
Title Chamonium-Nucleon Scattering with Spin-Dependent
Forces from Lattice QCD

Author(s) 杉浦, 拓也

Citation 大阪大学, 2019, 博士論文

Version Type VoR

URL https://doi.org/10.18910/72641

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Chamonium-Nucleon Scattering with
Spin-Dependent Forces from Lattice QCD

Takuya Sugiura

February 4, 2019



Abstract

Since charmonium and nucleon do not have common valence quarks, color-singlet meson ex-
change forces are suppressed by the OZI rule. The ηcN and the J/ψN interactions are thus
dominated by the QCD van der Waals interaction. Although the QCD van der Waals interac-
tion works to any hadron-hadron scattering, there is much less information of it compared to
ordinary meson exchange interactions.

We study the ηcN and the J/ψN interactions by lattice QCD first-principle calculations.
For this purpose we employ the method developed by HAL QCD collaboration, where short-
ranged spacial part of a hadron correlation function is utilized to define a potential faithful to
the QCD S-matrix. We find that the ηcN and the J/ψN (either with J = 1/2 or J = 3/2)
interactions are all attractive. The qualitative behavior is similar in all cases, demonstrating
expectation from the heavy quark symmetry. The ηcN interaction is a little weaker than the
J/ψN interaction. This result seems to be consistent with chromoelectric dipole picture of
the QCD van der Waals interaction. Also, the J/ψN interaction depends weakly on the total
angular momentum J . We derive the general form of the J/ψN interaction at the lowest order
of the derivative expansion to find that it consists of the central, the spin-spin, and two types
of tensor forces. The four forces are calculated in lattice QCD for the first time. The result
shows that the spin-spin interaction strengthens the J/ψN attraction for J = 1/2, while it
weakens the attraction for J = 3/2.
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Chapter 1

Introduction

1.1 QCD and Effective Field Theories

The fundamental theory for the strong interaction is quantum chromodynamics (QCD). It,
together with the Weinberg-Salam model for the electroweak interaction, constitutes the stan-
dard theory of elementary particles. As many as a few hundred species of hadrons listed in
Particle Data Group [1] are composite states of quarks and gluons. All the hadrons belong
to the singlet representation of the QCD electric charge, or color. This property of QCD is
called the confinement, and is a consequence of the large gauge coupling constant in low-energy
regime.

Since quarks are confined inside of the hadrons, it is useful to effective field theories with
hadrons as elementary degrees of freedom [2]. The most important and well-understood ex-
ample is the two-nucleon interactions [3, 4]. At large relative distance, the NN interaction
is dominated by one-pion exchange. As the two nucleons come closer, exchange of heavier
mesons (ρ, ω, and σ) and two-pion exchange become more significant. phenomenological po-
tentials built upon the meson exchange picture have turned out to be successfully reproduce
experimental NN scattering data with precision [5–7].

While a study of nuclear forces provides insight to the dynamics of light mesons which are
produced by the spontaneous breaking of chiral symmetry, the interactions of heavy quarko-
nium, i.e., a bound state of a heavy quark Q and an anti heavy quark Q̄, have another impor-
tance. The essential difference between nucleon-nucleon interactions and quarkonium-nucleon
interactions is that, in the latter case there is no common valence quarks. Thus, light meson
exchange forces are suppressed by the OZI-rule [8–10] in the quarkonium-nucleon interactions.
For the same reason, the Pauli exclusion principle does not apply at short distances. The
dominant effects come from multi-gluon exchange forces, which is known as the QCD van der
Waals interaction. Therefore, the heavy quarkonium-nucleon interactions are the best testing
ground to study the QCD van der Waals interaction. Although the QCD van der Waals inter-
action works to any hadron-hadron scattering, there is much less information of it compared
to ordinary meson exchange interactions. It is also related to non-perturbative properties of
low-energy gluons.



Through analogy with the QED van der Waals interaction, the QCD van der Waals inter-
action is expected to be attractive [11–13]. Possible bound states of charmonium with nuclei
are studied in Refs. [14–16]

1.2 Phenomenological Description of the Charmonium-

Nucleon Interactions

A heavy quarkonium QQ̄ is spatially small, as the scale of its radius is set by the inverse quark
mass. Appelquist, Dine, and Muzinich [17] have argued that its interaction with gluons is
also localized in time if the radius of the quarkonium is sufficiently small that the interaction
between Q and Q̄ is dominated by the one-gluon exchange, i.e., it is a Coulomb bound state.
Therefore, gluons emitted from a sufficiently heavy quarkonium must assemble into color-
singlet clusters which is localized both in space and time. The use of an operator product
expansion [18–21] is justified in this context, as discussed by Peskin [22]. It turns out to be
theoretically equivalent to a multipole expansion [23,24]. Luke, Manohar, and Savage [11] have
applied the idea to an effective Lagrangian.

The operators of the lowest dimension are the square of the chromoelectric field (Ea)2 and
the square of the chromomagnetic field (Ba)2. The latter is much smaller than the former,
since the strength of the magnetic field is smaller by a factor of αs(ΛQ) than the electric field,
where ΛQ = r−1

Q = αs(r
−1
Q )mQ is the inverse quarkonium radius. Therefore, the amplitude

for the scattering of a heavy quarkonium with another hadron h can be written in the heavy
quark limit as 1

M =
1

3
g2
⟨
Φ′
∣∣∣∣ ri 1

ϵ+Ha

rj
∣∣∣∣Φ⟩⟨h′ ∣∣∣∣ 12Ea

i E
a
j (0)

∣∣∣∣h⟩ , (1.1)

where |Φ⟩ and |h⟩ are the QCD eigenstates of a single quarkonium and a single h, respectively;
r is the relative coordinate of Q and Q̄; Ha is the non-relativistic Hamiltonian for the internal
motion of the QQ̄ system in a color octet state; ϵ is the binding energy of QQ̄. The gauge
coupling g is evaluated at the scale ΛQ. By defining the chromoelectric polarizability αij as

αij ≡ 1

3

⟨
Φ′
∣∣∣∣ ri 1

ϵ+Ha

rj
∣∣∣∣Φ⟩ , (1.2)

Eq. (1.1) can be written as

M =
g2

2
αij
⟨
h′
∣∣Ea

i E
a
j (0)

∣∣h⟩ . (1.3)

The chromoelectric polarizability is solely determined by the quarkonium properties, while the
matrix element ⟨h′ |EiEj |h⟩ is solely from the light-degrees of freedom, i.e., the light quarks

1The relativistically normalized scattering amplitude is Mrel = (2π)4δ4(
∑

p)(2mQQ̄)M.
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and soft gluons. If the quarkonium has S-wave orbital angular momentum, it does not depend
on the angle i and j, so that αij = δijᾱ. Equation (1.2) can be analytically computed as
one expands it in 1/Nc, where Nc is the number of colors. At O(1/N0

c ), α for the 1S and 2S
Coulombic quarkonium states are given as

αij(1S → 1S) = δij
4

27
πa30 · 7, (1.4)

αij(2S → 2S) = δij
4

27
πa30 · 502, (1.5)

where a0 = (16π)/(3g2mQ) is the Bohr radius of the quarkonium. One may apply the above
discussion to the charmonium state, although the charm quark might not be heavy enough to
form a Coulombic cc̄ bound state. Then the S-wave charmonium chromoelectric polarizabilities
are calculated as [25,26]

ᾱ(1S → 1S) ≃ 0.2GeV−3, (1.6)

ᾱ(2S → 2S) ≃ 12GeV−3, (1.7)

ᾱ(2S → 1S) ≃ −0.6GeV−3. (1.8)

Meanwhile, a phenomenological evaluation of the transition polarizability ᾱ(2S → 1S) from
the decay ψ′ → J/ψππ gives [27]

|ᾱ(2S → 1S)| ≃ 2GeV−3. (1.9)

No other result has been reported phenomenologically for the charmonium chromoelectric
polarizabilities. Recently, Polyakov and Schweitzer [29] have utilized our preliminary lattice
result of the J/ψN interactions [28] to determine the 1S diagonal element as

ᾱ(1S → 1S) = 1.5± 0.6GeV−3, (1.10)

with unphysical quark masses, mπ = 874MeV and mN = 1816MeV. All the above values
roughly agree, but with large uncertainties. More detailed analysis is required to determine
α with more precision. Also, it is very important to check to what extent the chromoelec-
tric dipole picture works for charmonium-nucleon interactions. Especially, the 2S state has
relatively large size than the 1S state, so that the assumption of Coulombic bound state is
questionable for the 2S.

The chromoelectric dipole interaction in Eq. (1.1) appears at the lowest order of the mul-
tipole expansion; higher-order terms can also be systematically considered. For example, the
spin-spin interaction between a J/ψ and a nucleon arises due to interference of the chromo-
electric dipole and the chromomagnetic quadrupole transitions [25]. This the next-to-leading
order effect, i.e., suppressed by a factor of O(1/mc) relative to the leading spin-independent
interaction.
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Chapter 2

Inverse Scattering in a Finite Box

2.1 Non-Relativistic Scattering

We consider a non-relativistic scattering problem of two spinless particles in 3-dimensional
space. The Hamiltonian in the center of mass frame is written as

H = −∇2

2µ
+ V (r) r = |r| , (2.1)

where r is the relative coordinate of the two particles and µ is the reduced mass. The inter-
action is assumed to be local, smooth and short-ranged, such that there exists a range R and
V (r) = 0 for r > R. The wave function is a solution to the stationary Schrödinger equation

Hψ(r) = Eψ(r), (2.2)

where E is the energy eigenvalue. By separating the wave function as

ψ(r⃗) =
∞∑
l=0

+l∑
m=−l

ϕl(r)

r
Ylm(θ, φ), (2.3)

r = (r sin θ cosφ, r sin θ sinφ, r cos θ) , (2.4)

eq. (2.2) splits into the angular equation[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Ylm(θ, φ) = l(l + 1)Ylm(θ, φ), (2.5)

and the radial Schrödinger equation[
∂2

∂r2
− l(l + 1)

r2
+ k2 − 2µV (r)

]
ϕl(r) = 0, (2.6)

where the momentum k is related to the energy E through E = k2/(2µ). The functions
Ylm(θ, φ) are well-known as the spherical harmonics, and our main interest is on the radial



wave function ϕl(r). We here focus on scattering states, i.e. E > 0 and k is real. Note that,
for large enough l, the centrifugal barrier l(l + 1)/r2 prevents the two particle to be within
the range of the potential r < R and “feel each other” to be scattered. The partial wave
expansion (2.3) can be truncated for l at some l = lmax, since l > lmax would give a trivial
result and are none of our interest. One would find lmax smaller for smaller k2, since if the
relative momentum is small it is unlikely that the particles penetrate the centrifugal barrier;
this is why the partial wave expansion is especially useful for low-energy scattering.

