).

Definition 2.5.5. LetO be the ring of integers of a finite extension ofQp the Hecke algebraHk (Γ0 (M) , ψ,O)
(resp. hk (Γ0 (M) , ψ,O)) is theO sub-algebra of EndO (Mk (Γ0 (M) , ψ,O)) (resp. EndO (Sk (Γ0 (M) , ψ,O)))
which is generated by all Hecke operators T (n).

We have the following duality theorem between the Hecke algebra hk (Γ0 (M) , ψ,O) and the space of

cusp forms Sk (Γ0 (M) , ψ,O). For the proof, see [Hi3, §5.3, Theorem 1].

Theorem 2.5.6 (Duality). The following pairing

(2.5) hk (Γ0 (M) , ψ,O)× Sk (Γ0 (M) , ψ,O)→ O, (h, f) 7→ a (1, h · f)

is perfect i.e. we have the following isomorphisms:

Sk (Γ0 (M) , ψ,O) ∼→ HomO (hk (Γ0 (M) , ψ,O) ,O) ,

hk (Γ0 (M) , ψ,O) ∼→ HomO (Sk (Γ0 (M) , ψ,O) ,O) .
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We call that a cusp form f is a normalized Hecke eigen cusp form if a (1, f) = 1 and T (n) f = a (n, f) f

for all T (n). For example the Ramanujan’s cusp form ∆ is a normalized Hecke eigen cusp form.

Definition 2.5.7. We say that a Galois representation ρ is unramified at a prime l if ρ (Il) = { 1 } ,
otherwise we say that ρ is ramified at l.

Theorem 2.5.8 (Deligne-Shimura). Let k ∈ Z≥2 and f ∈ Sk (Γ0 (M) , ψ,O) a normalized Hecke eigen

cusp form, where O is the ring of integers of a finite extension of Qp. Then there exists a p-adic Galois

representation

ρf : Gal
(
Q/Q

)
→ GL2 (Frac (O))

such that

(1) The representation ρf is irreducible and unramified outside the primes dividing Mp.

(2) For the geometric Frobenius element Frobl at l ∤Mp,

tr ρf (Frobl) = a (l, f) ,

det ρf (Frobl) = ψ (l) lk−1.

At the end of this section we recall the Chebotarev density theorem (cf. [Se1, §2.2] for our later use

Theorem 2.5.9 (Chebotarev density theorem). We denote by Σ a finite set of primes and GΣ the Galois

group of the largest algebraic extension of Q unramified outside Σ. Then {Frobl | l /∈ Σ } is a density

subset of GΣ.
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Chapter 3

Ribet’s lemma

3.1 Ribet’s proof of the converse of Herbrand theorem

In 1976, Ribet [Ri] proved the converse of Herbrand theorem as follows:

Theorem 3.1.1 (Ribet). Let k be an even integer satisfying 2 ≤ k ≤ p−3. We denote by Cl(Q(µp))[p] the

p-part of the ideal class group of Q(µp) on which the Galois group Gal (Q (µp) /Q) acts by functoriality.

Suppose p divides L (1− k,1). Then Cl(Q(µp))[p]
ω1−k ̸= 0.

We prove Theorem 3.1.1 in this section. However the tools we used is slightly different from Ribet’s

original proof. These tools also illustrates the proof of our main theorem.

First we recall the following theorem (see [Da, §6] for example).

Theorem 3.1.2. Let the assumptions and the notations be as in Theorem 3.1.1. Under the assumption

that p divides L (1− k,1), there exists a normalized Hecke eigen cusp form f ∈ Sk (SL2 (Z)) such that

f ≡ Ek (mod (ϖ)) , where Ek = Ek,1 (cf. Example 2.5.2) and ϖ is a fixed uniformizer of the ring of

integers of K = Qp
(
{a (n, f)}n≥1

)
.

By class field theory we see that to prove Theorem 3.1.1, it is equivalent to construct an unramified

abelian p-elementary extension L (i.e. Gal (L/Q (µp)) ∼= (Z/pZ)⊕n) of Q (µp) on which Gal (Q (µp) /Q)

acts via ω1−k. We construct the field L by using the Galois representation ρf attached to f (cf. Theorem

2.5.8). We denote by Σ = { p,∞}. Since ρf is unramified outside Σ, ρf must factor through GΣ. From

now on to the end of this section, we write

ρf : GΣ → GL2 (K) .

We denote by O the ring of integers of K and by F the residue field.

Lemma 3.1.3. The mod (ϖ) representation of ρf is reducible, Furthermore we have ρssf
∼= F[1]⊕F[ωk−1].

Proof. Let us take a Gal
(
Q/Q

)
-stable lattice T of ρf . Since f ≡ Ek (mod (ϖ)) by Theorem 3.1.2, we

have tr ρf (Frobl) ≡ 1 + lk−1 (mod (ϖ)) for all l ̸= p. Thus tr ρf (g) ≡ 1 + ωk−1 (g) (mod ϖ) for all

g ∈ GΣ by Theorem 2.5.9. Since

det ρf (g) = 2−1
(
tr ρf (g)

2 − tr ρf
(
g2
))
,
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we also have det ρf (g) ≡ ωk−1 (g) (mod ϖ) for all g ∈ GΣ. Thus the lemma follows by applying Theorem

2.3.3 to M = (T/ϖT )
ss

and M ′ = F (1)⊕ F
(
ωk−1

)
.

Since f ≡ Ek (mod (ϖ)) , we have a (p, f) ≡ 1 (mod ϖ) and hence a (p, f) is a p-adic unit. By a

theorem of Mazur-Wiles (see Theorem 5.4.9 for the statement in more general case), there exists a basis

of ρf such that

ρf |Dp=

(
ε1 0

∗ ε2

)
with ε1 unramified and ε1 (Frobp) = a (p, f). Thus

(X − ε1 (g)) (X − ε2 (g)) ≡ (X − 1)
(
X − ωk−1 (g)

)
(mod ϖ)

for any g ∈ Dp by Lemma 3.1.3. Since k is an even integer, we have ε2 = ωk−1 is ramified at p. Choose

an element g0 ∈ Ip such that 1 ̸≡ ε2 (g0) (mod ϖ) and choose a basis of ρf such that

(3.1) ρf |Dp=

(
ε1 0

∗ ε2

)
and ρf (g0) =

(
1 0

0 ε2 (g0)

)
.

Write ρf (g) =

(
a (g) b (g)

c (g) d (g)

)
for any g ∈ GΣ. By the following equalities

{
trρf (g0g) = a(g) + ε2 (g0) d(g) ∈ O
trρf (g) = a(g) + d(g) ∈ O.

(3.2)

we have ε2 (g0)− 1 ∈ O×. Thus a (g) , d (g) ∈ O for any g ∈ GΣ. By modulo (ϖ), we have a (g) and d (g)

are the solution for x and y of the following equation:{
x+ ε2 (g0) y = 1 + ε2 (g0)ω

k−1 (g)

x+ y = 1 + ωk−1 (g) .
(3.3)

Thus we have a (g) ≡ 1 (mod ϖ) and d (g) ≡ ωk−1 (g) (mod ϖ) for any g ∈ GΣ by the equality (3.1).

Furthermore, we have the following equality

(3.4) b (g) c (g′) = a (gg′)− a (g) a (g′) ∈ (ϖ)

for any g, g′ ∈ GΣ.

We denote by B (resp. C) the O-submodule of V which is generated by b (g) (resp. c (g)) for all

g ∈ GΣ. Since ρf has a GΣ-stable lattice by Proposition 2.4.2, B and C are bounded by Proposition

2.3.2. Also by the irreducibility of ρf we have B and C are non-zero ideals. We introduce two operations

as follows:

Operation 1. Let B = (ϖn) with n ∈ Z. We replace ρf to(
1 0

ϖn 1

)
ρf

(
1 0

ϖn 1

)−1

and we use the same symbol ρf (g) =

(
a (g) b (g)

c (g) d (g)

)
and B as above. Then by a matrix calculation we

have B = O after this operation.
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Then B = O by Operation 1. Thus we have C ⊂ (ϖ) by the equality (3.4). Let e1, e2 be O-basis
corresponding to this representation and we denote by T = Oe1 ⊕Oe2. Then we have that ρT is of the

form

(
1 ∗
0 ωk−1

)
and is not semi-simple.

By using the arguments above in more general settings, we can prove the following proposition :

Propostion 3.1.4 ([Ri, Proposition 2.1]). Let K be a finite extension of Qp and V a K-vector space of

dimension 2. Let ρ : G → AutK (V ) be a linear representation of a group G such that ρ has a G-stable

lattice. Suppose ρ is irreducible and ρss ∼= ϑ1 ⊕ ϑ2, where ϑ1 and ϑ2 are characters. Then there exists a

G-stable lattice T such that ρT is of the form

(
ϑ1 ∗
0 ϑ2

)
but is not semi-simple.

Under the above preparation we are ready to prove Theorem 3.1.1

Proof of Theorem 3.1.1. By the above arguments we have that there exists a GΣ-stable lattice T such

that ρT : G→ GL2 (O) , g 7→

(
a (g) b (g)

c (g) d (g)

)
has the following properties:

(i) ρT |Dp=

(
ε1 0

∗ ε2

)
.

(ii) ρT =

(
1 ∗
0 ωk−1

)
and ρT is not semi-simple.

By restriction ρT to Gal (QΣ/Q (µp)), we get the following homomorphism:

Gal (QΣ/Q (µp))→ B/ϖB = F, g 7→ b (g) .

Since the group Gal (Q (µp) /Q) has order prime to p, we have that the above homomorphism is surjective.

Let L be the abelian extension of Q (µp) corresponding to

Ker (Gal (QΣ/Q (µp))→ F)

and we denote by b the following isomorphism:

b : G := Gal (L/Q (µp))
∼→ F, g 7→ b (g) .

We have ρf is unramified outside Σ. Furthermore by the condition (i) we have b (Ip) = 0. Thus

the extension L/Q (µp) is unramified everywhere. By a matrix calculation we have that b
(
sgs−1

)
=

ω1−k (s) b (g) for any g ∈ Gal (QΣ/Q (µp)) and s ∈ GΣ. Thus L is the desired field and this completes

the proof of Theorem 3.1.1.

3.2 The Bruhat-Tits tree of GL2

In this section, we introduce the tree structure of the homothetic classes of G-stable lattices in a linear

representation of dimension 2 over a discrete valuation ring. This tree structure also gives us another

proof of Ribet’s lemma. For more details on this theory, the reader can refer to [Be], [BC3] and [Se2].

From now on to the end of this chapter, we fix a discrete valuation ring A with ϖ a fixed uniformizer

of A and F = A/ (ϖ) the residue field. Let V be a finite-dimensional Frac (A)-vector space.
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Definition 3.2.1. Let T and T ′ be lattices of V . We say that T and T ′ are homothetic if there exists

an element λ ∈ Frac (A)
×

such that T ′ = λT .

Let X be the set of lattices in V up to homotheties. For a lattice T , we denote by [T ] its equivalence

class up to homotheties.

Definition 3.2.2. Let x and x′ be the points of X . We say that x is a neighbor of x′ if x ̸= x′ and

there exist lattices T, T ′ of V such that x = [T ], x′ = [T ′] and ϖT ⊂ T ′ ⊂ T .

Lemma 3.2.3. Let x and x′ be the points of X . Suppose x is a neighbor of x′, then x′ is also a neighbor

of x.

Proof. Let T, T ′ be the lattices of V such that x = [T ], x′ = [T ′] and ϖT ⊂ T ′ ⊂ T . Then ϖT ′ ⊂ ϖT ⊂
T ′.

We recall the definition of graph as follows:

Definition 3.2.4. A graph Γ is consisted by a data (vert Γ, edge Γ, (o, t) , i) such that

(1) vert Γ is a set which is called the vertex set of Γ.

(2) edge Γ is a set which is called the edge set of Γ.

(3) (o, t) and i are the following maps

(o, t) : edge Γ→ vert Γ× vert Γ, y 7→ (o (y) , t (y, )) ,

i : edge Γ→ edge Γ, y 7→ i (y)

which satisfy i (y) ̸= y, i (i (y)) = y and o (y) = t (i (y)).

An element in x ∈ vert Γ is called a vertex of Γ. An element y ∈ edge Γ is called an edge and i (y) is

called the inverse edge of y. The vertex o (y) is called the origin of y and t (y) is called the terminus of y.

We endow X a graph structure as follows:

(vert) The vertex set is X .

(edge) We draw an edge from x to x′ if x is a neighbor of x′ for the points x, x′ ∈X .

Then X is a graph by Lemma 3.2.3. In X , a path from x to x′, which is denoted by Pathx,x′ is a

sequence x = x0, x1, ..., xn = x′ of points in X such that xi is a neighbor of xi+1. The integer n is the

length of the path. Define d (x, x′) the distance form x to x′ which is the minimal length of a path from

x to x′. We call Pathx,x′ a path without backtracking if xi ̸= xj for any i ̸= j.

Theorem 3.2.5 ([Se2, Chapter II, Theorem 1]).

(1) The graph X is connected i.e. for x ̸= x′ ∈X , there exists a path without backtracking Pathx,x′

from x to x′.

(2) Suppose n = 2. Then the graph X is a tree i.e. for x ̸= x′ ∈ X , there exists a unique path

Pathx,x′ without backtracking from x to x′.
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Proof. We denote by x = [T ] and x′ = [T ′] such that T ′ ⊂ T and T ′ ̸⊂ ϖT . We have the sequence of

lattices

T ′ = Tn ⊂ Tn−1 ⊂ · · · ⊂ T0 = T

such that Ti−1/Ti ∼= A/ (ϖ) as A-modules (i = 1, · · · , n) by the Jordan-Hölder sequence for T/T ′. This

implies Ti−1 is a neighbor of Ti and hence [Tn], [Tn−1], · · · , [T0] is a path form x to x′. Assume [Ti] = [Tj ]

for some i < j, then T ′ ⊂ ϖT which contradicts to our assumption. This completes the proof of (1).

We keep the notations as above and consider the case n = 2. By the arguments above we have

d (x, x′) = n. We prove that there exists a unique path without backtracking form x to x′ by induction

on n. It is obvious if n = 1 and hence it is suffices to show that there exists a unique lattice Tn−1 such

that Tn ⊂ Tn−1 ⊂ T0 and [Tn−1] is a neighbor of [Tn]. Suppose we have two distinct neighbors [Tn−1]

and [T ′
n−1] of [Tn] such that Tn−1 and T ′

n−1 lives between Tn and T0 under inclusion. Since Tn is free of

rank 2 and Tn−1 ̸= T ′
n−1 we have Tn/ϖTn = ϖTn−1/ϖTn ⊕ϖT ′

n−1/ϖTn. Hence Tn = ϖTn−1 +ϖT ′
n−1

by Nakayama’s lemma. Then Tn ⊂ ϖT0 which contradicts to our assumption. This completes the proof

of Theorem 3.2.5.

From now on to the end of this section we assume n = 2.

Propostion 3.2.6 ([BC3, §2.1]). Let x = [T ] and n ∈ Z>0 be a fixed integer. Then there is a bijection

between the set of the points x′ in X such that d (x, x′) = n and the set of lattices ϖnT ⊂ T ′ ⊂ T such

that T/T ′ ∼= A/ (ϖ)
n
as an A-module.

Proof. Let x′ = [T ′] such that d (x, x′) = n and T ′ ̸⊂ T . Then there exists a basis { e1, e2 } such that

T = Ae1 ⊕Ae2 and T ′ = Ae1 ⊕Aϖne2. Hence T/T ′ ∼= A/ (ϖ)
n
.

For the converse let us choose a lattice T ′ satisfying ϖnT ⊂ T ′ ⊂ T and T/T ′ ∼= A/ (ϖ)
n
. Then there

exists a basis { e1, e2 } such that T = Ae1 ⊕ Ae2 and T ′ = Ae1 ⊕ Aϖne2. For 0 ≤ i ≤ n we denote by

Ti = Ae1 ⊕ Aϖie2 and by xi = [Ti]. Then xn = [T ′], xn−1, · · · , x0 = [T ] is a path without backtracking

from x to x′. Thus d (x, x′) = n.

Definition 3.2.7. In the tree X , we define the segment [x, x′] as follows:

[x, x′] =

{
{x} (x = x′)

Pathx,x′ (x ̸= x′),

where Pathx,x′ is the unique path without backtracking form x to x′.

Definition 3.2.8. A subset C of X is called a convex if the segment [x, x′] ⊂ C for any x, x′ ∈ C.

