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1. Introduction

Let ¢ be a power of a prime number p, F, a finite field with ¢ elements and
K an algebraic closure of F,. Let G, be a classical linear group written in
GL(n, q); we are particularly interested in SL(I+1, q), Sp(2], ¢), Q(2I+1, g),
0..,(2, g) and SU(I+1, q). Let V=K", the vector space of column vectors of
size n over K, and let St be the Steinberg module for G,. In [8] Lusztig showed
that St®V is a principal indecomposable module for Gy=GL(n, g), provided
g>2. In this paper we shall prove this fact in all the classical linear groups,
with the treatment of the case of g=2. Our methods rely heavily on Stein-
berg’s tensor product theorem on the representation of semisimple algebraic
groups over K. So we shall begin our arguments with a review of some stan-
dard facts about (universal) Chevalley groups over K.

For modules M, N over a ring 4, we write N{@M if N is isomorphic to
a direct summand of M, and N« M if N is isomorphic to an irreducible con-
stituen of M. We abbreviate @4 to @ and denote by e; the unit vector of K"
with 1 at the j-th entry. We refer to Borel [1], Carter [3] [4], Steinberg [10]
[11] and Suzuki [12] for the general theories of Chevalley groups and their
modular representations.

We mention here that our results in the cases of SL(I+1, ¢) and Sp(2], g)
were already obtained by Okuyama [9] by different methods.

2. Background materials

Let g be a simple Lie algebra over the complex field C of type 4,, B, C, or
D,, so that gcgl(n, C) and n=I+1, 2I+1, 2I’s according to the order of the
occurrence of the above types. LetH be the standard Cartan subalgebra of g,
@ the set of roots of g relative to §), II={a,, :*-, @;} a simple root systme of P,
&+ the set of positive roots of @ with respect to IT, and Wy the Weyl group of
®. More generally, for J CII, we let ®; be the root system with basis J and
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W; be the Weyl group of ®@;. There is a unique w,& Wy such that wJI=—II.
Let h, be the coroot of a=® and {e,, h; a=®, SII} be a Chevalley basis
of g. For simplicity we write 4; for 4,

Define A;€h*=Hom¢ (5, C) by

7\'i(diag(tl’ Yy tn)) =1 (131Sl) ,

where we write diag(t,, -+, #) for diag(0, ¢, -+, ;) in case g is of type B,.
Since each A; is a weight of §) in the g-module C”, it takes integral values on all
h,. Let w; be the fundamental dominant weight corresponding to «;, i.e.,

wilh) =8, (1<i, j<I), and let X=31Za; In X we set X*={Smw;
m; >0} and Xq:{Z} mew;; 0<m,<q—1}.

Recall that SL(I41,q), Q(2I+1, q), Sp(2l, q) and Q,,(2], q) are the
Chevalley groups over F, associated to the embedding g—gl(n, C). In order
to give a unified treatment of them with the Steinberg groups SU(l+1, ¢) and
Q_,(21, q) of types 24, and 2D, respectively, let us consider a universal Chevalley
group over K:

G =<, (t); aE®, teK).

We know that G is a simply connected, semisimple algebraic group defined
over F,, which has H:(h,(t); aed, te K*=K/[ {0} >=<(t); te K>, 1<i<D>
and B=(H, x,(t); aE®, t€ K> as a maximal torus and a Borel subgroup res-
ectively, where w,(f) = x,(t)x_(—2 x (f) and h,(¢)=w,()w,(—1). Also, we
have that Ng(H)=<w,(t); a€®, t€K*)> with factor group modulo H iso-
morphic to Wy via w,(1)—w,, where w, is the reflection in the hyperplane
orthogonal to a.

Let X(H) be the group of rational characters of H. For A€ X, we define
A€ X(H) by A(h,(t))=t"*a). Then there is an isomorphism X== X(H) send-
ing X onto A, which is compatible with the actions of the Weyl group Wy on
both sides. The set of weights of H in V'=K" is given by

{;; 1<i<I+1} if g is of type 4;;
{0, +%;; 1<i<I} if g is of type By;
{4+X;; 1<i<l} if g is of type C, or D, .

The weight A\, coincides with the first fundamental dominant weight e, in
each case.

