

Title	A note on the Grothendieck group of a finite abelian group
Author(s)	Sumioka, Takeshi
Citation	Osaka Journal of Mathematics. 1973, 10(1), p. 21-24
Version Type	VoR
URL	https://doi.org/10.18910/7267
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Sumioka, T. Osaka J. Math. 10 (1973), 21-24

A NOTE ON THE GROTHENDIECK GROUP OF A FINITE ABELIAN GROUP

TAKESHI SUMIOKA

(Received June 6, 1972)

Introduction

For any ring A, by G(A) we denote the Grothendieck group of left A-modules which are finitely generated. Let R be the ring of integers of an algebraic number field K, and let $R\pi$ and $K\pi$ be the group rings of a finite group π over R and K, respectively. If \mathbb{O} is a maximal R-order in $K\pi$ which contains $R\pi$, then by regarding a module over \mathbb{O} as one over $R\pi$, we get a homomorphism

 $\psi: G(\mathfrak{O}) \to G(R\pi)$

of Grothendieck groups. Swan [4] proved that ψ is an epimorphism, and Heller and Reiner [2] described the structure of ker ψ by using a map which depends on an ideal theory of the center of \mathfrak{O} and the modular representations of π . The following theorem is an immediate consequence from the description.

Theorem 1. Let R_i be maximal orders in the center of the simple constituents A_i ($i=1, \dots, s$) of $K\pi$. If any prime ideal of R_i which divides the order of π is contained in the ray $J(R_i)$ modulo the real archimedian primes ramified in A_i , then ψ is an isomorphism.

The purpose of this note is to show that under certain assumptions the converse of this theorem is also true.

Theorem 2. Let π be a finite abelian group of order n and K be a cyclotomic field. Then ψ is an isomorphism if and only if any prime ideal in \mathbb{O} which divides n is principal.

In this case $J(R_i)$ is the group of all principal ideals of R_i and \mathfrak{D} is the direct sum of the R_i . Hence the if part of this theorem is a special case of Theorem 1. Our proof of this theorem is based on a method using the conducter from \mathfrak{D} to $R\pi$, which owes to Swan ([4]).

Throughout this note, modules are assumed to be left modules which are finitely generated and by K, R and [M] we denote an algebraic number field,

T. SUMIOKA

the ring of integers of K and an element of a Grothendieck group which is represented by a module M, respectively.

1. Let A be a central simple algebra over K and let \mathfrak{D} be a maximal R-order in A. By I(R) and J(R) we denote the multiplicative group of R-ideals in K and the subgroup of I(R) consisting of elements xR ($x \in K$), respectively, where x are positive at each real archimedian prime of K which ramifies in A.

If S is a simple \mathfrak{D} -module, there exists a unique prime ideal \mathfrak{p} of R such that $\mathfrak{p}S=0$. Hence, when M is a torsion \mathfrak{D} -module and S_1, \dots, S_k are the \mathfrak{D} -composition factors of M, we define the reduced order ideal Or(M) of M as $Or(M)=\mathfrak{p}_1\cdots\mathfrak{p}_k$, where each \mathfrak{p}_i is a unique prime ideal scuh that $\mathfrak{p}_iS_i=0$.

We note that $G(\mathfrak{O})$ is isomorphic to the Grothendieck group of torsionfree \mathfrak{O} -modules. Now let L be a torsion-free \mathfrak{O} -module such that $K \bigotimes_R L$ is a simple A-module and fix it. Let M be a torsion-free \mathfrak{O} -module. Then $K \bigotimes_R M$ is isomorphic to a direct sum $(K \bigotimes_R L)^r$ of r-copies of $K \bigotimes_R L$ and there exists a submodule N of M such that $N \simeq L^r$. Hence [M] = r[L] + [M/N], and M/Nis torsion. Set $\mathfrak{a} = Or[M/N]$. By setting $\eta([M]) = (r, \bar{\mathfrak{a}})$, a map

$$\eta: G(\mathfrak{O}) \to \mathbf{Z} \oplus I(R)/J(R)$$

is an isomorphism, where $\overline{\mathfrak{a}}$ is an element of I(R)/J(R) represented by \mathfrak{a} and \mathbb{Z} is the ring of rational integers, (see Swan [5] or Heller and Reiner [2]).

For any (non-zero) ideal \mathfrak{A} of \mathfrak{O} , by $D(\mathfrak{A})$ we denote the set of prime ideals of R which divide $Or(\mathfrak{O}/\mathfrak{A})$. Then by the definition of η , we have an immediate consequence.

