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1. Introduction

Let q be a power of a prime number p> Fq a finite field with q elements and
K an algebraic closure of Fr Let Go be a classical linear group written in
GL(n, q)\ we are particularly interested in SL(l+l, q), Sp(2l, q), Ω(2/+l, q),
Ω±1(2/, q) and SU(l+l> q). Let V=^Kn, the vector space of column vectors of
size n over K, and let St be the Steinberg module for Go. In [8] Lusztig showed
that St®V is a principal indecomposable module for G0=GL(ny q)> provided
q>2. In this paper we shall prove this fact in all the classical linear groups,
with the treatment of the case of q=2. Our methods rely heavily on Stein-
berg's tensor product theorem on the representation of semisimple algebraic
groups over K. So we shall begin our arguments with a review of some stan-
dard facts about (universal) Chevalley groups over K.

For modules M> N over a ring A, we write iV<φM if N is isomorphic to
a direct summand of M> and ΛΓ<M if N is isomorphic to an irreducible con-
stituen of M. We abbreviate ®^ to ® and denote by βj the unit vector of Kn

with 1 at the -th entry. We refer to Borel [1], Carter [3] [4], Steinberg [10]
[11] and Suzuki [12] for the general theories of Chevalley groups and their
modular representations.

We mention here that our results in the cases of SL(l+ί, q) and Sp(2l, q)
were already obtained by Okuyama [9] by different methods.

2. Background materials

Let g be a simple Lie algebra over the complex field C of type Ah Bh Ct or
Dh so that gcgl(w, C) and n=l+l> 2/+1, 2Γs according to the order of the
occurrence of the above types. Let ϊ) be the standard Cartan subalgebra of g,
Φ the set of roots of g relative to §, Π = {alf •••, a} a simple root systme of Φ,
Φ + the set of positive roots of Φ with respect to Π, and Wu the Weyl group of
Φ. More generally, f o r / c l l , we let Φ/ be the root system with basis/ and
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WJ be the Weyl group of Φ 7 . There is a unique #>oe Wu such that w0U= — Π.
Let hΛ be the coroot of α e Φ and {eΛy hβ; αGΦ, J 3 E Π } be a Chevalley basis
of g. For simplicity we write ht for hΛ..

Define λt eϊ j*=Hom c(Ij, C) by

λ ί(diag(ί ι,. ,ί,)) = ίί

where we write diag(ί1, •••> t2l) for diag(0, ί1? •••, t2ι) in case g is of type J5/.
Since each λ, is a weight of ί) in the g-module CM, it takes integral values on all
hΛ. Let ω, be the fundamental dominant weight corresponding to aiy i.e.,

Cύi(hj) = 8ij (l<i,j<l), and let X='ΣZωi. In X we set Γ - G % , ;
ί = l ί

rrii > 0} and X, = {Σ w.ω. 0 < m{ < q-1}.

Recall that SL(/+1, q)y Ω(2/+l , 5), Sp(2ly q) and ίl+ι{2ly q) are the
Chevalley groups over .F9 associated to the embedding g->gl(w, C). In order
to give a united treatment of them with the Steinberg groups SU(l-{-ly q) and
Ω_1(2/, 9) of types 2At and 2Z)7 respectively, let us consider a universal Chevalley
group over K:

We know that (5 is a simply connected, semisimple algebraic group defined
over Fpy which has β=<hΛ{t)\ a^.Φy t<ZΞKx=K/ {0}y=ζhi(t) yt^Kx

y l< f</>
and B—(βy xΛ{t)\ αGΦ, t^Ky as a maximal torus and a Borel subgroup res-
ectively, where wJ(t) = xJt)x-Λ(--t~ι)xa(t) and ̂ ( ^ = ̂ ( ^ ^ ( — 1 ) . Also, we
have that ΛΓg(/?)=<eϋo,(ί); αGΦ, t^K*y with factor group modulo jfif iso-
morphic to W^ via wΛ(l)ι->.«;Λ, where zί;̂  is the reflection in the hyperplane
orthogonal to a.

Let X(3) be the group of rational characters of B. For λ e X , we define
λ G l ( i ? ) by λ(A-(ί))=ίλ(*Λ). Then there is an isomorphism X^J?(i?) send-
ing λ onto λ, which is compatible with the actions of the Weyl group W-& on
both sides. The set of weights of R in V—Kn is given by

{V, \<ί</+l} if g is of type A%\

{0, ± λ , ; l < z < / } if g is of type Br,

{±λ, ; \<i<l) if g is of type C, or Z),.