Let us first consider the free case when V (r) = 0 for all r ∈ R. As r → 0, the centrifugal
term l(l+1)/r2 dominates over the energy term k2, and thus ϕl(r) must behave like either rl+1

or r−l. The two independent solutions are known as the Riccati-Bessel function ĵl(kr) and the
Riccati-Neumann function n̂l(kr), respectively,

ĵl(z) ≡ zjl(z) =
(πz
2

)1/2
Jl+1/2(z), (2.7)

n̂l(z) ≡ znl(z) = (−1)l
(πz
2

)1/2
J−l−1/2(z), (2.8)

where jz(z) is the spherical Bessel function, nl(z) is the spherical Neumann function, and Jλ(z)
is the ordinary Bessel function satisfying(

z2
d2

dz2
+ z

d

dz
+ (z2 − λ2)

)
Jλ(z) = 0. (2.9)

In the free case, the physically relevant solution is given by ĵl(kr), as it vanishes at r = 0 and
n̂l does not. As r → ∞, the centrifugal force vanishes and the ϕl(r) behaves like the solutions
of l = 0. For this it is more convenient to introduce the Riccati-Hankel functions

ĥ
(±)
l (z) ≡ n̂l(z)± iĵl(z), (2.10)

which has the asymptotic form

ĥ
(±)
l (z) →

z→∞
exp (±i(z − lπ/2)) . (2.11)

From the above definitions it is clear that for x ∈ R, ĵl(x) and n̂l(x) are real, and[
ĥ
(±)
l

]∗
= ĥ

(∓)
l . (2.12)

For finite V (r), the following boundary condition is introduced at r = 0:

lim
r→0

(
ϕl(r)/ĵl(kr)

)
= 1, (2.13)

that is, ϕl(r) behaves as r
l+1 with normalization defined by the Riccati-Bessel function. In the

limit r → ∞ (or in our present model for r > R), the potential vanishes and ϕl(r) is expressed
as a linear combination of the the Riccati-Hankel functions:

ϕl(r) =
i

2

(
Fl(k)ĥ

(−)
l (kr)− F ∗

l (k)ĥ
(+)
l (kr)

)
. (2.14)
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Since both the boundary condition (2.13) and the radial Schrödinger Eq. (2.6) contain real
quantities only, ϕl(r) is real; this is reflected to the fact that the coefficients are given by a
complex-valued function Fl(k) and its complex conjugate. The function Fl(k) is called the Jost
function, and is related to the S-matrix element through

sl(k) =
F ∗
l (k)

Fl(k)
. (2.15)

From this expression it is clear that sl(k) has modulus unity and thus it is parameterized by
a real quantity δl(k) called the phase shift, as

sl(k) = exp (2iδl(k)) . (2.16)

By definition, the phase shift has ambiguity of modulus π. Usually, the ambiguity is removed
by requiring that δl(k) be a continuous function of k that goes to zero as k → ∞: if the
energy is so large that k2 ≫ V (r) for all r, there occurs hardly any scattering. With the above
definition, the phase shift at k = 0 is related to the number of bound states nl with the given
l:

δl(0) = nlπ, (2.17)

unless F0(0) = 0, in which case the same result holds for l > 0 but δ0(0) = (n0 + 1/2)π. It is
known that the sign of the potential and the sign of the phase shift are related. In particular,
a wholly attractive potential (V (r) < 0 for all r) gives a positive phase shift, while a wholly
repulsive potential gives a negative phase shift.

We note that the solution satisfying Eq. (2.14) is called the regular solution. Another
commonly used solution which we denote as ψl(r) satisfies

ψl(r) = ĵl(kr) + kfl(k)ĥ
(+)
l (kr) (2.18)

for r > R, where the partial wave amplitude fl(k) is defined as

fl(k) =
sl(k)− 1

2ik
. (2.19)

The two solutions are related through

ϕl(r) = Fl(k)ψl(r). (2.20)

The advantage of working with the regular solution ϕl(r) lies in the fact the boundary condition
is given at r = 0 only and thus it is mathematicaly more convenient. Especially, when we
convert the differential radial Schrödinger Eq. (2.6) to an integral equation, we can solve it
point-by-point for each r from the origin.
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2.2 Quantum Mechanics in Finite Volume

We now place the two particles in a finite box of size L3 with periodic boundary conditions.
The stationary Schrödinger equation becomes(

−∇2

2µ
+ VL(r)

)
ψn(r) = Enψn(r), (2.21)

where the potential is defined through the potential in the infinite volume V (r) as

VL(r) =
∑
n∈Z3

V (|r + Ln|), (2.22)

to take into account the interactions “around the world”. The wave function ψn(r) satisfies

ψn(r + Ln) = ψn(r), n ∈ Z3, (2.23)

which can be made orthonormal to form a complete set of smooth eigenfunctions. Unlike in the
infinite volume case, the energy eigenvalues En = k2n/(2µ) are discretized in a finite volume.
The larger the box size is, the more states are allowed to exist. As L → ∞, the spectrum
becomes infinitely dense in the positive energy region to be the continuous scattering states,
while the bound states remain discrete in the negative energy region. It is important to
remember that negative En(L) for a given finite L does not necessarily imply the existence of
a bound state in the limit L→ ∞.

In a finite box we cannot separate the two particles infinitely apart, unlike in the infinite
volume case. However, if the box size is sufficiently larger than the potential range such that
L > 2R, we can define the “exterior region” Ωex and the “inner region” Ωin by

Ωex =
{
r ∈ R3 | |r + nL| > R,n ∈ Z3

}
, (2.24)

Ωin =
{
r ∈ R3 | |r + nL| < R,n ∈ Z3

}
. (2.25)

In the exterior region, the potential vanishes and ψn(r) satisfies the Helmholtz equation(
∇2 + k2n

)
ψn(r) = 0, (2.26)

with the boundary condition (2.23). In a finite volume, the rotational symmetry is reduced to
its subgroup. Representations in the finite volume are expressed by a linear combination of a
few states with different angular momentum.

Now, since kn are restricted to those which are accommodated in the box with periodicity,
we can relate the discretized spectrum to the phase shift. The relation has been rigorously
studied by M. Lüscher [30–32], and thus is called Lüscher’s finite volume formula. We give a
brief introduction to this formula in Sec. 2.3. Another possible strategy is to find a quantity
which can be calculated by lattice QCD and has the asymptotic form (2.14) up to small
corrections due to finite L. Then the potential is defined to satisfy Schrödinger Eq. (2.21) for
given energies and the corresponding “wave functions”. The latter method is developed by
the HAL QCD collaboration, and is the topic of Sec. 2.4. It is important to note that the two
methods are theoretically equivalent, although they look somewhat different at first sight.
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2.3 Luscher’s Finite Volume Method

In Refs. [30, 31], Lüscher has considered the volume dependence of the discretized energy
spectrum. He has found that the finite volume energy shift due to the polarization effects
decreases exponentially with L, whereas the physically relevant, interaction in the range r < R
gives rise to corrections of powers of L. This observation can be intuitively understood as
follows: since the wave functions are spread throughout the box, the probability of finding two
particles within r < R is inversely proportional to the volume. Further detailed analysis gives
the following expansion of the lowest-lying energy level E0 in a power series of 1/L:

E0 = −2πa0
µL3

{
1 + c1

a0
L

+ c2
a20
L2

}
+O(L−6), (2.27)

c1 = −2.837297, (2.28)

c2 = 6.375183, (2.29)

where a0 is defined through the effective range expansion

k cot δ0(k) = − 1

a0
+
r0
2
k2 +O(k4). (2.30)

The S-wave scattering length a0, together with the effective range r0, gives one of the most
important parameterization for low-energy scattering. Expansion (2.27) is valid to all orders
of perturbation. It is clear from this expression that the energy eigenvalue in a finite box has
simple relation to the S-matrix elements.

Although Eq. (2.27) is a very important result, it is practically desirable to find a simpler
relation of the energy spectrum to the phase shift. We first note that this issue is extremely
simple on a 1 + 1 dimensional space-time. Since the free wave in this case is either e−ik|x| or
e+ik|x|, a parity-even solution outside in the exterior region is given by

ψn(x) = e−ikn|x| + e2iδ0(kn)eikn|x|, (2.31)

where the irrelevant overall normalization factor is omitted. Requiring the wave function to
satisfy periodicity

d

dx
ψn(x)

∣∣∣∣
r=L/2

= 0, (2.32)

one finds

e2iδ0(kn) = e−iknL. (2.33)

Thus once the discretized spectrum En = k2/(2µ) is obtained, the phase shift can be calculated
as δ0(kn) = mπ − 1

2
knL, with m ∈ Z fixed by the condition (2.17).

In 1 + 3 dimensions, the situation is much more complicated, since the 3-dimensional ro-
tational symmetry SO(3) is explicitly broken to its subgroup O with respect to rotation of
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unit π/2. Therefore, the partial wave expansion does not give a basis of the eigenfunctions,
preventing simple arguments of the above kind. Lüscher [32] has rigorously studied the prop-
erties of the Helmholtz equation on a 3-dimensional torus to finally find the corresponding
analogue of Eq. (2.33). In particular, the S-wave scattering states of two scalar particles in
the infinite volume corresponds to the A+

1 representation of the cubic group. Neglecting small
contributions from l ≥ 4, S-wave phase shift can be calculated through

kn cot δ(kn) =
1

πL

∑
n∈Z3

1

n2 − (knL/2π)
2 . (2.34)

As it is apparent in this expression, Lüscher’s finite volume method utilizes the fact that any
scattering state in the exterior region has a unique matching free-wave solution with momentum
k = 2π |n| /L. In this sense it is instructive to say that the phase shift is calculated from the
wave function in the exterior region.

2.4 HAL QCD Method

2.4.1 Time-Independent Method

Let us now consider a field theory that corresponds to the non-relativistic quantum mechanics
defined by Eq. (2.1). The lagrangian is given by

L = L0 + Lint, (2.35)

L0 =

∫
d3xϕ†(x)

(
i∂τ +

∇2

2m

)
ϕ(x), (2.36)

Lint =
1

2

∫
d3xd3y ϕ†(x)ϕ†(y)V (|x− y|)ϕ(x)ϕ(y), (2.37)

where ϕ(x) is a scalar field and with mass m = 2µ and 4-vectors in the Minkowsi space
are represented as x = xν = (x, τ). The canonical momentum field π(x) is defined through
S =

∫
dtL as

π(x) =
δS

δϕ̇(x)
= iϕ†(x). (2.38)

The Hamiltonian is then

H =

∫
d3x π(x)ϕ̇(x)− L (2.39)

= −i
∫
d3x π(x)

(
−∇2

2m

)
ϕ(x) + Lint. (2.40)

To quantize the field, we impose the equal-time canonical commutation relation

[ϕ(x, τ), π(y, τ)] = iδ3(x− y), (2.41)
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or, equivalently, [
ϕ(x, τ), ϕ†(y, τ)

]
= δ3(x− y). (2.42)

Given the above Hamiltonian, we can now define a quantity of crucial importance in our
study. It is defined through

⟨0 |ϕ(x, τ)ϕ(y, τ) |E⟩ = ψ(x− y)e−iEτ , (2.43)

where |E⟩ is the eigenstate of H with eigenvalue E:

H |E⟩ = E |E⟩ . (2.44)

The vacuum |0⟩ is defined as the zero-energy eigenstate, i.e. H |0⟩ = 0, which implies

ϕ(x) |0⟩ = 0. (2.45)