Throughout we fix a Frobenius endomorphism o of G such that

a-(xu(t)) = Xr(a) (Ea tq) ’

where either 7 is the identity and all §,=1, or else 7 is the symmetry of order 2
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on the Dynkin diagram of type A4, or D, and &,=+1. Let G=G", the finite
subgroup of r-stable points of G, and also H=H", B=B". Let G, be one of
the classlcal linear groups SL(I+41, q), Q(2I+1, 9), Sp(2, ¢), Q.,(2], g) and
SU(I+1, q). There is a natural epimorphism r: G—G,, whose kernel is a
central subgroup of G (provided, of course, that the underlying Lie algebras of
them are the same). In this sense we often regard a G,-module as a G-module.

For each A€ X, there is a simple G-module L(\) with highest weight X,
which means that X is a weight of H in L(\)|# (the restriction to H) and that
all other weights are of the form A—33m;@, with non-negative integers m;.

The set {L(\); X *} provides a complete set of representatives of the under-
lying G-modules for the non-equivalent irreducible rational representations of
G over K. Furthermore the set {L(A)'=L(\)|s; AEX,} gives a complete set
of representatives of non-isomorphic simple G-modules. The canonical module
K" for G, is, when considered as a G-module, isomorphic to L(w,)’ and the

Steinberg module to L((¢—1)p)’, where p=$ ;.

ReMARK. In case that g is of type B, and p=2, we have

1 %
Gy = Q2l+1, q) = ‘ = Sp(2l, q)

'0—\ Sp(21, q)

and V=K?%+*! decomposes into V=K@K? in a natural manner. Hence the
canonical module for Q(2/+1, g) in this case has been and will be understood
to be the one K for Sp(21, g).

For A\, p€X we write A< p, if p—X\ is a non-negative integral linear com-
bination of the simple roots a;. Also, following Jantzen, we write A<gqpu, if
p—X\ is a non-negative rational linear combination of the simple roots or;, We
remark that given p€X™, there are only a finite number of A€ X* such that
A<equ. In particular, the induction over <4 may be carried out. The follow-
ing well-known fact will be used throughout this paper.

Lemma 1. Let A, p, yEX™.

(1) The K-dual L(\)* of L(\) is isomorphic to L(—wy\).

(2) If L(y) K LO)®L(s), then y <1+ p.

(3) L(\+u) appears as a constituent of L(N)QRL(n) with multiplicity one.
If \+uEX, then the same is true as G-modules.

For neX,, let M’=(¢—1)p+w,r€X, and let U(\) be a projective cover
of the simple G-module L()\)’.
The next lemma is noted by Jantzen [6].

Lemma 2. Suppose that G is a universal Chavalley group over F,. For
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reX,, we have
StQL(\) = U()\,")@?m(x, w)U(p),

where the sum is taken over those pEX, such that \'<qu, and m(\, p) denotes
the multiplicity of U(u), so that

m(\, w) = dim Homgg (L(n)', StQL(\)")
= dim Homyg (L(n)' @ L(—we\)', St) .

This result is valid for the universal Steinberg group Q._,(2/, ¢) (/>4), too. In
fact, a slight modification of Jantzen’s argument covers the proof of this case.
To see this, it is sufficient, by Lemma 1, to show the following lemma.

Lemma 3. Let G be a universal Chevalley group over F, or a universal
Steinberg group over Fpz of type®D, (1>4). Let yeX,and \, p€X*. Then,
if L(y)' K LON)' QL(p)', we have y< A+ p.

Proof. We argue by induction over <4. There is v€X* such that
L(v)X LO\)QL(p) and that L(y)' < L(v)'. If veX,, then y=v<A+p. Sup-
pose that veX,, and write v=v,+qv, with y,€X,, v,eX"*. Since L(qv,)=
L(tv,)o0, we get by Steinberg’s tensor product theorem (cf. Steinberg [11]
Theorem 13.1)

L(v)=L(vy) @ L(7v,)o0c
and since ¢ is trivial on G=G", we have
L(v)' = L(vo)' @ L(tv,) > L(7)" .

We claim that vy+7v,<qw, which is trivial if = is the identity. Suppose that =
is the symmetry of order 2 on the Dynkin diagram of type D, (I>4), so 7(¢)=1
(1<i<1-2), r(I—-1)=Iland 7(I)=I—1. Write »,=3] b;,w;. Then

-2
v—(vot-7vy) = qv,—7V, = § (g—1)b; 0+ (gbi-1 —bi)oor-1+(gbi—by- oo, -
Expressing w;_; and o, as linear combinations of a, -+, a; (cf. Bourbaki
[2]), we find easily that
(9b1-1—br)ws-1+(gbi—by-1)1 @20,

provided />4. This proves the claim and we have that yy+7v, <qA+pu.
Then by the inductive hypothesis we get that y<qv,+7v<<q M+, completing
the proof of the lemma.

