

Title	On certain projective modules for finite groups of Lie type
Author(s)	Tsushima, Yukio
Citation	Osaka Journal of Mathematics. 1990, 27(4), p. 947–962
Version Type	VoR
URL	https://doi.org/10.18910/7266
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Tsushima, Y. Osaka J. Math. 27 (1990), 947–962

ON CERTAIN PROJECTIVE MODULES FOR FINITE GROUPS OF LIE TYPE

Dedicated to Professor Tosiro Tsuzuku on his 60th birthday

YUKIO TSUSHIMA

(Received October 31, 1989)

1. Introduction

Let q be a power of a prime number p, F_q a finite field with q elements and K an algebraic closure of F_q . Let G_0 be a classical linear group written in GL(n, q); we are particularly interested in SL(l+1, q), Sp(2l, q), $\Omega(2l+1, q)$, $\Omega_{\pm 1}(2l, q)$ and SU(l+1, q). Let $V=K^n$, the vector space of column vectors of size n over K, and let St be the Steinberg module for G_0 . In [8] Lusztig showed that $St \otimes V$ is a principal indecomposable module for $G_0=GL(n, q)$, provided q>2. In this paper we shall prove this fact in all the classical linear groups, with the treatment of the case of q=2. Our methods rely heavily on Steinberg's tensor product theorem on the representation of semisimple algebraic groups over K. So we shall begin our arguments with a review of some standard facts about (universal) Chevalley groups over K.

For modules M, N over a ring A, we write $N \leq \bigoplus M$ if N is isomorphic to a direct summand of M, and $N \ll M$ if N is isomorphic to an irreducible constituen of M. We abbreviate \bigotimes_K to \bigotimes and denote by e_j the unit vector of K^* with 1 at the *j*-th entry. We refer to Borel [1], Carter [3] [4], Steinberg [10] [11] and Suzuki [12] for the general theories of Chevalley groups and their modular representations.

We mention here that our results in the cases of SL(l+1, q) and Sp(2l, q) were already obtained by Okuyama [9] by different methods.

2. Background materials

Let g be a simple Lie algebra over the complex field C of type A_l , B_l , C_l or D_l , so that $g \subset gI(n, C)$ and n = l+1, 2l+1, 2l's according to the order of the occurrence of the above types. Let \mathfrak{h} be the standard Cartan subalgebra of g, Φ the set of roots of g relative to \mathfrak{h} , $\Pi = \{\alpha_1, \dots, \alpha_l\}$ a simple root system of Φ , Φ^+ the set of positive roots of Φ with respect to Π , and W_{Π} the Weyl group of Φ . More generally, for $J \subset \Pi$, we let Φ_J be the root system with basis J and

 W_J be the Weyl group of Φ_J . There is a unique $w_0 \in W_{\pi}$ such that $w_0 \Pi = -\Pi$. Let h_{α} be the coroot of $\alpha \in \Phi$ and $\{e_{\alpha}, h_{\beta}; \alpha \in \Phi, \beta \in \Pi\}$ be a Chevalley basis of g. For simplicity we write h_i for h_{α_i} .

Define $\lambda_i \in \mathfrak{h}^* = \operatorname{Hom}_{\boldsymbol{C}}(\mathfrak{h}, \boldsymbol{C})$ by

$$\lambda_i(\operatorname{diag}(t_1, \cdots, t_n)) = t_i \qquad (1 \le i \le l)$$

where we write diag (t_1, \dots, t_{2l}) for diag $(0, t_1, \dots, t_{2l})$ in case g is of type B_l . Since each λ_i is a weight of \mathfrak{h} in the g-module \mathbb{C}^n , it takes integral values on all h_{α} . Let ω_i be the fundamental dominant weight corresponding to α_i , i.e., $\omega_i(h_j) = \delta_{ij}$ $(1 \le i, j \le l)$, and let $X = \sum_{i=1}^l \mathbb{Z}\omega_i$. In X we set $X^+ = \{\sum_i m_i \omega_i; m_i \ge 0\}$ and $X_q = \{\sum_i m_i \omega_i; 0 \le m_i \le q - 1\}$.

Recall that SL(l+1, q), $\Omega(2l+1, q)$, Sp(2l, q) and $\Omega_{+1}(2l, q)$ are the Chevalley groups over F_q associated to the embedding $g \rightarrow gl(n, C)$. In order to give a unified treatment of them with the Steinberg groups SU(l+1, q) and $\Omega_{-1}(2l, q)$ of types ${}^{2}A_{l}$ and ${}^{2}D_{l}$ respectively, let us consider a universal Chevalley group over K:

$$\tilde{G} = \langle x_{\alpha}(t); \alpha \in \Phi, t \in K \rangle.$$

We know that \tilde{G} is a simply connected, semisimple algebraic group defined over F_p , which has $\tilde{H} = \langle h_{\alpha}(t); \alpha \in \Phi, t \in K^{\times} = K/\{0\} \rangle = \langle h_i(t); t \in K^{\times}, 1 \leq i \leq l \rangle$ and $B = \langle \tilde{H}, x_{\alpha}(t); \alpha \in \Phi, t \in K \rangle$ as a maximal torus and a Borel subgroup resectively, where $w_{\alpha}(t) = x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(t)$ and $h_{\alpha}(t) = w_{\alpha}(t)w_{\alpha}(-1)$. Also, we have that $N_{\tilde{G}}(\tilde{H}) = \langle w_{\alpha}(t); \alpha \in \Phi, t \in K^{\times} \rangle$ with factor group modulo \tilde{H} isomorphic to W_{Π} via $w_{\alpha}(1) \mapsto w_{\alpha}$, where w_{α} is the reflection in the hyperplane orthogonal to α .

Let $X(\hat{H})$ be the group of rational characters of \hat{H} . For $\lambda \in X$, we define $\tilde{\lambda} \in X(\hat{H})$ by $\tilde{\lambda}(h_{\alpha}(t)) = t^{\lambda(h_{\alpha})}$. Then there is an isomorphism $X \simeq X(\hat{H})$ sending λ onto $\tilde{\lambda}$, which is compatible with the actions of the Weyl group W_{Π} on both sides. The set of weights of \hat{H} in $V = K^{*}$ is given by

$$\begin{aligned} &\{\tilde{\lambda}_i; 1 \le i \le l+1\} \text{ if } \mathfrak{g} \text{ is of type } A_l; \\ &\{\tilde{0}, \pm \tilde{\lambda}_i; 1 \le i \le l\} \text{ if } \mathfrak{g} \text{ is of type } B_l; \\ &\{\pm \tilde{\lambda}_i; 1 \le i \le l\} \text{ if } \mathfrak{g} \text{ is of type } C_l \text{ or } D_l. \end{aligned}$$

The weight λ_1 coincides with the first fundamental dominant weight ω_1 in each case.

Throughout we fix a Frobenius endomorphism σ of \ddot{G} such that

$$\sigma(x_{\alpha}(t)) = x_{\tau(\alpha)}(\mathcal{E}_{\alpha} t^{q}),$$

where either τ is the identity and all $\mathcal{E}_{\sigma} = 1$, or else τ is the symmetry of order 2

on the Dynkin diagram of type A_l or D_l and $\mathcal{E}_{\sigma} = \pm 1$. Let $G = \tilde{G}^{\sigma}$, the finite subgroup of τ -stable points of \tilde{G} , and also $H = \tilde{H}^{\sigma}$, $B = \tilde{B}^{\sigma}$. Let G_0 be one of the classical linear groups SL(l+1, q), $\Omega(2l+1, q)$, Sp(2l, q), $\Omega_{\pm 1}(2l, q)$ and SU(l+1, q). There is a natural epimorphism $\psi: G \to G_0$, whose kernel is a central subgroup of G (provided, of course, that the underlying Lie algebras of them are the same). In this sense we often regard a G_0 -module as a G-module.