The weight X1 coincides with the first fundamental dominant weight ωx in
each case.
Throughout we fix a Frobenius endomorphism σ of G such that

where either T is the identity and all £ * = ! , or else T is the symmetry of order 2
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on the Dynkin diagram of type At or Z>, and 8Λ=±\. Let G=Gσ

y the finite

subgroup of τ-stable points of Gy and also H=Rσ

y B=S<r. Let Go be one of

the classical linear groups SL(l + ly q)y Ω(2/+l, q), Sρ(2ly q)y Ω±1(2/, q) and

SU(l-\-ly q). There is a natural epimorphism \jr: G->GOy whose kernel is a

central subgroup of G (provided, of course, that the underlying Lie algebras of

them are the same). In this sense we often regard a G0-module as a G-module.

For each \^X+

y there is a simple (?-module L(λ) with highest weight λ,

which means that % is a weight of R in L(X) | # (the restriction to R) and that

all other weights are of the form %—*Σmi&i with non-negative integers m{.

The set {L(λ); λ G X + } provides a complete set of representatives of the under-

lying (5-modules for the non-equivalent irreducible rational representations of

G over K. Furthermore the set {L(λ)'=L(λ)|G; λ G Z ? } gives a complete set

of representatives of non-isomorphic simple G-modules. The canonical module

Kn for Go is, when considered as a G-module, isomorphic to L{ω^f and the

Steinberg module to L((q— l)p)', where p = Σ ωt .

REMARK. In case that Q is of type Bt and p=2y we have

1

0 q)
- ^>(2Z, q)

and F = i £ 2 / ' H decomposes into V=KφK21 in a natural manner. Hence the

canonical module for Ω(2/+l, #) in this case has been and will be understood

to be the one K21 for Sp(2l, q).

For λ, / i G l w e write \<μ> if μ—λ is a non-negative integral linear com-

bination of the simple roots α t . Also, following Jantzen, we write \<Qμy if

μ—λ is a non-negative rational linear combination of the simple roots a{. We

remark that given / i G l + , there are only a finite number of λ G Z + such that

λ < Q μ . In particular, the induction over <Q may be carried out. The follow-

ing well-known fact will be used throughout this paper.

Lemma 1. Let X, μ,

(1) The K-dual L(λ)* of L(\) is isomorphic to L(—wo\).

(2) IfL(y)<L(\)®L(μ),theny<\+μ.

(3) L(λ+μ) appears as a constituent of L(\)®L(μ) with multiplicity one.

then the same is true as G-modules.

, let \°=(q— l ) p + κ ) o λ G l ? and let ί7(λ) be a projective cover

of the simple G-module L(λ)'.

The next lemma is noted by Jantzen [6].

Lemma 2. Suppose that G is a universal Chavalley group over Fr For
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,, we have

, μ)U(μ) ,

where the sum is taken over those μ^Xq such that \0<Qμ, and m(\, μ) denotes

the multiplicity of U{μ)y so that

wι(λ, μ) = dim UomKG(L(μ)\ St®L(\)')

= dim Hom^G(L(^)'®L(-^oX)', St).

This result is valid for the universal Steinberg group Ωβl(2/, q) (/>4), too. In
fact, a slight modification of Jantzen's argument covers the proof of this case.
To see this, it is sufficient, by Lemma 1, to show the following lemma.

Lemma 3 Let G be a universal Chevalley group over Fq or a universal
Steinberg group over Fq2 of type 2Dt (/>4). Let γ G l ? and λ, / i G l + . Then,
ifL(<γγ<L{X)'®L(μγ, we have y<Q\+μ.

Proof. We argue by induction over < Q . There is v^X+ such that
L(v)<L(\)®L(μ) and that L(y)'<L(v)'. If VΪΞXV then y=v<X+μ. Sup-
pose that V$LXV and write v=vo-{-qv1 with vo^Xqy v^X+. Since L(qv1)^=^
L(τv^)oσy we get by Steinberg's tensor product theorem (cf. Steinberg [11]
Theorem 13.1)

L(v) ^ L(v0) ®L(τv^ o cr

and since σ is trivial on G=O<r

f we have

We claim that VO+TPI<QV9 which is trivial if T is the identity. Suppose that r
is the symmetry of order 2 on the Dynkin diagram of type Dt (/>4), so τ(t)=i
(l<i</-2), τ ( / - l ) = / and τ ( / ) = / - l . Write ^ = Σ *, ωt . Then

i) = qvι—rvι = Σ (?
i l

Expressing ω/_x and ω/ as linear combinations of aly •••,«/ (cf. Bourbaki
[2]), we find easily that

{Φι-\—^/)ω/-i+(?£/—έ/_i)ω, Q > 0 ,

provided / > 4 . This proves the claim and we have that Z>0+TZ/1<Q λ + μ .
Then by the inductive hypothesis we get that y<QV0-\-τv<Q λ + μ , completing
the proof of the lemma.