Definition 3.2.9. Let x = [T ] be a point in X . A half-line Lx with origin x is a union of segments

∪∞n=1[x, xn], where H ⊊ T is a direct summand of T and xn = [H +ϖnT ].

3.3 Another proof of Ribet’s lemma

We keep our notation as in the previous section and we assume dimKV = 2. First we reformulate Ribet’s

lemma for more general setting as follows:
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Propostion 3.3.1. Let ρ : G → AutKV be an irreducible linear representation of a group G such that

ρ has a G-stable lattice. Assume ρss ∼= ϑ1 ⊕ ϑ2, where ϑi : G→ F× are characters (i = 1, 2). Then there

exists a G-stable lattice T such that ρT is of the form

(
ϑ1 ∗
0 ϑ2

)
but not semi-simple.

Let us keep the assumptions and the notations of Proposition 3.3.1 from now on to the end of this

section. We denote by C (ρ) the set of x ∈X satisfying ρ (g)x = x for any g ∈ G.

Lemma 3.3.2 ([BC3, Proposition 11-(a)]). Let x = [T ] ∈ C (ρ). Then T is a G-stable lattice and hence

C (ρ) is non-empty.

Proof. For any g ∈ G, we have ρ (g)T = ϖn(g)T . Since ρ (G) is bounded by Proposition 2.3.2, we have

n (g) = 0.

Lemma 3.3.2 implies that C (ρ) is exactly the set of the homothetic (cf. Definition 3.2.1) class of

G-stable lattice.

Lemma 3.3.3 ([BC3, §3.1]). The tree C (ρ) is a convex.

Proof. Let x, x′ ∈ C (ρ) then ρ (g) [x, x′] is also a segment with extremities x and x′ for any g ∈ G. Since
there is only one segment with extremities x and x′, we have ρ (g) [x, x′] = [x, x′].

Lemma 3.3.4 ([BC3, Lemme 10]). The representation ρ is irreducible if and only if the tree C (ρ) is

bounded.

Proof. We may assume K is complete by Proposition 2.1.6. Assume C (ρ) is unbounded. Since C (ρ) is

a convex it contains a half-line Lx with origin x = [T ]. Then there a sequence of points { [Tn] }n≥1 such

that ϖnT ⊂ Tn ⊂ T and T/Tn ∼= A/ϖnA as an A-module. Under the assumption that K is complete, we

have that ∩∞n=0Tn is a free A-submodule of T of rank 1 and ∩∞n=0Tn is stable by G. Hence ρ is reducible.

Assume ρ is reducible. There exists a K-subspaceW of dimension 1. Let us take an element x = [T ] ∈
C (ρ) and we denote by H = T ∩W . Then H is an A-submodule of rank 1 and H is a direct summand

of T . Then there exists a half line Lx in C (ρ) by Definition 3.2.9. This implies C (ρ) is unbounded.

Propostion 3.3.5 ([BC3, Proposition 11-(d)]). Let x = [T ] be an element of C (ρ) and we denote by ρx

the modϖ representation ρT . Then we have the following statements:

(1) The point x has no neighbor in C (ρ) if and only if the representation ρx is irreducible.

(2) The point x has exactly one neighbor in C (ρ) if and only if the representation ρx is reducible

but indecomposable.

(3) The point x ∈ C (ρ), then x has exactly two neighbors in C (ρ) if and only if the representation

ρx is decomposed into two distinct characters.
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Proof. Let x = [T ]. Since (1) is proved in Proposition 2.3.5 we begin with (2). Assume x has two distinct

neighbors [T1] and [T2] such that ϖT ⊂ Ti ⊂ T for i = 1, 2. Then T/ϖT = T1/ϖT ⊕ T2/ϖT as F[G]-
modules. Then ρx is decomposable. For the converse assume T/ϖT = X1 ⊕ X2 as F[G]-modules. We

denote by Ti the inverse image of Xi in T ↠ T/ϖT (i = 1, 2). Then [T1] and [T2] are distinct neighbors

of x = [T ].

Now we prove (3). Assume Assume x has more than two distinct neighbors in C (ρ). Let T1, T2, T3

be the representatives of three neighbors such that ϖT ⊂ Ti ⊂ T (i = 1, 2, 3). Then we have

T/ϖT = T1/ϖT ⊕ T2/ϖT

= T2/ϖT ⊕ T3/ϖT

= T1/ϖT ⊕ T3/ϖT

as F[G]-modules. Since the Jordan-Hölder components of T/ϖT is unique up to F[G]-isomorphism there

exist i, j ∈ { 1, 2, 3 } such that i ̸= j, T/ϖT = Ti/ϖT ⊕ Tj/ϖT and Ti/ϖT ∼= Tj/ϖT as F[G]-modules.

Then we have ρx is decomposed into two equal characters. Now we assume ρx is decomposed into two

equal characters i.e. T/ϖT = X1⊕X2 such that X1
∼= X2 as F[G]-modules. We denote by Ti the inverse

image of Xi in T ↠ T/ϖT and by Xi = Fvi(i = 1, 2). Since X1
∼= X2, X3 := F (v1 + v2) is also a

G-stable F-vector subspace of T/ϖT . We denote by T3 the inverse image of X3 in T ↠ T/ϖT . Then

[T3] is a also a neighbor of x which is distinct from [T1] and [T2]. Thus x has more than two distinct

neighbors in C (ρ).

Under above preparations we are ready to prove Ribet’s lemma.

Proof of Proposition 3.3.1. We have that C (ρ) is a convex and bounded by Lemma 3.3.3 and Lemma

3.3.4 respectively. Thus there exists a point x ∈ C (ρ) such that x has exactly one neighbor. This implies

that ρx is decomposable but not semi-simple by (2) of Proposition 3.3.5. This completes the proof if we

assume ϑ1 = ϑ2. Now we assume ϑ1 ̸= ϑ2. Then every point of C (ρ) has at most two neighbors by (3)

of Proposition 3.3.5. Since C (ρ) is bounded and convex, we have that C (ρ) a segment. Let x and x′

be the extremities of C (ρ). Then one of { ρx, ρx′ } is of the form

(
ϑ1 ∗
0 ϑ2

)
the other is

(
ϑ2 ∗
0 ϑ1

)
and

both of them are not semi-simple. This completes the proof of Proposition 3.3.1.
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Chapter 4

Kubota-Leopoldt p-adic L-function

and Iwasawa main conjecture

In this section, we introduce the Iwasawa theory for ideal class groups. For more details on this theory,

the reader can refer to [Iw1], [Iw2], [MW1], [Oc2] and [Wi2].

4.1 Iwasawa-Serre isomorphism

Let Γ be a multiplicative topological group which is isomorphic to 1 + pZp and γ a fixed topological

generator of Γ. Let O be the ring of integers of a finite extension of Qp. Then we have the following

theorem:

Theorem 4.1.1 (Iwasawa-Serre isomorphism). Let the notations be the same as above. Then we have

the following isomorphism of O-algebras:

O[[Γ]] ∼→ ΛO, γ 7→ 1 +X.

Proof. Let Γn = Γ/Γp
n

for any n ∈ Z≥1. Then Γn is cyclic of order pn, generated by γ mod Γp
n

. We

denote by ωn (X) = (1 +X)
pn − 1 for any n ∈ Z≥1. Then we have the following isomorphism:

O[Γn]
∼→ O[X]/ (ωn (X))

γ mod Γp
n

7→ 1 +X mod (ωn (X))

and the following commutative diagram:

O[Γm] //

��

O[X]/ (ωm (X))

��
O[Γn] // O[X]/ (ωn (X))

for m ≥ n. We finish the proof by the following lemma.
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Lemma 4.1.2. Let the notations be the same as the beginning of this section, then we have the following

isomorphism:

ΛO
∼→ lim←−

n

O[X]/ (ωn (X)) .

Proof. Let ϖ be a fixed uniformizer of O. Since O = lim←−
m

O/ (ϖ)
m
, we have

(4.1) lim←−
n

O[X]/ (ωn (X)) = lim←−
m,n

O[X]/ (ϖm, ωn (X)) .

On the other hand, we also have the following equality:

(4.2) ΛO = lim←−
n′

O[X]/(Xn′
) = lim←−

m′,n′

O[X]/(ϖm′
, Xn′

).

Let us admit the following claim for a while.

Claim 1. (1) When we fix m and n, there exist integers m′
0 and n′0 such that (ϖm′

, Xn′
) ⊂

(ϖm, ωn (X)) for any m′ ≥ m′
0 n

′ ≥ n′0.

(2) When we fix m′ and n′, there exist integers m0 and n0 such that (ϖm, ωn (X)) ⊂ (ϖm′
, Xn′

)

for any m ≥ m0, n ≥ n0.

Thus lim←−
m,n

O[X]/ (ϖm, ωn (X)) is isomorphic to lim←−
m′,n′

O[X]/(ϖm′
, Xn′

) by the following claim. Combine

the equalities (4.1) and (4.2), we finish the proof of Lemma 5.4.10.

We will show Claim 1 in the rest of the proof. We denote by e the ramification index of K over

Qp i.e. (ϖ)
e
= (p). First let us fix the integers fix m and n. Let r = max {m,n }, n′0 = pr and

m′
0 = m. Then ωr (X) ∈ (ωn (X)) . Since ωr (X) = Xpr + pr · f (X) with f (X) ∈ ΛO, we have

Xpr ∈ (ωr (X) , ϖer) ⊂ (ϖm, ωn (X)). Now we fix the integers m′ and n′. Let n0 be a integer such that

en0 > m′ and pn0 > n′. Then pn0 ⊂ (ϖm′
) and Xpn0 ⊂ (Xn′

). This implies ωn0 (X) ∈ (ϖm′
, Xn′

). We

finish the proof of Calin 1 by letting m0 = m′.

At the end of this section, we introduce a lemma on the ring ΛO for our later use.

Lemma 4.1.3 ([Hi3, §7.1, Lemma 1]). Let O be the ring of integers of a finite extension of Qp with ϖ a

fixed uniformizer of O. Let a ∈ O× and b ∈ (ϖ). Then the following ring isomorphism is an isomorphism

ΛO → ΛO, A (X) 7→ A (aX + b) .

Proof. Let A (X) =

∞∑
m=0

cnX
n. Then we have the following expansion of A (aX + b):

A (aX + b) =

∞∑
m=0

( ∞∑
n=m

cna
mbn−m

(
n

m

))
Xm.

Since b ∈ (ϖ), the coefficient

∞∑
n=m

cna
mbn−m

(
n

m

)
is p-adically absolutely convergent and hence the map

is well-definied. The inverse map is given by sending A (X) to A
(
a−1X − a−1b

)
.
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4.2 Iwasawa’s construction of Kubota-Leopoldt p-adic L-function

Let ψ be an arbitrary Dirichlet character. Kubota-Leopoldt (see [Iw2, §3, Theorem 2]) showed that there

exists a p-adic continuous function Lp(s, ψ) for s ∈ Zp−{1} (also continuous at s = 1 if ψ is non-trivial)

with the following interpolation property for k ∈ Z≥1:

Lp(1− k, ψ) = (1− ψω−k(p)pk−1)L(1− k, ψω−k),

where L(s, ψω−k) is the Dirichlet L-function. In this subsection, we introduce the following theorem of

Iwasawa’s construction (cf. [Iw1]) of Lp (s, ψ):

Theorem 4.2.1 (Iwasawa). Let χ be a primitive Dirichlet character modulo Np with (N, p) = 1. Then

there exists a unique power series Lp (χ) such that

φ (Lp (χ)) =

{
Lp (1− kφ, χψφω) (χ ̸= ω−1)(
ψφ (u)u

kφ − 1
)
Lp (1− kφ, ψφ) (χ = ω−1)

for any arithmetic specialization φ ∈ Xarith (Λχ).

Let K be a finite extension of Qp such that K contains the field Qp (χ). We denote by O the ring

of integers of K. We denote by Γ = 1 + pZp and by Γn = 1 + pZp
/
1 + pn+1Zp for any n ∈ Z≥1. For

any a ∈ Z with (a,Np) = 1, we denote by γn (a) the image of a mod Np in Γn under the following

isomorphism: (
Z/Npn+1Z

)× ∼→ Γn × (Z/NpZ)× .

We denote by ξn (χ) ∈ K[Γn] as follows:

ξn (χ) =
1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

aχ (a) γn (a) .

Lemma 4.2.2. For m ≥ n ≥ 1, ξm (χ) maps to ξn (χ) under the projection map K[Γm] ↠ K[Γn].

Proof. It is sufficient to show ξn+1 (χ) maps to ξn (χ). Recall that

ξn+1 (χ) =
1

Npn+2

∑
0≤a<Npn+2

(a,Np)=1

aχ (a) γn+1 (a) .

For any 0 ≤ a < Npn+1, note that the set
{
a+ kNpn+1

}
0≤k≤p−1

maps to { a } under the map(
Z/Npn+2

)× ↠
(
Z/Npn+1

)×
, then the image of ξn+1 (χ) under K[Γn+1] ↠ K[Γn] is

p

Npn+2

∑
0≤a<Npn+1

(a,Np)=1

aχ (a) γn (a) = ξn (χ) .

We fix an integer c ̸= ±1 such that (c,Np) = 1. For any n ∈ Z≥1, we denote by ηn (χ) as follows:

ηn (χ) = (1− cχ (c) γn (c)) ξn (χ) .
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For any a ∈ Z, we denote by an ∈ [0, Npn+1) the unique integer such that an ≡ ac
(
mod Npn+1

)
and

let rn (a) be the integer such that

(4.3) an = ac+ rn (a)Np
n+1.

Lemma 4.2.3. We have the following equalities:

(4.4) ηn (χ) = χ (c) γn (c)
∑

0≤a<Npn+1

(a,Np)=1

rn (a)χ (a) γn (a)

for all n ≥ 1.

Proof. Since we have χ (an) = χ (ac) and γn (an) = γn (ac),

ηn (χ) =
1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

aχ (a) γn (a)−
1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

(ac)χ (ac) γn (ac)

=
1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

aχ (a) γn (a)−
1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

(
an − rn (a)Npn+1

)
χ (an) γn (an) .

Note that the map
(
Z/Npn+1Z

)× ×c→
(
Z/Npn+1Z

)×
is bijective. Then the above equalities becomes to

ηn (χ) =
∑

0≤a<Npn+1

(a,Np)=1

rn (a)χ (an) γn (an)

= χ (c) γn (c)
∑

0≤a<Npn+1

(a,Np)=1

rn (a)χ (a) γn (a) .

We have ηn (χ) ∈ O[Γn] for all n ≥ 1 by Lemma 4.2.3. Furthermore, since ηm (χ) maps to ηn (χ)

under O[Γm] ↠ O[Γn] for all m ≥ n. Therefore we can define an element η (χ) ∈ O[[Γ]] which is the limit

of ηn (χ)

For any n, k ∈ Z≥1, we denote by υk,n the homomorphism of O-algebras as follows:

(4.5) υk,n : O[Γn]→ O/Npn+1O, γn (a) 7→ ⟨a⟩k−1 mod Npn+1O.

By Lemma 4.2.3, we have the following equalities:

(4.6) υk,n (ηn (χ)) = χω1−k (c)
∑

0≤a<Npn+1

(a,Np)=1

rn (a)χω
1−k (a) ak−1ck−1 mod Npn+1O.

Lemma 4.2.4. We have the following equality:

(4.7) k · υk,n (ηn (χ)) =
(
χω1−k (c) ck − 1

) −1
Npn+1

∑
0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak mod Npn+1O.
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Proof. By the equality (4.3) we have

akn ≡ akck + kak−1ck−1rn (a)Np
n+1 mod

(
Npn+1

)2
.

By multiplying χω1−k (a) to both sides of the congruence above, we have

(4.8) χω1−k (a) akn ≡ χω1−k (a) akck + χω1−k (a) kak−1ck−1rn (a)Np
n+1 mod

(
Npn+1

)2
.

On the other hand by the equality (4.6), we have

(4.9) k · υk,n (ηn (χ)) = χω1−k (c)
∑

0≤a<Npn+1

(a,Np)=1

χω1−k (a) kak−1ck−1rn (a) mod Npn+1O.

Combine the equality (4.8) and (4.9), we have

k · υk,n (ηn (χ)) = χω1−k (c)
∑

0≤a<Npn+1

(a,Np)=1

χω1−k (a) akn − χω1−k (a) akck

Npn+1
mod Npn+1O

=
1

Npn+1

 ∑
0≤a<Npn+1

(a,Np)=1

χω1−k (ac) akn − χω1−k (c) ck
∑

0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak


mod Npn+1O.