For each $\lambda \in X^+$, there is a simple \tilde{G} -module $L(\lambda)$ with highest weight $\tilde{\lambda}$, which means that $\tilde{\lambda}$ is a weight of \tilde{H} in $L(\lambda)|_{\tilde{H}}$ (the restriction to \tilde{H}) and that all other weights are of the form $\tilde{\lambda} - \sum_i m_i \tilde{\alpha}_i$ with non-negative integers m_i . The set $\{L(\lambda); \lambda \in X^+\}$ provides a complete set of representatives of the underlying \tilde{G} -modules for the non-equivalent irreducible rational representations of \tilde{G} over K. Furthermore the set $\{L(\lambda)'=L(\lambda)|_G; \lambda \in X_q\}$ gives a complete set of representatives of non-isomorphic simple G-modules. The canonical module K^n for G_0 is, when considered as a G-module, isomorphic to $L(\omega_1)'$ and the Steinberg module to $L((q-1)\rho)'$, where $\rho = \sum_{i=1}^{l} \omega_i$.

REMARK. In case that g is of type B_1 and p=2, we have

$$G_0 = \Omega(2l+1, q) = \left[\frac{1}{0} \middle| \frac{*}{Sp(2l, q)}\right] \simeq Sp(2l, q)$$

and $V = K^{2l+1}$ decomposes into $V = K \oplus K^{2l}$ in a natural manner. Hence the canonical module for $\Omega(2l+1, q)$ in this case has been and will be understood to be the one K^{2l} for Sp(2l, q).

For λ , $\mu \in X$ we write $\lambda \leq \mu$, if $\mu - \lambda$ is a non-negative integral linear combination of the simple roots α_i . Also, following Jantzen, we write $\lambda \leq_{\mathbf{Q}} \mu$, if $\mu - \lambda$ is a non-negative rational linear combination of the simple roots α_i . We remark that given $\mu \in X^+$, there are only a finite number of $\lambda \in X^+$ such that $\lambda \leq_{\mathbf{Q}} \mu$. In particular, the induction over $\leq_{\mathbf{Q}}$ may be carried out. The following well-known fact will be used throughout this paper.

Lemma 1. Let λ , μ , $\gamma \in X^+$.

(1) The K-dual $L(\lambda)^*$ of $L(\lambda)$ is isomorphic to $L(-w_0\lambda)$.

(2) If $L(\gamma) \ll L(\lambda) \otimes L(\mu)$, then $\gamma \leq \lambda + \mu$.

(3) $L(\lambda+\mu)$ appears as a constituent of $L(\lambda)\otimes L(\mu)$ with multiplicity one. If $\lambda+\mu \in X$, then the same is true as G-modules.

For $\lambda \in X_q$, let $\lambda^0 = (q-1)\rho + w_0 \lambda \in X_q$ and let $U(\lambda)$ be a projective cover of the simple G-module $L(\lambda)'$.

The next lemma is noted by Jantzen [6].

Lemma 2. Suppose that G is a universal Chavalley group over F_q . For

 $\lambda \in X_a$, we have

$$St \otimes L(\lambda)' \simeq U(\lambda^0) \oplus \oplus m(\lambda, \mu)U(\mu),$$

where the sum is taken over those $\mu \in X_q$ such that $\lambda^0 <_{Q}\mu$, and $m(\lambda, \mu)$ denotes the multiplicity of $U(\mu)$, so that

$$m(\lambda, \mu) = \dim \operatorname{Hom}_{KG}(L(\mu)', St \otimes L(\lambda)')$$

= dim Hom_{KG}(L(\mu)' \otimes L(-w_0\lambda)', St).

This result is valid for the universal Steinberg group $\Omega_{-1}(2l, q)$ $(l \ge 4)$, too. In fact, a slight modification of Jantzen's argument covers the proof of this case. To see this, it is sufficient, by Lemma 1, to show the following lemma.

Lemma 3. Let G be a universal Chevalley group over F_q or a universal Steinberg group over F_{q^2} of type ${}^{2}D_{l}$ ($l \ge 4$). Let $\gamma \in X_q$ and λ , $\mu \in X^+$. Then, if $L(\gamma)' \ll L(\lambda)' \otimes L(\mu)'$, we have $\gamma \le q\lambda + \mu$.

Proof. We argue by induction over \leq_q . There is $\nu \in X^+$ such that $L(\nu) \ll L(\lambda) \otimes L(\mu)$ and that $L(\gamma)' \ll L(\nu)'$. If $\nu \in X_q$, then $\gamma = \nu \leq \lambda + \mu$. Suppose that $\nu \notin X_q$, and write $\nu = \nu_0 + q\nu_1$ with $\nu_0 \in X_q$, $\nu_1 \in X^+$. Since $L(q\nu_1) \simeq L(\tau\nu_1) \circ \sigma$, we get by Steinberg's tensor product theorem (cf. Steinberg [11] Theorem 13.1)

$$L(\nu) \simeq L(\nu_0) \otimes L(\tau \nu_1) \circ \sigma$$

and since σ is trivial on $G = \tilde{G}^{\sigma}$, we have

$$L(\nu)' \simeq L(\nu_0)' \otimes L(\tau \nu_1)' \gg L(\gamma)'$$
.

We claim that $\nu_0 + \tau \nu_1 < q\nu$, which is trivial if τ is the identity. Suppose that τ is the symmetry of order 2 on the Dynkin diagram of type D_l $(l \ge 4)$, so $\tau(i) = i$ $(1 \le i \le l-2), \tau(l-1) = l$ and $\tau(l) = l-1$. Write $\nu_1 = \sum b_i \omega_i$. Then

$$\nu - (\nu_0 + \tau \nu_1) = q \nu_1 - \tau \nu_1 = \sum_{i=1}^{l-2} (q-1) b_i \omega_i + (q b_{l-1} - b_l) \omega_{l-1} + (q b_l - b_{l-1}) \omega_l.$$

Expressing ω_{l-1} and ω_l as linear combinations of $\alpha_1, \dots, \alpha_l$ (cf. Bourbaki [2]), we find easily that

$$(qb_{l-1}-b_l)\omega_{l-1}+(qb_l-b_{l-1})\omega_{l} Q \geq 0$$
,

provided $l \ge 4$. This proves the claim and we have that $\nu_0 + \tau \nu_1 <_Q \lambda + \mu$. Then by the inductive hypothesis we get that $\gamma \leq_Q \nu_0 + \tau \nu <_Q \lambda + \mu$, completing the proof of the lemma.

The above lemma (hence Lemma 2) still holds for the universal Steinberg groups of type ${}^{3}D_{4}$ and ${}^{2}E_{6}$, but is false for SU(l+1, q). For instance, we have

 $L((q-1)\omega_1)\otimes L(\omega_1)\gg L(q\omega_1)=L(\omega_l)\circ\sigma$ and hence $L((q-1)\omega_1)'\otimes L(\omega_1)'\gg L(\omega_l)'$, But it is not generally true that $\omega_l\leq_Q q\omega_l$. In this case, however, we have an alternative version, which is weaker than the ordering \leq_Q , but sufficient for our purpose. Namely we have

Lemma 4. Suppose $G_0 = SU(l+1, q)$. For $\lambda = \sum a_i \omega_i \in X$, let $|\lambda| = \sum a_i$.