The above lemma (hence Lemma 2) still holds for the universal Steinberg
groups of type *D, and %Ey, but is false for SU(I+1, g). For instance, we have
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L((g— D)@ L(w,) > L (gw,)=L(w;)oo ‘and hence L((g—1)w,)'®@L(w,)"> L(w)’,
But it is not generally true that ;<¢q gw,. In this case, however, we have an
alternative version, which is weaker than the ordering <4, but sufficient for
our purpose. Namely we have

Lemma 4. Suppose Go=SU(I+1, q). For = a,0,€ X, let |\]|=
> a,.
() Ifn, pEX and N<p, then |\ < | pl.
(2) LetyeX,and \, peX™*.
(2) If L(v)' <L) ®L(pY, then || < |n-+pl.
(b) If L(v)' L(\)' and || =\ I, then y=.

Proof. (1) It suffices to show that if A >0, then |A|>0 (this is not
necessarily true for other types of Lie algebras). We write A=3] a;w; with
a;€Z. The coeflicients of a; and «a; in A are gievn by '

1/14+-1(la,+(I—1)ay+ - +a,)
and

1/14+1(ay+2a, 4+ +lay)

respectively. Both are non-negative integers by assumption, so that by adding
them, we get [A|=2>] a,>0.

Part (a) of (2) can be proved similarly as Lemma 3 via induction on [N+ g/,
using (1). For the proof of (b), write A=x\y+¢g)\, with A,€X, and ;e X ™.
Then L(\)'=L(x) @L(t21)"> L(7)", and s0 | 7] < [Nt | < [ Mo+gM | =0 ].
Hence | A+7A; ]| =|No+4gN\ |, and thus A\;=0. Therefore A=x,€X,, whence
A="r.

To apply Lemma 2 to StQV, we need the following fact.

Lemma 5. Let g be as above.

(1) 8=(q—1)p is the only weight in X, such that &1<q8, except for type B,

in which case 3 also satisfies that »}<qw3.
(2) If g is of type A,, then (1) is true for all w, in place of », (1<kLI).

Proof. Although we have to distinguish the cases, the proof is easy. Sup-
pose that p=31 ¢;0, E X, satisfies w}<qu. If g is of type other than 4,, then

Wow, = —aw,, SO that

p—al = ((—(@—2)o, 5 (—(g—D)os 0> 0.

Since 0<¢;<q—1, we find readily ¢,=¢—1. Expressing each w; as a (non-
negative) rational linear combinations of the simple roots and looking at the
coefficients of «;_; and «;, we find easily ¢;=¢—1 for all 7, except for the case
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of type B,. In that case there is one exception that wi<<q w9.
Now, let g is of type 4;. Then wyw,=—w4;-; for all K</ and so

Ib—wg = (Cl+1—k—(q_2))‘°l+l—k'|';¢1§k (Ci_(Q”“l))wi Q>0 ’

whence we have ¢4, =g—1. Suppose that ¢;—(¢—1)<0 for some 7. If
k>1—i+1, then i/l4+1>14+1—Fk/lI4+1. Since i/l41 is the coefficient of ; in
w;, this implies that the coefficient of &, in p—w} is negative, contradicting the
assumption. If, on the other hand, k<</—i+1, then we find that the coefficient
of @, in p—ow} is negative again, contradicting the assumption. Therefore we
have ¢;=g—1 for all . This completes the proof of the lemma.

The last preliminary lemma is the following.

Lemma 6. Let G, be SL(I+1, q), Q(2I+1, q), Sp(21, q), Q4,(2, q) or
SU(I+1, q). Then we have
(1) StQV=U(w?)®m,St (m,>0).
(2) If Ge=SL(I+1, q) or SU(I+1, q), then for all k<1
StQL(w:) = U(w?)P®m, St (m,>0).

Proof. (1) By Lemmas 2 and 5, we need only prove the assertion in the
cae case of G,=£(5, q) with odd prime power g. We want to show that L(w3)’
is not a constituent of St@V. Suppose the contrary. Then there exists
A=a,0,+ 2w, EX* such that L(A) < StQL(w,) and that L(w?)'K L(A)'. In
particular we have A<(¢—1)p+w,. Since o,=a;+a, and w,=1/2a;,+a,, we
find from the above that (g—a,)+1/2(¢—1—a,) is a non-negative integer and
that

2a,+a,<3¢q—1, a+a,<29—1.