Lemma 3. Let \mathfrak{A} be an ideal of \mathfrak{O} and let M be an \mathfrak{O} -module which annihilated by \mathfrak{A} . If any element of $D(\mathfrak{A})$ is contained in $J(\mathbb{R})$, then [M]=0 in $G(\mathfrak{O})$.

2. Let π be a finite group and let \mathfrak{O} be a maximal *R*-order in $K\pi$ which contains $R\pi$. Now we consider the epimorphism

$$\psi: G(\mathfrak{O}) \to G(R\pi)$$
.

Let $K\pi = A_1 \oplus \cdots \oplus A_s$ be the decomposition of $K\pi$ into the simple constituents. We denote by K_i the center of A_i and by R_i the ring of integers of K_i . Since \mathfrak{D} is a maximal *R*-order in $K\pi$, there is a decomposition $\mathfrak{D} = \mathfrak{D}_1 \oplus \cdots \oplus \mathfrak{D}_s$ of \mathfrak{D} , where each \mathfrak{D}_i is a maximal R_i -order in A_i . By \mathfrak{C} we denote the conductor from \mathfrak{D} to $R\pi$ (the largest \mathfrak{D} -ideal contained in $R\pi$), and we write $\mathfrak{C} = \mathfrak{C}_1 \oplus \cdots \oplus \mathfrak{C}_s$, where each \mathfrak{C}_i is an ideal of \mathfrak{D}_i . It is known that \mathfrak{C} divides *n* the order of π .

Proposition 4. Suppose any element of $D(\mathbb{G}_i)$ is contained in $J(R_i)$ for

each i. Then the map $\psi: G(\mathfrak{O}) \rightarrow G(R\pi)$ is an isomorphism.

Proof. We shall give a left inverse map ϕ of ψ . At first, we define a homomorphism

$$\phi_i: G(R\pi) \to G(\mathfrak{O}_i)$$
.

Any element of $G(R\pi)$ is represented by [M]—[N], where M and N are torsion-free $R\pi$ -modules. It therefore suffices to consider torsion-free $R\pi$ modules. Now let M be a torsion-free $R\pi$ -module. Since \mathfrak{C}_i is contained in $R\pi$, we can consider an $R\pi$ -module $\mathfrak{C}_i M$. We define an operation of \mathfrak{D}_i for $\mathfrak{C}_i M$ as $x(\Sigma_t c_t m_t) = \Sigma_t(xc_t)m_t (x \in \mathfrak{D}_i, \Sigma_t c_t m_t \in \mathfrak{C}_i M)$. To see that this is well defined, let $\Sigma_t c_t m_t = 0$. Since nx is contained in $\mathfrak{C}_i, n\Sigma_t(xc_t)m_t = (nx)\Sigma_t c_t m_t = 0$. However $\Sigma_t(xc_t)m_t \in M$, and M is torsion-free, so we have $\Sigma_t(xc_t)m_t = 0$. Hence we can regard $\mathfrak{C}_i M$ as an \mathfrak{D}_i -module.

We now define a homomorphism

$$\phi_i: \ G(R\pi) \to G(\mathfrak{O}_i) ,$$

by $\phi_i([M]) = [\mathfrak{C}_i M]$. It is well defined as follows. Let

$$0 \to M' \to M \to M'' \to 0$$

be an exact sequence of torsion-free $R\pi$ -modules. Then it induces a sequence

$$0 \to \mathfrak{C}_i M' \xrightarrow{\alpha} \mathfrak{C}_i M \xrightarrow{\beta} \mathfrak{C}_i M'' \to 0$$

of \mathbb{O}_i -modules, which is exact up to middle. We easily see that ker $\beta/im\alpha$ is annihilated by \mathbb{C}_i , but by the assumption, any element of $D(\mathbb{C}_i)$ is contained in $J(R_i)$. So by Lemma 3, $[\ker\beta/im\alpha]$ is zero in $G(\mathbb{O}_i)$. This implies that $[\mathbb{C}_iM]$ $=[\mathbb{C}_iM']+[\mathbb{C}_iM'']$, which showes that ϕ_i is well defined.

Since $G(\mathfrak{O}) = \Sigma \oplus G(\mathfrak{O}_i)$, we define a homomorphism ϕ with all ϕ_i ,

$$\phi = \Sigma \phi_i \colon G(R\pi) \to G(\mathfrak{O}) .$$

Any \mathfrak{D}_i -module M is regarded as an \mathfrak{D} -module by setting $\mathfrak{D}_j M=0$ for $j \neq i$. Then $\phi_i \psi([M]) = [\mathfrak{C}_i M]$ and $\phi_j \psi([M]) = [\mathfrak{C}_j M] = 0$. However $[M] = [\mathfrak{C}_i M]$ in $G(\mathfrak{D}_i)$ by Lemma 3. Therefore $\phi \psi = 1$, and we complete the proof.