- (1) If λ , $\mu \in X$ and $\lambda \leq \mu$, then $|\lambda| \leq |\mu|$.
- (2) Let $\gamma \in X_q$ and λ , $\mu \in X^+$.
 - (a) If $L(\gamma)' \ll L(\lambda)' \otimes L(\mu)'$, then $|\gamma| \leq |\lambda + \mu|$.
 - (b) If $L(\gamma)' \ll L(\lambda)'$ and $|\gamma| = |\lambda|$, then $\gamma = \lambda$.

Proof. (1) It suffices to show that if $\lambda \ge 0$, then $|\lambda| \ge 0$ (this is not necessarily true for other types of Lie algebras). We write $\lambda = \sum_{i} a_i \omega_i$ with $a_i \in \mathbb{Z}$. The coefficients of α_1 and α_i in λ are given by

$$1/l+1(la_1+(l-1)a_2+\cdots+a_l)$$

and

$$1/l + 1(a_1 + 2a_2 + \dots + la_l)$$

respectively. Both are non-negative integers by assumption, so that by adding them, we get $|\lambda| = \sum_{i} a_i \ge 0$.

Part (a) of (2) can be proved similarly as Lemma 3 via induction on $|\lambda + \mu|$, using (1). For the proof of (b), write $\lambda = \lambda_0 + q\lambda_1$ with $\lambda_0 \in X_q$ and $\lambda_1 \in X^+$. Then $L(\lambda)' \simeq L(\lambda_0)' \otimes L(\tau\lambda_1)' \gg L(\gamma)'$, and so $|\gamma| \le |\lambda_0 + \tau\lambda_1| \le |\lambda_0 + q\lambda_1| = |\lambda|$. Hence $|\lambda_0 + \tau\lambda_1| = |\lambda_0 + q\lambda_1|$, and thus $\lambda_1 = 0$. Therefore $\lambda = \lambda_0 \in X_q$, whence $\lambda = \gamma$.

To apply Lemma 2 to $St \otimes V$, we need the following fact.

Lemma 5. Let g be as above.

(1) $\delta = (q-1)\rho$ is the only weight in X_q such that $\omega_1^0 < Q\delta$, except for type B_2 , in which case ω_2^0 also satisfies that $\omega_1^0 < Q\omega_2^0$.

(2) If g is of type A_l , then (1) is true for all ω_k in place of ω_1 ($1 \le k \le l$).

Proof. Although we have to distinguish the cases, the proof is easy. Suppose that $\mu = \sum_{i} c_i \omega_i \in X_q$ satisfies $\omega_1^0 <_Q \mu$. If g is of type other than A_i , then $w_0 \omega_1 = -\omega_1$, so that

$$\mu - \omega_1^0 = (c_1 - (q-2))\omega_1 + \sum_{i \ge 2} (c_i - (q-1))\omega_i \, Q > 0 \, .$$

Since $0 \le c_i \le q-1$, we find readily $c_1 = q-1$. Expressing each ω_i as a (non-negative) rational linear combinations of the simple roots and looking at the coefficients of α_{i-1} and α_i , we find easily $c_i = q-1$ for all *i*, except for the case

of type B_2 . In that case there is one exception that $\omega_1^0 < Q \omega_2^0$.

Now, let g is of type A_l . Then $w_0\omega_k = -\omega_{l+1-k}$ for all $k \le l$ and so

$$\mu - \omega_k^0 = (c_{l+1-k} - (q-2))\omega_{l+1-k} + \sum_{l \neq l+1-k} (c_i - (q-1))\omega_i \, q > 0 ,$$

whence we have $c_{l+1-k} = q-1$. Suppose that $c_i - (q-1) < 0$ for some *i*. If k > l-i+1, then i/l+1 > l+1-k/l+1. Since i/l+1 is the coefficient of α_i in ω_i , this implies that the coefficient of α_i , in $\mu - \omega_k^0$ is negative, contradicting the assumption. If, on the other hand, k < l-i+1, then we find that the coefficient of α_1 in $\mu - \omega_k^0$ is negative again, contradicting the assumption. Therefore we have $c_i = q-1$ for all *i*. This completes the proof of the lemma.

The last preliminary lemma is the following.

Lemma 6. Let G_0 be SL(l+1, q), $\Omega(2l+1, q)$, Sp(2l, q), $\Omega_{\pm 1}(2l, q)$ or SU(l+1, q). Then we have

- (1) $St \otimes V \simeq U(\omega_1^0) \oplus m_1 St \quad (m_1 \ge 0).$
- (2) If $G_0 = SL(l+1, q)$ or SU(l+1, q), then for all $k \le l$ $St \otimes L(\omega_k)' \simeq U(\omega_k^0) \oplus m_k St \quad (m_k \ge 0).$

Proof. (1) By Lemmas 2 and 5, we need only prove the assertion in the cae case of $G_0=\Omega(5, q)$ with odd prime power q. We want to show that $L(\omega_2^0)'$ is not a constituent of $St \otimes V$. Suppose the contrary. Then there exists $\lambda = a_1\omega_1 + a_2\omega_2 \in X^+$ such that $L(\lambda) \ll St \otimes L(\omega_1)$ and that $L(\omega_2^0)' \ll L(\lambda)'$. In particular we have $\lambda \leq (q-1)\rho + \omega_1$. Since $\omega_1 = \alpha_1 + \alpha_2$ and $\omega_2 = 1/2\alpha_1 + \alpha_2$, we find from the above that $(q-a_1)+1/2(q-1-a_2)$ is a non-negative integer and that

$$2a_1 + a_2 \leq 3q - 1$$
, $a_1 + a_2 \leq 2q - 1$.

If $a_1, a_2 \le q-1$, then $\lambda = \omega_2^0 \le (q-1)\rho + \omega_1$, so that $\omega_1 + \omega_2 \ge 0$, which is impossible. If $a_1 \ge q$, then $a_2 \le q-1$. Write $a_1 = q+b$ with $0 \le b \le q-1$. Then

$$L(\lambda)' = L(b\omega_1 + a_2\omega_2 + q\omega_1)' \simeq L(b\omega_1 + a_2\omega_2)' \otimes L(\omega_1)' \gg L(\omega_2^0)'$$

whence $(b+1)\omega_1 + a_2\omega_2 Q \ge \omega_2^0$ and we have

$$(b+2-q)+1/2(a_2-q+2)\geq 0$$
,
 $(b+2-q)+(a_2-q+2)\geq 0$.

From the first inequality we have $2a_1+a_2 \ge 5q-6$, so that $3q-1 \ge 5q-6$, i.e., $q \le 2$, contradicting the assumption. If $a_2 \ge q$, then $a_1 \le q-1$. Write $a_2 = q+c$ with $0 \le c \le q1$. Then

$$L(\lambda)' \simeq L(a_1\omega_2 + c\omega_2)' \otimes L(\omega_2)' \gg L(\omega_2^0)'$$

whence $a_1\omega_1 + (c+1)\omega_2 Q \ge \omega_2^0$ and we have

PROJECTIVE MODULES FOR FINITE GROUPS

$$a_1 - (q-1) + 1/2(c-q+3) \ge 0$$
,
 $a_1 - (q-1) + (c-q+3) \ge 0$.