Using the equalities χω1−k (ac) = χω1−k (an) and
∑

0≤a<Npn+1

(a,Np)=1

χω1−k (an) a
k
n =

∑
0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak,

we have

k · υk,n (ηn (χ)) =
(
1− χω1−k (c) ck

) 1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak mod Npn+1O.

Lemma 4.2.5. We have the following equality

lim
n→∞

−1
Npn+1

∑
0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak =
(
1− χω1−k (p) pk−1

)
L
(
1− k, χω1−k) .

Proof. Let us consider an integer a such that 0 ≤ a < Npn+1 and (a,N) > 1. Since the conductor of χ is

Np with (N, p) = 1 and the conductor of ω is p, we must have the integer a is not prime to the conductor

of χω1−k and hence χω1−k (a) = 0. Thus

1

Npn+1

∑
0≤a<Npn+1

(a,Np)=1

χω1−k (a) ak =
1

Npn+1

∑
0≤a<Npn+1

χω1−k (a) ak − 1

Npn+1

∑
0≤a<Npn+1

(a,p)>1

χω1−k (a) ak

=
1

Npn+1

∑
0≤a<Npn+1

χω1−k (a) ak − 1

Npn+1
χω1−k (p) pk

∑
0≤a<Npn

χω1−k (a) ak

=
1

Npn+1

∑
0≤a<Npn+1

χω1−k (a) ak − 1

Npn
χω1−k (p) pk−1

∑
0≤a<Npn

χω1−k (a) ak.
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By [Iw2, §2.3, Lemma 1] and [Iw2, §2.2, Theorem 1], we have

lim
n→∞

1

Npn+1

∑
0≤a<Npn+1

χω1−k (a) ak = −k · L
(
1− k, χω1−k) .

This completes the proof of Lemma 4.2.5.

Under the above preparation, we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Note that the limit of υk,n for n→∞, defines a continuous homomorphism

of O-algebras as follows:

(4.10) υk : O[[Γ]]→ O, γ (a) 7→ ⟨a⟩k−1

for every (a,Np) = 1. Let d be element in Zp such that ⟨c⟩ = ud. Combine Lemma 4.2.4 and Lemma

4.2.5, we have

(4.11) υk (η (χ)) =
(
χω (c)ukd − 1

)
Lp (1− k, χω)

for all k ∈ Z≥1. On the other hand, we have the following isomorphism

(4.12) O[[Γ]] ∼→ ΛO, u 7→ u (1 +X)

of O-algebras by Theorem 4.1.1.

・ If χ = ω−1. Choose c = u and we denote by Lp (χ) the element in ΛO corresponding to η (χ)

under (4.12).

・ If χ ̸= ω−1. We denote by Q (χ) the element in ΛO corresponding to η (χ) under (4.12) and by

U (χ) = χω (c)u2d (1 +X)
d−1. Choose an element c such that U (χ) is a unit in ΛO and we denote

by Lp (χ) =
Q (χ)

U (χ)
.

Since the equality (4.11) holds for infinitely many uk − 1 ∈ pZp, Lp (χ) is unique. This completes the

proof of Theorem 4.2.1.

At the end of this section, we introduce the following theorem for later use:

Theorem 4.2.6 (Ferrero-Washington [FW]). Let us keep the assumptions and the notations of Theorem

4.2.1. Then the element Lp (χ) is not divisible by ϖ, where ϖ is a uniformizer of Zp[χ].

4.3 The main conjecture of ideal class groups

First we recall some properties of Fitting ideals and characteristic ideals to obtain the Mazur-Wiles’

theorem (the Iwasawa main conjecture for ideal class groups). The reader can refer to [No], [Nu] and

[OS, Appendix] for more details.

Let R be a Noetherian integrally closed domain and M a finitely generated R-module. Let v =

{ v1, · · · , vr } be a set of generators of M . We say that an element (a1, · · · , ar) ⊂ Rr is a relation for

{ v1, · · · , vr } if a1v1 + · · ·+ arvr = 0. Let FittR (M) be the ideal of R which is generated by detA for all

r × r matrix satisfying the following condition:
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(Relv) Every rows of A is a relation of { v1, · · · , vr }.

It may be shown that FittR (M) is independent of the choices of the generators ofM (cf. [Nu, Proposition

3]), hence depends only on M . We call FittR (M) the R-Fitting ideal of M .

Assume M is R-torsion, we define the characteristic ideal charR (M) ⊂ R of M as follows:

charR (M) { a ∈ R | ordP (a) ≥ lengthRPMP , for all height one prime ideal of R } ,

where lengthRPMP is the length of the RP -module MP . We define charR (M) = (0) if M is R-torsion

free.

We have the following properties for Fitting ideal and characteristic ideal:

Propostion 4.3.1. Let R be a Noetherian integrally closed domain. Then we have the following state-

ments:

(1) Let M ↠ M ′ be a surjective homomorphism of finitely generated R-modules. Then we have

FittR (M) ⊂ FittR (M ′) ([Nu, Lemma 5]).

(2) Let R′ be a Noetherian R-algebra and M be a finitely generated R-module. Then we have

FittR′ (M ⊗R R′) = FittR (M)R′ ([OS, Proposition A.2]).

(3) Let I be an ideal of R andM a faithful R-module. Then we have Then we have FittR (M/IM) ⊂
I ([Nu, Corollary 14]).

(4) Assume R is a unique factorization domain and let M be a finitely generated R-module. Then

we have FittR (M) ⊂ charR (M) ([OS, Proposition A.6]).

Now we recall the Theorem of Mazur and Wiles at the end of this section. Let ψ be a Dirichlet charac-

ter. We assume the conductor of ψ is Np with (N, p) = 1. Let L∞ be the maximal unramified abelian p-

extension ofQ (µNp∞) andX∞ = Gal (L∞/Q (µNp∞)). ThenXψ
∞ is a Zp[ψ][[Gal (Q (µNp) /Q (µNp∞))]] ∼=

Zp[ψ][[1 + pZp]]-module. The following map

Zp[ψ][[Gal (Q (µNp∞) /Q (µNp))]]→ Λψ, γ̃ 7→ u−1(1 +X)−1

is an isomorphism by Theorem 4.1.1 . We fix this isomorphism to the end this section and we consider

Xψ
∞ as a Λψ-module.

Theorem 4.3.2 (Iwasawa [Iw3]). Let the assumptions and the notations be as above. Then Xψ
∞ is a

finitely generated torsion Λψ-module.

The Iwasawa main conjecture for ideal class group claims that the characteristic ideal of Xψ
∞ is

generated by Kubota-Leopoldt p-adic L-function as follows:

Conjecture 4.3.3 (Iwasawa main conjecture). Let the assumptions and the notations be as above. Then

we have the following equality:

charΛψ (X
ψ
∞) =

(
Lp
(
ψ−1

))
.

Conjecture 4.3.3 is proved by Mazur-Wiles [MW1] for Q and Wiles [Wi2] for totally real fields:
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Theorem 4.3.4 (Mazur-Wiles [Wi2, Theorem 1.2]). Let the assumptions and the notations be as above.

Then we have the following equalities:

charΛψ (X
ψ
∞) = FittΛψ (X

ψ
∞) =

(
Lp
(
ψ−1

))
i.e. Conjecture 4.3.3 is true.

Let us give some remarks on the proof of Mazur-Wiles. To prove Conjecture 4.3.3, it is sufficient

to prove either
(
Lp
(
ψ−1

))
⊂ charΛψ (X

ψ
∞) or charΛψ (X

ψ
∞) ⊂

(
Lp
(
ψ−1

))
by the analytic class number

formula. Mazur-Wiles proved that
(
Lp
(
ψ−1

))
⊂ FittΛψ (X

ψ
∞). Hence Theorem 4.3.4 follows by (4) of

Proposition 4.3.1.
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Chapter 5

Hida deformation

In this chapter, we review some fundamental results on Hida theory. For more details on this theory, the

reader can refer to Chapter 7 of [Hi3].

5.1 The ordinary part of the space of modular forms

In this section, we construct the ordinary part of the space of modular forms.

Lemma 5.1.1. [Hi3, §7.2, Lemma 1] Let O be the ring of integers of a finite extension of Qp. For the

pair (M, h) such that M is a finitely generated free O-module and h is an element of EndO (M), we

have the following statements:

(1) The limit lim
n→∞

hn! (x) converges in M for any x ∈ M and lim
n→∞

hn! is an idempotent of

EndO (M).

(2) For an element x ∈ M such that there exists an element α ∈ O such that h (x) = αx, we have

the following equality:

lim
n→∞

h (x)
n!

=

{
x (α ∈ O×)

0 (α ̸∈ O×).

Proof. Let d be the rank of the O-moduleM and { a1, · · · , ad } the set of all eigenvalues of h. We may

enlarge O such that O contains { a1, · · · , ad }. Since O is a discrete valuation ring, there exists a basis of

M such that h = A+B where

A =



a1

a2 0
. . .

. . .

0 ad


, B =



0

0 ∗
. . .

. . .

0 0


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and B is a nilpotent element. Since O× ∼→ O/ (ϖ)×(1 +ϖO) and O/ (ϖ) is finite, we have the following

equality for every eigenvalue ai:

lim
n→∞

an!i =

{
1 (ai ∈ O×)

0 (ai ̸∈ O×).
(5.1)

Combine the equality (5.1) and the equality hn! = (A+B)
n!

= An! + n!An!−1B + · · · , We have the

following equality:

lim
n→∞

hn! =



1

. . . 0
1

0

. . .

0 0


after change the order of a1, · · · , ad. This completes the proof of Lemma 5.1.1

We apply Lemma 5.1 to the pair (T (p) ,Mk (Γ0 (M) , ψ,O)). Define

e := lim
n→∞

T (p)
n!

and

Mord
k (Γ0 (M) , ψ,O) := eMord

k (Γ0 (M) , ψ,O) .

We also define Sord
k (Γ0 (M) , ψ,O) := eSord

k (Γ0 (M) , ψ,O) in the same way. We call an element f ∈
Mord
k (Γ0 (M) , ψ,O) (resp. f ∈ Sord

k (Γ0 (M) , ψ,O)) a p-ordinary modular form (resp. p-ordinary cusp

form). By (2) of Lemma 5.1, we have the following corollary:

Corollary 5.1.2. Let f ∈Mord
k (Γ0 (M) , ψ,O) be a normalized Hecke eigen form. Then f is p-ordinary

if and only if the p-th Fourier coefficient a (p, f) of f is a p-adic unit.

5.2 I-adic forms

Let N be a positive integer which is prime to p and χ a Dirichlet character modulo Np throughout this

chapter. Recall that I is an integrally closed local domain which is finite flat over Λχ. We refer to the

notations of the arithmetic specialization.

Definition 5.2.1. We call F =

∞∑
n=0

a(n,F)qn ∈ I[[q]] an I-adic modular form (resp. I-adic cusp form)

with Dirichlet character χ if for each φ ∈ Xarith (I) ,

fφ :=

∞∑
n=0

φ (a (n,F)) qn ∈Mord
kφ

(
Γ0

(
Nprφ+1

)
, χψφω

1−kφ , φ (I)
)

(resp. fφ ∈ Sord
kφ

(
Γ0

(
Nprφ+1

)
, χψφω

1−k, φ (I)
)
) is the q-expansion of a p-ordinary modular form (resp.

p-ordinary cusp form).
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We denote by Mord (χ, I) (resp. Sord (χ, I)) the I-module of all I-adic modular forms (resp. I-adic
cusp forms) with Dirichlet character χ.

Example 5.2.2 (Λχ-adic Eisenstein series). First we define the p-stabilization of the Eisenstein series

Ek,ψ (z) (cf. Example 2.5.2) as follows :

E
(p)
k,ψ (z) = Ek,ψ (z)− ψ (p) pk−1Ek,ψ (pz)

=

(
1− ψ (p) pk−1

)
L (1− k, ψ)

2
+

∞∑
n=1

σ
(p)
k−1,ψ (n) qn,

where σ
(p)
k−1,ψ (n) =

∑
d|n

(d,p)=1

ψ (d) dk−1.

We denote by

H (χ) =


1 (χ ̸= ω−1)

u2 (1 +X)− 1 (χ = ω−1).

and by Eχ =

∞∑
n=1

a (n, Eχ) qn ∈ Frac (Λχ) [[q]] where

a (n, Eχ) =


2−1Lp (χ) /H (χ) (n = 0)

∑
d|n

(d,p)=1

χ (d)usd (1 +X)
sd (n > 0).

Then for any φ ∈ Xarith (Λχ),

φ (a (n, Eχ)) =
∑
d|n

(d,p)=1

χ (d)usd
(
ζφu

kφ−2
)sd

=
∑
d|n

(d,p)=1

χ (d)
d

ω (d)
ψφ (u)

sd

(
d

ω (d)

)kφ−2

=
∑
d|n

(d,p)=1

χ (d)ψφ (d)ω
1−kφ (d) dkφ−1

= a
(
n,E

(p)

kφ,χψφω
1−kφ

)
.

Furthermore we have

φ (a (0, Eχ)) = 2−1Lp (1− kφ, χψφω)

= 2−1
(
1− χψφω (p) pkφ−1

)
L
(
1− kφ, χψφω1−kφ

)
= a

(
0, E

(p)

kφ,χψφω
1−kφ

)
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by Theorem 4.2.1. If χ ̸= ω−1, we have Eχ is a Λχ-adic form. When χ = ω−1, we have
(
u2 (1 +X)− 1

)
Eω−1

is a Λω−1 -adic form.

We introduce the following structure theorem of the I-modules Mord (χ, I) and Sord (χ, I):

Theorem 5.2.3 ([Hi3, §7.3, Theorem 1]).

(1) The I-modules Mord (χ, I) and Sord (χ, I) are finitely generated and torsion-free I.

(2) Assume I = ΛO where O is the ring of integers of a finite extension of Qp, then the ΛO-modules

Mord (χ, I) and Sord (χ, I) are also free over ΛO.

Proof. Since the proof are the same for Mord (χ, I) and Sord (χ, I), we prove only for Mord (χ, I). By

definition, Mord (χ, I) is an I-submodule of the ring of power series I[[q]]. Hence Mord (χ, I) is I-torsion
free.

Let M be an arbitrary finitely generated free I-submodule of Mord (χ, I). First we prove that the

I-rank of M is bounded. Write M = ⊕rj=1IFj . Then there exist integers n1, · · · , nr ∈ Z>0 such that the

determinant of the r × r matrix (a (ni,Fj))1≤i,j≤r is non-zero. We denote by D the above determinant.

Notice that I is isomorphic to lim←−
j

I
/
∩ji=1Pi , where {Pi }i is a countable collection of height 1 primes

of I by Lemma 5.5.4. Then there exists an element φ ∈ Xarith (I) with ζφ = 1 such that φ (D) ̸= 0 by

the Weierstrass preparation theorem. We denote by fφ,j ∈Mord
kφ

(
Γ0 (Np) , χω

1−kφ ,O
)
the specialization

∞∑
n=1

φ (a (n,Fj)) qn for each j. Then we have φ (D) is the determinant of the r×r matrix (a (ni, fj))1≤i,j≤r.

Thus we have the following inclusion:

⊕rj=1Ofφ,j ⊂Mord
kφ

(
Γ0 (Np) , χω

1−kφ ,O
)
.

Since the O-rank ofMord
kφ

(
Γ0 (Np) , χω

1−kφ ,O
)
is bounded independently of the integer kφ by [Hi3, §7.2,

Theorem 1], we have rankIM is bounded.

Now let r be the maximal number of linearly independent elements of Mord (χ, I) and {F1, · · · ,Fr }
a set consisted by linearly independent elements of Mord (χ, I). We denote by n1, · · · , nr and D the

same symbol as above. Then {F1, · · · ,Fr } is a basis of Mord (χ, I) ⊗I Frac (I). Let us take an element

F ∈Mord (χ, I). Then there exist elements x1, · · · , xr ∈ Frac (I) such that F =

r∑
j=1

xjFj and hence

(5.2) (a (ni,Fj))1≤i,j≤r ·
t (x1, · · · , xr) = (a (ni,F))1≤i≤r .

The equality (5.2) implies Dxi ∈ I and hence

DMord (χ, I) ⊂ ⊕rj=1IFj .

Thus

Mord (χ, I) ∼→ DMord (χ, I)

is a finitely generated I-module.