If 4, a,<q—1, then A =w3<(¢—1)p+w,, so that w,+w,>0, which is impos-
sible. If a,>gq, then a,<q—1. Write a,=¢+b with 0<b<g—1. Then

L(\) = L(bw,+ayw;,+qe,)’ == L(bo,+ ay0,)' @ L(ew,)" > L(w3)’
whence (5+1)w,+ 2,0, >3 and we have

(b+2—9)+1/2(a,—q+2) >0,
(b+2—¢)+(a,—q+2)>0.

From the first inequality we have 2a,-+-a,>5¢—6, so that 3¢—1>5¢—6, i.e.,
g<2, contradicting the assumption. If @,>g¢, then a¢,<q—1. Write a,=¢q+c¢
with 0<¢<ql. Then

LV = L(gy 0p+co,) @ L(w)' > L(@3)

whence @, 0,+(c+1)w, ¢= w3 and we have
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a—(¢—1)+1/2(c—q+3)=0,
a—(—1)+(c—¢+3)=0.
From the second inequality we have a,-+a,>3¢—4, so that 2g—1>3¢—4,
ie., ¢g<3. But the case that ¢=3 occurs if and only if ¢,=¢—1=2 and a,=
g=3. Then ¢g—a,+1/2(¢g—1—a,)=1/2 is not an integer. As noted above, this
is a contradiction.
For the proof of (2), we may assume G,=SU(I+1, q). Take p=3]a;0,E
X,. We want to show that if St=L((¢—1)p)' < L(p)' @ L(—wyw;)’, then p=cw}
or (g—1)p. There is y € X™* such that L(y)<L(u)QL(—w,w,) and that
St L(7y)'. Since ¥ < p+(—wyw)=p~+w.), We have by Lemma 4

@-DI<|yIZ a+1<(g—1)H1.

If a,=q—1 for all i, we have u=(¢—1)p; otherwise we have (¢g—1)i=|y|=
>la;+1. This implies that p=(¢—1)p—w; for some j </ and we have y=
(g—1)p by Lemma 4. Since y<pu+w,n we have w,u=>w; from the above,
whence j=7(k). Therefore p=(¢—1)p—w,@y=0w} as desired.

For convenience of later arguments, we list here the standard unipotent
elements x;(f) of each Chevalley group G, corresponding to the simple root
a; (cf. Carter [3]). [ is the identity matrix and ¢;; the matrix unit. We remark
that the element x_,(#) corresponding to —e; is given by ‘x,(f), except for
x_ (1) €Q(2141, g).

[A] Gy=SL(+1, g) (=G).

II= {al =N Ap 0ty O = NN
x;(8) = I+-te; ;14 (1<il).

[B] G=0(2l+1,¢q)

1= {al =N Ay, 0y Oy = Moy — A O = 7\'1} )
x,(t) = I—l—t(ei’,-+l'—e_('-+l)‘_,') (1Si$l—1) )
xy(t) = I+8(2e;0—eo, 1) —te;, _; -
(Rows and columns are numbered 0, 1, -+, [, —1, .-+, —1.)

[C] Ge=5p(2], 9) (=G)
II= {al =M At Oy = Ny — A O = 2)\'1} ’
x,(t) = I+H(e;,ir1—e_i+v,-i) (I<i<i-1),
x,(t) = I-I—te,'_, .

[D)] Go=0Q4(2], 9)
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II = {ot, = M= g, o0, Qi = Moy — Ny =N+,
x,(t) = I+t(e; i —e-Gi+n),-i) (I<i<i-1),
x(2) = I+t(e;-y,1—e1,-a-v) -

For JCII, let G;=<x,(t); aE®;, tF,>CG,. This occupies parts of the
main diagonal blocks of G,. If I and J are mutually orthogonal subsets of II,
then G;y;=G; X G;.

The action of %,;(t) on the unit vectors e.;(1<7</) of V is written as

hyt)es; = t=2% ey

hi(t)e, = e, (only for Q(2141, g)),

where in the case of SL(I41, q) no e_; appears, but e, is possible instead.
The standard diagonal subgroups H, and H, of the universal Steinberg
groups of type 24, and 2D, are as follows respectively:

H, = ity (1); t€F%, 1<i<I),
H, = <hy(u), hy_(h(t); uEF%, teF%, 1<i<I—2).

3. Reduction to Levi subgroups

Let G be as before. We consider G as a group with a split (B, N)-pair
(with B=H°, N=Nz(H)’); see § 1.18 of Carter [4], which will be referred to
for the general theory. of groups with a (B, N)-pair. Our notations are mostly
the same as in the book.

