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1. Introduction

In this paper, we will discuss the recurrence of a matrix type reinforced random
walk X = {Xn}n>0, With initial weights {w(0, j)};cz and a reinforcing matrix
A ={a(n, j)}nen, jez of Nnon-negative numbers. The transition mechanism of this walk
is defined through its weight procesz_ﬁ> ={w(n, j)}n>0, jez in the following manner.

w(n, j)
U)(I’l, .] - 1) +w(n, J)’
w(n, .] - 1) +U)(I’l, ])

(1.1) P[Xpe1=Jj+ 1| X, = j, {w(n, i)}iez] =

P[Xn+l = ] -1 | Xn = ja {w(n, i)}iGZ] =

The weight processv_)v is a family of additive functional 0&), which are defined in
terms of A .

é(n. j)
(1.2) w, j)=w@j)+ Y al,j),

=1

where ¢(n, j) is the total number thak crosses the edgéj, j +1} up to timen ;

(1.3) ¢, 1) =D Lixin, x)=17. 1))
=1

W_h>erg1A is an indicator function of a sed . Throughout this paper we call the pair
[X, W] simply by a reinforced random walk. We shall abbreviate a reinforced random
walk to RRW. _

We call a pathX recurrent if for everyj € Z, X, visits j infinitely often, and
transient if for everyj € Z, X, visits j only finitely many tinlgs. If there exist < 3
such thata < X, < g for all n, then we say that the patlk has finite range. We
will introduce convergence tests of the a following function. et : g)NV{% —
(0, o] be given by
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(1.4) o@)=Y o
k=0

for every infinite dimensional positive vectal = {a(k)};S,. This function plays an
important role in this paper. We define the column vechy: {v(m, j)}m>o by

(1.5) vin, j)=w@j)+Y_al, j),

=1
and initial weights vectoras . = {w(0, j)};>0, W - = {w(0, —j — 1)} ;>o0,
Wo+={w(0, j)?} 50, Wa— ={w(0, —j — 1)?};50.
Our first result concerns the transience of a RRW.

Theorem 1.1. Let [Y, W] be a matrix type RRW with a reinforcing matri
Assume thatb(v’;) = oo for all j € Z, where ®(v';) is defined through1.4) and
(1.5).

(1) If ®(W+) < oo, then

P[lim X, =oc] > 0.
(2) If ®(w_) < oo, then

P[lim X, =—oc] > 0.

On the other hand we have a 0-1 law by Sellke.

Theorem (Sellke’s 0-1 Law). Let [?, W] be a matrix type RRW with a rein-
forcing matrix A . If ®(v’;) = oo for all j € Z, then

P[X is transienf=1 or P[X is recurrenf=1.

The proof of Sellke’s 0-1 law will be given in Section 5.
From Theorem 1.1 and Sellke’s 0-1 law, we obtain the following corollary.

Corollary 1.2. Let [}), V7] be a matrix type RRW with a reinforcing matrik
Assume thatb(v’;) = oo for all j € Z. If &(w.) < oo or d(W_) < oo, then

- - -
P[X is transienf = 1.

In order to explain this, we will focus on a special class of RRW’s. One is a
RRW with reinforcement only when the walk moves further away from its starting
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point. This is expressed by the following condition in termsAf ;
(1.6) a(2,j)=0 foralll eN, j e Z.

We call this RRW by an ‘out only’ RRW and this matrix by an ‘out only’ matrix.
Naturally in a similar way we can define an ‘in only’ RRW and an ‘in only’ matrix.
In this case we have

(1.7) a(@—-1,j)=0 foralleN, jeZ.

Note that an ‘out only’ RRW has a tendency to come back, and an ‘in only’ RRW
has a tendency to go out. This is nearly an intuition at the present stage, but it will
become clear that these notions are essentially important. In fact we show below that
an ‘in only’ RRW is more likely to be transient than an ‘out only’ RRW.

The next theorem tells us that # u{.) = ®(w_) = oo, then we can find an re-
inforcing matrix A such that the corresponding RRW is either recurrent or finite range
a.s.

Theorem 1.3. Let [Y, V_>V] be a matrix type RRW. We assume ttien ) = oo,
®(w_) = oo and that there exists a positive constadit; for every j € Z such that
> oo C1jw(0, )™t < oo and a(2m, j) < Cy; for all m € N and j € Z. Then we
have

- - g . .
P[X is recurreni+ P[ X has finite rangg= 1.