The function ψ(x−y) thus defined is called the equal-time Nambu-Bethe-Salpeter (NBS) wave
function. This is a perfect analogue of the wave function in quantum mechanics, as it satisfies
the stationary Schrödinger equation(

−∇2

2µ
+ V (r)

)
ψ(r) = Eψ(r). (2.46)

It is quite easy to show Eq. (2.46) from the identity

⟨0 | [ϕ(x, τ)ϕ(y, τ), H] |E⟩ = Eψ(x− y)e−iEτ . (2.47)

Our non-relativistic field theory is purposefully designed to reproduce the Schrödinger
equation. However, it implies that the NBS wave function can be utilized to study low-energy
scattering in more realistic models. In fact, it has been shown that NBS wave functions in QCD
has the asymptotic form of Eq. (2.14) up to normalization constants, solely from the properties
of quantum field theories [33–35]. Therefore NBS wave functions in the exterior region contains
information about the S-matrix, whereas its behavior in the inner region depends on the
calculation scheme. To be specific, the J/ψN NBS wave function is defined by

ψαµ(x− y)e−Wt = ⟨0 |Nα(x, t)ψµ(y, t) |W ⟩ , (2.48)

where |W ⟩ is the QCD eigenstate with total energyW and the quantum numbers of the J/ψN
system, Nα(x) and ψµ(y) are local field operators of nucleon and J/ψ, respectively, and we have
moved to the Euclidean space of imaginary time t = iτ . The choice of interpolating operators
is not unique: there are infinitely many degrees of freedom to combine quark operators into a
local operator with the quantum numbers of these hadrons. This suggests that the structure
of the NBS wave function is dependent on the choice of the interpolating operators. The
important point is that the large-distance asymptotic behavior of the NBS wave function does
not depend on the choice of the interpolating operators: the QCD S-matrix is unique. Further
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discussion on the J/ψN NBS wave function will be given in the next chapter. Here let us
continue our discussion with the scalar particles.

Suppose we know NBS wave functions ψn(r) and associated energies En = k2n/(2µ) for
n ≤ nc from a field theory in a finite box. In this case, we “define” the potential through the
Schrödinger equation (

∇2

2µ
+ En

)
ψn(r) =

∫
d3r′ U(r, r′)ψn(r

′), (2.49)

where we introduce an energy-independent and non-local potential U(r, r′). It is crucial in
the HAL QCD method that the potential be non-local: the principal quantities here are the
NBS wave functions for given energies, and an energy-independent and local potential

U(r, r′) = δ3(r − r′)V (r) (2.50)

cannot always satisfy Eq. (2.49) for all n ≤ nc simultaneously 1. This is in contrast to many
other cases, where potentials are constrained to be local in the coordinate space. These local
potential may be related to the non-local potential in Eq. (2.49) through the unitary transfor-
mation

ψn → ψ′ = Aψ, (2.51)

U → U ′ = AUA† A : unitary matrix. (2.52)

Such unitary transformation changes the structure of the potential and the wave functions,
but does not affect the observables of the theory, such as the energy eigenvalues and S-matrix
elements. The potential defined by Eq. (2.49) is one of these potentials which reproduces the
NBS wave functions in a box. In Ref. [34], it is shown that such an energy-independent and
non-local potential actually exists.

In practice, the nonlocality of the HAL QCD potential is taken into account by the deriva-
tive expansion: the potential is expressed as a power series of spatial derivatives, coefficients
of which are energy-independent and local functions. In our non-relativistic model of scalar
particles with Hermiticity, rotational invariance, time-reversal invariance and parity symmetry,
the potential is assumed to have the form

U(r, r′) = V (r,∇)δ3(r − r′), (2.53)

V (r,∇) = V0(r) +
1

2

{
Vv2(r),v

2
}
+ Vl2(r)l

2 +O(v4), (2.54)

with p = −i∇, v = p/µ, and l = r × p. The anticommutation relation in the second
term of the right-hand side is necessary to require the potential to be Hermite. The higher-
order terms involve spatial derivatives, and they correspond to the relative momentum of the

1There is a possibility that a local potential satisfy the Schrödinger equation at several different energies
by chance; however this is unlikely since we do not intend it. The derivative expansion is introduced with
expectation that at low energies a local potential approximates the non-local potential in Eq. (2.49), but the
applicability of the local approximation must be checked in every case.
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two particles. Therefore the series is expected to converge in a sense that the low-energy
scattering is well described by first a few terms. In Ref. [36], we have numerically confirmed
the convergence of the derivative expansion with a similar model in 1+1 dimensions. If we
neglect the terms of O(v4), there are five linearly-independent functions in Eq. (2.54): V0,
Vv2 , (∂/∂r)Vv2 , (∂

2/∂r2)Vv2 , and Vl2 . If we have five linearly independent wave functions for
energies E0, · · · , E4, we can solve Eq. (2.49) for these functions.

In the HAL QCD method, the potential is calculated from the wave functions in the
inner region. In the outer region, the potential vanishes since the wave functions satisfy the
Helmholtz equation and the left-hand side of Eq. (2.49) becomes zero. The finite-volume effect
in the inner region is exponentially suppressed, making extrapolation to L→ ∞ an easy task:
we fit the resulting potential by functions that goes to zero as r → ∞ fast enough, and then
solve the Schrödinger equation in a infinite volume. When studying the bound states, this is
an important advantage of the HAL QCD method over Lüscher’s finite volume method, where
the periodic boundary condition plays an essential role and thus the limit L→ ∞ needs to be
taken with much more care.

2.4.2 Time-Dependent Method

In lattice QCD, the equal-time NBS wave function cannot be directly calculated; instead, we
get a mixture of states with different energies,

C(r, t) =
∑
n

Anψn(r)e
−Wnt, (2.55)

where n labels the QCD eigenstates with momentum kn = |kn|,

Wn =
√
k2n +m2

1 +
√
k2n +m2

2, (2.56)

1

µ
=

1

m1

+
1

m2

, (2.57)

and An are unknown coefficients. To calculate the potential from Eq. (2.49), we need to extract
each wave functions from here. In the Euclidean space, the imaginary-time t appears in the
exponents with a factor −Wn. For sufficiently large t, excited-state contributions to Eq. (2.55)
are suppressed, such that

C(r, t) ∼ A0ψ0(r)e
−W0t, t≫ 1/(W1 −W0). (2.58)

This condition is called the ground-state saturation. When the ground-state saturation is
achieved, the NBS wave function for n = 0 equals to Eq. (2.55) upto the irrelevant normaliza-
tion factor.

However, the above procedure is hard to follow in actual situations because the signal-to-
noise ratio in the correlation function (2.55) becomes exponentially small for large t. Therefore,
as we go to large t region to achieve the ground-state saturation, the signal of the correlation
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function gets weaker. Moreover, the splitting W1 −W0 becomes smaller as 1/L2: for example,
in the free case, it is assumed as

W1 −W0 =
1

2µ

(2π)2

L2
. (2.59)

This means that, to achieve the ground-state saturation in a very large box, the imaginary
time t needs to be very large, where statistical noise is terrible. We need a better method to
calculate potentials by lattice QCD.

In Ref. [37], the above problem is avoided by utilizing the imaginary-time dependence of
the correlation function. One defines a normalized correlation function

R(r, t) = C(r, t)× e(m1+m2)t (2.60)

=
∑
n

Anψn(r)e
−∆Wnt, (2.61)

with ∆W = Wn − (m1 +m2). If the two particles are identical, i.e., m1 = m2 = 2µ, one finds
the identity

k2n
2µ

= ∆Wn +
∆W 2

n

8µ
, if m1 = m2. (2.62)

If m1 ̸= m2, one expands ∆Wn in powers of kn to find

k2n
2µ

= ∆Wn +
1 + 3δ2

8µ
∆W 2

n + δ2 · O(k6n), (2.63)

δ =
m1 −m2

m1 +m2

. (2.64)

As far as we are interested in low-energy scattering, the terms ofO(k6n) are supposed to be small
and can be safely neglected. Then Eq. (2.63) implies that the kinetic energy En = k2n/(2µ)
can be extracted from the normalized correlator (2.60) by temporal derivatives:(

1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t

)
R(r, t) =

∑
n

k2n
2µ
Anψn(r)e

−∆Wnt (2.65)

=
∑
n

An
(
−∇2

2µ
ψn(r) +

∫
d3r′ U(r, r′)ψn(r

′)

)
e−∆Wnt, (2.66)

where we have used Eq. (2.43) to obtain the last equation. Recall that the HAL QCD potential
is defined by Eq. (2.43) with given En = k2n/(2µ) and ψn(r) for n ≤ nc: all the elastic states
below the meson production threshold are reproduce by the same potential. It is now clear that
the same potential U(r, r′) satisfy the following time-dependent Schrödinger-like equation:(

1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t
+H0

)
R(r, t) =

∫
d3r′ U(r, r′)R(r′, t), (2.67)
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where H0 = ∇2/(2µ). The method which uses Eq. (2.67) to calculate the potential is called
the “time-dependent HAL QCD method” hereafter. The principal advantage of the time-
dependent HAL QCD method over the previous, time-independent method is that we do not
have to separate each wave function from the correlator (2.55). In Eq. (2.67), the fact that all
the wave functions are reproduced by a single energy-independent and non-local potential is
more explicitly utilized. As a result, what we require is not the ground-state saturation, but
the elastic-state saturation

C(r, t) ∼
nc∑
n=0

Anψn(r)e
−Wnt, (2.68)

where nc is set by the meson production threshold. Such t required for the elastic-state
saturation is in general much smaller than what is required for the ground-state saturation,
allowing us to obtain good signals in lattice QCD simulations.

Once the elastic-state saturation is achieved, we can apply the derivative expansion to the
non-local potential as in Eqs. (2.53) and (2.54). If we take the lowest order (central force) of
the expansion, i.e., U(r, r′) = V0(r)δ

3(r − r′), we get(
1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t
+H0

)
R(r, t) = V0(r)R(r, t). (2.69)

The convergence of the derivative expansion can be confirmed by seeing the t-independence of
the central potential V0(r) thus determined.
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Chapter 3

Charmonium-Nucleon Interactions

3.1 Charmonium-Nucleon Wave Functions

3.1.1 Nambu-Bethe-Salpeter Wave Function

The J/ψN NBS wave function is extracted from the correlation function

Cαµ;α′µ′(r, t− t0) =
∑
x

⟨
0
∣∣∣Nα(r + x, t)ψµ(x, t)J̄ (JP )wall

α′µ′ (t0)
∣∣∣ 0⟩ , (3.1)

where Nα(x) and ψµ(x) are local interpolating operators with the same quantum numbers as
proton and J/ψ, respectively, and α, α′ = 1, 2 and µ, µ′ = 1, 2, 3 represent their spin indices 1.
The local interpolating operators are written in terms of quark fields as

Nα(x) = ϵabc uα,a(x)
(
uTb (x)Cγ5dc(x)

)
, (3.2)

ψµ(x) = c̄d(y)γµcd(y) (3.3)

where color indices are denoted by a, b, c, and d, while Dirac indices are understood implicitly.