The above lemma (hence Lemma 2) still holds for the universal Steinberg
groups of type 3Z>4 and 2E6, but is false for ££/(/+1, q). For instance, we have
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L((q—l)ω1)®L(ωι)>L(qω1)=L(ωl)oσ and hence L((?—lK

But it is not generally true that ωι<Q qωx. In this case, however, we have an

alternative version, which is weaker than the ordering < Q , but sufficient for

our purpose. Namely we have

L e m m a 4 . Suppose G o = SU(l+ly q). For λ = Σ f l , α), G l , let \X\ =

Σ a,.
(1) //λ, μ^XandX<μ, then | λ | < | μ | .

(2) Let γ G l ? and λ, μ(ΞX+.

(a) IfL(Ύγ<L(X)'®L(μy, then \Ύ\<\χ+μ\.

(b) //L( Ύ y <L(\y and | γ | = | λ | , then y = λ .

Proof. (1) It suffices to show that if λ > 0, then | λ | > 0 (this is not

necessarily true for other types of Lie algebras). We write λ = Σtf t ω, with

a{ e Z. The coefficients of aλ and at in X are gievn by

and

respectively. Both are non-negative integers by assumption, so that by adding

them, we get | λ | = Σ « t >0.
ί

Part (a) of (2) can be proved similarly as Lemma 3 via induction on | X + μ \,

using (1). For the proof of (b), write λ = λ o + ? λ 1 with \0^Xq and X^X+.

Then L(\)'^L(\0)'®L(τXιy >L(γ)', and so | y | < | X0+τ\1 \ < \ X0+q\ I = IXI.

Hence Iλo+TλJ = |λ o +?λ] | , and thus X1=0. Therefore X=X0^Xqy whence

To apply Lemma 2 to £ί® V, we need the following fact.

Lemma 5. Let g be as above.

(1) 8=(q— ϊ)p is the only weight in Xq such that ω°i<QS, except for type B2)

in which case ω\ also satisfies that ω!<Qω2.

(2) If g is of type Ah then (1) is true for all ωk in place of <s

Proof. Although we have to distinguish the cases, the proof is easy. Sup-

pose that μ = Σ c^i^Xq satisfies ω?<Qμ. If g is of type other than Ah then

woω1=—ωli so that

Since 0<Ci<q— 1, we find readily c1=q— 1. Expressing each ω, as a (non-

negative) rational linear combinations of the simple roots and looking at the

coefficients of a^x and ah we find easily c~q— 1 for all ί, except for the case
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of type B2. In that case there is one exception that ω°i<Q ω\.

Now, let g is of type Ax. Then woωk= —ωI+1^k f° r a ^ k^l a n d so

μ—ωϊ =

whence we have cι+ί_k = q— 1. Suppose that £f —(j—1)<0 for some/. If
k>l—i+\y then z'//+l>/+l — &//+1. Since z//+l is the coefficient of α, in
ω, , this implies that the coefficient of ah in μ—ωl is negative, contradicting the
assumption. If, on the other hand, k<l—i+l, then we find that the coefficient
of ax in μ—ωl is negative again, contradicting the assumption. Therefore we
have c~q— 1 for all /. This completes the proof of the lemma.

The last preliminary lemma is the following.

Lemma 6. Let Go be SL(l+l, q), Ω(2/+l, q)9 Sp(2l, q), Ω±1(2/, q) or
SU(I+1, q). Then we have

(1) St®V—U(ω°1)®m1St K > 0 ) .
(2) // GO=SL(I+1, q) or SU(I+1, q), then for all k<l

St®L(ωkY—U(ω°k)®mkSt (mk>0).

Proof. (1) By Lemmas 2 and 5, we need only prove the assertion in the
cae case of <?0=Ω(5, q) with odd prime power q. We want to show that L(ω°)'
is not a constituent of St(g)V. Suppose the contrary. Then there exists
X=a1ω1+a2ω2^X~h such that L(λ)<5 fί®L(ω1) and that L(ω°2y<L(xy. In
particular we have \<(q— l)p+ωv Since ω ] = α 1 + α 2 and ω 2

r=l/2α 1+α 2, we
find from the above that (q—αx)+1/2(^—1— a2) is a non-negative integer and
that

20 1 +tf 2 <3?-l, aλ+a2<2q-\ .