Remark. It is clear that an ‘out only’ RRW satisfies the above condition.
Combining Theorem 1.1 and Theorem 1.3, we can obtain the following corollary.

Corollary 1.4. Let [?, W] be a matrix type RRW. Then the following two con-
ditions_a>re equivalent. _
(1) P[X is recurreni+ P[ X has finite rangk= 1 for every ‘out only’ matrixA .
(2) (W) = P(w_) = oo.

This contrasts with the following Davis’ result.

Theorem ([2]). Let [}), V_V>] be a matrix type RRW. Then the following two con-
ditions_a)re equivalent. _
(1) P[X is recurreni+ P[ X has finite rangk= 1 for every reinforcing matrixA .
(2) ®(wz+)=@(wz-) =00,

To be more precise, Davis proved the following two statements:
(i) If A wo+)=d(W2_) =00, then whatever a reinforcing matrix A is, we have

P[X is recurrent] +P [X has finite range] =.1
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(i) Let {w(0, j)};ez be such thatb ¥,.+) < oo andw (Qj) =1 forj < 0. Set

(1.8) a(l,j):{w(o’j) j>0,1:even

0 otherwise.

Then the corresponding RRWX], W] satisfies that
- . .
P[X is transient]> O.

In this case, it turns out thaX is transient a.s.

Note that the matrixd in (1.8l> defines an ‘in only’ RRW. & w() < oo, then
by Corollary 1.2, we know thai? X is transient ] = 1. An interesting case is that
®(w4) = oo and ® W,+) < co. By the above construction we also hagew () =
oco. Now we change the reinforcing matrix  in (1.8) to ‘out only’ type by a trivial
manner.

0 otherwise.
Then our new RRW X, W] is ‘out only’ type, and by Corollary 1.4,
P[X is recurrent] +P K has finite range] =1

Further, the definition ofA in (1.9) implies that® ﬁ?j) = oo for all j € Z, and by
Theorem 3.1 of [4] (originally Theorem 6 of [3]) we know that has a.s. infinite
range. Thus X, W] is a.s. recurrent.

2. Hitting Probability

Let 7(/, j) be thel -th hitting time ofX to j foralll €N, j€Z. Namely,

70,j) =0
7, j)y=inf{fn>7(0—-1,j)| X,=j} forl €N.

If the above set is empty, then we put, j) = oc.

We can assume without loss of generality tha = 0 and X; = 1. Because if
Xo = jo # 0, we consider a shifted RRW, X, — jo, whose weight process is given
by w'(n. j) = w(n, j + jo) for all n > 0, j € Z. Obviously Y = {¥,},=o starts at 0,
and recurrence ot is equivalent to recurrence of . So we can assume thaiy = 0.
Then at the first jumpX, visits either 1 or—1. Since the argument is symmetric we
can assume thax; =1, too.

Let k > O be fixed arbitrarily. We look for an estimate of the following probability

P[T(lv k) < T(lv 0)‘ (XOa Xl) = (O’ 1)]
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Following Davis[1], we divide E)ach path of into excursions fromk . Let
J = (m)m>o0 be a possible path ok . Since we assume thaf, = 0 andX; = 1, we
have jo =0 andj; = 1. If 7(l, k) < co and 7(l + 1, Q< oo for somel € N,
J() = (ra.iy+1s - - -» Jre+rky) forms an excursion ofj starting from a nearest neighbor
site of k and ending ak when this sequence first hits theisite 7(/Ifk) < oo but
T(l+1,k) =00 for somel € N, we putJ () = (-¢x+1. - --), this excursion has an infi-
nite length and never returns to . In this ca;e,is divided into/ — 1 excursions of a
finite length and a excursion of an infinite length! () is called either an up excursion
or a down excursion, according to whethgy, p+1 =k +1 0or j ¢+ =k — 1. We put
[JO)| =7 +1,k)—7(, k) i.e, |J()| is the length ofl -th excursiod I ().