The charge conjugation matrix is denoted by C. The source operator J (JP )wall
α′µ′ (t0) has the

same quantum numbers as the J/ψN two-particle state. In our study, we employ wall source
operators with the Coulomb gauge fixing at t = t0,

J (JP )wall
α′µ′ (t0) = P(J)P(Jz)Nwall

α′ (t0)ψ
wall
µ (t0), (3.4)

where Nwall(t0) and ψwall(t0) are similar to Eqs. (3.2) and (3.3), but the local quark fields
q(x, t) are replaced by the wall quark fields

qwall(t0) =
∑
x

q(x, t0). (3.5)

1Since we are interested in J/ψN scattering at low energies, the lower two components of the Dirac spinor
are neglected.



Since the wall source operators has zero orbital angular momentum, their parity is determined
by the product of the intrinsic parities of nucleon and J/ψ: P = −1. In addition, the projec-
tions to a desired set of J and Jz are equivalent to projections with respect to the total spin s
and its z-component sz. Note that neither the total spin nor the orbital angular momentum is

a good quantum number of the J/ψN two-particle system: at t ̸= t0, the state J̄ (JP )wall
α′µ′ (t0)|0⟩

contains contribution from partial waves with l > 0.
The relation of the correlation function (3.1) to the NBS wave function can be made explicit

by inserting the complete set of QCD eigenstates 1 =
∑

n |Wn⟩ ⟨Wn|,

Cαµ;α′µ′(r, t− t0) =
∑
n

∑
x

⟨0 |Nα(r + x, t)ψµ(x, t) |Wn⟩
⟨
Wn

∣∣∣ J̄ (JP )wall
α′µ′ (t0)

∣∣∣ 0⟩ (3.6)

=
∑
n

ψ(J/ψN)
αµ (r)Anα′µ′e

−Wn(t−t0), (3.7)

where Anα′µ′ =
⟨
Wn

∣∣ J̄α′µ′(0)
∣∣ 0⟩. If we choose JP = 1/2−, the NBS wave function is com-

posed of two states: (l, s) = (0, 1/2) and (2, 3/2). Similarly, for JP = 3/2−, there are three
states: (l, s) = (0, 3/2), (2, 1/2), (2, 3/2). In order to extract each of these states, we consider
projections to a specific combination of (l, s) for the sink operators. This will be the topic of
the next subsection.

The ηcN NBS wave function can be constructed in a similar manner as that of J/ψN :

Cα;α′(r, t− t0) =
∑
x

⟨
0
∣∣∣Nα(r + x, t)η(x, t)J̄ (JP )wall

α′ (t0)
∣∣∣ 0⟩ (3.8)

=
∑
n

ψ(ηcN)
α (r)Anα′e−Wn(t−t0), (3.9)

where instead of the J/ψ interpolating operator in Eq. (3.3), we use the ηc operator

η(x) = c̄d(y)γ5cd(y) (3.10)

and the wall source

J (JP )wall
α′ (t0) = P(J)P(Jz)Nwall

α′ (t0)η
wall(t0). (3.11)

Since the total spin of ηcN is 1/2, the orbital angular momentum is unique for a given JP .

3.1.2 Angular Momentum Projections

The asymptotic form of two-particle wave functions can be classified by the total spin s,
the orbital angular momentum l, and the total angular momentum J . They are conveniently
denoted by the term symbols 2s+1lJ , where l = 0, 1, 2, 3, 4, ... are written as S, P,D, F,G, ..., etc.
In Table 3.1, some low-partial wave charmonium-nucleon states are summarized.

In an infinite volume, QCD has the three-dimensional rotational symmetry associated with
SO(3) group and parity symmetry. As we move to a finite volume hypercube, they are reduced

20



to a subgroup, the so-called octahedral group Oh. The properties of Oh are essential for
studying the spin-dependent wave functions on the lattice. A cube has rotational symmetry
O with 24 elements: 1 identity, 6 rotations by π/2 about a 4-fold axis, 8 rotations by 2π/3
about a 3-fold axis, 3 rotations by π about a 4-fold axis, and 6 rotations by π about a 2-fold
axis. By combining O with group Ci = {E, I}, where E is identity and I is reflection, we find

Oh = O × Ci. (3.12)

The total symmetry group Oh has 48 elements. Any rotationally-invariant quantity in a finite
box is represented by the irreducible representations ofOh. The relation between the irreducible
representations of O and those of SO(3) is given in Table 3.2. The irreducible representations of
Oh is similar to those of O, but with superscript ±, indicating the parity eigenvalue. Physically
relevant representations are those with P = (−1)l. For example, the A+

1 representation of O
contains states with l = 0, 4, · · · , while the E+ representation contains l = 2, 4, · · · . In our
study, we assume that the contribution from the states with l ≥ 4 are negligibly small, so that
A+

1 (E+) representation contains the S-wave (D-wave) states only.
Projection to a specific irreducible representation ΓP with parity P can be done by using

the character χΓP of ΓP as

P (ΓP ) =
dΓP

48

48∑
i=1

χ∗
ΓP (gi)D(gi), (3.13)

where gi is the i-th element of Oh, D(gi) is the representation matrix of gi, and dΓP is the
dimension of ΓP . Note that, since our wall source operator has fixed parity P = −, the
projection to representation ΓP of Oh gives the same result as that to the corresponding
representation Γ of O. Therefore, we have

P (ΓP ) = P (Γ) =
dα
24

24∑
i=1

χ∗
Γ(gi)D(gi). (3.14)

The projection to the S-wave orbital angular momentum corresponds to the projection to
the A1 representation of O upto small corrections from the states with l ≥ 4. Similarly, the
projection to D-wave orbital angular momentum can be realized by the projection to the E
representation with corrections from l ≥ 4 2. Applying them to the J/ψN correlation function

Table 3.1: Some low-partial wave charmonium-nucleon states classified by s, l, and J .
s = 1/2 s = 3/2

J l = even l = odd l = even l = odd

1/2 2S1/2
2P1/2

4D1/2
4P1/2

3/2 2D3/2
2P3/2

4S3/2,
4D3/2

4P3/2,
4F3/2

5/2 2D5/2
2F5/2

4D5/2,
4G5/2

4P5/2,
4F5/2

2Although the T2 representation of O also contains l = 2, 4, · · · , we only consider the E representation for
D-wave.
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Cαµ;α′µ′(r, t) or the ηc correlation function Cα;α′(r, t), one finds

P (Γ(l))Cαµ;α′µ′(r, t) =
dΓ(l)
24

24∑
i=1

χ∗
Γ(l)(gi)Cαµ;α′µ′(g

−1
i r, t), (3.15)

P (Γ(l))Cα;α′(r, t) =
dΓ(l)
24

24∑
i=1

χ∗
Γ(l)(gi)Cα;α′(g−1

i r, t), (3.16)

with Γ(l = 0) = A1 and Γ(l = 2) = E.
Projection of the total spin s is somewhat more detailed. As in Table 3.1, the total spin

of the charmonium-nucleon systems are either 1/2 or 3/2. The spin-1/2 representation for the
identity element E ∈ Oh is the unit matrix of rank 2s+ 1 = 2,

D(1/2)(E) = 12. (3.17)

As far as the irreducible representations in Table 3.1 are concerned, a rotation by 2π around
any axis, say Ē, is identical to E:

D(A1/A2/E/T1/T2)(Ē) = D(A1/A2/E/T1/T2)(E). (3.18)

On the contrary, a representation matrix in the spin-1/2 basis transforms to its negative
through Ē:

D(1/2)(Ē) = −D(1/2)(E). (3.19)

Although E and Ē are identical with respect to coordinate rotation, the representation matrix
for spin-1/2 basis are different between E and Ē. These half-integer spin bases are described
by double-valued representations of the rotation group O. There are three double-valued
irreducible representations in O: E1/2, G3/2, and E5/2, corresponding to the state with s = 1/2,
s = 3/2, and s = 5/2, respectively. The projection of the total spin is therefore achieved by
the projection to the corresponding double-valued representation Γ(s) of O as

P (Γ(s))Cαµ;α′µ′(r, t) =
dΓ(s)
24

24∑
i=1

χ∗
Γ(s)(gi)D

(1/2)
αβ (gi)D

(1)
µν (gi)Cβν;α′µ′(r, t), (3.20)

P (Γ(s))Cα;α′(r, t) =
dΓ(s)
24

24∑
i=1

χ∗
Γ(s)(gi)D

(1/2)
αβ (gi)Cβ;α′(r, t), (3.21)

with Γ(s = 1/2) = E1/2, Γ(s = 3/2) = G3/2, and Γ(s = 5/2) = E5/2. Similarly, the projection
of the total angular momentum for the wall source operator is realized by

P (Γ(J))Cαµ;α′µ′(r, t) =
dΓ(J)
24

24∑
i=1

χ∗
Γ(J)(gi)Cαµ;β′ν′(g

−1
i r, t)D

(1/2)†
β′α′ (gi)D

(1)†
ν′ν (gi), (3.22)

P (Γ(J))Cα;α′(r, t) =
dΓ(J)
24

24∑
i=1

χ∗
Γ(J)(gi)Cα;β′(g−1

i r, t)D
(1/2)†
β′α′ (gi). (3.23)
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3.1.3 Spin Operators and Eigenstates

In this subsection, we discuss the structures of correlation functions ψ
(J/ψN)
αµ (r) and ψ

(ηcN)
α (r)

in a SO(3) symmetric case.
The operators acting on the spinor space are the Pauli matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.24)

They form an orthogonal basis for the Hilbert space of all 2-by-2 matrices together with the
unit matrix

12 =

(
1 0
0 1

)
. (3.25)

The third component, σ3, has eigenvalues ±1, and the corresponding eigenstates are:

|+⟩1/2 =
(
1
0

)
, (3.26)

|−⟩1/2 =
(
0
1

)
. (3.27)

The J/ψ spin is expressed by matrices

Σ1 =

0 0 0
0 0 −i
0 +i 0

 , Σ2 =

 0 0 +i
0 0 0
−i 0 0

 , Σ3 =

 0 −i 0
+i 0 0
0 0 0

 , (3.28)

which are Hermitian, unitary and traceless, and satisfy the commutation relations [Σi,Σj] =
iϵijkΣk, just like the Pauli matrices. Also, we define the 3-by-3 unit Matrix as

13 =

1 0 0
0 1 0
0 0 1

 . (3.29)

Table 3.2: The number of irreducible representations of O in the irreducible representations of
SO(3) with angular momentum l ≤ 4. P = (−1)l is the parity eigenvalue.

l P A1 A2 E T1 T2
0 + 1 0 0 0 0
1 - 0 0 0 1 0
2 + 0 0 1 0 1
3 - 0 1 0 1 1
4 + 1 0 1 1 1
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To form an orthogonal basis for the Hilbert space of 3-by-3 matrices, additional five indepen-
dent matrices are needed. They are given by the second-order traceless symmetric matrices

P
(2)
ij (S) ≡ Sij =

1

2
{Si, Sj} −

1

3
S⃗ 2δij, (3.30)

with (i, j) = (1, 2), (2, 3), (3, 1), (1, 1), (2, 2). The eigenvalues of Σ3 are ±1 and 0, with eigen-
states

|+1⟩1 = − 1√
2

1
i
0

 , (3.31)

|−1⟩1 =
1√
2

 1
−i
0

 , (3.32)

|0⟩1 =

0
0
1

 . (3.33)