Now assume I = ΛO and we prove the freeness of Mord (χ,ΛO). We fix an integer k ∈ Z≥2 and we

denote by p the principal ideal generated by X −
(
uk−2 − 1

)
. Let φ be an element of Xarith (ΛO) such
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that kφ = k and ζφ = 1. Under the assumption that I = ΛO, we have pMord (χ,ΛO) = Ker φ and hence

Mord (χ,ΛO) /pM
ord (χ,ΛO) can be embedded into Mord

k

(
Γ0 (Np) , χω

1−k,O
)
. Let us take elements

F1, · · · ,Fr ofMord (χ,ΛO) such that {Fj mod pMord (χ,ΛO) } is anO-basis ofMord (χ,ΛO) /pM
ord (χ,ΛO)

and we denote by M = ⊕rj=1ΛOFj . By the following commutative diagram:

0 −−−−→ M
ι−−−−→ Mord (χ,ΛO) −−−−→ Coker (ι) −−−−→ 0y×p

y×p

y×p

0 −−−−→ M
ι−−−−→ Mord (χ,ΛO) −−−−→ Coker (ι) −−−−→ 0y y y

M/pM
∼−−−−→ Mord (χ,ΛO) /pM

ord (χ,ΛO) −−−−→ Coker (ι) /pCoker (ι) .

we have Coker (ι) /pCoker (ι) = 0. Thus Coker (ι) = 0 by Nakayama’s lemma and Mord (χ,ΛO) = M =

⊕rj=1ΛOFj .

We introduce the following control theorem:

Theorem 5.2.4 (Hida [Hi3, §7.3, Theorem 3]]). Assume I = ΛO, then we have the following equalities:

φ
(
Mord (χ, I)

)
=Mord

kφ

(
Γ0

(
Nprφ+1

)
, χψφω

1−kφ , φ (I)
)
,

φ
(
Sord (χ, I)

)
= Sord

kφ

(
Γ0

(
Nprφ+1

)
, χψφω

1−kφ , φ (I)
)

for any φ ∈ Xarith (I) .

Proof. Let us fix an element φ ∈ Xarith (I) which we denote by φ0. Let k0 = kφ0 , ζ0 = ζφ0 , r0 = rφ0 and

ψ0 = ψφ0 for simplicity. We have φ0

(
Sord (χ, I)

)
⊂ Sord

k0

(
Γ0

(
Npr0+1

)
, χψ0ω

1−k0 ,O[ζ0]
)
by the definition

of I-adic cusp form. Let us take an element f ∈ Sord
k0

(
Γ0

(
Npr0+1

)
, χψ0ω

1−k0 ,O[ζ0]
)
. We may enlarge I

such that ζ0 ∈ I. Write Eχ (X) = Eχ in Example 5.2.2 and we denote by H′ (χ) the image of H (χ) under

the following isomorphism:

I ∼→ I, X 7→ ζ−1
0 u−k0X + ζ−1

0 u−k0 − 1.

Let

F = f ×H′ (ω−1
)
× Eω−1

(
ζ−1
0 u−k0X + ζ−1

0 u−k0 − 1
)
×
{
2−1log (u)

(
p−1 − 1

)}−1
.

Then for any φ such that kφ > k0 and rφ > r0, we have

φ (F) = f ×
(
ζφζ

−1
0 ukφ−k0−1 − 1

)
× Eω−1

(
ζφζ

−1
0 ukφ−k0−2 − 1

)
×
{
2−1log (u)

(
p−1 − 1

)}−1

∈ Sord
k0

(
Γ0

(
Npr0+1

)
, χψ0ω

1−k0 ,O[ζ0]
)
×Mord

kφ−k0
(
Γ0

(
prφ+1

)
, ψφψ

−1
0 ω−kφ+k0 ,O[ζφ]

)
⊂ Sord

kφ

(
Γ0 (Np

rφ) , χψφω
1−kφ ,O[ζφ]

)
.

The above equalities tell us that φ (F) is a p-ordinary cusp form for almost all φ, hence F is a I-adic
cusp form by [Wi2, Lemma 3.1]. Furthermore if φ = φ0, we have the following equality:

φ0 (F) = f ×
{
2−1log (u)

(
p−1 − 1

)}−1 ×
{
2−1 (us − 1) ζp (1− s) |s=0

}
.

Since 2−1 (us − 1) ζp (1− s) |s=0 = 2−1log (u)
(
p−1 − 1

)
by [Hi3, §3.5, Theorem 2], we have φ0 (F) = f .
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5.3 Duality between I-adic forms and their Hecke algebras

.

We keep our notation as in the previous section. First we define I-adic Hecke operators acting on

Mord (χ,Λχ) and Sord (χ,Λχ). Let n be a positive integer. We define T (n) the following I-module

homomorphism:

I[[q]]→ I[[q]],F 7→ T (n)F =

∞∑
m=0

a (m,T (n)F) qn

such that

a (m,T (n)F) =
∑

b|(m,n)

⟨b⟩ (1 +X)
sb χ (b) b−1a

(mn
b2
,F
)
,

with χ (l) = 0 if (b,Np) > 1. If F is an element in Mord (χ, I), we have the following equalities:

φ (a (m,T (n)F)) =
∑

b|(m,n)

ζsbφ u
sb(kφ−1)χ (b) a

(mn
b2
, fφ

)

=
∑

b|(m,n)

ψφ (u)
sb

(
b

ω (b)

)kφ−1

χ (b) a
(mn
b2
, fφ

)
=

∑
b|(m,n)

χψφω
1−kφ (b) a

(mn
b2
, fφ

)
= a (m,T (n) fφ) .

for any φ ∈ Xarith (I). The last equality follows by Definition 2.5.4. This shows that φ (T (n)F) =

T (n) (φ (F)). Therefore T (n) acts on Mord (χ, I) and Sord (χ, I).

Definition 5.3.1. We say that an I-adic cusp form F is a Hecke eigen cusp form if there exists a

sequence {Cn }n∈Z≥1
such that T (n)F = CnF . We say that a Hecke eigen cusp form F is normalized if

a (1,F) = 1.

We denote by Sord (χ,Frac (I)) = Sord (χ, I)⊗IFrac (I). Since Sord (χ, I) is a finitely generated torsion-

free I-module by Theorem 5.2.3, Sord (χ,Frac (I)) is a finitely dimensional Frac (I)-vector space.

Definition 5.3.2. The Hecke algebra hord (χ, I) (resp. hord (χ,Frac (I))) is a I-subalgebra (resp. Frac (I)-
subalgebra) of EndI

(
Sord (χ, I)

)
(resp. EndFrac(I)

(
Sord (χ,Frac (I))

)
) which is generated by T (n) for all

n ∈ Z>0.

We define the following pairing:

(5.3) <,>: hord (χ,Frac (I))× Sord (χ,Frac (I))→ Frac (I) , (h,F) 7→ a (1, hF) .

Theorem 5.3.3 (Hida [Hi3, §7.3, Theorem 5]).

(1) The pairing (5.3) induces the following isomorphism of I-modules:

(5.4) Sord (χ, I) ∼→ HomI
(
hord (χ, I) , I

)
.
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(2) When I = ΛO, (5.3) also induces the following isomorphism of ΛO-modules:

hord (χ,ΛO)
∼→ HomΛO

(
Sord (χ,ΛO) ,ΛO

)
.

Thus the Hecke algebra hord (χ,ΛO) is also a ΛO-free module of finite rank.

Proof. (1) First we prove that the pairing (5.3) is non-degenerated. Assume ⟨h,F⟩ = 0 for all h.

We have

a (n,F) = a (1, T (n)F) = 0,

thus F = 0. Assume ⟨h,F⟩ = 0 for all F . We have the following equalities:

0 = ⟨h, T (n)F⟩ = a (1, hT (n)F) = a (1, T (n)hF) = a (n, hF) ,

for all n and F . Thus h = 0 and (5.3) is a non-degeneracy pairing.

Now let us take an element λ ∈ HomΛχ

(
hord (χ,Λχ) ,Λχ

)
. Then λ induces the following homomor-

phism:

λ̃ : hord (χ,Frac (Λχ))→ Frac (Λχ) , αT (n) 7→ αλ (T (n)) .

By the non-degeneracy of the pairing (5.3), we have F =

∞∑
n=1

λ̃ (T (n)) qn ∈ Sord (χ,Frac (Λχ))

satisfies ⟨h,F⟩ = λ̃ (h) . Furthermore we have λ̃ (T (n)) = λ (T (n)) ∈ Λχ, thus F ∈ Sord (χ, I).

(2) Write hord = hord (χ,ΛO) and Sord = Sord (χ,ΛO) for simplicity. We denote by
(
hord

)∗∗
the

following ΛO-module: (
hord

)∗∗
:= HomΛO

(
HomΛO

(
hord,ΛO

)
,ΛO

)
.

By (1), we see that to prove (1), it is sufficient to show hord =
(
hord

)∗∗
.

We have
(
hord

)∗∗
p

= hordp for each height 1 prime ideal p of ΛO by (3) of Theorem 2.2.3. Thus

Z :=
(
hord

)∗∗
/hord is a finite module by [NSW, Remark after Definition 5.1.4]. Since ΛO is a

regular local ring of Krull dimension 2,
(
hord

)∗∗
is ΛO-free by Proposition 2.2.2 and Theorem 2.2.4.

Thus we have the following isomorphism:

(5.5)
(
hord

)∗∗∗/
p
(
hord

)∗∗∗ ∼→ HomO

((
hord

)∗∗/
p
(
hord

)∗∗
,O
)
,

where p is the prime ideal of ΛO which is generated by X −
(
uk−2 − 1

)
for a fixed integer k ∈ Z≥2.

On the other hand since Sord is ΛO-free, by the isomorphism (5.4) and Theorem 5.2.4, we have the

following isomorphism of O-modules:

(5.6)
(
hord

)∗∗∗/
p
(
hord

)∗∗∗ ∼→ Sord
/
pSord ∼→ Sord

k

(
Γ0 (Np) , χω

1−k,O
)
.

We denote by hordk
(
Γ0 (Np) , χω

1−k,O
)
= ehk

(
Γ0 (Np) , χω

1−k,O
)
as in §5.1. Then the pairing

(2.5) defined in Theorem 2.5.6 also induces the following isomorphism of O-modules:

(5.7) Sord
k

(
Γ0 (Np) , χω

1−k,O
) ∼→ HomO

(
hordk

(
Γ0 (Np) , χω

1−k,O
)
,O
)

Combine (5.5), (5.6) and (5.7), we have the following isomorphism:

(5.8) HomO

((
hord

)∗∗/
p
(
hord

)∗∗
,O
)

∼→ HomO
(
hordk

(
Γ0 (Np) , χω

1−k,O
)
,O
)
.
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Since we have the following exact sequence

0→ hord →
(
hord

)∗∗ → Z → 0,

by tensor ΛO/pΛO we have

(5.9) Tor1ΛO
(Z,ΛO/pΛO)→ hord/phord →

(
hord

)∗∗/
p
(
hord

)∗∗ → Z/pZ → 0.

Since Z is finite, so is Tor1ΛO
(Z,ΛO/pΛO). Then the exact sequence (5.9) implies

(5.10) 0→ hordk
(
Γ0 (Np) , χω

1−k,O
)
→
(
hord

)∗∗/
p
(
hord

)∗∗ → Z/pZ → 0

since the image of hord/phord is the sub-algebra of the O-free algebra
(
hord

)∗∗/
q
(
hord

)∗∗
generated

by all T (n). The exact sequence (5.10) induces the following exact sequence:

0 → HomO

((
hord

)∗∗/
p
(
hord

)∗∗
,O

)
→ HomO

(
hord
k

(
Γ0 (Np) , χω1−k,O

)
,O

)
→ Ext1O (Z/pZ,O) → 0.

Since Ext1O (Z/pZ,O) = 0 by (5.8), we have Z/pZ = 0. Thus hord =
(
hord

)∗∗
by Nakayama’s

lemma.

Remark 5.3.4.

(1) By the proof of Theorem 5.3.3, there is a one-to-one correspondence between the set of I-algebra
homomorphisms hord (χ, I)→ I and the set of all normalized Hecke eigen cusp form of Sord (χ, I).

(2) Note that the freeness of hord (χ,ΛO) is also proved in [Hi1, Theorem 3.1] without using ΛO-adic

forms. Also notice that Hida’s papers [Hi1, Corollary 3.2] and [Hi2, Theorem 1.2] give us two

different proofs of the control theorem for the Hecke algebra hord (χ,ΛO).

By Theorem 5.2.4 we know that a normalized Hecke eigen cusp form can be lifted to a Λχ-adic cusp

form. However we do not know if it is a Hecke eigen form. We have the following lifting theorem:

Theorem 5.3.5 (Hida [Hi3, §7.4, Theorem 7]). Let ζ ∈ µpr (r ≥ 0) be a primitive pr-th root of unity and

f ∈ Sk
(
Γ0

(
Npr+1

)
, χψω1−k,O

)
a p-ordinary normalized Hecke eigen cusp form of weight k ≥ 2. Then

there exist an integrally closed local domain I which is finite flat over Λχ, an I-adic normalized Hecke

eigen cusp form F ∈ Sord (χ, I) and an element φ ∈ Xarith (I) such that φ(F) = f .

Proof. We may assume ζ ∈ O. We have already known that f can be lifted into a Λχ-adic cusp form by

Theorem 5.2.4. Let hordk
(
Γ0

(
Npr+1

)
, χζχω

1−k,O
)
be the Hecke algebra of Sord

k

(
Γ0

(
Npr+1

)
, χψζω

1−k,O
)
.

Let λf be the following O-algebra homomorphism

λf : hordk
(
Γ0

(
Npr+1

)
, χψζω

1−k,O
)
→ O, T (n) 7→ a (n, f)

by the duality theorem of classical modular form (cf. [Hi3, §5.3, Theorem 1]). By definition we have

that there exists an canonical homomorphism hord (χ,ΛO)→ hordk
(
Γ0

(
Npr+1

)
, χψζω

1−k,O
)
which sends

T (n) to T (n) of hordk
(
Γ0

(
Npr+1

)
, χψζω

1−k,O
)
. Then we have the following ΛO-algebra homomorphism:

λ : hord (χ,ΛO)→ hordk
(
Γ0

(
Npr+1

)
, χζχω

1−k,O
) λf→ O, T (n) 7→ a (n, f) .
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Note that if we regard λ as a ΛO-module homomorphism, λ factors through ΛO.

Let p ⊂ Ker λ be a minimal prime ideal of hord (χ,ΛO) . Then H := hord (χ,ΛO) /p is a finite extension

of ΛO and let I be the integral closure of ΛO in Frac (H) . We denote by λH the surjective homomorphism

hord (χ,ΛO)⊗ΛO H ↠ H. Then there exists an algebra homomorphism φ : H→ O such that λ = φ ◦ λH.

Let F =

∞∑
n=1

λH (T (n)) qn. Then Theorem 5.3.5 follows by letting I be the integral closure of ΛO in

Frac (H) and by extending φ to I.

Example 5.3.6. Let ∆ ∈ S12 (SL2 (Z)) be the Ramanujan’s cusp form (cf. Example 2.5.3). Suppose

that ∆ is p-ordinary. We denote by ∆∗ = ∆(q)− β∆(qp) ∈ S12 (Γ0 (p) ,Zp), where β is the unique root

of x2 − τ (p)x+ p11 with p-adic absolute |β| < 1. The Zp-module Sord
12 (Γ0 (p) ,Zp) is of rank 1 which is

generated by ∆∗ by [Mi, Theorem 4.6.17 (2)], thus

(5.11) hord12 (Γ0 (p) ,Zp)
∼→ Zp,

where hord12 (Γ0 (p) ,Zp) = ehord12 (Γ0 (p) ,Zp) with e = lim
n→∞

T (p)
n!

(cf. §5.1). We denote by p12 the ideal

of Λ which is generated by X −
(
u10 − 1

)
. Since the Λ-module Sord

(
ω11,Λ

)
is free of finite rank by

Theorem 5.2.3 and

Sord
(
ω11,Λ

)/
p12S

ord
(
ω11,Λ

) ∼→ S12 (Γ0 (p) ,Zp)

by Theorem 5.2.4, we have

hord
(
ω11,Λ

)/
p12h

ord
(
ω11,Λ

) ∼→ HomΛ

(
Sord

(
ω11,Λ

)
,Λ
)/

p12HomΛ

(
Sord

(
ω11,Λ

)
,Λ
)

∼→ hord12 (Γ0 (p) ,Zp)(5.12)

by (2) of Theorem 5.3.3.