If «i, a2<q—ί, then λ—ω2<(q— l)p+ωly so that ω!+ω 2 >0, which is impos-
sible. If aλ > q, then a2 <q— 1. Write ax=q+b with 0< b< q— 1. Then

L(X)f =

whence (έ+l)ω1+^2ω2 Q>ω2 and we have

(b+2-q)+ll2(a2-q+2)>0,
(b+2-q)+(a2-q+2)>0.

From the first inequality we have 2aι

J

ra2>5q— 6, so that 3#— l > 5 i — 6, i.e
?<2, contradicting the assumption. If a2>q, then aλ<q— 1. Write tf^
with 0 < c < ί l . Then

whence α 1ω 1+(^+l)ω 2 Q>ω0

2 and we have
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From the second inequality we have a1+a2>3q—4, so that 2q— l>3q—4,
i.e., g<3. But the case that q=3 occurs if and only if ax=q—1=2 and #2=
? = 3 . Then q—a1+ll2(q—l—a2)=ί/2 is not an integer. As noted above, this
is a contradiction.

For the proof of (2), we may assume G 0 =5ί7(/+l, q). Take μ = Σ ^ ω G
»

-5^. We want to show that if St=L((q— l)p)'<L(μ)'®L(—woωk)', then μ=ω°k

or (^—l)p. There is γ G l + such that Z,(γ)<L(μ)®L(—woω*) and that
St<CL(γ)'. Since γ<μ+(—α>oω*)=μ+ωτ(*), we have by Lemma 4

If a~q— 1 for all/, we have μ=(q— l)p; otherwise we have (#— l ) / = | γ | =
Σ ^ , + l . This implies that μ={q~l)p—<ύj for somey</ and we have γ =

(j— \)p by Lemma 4. Since γ<μ+ω τ(*) we have ωτ(jfe>>ωy from the above,
whence j=τ(k). Therefore μ=(q—l)ρ—ωr(k)=ω°k as desired.

For convenience of later arguments, we list here the standard unipotent
elements xt(t) of each Chevalley group Go corresponding to the simple root
a{ (cf. Carter [3]). / is the identity matrix and eu the matrix unit. We remark
that the element X-i(f) corresponding to — α, is given by '#;(*)> except for

[A,] G0=SL(l+ly q) (=G).

Π = {«i = \1 — λ2, " , OC/ = λ; —

[BJ G0=Ω(2/+l,j)

Π = {«! = λj —λ2) •••, α ;_! = λ/_! —λ;, «; = λ/} ,

*,(ί) =

x,(t) =

(Rows and columns are numbered 0, 1, •••,/, — 1, •••, —/.)

[C,] G0=Sp{2l, q) (=G)

+1-«_(,+i).-<) (1 ̂ t < / - 1 ) ,

[DJ σo=Ω+1(2/, ί)
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Π = {ax = \—λ2, •••, oci-i = λ/-i—-λ/, ^/=λ/- 1

x,(t) =

Xt(t) =

For / c Π , let Gj=(xΛ(t) α G Φ ; , ίGFq>CGo. This occupies parts of the
main diagonal blocks of Go. If / and / are mutually orthogonal subsets of Π,
then G/u^G/XG;.

The action of hj(t) on the unit vectors e±i(ί<i<l) of V is written as

hs(t)e0 = eQ (only for Ω(2/+1, q)),

where in the case of SL(l-\-l, q) no £_,- appears, but eι+1 is possible instead.
The standard diagonal subgroups Hx and H2 of the universal Steinberg

groups of type 2At and 2Dt are as follows respectively:

3. Reduction to Levi subgroups

Let G be as before. We consider G as a group with a split (£, iV)-pair
(with JB=#< r, N=NG(β)σ)\ see § 1.18 of Carter [4], which will be referred to
for the general theory, of groups with a (5, iV)-pair. Our notations are mostly
the same as in the book.

For a τ-invariant subset / of Π, let PJy LJy and StLj be the standard para-
bolic subgroup (BWjBy, the Levi subgroup <#, xΛ(t); « G Φ ; , t^Ky of Pj,
and the Steinberg character of Lj respectively. As a complex character of
G, St is defined by

where / runs over the τ-invariant subsets of Π and | J\τ \ denotes the number
of the τ-orbits on J. We know that St\Pj=(StLj)

p<r and (St, (lB)
G)=l. In par-

ticular, it follows that i f / = φ , then Lφ=H=S<r and Stff=lH. Also we have
St I B~(KH)B as ίΓB-modules, which give a principal indecomposable XB-module
corresponding to the trivial module, since if is a ̂ -complement of 5 . Let be φ
the Brauer character defined by V=Kn. Since St is projective, we see, with
the notation of Lemma 6, that mι=diτn1tioτnKG(Sty St(g)V) is just the inner
product (Sty St φ) of the Brauer characters. Thus
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We put mj=(StLj) φ| £ j )=dim Hom r L j (Λ L j , V\ Lj). We now prove

Theorem 1. Suppose q>3. Then we have

t/(ω!)θΛ/orΩ(2/+l, j) .