By using these operators, total spin operator of the J/ψN system is defined as

S =
σ

2
⊗ 13 + 12 ⊗Σ. (3.34)

The total spin of the J/ψN system is either 1/2 or 3/2; therefore S2 has eigenvalues 3/4 and
15/4. All our spin operators s = σ/2,Σ,S and their eigenstates |m⟩s are such that they
satisfy the relations

s± |m⟩s = (s1 ± is2) |m⟩s =
√
(s∓m)(s±m+ 1) |m± 1⟩s , (3.35)

s3 |m⟩s = m |m⟩s . (3.36)

Now, the J/ψN wave function ψ
(J/ψN)
αµ (r) can be written as a 2-by-3 matrix by arranging

α in rows and µ in columns:

ψ(J/ψN)(r) = {ψαµ(r)} =

(
ψ11(r) ψ12(r) ψ13(r)
ψ21(r) ψ22(r) ψ23(r)

)
. (3.37)

In the case of infinite volume, we find that the angular dependence of the J/ψN wave function

is described as by a spin harmonics Y(l,s)
J,Jz

(r̂) as

ψ(J/ψN)(r) = ul(r)Y(l,s)
J,Jz

(r̂), (3.38)

where J , Jz, l, and s are the total angular momentum and its z-component, the orbital angular
momentum, and the total spin, respectively. The spin harmonics is a known 2-by-3 matrix. In
Appendix. A, the specific forms of the J/ψN spin harmonics are summerized.
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3.1.4 Numerical Results of the NBS Wave Functions

Our numerical lattice QCD calculations are performed on the (2+1) flavor full QCD configura-
tions generated by the CP-PACS and JLQCD collaborations [38]. They are generated with the
renormalization-group improved gauge action and a non-perturbatively O(a) improved clover
quark action at β = 6/g2 = 1.90, corresponding to lattice spacing of a = 0.0907(13) fm in both
spatial and temporal directions. The lattice size is L3T = 323 × 64. The spatial volume is
La = 2.902(42) fm, which should be large enough to accommodate the charmonium-nucleon
interactions. In the present study, we employ the set of configurations with the heaviest light-
quark masses, corresponding to pion mass of mπ = 700(2)MeV. We employ the relativistic
heavy quark (RHQ) action for charm quark to avoid the leading O(mca

n) with arbitrary or-
der n and the next-to-leading O(mca)

n(aΛQCD) discretization errors [39]. We use the RHQ
parameters in Ref. [40], which are determined to reproduce the experimental charmed-hadron
masses with almost-physical light quark masses and the relativistic dispersion relation for the
spin-averaged 1S charmonium state. The quark propagators are calculated with point sink
operator and the wall source operator at Euclidean time t = t0. The periodic boundary con-
dition is imposed on the spatial directions, while the Dirichlet boundary condition is imposed
on the temporal direction to avoid backward propagation at t− t0 = 32a. An average over 32
different wall source positions are considered to improve statistics. The statistical uncertainties
are estimated by the jackknife method with bin size 57. We have confirmed that a change of
the bin size to 21 or 19 do not show visible difference in the estimated error.

We first see the masses of the nucleon and the charmonia. They can be extracted from a
two-point correlation function averaged over all spatial points,

C2(t− t0) =
∑
x

⟨
0
∣∣A(x, t)Āwall(t0)

∣∣ 0⟩ , (3.39)

where A(x, t) is an interpolating field operator for the hadron. The temporal correlation of
C2(t) at large t is exp(−mt), so that the effective mass,

ameff(t) = log

(
C2(t)

C2(t+ a)

)
, (3.40)

tends to the hadron mass ma as t→ ∞.
In Fig. 3.1, we show the effective masses of N (Panel (a)), J/ψ and ηc (Panel (b)). As we

expect, we see a plateau region at large t in all cases. The masses are estimated by fitting the
two-point correlation functions by a single exponent. We find that mN = 1585.3± 16.1MeV,
mJ/ψ = 3139.1 ± 11.7MeV, and mηc = 3021.9 ± 9.2MeV, which are extracted in ranges
t = 14−19, t = 15−18, and t = 15−18, respectively. While the nucleon mass is very different
from the experimental value of m

(exp)
N = 938.3MeV, the charmonium masses are much closer

to m
(exp)
J/ψ = 3096.9MeV and m

(exp)
ηc = 2983.9MeV. Therefore, we expect that the effects of

unphysical quark masses are mainly from the light quarks.
The masses calculated here are used for to calculate the potentials in the HAL QCD

method. In addition, the exponential factors in the time-dependent Schrödinger-like Eq. (2.60)
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is replaced by the two-point correlation functions as

R(r, t) = C(r, t)× e(m1+m2)t (3.41)

≃ C(r, t)/
(
C

(N)
2 (t)C

(cc̄)
2 (t)

)
, (3.42)

because statistical noise may be canceled between the correlation functions. This replacement
is justified when C2(t) are expressed by a single exponent, so that we use t ≥ 15 to calculate
the potentials.
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Figure 3.1: The effective masses for (a) nucleon and (b) J/ψ and ηc. The fit value and the fit
range are also shown.
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In Fig. 3.2, we show the J/ψN four-point correlation functions divided by the spin har-
monics,

P(l,s)
J,Jz

C(r, t)/Y(l,s)
J,Jz

(r̂), (3.43)

where P is a product of projection operators to the representation of Oh corresponding to
angular momentum (J, Jz, l,m). They roughly correspond to the radial wave function of the
ground state, if the violation of SO(3) symmetry and the excited state contributions are both
neglected. We see that the S-wave states 2S1/2 and 4S3/2 are calculated with good precision.
However, the D-wave states, 4D1/2,

2D3/2, and
4D3/2 have 10−3 times smaller signal and large

error. The poor D-wave signal is probably because of the use of wall source operator, which
allows only the S-wave state at t = t0. Also, since SO(3) is not a precise symmetry on the

lattice, the four-point correlation function does not have the angular dependence of Y(l,s)
J,Jz

(r̂)
on the lattice; as a result, the quantity (3.43) is not a single-valued function of r. We would
need a more sophisticated analysis to extract D-wave states with precision. Nevertheless we
can mainly utilize the signals for the S-wave states in our study, since S-wave states play a
central role for low-energy scattering. In particular, we consider the S-wave effective central
potentials in the next section.
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Figure 3.2: R-correlators with Jz = J .
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3.2 Low-energy Scattering with Effective Central Po-

tentials

3.2.1 Effective Central Potentials

In general, the initial and final states can have different orbital angular momentum or total
spin, since the rotational symmetry preserves the combination J = l+ s, but not l or s. The
ηcN system with JP = 1/2− is the only allowed state because the total spin of ηcN is 1/2 and
only l = 0 contributes to JP = 1/2−. However, there are two J/ψN states with JP = 1/2−

(2S1/2 and 4D1/2) and three states with JP = 3/2− (4S3/2,
2D3/2, and

4D3/2). The states
with the same J mix through the spin-dependent forces. In this section, we temporarily avoid
treating such transition forces in a straightforward manner; instead we calculate an effective
central potential, which is defined through(

1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t
+H0

)
P(l,s)
J,Jz

R(r, t) = Veff(r)P(l,s)
J,Jz

R(r, t), (3.44)

where Veff(r) is a scalar function. The transition effects through loop diagrams are effectively
introduced in Veff. We consider the S-wave effective central potentials to study low-energy
charmonium-nucleon scattering. Note that the J = 1/2 state of the J/ψN can couple to the
S-wave ηcN state through channel mixing; however, we assume the channel mixing is small,
since it involves re-arrangement of the charm quark spins.

In Fig. 3.3, we show the effective central potentials for the S-wave charmonium-nucleon
states, i.e., ηcN , J/ψN with J = 1/2, and J/ψN with J = 3/2. They are determined
at Euclidean time (t − t0)/a = 15. The charmonium-nucleon interactions show qualitatively
similar behavior in all the three cases: they are all attractive and finite-ranged. This is expected
from the QCD van der Waals interaction model, where the non-perturbative QCD effects of
the light quarks and gluons are considered to be independent of the charmonium states.

To take a closer look, Fig. 3.3 shows that the strength of the interaction depends on
the channels. Among the three, the ηcN has the weakest attraction. The strength of the
J/ψN interaction depends on the total angular momentum J : the effective central potential
with J = 1/2 is more attractive than that with J = 3/2. Since the ηcN interaction is
weaker than the J/ψN interaction with both J = 1/2 and J = 3/2, one will infer that the
weaker attraction of ηcN originates from the properties of charmonia, rather than kinematical
effects. The reduced masses of the J/ψN and the ηcN are µJ/ψN = 1052.4MeV and µηcN =
1038.9MeV, respectively, and are only different by 1.3%. This is far insufficient to explain the
∼ 20% difference seen in Fig. 3.3. Phenomenologically, the charmonium-nucleon interaction
can be described by a chromoelectric dipole interaction in Eq. (1.3), where the chromoelectric
polarizability α behaves as the cube of the non-relativistic charmonium Bohr radius. The
smaller radius of ηc compared to that of J/ψ suggests that α tends to be smaller, so that the
ηcN interaction is weaker than the J/ψN .

The splitting of the J/ψN effective central potentials is due to the spin-dependent forces.
The spin-dependent forces are small, since they are suppressed by factors of O(1/mc). They
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arise due to interference of the chromoelectric dipole and the chromomagnetic quadrupole [25].
In the next chapter, we will derive the general form of the J/ψN interaction with spin-
dependent forces at the lowest order of the derivative expansion, and determine them on
the lattice.

The assumptions used to derive Eq. (3.44) are: (1) the four-point correlation function is
dominated by elastic charmonium-nucleon two-body states, and (2) the derivative expansion
of the non-local and energy-independent HAL QCD potential converges such that low-energy
scattering is described by a local potential U(r, r′) = V0(r)δ

3(r − r′). If both of the two
assumptions are satisfied, the resulting potential is independent of Euclidean time t. In Fig. 3.4,
we show the effective central potentials determined at (t − t0)/a = 15 − 20. No significant t-
dependence is observed in all the three cases. Therefore, we conclude that the two assumptions
are satisfied already at (t− t0)/a = 15. The good agreement of the effective central potentials
from different t shows that systematic error in our calculation is sufficiently small.
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Figure 3.3: The S-wave effective central potentials at (t− t0)/a = 15: (magenta) J/ψN with
J = 3/2, (blue) J/ψN with J = 3/2, and (black) ηcN .

3.2.2 Scattering Phase Shift

The effective central potentials are short-ranged, so that they receive small finite volume effects.
The extrapolation to the infinite volume can thus be easily done, by fitting the potentials with
a function that quickly goes to zero as r increases. We employ a fit by two Gaussian functions,
Veff(r) =

∑
n=1,2 an exp(−vnr2) in all cases. Then it can be used to solve the effective radial
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Figure 3.4: The Euclidean time t dependence of the effective central potentials: (a) J/ψN
with J = 1/2, (b) J/ψN with J = 3/2, and (c) ηcN .