Since hord is a Λ-algebra, let ι : Λ → hord
(
ω11,Λ

)
be the structural homomorphism. We have ι

is surjective by (5.11), (5.12) and Nakayama’s lemma. Furthermore, ι is injective since hord
(
ω11,Λ

)
is

Λ-torsion free. Thus hord
(
ω11,Λ

)
is isomorphic to Λ as a Λ-algebra and there exists a unique Λ-adic

normalized Hecke eigen cusp form F∆ ∈ Sord
(
ω11,Λ

)
such that φ (F∆) = ∆∗, where kφ = 12 and ζφ = 1.

5.4 Galois representation attached to I-adic normalized Hecke

eigen cusp forms

We keep the notations of the previous section. We denote by m the maximal ideal of I and by K = Frac (I).

Definition 5.4.1. A Galois representation ρ : Gal
(
Q/Q

)
−→ GL2(K) is continuous if there exists a

Gal
(
Q/Q

)
- stable lattice T ⊂ K⊕2 such that ρT : Gal

(
Q/Q

)
−→ AutI(T) is continuous with respect to

the m-adic topology on AutI (T).

Remark 5.4.2. Since I is a ring of Krull dimension 2, K is not locally compact in any non-discrete

topology on K ([Bo, VI, §9.3]). This implies that the image of a continuous representation Gal
(
Q/Q

)
−→

GL2 (K), with non-discrete topology on K, is very small. Hence one takes the m-adic topology on AutI (T).
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Lemma 5.4.3. If the Gal
(
Q/Q

)
-stable lattice T in Definition 5.4.1 is free over I. Then AutI (T) is

topologically isomorphic to GL2 (I), where we take the topology on GL2 (I) ↪→ I⊕4.

Proof. We have
(
I/mi

)⊕2 ∼= T/miT, hence EndI/mi
(
T/miT

)
is topologically isomorphic to

(
I/mi

)⊕4
.

Thus EndI (T) = lim←−
i

EndI/mi
(
T/miT

)
is topologically isomorphic to I⊕4.

We recall the Artin-Rees lemma for proving Lemma 5.4.5.

Theorem 5.4.4 (Artin-Rees lemma). Let M be a module which is finitely generated over a Noetherian

ring A and N a submodule of M . Let I be an ideal of A. Then there exists an integer c ∈ Z>0 such that

for any integer n > c,

InM ∩N = In−c (IcM ∩N) .

The following lemma tells us that the continuity of ρ in Definition 5.4.1 is independent on the choice

of Gal
(
Q/Q

)
-stable lattice T:

Lemma 5.4.5. Let us keep the notations of Definition 5.4.1. Let T and T′ be the Gal
(
Q/Q

)
-stable

lattices of K⊕2. Then if ρT is continuous so is ρT′ .

Proof. We may regard EndI (T) (resp. EndI (T′)) the set of K-homomorphisms f : K⊕2 −→ K⊕2 such

that f (T) ⊂ T (resp. f (T′) ⊂ T′). Then EndI (T) and EndI (T′) are lattices of EndK
(
K⊕2

)
by [Bo,

Chap. 7, §4.1, (iv) of Proposition 3]. Then by multiplication an element in K× we may assume that

EndI (T′) ⊂ EndI (T) by Proposition 2.1.3. By Theorem 5.4.4 we have that there there exists a c ∈ Z>0

such that for any n > c,

(5.13) mnEndI (T) ∩ EndI (T′) = mn−c (mcEndI (T) ∩ EndI (T′)) .

Furthermore we may assume that EndI (T′) ⊂ mcEndI (T), thus the induced topology on EndI (T′) from

EndI (T) coincide with the m-adic topology on EndI (T′).

Let F be an I-adic normalized Hecke eigen cusp form. Hida associates a continuous Galois represen-

tation over K to F as follows:

Theorem 5.4.6 (Hida [Hi2, Theorem 2.1]). There exists a continuous irreducible representation ρF :

Gal
(
Q/Q

)
−→ GL2 (K) satisfying following properties:

1. ρF is unramified outside Np.

2. For the geometric Frobenius element Frobl at l ∤ Np, we have:

tr ρF (Frobl) = a (l,F) ,

det ρF (Frobl) = χ(l)⟨l⟩ (1 +X)
sl .

We prove Theorem 5.4.6 in the next section. Now let us introduce the residual representation of the

representation modulo a prime ideal of I:
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Definition 5.4.7. For a prime ideal P of I, a Galois representation

ρF (P) : Gal
(
Q/Q

)
−→ GL2 (Frac (I/P))

is called a residual representation of ρF modulo P if ρF (P) is semi-simple, continuous under the m-adic

topology of Frac (I/P) and satisfies the following properties:

1. ρF (P) is unramified outside Np.

2. For the geometric Frobenius element Frobl at l ∤ Np,

tr ρF (P)(Frobl) = a (l,F) modP,

det ρF (P)(Frobl) = χ(l)⟨l⟩ (1 +X)
sl modP.

Although ρF may not have Gal
(
Q/Q

)
-stable lattice which is isomorphic to I⊕2, we have the following

proposition (see [Hi3, §7.5, Corollary 1] and see also [MW2, §9]).

Propostion 5.4.8 (Hida, Mazur-Wiles). For every prime ideal P, the residual representation ρF (P)
exists and is unique up to isomorphism over an algebraic closure of Frac(I/P).

Proof. First suppose that P is of height 1. Let us take a Gal
(
Q/Q

)
-stable lattice T. Since I is a

Krull domain by [Bo, Chap 7, §4.1, Corollary to Theorem 2], IP is a discrete valuation ring. Hence

TP = T ⊗I IP ∼= I⊕2
P and we can review ρF as ρF : Gal

(
Q/Q

)
−→ GL2 (IP) . We denote by ρF (P) the

semi-simplification of the following representation:

Gal
(
Q/Q

) ρF−→ GL2 (IP)
mod P−→ GL2 (IP/PIP) = GL2 (Frac (I/P)) .

Since TP is free of rank 2 over IP , the m-adic topology of EndIP (TP) and I⊕4
P coincide (where we take

the product topology on I × (I \ P) and the m-adic topology of IP = (I× (I \ P)) / ∼ is the quotient

topology on I× I \ {P }). Thus ρF (P) is continuous.
Now we suppose P = m. Let us take a φ ∈ Xarith (I) and we denote by Pφ = Ker φ. Since

tr ρF (Pφ) (Frobl) = a (l,F) modPφ = a (l, fφ) ,

det ρF (Pφ) (Frobl) = χ(l)⟨l⟩ (1 +X)
sl modPφ = χψφω

1−kφ (l) lkφ−1

for all l ∤ Np and ρfφ is irreducible, we have ρF (Pφ) is isomorphic to ρfφ by the Brauer-Nesbitt theorem

(Theorem 2.3.3) and the Chebotarev density theorem (Theorem 2.5.9). Thus we denote by ρF (m) the

representation ρssfφ . The uniqueness of ρF (P) follows also by Theorem 2.3.3 and Theorem 2.5.9.

We introduce the following local property of ρF due to Mazur and Wiles:

Theorem 5.4.9 (Wiles [Wi1, Theorem 2.2.2]). With the same notations as above, the restriction of ρF

to Dp is given up to equivalence by

ρF |Dp∼

(
ε1 0

∗ ε2

)
with ε1 unramified and ε1 (Frobp) = a (p,F).
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At the end of this section, we introduce the following list of cases where the condition (Free lattice)

in Corollary 1.3.4 is known to be true.

Propostion 5.4.10 (Mazur-Wiles, Tilouine, Mazur-Tilouine). The condition (Free lattice) holds if one

of the following conditions is satisfied:

(1) The ring I is regular.

(2) The tame level N of F is equal to 1 and the ring I is Gorenstein (Mazur-Wiles [MW2, §9]).

(3) Let χ|(Z/pZ)× = ωa. Then a ̸≡ 0, 1 (mod p − 1) and the ring I is Gorenstein (Tilouine [Ti,

Theorem 4.4]).

(4) The residual representation ρF (m) is irreducible (Mazur-Tilouine [MT, §2 Corollary 6]).

If I is a regular local ring, then T∗∗ := HomI (HomI (T, I) , I) (cf. §2.2) of a Gal
(
Q/Q

)
-stable lattice

T of ρF is free over I by Proposition 2.2.2 and Theorem 2.2.4.

5.5 Pseudo-representations

In this section we prove Theorem 5.4.6 by using pseudo-representations due to Wiles. Let R be a

topological algebra and

ρ : Gal
(
Q/Q

)
→ GL2 (R) , g 7→

(
a (g) b (g)

c (g) d (g)

)
continuous linear representation such that

(1) ρ is unramified outside a finite set of primes Σ.

(2) ρ (σ) =

(
−1 0

0 1

)
, where σ is the complex conjugation.

Then ρmust factors through G the Galois group of the largest algebraic extension of Q which is unramified

outside Σ by the assumption (1). We denote by a, d and x the functions as follows:

a : G→ R, g 7→ a (g) ,

d : G→ R, g 7→ d (g) ,

x : G×G→ R, (g1, g2) 7→ b (g1) c (g2) .

By matrix calculation, we have the following properties:

(P1) a, d and x are continuous.

(P2) a (g1g2) = a (g1) a (g2) + x (g1, g2) , d (g1g2) = d (g1) d (g2) + x (g2, g1) and

x (g1g2, g3g4) = a (g1) a (g4)x (g2, g3) + a (g4) d (g2)x (g1, g3)

+ a (g1) d (g3)x (g2, g4) + d (g2) d (g3)x (g1, g4) .
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(P3) a (1) = d (1) = d (σ) = 1, a (σ) = −1 and x (g, h) = x (h, g) = 0 for any g ∈ Gal
(
Q/Q

)
, h ∈ { 1, σ } .

(P4) x (g1, g2)x (g3, g4) = x (g1, g4)x (g3, g2) .

Proof. The properties (P1), (P3) and (P4) follow by definition. We prove the property (P2). Since

(5.14)

(
a (g1g2) b (g1g2)

c (g1g2) d (g1g2)

)
=

(
a (g1) b (g1)

c (g1) d (g1)

)(
a (g2) b (g2)

c (g2) d (g2)

)
by calculating the right hand of the equality (5.14) we have the following equalities:

(5.15) a (g1g2) = a (g1) a (g2) + b (g1) c (g2) ,

(5.16) d (g1g2) = d (g1) d (g2) + b (g2) c (g1) ,

(5.17) b (g1g2) = a (g1) b (g2) + b (g1) d (g2) ,

(5.18) c (g1g2) = a (g2) c (g1) + c (g2) d (g1) .

Then the first two assertions of (P2) follows by the equalities (5.15) and (5.16). The last assertion of (P2)

follows by replacing the equality (5.18) to g1 = g3, g2 = g4 and by taking the product of the equalities

(5.17) and (5.18).

Definition 5.5.1. Let G be a topological group and R a topological algebra. We denote by π = (a, d, x)

such that a, d are functions of G into R and x is a function of G × G into R. We say that π is a

pseudo-representation of G into R if a, d and x satisfies the conditions (P1)-(P4).

For a pseudo-representation π = (a, d, x) of G into R, we denote by

trπ : G→ R, g 7→ a (g) + d (g)

the trace of π and by

detπ : G→ R, g 7→ a (g) d (g)− x (g, g)

the determinant of π. The following two propositions are used to prove Theorem 5.4.6:

Propostion 5.5.2. Let π = (a, d, x) be a pseudo-representation of a topological group G into a topo-

logical integral domain R. Then there exists a continuous representation ρπ : G → GL2 (Frac (R)) such

that tr ρπ = trπ and det ρπ = detπ.

Proof. First we assume that x (g, h) = 0 for all g, h ∈ G. Then we have a (gh) = a (g) a (h) and d (gh) =

d (g) d (h). We denote by ρπ : G 7→ GL2 (R) , g 7→

(
a (g) 0

0 d (g)

)
. Then the proposition follows.

Next we assume there exist elements s, t ∈ G such that x (s, t) ̸= 0. We define

ρπ : G 7→ GL2 (Frac (R)) , g 7→

(
a (g) b (g)

c (g) d (g)

)

such that b (g) =
x (g, t)

x (s, t)
and c (g) = x (s, g). Then the remain of the proof is to check that ρπ is a

homomorphism.
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(1) Note that b (g1) c (g2) =
x (g1, t)x (s, g2)

x (s, t)
. By the property (P4), we have x (g1, t)x (s, g2) =

x (g1, g2)x (s, t). Hence

a (g1g2) = a (g1) a (g2) + x (g1, g2) = a (g1) a (g2) + b (g1) c (g2) .

We can also prove

d (g1g2) = d (g1) d (g2) + b (g2) c (g1)

by the same way.

(2) Note that

(5.19) a (g1) b (g2) + b (g1) d (g2) =
a (g1)x (g2, t) + x (g1, t) d (g2)

x (s, t)
.

By the property (P2) we have the following equality:

x (g1g2, g3g4) = a (g1) a (g4)x (g2, g3) + a (g4) d (g2)x (g1, g3)(5.20)

+ a (g1) d (g3)x (g2, g4) + d (g2) d (g3)x (g1, g4) .

Put g4 = 1 and g3 = t. Then the above equality (5.20) becomes to

(5.21) x (g1g2, t) = a (g1)x (g2, t) + d (g2)x (g1, t)

by the property (P3). Combine the equalities (5.19) and (5.21), we have

a (g1) b (g2) + b (g1) d (g2) =
x (g1g2, t)

x (s, t)
= b (g1g2) .

Note that

(5.22) a (g2) c (g1) + c (g2) d (g1) = a (g2)x (s, g1) + x (s, g2) d (g1) .

Replace { g1, g2, g3, g4 } to { s, 1, g1, g2 } then the equality (5.20) becomes to

x (s, g1g2) = a (g2)x (s, g1) + d (g1)x (s, g2)

by the property (P3). Since c (g1g2) = x (s, g1g2), this shows that ρπ is a homomorphism.

Propostion 5.5.3. Let a and b be ideals of I. We denote by π (a) (resp. π (b)) a pseudo-representation

into I/a (resp. I/b). Suppose there exist a dense subset Σ ⊂ G and functions

Tr : Σ→ I/a ∩ b,

Det : Σ→ I/a ∩ b

such that

trπ (c) (g) = Tr (g) mod c
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and

detπ (c) (g) = Det (g) mod c

for all g ∈ Σ and c ∈ { a, b } (we call that π (a) and π (b) are compatible in this situation). Then there

exists a pseudo-representation π (a ∩ b) from G into I/a ∩ b such that

trπ (a ∩ b) (g) = Tr (g)

and

detπ (a ∩ b) (g) = Det (g)

for all g ∈ Σ.

Proof. We consider the following exact sequence:

(5.23) 0→ I/a ∩ b
ι→ I/a⊕ I/b α→ I/a+ b→ 0

such that ι (x mod a ∩ b) = (x mod a, x mod b) and α ((x mod a, y mod b)) = x − y mod a + b. We

denote by π := π (a)⊕ π (b) the pseudo-representation with values in I/a⊕ I/b. Since π (a) and π (b) are
compatible, we have the following equalities:

α (trπ (g)) = α (trπ (a) (g) , trπ (a) (g))

= α (Tr (g) mod a,Tr (g) mod b)

= 0.

Hence trπ (g) ∈ Im ι by the equality (5.23). Write π = (a, d, x), then we have the following equalities:

a (g) = 2−1 (trπ (g)− trπ (gc)) ∈ Im ι,

d (g) = 2−1 (trπ (g) + trπ (gc)) ∈ Im ι

and

x (g, h) = a (gh)− a (g) a (h) ∈ Im ι.

Thus π has values in I/a ∩ b. We denote by π (a ∩ b) = ι−1 ◦ π. This completes the proof of Proposition

5.5.3.

Under the above preparation, we are ready to proof Theorem 5.4.6.

Proof of Theorem 5.4.6. We denote by Σ = {Frobl | l ∤ Np } which is dense in G by Theorem 2.5.9.

We denote by

Tr : Σ→ I,Frobl 7→ a (l,F)

and by

Det : Σ→ I,Frobl 7→ χ(l)⟨l⟩ (1 +X)
sl .