Proof. We want to show tπj=0 for any τ-invariant subset/ of Π. Sup-
pose to the contrary that % Φ θ for some/. Since StLj is injective, it follows
that StLjζ@V\ Lj and hence V contains a nonzero element fixed under H. But
this is clearly impossible in the groups SL(l+l, q)> Sp(2l, q), Ω±ι(2l, q) and
SU(l+l, q), provided q>Z. So let us assume that G0=Ω(2/+l, q) with/>>2.
Then the first unit vector e0 is a unique element, up to scalar multiples, fixed
under H. If J$ah then Lj = <H, xΛ(t)\ αGΦ/, t^Fqy is mapped under

T: G-+GO into the set of the elements of the form — — . Hence V=Keo®W

(W=K2i) is a direct sum as a i£L7-module. I f / = φ , then Lj=H and StH=lff,
hence τwφ=l. If, on the other hand,/4=φ and StLj<(BV\Ljy then StLj<(BW.
This is impossible because Ke0Γ\W=0 and thus mj=0. If J^ah then #/(£)
does not fix eθ9 so that no "nonzero element of V is stable under the subgroup
Bj=ζHy xj(t); αGΦ/, t^Fqy of L7, and we have again mj = 0. (Remember
that Lj has a split (B7, ΛΓ7)-pair (Carter [4] Proposition 2.6.3).)

Now, we concentrate on G0 = SL(l+l, q) or 5C/(/+l, ?). For &</, we

know that L(ωfc)'^^Λl^, the module of skew-symmetric tensors of degree k
(cf. Wong [13]). Using Lemma 6(2), wre prove

Theorem 2. Let G0=SL(l+1, ?) or 5f/(/+1, j) with q>3. Then we have

St®ΛV'— U(ω°k) for all k<l.

Proof. The weight of the standard diagonal subgroup H of Go in Λ V are
of the form§ for some δ=λ/>1H hλ^G-Ywith l ^ j p ^ < A ^ / + 1 . We
show that § is not trivial on H. We may assume that pk<l> because λ / + i=
- f o + +λi). If GO=5L(/+1, ?), ff=<A|(f); ί e f ί , l < / < /> and δ(A/jk)=
2(8, ccPk)l(aPky aPk)=(Sy λ ^ - λ > J b + 1 ) = l . If G0=SC/(/+l, ?), then, by a similar
computation, we have

S(hPk+qhι+1.Pk) = 1 , if pk<l+lβ;

8(hPk+qhι+1_Pk)(Ξ {1, l±f> , if pk>l+lβ .

Therefore, with the notation at the end of the section 2, § is not trivial on Hx,

provided q>3, i.e., Hx has no fixed point on Λ ^ other than zero. Since the
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same formula as mι written above Theorem 1 holds for mky with V replaced by

Λ V, Theorem 2 is now immediate.

4. Case of Q=2

In this section we shall discuss the case of q—2 and determine the multi-
plicity mι of St in S ® V. This will be done for G0=SE/(/+l, 2) in the next
section. In the remaining linear groups, it is clear that mι>\\ for St®V=
L(pY®L(ωiY>L(p+ωiy=(L(p-ωι)®L(ω1)Y>L(pY = St. Actually we have
m1=l as will be shown below.

We first assume that G0=SL(l+l, 2), Sρ(2ly 2) or Ω+1(2l, 2), and compute
r

mj=άim¥LomKLj(StLjy V\Lj) for a non-empty subset / of Π. Let / = U /,-

be the partition into the connected components /, of /. Here, for certain
technical reason, we suppose in the case of Ω+1(2/, 2) that a^x and α, are
connected, whenever/ contains both. Since H=ly GJ=LJ for a l l / c Π and
so Lj=Lj1X"-xLJr. We write L{ for Lj. for simplicity. Corresponding to
this direct product, we have

in which each L ; acts on Vt in a natural manner, but trivially on other Vj
and U. For example, i f /= {a,} and G0=Sρ(2I, 2), V= V,® U with V^Ke,®
Ke2@Ke_ι®Ke^2 and [ 7 = 0 Kej{j*± 1, ±2) (note that if G0=Ω+1(2Z, 2), then