Schrödinger equation [
− 1

2µ

∂2

∂r2
+ Veff(r)

]
ϕ0(r;E) = Eϕ0(r;E). (3.45)

At large r the solution behaves like

ϕ0(r;E) =
i

2

(
F0(k)ĥ

(−)
0 (kr)− F ∗

0 (k)ĥ
(+)
0 (kr)

)
, (3.46)

where E = k2/(2µ). The l = 0 Riccati-Hankel functions are ĥ
(±)
0 (kr) = exp(±kr). The Jost

function can be extracted from ϕ0 and ϕ′
0 = (∂/∂r)ϕ0 as(

ϕ0(r;E)
ϕ′
0(r;E)

)
=
i

2

(
ĥ
(−)
0 (kr) −ĥ(+)

0 (kr)

kĥ
′(−)
0 (kr) −kĥ′(+)

0 (kr)

)(
F0(k)
F ∗
0 (k)

)
. (3.47)
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The scattering phase shift is them given by

s0(k) =
F ∗
0 (k)

F0(k)
= exp(2iδ0(k)). (3.48)

In Fig. 3.5, we show the phase shifts as a function of the center of mass energy E. We
find no charmonium-nucleon bound state. Also, the low-energy S-matrix elements are well
parameterized by the scattering length a and the effective range r, defined through the effective
range expansion

k cot δ0(k) =
1

a
+
r

2
k2 +O(k4). (3.49)

Neglecting the O(k4), the scattering length and the effective range of the S-wave charmonium-
nucleon interactions are obtained as in Table. 3.3, where the error is for statistical uncertainties
only.
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Figure 3.5: The phase shifts calculated from the S-wave effective potentials at (t− t0)/a = 15.
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Table 3.3: The scattering length and the effective range from the effective central potentials.

channel a[fm] r[fm]

J/ψN , J = 1/2 0.656± 0.071 1.105± 0.016

J/ψN , J = 3/2 0.380± 0.048 1.476± 0.039

ηcN 0.246± 0.026 1.703± 0.045
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3.2.3 Comparison with Previous Results

Some previous works of the charmonium-nucleon interactions on the lattice have been re-
ported. The first lattice QCD calculation is given by Yokokawa et al. [41]. They have utilized
Lüscher’s method to calculate the scattering length of ηcN and spin-averaged J/ψN by the
quenched lattice QCD to find aηcN = 0.70 ± 0.66 fm and aJ/ψN = 0.71 ± 0.48 fm where chi-
ral extrapolation is made to the physical quark masses. Another study by Lüscher’s method
is done by Kawanai and Sasaki also by the quenched lattice QCD [42]. They have found
that aηcN ∼ 0.25 fm and aJ/ψN ∼ 0.35 fm. They have used three quark masses corresponding
to mπ = 0.64, 0.72, and 0.87GeV, but no significant difference is observed in the scattering
lengths. Although these results have relatively large uncertainties, they roughly agree with
our results in Table. 3.3.

Kawanai and Sasaki have also calculated the charmonium-nucleon potentials by the time-
independent HAL QCD method and with the quenched approximation [42, 43]. In Fig. 3.6
we show their results of the ηcN and the spin-averaged J/ψN effective central potentials at
mπ = 640MeV. They are qualitatively similar to our results. To make a more clear comparison,
in Fig. 3.7, we re-plot our results (Fig. 3.3) in the scale of Fig. 3.6. Then it is apparent that all
of our potentials have stronger attraction than the corresponding potential by Kawanai and
Sasaki. The difference is because Kawanai and Sasaki used the old HAL QCD method, where
the ground-state saturation is assumed. In actual situations the ground-state saturation is
very hard to achieve, so that the use of the time-dependent method is necessary. It seems that
they have underestimated the short-range part of the potential.
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Figure 3.6: The effective central potentials for the ηcN and the spin-averaged J/ψN by the
time-independent HAL QCD method at mπ = 640MeV. The figure is taken from Ref. [43].
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3.3 Spin-Dependent forces of the J/ψN Interaction

3.3.1 Okubo-Marshak Decomposition

In this subsection, we follow the arguments of Okubo-Marshak [44] to derive the J/ψN inter-
action at the lowest order of the derivative expansion. The general form of the J/ψN 2-body
potential is

V = V (r1, r2, p1, p2, σ, Σ, τ , t), (3.50)

where r1,2 and p1,2 are the positions and momenta of N or J/ψ, σ is the spin of N , Σ is the
spin of J/ψ, τ is the isospin of N , and t is the time of interaction. We require V to satisfy the
following 6 conditions:

1. Energy-momentum conservation
Energy conservation is satisfied when V does not depend on t explicitly. Momentum
conservation implies that V should be translationally invariant. Thus we have

V = V (r, p1, p2, σ, Σ, τ ), (3.51)

with r = r1 − r2.

2. Galilei covariance
It is assumed that V is independent of the center of mass momentum of the system, so
that

V = V (r, q, σ, Σ, τ ), (3.52)

with q = p1 − p2.

3. Isospin invariance
Since mu ∼ md, QCD has approximate SU(2) symmetry with respect to flavor-space
rotation. Thus V should not depend on τ :

V = V (r, q, σ, Σ) (3.53)

4. Conservation of total angular momentum
Rotational invariance of V is required. thus V is a scalar function of the vectors r, q, σ,
and Σ.

5. Parity invariance
Strong interaction preserves parity. Thus

V (r, q, σ, Σ) = V (−r, −q, σ, Σ). (3.54)
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6. Time reversal invariance
Strong interaction preserves time-reversal symmetry. Thus

V (r, q, σ, Σ) = V (r, −q, −σ, −Σ). (3.55)

In the following, we do not consider the momentum q dependence of the potential, since
we are interested in the low-energy J/ψN scattering. We find that there are four operators
allowed:

1 = 12 ⊗ 13, (3.56)

σ ·Σ, (3.57)

S12 ≡ 3(r̂ · σ)(r̂ ·Σ)− σ ·Σ, (3.58)

T12 ≡ 3(r̂ ·Σ)2 −Σ 2, (3.59)

where r̂ = r/|r|. Note that the normalization of operators S12 and T12 is changed from that of

the traceless symmetric tensor P
(2)
ij by a factor of 3. Therefore, the general form of the J/ψN

interaction is given as

V = V0(r) + Vs(r)σ ·Σ+ VT1(r)S12 + VT2(r)T12. (3.60)

3.3.2 Matrix Elements of the Potential

Since the J/ψN potential in Eq. (3.60) is rotationally-invariant, it preserves the total angular
momentum J and Jz. The total spin operator (3.34) is related to σ ·Σ as

S2 =

(
1

2
σ +Σ

)2

(3.61)

= σ ·Σ+
1

4
σ2 +Σ2 (3.62)

= σ ·Σ+
11

4
, (3.63)

since σ2 = 3 and Σ2 = 2. Therefore, the spin-spin force Vs(r) preserves the total spin s and
the orbital angular momentum l: [

S2,σ ·Σ
]
= 0, (3.64)[

L2,σ ·Σ
]
= 0. (3.65)

The operator r̂ · σ can be written in terms of the ladder operators σ± = σ1 ± iσ2 as

r̂ · σ = σ1 sin θ cosϕ+ σ2 sin θ sinϕ+ σ3 cos θ (3.66)

=
1

2
(σ+ + σ−) sin θ cosϕ+

1

2i
(σ+ − σ−) sin θ sinϕ+ σ3 cos θ (3.67)

=
1

2
σ+ sin θe−iθ +

1

2
σ− sin θe+iθ + σ3 cos θ. (3.68)
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Similarly, r̂ ·Σ becomes

r̂ ·Σ =
1

2
Σ+ sin θe−iθ +

1

2
Σ− sin θe+iθ + Σ3 cos θ. (3.69)

One can show that the operators (r̂ · σ)2 and (r̂ ·Σ)2 does not commute with neither S2 nor
L2. Therefore, the tensor forces VT1(r) and VT2(r) does not preserve either s or l:[

S2, S12

]
̸= 0, (3.70)[

L2, S12

]
̸= 0, (3.71)[

S2, T12
]
̸= 0, (3.72)[

L2, T12
]
̸= 0. (3.73)

Note that, the two-nucleon tensor operator

S
(NN)
12 = 3 (r̂ · σ1) (r̂ · σ2)− σ1 · σ2, (3.74)

couples the S- and D-wave states in the spin-triplet channel, but does preserve the total spin:[
S2, S

(NN)
12

]
= 0, (3.75)[

L2, S
(NN)
12

]
̸= 0. (3.76)

The reason for the total spin conservation in the NN case is that they are identical particles,
and the tensor operator S

(NN)
12 is symmetric under permutation of the particles. Of course this

is not the case for J/ψN .

We focus on the J/ψN two-particle scattering with minus parity. There are five such states,
two with J = 1/2 and three with J = 3/2: 2S1/2,

4D1/2,
4S3/2,

2D3/2,
4D3/2. (See Table 3.1).

Since the potential in Eq. (3.60) is rotationally invariant, the matrix elements of the potential
does not depend on Jz. One can calculate the matrix elements of the potential by using the
properties of the angular momentum operators in Eqs. (3.35) and (3.36), and the recursion
formulae for the spherical harmonics,

sin θe−iϕY m
l = +

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
Y m−1
l+1 −

√
(l +m− 1)(l +m)

(2l − 1)(2l + 1)
Y m−1
l−1 , (3.77)

sin θe+iϕY m
l = −

√
(l +m+ 1)(l +m+ 2))

(2l + 1)(2l + 3)
Y m+1
l+1 +

√
(l −m− 1)(l −m))

(2l − 1)(2l + 1)
Y m+1
l−1 , (3.78)

cos θY m
l = +

√
(l −m+ 1)(l +m+ 1)

(2l + 1)(2l + 3)
Y m
l+1 +

√
(l −m)(l +m)

(2l − 1)(2l + 1)
Y m
l−1. (3.79)

37



Then one finds the following results:⟨
2S 1

2

∣∣∣V ∣∣∣ 2S 1
2

⟩
= V0 −2Vs (3.80)⟨

4D 1
2

∣∣∣V ∣∣∣ 4D 1
2

⟩
= V0 +Vs −2VT1 −VT2 (3.81)⟨

2S 1
2

∣∣∣V ∣∣∣ 4D 1
2

⟩
= −

√
2VT1 +

√
2VT2 (3.82)⟨

4S 3
2

∣∣∣V ∣∣∣ 4S 3
2

⟩
= V0 +Vs (3.83)⟨

2D 3
2

∣∣∣V ∣∣∣ 2D 3
2

⟩
= V0 −2Vs (3.84)⟨

4D 3
2

∣∣∣V ∣∣∣ 4D 3
2

⟩
= V0 +Vs (3.85)⟨

4S 3
2

∣∣∣V ∣∣∣ 2D 3
2

⟩
= +VT1 −VT2 (3.86)⟨

4S 3
2

∣∣∣V ∣∣∣ 4D 3
2

⟩
= +2VT1 +VT2 (3.87)⟨

2D 3
2

∣∣∣V ∣∣∣ 4D 3
2

⟩
= −VT1 +VT2 (3.88)

These results can be summerized as in Tables 3.4 and 3.5. Since V is Hermite, the matrix
elements are symmetric under the permutation of the initial and the final states.