Let Sy (/) denote the direction that the -th excursion starts, i.e,

Si(1) = u if the [-th excursionJ () is an up excursion
Sk() = d if the [-th excursionJ () is a down excursion

For each/ > 1 the conditional distribution of; /( + 1) given the condition that
#{1<m <I|S(m)=u}=nis in the following form.

PlSi(I+ 1) =u|#H1<m <I|S(m)=u} =n]

_ v(2n, k)
T v@ =2+ Lk —1)+v(2, k)

1-P[Si(I+1)=d|#{1<m <I|S(m)=u}=n].

Let U(k) and D(k) be the set of all up and down excursions fram , respectively.
Each element/ € U(k) with |J| < co is a sequencd =j{, ..., j,), such thatj; =
k+1, j, =k, |jm— jm-1| =1 for 2<m <n, and j, #k unlessm = . If|J| = co and
J e uk), J =(,...), such thatj; =k +1, |j, — jmu_z| =1 form > 2, andj, #k
for all m € N. The same is true for e_Z))(k) except thatj; =k — 1. _

For a given pathj = (ju)m>o0, let Di(l) € D(k) be thel -th down excursion of
form k, and 7,((1) € U(k) be thel -th up excursion of. If the walk starts at a point
smaller thank , then we need some additional notation for the paTjt> tfefore it hits
k for the first time.

. If 7(1, k) < oo, we WriteE: for the_p?art of7 until it hits k£, namely

B, = (jl, Joo -, Jr(wr))- Also we write D(0) for the part f-(1x—1),---, jr@ k)) of the
path Jj after first hittingk — 1 till it hits k for the first time. If 7(1, k) = oc, Bk is the
total path j.

It |s not d|ff|cult to see that{(Bk, Dk) (Sk) (Uk)} are independent, where
Dy = {Ds(}iens Us = {Ux(D}hien and S; = {Si(D}ien (see [1], Lemma 4.1),

We are mainly interested in estimating the probability

P[T(lv k) < T(lv 0)| (XOa Xl) = (07 1)]
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and its limit ask — co. This probability can be expressed as
—
P[B Z 0 (X0, X1) = (0, 1)]

where for a portion/ =,..., j,) of a possible path7> = (m)m>0. {J # O} im-
plies thatj, # 0 for m =1,...,n; the walk does not hit 0 during the time interval
{l,...,n}.

Then this probability can be divided into a product of consecutive conditional
probabilities:

(2.1) P[B; # 0| (Xo, X1) = (0, 1)]

k
P[Bz #0| (Xo. X1) = (0. V][] P[B; #0|{Bj—1 # 0} N {(Xo. X1) = (0. 1)}]
j=3
v(0, 1)

k
= W)H P[B;(O) 70| {ﬁ Z 0} N {(Xo, X1) = (0, 1)}],
) =

where the producﬂZ:ax(n) is understood as 1 it > b, for any sequence of real

numbers{x(n)},>0. In order to estimate the right hand side, we condition on a set
with a more detailed information. Let

A= the walk has passed the edffe— 1, k} just
£r1 71 2p + 1 times before the excursiaBy.1(l) begins( -

Then dividing Dy+1(1) into down excursions front , we have

-1
P {D—Hia) 0 ‘ {B; # 0} N (){Deal) # 0} N {(Xo. X2) = (0. 1} N Ak,p,,]
q=0

n+l

=y P [ N (Detm) 20} () {Sk() =d} N {Suln+1+1) =u}

n>p m=p+1 r=p+1+

p
’ {Bi # 0} 11 ({De(m) # 0} N Ay pi N {(Xo, X1) = (O, 1)}] ,
m=1

where the intersectiom'j’. ,Aj =Qif a > b for any sequence of subsets @f . By the

independence the right hand side of the above equality is equal to
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) n+l
(2.2) Z P [{Sk(n +[+1) :u} N ﬂ {Sk(r) = d} ’ Ak.],.[]

n=p r=p+1+

n m—1
< II » [ﬁk(m)zo ] {Bi #0}n () {Dilq) 0} N {(Xo. X2) = 0. 1)}]

m=p+1 q=0

n

- v(2m — 1,k — 1) v(21, k)
- z; ( H v(2m—1,k—1)+v(21,k)> v2n+1k—1)+v(2, k)

m=p+1

n m—1
<L P [Fk(m) %0 ‘ {Beex # 0} N () {Dilg) # 0} N {(Xo, X1) = 0. 1)}] .

m=p+1 q=0

This allows us to use induction ik  to estimate our hitting probability.