For a r-invariant subset J of II, let P;, L;, and St;, be the standard para-
bolic subgroup (BW; B)’, the Levi subgroup <H, x,(t); aE®;, tK)" of Py,
and the Steinberg character of L; respectively. As a complex character of

G, St is defined by
St = 53 (—1)(1p,)°

where J runs over the r-invariant subsets of IT and | J/=| denotes the number
of the r-orbits on J. We know that St|,,=(S%,,)?+ and (St, (15))=1. In par-
ticular, it follows that if J=¢, then Ly=H=H" and St,=1,. Also we have
St| 5==(K)? as KB-modules, which give a principal indecomposable KB-module
corresponding to the trivial module, since H is a p-complement of B. Let be @
the Brauer character defined by V=K". Since St is projective, we see, with
the notation of Lemma 6, that m,=dim Homg(St, StQV) is just the inner
product (St, St @) of the Brauer characters. Thus

my = (St, 3 (=1)""(pl£,)) = Z(=1)V"(Stl pp» @l ;)
= ; (—l)um(StLp ¢|LJ) .
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We put m;=(St;,, @|,,)=dim Homg, (St , V|,,). We now prove
Theorem 1. Suppose ¢>3. Then we have

U(w1) for SL(I+1, q), Sp(2l, q), 24:(2L, q) and SU(I+1, g);

SIQV = {
U(w})D St for Q(21+1, q) .

Proof. We want to show m;=0 for any r-invariant subset J of II. Sup-
pose to the contrary that m;=0 for some J. Since S?, is injective, it follows
that Sz; {@®V|,, and hence V contains a nonzero element fixed under H. But
this is clearly impossible in the groups SL(I41, q), Sp(2l, q), Q4,(21, q) and
SU(l4+1, q), provided ¢>3. So let us assume that Go=Q(2/41, ¢) with p>2.
Then the first unit vector ¢, is a unique element, up to scalar multiples, fixed
under H. If [P, then L;=<H, x,(t); ac®;, t € F,» is mapped under

0] %

(W=K?) is a direct sum as a KL;-module. If J=¢, then L;=H and Stz=1,
hence my=1. If, on the other hand, J+¢ and St, XDV |,,, then St, LD W.
This is impossible because Ke, N W=0 and thus m;=0. If 2, then x,(t)
does not fix ¢y, so that no nonzero element of ¥ is stable under the subgroup
B;=<H, x,(t); ac®}, teF,> of L;, and we have again m;=0. (Remember
that L; has a split (B, Ny)-pair (Carter [4] Proposition 2.6.3).)

. 1
Yr: G—G, into the set of the elements of the form |:——£ . Hence V=Ke, W

Now, we concentrate on G,= SL(l+1, ¢) or SU(l+1, q). For k<1, we

know that L(w,)' = ;\V, the module of skew-symmetric tensors of degree R
(cf. Wong [13]). Using Lemma 6(2), we prove '

Theorem 2. Let Gy=SL(I+1, q) or SU(I+1, q) with g=>3. Then we have
SIQAV = Ul forall k<I.

Proof. The weight of the standard diagonal subgroup H of G, in /.\ V are
of the form § for some 8=+ -+r,,€X with 1<p, < <p<IH1. We
show that § is not trivial on H. We may assume that p,</, because A;4,=
—(\Fe N, I Ge=SL(l+1, q), H=<h(t); t€F;, 1<i<I> and §(hy,)=
28, as)/(ay, as)=(8, Np,—Np,11)=1. If G=SU(I+1, q), then, by a similar
computation, we have

8(hs,+-qhis1-5,) = 1, if pe<<l+1/2;
S(hy,+qhysi-s,)EA{L, 11qr, i p=I41/2.
Therefore, with the notation at the end of the section 2, § is not trivial on H,,

provided ¢>3, i.e., H, has no fixed point on ;\ V other than zero. Since the
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same formula as m, written above Theorem 1 holds for m,, with V replaced by

k
AV, Theorem 2 is now immediate.

4, Case of ¢=2

In this section we shall discuss the case of ¢g=2 and determine the multi-
plicity m, of Stin S @ V. This will be done for G,=SU(l+1, 2) in the next
section. In the remaining linear groups, it is clear that m;>1; for StQV=
L(p)'®@L(w,)" > L(p+0,) =(L(p—w)QL(w,)) > L(p)’ = St. Actually we have
m,=1 as will be shown below.