•̂ {tf/.j} a n ( l L {<*,} act non-trivially on the same subspace Ke^^Ke^Ke^^^)®
Ke^h for this reason at^λ and at are supposed to be connected). We see that
dirnΓ, is either | / , | + 1 , 2 | / , | or 2( |/ , . |+1). If S ί L j < 0 Γ | L j , then

S / i / θ θ ^ and hence StLjζφVj for a unique j<r. But since StLj=®StL.y

this forces τ = 1. Recall that dim StLj=2a, where α= ] Φ/1. Hence

Suppose for the time being that / Φ {α/_χ, a} in case G0 = Ω+1(2/, 2). If
I /1 > 2, then a> \ J \ +1, which contradicts (*). Therefore we have | /1 = 1.
Summarizing the above, we have 1/1=1, whenever mjΦO for a nonempty
subset / of Π. Write / = {αf} nad V=VX®U. Since Lj~SL(2y 2), the can-
onical module K2 gives the Steinberg module for Lj.

If GO=5L(/+1, 2), then Vιc^K2=StLj and so ι»/=l. Since τwφ=dim V

=7+1, we have w 1 = Σ ( - l ) l / l w / = ( / + l ) - / = l .

Let G0^=Sp(2l, 2). If **</-l, then K ^ ^ Θ Γ ® with Γ ( 1 ) = & , θ & ί + 1

and 7 ( 2 ) = & . , . θ ^ ( t +1). Since F ( 1 ) ^ F ( 2 )^if 2, we have m7 = 2. On the
other hand, if /={α/}, then V1=KeιφKe^ι^K2

y whence we have m 7 = l .
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Therefore m ι =:2Z-2(/-l)-l==l.
Let G0 = Ω+1(2/, 2). If i< I— 1, we are in the same situation as Sp{2l, 2),

hence mf = 2. If / = { # , } , ^ = ^ 0 ^ with V^^Ke^φKe^ V™ =
^ ι - i + « i ) θ ^ . ( i - D + ^ i ) . Since r < l > ^ X 2 ^ F w , we have JW 7 =2 again.
Now we assume J=icci-1, #/}. Then / has two connected components / x =
i&i-i} a n d J2 = {#/}• As noted above, Lj and L2 act on the same subspace
Vι—Keι_ιξ&Keι®Ke_.(l_ι)@Ke^ι. It is easy to see that V1 is irreducible as an
Lj=Lι X L2-

m°dule, which necessarily gives the Steinberg module for it. Hence
we have mj=l. Combining the aboves, we get mι=2l— 2/+1 = 1.

We next consider the group «Q_1(2/, 2). This coincides with the universal
Steinberg group Ω+(2l, K)σ (since p=2) and the standard diagonal subgroup
is written as

ί

to
t

I
1

(Γ

>-\

teFϊ

where / denotes the identity matrix of degree /—I. For a τ-stable subset/

of Π, l e t / = U/, be the partition into the connected components/,, of/, where
ί = l

we assume a^λ and at are connected, as before, if / contains both. If / con-
tains none of a^λ and ah we have

Lj = Gιx-xGrxH

with Gi=ζxΛ(ί); αGΦ/.>. Hence the corresponding decomposition of V is
written as

in which each G, acts on F, in a natural manner, but trivially on other Vj and
U. In particular H acts trivially on each F f . Hence the same argument
applies as in Ω+1(2/, 2), yielding mj=2.

If some /,-, say / r, contains one of aι^.1 and α,, then it contains the other
by our assumption. We have

Lj = GxX — x G r - 1 x L r .

By the same argument as in Ω+1(2/, 2) we get | / | = | / r | = 2 , i.e., Lj=Lr=
Ω_i(4, 2)(^SL(2, 4)), provided tπj Φ 0. A direct computation shows that
Vs=Keι,1φKeι®Ke^a_ι)φKe,ι is irreducible, so that Vr=StLj and thus
fli7=l. Therefore ^ = 2 (—l)l//τ|»»/=2(/—1)—2(/—2)—1 = 1.

Summarizing the aboves, we get
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Theorem 3. For SL(l+l, 2), Sp(2ly 2) — Ω(2/+l, 2) and Ω±1(2/, 2), we

have

5. More on modules of skew-symmetric tensors

We begin with the following combinatorial facts. For the first two asser-
tions, see Lov£sz [7], Problems 1.31 and 1.42 (g).

Lemma 7. Let n, k be natural numbers.