Table 3.4: Matrix elements of the J/ψN potential for J = 1
2

2s+1LJ
2S1/2

4D1/2

2S1/2 V0 − 2Vs −
√
2VT1 +

√
2VT2

4D1/2 V0 + Vs − 2VT1 − VT2

Table 3.5: Matrix elements of the J/ψN potential for J = 3
2
.

2s+1LJ
4S3/2

2D3/2
4D3/2

4S3/2 V0 + Vs VT1 − VT2 2VT1 + VT2
2D3/2 V0 − 2Vs −VT1 + VT2
4D3/2 V0 + Vs

The heavy-quark spin symmetry indicates that the J/ψ spin-flipping effects are suppressed
by O(1/mc). Thus we näıvely expect that

V0(r) = O(1), (3.89)

Vs(r) = O(1/mc), (3.90)

VT1(r) = O(1/mc), (3.91)

VT2(r) = O(1/m2
c). (3.92)
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3.3.3 Determination of the Potential

In this section we discuss how to determine the potentials V0(r), Vs(r), VT1(r), VT2(r) by lattice
QCD calculations. For this purpose we first discuss the case when the system has rotational
SO(3) symmetry.

If the derivative expansion converges at the lowest order, the Schrödinger-like equation in
the time-dependent HAL QCD method becomes(

1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t
+H0

)
Rαµ(r, t)

= V0(r)Rαµ(r, t) + Vs(r) (σ ·ΣR)αµ (r, t) + VT1(r) (S12R)αµ (r, t) + VT2(r) (T12R)αµ (r, t),

(3.93)

where α and µ are the spin indices of nucleon and J/ψ, respectively. As discussed in the
previous section, we have five different combinations of (J, l, s). The total angular momentum
quantum numbers J and Jz are fixed at t = 0. In this study, we use the states with Jz = +J
to determine the potentials. We denote the projection operators of J , Jz, l, and s as Pi
(i = 1, 2, 3, 4, 5):

P1 = PJ=1/2PJz=+1/2Pl=0Ps=1/2, (3.94)

P2 = PJ=1/2PJz=+1/2Pl=2Ps=3/2, (3.95)

P3 = PJ=3/2PJz=+3/2Pl=0Ps=3/2, (3.96)

P4 = PJ=3/2PJz=+3/2Pl=2Ps=1/2, (3.97)

P5 = PJ=3/2PJz=+3/2Pl=2Ps=3/2, (3.98)

which corresponds to projections to 2S1/2,
4D1/2,

4S3/2,
2D3/2, and

4D3/2, respectively. By
applying them from the left of Eq. (3.93), we get five linearly-independent equations(

1 + 3δ2

8µ

∂2

∂t2
+
∂

∂t
+H0

)
(PiR)αµ (r, t)

= V0(r) (PiR)αµ (r, t) + Vs(r) (Piσ ·ΣR)αµ (r, t)
+ VT1(r) (PiS12R)αµ (r, t) + VT2(r) (PiT12R)αµ (r, t), (3.99)

where we have utilized the fact that Pi commutes with the scalar functions V0(r), Vs(r), VT1(r),
VT2(r), and operators H0 and ∂/∂t, but not with operators with spin indices. There are four
unknown functions and we have five linearly-independent equations. We can choose four of
these equations labeled by i = (i1, i2, i3, i4) and combine them to a matrix form

Kαµ(r, t) =Mαµ(r, t)v(r), (3.100)
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where we have introduced simplified notations

Kαµ(r, t) =



(
1+3δ2

8µ
∂2

∂t2
+ ∂

∂t
+H0

)
(Pi1R)αµ (r, t)(

1+3δ2

8µ
∂2

∂t2
+ ∂

∂t
+H0

)
(Pi2R)αµ (r, t)(

1+3δ2

8µ
∂2

∂t2
+ ∂

∂t
+H0

)
(Pi3R)αµ (r, t)(

1+3δ2

8µ
∂2

∂t2
+ ∂

∂t
+H0

)
(Pi4R)αµ (r, t)

 , (3.101)

Mαµ(r, t) =


(Pi1R)αµ (r, t) (Pi1σ ·ΣR)αµ (r, t) (Pi1S12R)αµ (r, t) (Pi1T12R)αµ (r, t)
(Pi2R)αµ (r, t) (Pi2σ ·ΣR)αµ (r, t) (Pi2S12R)αµ (r, t) (Pi2T12R)αµ (r, t)
(Pi3R)αµ (r, t) (Pi3σ ·ΣR)αµ (r, t) (Pi3S12R)αµ (r, t) (Pi3T12R)αµ (r, t)
(Pi4R)αµ (r, t) (Pi4σ ·ΣR)αµ (r, t) (Pi4S12R)αµ (r, t) (Pi4T12R)αµ (r, t)

 ,

(3.102)

v(r) =


V0(r)
Vs(r)
VT1(r)
VT2(r)

 . (3.103)

Then we can solve this equation by multiplying the inverse of M(r, t) from the left at each
spatial points r:

v(r) =M−1
αµ (r, t)Kαµ(r, t). (3.104)

The choice of four projection operators i = (i1, i2, i3, i4) is arbitrary. Five such choices are
possible, and all of them should give the identical results within statistical error if there is no
source of systematic error. Therefore, this can be a check of a necessary condition that our
three assumptions are satisfied: (1) Elastic-state saturation is achieved at Euclidean time t.
(2) The derivative expansion converges such that low-energy J/ψN scattering can be described
by the lowest-order potential in Eq. (3.60). (3) The contamination of states with l ≥ 4 in the
irreducible representations of Oh is negligibly small. Moreover, when the above conditions are
all satisfied, the left-hand side of Eq. (3.104) is not dependent on t, although the right-hand
side can be ostensibly.

Now we are set to consider the spin indices α = 1, 2 and µ = 1, 2, 3 of the correlation
functions. In principle, Eq. (3.100) consists of 6 = 2× 3 components, and we need to consider
a proper linear combination of them in order to determine the potentials with less systematic
error. The spin structure of a function f(r, t) with spin indices α and µ and angular momentum
J , Jz, l, and s (corresponding to PiR, PiS12R, etc.) has the form

fαµ(r, t) =
∞∑
n=0

Ane−Wntfnl (r)
(
Y(l,s)
J,Jz

)
αµ

(r̂), (3.105)

where n labels the QCD energy eigenvaluesWn, A
n is a constant in C, and Y(l,s)

J,Jz
(r̂) is the known

spinor harmonics (see Appendix A). For example, the spinor harmonics with (J, Jz, l, s) =
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(1/2,+1/2, 0, 1/2) is

Y(0,1/2)
1/2,+1/2(r̂) =

1√
12π

(
0 0 −1
−1 −i 0

)
. (3.106)

We find that the components (α, µ) = (1, 3), (2, 1), (2, 2) have the same entries upto irrelevant
overall factor. We can use one of these components to determine the potential. On the
contrary, the other components (α, µ) = (1, 1), (1, 2), (2, 3) are zero, so that they do not
contain information of the interaction. The D-wave states have somewhat more complicated
structure. In the case of (J, Jz, l, s) = (1/2,+1/2, 2, 3/2), we get

Y(2,3/2)
1/2,+1/2(r̂) =

1√
60

(
−
√
3Y +1

2 (r̂)−
√
3Y −1

2 (r̂) i
√
3Y +1

2 (r̂) + i
√
3Y −1

2 (r̂) 2
√
2Y 0

2 (r̂)

2
√
3Y +2

2 (r̂)−
√
2Y 0

2 (r̂) −i2
√
3Y +2

2 (r̂)− i
√
2Y 0

2 (r̂) −2
√
3Y +1

2 (r̂)

)
(3.107)

=
1√
24π

(
3iŷẑ 3ŷẑ −x̂2 − ŷ2 + 2ẑ2

2x̂2 − ŷ2 − ẑ2 + 3ix̂ŷ −x̂2 + 2ŷ2 − ẑ2 − 3ix̂ŷ 3x̂ẑ + 3iŷẑ

)
,

(3.108)

where Y m
l (r̂) are the spherical harmonics and r̂ = r/|r| = (x̂, ŷ, ẑ). Equation (3.108) shows

that, if we take an equation from the (α, β) = (1, 2) component for example, it provides a null
result at points on the xy-plane or the xz-plane. Similarly, if we take the (1, 3) component, it
provides a null results at points with r = (±n,±n,±n) (with n ∈ Z, any double sign). In order
to determine the potential as many points as possible, we need to combine these equations
from different spin components. This can be done by multiplying Y(l,s)∗

J,Jz
(r̂) from the left of

Eq. (3.105), so that∑
α=1,2

∑
µ=1,2,3

(
Y(l,s)∗
J,Jz

)
αµ

(r̂)fαµ(r, t) =
∞∑
n=0

Ane−Wntunl (r)
∑
α=1,2

∑
µ=1,2,3

∣∣∣∣(Y(l,s)
J,Jz

)
αµ

(r̂)

∣∣∣∣2 , (3.109)

which is zero only at the origin r = 0, because of the orthogonality of the spherical harmonics.
We introduce a matrix

Yαµ(r̂) =



(
Y(l1,s1)
J,Jz

)
αµ

(r̂) (
Y(l2,s2)
J,Jz

)
αµ

(r̂) (
Y(l3,s3)
J,Jz

)
αµ

(r̂) (
Y(l4,s4)
J,Jz

)
αµ

(r̂)


, (3.110)

where (lj, sj) (j = 1, 2, 3, 4) correspond to the orbital angular momentum l and the total spin
s of the projection operator Pij . By multiplying this from the left of Eq. (3.100) and summing
over α and µ, we get

Y ∗(r̂) ·K(r, t) = Y ∗(r̂) ·M(r, t)v(r), (3.111)
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where (·) denotes the inner product in the spin space:

Y ∗(r̂) ·K(r, t) =
∑
α=1,2

∑
µ=1,2,3

Y ∗
αµ(r̂)Kαµ(r, t). (3.112)

The solution to Eq. (3.111) is

v(r) = (Y ∗(r̂) ·M(r, t))−1 (Y ∗(r̂) ·K(r, t)) . (3.113)

This is a linear combination of Eqs. (3.104) with different (α, µ) components. The results are
null only at r = 0.

3.3.4 Numerical Results of the Spin-Dependent J/ψN Potentials

Although in principle we can consider five combinations of the projection operators to de-
termine the potential, in actual calculations the signals of D-wave state are much smaller
than the S-wave signals (See Fig. 3.2). Therefore, here we consider two combinations: case 1:
(P1, P3, P4, P5), and case 2: (P1, P2, P3, P5), to utilize the S-wave signals.

In Fig. 3.8, we show the spin-dependent potentials in the two cases. We see that the
central force is dominant as expected, whereas the spin-spin force gives sizeable contribution.
The tensor forces are both small compared to the former two. No significant difference can be
seen for the central and the spin-spin forces between case 1 and case 2. For the tensor forces,
we see small difference.