We first assume that Gy=SL(I+1, 2), Sp(2l, 2) or Q.,(2], 2), and compute

my=dim Homg, (S?;,, V|,,) for a non-empty subset J of II. Let ]'———'_E'J1 I

be the partition into the connected components J; of J. Here, for certain
technical reason, we suppose in the case of Q.,(2/, 2) that @,_, and «; are
connected, whenever J contains both. Since H=1, G;=L; for all JCII and
so Ly=Lj; X -+xL;. We write L; for L;, for simplicity. Corresponding to
this direct product, we have

V=V - @V,GBU',

in which each L; acts on V; in a natural manner, but trivially on other V;

and U. For example, if J={a,} and G,=Sp(2], 2), V=V, U with V,=Ke,d
Ke,Ke_,BKe_, and U=@ Ke,(j =+ * 1, +2) (note that if Gy=0,,(2/, 2), then

L(,,_l) and L ,, act non-trivially on the same subspace Ke,_,Ke,DKe_-»HD
Ke_;, for this reason ,_, and «, are supposed to be connected). We see that
dim ¥, is ecither |J;| 41,21 or 2(1J|+1). I S @V, then

StLJ<GB§’B V; and hence St, {@V; for a unique j<r. But since StLJ=§StL'.,

this forces r=1. Recall that dim St,,=2°, where a={®7}|. Hence
(*) 2°<dim V,<2(| J | +1).

Suppose for the time being that J= {a,_;, o)} in case Go=Q4,(2],2). If
| J1=2, then a>| J|+1, which contradicts (*). Therefore we have | J|=1.
Summarizing the above, we have | J|=1, whenever m;=0 for a nonempty
subset J of IT. Write J={a;} nad V=V,6pU. Since L;==SL(2, 2), the can-
onical module K2 gives the Steinberg module for L;.

If Gy=SL(l+1, 2), then V,=K?=St,_ and so m;=1. Since my=dim V
=I+1, we have ml=§} (—DV'my=(+1)—I=1.

Let Go=Sp(2l, 2). Ifi<l—1, then V,=V P V‘” with V®=Ke,®PKe;,,
and V@ =Ke_,®Ke_g;,. Since VO=V®==K? we have m;=2. On the
other hand, if J={a;}, then V,=Ke,PKe_,=~=K? whence we have m;=1.
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Therefore m,=2I—2(I—1)—1=1.

Let Gy,=0Q,,(2], 2). If i< I—1, we are in the same situation as Sp(2/, 2),
hence m;=2. If J={a)}, V;=VYPV® with VW =Ke, BKe_;, V®=
K(e;-,+e)DK(e_g-pn+e-;). Since VO=K2=F® we have m;=2 again.
Now we assume J={a,_,, ;}. Then J has two connected components J,=
{a;-} and J,={a;}. As noted above, L, and L, act on the same subspace
Vi=Ke,.,®Ke,PKe_(;_yPBKe_;. Itis easy to see that V] is irreducible as an
L;=L, X L,-module, which necessarily gives the Steinberg module for it. Hence
we have m;=1. Combining the aboves, we get m=2/—2/+4+1=1.

We next consider the group _,(2/, 2). This coincides with the universal
Steinberg group Q.(2/, K) (since p=2) and the standard diagonal subgrou
is written as :

H =y (h(8); t EFFD
I 0
t

I
0 !

where I denotes the identity matrix of degree /—1. For a r-stable subset J

; teFf},

of I1, let J= L'J J; be the partition into the connected components J; of J, where

we assume «;_, and «; are connected, as before, if J contains both. If J con-
tains none of «;_, and «;, we have

L; =G, X XG,xH

with G;=<{x,(1); a€®;>. Hence the corresponding decomposition of ¥ is
written as

V=Vee- -evaeU,

in which each G; acts on V; in a natural manner, but trivially on other V; and
U. In particular H acts trivially on each V;. Hence the same argument
applies as in Q.,(2/, 2), yielding m;=2.

If some J;, say J,, contains one of ¢;_, and ¢, then it contains the other
by our assumption. We have

L; =G X XG,,XL,.
By the same argument as in Q.,(2/, 2) we get | J|=]|],|=2, ie., L;=L,=
Q_,(4, 2)(=SL(2, 4)), provided m;=#+0. A direct computation shows that

V.=Ke,_,DKe,PKe_(_,y@Ke_, is irreducible, so that V,=St;, and thus
m;=1. Therefore ml=§‘, (=) y=2(1—1)—2(I—2)—1=1.

Summarizing the aboves, we get
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Theorem 3. For SL(I+1, 2), Sp(2], 2)=Q (2141, 2) and Q.,(2, 2), we
have

StV == U(a) DSt .