(1) The number of the subsets of {1, 2, •••. n} with cardinality r which con-

tains no successive pair of integers is equal to the binomial coefficient ί ~̂ ).
l*lύ /n—r\ \ r /

(A) 2 J I - I

Proof. (3) From ( I - Λ Γ 1 ) * ^ ( - I ) 1 / k \x~r we have
r=0 \ γ I

ΛΓ"(1—Λ:-1)* = Σ - l ) r ( k )x*-'.
r=o \ r /

Evaluating the value of the &-th derivatives at x=ί on both sides we get the
assertion.

Theorem 4. For SL(l+l, 2) toe have

St®ΛV^ U(ωϊ)ΘSt (l<k<l).

Proof. Let us fix k<l and J c Π , and compute the integer m(J, k)—
k

dim Hom^^iS^j, Λ V). Using the same notation as in the proof of the pre-
ceding theorem, we have

Lj = L1X

and

V= F x θ - Θ F r θ t f , with dim F, = |/,.|

As is well-known, we have (cf. Curtis and Reiner [5], § 12)

AV=

where the direct sum is taken over the sequences (sly •••, sry s) of r + 1 integers
such that k = sι-\ \-sr+s, 0<ί t.< \Jξ\ + 1 . Since Z r ^ ^ S L d / J + l , 2), each

*« r

A V4 is irreducible as an Lrmodule and we have StLj= ® StJr Therefore, if
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m(J, &)Φθ, i.e., Λ i / Θ Λ Γ , then there exists a (sl9 ••-,$„ s) such that Stj.^.

A V{ for all i < r . Then, considering the dimension of Stj.y we get | J^ | = 1 and

hence s~l9 dim F, = 2 , for all /. If this is the case, then m(J, &)=dim Λ U=

( j = ( r ). Since no pair of elements of J is connected and

β—r / \ £—r /

I /1 = r , the number of choices of such / is ί ' ~~r J by Lemma 7(1). There-

fore we have

mk = Σ<-D'""«, = Σ (-1)1"" ( '+ 1 - 2 ^ V'+l-Λ

which is equal to 1 by Lemma 7 (3). This completes the proof of the theorem.

Finally we show the following result.

Theorem 5. For St/(/+l,2) and k<l, we have

* ί U(ω0k)®St,iflisoddandk=l+\l2;

1 £/(ω!0, otherwise.

Proof. Since L(ωk)* — L(—woωk)—L(ωι+ι-k)> we may assume k<l+l/2.
The matrix form of the standard diagonal subgroup Hx of SU(l+\9 q) is in
general described as

/ + 1

Hχ = {diagίίj, •••, tf+ι); Π ί, == 1, tgitί+2-i = : 1
ί = l

and so in our case

Hx = {diag(ίlf - , ί m ) ; Π ί4 = 1, *, = ί/+2-, ,

In particular, for diag(ί, •••, tι+1)^Hv we have

...φ =1, if /=2J;

( * * } I * ... ί — 1 if / - 2 . 4 - 1

Using this, we first show that Hx has a non-zero fixed point in Λ V only if /
is odd and &=Z+l/2, which will establish the second statement of the theorem.

k

The set iePιΛ — ΛePk; I<p1<"'<pk<^+^} for.ns a basis of /\V and we have

i, •••, tι+1)ePlΛ-ΛePk = th •••

So, if ^ Λ —ΛePk is ^-stable, ί^ — ί ί j k = l for all diagfo, •••, tι+1)^Hv Re-

placing ^. with ί/+2-^ i f Pi>s+2, we see easily from (**) that this occurs only
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if / is odd and &=Z+l/2. And when this is the case, the ί^-stable element

ep1Λ'"Λepk is obtained from e1A"Άes+1 by replacing some of ely •••, e$+1, say

eh , ejf with el+2-h •••, eM j respectively.
We now assume that l=2s-\-l, k=s-\-l, and prove the first statement of the

ί + l

theorem. From the above, the subspace of the //"^stable points of Λ V has

dimension Σ (s+1)=25+1. For a τ-stable subset JΦφ of Π, let Gj=<xΛ(t);
y=o \ j J

α G Φ ; , t e i£> and let £ / = < # , (?/>, the Levi subgroup (as before). Since Qj
is a connected normal subgroup of LJy it follows from the Lang-Steinberg
theorem that Lj—Lar

J=<Hl, G/> with GJ=GJ. We say that / is τ-connected
if either / is connected and contains as+ly or else / is of the form / = / U τ(I) for
some connected subset / not containing as+1. In the former case we have that
Gj^SU(|/|+1,2), while in the latter case, (?/=(?/XG τ U ) ^SL(\I\+l,K)χ
SL(\ / | + 1 , K) is a universal Chevalley group over K. Hence G7=<C7, i7'>
where £/=<*•(*); « ^ Φ } , ί e i ^ X and U'=<x_Λ(t)) α G Φ ) , ίGK> f f.