3. Positivity of Escape Probability

In this section we prove Theorem 1.1. Since the arguments are similar, we only
prove (1) of Theorem 1.1. To this end we will show that

k—1

(3.1) P[B: #0|(Xo. X1 = (0. 1] > []
j=1

v(0. /)
v(0, j) +v(L 0)

If we have (3.1), then the condition that w() = ijo w(0, j)~! < oo implies that
the right hand side of (3.1) converges to some positive constarit as oco. This
proves that

(3.2) P [limsupX, = oo, 7(1, 0) =c0 | (Xo, X1) = (0, 1)] > O.

n—oo

On the other hand by Sellke’s Theorem, the condition tbai’j)(: ano v(n, j)~t=

oo assumes that with probability 1, every sample path?oﬁs either transient or re-
current. So, (3.2) implies that

P[lim X, =oo|(Xo, X1) =(0, 1)] > O.

To prove (3.1), we prepare an elementary lemma.
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Lemma 3.1. Let ¢y, c2 be positive constants, and 1¢b,, },>0 be an increasing
sequence of positive numbers ah¢f,b,,* = co. Then for all p > 0, we have

o0 n

c1 bom—1 boy, C1
3.3 . > .
33 Z boy+1+ 1 H byp_1+c1 by +tco T crte

n=p m=p+1

Proof. Note that

i(l_ baw+1  bo+2 )ﬁ( bam—1  bom >
bops1t 1 boyat e byp_1+c1 boy oo

n=p m=p+1
N
: bop—1 boy,
= lm [1- ] :
N—oco ban—1tc1 boan tc2
m=p+1

~1 = . Thus we look at the infimum of

m

which exists and is equal to 1 ¥~ b

c1- (b1 + 1)t
1—boys1- (bonsr+ 1)L boysz - (b2pe2+c2) 7t

1, -1
Cp by,

Fn =

T 1, 1,1
ban+1+bopup- €17 T3 Fbon

Since {b., }m>0 is increasing,’, is not smaller than

Now we go back to the equation (2.2) and estimate the right hand side from
above.

Lemma 3.2. Under the same condition as ifftheorem 1.1, and the condition
that Xo =0 and X, = 1, we have fork > 2,1 > 0,

-1
@4 P (D070 (%0} ()(Dila) 50) N (Yo X) = (0. 1)
q=0

v(2, k—1)
= W@ k—1)+u(L 0y

Before proving this lemma, we note that (3.4) actually implies (3.1). Because by
(2.1) and (3.4), we have
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P[B; % 0] (Xo, X1) = (0, 1)]
P[B3 # 0| (X0, X1) = (0, 1)]

k
x ] PID;(0) % 0| {B;_1 # 0} N {(Xo, X1) = (0. 1)}]

j=3
v(0, 1) ﬁ v(0,j — 1) :’ﬁ v(0, j)
= 00 ) +v (@ 015 v(0.j ~ D+ 0) 1L v(0. ) +u(L 0)

Here, we used

U(O, ./ - 1)
v(0,j —1) +v(L 0y

(35)  P[D;(0)#0|{B;_1 #0} N {(Xo. X3) = (0. }}] >

which is much simpler than (3.4). But we need to prove a more general inequality if
we want to show (3.5) by induction.

Now first we look at the case tha = 2. In this case, the left hand side condi-
tional probability in (3.4) is exactly equal to

v(2, 1)
v(2, 1) +v (1 0)

Therefore (3.4) is true fok = 2.
Now assume the inequality for evefy> 0 atk. Then by (2.2) we have for every
p >0,

-1
(3.6) P lm@ 40 ‘ {B; # 0} 1 (){Deal) # 0} N {(Xo. X2) = (0. 1} N Ak,p,,]
q=0

= - v@m — 1,k — 1) (2, k)
=2 ( 11 v(2m—1,k—1)+v(2],k)> v@n + 1Lk —1)+v(Z, k)

n=p \m=p+1

n m—1
<[ P {Ec’(m) 0 ] {B #0} N () {Dg) # 0} N {(Xo0. X) = (O, 1)}]
q=1

m=p+1

- i v(2, k) H v(2m — 1,k — 1)
= v(2n+2Lk—1)+v(21,k)m:p+1v(2m—1,k—1)+v(21,k)