Let S = {Pi}∞i=1 be a countable subset of {Ker φ | φ ∈ Xarith (I) }. For any Pi = Kerφi ∈ S, we denote

by fi = φi (F) and by ρfi the Galois representation attached to fi due to Deligne and Shimura. Then
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ρfi are pseudo-representation and compatible. By Proposition 5.5.3 there exists a pseudo-representation

πi = (ai, di, xi) of G into I/ ∩ij=1 Pi such that

trπi (g) mod ∩i−1
j=1 Pi = trπi−1 (g)

for all g ∈ G.
Since

a (g) = 2−1 (trπ (g)− trπ (gc)) ,

d (g) = 2−1 (trπ (g) + trπ (gc))

and

x (g, h) = a (gh)− a (g) a (h) ,

we have ({ai (g)}i , {di (g)}i , {xi (g, h)}i) ∈ lim←−
i

I/∩ij=1Pi for any g, h ∈ G. Since ∩∞i=1 lim←−
i

I/∩ij=1Pi = (0)

by the following lemma, we have I = lim←−
i

I/∩ij=1Pi hence π := lim←−
i

πi is a pseudo-representation of G into

I. Then ρF is the representation ρπ in Proposition 5.5.2. This completes the proof of Theorem 5.4.6.

Lemma 5.5.4. Let R be a commutative Noether integral domain and S be a countable collection of

height 1 prime ideal of R, then we have ∩P∈SP = (0).

Proof. Let us take a x ∈ R. Since R is Noetherian, primary decomposition exists for ideals ([Mat,

Theorem 6.8]). Hence the radical of x is a finite intersection of height 1 prime ideals. Thus there are only

finite height 1 prime ideals which contain x. This completes the proof of Lemma 5.5.4.
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Chapter 6

Proof of Theorem 1.3.1 and its

corollaries

6.1 The reducibility ideal

We recall the following lemma due to Belläıche and Chenevier:

Lemma 6.1.1 (Belläıche-Chenevier [BC1, Lemme 1]). Let (A,m) be a complete local domain such that

char(A/m) ̸= 2, where m is the maximal ideal of A. Let ρ : G→ GL2(Frac(A)) be a linear representation

of a group G satisfying tr ρ(G) ⊂ A and tr ρmodm = ϑ1 + ϑ2, ϑ1 ̸= ϑ2, where ϑ1, ϑ2 : G → (A/m)
×

are characters. Let g0 ∈ G be an element satisfying ϑ1(g0) ̸= ϑ2(g0) and λ1, λ2 ∈ A the roots of the

characteristic polynomial of ρ(g0). Choose a basis {e1, e2} of the representation ρ such that ρ(g0)ei =

λiei (i = 1, 2). Write ρ(g) =

(
a(g) b(g)

c(g) d(g)

)
for any g ∈ G.

Let I ⊊ A be an ideal such that there exist two characters ν1, ν2 : G→ (A/I)× such that

tr ρ(g)mod I = ν1(g) + ν2(g)

for any g ∈ G. Assume ν1 modm = ϑ1, ν2 modm = ϑ2 without loss of generality. Then for any g, g′ ∈ G,
we have a(g), d(g) ∈ A, a(g)mod I = ν1(g), d(g)mod I = ν2(g), and b(g)c(g

′) ∈ I.

We omit the proof of the lemma, since it is done in the similar way as the arguments in §3.1.

Remark 6.1.2. If char(A/m) = 2, the statement holds assuming an extra condition on the determinate

(cf. [BC1, Lemme 1]).

Definition 6.1.3. Let (A,m) be a complete local domain such that char(A/m) ̸= 2, where m is the

maximal ideal of A. Let ρ : G → GL2(Frac(A)) be a linear representation of a group G satisfying

trρ(G) ⊂ A and tr ρmodm = ϑ1 + ϑ2, ϑ1 ̸= ϑ2, where ϑ1, ϑ2 : G → (A/m)
×

are characters. For any

g ∈ G, write ρ(g) =

(
a(g) b(g)

c(g) d(g)

)
with respect to the basis taken as in Lemma 6.1.1. We define I(ρ)

the ideal of A which is generated by b(g)c(g′) for all g, g′ ∈ G.
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The ideal I(ρ) is well-defined by Lemma 6.1.1. Under the above preparation, we are ready to determine

♯L (ρ) of a p-adic representation ρ.

Propostion 6.1.4. Let (O, ϖ,F) be the ring of integers of a finite extension of Qp with ϖ a fixed

uniformizer of O and F the residue field. Let V be a vector space of dimension 2 over K = Frac(O) and
ρ : G→ AutK(V ) a continuous irreducible representation of a compact group G.

Assume that

tr ρmodϖ = ϑ1 + ϑ2, ϑ1 ̸= ϑ2,

where ϑ1, ϑ2 : G→ F× are characters. Then we have

ordϖI(ρ) + 1 = ♯C (ρ) = ♯L (ρ),

where C (ρ) is the set of G-stable lattices up to multiplication by elements of K× (cf. §3.3).

Note that the first equality ordϖI(ρ) + 1 = ♯C (ρ) is a special case of Belläıche-Graftieaux [BG,

Théorème 4.1.3] (see also the remark immediately after it).

Proof. We first show ordϖI(ρ) + 1 = ♯C (ρ). Fix a g0 ∈ G such that ϑ1(g0) ̸= ϑ2(g0). The characteristic

polynomial of ρ(g0)

X2 − tr ρ(g0)X + det ρ(g0)

has roots λ1 ̸= λ2 in A such that λi mod ϖ = ϑi(g0)(i = 1, 2) by Hensel’s lemma. Choose a basis {e1, e2}

of the representation ρ such that ρ(g0)ei = λiei (i = 1, 2). Write ρ(g) =

(
a(g) b(g)

c(g) d(g)

)
for all g ∈ G. Let

B be the module of O generated by b(g) for all g ∈ G. Since ρ is irreducible, we have B ̸= (0). Since ρ

is continuous and G is compact, there exists a G-stable lattice. Hence Im ρ is bounded in GL2 (K) by

Proposition 2.3.2. We have B = O and the following properties by Operation 1 (cf. §3.1).

(1) ρ(g0) =

(
λ1 0

0 λ2

)
.

(2) There exists a h ∈ G such that ϖ ∤ b(h).

Since BC = I(ρ) by Lemma 6.1.1, we must have C = I(ρ) = (ϖ)n for a positive integer n. This also

means that we have chosen a G-stable lattice T such that

ρ = ρT : G→ GL2(O)

and T/ϖT is not semi-simple. By reduction mod (ϖ)
i
(i = 1, 2, . . . , n), we obtain the G-stable lattices

T1, · · · , Tn such that [Ti] ̸= [Tj ] if i ̸= j. Then n+ 1 = ordϖI(ρ) + 1 ≤ ♯C (ρ).

Let ♯C (ρ) = m+1. We have C (ρ) is a segment [x, xm] by the proof of Proposition 3.3.1 at the end of

§3.3. Let T, Tm be the representatives of x, xm such that Tm ⊂ T and T/Tm ∼= O/ (ϖ)
m

as an O-module.

Hence there exists a basis of T such that ρT : G → GL2(O), g 7→

(
a(g) b(g)

c(g) d(g)

)
satisfies ϖm | c(g) for

any g ∈ G. Then
amod (ϖ)

m
: G→ (O/ (ϖ)

m
)
×
, g 7→ a(g)mod (ϖ)

m

54



and

dmod (ϖ)
m

: G→ (O/ (ϖ)
m
)
×
, g 7→ d(g)mod (ϖ)

m

are two characters. Thus I (ρ) ⊂ (ϖ)
m

by Lemma 6.1.1 and ♯C (ρ) ≤ ordϖI(ρ) + 1.

Next we prove ♯C (ρ) = ♯L (ρ). Suppose ♯C (ρ) = n + 1. Since C (ρ) is a segment, there exist the

following representatives of the points in C (ρ):

T0 ⊋ · · · ⊋ Tn

such that

(i) [Ti] is a neighbor of [Ti−1] and T0/Ti ∼= O/ (ϖ)
i
as an O-module for i = 1, · · · , n.

(ii) T0, Tn are mod ϖ not semi-simple lattices and the others are not.

Thus it is sufficient to show that for i ̸= j, Ti and Tj are non-isomorphic as O[G]-modules.

1. Suppose we have f : T0
∼→ Tn as O[G]-modules. Then ϖTn ⊂ f (T1) ⊂ Tn since [T1] is a neighbor

of [T0]. Since Tn is a mod ϖ not semi-simple lattice, we have f (T1) = ϖTn−1 by (2) of Proposition

3.3.5. Thus we have the following isomorphism:

(6.1) T1/ϖT0 ∼= ϖTn−1/ϖTn ∼= F[ϑ1] (resp. F[ϑ2])

as an F[G]-module. Since T1/ϖT0 (resp. ϖTn−1/ϖTn) is the unique F[G]-submodule of T0/ϖT0

(resp. Tn/ϖTn) of dimension 1, the isomorphism (6.1) implies that there is no mod ϖ not semi-

simple stable lattice T such that T/ϖT has a submodule which is isomorphic to O/ (ϖ) [ϑ2] (resp.

O/ (ϖ) [ϑ1]). This contradicts to Proposition 3.3.1.

2. Suppose we have f : Ti
∼→ Tj as O[G]-modules for some 0 < i < j < n. Since T0 is a mod ϖ not

semi-simple lattice and T0, Tn are non-isomorphic as O[G]-modules, we have [f
(
ϖiT0

)
] = [T0] i.e.

f
(
ϖiT0

)
= ϖlT0 for some l. Thus

O/ (ϖ)
i ∼= T0/Ti ∼= T0/ϖ

i−lTj

as an O-module. This implies d ([T0], [Tj ]) = i by Proposition 3.2.6. On the other hand, [T0] is an

edge of the segment C (ρ), there exists an unique point y ∈ C (ρ) such that d ([T0], y) = i. This

contradicts to i ̸= j.

Now we give an example by using Proposition 6.1.4 to determine ♯L (ρf ), where ρf is the Galois rep-

resentation attached to a normalized Hecke eigen cusp form f . Let ∆ ∈ S12(SL2(Z)) be the Ramanujan’s

cusp form (cf. Example 2.5.3) and

ρ∆ : Gal
(
Q/Q

)
→ GL2(Qp)

the Galois representation attached to ∆.
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Propostion 6.1.5. The ideal I(ρ∆) ⊂ Zp defined as in Definition 6.1.3 is the minimal ideal such that

there exists an integer a ∈ Z such that for any prime l ̸= p,

τ(l) ≡ la + l11−a mod I(ρ∆).

Proof. Since ρ∆ is unramified outside { p,∞}, ρ∆ must factor through G{p,∞} which is the Galois group

of the maximal Galois extension of Q unramified outside { p,∞}. Let ν1, ν2 : G{p,∞} → (Zp/I(ρ∆))×be
the character such that

tr ρmod I(ρ∆) = ν1 + ν2.

Also by the fact that ρ∆ is unramified outside { p,∞}, ν1 and ν2 must factor through Gal (Q (µp∞) /Q)

by class field theory. Thus ϑ1 and ϑ2 must be power χcycmod I (ρ∆). For the Frobenius element Frobl

with prime l ̸= p, we have χcyc(Frobl) = l and det ρ∆(Frobl) = l11. Thus the proposition follows by the

Theorem 2.5.9.

Serre and Swinnerton-Dyer showed that ρ̄∆ is reducible if and only if p = 2, 3, 5, 7 and 691 (see [Sw1,

Corollary to Theorem 4]). [Sw2] also showed the congruence mod pn for p = 3, 5, 7 and 691 (see [Sw2],

page 77 for p = 691, Theorem 4 for p = 5, 7 and the table after Theorem 6 for p = 3). Then combined

with our arguments, we have the following table for odd primes.

p 3 5 7 691

♯L (ρ∆) 7 4 2 2

6.2 The relation between the reducibility ideal and the Kubota-

Leopoldt p-adic L-function

We prove Theorem 1.3.1 in this section. We denote by γ a topological generator of Gal (Q∞/Q) such

that κcyc(γ) = u and by κuniv the universal cyclotomic character as follows:

κuniv : Gal
(
Q/Q

)
↠ Gal (Q∞/Q)

∼→ 1 + pZp ↪→ Λ×
χ ,

where 1 + pZp ↪→ Λ×
χ is the homomorphism defined by sending u to 1 +X. By Theorem 5.4.9, we have

ρF |Dp∼

(
ε1 0

∗ ε2

)
,

with ε1 unramified. Recall that ρF (m) ∼= χ1⊕χ2. Then for any g ∈ Dp, { ε1(g), ε2(g) } and {χ1(g), χ2(g) }
are the set of the roots of the mod m characteristic polynomial of ρF (g): X

2−trρF (g)X+detρF (g) mod m,

hence they must be coincide. Thus ε1 = χ1 |Dp and ε2 = χ2 |Dp under the assumption that χ1 (resp. χ2)

is unramified (resp. ramified). We denote by Ip the inertia group of p and we choose a g0 ∈ Ip such that

χ1(g0) ̸= χ2(g0).

Let {e1, e2} be a basis of Frac (I)⊕2
such that

(6.2) ρF (g0) =

(
1 0

0 ε2(g0)

)
, ρF |Dp=

(
ε1 0

∗ ε2

)
.
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Write ρF (g) =

(
a(g) b(g)

c(g) d(g)

)
for any g ∈ Gal(Q/Q). We have a(g), d(g) and b(g)c(g′) ∈ I for any

g, g′ ∈ Gal(Q/Q) by Lemma 6.1.1. Recall that I(ρF ) is the ideal of I generated by b(g)c(g′) for all

g, g′ ∈ Gal(Q/Q). Since ρF (m) is reducible, we have I (ρF ) ⊂ m by Lemma 6.1.1.

Lemma 6.2.1. Let us take the basis of Frac(I)⊕2 to be the same as the beginning of this section. For

any φ ∈ Xarith (I), let ϖφ be a fixed uniformizer of φ(I). Then

ordϖφ(φ(I(ρF ))) + 1 = ♯L (ρfφ).

Proof. For any φ ∈ Xarith (I), we denote by P = Kerφ and by IP the localization of I at P. Then IP is

a discrete valuation ring with κcyc a fixed uniformizer of IP . For the Galois representation

ρP : Gal
(
Q/Q

) ρF→ GL2(Frac(I)) = GL2(Frac(IP)),

let B be the IP -submodule of Frac(IP) generated by b(g) for all g ∈ Gal
(
Q/Q

)
. Since ρF is irreducible,

B ̸= (0). Since ρF is continuous, by Definition 5.4.1 there exists a lattice T ⊂ Frac(I)⊕2 which is stable

under Gal(Q/Q)-action. Then TP = T⊗I IP is a stable lattice of ρP and Im ρP is bounded by Proposition

2.3.2. Thus we may assume B = IP by Operation 1 (cf. §3.1). Then Im ρP ⊂ GL2 (IP) for this new ρP

by Lemma 6.1.1.

We denote by ρφ the Galois representation

ρφ : Gal(Q/Q)
ρP→ GL2(IP) ↠ GL2(φ(IP)), g 7→

(
aφ(g) bφ(g)

cφ(g) dφ(g)

)
and by ρfφ the Galois representation associated to fφ. Since

tr ρφ (Frobl) = tr ρfφ (Frobl) ,det ρφ (Frobl) = det ρfφ (Frobl)

for all primes l ∤ Np, we have the semi-simplification of ρφ and ρfφ are isomorphic by Theorem 2.3.3

and Theorem 2.5.9. Then by the fact that ρfφ is irreducible, we have that the representations ρφ and

ρfφ are isomorphic. Thus I
(
ρfφ
)
= φ (I (ρF )) by the definition of I

(
ρfφ
)
and Lemma 6.2.1 follows by

Proposition 6.1.4.

Lemma 6.2.2. Let us take the basis of Frac(I)⊕2 to be the same as the beginning of this section. Let

J be the ideal of I generated by trρF (g)− χ1(g)− χ2κcycκuniv(g) for all g ∈ Gal
(
Q/Q

)
and J ′ the ideal

generated by a(g)− χ1(g) for all g ∈ Gal
(
Q/Q

)
. Then we have the following statements:

(1) I(ρF ) = J = J ′.

(2) Suppose N = 1. Then ρF (m) ∼= 1⊕ χ, where 1 is the trivial character.

Proof. We first show J = J ′. Since trρF ≡ χ1 + χ2κcycκuniv mod J , a(g) ≡ χ1(g) mod J or a(g) ≡
χ2κcycκuniv(g) mod J for all g ∈ Gal

(
Q/Q

)
by Lemma 6.1.1. By equality (6.2) we have that the character

a mod m = χ1 is unramified at p, thus a(g) ≡ χ1(g) mod J for all g ∈ Gal
(
Q/Q

)
. This implies J ′ ⊂ J .