3. Hereafter let π be abelian. Then for each *i*, A_i and \mathfrak{D}_i coincide with K_i and R_i , respectively. Moreover $J(\mathfrak{D}_i)$ is the group of principal ideals of \mathfrak{D}_i , and $D(\mathfrak{C}_i)$ is the set of prime ideals of \mathfrak{D}_i dividing \mathfrak{C}_i .

Now we assume that K is a cyclotomic field or any prime rational integer dividing n the order of π is unramified in R. Let ρ_i is a map $R\pi \rightarrow \mathfrak{D}_i$ induced by the projection from $K\pi$ onto each constituent A_i . Then ρ_i is an epimorphism (see Swan [5]). Set $\mathfrak{N}_i = \operatorname{Ker} \rho_i$. Since ρ_i is an epimorphism, $\rho_i(\mathfrak{N}_i)$ is an T. SUMIOKA

ideal of \mathfrak{D}_i for each *i* and *j*. Any \mathfrak{D}_i -module *M* is regarded as an \mathfrak{D} -module by setting $\mathfrak{D}_j M = 0$ for $j \neq i$, and moreover this is also regarded as an $R\pi$ -module by restriction of the operation. But such an operation of $R\pi$ for *M* coincides with one induced by ρ_i .

Theorem 2'. Let π be an abelian group of order n. Assume that either K is a cyclotomic field or R has a property that any prime rational integer dividing n is unramified in R. Then the map ψ is an isomorphism if and only if any prime ideal dividing \mathfrak{S} is principal in \mathfrak{D} .

Proof. Assume that any prime ideal dividing \mathbb{C} is principal in \mathbb{O} which is equivalent to saying that for each *i* any prime ideal dividing \mathbb{C}_i is principal in \mathbb{O}_i , i.e. $D(\mathbb{C}_i) \subset I(\mathbb{O}_i)$. Then ψ is an isomorphism by Proposition 4.

Conversely, let ψ be an isomorphism. Suppose that there exists a non-principal prime ideal \mathfrak{P} of \mathfrak{D}_i dividing \mathfrak{C}_i for some *i*. Set $M=\mathfrak{D}_i/\mathfrak{P}$. Since \mathfrak{P} is a non-principal prime ideal, [M] is not zero in $G(\mathfrak{D}_i)$.

On the other hand $\prod_{j\neq i} \mathfrak{N}_j \subset \bigcap_{j\neq i} \mathfrak{N}_j = \mathfrak{C}_i$ (see Bass [1]). Hence, for some $j \neq i$, $\rho_i(\mathfrak{N}_j)$ is contained in \mathfrak{P} . If the \mathfrak{D}_i -module M is regarded as an $R\pi$ -module (by the way mentioned above), $\mathfrak{N}_j M = \rho_i(\mathfrak{N}_j) M \subset \mathfrak{P} M = 0$. Consequently, M is annihilated by \mathfrak{N}_j , so that from the isomorphism $R\pi/\mathfrak{N}_j \cong \mathfrak{D}_j$, M is also regarded as an \mathfrak{D}_j -module. Then the new $R\pi$ -module M obtained above coincides with the given \mathfrak{D}_i -module. It implies that in $G(R\pi)$, [M] is contained in the image of $G(\mathfrak{D}_i)$ as well as of $G(\mathfrak{D}_j)$, which contradicts injectivity of ψ . This proves Theorem 2'.

Now, in particular let K be an arbitrary cyclotomic field. Then a prime ideal \mathfrak{P} of \mathfrak{O}_i divides \mathfrak{C}_i if and only if \mathfrak{P} divides n (see Bass[1]). Thus Theorem 2 is an immediate consequence of Theorem 2'.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: Algebraic K-Theory, Benjamin, New York, 1968.
- [2] A. Heller and I. Reiner: Grothendieck groups of integral group rings, Illinois J. Math. 9 (1965), 349-360.
- [3] R.G. Swan: Induced representations and projective modules, Ann. of Math. 71 (1960), 552-578.
- [4] R.G. Swan: The Grothendieck ring of a finite group, Topology 2 (1963), 85-110.
- [5] R.G. Swan: K-Theory of Finite Groups and Orders, Lecture Note in Math. 149, Springer, Berlin, 1970.

24