From the second inequality we have $a_1+a_2 \ge 3q-4$, so that $2q-1 \ge 3q-4$, i.e., $q \le 3$. But the case that q=3 occurs if and only if $a_1=q-1=2$ and $a_2=q=3$. Then $q-a_1+1/2(q-1-a_2)=1/2$ is not an integer. As noted above, this is a contradiction.

For the proof of (2), we may assume $G_0 = SU(l+1, q)$. Take $\mu = \sum_i a_i \omega_i \in X_q$. We want to show that if $St = L((q-1)\rho)' \ll L(\mu)' \otimes L(-w_0\omega_k)'$, then $\mu = \omega_k^0$ or $(q-1)\rho$. There is $\gamma \in X^+$ such that $L(\gamma) \ll L(\mu) \otimes L(-w_0\omega_k)$ and that $St \ll L(\gamma)'$. Since $\gamma \le \mu + (-w_0\omega_k) = \mu + \omega_{\tau(k)}$, we have by Lemma 4

$$(q-1)l \leq |\gamma| \sum_i a_i + 1 \leq (q-1)l + 1$$
.

If $a_i = q-1$ for all *i*, we have $\mu = (q-1)\rho$; otherwise we have $(q-1)l = |\gamma| = \sum_i a_i + 1$. This implies that $\mu = (q-1)\rho - \omega_j$ for some $j \le l$ and we have $\gamma = (q-1)\rho$ by Lemma 4. Since $\gamma \le \mu + \omega_{\tau(k)}$ we have $\omega_{\tau(k)} \ge \omega_j$ from the above, whence $j = \tau(k)$. Therefore $\mu = (q-1)\rho - \omega_{\tau(k)} = \omega_k^0$ as desired.

For convenience of later arguments, we list here the standard unipotent elements $x_i(t)$ of each Chevalley group G_0 corresponding to the simple root α_i (cf. Carter [3]). *I* is the identity matrix and e_{ij} the matrix unit. We remark that the element $x_{-i}(t)$ corresponding to $-\alpha_i$ is given by ${}^tx_i(t)$, except for $x_{-i}(t) \in \Omega(2l+1, q)$.

 $[A_l] \quad G_0 = SL(l+1, q) \ (=G).$

$$egin{aligned} \Pi &= \{lpha_1 = \lambda_1 - \lambda_2, \, \cdots, \, lpha_l = \lambda_l - \lambda_{l+1}\} \;, \ x_i(t) &= I + te_{i,i+1} \quad (1 \leq i \leq l) \;. \end{aligned}$$

 $[\mathbf{B}_l] \quad G_0 = \Omega(2l+1, q)$

$$\Pi = \{ \alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{l-1} = \lambda_{l-1} - \lambda_l, \alpha_l = \lambda_l \}, x_i(t) = I + t(e_{i,i+1} - e_{-(i+1),-i}) \qquad (1 \le i \le l-1), x_l(t) = I + t(2e_{l,0} - e_{0,-l}) - t^2 e_{l,-l}.$$

(Rows and columns are numbered 0, 1, \cdots , l, -1, \cdots , -l.) [C₁] $G_0 = Sp(2l, q) \ (=G)$

$$\Pi = \{ \alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{l-1} = \lambda_{l-1} - \lambda_l, \alpha_l = 2\lambda_l \}, x_i(t) = I + t(e_{i,i+1} - e_{-(i+1),-i}) \qquad (1 \le i \le l-1), x_l(t) = I + te_{l,-l}.$$

 $[D_l] \quad G_0 = \Omega_{+1}(2l, q)$

$$\Pi = \{ \alpha_1 = \lambda_1 - \lambda_2, \dots, \alpha_{l-1} = \lambda_{l-1} - \lambda_l, \alpha_l = \lambda_{l-1} + \lambda_l \}, \\ x_i(t) = I + t(e_{i,i+1} - e_{-(i+1),-i}) \qquad (1 \le i \le l-1), \\ x_l(t) = I + t(e_{l-1,-l} - e_{l,-(l-1)}).$$

For $J \subset \Pi$, let $G_J = \langle x_{\sigma}(t); \alpha \in \Phi_I, t \in F_q \rangle \subset G_0$. This occupies parts of the main diagonal blocks of G_0 . If I and J are mutually orthogonal subsets of Π , then $G_{I \cup J} = G_I \times G_J$.

The action of $h_i(t)$ on the unit vectors $e_{\pm i}(1 \le i \le l)$ of V is written as

$$egin{aligned} h_{j}(t) e_{\pm i} &= t^{\pm \lambda_{i}(h_{j})} e_{\pm i}; \ h_{j}(t) e_{0} &= e_{0} \quad (ext{only for } \Omega(2l\!+\!1,\,q)) \,, \end{aligned}$$

where in the case of SL(l+1, q) no e_{-i} appears, but e_{l+1} is possible instead.

The standard diagonal subgroups H_1 and H_2 of the universal Steinberg groups of type ${}^{2}A_{l}$ and ${}^{2}D_{l}$ are as follows respectively:

$$\begin{aligned} H_1 &= \langle h_i(t)h_{l+1-i}(t^q); \ t \in F_q^{\times 2}, \quad 1 \leq i \leq l \rangle, \\ H_2 &= \langle h_i(u), \ h_{l-1}(t)h_l(t^q); \ u \in F_q^{\times}, \ t \in F_q^{\times 2}, \quad 1 \leq i \leq l-2 \rangle. \end{aligned}$$

3. Reduction to Levi subgroups

Let G be as before. We consider G as a group with a split (B, N)-pair (with $B = \tilde{H}^{\sigma}$, $N = N_{\tilde{\sigma}}(\tilde{H})^{\sigma}$); see § 1.18 of Carter [4], which will be referred to for the general theory of groups with a (B, N)-pair. Our notations are mostly the same as in the book.

For a τ -invariant subset J of Π , let P_J , L_J , and St_{L_J} be the standard parabolic subgroup $(\tilde{B}W_I\tilde{B})^{\sigma}$, the Levi subgroup $\langle \tilde{H}, x_{\alpha}(t); \alpha \in \Phi_J, t \in K \rangle^{\sigma}$ of P_J , and the Steinberg character of L_J respectively. As a complex character of G, St is defined by

$$St = \sum_{\tau} (-1)^{|J/\tau|} (1_{P_J})^G$$

where J runs over the τ -invariant subsets of Π and $|J/\tau|$ denotes the number of the τ -orbits on J. We know that $St|_{P_J} = (St_{L_J})^{P_J}$ and $(St, (1_B)^c) = 1$. In particular, it follows that if $J = \phi$, then $L_{\phi} = H = \hat{H}^{\sigma}$ and $St_H = 1_H$. Also we have $St|_B \simeq (K_H)^B$ as KB-modules, which give a principal indecomposable KB-module corresponding to the trivial module, since H is a p-complement of B. Let be φ the Brauer character defined by $V = K^n$. Since St is projective, we see, with the notation of Lemma 6, that $m_1 = \dim \operatorname{Hom}_{KG}(St, St \otimes V)$ is just the inner product $(St, St \varphi)$ of the Brauer characters. Thus

$$m_{1} = (St, \sum_{J} (-1)^{|J/\tau|} (\varphi|_{P_{J}})^{c}) = \sum_{J} (-1)^{|J/\tau|} (St|_{P_{J}}, \varphi|_{P_{J}})$$
$$= \sum_{J} (-1)^{|J/\tau|} (St_{L_{J}}, \varphi|_{L_{J}}).$$