We also have J ⊂ J ′ since

tr ρF (g)− χ1(g)− χ2κcycκuniv(g) = (a(g)− χ1(g)) + (a(g−1)− χ1(g
−1))det ρF (g) ∈ J ′.
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Now we prove I(ρF ) = J ′. We have b(g)c(g′) ∈ J for any g, g′ ∈ Gal(Q/Q) by Lemma 6.1.1 hence

I(ρF ) ⊂ J = J ′. Let K be the abelian extension of Q corresponding to

Ker
(
ν : Gal(Q/Q) −→ (I/I(ρF ))× , g 7→ a(g)mod I(ρF )

)
.

Then ν factors through Gal (K/Q). Write a(g) = χ1(g) (1 +m(g)) where m(g) ∈ m. Then ν (g) =

χ1(g) mod I(ρF )·(1 +m(g)) mod I(ρF ). Note that ν is unramified outside N by the equality (6.2), hence

K is a subfield of Q(µN ) by class field theory. On the other hand, the kernel of the map (I/I(ρF ))× →
(I/m)

×
is a pro-p group, thus (1 +m(g)) mod I(ρF ) must be trivial under the assumption p ∤ ϕ(N). This

implies χ1(g) ≡ a(g) (mod I (ρF )), hence J
′ ⊂ I(ρF ). Specially when N = 1, we have that a mod I (ρF )

is an unramified character. Thus a mod I (ρF ) is trivial by class field theory (the Galois group of the

maximal unramified abelian extension of a number field F is isomorphic to the ideal class group of F ).

Lemma 6.2.2 tells us that I(ρF ) is a closed ideal in I under the m-adic topology.

Propostion 6.2.3. Let us take the basis of Frac(I)⊕2 to be the same as at the beginning of this section.

Let L∞, L
(Np)
∞ be the maximal unramified abelian p-extension of Q (µNp∞) and the maximal abelian

p-extension unramified outside Np of Q (µNp∞). We denote by X∞ = Gal (L∞/Q (µNp∞)) and by

Y∞ = Gal
(
L
(Np)
∞ /Q (µNp∞)

)
on which ∆Np = Gal (Q (µNp∞) /Q∞) acts by conjugation. Then we have

the following statements:

(1) Lp(χ−1
1 χ2)I ⊂ I(ρF ).

(2) Suppose the Λχ1χ
−1
2
-modules X

χ1χ
−1
2∞ and Y

χ−1
1 χ2

∞ are cyclic. Then I (ρF ) is principal.

Proof. (1) We have χ1(g) ≡ a(g) mod I(ρF ) and χ2κcycκuniv(g) ≡ d(g) mod I(ρF ) for all g ∈
Gal

(
Q/Q

)
by Lemma 6.1.1 and Lemma 6.2.2. We prove the proposition by using Wiles’ construc-

tion (cf. [Wi2, Section 6]) of an uramified extension N∞ of Q(µNp∞).

Let B (resp. C) be an I-submodule of Frac(I) generated by b(g) (resp. c(g)) for all g ∈ Gal
(
Q/Q

)
.

Then the modules B and C are finitely generated by Lemma 6.1.1. We denote by b the function

b : Gal
(
Q/Q

)
→ B, g 7→ b(g)

and we endow B with the m-adic topology.

Step 1 We show the map b is continuous in this first step. Since ρF is continuous, by Definition

5.4.1 there exists a lattice T ⊂ Frac(I)⊕2 which is stable under Gal(Q/Q)-action such that

ρF : Gal(Q/Q) −→ AutI(T) is continuous with respect to the m-adic topology of AutI(T). We

denote by Vi = Frac(I)ei and by Ti = T ∩ Vi (i = 1, 2) . Then ρF (Ti) ⊂ T. For any xe1 ∈ T1

and ye2 ∈ T2, we have

ρF (g) (xe1) = a (g)xe1 + c (g)xe2,

ρF (g) (ye2) = b (g) ye1 + d (g) ye2.

Since a (g) ∈ I by Lemma 6.1.1, a (g)xe1 ∈ T ∩ V1 = T1 and c (g)xe2 = ρF (g) (xe1) −
a (g)xe1 ∈ T∩ V2 = T2. We also have b (g) ye1 ∈ T1 by the same argument. This implies that
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T1 ⊕ T2 is also a stable lattice of Frac (I)⊕2
. We replace T with T1 ⊕ T2. The representation

ρF : Gal(Q/Q) −→ AutI(T) is also continuous by Theorem 5.4.4. We may regard B as an

I-submodule of HomI(T2,T1) via the injective homomorphism as follows:

B ↪→ HomI (T2,T1) , b(g) 7→ b(g)(ye2) = b(g) · ye1

for all ye2 ∈ T2. Then b is the following map:

Gal
(
Q/Q

) ρF→ AutI (T)→ HomI(T2,T1).

The homomorphism AutI(T)→ HomI(T2,T1) is continuous under the m-adic topology, hence

b is continuous.

Step 2 In this step, we construct an abelian p-extension of Q (µNp∞) by the following homomor-

phism:

b : Gal
(
Q/Q (µNp∞)

) b→ B ↠ B/I(ρF )B.

Let N∞ be the abelian extension of Q (µNp∞) corresponding to Ker b and we denote by the

same symbol b

(6.3) b : G = Gal (N∞/Q (µNp∞)) ↪→ B/I(ρF )B.

For any h ∈ Gal
(
Q/Q

)
and g ∈ Gal

(
Q/Q (µNp∞)

)
, a matrix calculation shows that

b(hgh−1) = χ1χ
−1
2 κ−1

cycκ
−1
univ(h)b(g).

Let γ̃ be a topological generator of Gal (Q (µNp∞) /Q (µNp)) which is sent to γ under the

canonical isomorphism Gal (Q (µNp∞) /Q (µNp)) → Gal (Q∞/Q). The above arguments tell

us that b (G) is a Λχ1χ
−1
2

= Zp[χ1χ
−1
2 ][[X]]-module under the surjection

Zp[[Gal (Q (µNp∞) /Q)]]
χ1χ

−1
2 κ−1

cycκ
−1
univ−→ Λχ1χ

−1
2
, u−1γ̃−1 7→ 1 +X

and Gal (Q(µNp∞)/Q∞) acts on b (G) via χ1χ
−1
2 .

Step 3 In this step, we show that the canonical homomorphism b (G) ⊗Λ
χ1χ

−1
2

I → B/I(ρF )B is

an isomorphism. The injectivity follows from the assumption that I is flat over Λχ1χ
−1
2

by

applying the base extension ⊗Λ
χ1χ

−1
2

I to the equality (6.3). For any g ∈ Gal
(
Q/Q

)
, consider

the commutator [g, g0] ∈ Gal
(
Q/Q (µN∞p∞)

)
we have

b([g, g0]) =
λ− 1

λ
(χ2κcycκuniv(g))

−1
b(g),

where λ = ε2(g0). Since λ ̸≡ 1 mod m, we have b ([g, g0])⊗χ2κcycκuniv(g)
λ

λ− 1
∈ b (G)⊗Λ

χ1χ
−1
2

I.

Step 4 In this step, we show that the extension N∞/Q(µNp∞) is unramified everywhere. Note

that N∞/Q (µNp∞) is unramified since all l ∤ Np since the representation ρF is unramified at
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such l. We have b (Ip) = 0 by the equality (6.2) and hence N∞/Q(µNp∞) is also unramified

at p.

Let L
(N)
∞ be the maximal abelian p-extension of Q(µNp∞) which is unramified outside N . Let

us take a prime l|N and we denote by L
(l)
∞ the maximal subfield of L

(N)
∞ which is unramified

at l. We denote by Kr = Q
(
Npr+1

)
and by Kr,l the completion of Kr at a prime l dividing l

with Or,l its ring of integers. Then there exists an surjective homomorphism

(6.4) lim←−
r

∏
l|l

O×
r,l ↠ Gal

(
L(N)
∞ /L(l)

∞

)

by class field theory. Note that L
(N)
∞ /L

(l)
∞ is a p-extension, then the homomorphism (6.4)

induces the following surjective homomorphism:

(6.5) lim←−
r

∏
l|l

F×
r,l ↠ Gal

(
L(N)
∞ /L(l)

∞

)
,

where Fr,l is the residue field of Or,l. Now Il acts trivially on lim←−
r

∏
l|l

F×
r,l, hence

Gal
(
L(N)
∞ /L(l)

∞

)χ1χ
−1
2

= { 0 }

because we have χ1χ
−1
2 has conductor divisible by N under the assumptions (Co-prime) and

(Conductor). Thus the extension N∞/Q(µNp∞) is also unramified at the primes dividing N .

Step 5 We fix the Iwasawa-Serre isomorphism as follows:

(6.6) Zp[χ1χ
−1
2 ][[Gal (Q (µNp∞) /Q (µNp))]]

∼→ Λχ1χ
−1
2
, γ̃ 7→ u−1(1 +X)−1.

Then we have the following I-homomorphisms:

(6.7) X
χ1χ

−1
2∞ ⊗Λ

χ1χ
−1
2

I ↠ b (G)⊗Λ
χ1χ

−1
2

I ∼→ B/I(ρF )B.

By (1)-(3) of Proposition 4.3.1, we have the following inclusion relation of Fitting ideals:

FittΛ
χ1χ

−1
2

(X
χ1χ

−1
2∞ )I = FittI(X

χ1χ
−1
2∞ ⊗Λ

χ1χ
−1
2

I) ⊂ FittI(B/I(ρF )B) ⊂ I(ρF ).

By the Iwasawa main conjecture (Theorem of Mazur-Wiles cf. Theorem 4.3.4) we have

FittΛ
χ1χ

−1
2

(X
χ1χ

−1
2∞ ) = Lp(χ−1

1 χ2)Λχ1χ
−1
2
.

Thus Lp(χ−1
1 χ2)I ⊂ I(ρF ). This completes the proof of (1) of the proposition.

(2) Similarly, we denote by M
(Np)
∞ the abelian extension of Q (µNp∞) corresponding to

Ker
(
c : Gal

(
Q/Q (µNp∞)

)
→ C/I (ρF )C, g 7→ c(g)

)
and by H = Gal

(
M

(Np)
∞ /Q (µNp∞)

)
. Then c (H) is a Λχ−1

1 χ2
-module under the surjection

Zp[[Gal (Q (µNp∞) /Q)]]
χ−1
1 χ2κcycκuniv−→ Λχ1χ

−1
2
, u−1γ̃ 7→ 1 +X
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and the map c (H)⊗Λ
χ
−1
1 χ2

I→ C/I(ρF )C induced by c is an isomorphism by the same arguments

as in Step 3. Hence we have the surjective homomorphism as follows:

(6.8) Y
χ−1
1 χ2

∞ ⊗Λ
χ
−1
1 χ2

I ↠ C/I(ρF )C.

Note that in the equality (6.8), we endowed Y
χ−1
1 χ2

∞ with the Λχ1χ
−1
2
-module structure under the

isomorphism as follows:

Zp[χ−1
1 χ2][[Gal (Q (µNp∞) /Q (µNp))]]

∼→ Λχ−1
1 χ2

, γ̃ 7→ u(1 +X).

By the equalitys (6.7) and (6.8), there exists a gB ∈ X∞ (resp. gC ∈ Y∞) such that B/I(ρF )B

(resp. C/I(ρF )C) is generated by b(gB) (resp. c(gC)). By Nakayama’s lemma, B (resp. C) is

generated by b(gB) (resp. c(gC)) over I. This implies I (ρF ) = BC = (b (gB) c (gC)).

Define the Eisenstein ideal I(χ, I) the ideal of hord (χ, I) which is generated by T (l)−1−χ (l) ⟨l⟩ (1 +X)
sl

for all primes l ̸= p and T (p)− 1.

Corollary 6.2.4. Let the assumptions and the notations be as in Theorem 1.3.1. Assume the condition

(Rank one). We have I (ρF ) = Lp (χ) I.

Proof. We have χ1 = 1 by Lemma 6.2.2 and hence Lp (χ) I ⊂ I (ρF ) by Proposition 6.2.3. Thus it is

suffices to prove I (ρF ) ⊂ Lp (χ) I.
Since hord (χ, I) = hord(χ,Λχ) ⊗Λχ I, hord (χ, I) is isomorphic to I by the assumption (Rank one).

Since N = 1, I (ρF ) is generated by a(l,F)− 1− χ (l) ⟨l⟩ (1 +X)
sl for all primes l ̸= p by Lemma 6.2.2

and Theorem 2.5.9. We also have c(p,F)− 1 = ε1(Frobp)− 1 = a(Frobp)− 1 ∈ I (ρF ) by Theorem 5.4.9

and Lemma 6.2.2. Thus the canonical isomorphism I → hord (χ, I) sends I (ρF ) to the Eisenstein ideal

I(χ, I). On the other hand, the canonical homomorphism

I
/
Lp (χ) I → hord (χ, I)

/
(I(χ, I),Lp (χ))

is an isomorphism by [Wi2, Theorem 4.1]. This implies I (ρF ) ⊂ Lp (χ) I.

The next corollary is obviously deduced from (2) of Proposition 6.2.3.

Corollary 6.2.5. Let the assumptions and the notations be as in Theorem 1.3.1. Assume the conditions

(Cyclic) and (Prime ideal). We have I (ρF ) = Lp
(
χ−1
1 χ2

)
I.

Now we prove Theorem 1.3.1.

Proof of Theorem 1.3.1. For any φ ∈ Xarith (I), let ϖφ be a fixed uniformizer of φ(I). Then

(6.9) ordϖφ(φ (I (ρF )) ≤ ordϖφ
(
φ
(
Lp(χ−1

1 χ2)
))

by (1) of Proposition 6.2.3. Under the assumption that χ1 ̸= χ2ω, we have

(6.10) φ
(
Lp(χ−1

1 χ2)
)
= Lp(1− kφ, χ−1

1 χ2ψφω)
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by Theorem 4.2.1. Furthermore, we have

(6.11) ordϖφ(φ (I (ρF ))) + 1 = ♯L (ρfφ),

by combining Proposition 6.1.4 and Lemma 6.2.1. Combine the inequality (6.9) and the equalities (6.10),

(6.11), we have the following inequality:

(6.12) ♯L (ρfφ) ≤ ordϖφ
(
Lp(1− kφ, χ−1

1 χ2ψφω)
)
+ 1.

If we assume the condition (Rank one) or both of the conditions (Cyclic) and (Prime ideal), we have

I (ρF ) = Lp(χ−1
1 χ2)I by Corollary 6.2.4 and Corollary 6.2.5. Thus the inequality (6.12) becomes equal.

Specially when (Rank one) satisfied, χ1 = 1 and χ2 = χ by Lemma 6.2.2. This completes the proof of

Theorem 1.3.1.

6.3 Proof of Corollary 1.3.2 and Corollary 1.3.3

We prove Corollary 1.3.2 and Corollary 1.3.3 by calculating the order of the integral values of Kubota-

Leopoldt p-adic L-function in this section. The following lemma is useful to our calculation:

Lemma 6.3.1. Let O be the ring of integers of a finite extension of Qp and F (X) ∈ O[X] a distinguished

polynomial. Then there exists an integer r ∈ Z≥0 such that for any (k, ζ) ∈ Z≥0 × (µp∞ \ µpr ),

ordp
(
F
(
ζuk − 1

))
=

degF (X)

(p− 1) prζ−1
,

where rζ is the order of ζ.

Proof. Decompose

F (X) =

n∏
i=1

(X − αi)

and choose an integer r ≥ 0 such that ordp(αi) >
1

(p− 1)pr−1
for all αi. Then for any (k, ζ) ∈ Z≥0 ×

(µp∞ \ µpr ), we have the following equality:

ordp(ζu
k − 1− αi) = ordp (ζ (exp (k · log(u))− 1) + (ζ − 1)− αi)

=
1

(p− 1)prζ−1
,

where exp and log are the p-adic exponential and logarithm functions. Thus we have the following

equality:

ordp
(
F
(
ζuk − 1

))
=

n∑
i=1

ordp(ζu
k − 1− αi) =

degF (X)

(p− 1) prζ−1
.

Let us return to the proof of Corollary 1.3.2.