In order to compare with the S-wave effective central potentials, we first note that the
diagonal matrix element of the potential for the 2S1/2 and the 4S3/2 states are V0(r)− 2Vs(r)
and V0(r) + Vs(r), respectively. Therefore, the stronger attraction of the J = 1/2 channel
can be explained by the fact that Vs(r) > 0. In Fig. 3.9, we show the result for the linear
combinations V0(r)− 2Vs(r) and V0(r)+Vs(r). It shows excellent agreement with the effective
central potentials in Fig. 3.3. The spin-spin force is the origin of the hyperfine splitting between
the J = 1/2 and the J = 3/2 states. In the context of the QCD van der Waals interaction, this
is related to the interference of chromoelectric dipole E1 and the chromomagnetic quadrupole
M2 transitions. It will be interesting to compare our lattice results with a phenomenological
calculation of the hyperfine splitting.

42



-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0  0.5  1  1.5  2  2.5

p
o
te
n
tia
l 
[M
e
V
]

r [fm]

VT2(r)

VT1(r)

Vs(r)

V0(r)

-120

-100

-80

-60

-40

-20

 0

 20

 40

 60

 0  0.5  1  1.5  2  2.5

p
o
te
n
tia
l 
[M
e
V
]

r [fm]

VT2(r)

VT1(r)

Vs(r)

V0(r)

Figure 3.8: The spin-dependent forces of the J/ψN interaction at (t−t0)/a = 15. (upper) case
1, (lower) case 2. When calculating the matrix inversion in Eq. (3.113), there are some points
with condition number larger than 1010 since they involve large systematic uncertainties.
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respectively.
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Chapter 4

Conclusion

We have studied the ηcN and the J/ψN interactions by the time-dependent HAL QCDmethod.
The effective central potentials for the ηcN , the J/ψN with J = 3/2, and the J/ψN with
J = 1/2 show that they are all attractive, and the attraction gets stronger in this order. The
relatively small attraction of the ηcN interaction than the J/ψN interactions can be explained
by the chromoelectric dipole picture of the QCD van der Waals interaction. The scattering
length a are: aηcN = 0.246 ± 0.026 fm, aJ/ψNJ=1/2 = 0.656 ± 0.071 fm, and aJ/ψNJ=3/2 =
0.380± 0.048 fm, which are in rough agreement with previous lattice QCD calculations.

We have also determined the general form of the J/ψN potential at the lowest order of
the derivative expansion. We have found there are four forces, i.e., the central, the spin-spin,
and two types of tensor forces. In the limit mc → ∞, the central force dominates the spin-
dependent interactions, and have been simply neglected in most previous studies. We, for the
first time, determined the four forces by lattice QCD first-principle calculations. The result
shows that while the main contribution is from the central force, the spin-spin force gives
sizeable correction to it. The tensor forces are both very small. The spin-spin force strengthen
the attraction in the case of J = 1/2, while it weakens the attraction for J = 3/2.
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Appendix A

Spherical Harmonics with SO(3)
symmetry

The J/ψN wave function has a Dirac spinor index α = 1, 2 and a J/ψ spin index µ = 1, 2, 3.
By arranging α in rows and µ in columns, it can be written as a 2-by-3 matrix,

ψ(J,Jz ,l,s)(r) = {ψαµ(r)} =

(
ψ11(r) ψ12(r) ψ13(r)
ψ21(r) ψ22(r) ψ23(r)

)
, (A.1)

supposing that this is an eigenstate with total angular momentum J , its z-component Jz,
orbital angular momentum l, and total spin s. It is rewritten as

ψ(J,Jz ,l,s)(r) = ⟨r | l, s; J, Jz⟩ (A.2)

=
+l∑

lz=−l

+s∑
sz=−s

⟨r | l, s; lz, sz⟩ ⟨l, s; lz, sz | l, s; J, Jz⟩ , (A.3)

where we have used the identity

1 =
+l∑

lz=−l

+s∑
sz=−s

|l, s; lz, sz⟩ ⟨l, s; lz, sz| . (A.4)

The factors ⟨l, s; lz, sz | l, s; J, Jz⟩ are the ClebschGordan coefficients. The wave function can
be separated into a spatial part and an angular part as

⟨r | l; lz⟩ = ul(r) ⟨r̂ | l; lz⟩ (A.5)

= ul(r)Y
lz
l (r̂), (A.6)

where r̂ = r/|r| and the spherical harmonics are denoted as Y lz
l (r̂). We now define a spin

harmonics Y(l,s)
J,Jz

(r̂) as

Y(l,s)
J,Jz

(r̂) =
+l∑

lz=−l

+s∑
sz=−s

Y lz
l (r̂) |s; sz⟩ ⟨l, s; lz, sz | l, s; J, Jz⟩ , (A.7)



so that Eq. (A.3) is rewritten as

ψ(J,Jz ,l,s)(r) = ul(r)Y(l,s)
J,Jz

(r̂). (A.8)

The total spin function |s; sz⟩ is a 2-by-3 matrix in the basis of α and µ. What we are left

with is to derive the exact forms of the spin harmonics Y(l,s)
J,Jz

(r̂).
The nucleon spin state are written as

|1/2;+1/2⟩ =
(
1
0

)
, (A.9)

|1/2;−1/2⟩ =
(
0
1

)
, (A.10)

whereas the J/ψ spin states are

|+1; 1⟩ = − 1√
2
(1, i, 0) , (A.11)

|−1; 1⟩ = +
1√
2
(1,−i, 0) , (A.12)

|0; 1⟩ = (0, 0, 1) . (A.13)

From these matrices, the total spin functions are given as

|s, sz⟩ =
∑

m1=±1/2

∑
m2=0,±1

⟨1/2, 1;m1,m2 | 1/2, 1; s, sz⟩ |1/2, 1;m1,m2⟩ . (A.14)

Therefore we find that

|+1/2; 1/2⟩ = 1√
3

(
0 0 −1
−1 −i 0

)
, (A.15)

|−1/2; 1/2⟩ = 1√
3

(
−1 i 0
0 0 1

)
, (A.16)

|+3/2; 3/2⟩ = 1√
2

(
−1 −i 0
0 0 0

)
, (A.17)

|+1/2; 3/2⟩ = 1√
6

(
0 0 2
−1 −i 0

)
, (A.18)

|−1/2; 3/2⟩ = 1√
6

(
1 −i 0
0 0 2

)
, (A.19)

|−3/2; 3/2⟩ = 1√
2

(
0 0 0
1 −i 0

)
. (A.20)
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The explicit forms of the spherical harmonics with l = 0, 2 are as follows.

Y 0
0 (r̂) =

1√
4π
, (A.21)

Y −2
2 (r̂) =

1

4

√
15

2π

(
x̂2 − ŷ2 − 2ix̂ŷ

)
, (A.22)

Y −1
2 (r̂) =

1

2

√
15

2π
(x̂ẑ − iŷẑ) , (A.23)

Y 0
2 (r̂) =

1

4

√
5

π

(
−x̂2 − ŷ2 + 2ẑ2

)
, (A.24)

Y +1
2 (r̂) = −1

2

√
15

2π
(x̂ẑ + iŷẑ) , (A.25)

Y +2
2 (r̂) =

1

4

√
15

2π

(
x̂2 − ŷ2 + 2ix̂ŷ

)
, (A.26)

with

r̂ = (x̂, ŷ, ẑ). (A.27)

Combining the above results, we find the spin harmonics as follows. (We drop obvious
argument r̂ from Y lz

l (r̂).)

Y(0,1/2)
1/2,+1/2 =

1√
12π

(
0 0 −1
−1 −i 0

)
(A.28)

Y(0,1/2)
1/2,−1/2 =

1√
12π

(
−1 i 0
0 0 1

)
(A.29)

Y(2,3/2)
1/2,+1/2 =

1√
60

(
−
√
3Y +1

2 −
√
3Y −1

2 i
√
3Y +1

2 + i
√
3Y −1

2 2
√
2Y 0

2

2
√
3Y +2

2 −
√
2Y 0

2 −i2
√
3Y +2

2 − i
√
2Y 0

2 −2
√
3Y +1

2

)
(A.30)

Y(2,3/2)
1/2,−1/2 =

1√
60

(
−
√
2Y 0

2 + 2
√
3Y −2

2 i
√
2Y 0

2 + i2
√
3Y −2

2 2
√
3Y −1

2√
3Y +1

2 −
√
3Y −1

2 −i
√
3Y +1

2 − i
√
3Y −1

2 −2
√
2Y 0

2

)
(A.31)
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Y(0,3/2)
3/2,+3/2 =

1√
8π

(
−1 −i 0
0 0 0

)
(A.32)

Y(0,3/2)
3/2,+1/2 =

1√
24π

(
0 0 2
−1 −i 0

)
(A.33)

Y(0,3/2)
3/2,−1/2 =

1√
24π

(
1 −i 0
0 0 2

)
(A.34)

Y(0,3/2)
3/2,−3/2 =

1√
8π

(
0 0 0
1 −i 0

)
(A.35)

Y(2,1/2)
3/2,+3/2 =

1√
15

(
−2Y +2

2 i2Y +2
2 Y +1

2

Y +1
2 iY +1

2 2Y +2
2

)
(A.36)

Y(2,1/2)
3/2,+1/2 =

1√
15

(
−
√
3Y +1

2 i
√
3Y +1

2

√
2Y 0

2√
2Y 0

2 i
√
2Y 0

2

√
3Y +1

2

)
(A.37)

Y(2,1/2)
3/2,−1/2 =

1√
15

(
−
√
2Y 0

2 i
√
2Y 0

2

√
3Y −1

2√
3Y −1

2 i
√
3Y −1

2

√
2Y 0

2

)
(A.38)

Y(2,1/2)
3/2,−3/2 =

1√
15

(
−Y −1

2 iY −1
2 2Y −2

2

2Y −2
2 i2Y −2

2 Y −1
2

)
(A.39)

Y(2,3/2)
3/2,+3/2 =

1√
30

(√
2Y +2

2 −
√
3Y 0

2 −i
√
2Y +2

2 − i
√
3Y 0

2 −2
√
2Y +1

2√
2Y +1

2 i
√
2Y +1

2 2
√
2Y +2

2

)
(A.40)

Y(2,3/2)
3/2,+1/2 =

1√
30

(
−
√
6Y −1

2 −i
√
6Y −1

2 −2Y 0
2√

6Y +2
2 + Y 0

2 −i
√
6Y +2

2 + iY 0
2 0

)
(A.41)

Y(2,3/2)
3/2,−1/2 =

1√
30

(
−Y 0

2 −
√
6Y −2

2 iY 0
2 − i

√
6Y −2

2 0√
6Y +1

2 −i
√
6Y +1

2 −2Y 0
2

)
(A.42)

Y(2,3/2)
3/2,−3/2 =

1√
30

(
−
√
2Y −1

2 i
√
2Y −1

2 2
√
2Y −2

2√
3Y 0

2 −
√
2Y −2

2 −i
√
3Y 0

2 − i
√
2Y −2

2 −2
√
2Y −1

2

)
(A.43)
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