We put $m_J = (St_{L_J}, \varphi|_{L_J}) = \dim \operatorname{Hom}_{KL_J}(St_{L_J}, V|_{L_J})$. We now prove

Theorem 1. Suppose $q \ge 3$. Then we have

$$St \otimes V \simeq \begin{cases} U(\omega_1^0) \text{ for } SL(l+1, q), Sp(2l, q), \Omega_{\pm 1}(2l, q) \text{ and } SU(l+1, q); \\ U(\omega_1^0) \oplus St \text{ for } \Omega(2l+1, q). \end{cases}$$

Proof. We want to show $m_I = 0$ for any τ -invariant subset J of Π . Suppose to the contrary that $m_J \neq 0$ for some J. Since St_{L_J} is injective, it follows that $St_{L_J} \langle \bigoplus V |_{L_J}$ and hence V contains a nonzero element fixed under H. But this is clearly impossible in the groups SL(l+1, q), Sp(2l, q), $\Omega_{\pm 1}(2l, q)$ and SU(l+1, q), provided $q \geq 3$. So let us assume that $G_0 = \Omega(2l+1, q)$ with p > 2. Then the first unit vector e_0 is a unique element, up to scalar multiples, fixed under H. If $J \equiv \alpha_l$, then $L_J = \langle H, x_{\alpha}(t); \alpha \in \Phi_J, t \in F_q \rangle$ is mapped under $\psi: G \rightarrow G_0$ into the set of the elements of the form $\left[\frac{1}{0} | \frac{0}{*}\right]$. Hence $V = Ke_0 \oplus W$ $(W = K^{2l})$ is a direct sum as a KL_J -module. If $J = \phi$, then $L_J = H$ and $St_H = 1_H$, hence $m_{\phi} = 1$. If, on the other hand, $I \equiv \phi$ and $St_I \triangleleft \oplus V |_{L_T}$, then $St_I \triangleleft \oplus W$.

hence $m_{\phi}=1$. If, on the other hand, $J \neq \phi$ and $St_{L_J} \langle \bigoplus V |_{L_J}$, then $St_{L_J} \langle \bigoplus W$. This is impossible because $Ke_0 \cap W=0$ and thus $m_J=0$. If $J \ni \alpha_I$, then $x_I(t)$ does not fix e_0 , so that no nonzero element of V is stable under the subgroup $B_J = \langle H, x_{\sigma}(t); \alpha \in \Phi_J^+, t \in F_q \rangle$ of L_J , and we have again $m_J = 0$. (Remember that L_J has a split (B_J, N_J) -pair (Carter [4] Proposition 2.6.3).)

Now, we concentrate on $G_0 = SL(l+1, q)$ or SU(l+1, q). For $k \le l$, we know that $L(\omega_k)' \simeq \bigwedge^k V$, the module of skew-symmetric tensors of degree k (cf. Wong [13]). Using Lemma 6(2), we prove

Theorem 2. Let $G_0 = SL(l+1, q)$ or SU(l+1, q) with $q \ge 3$. Then we have $St \otimes \bigwedge^k V \simeq U(\omega_k^0)$ for all $k \le l$.

Proof. The weight of the standard diagonal subgroup H of G_0 in $\bigwedge V$ are of the form δ for some $\delta = \lambda_{p_1} + \cdots + \lambda_{p_k} \in X$ with $1 \le p_1 \le \cdots < p_k \le l+1$. We show that δ is not trivial on H. We may assume that $p_k \le l$, because $\lambda_{l+1} = -(\lambda_1 + \cdots + \lambda_l)$. If $G_0 = SL(l+1, q)$, $H = \langle h_i(t); t \in F_q^{\times}, 1 \le i \le l \rangle$ and $\delta(h_{p_k}) = 2(\delta, \alpha_{p_k})/(\alpha_{p_k}, \alpha_{p_k}) = (\delta, \lambda_{p_k} - \lambda_{p_{k+1}}) = 1$. If $G_0 = SU(l+1, q)$, then, by a similar computation, we have

$$\begin{aligned} \delta(h_{p_k} + qh_{l+1-p_k}) &= 1, & \text{if } p_k < l+1/2; \\ \delta(h_{p_k} + qh_{l+1-p_k}) &\in \{1, 1 \pm q\}, & \text{if } p_k \ge l+1/2. \end{aligned}$$

Therefore, with the notation at the end of the section 2, δ is not trivial on H_1 , provided $q \ge 3$, i.e., H_1 has no fixed point on $\bigwedge^k V$ other than zero. Since the

same formula as m_1 written above Theorem 1 holds for m_k , with V replaced by $\bigwedge^{*} V$, Theorem 2 is now immediate.

4. Case of q=2

In this section we shall discuss the case of q=2 and determine the multiplicity m_1 of St in $S \otimes V$. This will be done for $G_0 = SU(l+1, 2)$ in the next section. In the remaining linear groups, it is clear that $m_1 \ge 1$; for $St \otimes V = L(\rho)' \otimes L(\omega_1)' \gg L(\rho+\omega_1)' = (L(\rho-\omega_1) \otimes L(\omega_1))' \gg L(\rho)' = St$. Actually we have $m_1=1$ as will be shown below.

We first assume that $G_0 = SL(l+1, 2)$, Sp(2l, 2) or $\Omega_{+1}(2l, 2)$, and compute $m_J = \dim \operatorname{Hom}_{KL_J}(St_{L_J}, V|_{L_J})$ for a non-empty subset J of Π . Let $J = \bigcup_{i=1}^r J_i$ be the partition into the connected components J_i of J. Here, for certain technical reason, we suppose in the case of $\Omega_{+1}(2l, 2)$ that α_{l-1} and α_l are connected, whenever J contains both. Since H=1, $G_J=L_J$ for all $J \subset \Pi$ and so $L_J=L_{J_1}\times\cdots\times L_{J_r}$. We write L_i for L_{J_i} for simplicity. Corresponding to this direct product, we have

$$V = V_1 \oplus \cdots \oplus V_r \oplus U,$$

in which each L_i acts on V_i in a natural manner, but trivially on other V_j and U. For example, if $J = \{\alpha_1\}$ and $G_0 = Sp(2l, 2), V = V_1 \oplus U$ with $V_1 = Ke_1 \oplus Ke_2 \oplus Ke_{-1} \oplus Ke_{-2}$ and $U = \bigoplus_j Ke_j (j \neq \pm 1, \pm 2)$ (note that if $G_0 = \Omega_{+1}(2l, 2)$, then $L_{\{\alpha_{l-1}\}}$ and $L_{\{\alpha_l\}}$ act non-trivially on the same subspace $Ke_{l-1} \oplus Ke_l \oplus Ke_{-(l-1)} \oplus Ke_{-l}$, for this reason α_{l-1} and α_l are supposed to be connected). We see that dim V_i is either $|J_i| + 1, 2|J_i|$ or $2(|J_i| + 1)$. If $St_{L_J} \langle \oplus V|_{L_J}$, then $St_{L_J} \langle \oplus \bigoplus_{i=1}^r V_i$ and hence $St_{L_J} \langle \oplus V_j$ for a unique $j \leq r$. But since $St_{L_J} = \bigotimes_{i=1}^r St_{L_i}$, this forces r = 1. Recall that dim $St_{L_J} = 2^e$, where $a = |\Phi_j^+|$. Hence

(*)
$$2^{a} \leq \dim V_{1} \leq 2(|J|+1).$$

Suppose for the time being that $J \neq \{\alpha_{l-1}, \alpha_l\}$ in case $G_0 = \Omega_{+1}(2l, 2)$. If $|J| \ge 2$, then $a \ge |J| + 1$, which contradicts (*). Therefore we have |J| = 1. Summarizing the above, we have |J| = 1, whenever $m_J \ne 0$ for a nonempty subset J of Π . Write $J = \{\alpha_i\}$ nad $V = V_1 \oplus U$. Since $L_J \simeq SL(2, 2)$, the canonical module K^2 gives the Steinberg module for L_J .