62



Proof of Corollary 1.3.2. First we prove (1) of Corollary 1.3.2. By (1) of Theorem 1.3.1, it is sufficient

to show that there exists an r ∈ Z≥0 such that

ordϖφ(Lp(1− kφ, χ−1
1 χ2ψφω)) ≤ rankΛχI · degL∗

p

(
χ−1
1 χ2

)
for any φ ∈ X

(>r)
arith (I). Since Lp(χ

−1
1 χ2) is not divisible by a uniformizer of Zp[χ−1

1 χ2] by Theorem 4.2.6,

the Weierstrass preparation theorem enables one to decompose

Lp(χ−1
1 χ2) = L∗

p

(
χ−1
1 χ2

)
U ,

where L∗
p

(
χ−1
1 χ2

)
is a distinguished polynomial and U a unit in Λχ−1

1 χ2
. We apply Lemma 6.3.1 to

L∗
p

(
χ−1
1 χ2

)
. Then there exists an integer r ∈ Z≥0 such that

ordp
(
φ
(
L∗
p

(
χ−1
1 χ2

)))
=

degL∗
p

(
χ−1
1 χ2

)
(p− 1) prφ−1

(6.13)

for any φ ∈ X
(>r)
arith (I).

Let us take an element φ ∈ X
(>r)
arith (I) and consider the extension of the discrete valuation rings

φ(I) ⊃ Zp[χ][ζφ]. Since [Frac(φ(I)) : Frac(Zp[χ][ζφ])] ≤ rankΛχI, so is the ramification index eφ. Under

the assumption p ∤ ϕ (N), the extension of p-adic fields Qp (χ) /Qp is unramified. Thus the ramification

index in the extension Zp[χ][ζφ] ⊃ Zp is (p− 1) prφ−1. Then by the equality (6.13), we have

ordϖφ(Lp(1− kφ, χ−1
1 χ2ψφω)) = ordϖφ

(
φ
(
L∗
p

(
χ−1
1 χ2

)))
= eφ(p− 1)prφ−1

degL∗
p

(
χ−1
1 χ2

)
(p− 1) prφ−1

= eφdegL∗
p

(
χ−1
1 χ2

)
≤ rankΛχI · degĜ∗

χ−1
1 χ2

(X).

This completes the proof of (1) of Corollary 1.3.2 and (2) is easily deduced from (1).

Now we prove (3) of Corollary 1.3.2. Assume that I is isomorphic to O[[X]] with O the ring of integers

of a finite extension K of Qp. Let f1(X), · · · , fm(X) be the generators of I (ρF ).

(r1) For each i = 1, · · · ,m, decompose

fi(X) = ϖµiPi(X)Ui(X),

where Pi(X) is a distinguished polynomial and Ui(X) a unit in O[[X]]. Let

F (X) =

m∏
i=1

Pi(X).

We apply Lemma 6.3.1 to F (X). Then there exists an integer r1 ∈ Z≥0 such that

ordpφ (fi(X)) = µiordpϖ +
degPi(X)

(p− 1)prφ−1
(6.14)

for any φ ∈ X
(>r1)
arith (I).
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(r2) We denote by ζm a primitive m-th root of unity for an integer m > 0. We denote by r2 the

following integer:

r2 = max { j ∈ Z≥0 | ζpj ∈ K } .

Let us take an element φ ∈ X
(>r2)
arith (I). Write Kφ = Frac (φ (I)) for short. First we assume r2 > 0.

Then we have K ∩ Qp (ζφ) = Qp (ζpr2 ) and Gal (Kφ/Qp (ζφ))
∼→ Gal (K/Qp (ζpr2 )) . Since I is

isomorphic to O[[X]], the residue degree of the extensions Kφ/Qp (ζφ) and K/Qp (ζpr2 ) coincide,

so are the ramification index. Hence the ramification index of Kφ over Qp is e(p− 1)prφ−1, where

e is the ramification index of K over Qp(ζpr2 ). If r2 = 0, we may enlarge O to O′ = O[ζp] since
O[ζφ] = O′[ζφ] for φ ∈ X

(>r2)
arith (I). Then the argument above also holds, i.e. there exists a constant

e such that the ramification index of Kφ over Qp is e(p− 1)prφ−1. Note that e is the ramification

index of K (ζp) /Qp (ζp) if r2 = 0.

(r3) Since Lp(χ−1
1 χ2)I ⊂ I (ρF ) and ϖ ∤ Lp(χ−1

1 χ2), we have the following set

Z = { i = 1, · · · ,m | µi = 0 }

is nonempty. Let

l = min {degPi(X) | i ∈ Z }

and let us take an integer r3 ∈ Z≥0 such that

(p− 1)pr3−1µiordpϖ + degPi(X) ≥ l.(6.15)

for any i /∈ Z.

Let r′ = max { r1, r2, r3 } and let us take a φ ∈ X
(>r′)
arith (I). Then we have the following equality:

♯L (ρfφ) = min { ordϖφφ (fi(X)) | 1 ≤ i ≤ n }+ 1.(6.16)

Since the ramification index of Kφ over Qp is e(p− 1)prφ−1, we have

ordϖφφ (fi(X)) = e(p− 1)prφ−1µiordpϖ + e · degPi(X)(6.17)

for each 1 ≤ i ≤ n by the equality (6.14). Thus

min { ordϖφφ (fi(X)) | 1 ≤ i ≤ n } = el(6.18)

by the equality (6.15). Combine the equalities (6.16) and (6.18), we have that ♯L (ρfφ) = el + 1 is

constant. This completes the proof of Corollary 1.3.2.

Proof of Corollary 1.3.3. Now we assume the condition (Rank one) or both of the conditions (Cyclic)

and (Prime ideal). We have ♯L (ρfφ) = ordϖφ
(
Lp
(
1− kφ, χ−1

1 χ2ψφω
))

+ 1 by (2) and (3) of Theorem

1.3.1. We fix a ζ ∈ µp∞ . First we assume that Lp(1− s, χ−1
1 χ2ψζω) has a zero s0 ∈ Zp. Let {kn} be the

sequence defined as follows:

(i) kn = s0 + pn if s0 ∈ Z,

(ii) kn =

n∑
i=0

aip
i if s0 =

∞∑
i=0

aip
i such that 0 ≤ ai ≤ p− 1 and s0 ̸∈ Z.
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Then ♯L (ρfφ) is unbounded when kφ runs over the sequence
{
kn
}
.

Assume Lp
(
1− s, χ−1

1 χ2ψζω
)
has no zero in Zp and we show ordϖφ

(
Lp
(
1− kφ, χ−1

1 χ2ψζω
))

is

bounded by contradiction. Suppose that ordϖφ
(
Lp
(
1− kφ, χ−1

1 χ2ψζω
))

is unbounded. Then there

exists a sequence {kn} such that kn ≥ 2 and

lim
n→∞

Lp
(
1− kn, χ−1

1 χ2ψζω
)
= 0.

Since Zp is compact and Lp is a continuous function, Lp
(
s, χ−1

1 χ2ψζω
)
must have zero in Zp. This

contradicts to our assumption and hence ♯L (ρfφ) is bounded. This completes the proof of Corollary

1.3.3.

6.4 Proof of Corollary 1.3.4

We denote by F the residue field I/m. The following lemma is a generalization of the arguments in [Maz,

Appendix I ] for more general settings.

Lemma 6.4.1. Let the assumptions and the notations be as in Theoren 1.3.1. Assume the conditions

(Co-prime), (Cyclic), (Prime ideal) and (Free lattice). Let T be a Gal
(
Q/Q

)
-stable lattice which is free

over I. Then T⊗I φ(I) is a mod ϖφ not semi-simple lattice for any φ ∈ Xarith (I).

Proof. We have I (ρF ) = Lp(χ−1
1 χ2)I under the conditions (Co-prime), (Cyclic) and (Prime ideal) by

Corollary 6.2.5. Let us take a Gal
(
Q/Q

)
-stable lattice T ∼= I⊕2 and we consider the following represen-

tation:

ρ = ρF,T : Gal
(
Q/Q

)
→ GL2 (I) .

The condition (Prime ideal) enables us to define Frac
(
I/Lp(χ−1

1 χ2)I
)
and Frac

(
I/Lp(χ−1

1 χ2)I
)
is of

characteristic zero by Theorem 4.2.6. We denote by ρ mod Lp(χ−1
1 χ2)I the representation as follows:

ρ mod Lp(χ−1
1 χ2)I : Gal

(
Q/Q

) ρ→ GL2 (I)
mod Lp(χ−1

1 χ2)I−→ GL2

(
I/Lp(χ−1

1 χ2)I
)
.

Since trρ mod Lp(χ−1
1 χ2)I is the sum of two characters, we have ρ mod Lp(χ−1

1 χ2)I is reducible by the

Theorem 2.3.3. Let {v1, v2} be a basis corresponding to ρ mod Lp(χ−1
1 χ2)I such that

(
I/Lp(χ−1

1 χ2)I
)
v1

is stable under ρ mod Lp(χ−1
1 χ2)I. Let ṽi ∈ T be a lift of vi (i = 1, 2) and M = Iṽ1 ⊕ Iṽ2. Then by the

following commutative diagram:

0 −−−−→ M ι−−−−→ T −−−−→ Coker (ι) −−−−→ 0y×Lp(χ−1
1 χ2)

y×Lp(χ−1
1 χ2)

y×Lp(χ−1
1 χ2)

0 −−−−→ M ι−−−−→ T −−−−→ Coker (ι) −−−−→ 0y y y
M/Lp(χ−1

1 χ2)M
∼−−−−→ M/Lp(χ−1

1 χ2)M −−−−→ Coker (ι) /Lp(χ−1
1 χ2)Coker (ι) ,

we have Coker (ι) = 0 by Nakayama’s lemma and hence T = Iṽ1 ⊕ Iṽ2. Since
(
I/Lp(χ−1

1 χ2)I
)
v1 is stable

under ρ mod Lp(χ−1
1 χ2)I, we have that T′ = Iṽ1⊕Lp(χ−1

1 χ2)Iṽ2 is also a Gal
(
Q/Q

)
-stable I-free lattice

and T/T′ ∼= I/Lp(χ−1
1 χ2)I.

65



For any φ ∈ Xarith (I), we denote by T and T ′ the Gal
(
Q/Q

)
-stable lattice T⊗I φ(I) and T′ ⊗I φ(I)

respectively. Let ♯L (ρfφ) = n+ 1. Since I (ρF ) = Lp(χ−1
1 χ2)I, we have the following isomorphism:

T/T ′ = T⊗I φ(I)
/
T′ ⊗I φ(I)

∼→ (T/T′)⊗I φ(I)
∼→
(
I/Lp(χ−1

1 χ2)I
)
⊗I φ(I)

∼→ φ(I)/ (ϖφ)
n
.

Thus d ([T ], [T ′]) = n by Proposition 3.2.6. We have ♯L
(
ρfφ
)
= ♯C

(
ρfφ
)
Proposition 6.1.4. Furthermore

we have C
(
ρfφ
)
is a segment by the proof of Proposition 3.3.1. Thus [T ] has exactly one neighbor in

L
(
ρfφ
)
. This implies that T is a mod ϖφ not semi-simple Gal

(
Q/Q

)
-stable lattice by (3) of Proposition

3.3.5.

Under the above preparation, we return to the proof of Corollary 1.3.4.

Proof of Corollary 1.3.4. Let us take an integer l ∈ Z>0. By Corollary 1.3.3 we know that there exists

an arithmetic specialization φ ∈ XI,ζ such that ♯L (ρfφ) = n+ 1 > l

Now we the above element φ and we denote by P = Kerφ. Let T be the Gal
(
Q/Q

)
-stable lattice

with which (Free lattice) holds. We denote by T = T⊗ φ(I) and let

π : T ↠ T⊗ φ(I) = T

be the reduction map. We have T is mod ϖφ not semi-simple by Lemma 6.4.1. Let

L
(
ρfφ
)
= { [T ], [T1], · · · , [Tn] }

such that for any 1 ≤ i ≤ n, T/Ti ∼= φ(I)/ (ϖφ)
i
as a φ (I)-module. We denote by Ti = π−1(Ti). Since

PT ⊂ Ti ⊂ T, we have that Ti is a lattice. By the definition of Ti we have that Ti is stable under the

action of Gal
(
Q/Q

)
. Thus we have the following chain of Gal

(
Q/Q

)
-stable I-lattices

T ⊃ T1 ⊃ · · · ⊃ Tn.

For i ̸= j, if there exists an I[Gal
(
Q/Q

)
]-isomorphism Ξ : Ti

∼→ Tj , then Ξ induces a φ(I)[Gal
(
Q/Q

)
]-

isomorphism

Ti
∼→ Tj , v ⊗ 1 7→ Ξ(v)⊗ 1

in T⊗Iφ(I). For i ̸= j, we have that Ti and Tj are non-isomorphic by Proposition 6.1.4. This contradicts

to our assumption and hence Ti and Tj are non-isomorphic to each other. This implies that ♯L (ρF ) ≥
n+ 1 > m and completes the proof of Corollary 1.3.4.

Remark 6.4.2. Corollary 1.3.4 is also satisfied if we assume the conditions (Co-prime), (Rank one),

(Prime ideal) and (Free lattice) obviously.

6.5 Examples

We give two examples at the end of this paper. Let (p, k0) be the irregular pair i.e. p divides the

numerator of the k0-th Bernoulli number Bk0 . We give two examples as follows:
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1. (p, k0) = (691, 12). Let ∆ ∈ S12 (SL2(Z)) be the Ramanujan’s cuspform. Since dimCS12 (SL2(Z)) =
1, there exists an unique Λ-adic normalized Hecke eigen cusp form F ∈ Sord(ω11,Λ) such that for

the arithmetic specialization φ ∈ Xarith (Λ) with kφ = 12, ζφ = 1,

φ (F) = ∆∗.

By Example 5.3.6 we know that hord(ω11,Λ) is isomorphic to Λ. Thus I (ρF ) = Lp
(
ω11
)
I by

Corollary 6.2.4. The ideal
(
Lp(ω11)

)
is equal to (X − aω11) with aω11 ∈ pZp \ p2Zp which is

calculated by Iwasawa-Sims (see [Wa, §1]). Then we have the following statements:

(i) ♯L (ρfφ) is unbounded when φ varies in X
(ζ=1)
arith (Λ) by Corollary 1.3.3.

(ii) ♯L (ρfφ) = 2 is constant when φ varies in X
(>0)
arith (Λ) by (1) and (3) of Corollary 1.3.2.

(iii) For each k ≥ 2, ♯L (ρfφ) is bounded with maximum value ordp(Lp(1 − k, χω)) + 1 when φ

varies in X
(k)
arith (Λ) by (i) and (ii).

(iv) Since I = Λ is a regular local ring, for a stable Λ-lattice T, we have that T∗∗ is a Λ-free

lattice by (1) of Proposition 5.4.10. Hence the condition (Free lattice) is satisfied and we have

♯L (ρF ) =∞ by Corollary 1.3.4.

Remark 6.5.1. Mazur [Maz, Appendix II] tells us that for the irregular pairs (p, k0) with p < 107

and k0 < 8000 such that p | Bk0 , the corresponding Hecke algebra hord(χ,Λ) is isomorphic to Λ

except for the pair (p, k0) = (547, 486). Thus we can apply Theorem 1.3.1 (2) for these pairs.

2. (p, k0) = (547, 486). By [Maz, Appendix II], there is a conjugate pair of newforms of weight 486

with the required Eisenstein congruence condition and the field which generated by the Fourier

coefficients over Qp is Qp (
√
−p) for both of them. Furthermore, the corresponding Hida Hecke

algebra hord(ω485,Λ) is finite flat of rank two over Λ. We denote by f∗486, f
′∗
486 the corresponding

cusp forms.

Let F (resp. F ′) be the I-adic normalized Hecke eigen cusp form associated to f∗486 (resp. f ′∗486).

Note that I is an integral closure of a quotient of hord(ω484,Λ) by a minimum prime ideal of Λ by

the proof of Theorem 5.3.5. Hence Frac(I) is a quadratic extension of Frac(Λ). The ideal generated

by
(
Lp(ω485)

)
is equal to (X − aω485) with aω485 ∈ pZp \ p2Zp which is calculated by Iwasawa-Sims

(see also [Wa, §1]). Then ♯L (ρfφ) ≤ 3 when we have φ varies in X
(>0)
arith (I) by (1) of Corollary 1.3.2.

Note that the condition (Cyclic) holds for F (this is because the Vandiver’s conjecture is true for

p = 547), thus I(ρF ) is a principal ideal which is generated by a factor of X−aω485 in I by Corollary

6.2.5. The same holds for F ′.
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