5. More on modules of skew-symmetric tensors

We begin with the following combinatorial facts. For the first two asser-
tions, see Lovész [7], Problems 1.31 and 1.42 (g).

Lemma 7. Let n, k be natural numbers.
(1) The number of the subsets of {1, 2, ---. n} with cardinality r which con-

n—l—l~r)'

tains no successive pair of integers is equal to the binomial coefficient (
r

@ B (" )auy=ntjz,

® ()0

Proof. (3) From (l—x"l)"=i (—1)’( k )x"' we have
r=0 r

» x k
MFWW=E—W(%“-
r=0 r
Evaluating the value of the k-th derivatives at x=1 on both sides we get the
assertion.
Theorem 4. For SL(I+1, 2) we have
SIQAV=Uu)®St (1<k<I).
Proof. Let us fix k</ and JCII, and compute the integer m(J, k)=

dim Homg, (St,,, ’}\V). Using the same notation as in the proof of the pre-
ceding theorem, we have

L;=L,x--XL,
and

V=V&--&V,eU, withdmV;= | J;|+1.

As is well-known, we have (cf. Curtis and Reiner [5], § 12)

k % *r s
ANV =DAV @ QAV,OAU,

where the direct sum is taken over the sequences (s,, ***, s,, 5) of r+1 integers
such that k= s+ +s,+s, 0<s;<| J;|+1. Since L;=SL(]| J;|+1, 2), each

/{Vi is irreducible as an L;-module and we have St,,= 2 St;,. Therefore, if
=1
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m(J, k)=+0, i.e., St;,,(@/k\V, then there exists a (s, -+, 5,, 5) such that Sz; =
/{ V;foralli<r. Then, considering the dimension of Sz;, we get | J;| =1 and

hence s;=1, dim V;=2, for all 7. If this is the case, then m(J, k)=dim AU=
dim V——2r>= I+1-2r
k—r k—r
. . (l+1—r
| J | =r, the number of choices of such J is ( ) by Lemma 7(1). There-
r

fore we have

= B i ()
S ()

which is equal to 1 by Lemma 7 (3). This completes the proof of the theorem.

). Since no pair of elements of J is connected and

Finally we show the following result.

Theorem 5. For SU(I+1,2) and k<1, we have
U(w})DSt, if 1 is odd and k=1+41/2;

U(w}), otherwise .

&@RV:{

Proof. Since L(w;)* = L(—w,w;)=L(w;+;-), we may assume k<I[+41/2.
The matrix form of the standard diagonal subgroup H, of SU(I4+1, q) is in
general described as

1+1
H, = {diag(tl, 0y i) _I_Il =1t =1, t,EFED
and so in our case

141
H, = {diag(t,, **+, t141); :];11 =1 t,=t,,, ,EF.

In particular, for diag(¢, -+, t;4,) €H,, we have

{ -t =1, if 1=2s;

(++) foty =1, if I=2s+1.

Using this, we first show that H; has a non-zero fixed point in ;\V only if /

is odd and k=I[4-1/2, which will establish the second statement of the theorem.

The set {es, A-+* Aep,; 1< py<---<p<I+1} forins a basis of /‘\V and we have
diag (tl’ ooy tH'l)ePl/\'"/\ePh = tp‘ .es tp‘epl/\.../\epk .

So, if ey A - Aey, is Hy-stable, t, -+ t,,=1 for all diag (¢, -+, t;4))€H,. Re-
placing 2, with #;,,_, if p;>s+2, we see easily from (*x) that this occurs only
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if  is odd and k=I+1/2. And when this is the case, the H,-stable element
ep, A+ A&y, is obtained from e; A -:- Ae,y, by replacing some of e, -+, €41, say
ey e, with ep,_;, -+, €4, Tespectively.

We now assume that /=2s+41, k=s+-1, and prove the first statement of the
theorem. From the above, the subspace of the H,-stable points of S/+\1V has

dimension sﬁ: s—]l._l)=2‘“. For a 7-stable subset J +¢ of II, let G;=<x,(2);
a€®;, teK) and let L;=<H, G,>, the Levi subgroup (as before). - Since G,
is a connected normal subgroup of L;, it follows from the Lang-Steinberg
theorem that L;=L%=<H,, G;> with G;=G;. We say that J is r-connected
if either J is connected and contains a,.,, or else J is of the form J=1I U ~(I) for
some connected subset I not containing &,,,. In the former case we have that
G;=~=SU(| J|+1, 2), while in the latter case, G;=G,;x G,;,=SL(|I|+1, K)X
SL(|I|+1, K) is a universal Chevalley group over K. Hence G,=<U, U")
where U=<{x,(t); a€®}, teK)’ and U'={x_u(t); a=d®], tK)".