- v(2m, k — 1)
X mE[l v@m, k—1) +u(L 0)
by our induction hypothesis. Now we use Lemma 3.1 to obtain that the right hand side
of (3.6) is not less than
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v(2L, k)
v(2, k) +v(1 O)

since® (V') = Y 5o v(l, k)=t = 0. This value is independent of , and we completed
the induction. O

4. No Probability of Transience

In this section we prove Theorem 1.3. We will show thatbifw )= ®(w _)=00,
> e oo C1jw(0, j) <00, a(@m, j)< Cy; for all m € N and j € Z, then

(4.1) P[{X visits O infinitely ofter} U {X has finite rangH = 1.
This implies that the probability thak is transient is equal to zero. The event
G = { X visits 0 infinitely ofter}
can be divided into three events:

G1 = {there exists a numbe¥ such th#} € {0, 1} for all n > N},
G, = {there exists a numbey  such th&} € {0, -1} for all n > N}

and
Gs = {? is recurrent.

To be more precise, the symmetric difference of the evéhts G@nd G, U G3 has
probability zero. (This fact is mentioned in the proof of Theorem 3.2 in [4].) Then (1)
of Theorem 1.3 holds.

In order to prove (4.1), we will show that
4.2) PH{r(1,0)< oo} U {7() has finite rangg| (Xo, X1) = (0, 1)] =1
if &(ws)=®(w_)=o00. By symmetry of the argument this implies that

43)  P[r(L 0)< oo} U{X has finite rangp| (Xo, X1) = (0, ~1)] = 1

under the same condition that # w(,) = ®(w_) = co. Then (4.2) and (4.3) shows
that

(4.4) P71, 0)< 0o} U{X has finite rangp| Xo = 0] = 1.

Conditioned on the pathXo, X1, ..., X~1,0}, the new RRWX = {X 71,0y }n>0
is again a RRW starting at the origin 0, and with initial weights
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w = {w(r(1, 0), j)} ez which satisfy the conditions thad w¢) = &(w_) = co. Re-
peating the above argument, we have

{X returns to the origin eventualf

48 P| (% has finite rangp

ﬁxo, X1,..., X710 =1

Combining (4.4) with (4.5), we obtain that the event
{X returns at least twice to the orgiu { X has finite rangg
has probability one.
We can iterate this argument as many times as we want and for everyl, we
have

(4.6) P[{r(m,0) < oo} U {7 has finite rangg = 1.

Letting m — oo, we have (4.1). Thus, all that we have to prove is (4.2).
To show (4.2), we will prove that

4.7) P[B; #0|(Xo, X2) = (0. )] < (v(L, 0)&} (w)) *
where
k—1
Et(w) =v(L, 00 +> (0, /) Cs,
Jj=1
and where
j—1

C3; = H (1 +Cq,;v(0, i)il)_l.
i=1

If (4.7) is true, then

> v(0.j)Cs; = CaYy v(0, j)

j=>0 j=0
where
. = N1y —1
cgzlerro]ocg,,-:g(ucl,,-v(o,z) Ho.
Since ZIZchjw(O,j)*l < o0, C3 > 0, and since® ¥:) = oo we have

> i50v(0, j)7t = oo. Therefore lim .. Ef = occ. Letting k — oo in (4.7), we ob-
tain (4.2).
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In order to prove (4.7), we prepare the following lemma, which in essence is sim-
ilar to Lemma 3.1, but we get an opposite inequality.

Lemma 4.1. Let c¢1, c2, c3 be positive numbers, anfb,, },,>o0 be an increasing
sequence of positive numbers such thgt — by, 1 < c¢3 for all m > 1. Then for all
p =0,

o0 n -1 -1
(4 8) 2 : c1 I l me—l me < bo + Cy
' + + + — —1\—1,.-1 -1 -1
oy baater 20 baw-iter bantea T (L+esby ) lep T+ by e