If $G_0 = SL(l+1, 2)$, then $V_1 \simeq K^2 = St_{L_J}$ and so $m_J = 1$. Since $m_{\phi} = \dim V$ = l+1, we have $m_1 = \sum_{J} (-1)^{|J|} m_J = (l+1) - l = 1$.

Let $G_0 = Sp(2l, 2)$. If $i \le l-1$, then $V_1 = V^{(1)} \oplus V^{(2)}$ with $V^{(1)} = Ke_i \oplus Ke_{i+1}$ and $V^{(2)} = Ke_{-i} \oplus Ke_{-(i+1)}$. Since $V^{(1)} \simeq V^{(2)} \simeq K^2$, we have $m_J = 2$. On the other hand, if $J = \{\alpha_i\}$, then $V_1 = Ke_i \oplus Ke_{-i} \simeq K^2$, whence we have $m_J = 1$. Therefore $m_1 = 2l - 2(l-1) - 1 = 1$.

Let $G_0 = \Omega_{+1}(2l, 2)$. If $i \le l-1$, we are in the same situation as Sp(2l, 2), hence $m_J = 2$. If $J = \{\alpha_l\}$, $V_1 = V^{(1)} \oplus V^{(2)}$ with $V^{(1)} = Ke_{l-1} \oplus Ke_{-l}$, $V^{(2)} = K(e_{l-1}+e_l) \oplus K(e_{-(l-1)}+e_{-l})$. Since $V^{(1)} \simeq K^2 \simeq V^{(2)}$, we have $m_J = 2$ again. Now we assume $J = \{\alpha_{l-1}, \alpha_l\}$. Then J has two connected components $J_1 = \{\alpha_{l-1}\}$ and $J_2 = \{\alpha_l\}$. As noted above, L_1 and L_2 act on the same subspace $V_1 = Ke_{l-1} \oplus Ke_{l} \oplus Ke_{-(l-1)} \oplus Ke_{-l}$. It is easy to see that V_1 is irreducible as an $L_J = L_1 \times L_2$ -module, which necessarily gives the Steinberg module for it. Hence we have $m_J = 1$. Combining the aboves, we get $m_1 = 2l - 2l + 1 = 1$.

We next consider the group $\Omega_{-1}(2l, 2)$. This coincides with the universal Steinberg group $\Omega_{+}(2l, K)^{\sigma}$ (since p=2) and the standard diagonal subgroup is written as

$$H = \langle h_{l-1}(t)h_l(t^2); t \in F_4^{\times}
angle \ = \left\{ egin{pmatrix} I & 0 \ t \ \hline t & 0 \ 0 & I \ 0 & I^{-1} \end{bmatrix}; t \in F_4^{\times}
ight\},$$

where I denotes the identity matrix of degree l-1. For a τ -stable subset J of Π , let $J = \bigcup_{i=1}^{r} J_i$ be the partition into the connected components J_i of J, where we assume α_{l-1} and α_l are connected, as before, if J contains both. If J contains none of α_{l-1} and α_l , we have

$$L_I = G_1 \times \cdots \times G_r \times H$$

with $G_i = \langle x_{\alpha}(1); \alpha \in \Phi_{J_i} \rangle$. Hence the corresponding decomposition of V is written as

$$V = V_1 \oplus \cdots \oplus V_r \oplus U,$$

in which each G_i acts on V_i in a natural manner, but trivially on other V_j and U. In particular H acts trivially on each V_i . Hence the same argument applies as in $\Omega_{+1}(2l, 2)$, yielding $m_J=2$.

If some J_i , say J_r , contains one of α_{l-1} and α_l , then it contains the other by our assumption. We have

$$L_I = G_1 \times \cdots \times G_{r-1} \times L_r.$$

By the same argument as in $\Omega_{+1}(2l, 2)$ we get $|J| = |J_r| = 2$, i.e., $L_J = L_r = \Omega_{-1}(4, 2) (\simeq SL(2, 4))$, provided $m_J \neq 0$. A direct computation shows that $V_s = Ke_{l-1} \oplus Ke_l \oplus Ke_{-(l-1)} \oplus Ke_{-l}$ is irreducible, so that $V_r = St_{L_J}$ and thus $m_J = 1$. Therefore $m_1 = \sum_{T} (-1)^{1J/\tau_1} m_J = 2(l-1) - 2(l-2) - 1 = 1$.

Summarizing the aboves, we get

Theorem 3. For SL(l+1, 2), $Sp(2l, 2) \simeq \Omega(2l+1, 2)$ and $\Omega_{\pm 1}(2l, 2)$, we

$$St \otimes V \simeq U(\omega_1^0) \oplus St$$

More on modules of skew-symmetric tensors 5.

We begin with the following combinatorial facts. For the first two assertions, see Lovász [7], Problems 1.31 and 1.42 (g).

Lemma 7. Let n, k be natural numbers.

(1) The number of the subsets of $\{1, 2, \dots, n\}$ with cardinality r which contains no successive pair of integers is equal to the binomial coefficient $\binom{n+1-r}{r}$. (2) $\sum_{r=0}^{\lfloor n/2 \rfloor} (-1)^r {\binom{n-r}{r}} (1/4)^r = n+1/2^n.$ (3) $\sum_{r=0}^{k} (-1)^{r} \binom{k}{r} \binom{n-r}{b} = 1.$ Proof. (3) From $(1-x^{-1})^{k} = \sum_{r=0}^{k} (-1)^{r} \binom{k}{r} x^{-r}$ we have $x^{n}(1-x^{-1})^{k} = \sum_{r=0}^{k} -1)^{r} \binom{k}{r} x^{n-r}$

Evaluating the value of the k-th derivatives at x=1 on both sides we get the assertion.

Theorem 4. For SL(l+1, 2) we have

 $St \otimes \bigwedge^{k} V \simeq U(\omega_{k}^{0}) \oplus St \qquad (1 \le k \le l).$

Proof. Let us fix $k \le l$ and $J \subset \Pi$, and compute the integer m(J, k) =dim Hom_{*KLJ*}(St_{LJ} , $\bigwedge^{k} V$). Using the same notation as in the proof of the preceding theorem, we have

$$L_J = L_1 \times \cdots \times L_r$$

and

$$V = V_1 \oplus \cdots \oplus V_r \oplus U$$
, with dim $V_i = |J_i| + 1$.