r
Now, let J=U J; be the partition into the r-connected components J; of
i=1

J. Then G;=G; X+ XG;. Write G;=Gy, and n;=| J;|]. We have
V:: Vl@"'@Vr@U)

in which G; acts naturally on V;, but trivially on other V; and U. We want to
show that m,,=3%(—1)Y/"'m; is 1, where J runs over the 7-stable subsets of
J

IT and m;=dim Hom,, (St,,, ‘/+\1V). Since L; and G; have the same Sylow 2-
subgroups, (S?;,)|¢, must be irreducible, which therefore gives the Steinberg
module for Gj.

If ] > a;4,, we arrange the indices so that J,2a,,,. Hence, if P a,,,, we
shall ignore in the following the terms that involve 7 or s+1 as subscripts. As
noted above, G,=SU(n,+1, 2).

If i &7, then n,; is even and we have
xl 0
G;=13|—7—1; »€SL(n;/2+1, 4)} = SL(n;[2+1, 4),
0 I ox

so that we have a KG;-decomposition V;=V{PV? with dim V{¥=dim V'{
=n;[2+1. .
The Steinberg module for G; may be written as @ M;QM,, where M; is
i=1

the Steinberg module for SL(n;/2+1, 4) and M,=St;,. Suppose m;#0. Then
by the same argument as in the proof of Theorem 4, we get | J;/7| =1 for all

i<rand St,{® ® (V'QVP)@V,; for instance, that Sto<BAVIPR AV
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implies that, putting m=n,[2+1, 4"‘("’"’”S<m ><m><22"', whence #,=2. We
51 /\ 8

then have G,==SL(2, 2), and hence V, == K? is the Steinberg module for it. If
i%r, then V{P=L(w)' and V{®=L(20)', where o is the first (and unique)
fundamental dominant weight in the canonical module K? for SL(2, 4). Thus
as an SL(2, 4)-module we have

VQVP = L(w)'®L(20) > L(3w)" .
Since L(3w)' is the Steinberg module for SL(2, 4), dim L(3w)’=4 and so
VOV ®=L(3w). Thus, we conclude that St;,=® (V@ V)@V, (pro-
i=1
vided m;=40). Write J={ay,, trp, Aoty 1<1 < f, 1<p;<s}. Remember that

| pi—p;1 =2 whenever i%j. Since a highest weight vector of St, in AV is
stable under the subgroup <H,, %, (£)%.s)(£?), %,1:(1); 1<i<f, tEF]), it takes
the form

e([, u) = é (€5, R er(sp) Ve @u  for some ues /‘\ U (t=s-2f).

Now we devide the cases.
Casel. 3o,
Take a subset R of IT\J with cardinality ¢ and let R'={j; @;€R}. We
have, using that t.(,)=t;41-5, =541,
diag (,, -, t1+1)e(j’je/>, €;)) = Ly lpy o Loty pn ts+1j£IR,tie(]’ jé\xﬁ’i) .

Noting that p;, p;+1 and s+1 are all distinct (1<i< f), we find easily that the

coefficient of e( ], /}z ¢;) on the right-hand side of the aboe above is 1 if and only if
JE.

HR'ti———H t;, where 7 runs over {1, ---, s}\{p;, p;+1; 1<i<f}. Since t;=2,,,_;,

je H

there are exactly 272/ choices of such Ae;’s and this gives the multiplicity m; of

St;, in 7\1 V. Once | J|=2f+1 is fixed, the number of the subsets J under con-
sideratoin is, from the aboves, equal to the number the subsets of {1, .-, s—1}

with cardinality f that contain no successive pair integers, which is (s;f ) by

Lemma 7(1). Since | J/v|=f+1, the terms in m, involving m; with JDa,,,
are given by

[,’zﬁf(— 1y s;f Y2

and this equals —(s+1) by virtue of Lemma 7(2).
Case 2. JIa,.
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By the same argument as above, we find that the terms in m, involving

m; with J 3 a,,, are given by

(T e

f=1

which equals (s42)—2¢+,

Now, summarizing the aboves, we get m,=2"1—(s+41)+(s+2)—2:"=1,

as desired.

Professor Jantzen informed the author that the results in this paper can be

extended to V=L(\) with highest weight A being minuscule or the unique
dominant short root using some general results on the representations of alge-
braic groups due to himself in part.
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