r

Now, let / = U /,- be the partition into the τ-connected components /,- of

/ . Then Gj=Ghx... x G J r Write G~Gj. and n~ \Ji\. We have

in which G$ acts naturally on Vi9 but trivially on other Vj and U. We want to
show that w s + 1 = Σ ( — l ) l / / τ | ^ / is 1, where/ runs over the τ-stable subsets of

J s+1

Π and mj=dim HomKLj(StLj, A V). Since Lj and Gj have the same Sylow 2-
subgroups, (StLj)\Gj must be irreducible, which therefore gives the Steinberg
module for G/.

If / 3 α ί + 1 , we arrange the indices so t h a t / r 3 α s + 1 . Hence, if /$of ί+1, we
shall ignore in the following the terms that involve r o r ί + 1 as subscripts. As
noted above, Gr — SU{nr+\, 2).

If / Φr, then n{ is even and we have

G, = j — ^ xeSLfrβ+l, 4) ^ 5L(»,./2+l, 4),

so that we have a ^G.-decomposition F', = F i 1 ) Θ F i 2 ) with dim F j ^ d i

The Steinberg module for G7 may be written as ®M, ®M r, where M{ is
ί = l

the Steinberg module for SLfaβ+l, 4) and Mr=StGr. Suppose m/ΦO. Then
by the same argument as in the proof of Theorem 4, we get | JJτ | = 1 for all

i<r and StGj(@ ® ( F ^ ^ F r ) ® F r ; for instance, that 5i



PBOJECTIVE MODULES FOR FINITE GROUPS 961

implies that, putting m=n,/2+1, 4*< m - 1 ) Λ ! <( m V m )<22l», whence »,=2. We

then have Gr^SL(2, 2), and hence F ^ J K 2 is the Steinberg module for it. If
/φr , then F ^ — I^ω)' and F< 2 ) ^L(2ω)', where ω is the first (and unique)
fundamental dominant weight in the canonical module K2 for SL(2y 4). Thus
as an SL(2, 4)-module we have

L{ωY®L{2ωY>L{3ωY .

Since L(3ω)r is the Steinberg module for SL(2y 4), dimL(3ω)' = 4 and so

Vφ®V{P^L{Zω)'. Thus, we conclude that StGj^® (F< υ<g)Π2))<g>Fr (pro-

vided m7Φθ). Write/= {α .̂, ατ(i>.), αrs+i; 1<* </, l ^ ί , ^ ^ } - Remember that

i—Pi I > 2 whenever /Φj. Since a highest weight vector of StLj in

stable under the subgroup <#!, Xpfflx^p^lf), Λ;S+1(1); 1 ^ Z < / , t^F^y, it takes
the form

*(/> M) = ® (ep.®eτ(Pi))®es+ι®u for some u(Ξ/\U (t = ί—2/).
» = 1

Now we devide the cases.
Case 1. J^as+1.
Take a subset i? of Π \ / with cardinality t and let !? '={/; α y e i ? } . We

have, using that tr(Pi)=tι+1_p=tpi+li

Noting t h a t ^ , />, + l and ί + 1 are all distinct (1 <*'</), we find easily that the
coefficient of e(J, Λfj) on the right-hand side of the aboe above is 1 if and only if

Π / , = Π tiy where i runs over {1, ••., s}\{piyp +ί; ί<i^f}. Since ί t=/ / + 2-i,

there are exactly 2s"2f choices of such Λ#/s and this gives the multiplicity ntj of
5 + 1

SΐLj in Λ V. Once | /1 = 2 / + l is fixed, the number of the subsets/under con-
sideratoin is, from the aboves, equal to the number the subsets of {1, •••, s— 1}

with cardinality / that contain no successive pair integers, which is ( S~* j by

Lemma 7(1). Since | / / τ | = / + l , the terms in mk involving mj with
are given by

and this equals —(ί+1) by virtue of Lemma 7(2).
Case 2.
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By the same argument as above, we find that the terms in mk involving

tnj with J $ as+1 are given by

which equals (s+2)-2s+1.

Now, summarizing the aboves, we get mk—2s+1—(ί+l)+(s+2)—24+1=l,

as desired.

Professor Jantzen informed the author that the results in this paper can be

extended to V=L(X) with highest weight λ being minuscule or the unique

dominant short root using some general results on the representations of alge-

braic groups due to himself in part.
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