As is well-known, we have (cf. Curtis and Reiner [5], § 12)

$$\bigwedge^{*} V = \bigoplus \bigwedge^{*_{1}} V_{1} \otimes \cdots \otimes \bigwedge^{*_{r}} V_{r} \oplus \bigwedge^{*} U,$$

where the direct sum is taken over the sequences (s_1, \dots, s_r, s) of r+1 integers such that $k = s_1 + \dots + s_r + s$, $0 \le s_i \le |J_i| + 1$. Since $L_i \simeq SL(|J_i| + 1, 2)$, each $\bigwedge^{i_i} V_i$ is irreducible as an L_i -module and we have $St_{L_J} = \bigotimes_{i=1}^r St_{J_i}$. Therefore, if $m(J, k) \neq 0$, i.e., $St_{L_J} \langle \bigoplus \bigwedge^k V$, then there exists a (s_1, \dots, s_r, s) such that $St_{J_i} \simeq \bigwedge^{s_i} V_i$ for all $i \leq r$. Then, considering the dimension of St_{J_i} , we get $|J_i| = 1$ and hence $s_i = 1$, dim $V_i = 2$, for all *i*. If this is the case, then $m(J, k) = \dim \bigwedge^{s_i} U = \binom{\dim V - 2r}{k-r} = \binom{l+1-2r}{k-r}$. Since no pair of elements of *J* is connected and |J| = r, the number of choices of such *J* is $\binom{l+1-r}{r}$ by Lemma 7(1). Therefore we have

$$m_{k} = \sum_{J} (-1)^{|J/\tau|} m_{J} = \sum_{J} (-1)^{|J/\tau|} {\binom{l+1-2r}{k-r}} {\binom{l+1-r}{r}} = \sum_{r=0}^{k} (-1)^{r} {\binom{k}{r}} {\binom{l+1-r}{k}},$$

which is equal to 1 by Lemma 7 (3). This completes the proof of the theorem.

Finally we show the following result.

Theorem 5. For SU(l+1,2) and $k \le l$, we have $St \otimes \bigwedge^{k} V = \begin{cases} U(\omega_{k}^{0}) \oplus St, & \text{if } l \text{ is odd and } k = l+1/2; \\ U(\omega_{k}^{0}), & \text{otherwise }. \end{cases}$

Proof. Since $L(\omega_k)^* \simeq L(-w_0 \omega_k) = L(\omega_{l+1-k})$, we may assume $k \le l+1/2$. The matrix form of the standard diagonal subgroup H_1 of SU(l+1, q) is in general described as

$$H_{1} = \{ \operatorname{diag}(t_{1}, \dots, t_{l+1}); \prod_{i=1}^{l+1} t_{i} = 1, t_{i}^{q} t_{l+2-i} = 1, t_{i} \in F_{q}^{\times 2} \}$$

and so in our case

$$H_1 = \{ \operatorname{diag}(t_1, \dots, t_{l+1}); \prod_{i=1}^{l+1} t_i = 1, \ t_i = t_{l+2-i}, \ t_i \in F_4^{\times} \}.$$

In particular, for diag $(t, \dots, t_{l+1}) \in H_1$, we have

(**)
$$\begin{cases} (t_1 \cdots t_s)^2 t_{s+1} = 1, & \text{if } l = 2s; \\ t_1 \cdots t_{s+1} = 1, & \text{if } l = 2s+1. \end{cases}$$

Using this, we first show that H_1 has a non-zero fixed point in $\bigwedge^k V$ only if l is odd and k=l+1/2, which will establish the second statement of the theorem.

The set $\{e_{p_1} \land \cdots \land e_{p_k}; 1 \le p_1 < \cdots < p_k \le l+1\}$ for ns a basis of $\bigwedge^k V$ and we have

$$\operatorname{diag}(t_1, \cdots, t_{l+1})e_{\mathfrak{p}_1} \wedge \cdots \wedge e_{\mathfrak{p}_k} = t_{\mathfrak{p}_1} \cdots t_{\mathfrak{p}_k}e_{\mathfrak{p}_1} \wedge \cdots \wedge e_{\mathfrak{p}_k}.$$

So, if $e_{p_1} \wedge \cdots \wedge e_{p_k}$ is H_1 -stable, $t_{p_1} \cdots t_{p_k} = 1$ for all diag $(t_1, \cdots, t_{l+1}) \in H_1$. Replacing t_{p_i} with t_{l+2-p_i} if $p_i \ge s+2$, we see easily from (**) that this occurs only

if *l* is odd and k=l+1/2. And when this is the case, the H_1 -stable element $e_{p_1} \wedge \cdots \wedge e_{p_k}$ is obtained from $e_1 \wedge \cdots \wedge e_{s+1}$ by replacing some of e_1, \dots, e_{s+1} , say e_i, \dots, e_j , with $e_{l+2-i}, \dots, e_{l+2-j}$ respectively.

We now assume that l=2s+1, k=s+1, and prove the first statement of the theorem. From the above, the subspace of the H_1 -stable points of $\bigwedge^{s+1} V$ has dimension $\sum_{j=0}^{s+1} {s+1 \choose j} = 2^{s+1}$. For a τ -stable subset $J \neq \phi$ of Π , let $\tilde{G}_J = \langle x_{\sigma}(t); \alpha \in \Phi_J, t \in K \rangle$ and let $\tilde{L}_J = \langle \tilde{H}, \tilde{G}_J \rangle$, the Levi subgroup (as before). Since \tilde{G}_J is a connected normal subgroup of \tilde{L}_J , it follows from the Lang-Steinberg theorem that $L_J = \tilde{L}_J^{\sigma} = \langle H_1, G_J \rangle$ with $G_J = \tilde{G}_J$. We say that J is τ -connected if either J is connected and contains α_{s+1} , or else J is of the form $J = I \cup \tau(I)$ for some connected subset I not containing α_{s+1} . In the former case we have that $G_J \simeq SU(|J|+1, 2)$, while in the latter case, $\tilde{G}_J = \tilde{G}_I \times \tilde{G}_{\tau(I)} \simeq SL(|I|+1, K) \times SL(|I|+1, K)$ is a universal Chevalley group over K. Hence $G_J = \langle U, U' \rangle$ where $U = \langle x_{\sigma}(t); \alpha \in \Phi_J^+, t \in K \rangle^{\sigma}$ and $U' = \langle x_{-\sigma}(t); \alpha \in \Phi_J^+, t \in K \rangle^{\sigma}$.

Now, let $J = \bigcup_{i=1}^{r} J_i$ be the partition into the τ -connected components J_i of J. Then $G_J = G_{J_1} \times \cdots \times G_{J_r}$. Write $G_i = G_{J_i}$ and $n_i = |J_i|$. We have

 $V = V_1 \oplus \cdots \oplus V_r \oplus U,$

in which G_i acts naturally on V_i , but trivially on other V_j and U. We want to show that $m_{s+1} = \sum_{J} (-1)^{|J/\tau|} m_J$ is 1, where J runs over the τ -stable subsets of Π and $m_J = \dim \operatorname{Hom}_{KL_J}(St_{L_J}, \bigwedge^{s+1} V)$. Since L_J and G_J have the same Sylow 2-subgroups, $(St_{L_J})|_{G_J}$ must be irreducible, which therefore gives the Steinberg module for G_J .

If $J \ni \alpha_{s+1}$, we arrange the indices so that $J_r \ni \alpha_{s+1}$. Hence, if $J \ni \alpha_{s+1}$, we shall ignore in the following the terms that involve r or s+1 as subscripts. As noted above, $G_r \simeq SU(n_r+1, 2)$.

If $i \neq r$, then n_i is even and we have

$$G_i = \left\{ \left[\begin{array}{c|c} x & 0 \\ \hline 0 & \sigma x \end{array} \right]; x \in SL(n_i/2+1, 4) \right\} \simeq SL(n_i/2+1, 4),$$

so that we have a KG_i -decomposition $V_i = V_i^{(1)} \oplus V_i^{(2)}$ with dim $V_i^{(1)} = \dim V_i^{(2)} = n_i/2+1$.

The Steinberg module for G_J may be written as $\bigotimes_{i=1}^{r-1} M_i \otimes M_r$, where M_i is the Steinberg module for $SL(n_i/2+1, 4)$ and $M_r = St_{G_r}$. Suppose $m_J \neq 0$. Then by the same argument as in the proof of Theorem 4, we get $|J_i/\tau| = 1$ for all $i \leq r$ and $St_{G_j} \ll \bigoplus_{i=1}^{r-1} (V_i^{(1)} \otimes V_i^{(2)}) \otimes V_r$; for instance, that $St_{G_i} \ll \bigwedge_{i=1}^{s_1} V_i^{(1)} \otimes \bigwedge_{i=1}^{s_2} V_i^{(2)}$ implies that, putting $m = n_i/2+1$, $4^{m(m-1)/2} \le {\binom{m}{s_1}}{\binom{m}{s_2}} < 2^{2m}$, whence $n_i = 2$. We then have $G_r \simeq SL(2, 2)$, and hence $V_r \simeq K^2$ is the Steinberg module for it. If $i \ne r$, then $V_i^{(1)} \simeq L(\omega)'$ and $V_i^{(2)} \simeq L(2\omega)'$, where ω is the first (and unique) fundamental dominant weight in the canonical module K^2 for SL(2, 4). Thus as an SL(2, 4)-module we have

$$V_{i}^{(1)} \otimes V_{i}^{(2)} = L(\omega)' \otimes L(2\omega)' \gg L(3\omega)'.$$

Since $L(3\omega)'$ is the Steinberg module for SL(2, 4), dim $L(3\omega)' = 4$ and so $V_i^{(1)} \otimes V_i^{(2)} \simeq L(3\omega)'$. Thus, we conclude that $St_{G_J} \simeq \bigotimes_{i=1}^{s-1} (V_i^{(1)} \otimes V_i^{(2)}) \otimes V_r$ (provided $m_J \neq 0$). Write $J = \{\alpha_{p_i}, \alpha_{\tau(p_i)}, \alpha_{s+1}; 1 \le i \le f, 1 \le p_i \le s\}$. Remember that $|p_i - p_j| \ge 2$ whenever $i \ne j$. Since a highest weight vector of St_{L_J} in $\bigwedge^{s+1} V$ is stable under the subgroup $\langle H_1, x_{p_i}(t)x_{\tau(p_i)}(t^2), x_{s+1}(1); 1 \le i \le f, t \in F_4^* \rangle$, it takes the form

$$e(J, u) = \bigotimes_{i=1}^{f} (e_{p_i} \otimes e_{\tau(p_i)}) \otimes e_{s+1} \otimes u \quad \text{for some } u \in \bigwedge^{t} U \quad (t = s - 2f) .$$

Now we devide the cases.

Case 1. $J \ni \alpha_{s+1}$.

Take a subset R of $\Pi \setminus J$ with cardinality t and let $R' = \{j; \alpha_j \in R\}$. We have, using that $t_{\tau(p_i)} = t_{l+1-p_i} = t_{p_i+1}$,

$$\operatorname{diag}(t_1,\cdots,t_{l+1})e(J,\bigwedge_{j\in R'}e_j)=t_{p_1}t_{p_1+1}\cdots t_{p_f}t_{p_f+1}t_{s+1}\prod_{j\in R'}t_je(J,\bigwedge_{j\in R'}e_j).$$

Noting that p_i , p_i+1 and s+1 are all distinct $(1 \le i \le f)$, we find easily that the coefficient of $e(J, \land e_j)$ on the right-hand side of the above above is 1 if and only if $\prod_{j \in \mathbb{R}'} t_j = \prod_i t_i$, where *i* runs over $\{1, \dots, s\} \setminus \{p_i, p_i+1; 1 \le i \le f\}$. Since $t_i = t_{i+2-i}$, there are exactly 2^{s-2f} choices of such $\land e_j$'s and this gives the multiplicity m_J of St_{L_J} in $\bigwedge^{s+1} V$. Once |J| = 2f+1 is fixed, the number of the subsets *J* under consideration is, from the aboves, equal to the number the subsets of $\{1, \dots, s-1\}$ with cardinality *f* that contain no successive pair integers, which is $\binom{s-f}{f}$ by Lemma 7(1). Since |J| = f+1, the terms in m_k involving m_J with $J \ni \alpha_{s+1}$ are given by

$$\sum_{f=0}^{[s/2]} (-1)^{f+1} {\binom{s-f}{f}} 2^{s-2f}$$

and this equals -(s+1) by virtue of Lemma 7(2). Case 2. $J \ni \alpha_{s+1}$. By the same argument as above, we find that the terms in m_k involving m_J with $J \ni \alpha_{s+1}$ are given by

$$\sum_{f=1}^{\lfloor s+1/2 \rfloor} (-1)^f \binom{s+1-f}{f} 2^{s+1-2f}$$

which equals $(s+2)-2^{s+1}$.

Now, summarizing the aboves, we get $m_k = 2^{s+1} - (s+1) + (s+2) - 2^{s+1} = 1$, as desired.

Professor Jantzen informed the author that the results in this paper can be extended to $V=L(\lambda)$ with highest weight λ being minuscule or the unique dominant short root using some general results on the representations of algebraic groups due to himself in part.

References

- A. Borel: Properties and linear representations of Chevalley groups, Lect. notes in math. 131 (1970), Springer, 1-55.
- [2] N. Bourbaki: Groupes et algèbras de Lie, Chap. 4-6, Hermann, Paris, 1968.
- [3] R.W. Carter: Simple groups of Lie type, John Wiley & Sons, London, 1972.
- [4] ————: Finite groups of Lie type, John Wiley & Sons, Chichester, 1985.
- [5] C.W. Curtis and I. Reiner: Methods of representation theory I, Wiley, New-York, 1981.
- [6] J.C. Jantzen: Representations of Chevalley groups in their own characteristic, Proc. Symposia in pure math., Amer. Math. Soc. 47, part I (1987), 127-146.
- [7] L. Lovász: Combinatorial problems and exercises, Akadémiai Kiadó, Budapest, 1979.
- [8] G. Lusztig: The discrete series of GL_n over a finite field, Ann. of Math. Studies 81, Princeton Univ. Press, 1974.
- [9] T. Okuyama: On p-block theory of finite groups with a (B, N)-pair, Proc. Symposium on groups and their representations (1984), 176-185 (in Japanese).
- [10] R. Steinberg: Lectures on Chevalley groups, Yale Univ. 1967.
- [12] M. Suzuki: Finite simple groups (in Japanese), Kinokuniya, Tokyo, 1987.
- [13] W.J. Wong: Representations of Chevalley groups in characteristic p, Nagoya Math. J. 45 (1987), 39-78.

Department of Mathematics Osaka City University 558 Osaka Japan