Proof. We will have a similar argument as in the proof of Lemma 3.1. We first
note that

oo

3 <1_ ban+1 ban+2 )ﬁ ban—1 bom

“ b1t cr bausz2tcz) —- bap—1tcr ban tc2
=p =p+1

A b
= lim [1- cl E— S
N—o0 ( H boyp_1+cy by tco | T

m=p

Therefore we only have to estimate

1 -1 -1
c1 - (bag+1tc1) Cp by,

1= bopar- (bansr+ c1) ™t bopaz - (b2nwz +€2) ™ bpyur-byly eyt + eyt + by,

Since {b,, }m>0 is increasing and positive, the last term is not larger than

b+ byt
"1 .-1,,-1, -1
(L+csbg ) Loy +by ™+

O

Lemma 4.2. Let [7, W] be a RRW such thaXp = 0 and a(2n, j) < Cq; for
all neN, jeZ. Then we have for alk > 2,/ > 0,

-1
(4.9) P |Di(t) #0 | Bi_1 #0. ({Dila) # 0} N {(Xo, X1) = (0. 1)}
q=0
v(2,k—1)

< .
T v,k —1)+Cap_1{E;_y(w)} L

Proof. We prove (4.9) by induction. As before it is straightforward to check (4.9)
for everyl > 0 whenk =2, sinceEj_,;(w) = Ej(w) =v(1,0) ! and C34_1 = C31=1.
So we assume that (4.9) is true for . Now from (2.2) and by the induction hypothesis,
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we have for everyp > 0,

-1
(4.10)P lzﬂa) #0 ‘ {Bi # 0} 11 (\{Diralg) # O} N {(Xo. X1) = (0. 1)} N Ay
q=0

= - v(2m — 1,k — 1) v(2, k)
<D ( 11 v(2m—1,k—1)+v(2],k)> v2n+1 k—1)+v(2, k)

n=p \m=p+1

n v(2m, k — 1)
H v(2m, k — 1)+ Cay1{E;_y(w)}~1

m=p+1

We can use Lemma 4.1 to obtain that the right hand side of (4.10) is not larger
than

Cai 187 1(w) +v(0,k — 1)
Cai1Ef_j(w) +v(0,k — 1)1+ (1 + Cp—10(0, k — 1)~ 1)~ Tv(2, k)1
- Si_1(w) + Ca4—1v(0, k — 1)~*
Ep_q(w)+ C3x—1v(0, k — 1)~ + C3 (2, k)1
_ v(2, k)
(2, k) + Car{Bf(w)} T

We completed the induction.
By using Lemma 4.2, from (2.1) we obtain that

P[B; % 0| (Xo, X1) = (0, 1)]

v(0, 1)

k
= m)g P[D;(0) Z0[{B;—1 Z 0} N {(Xo, X1) = (0, 1)}]

v(0, 1) ﬁ E_y(w)
= UL 0)+v(@ Dy E )+ Cayav(0j — )

_ @Ot Ea®) e
ERTENORET ) 1)—1,@ i) G OTE)

Thus we have (4.7). [l

5. Appendix: Sellke’s 0-1 law

In this section, we show the following result.

Theorem 5.1 (Sellke). Let [?, V_V)] be a matrix type RRW with a reinforcing
matrix A.
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If ®(v';)=cc for all j € Z, then
P[X is transienf=1 or P[X is recurrenf=1.

The proof of this theorem can be found in [3], but for the sake of completeness,
we give a proof.

For simplicity, we assume thaP Xp = 0] = 1. Before going into the proof of
Theorem 5.1, we introduce a new notation. lFet &nd  be subsefs of . We use the
notation F _ G if P[F\ G]=0.

First, we will prove the following lemma.

Lemma 5.2. Let [?, W] be a matrix type RRW with a reinforcing matri
If &(V';)=oc forall j €Z, then

(5.1) P[X is transienf+ P[ X is recurren} = 1.

HenceP[? has finite rangg= 0.

Proof of Lemma 5.2.  We may show that
(5.2) P [{7 is not transiertn {? is recurren}‘] = 0.

Let B; R;, L;, I; be events defined by

B; = {Y visits j infinitely often},

R; = {there existsN; € N such that ifX, =j, thenX,,;=j+1 foralln >N, },
L; = {there existsN; € N such that ifX, =j , thenX,ss=j —1foralln>N; },
Ij = Q\{RJULJ}

In order to prove (5.1), we only have to show that

(5.3) B/ C {ﬂ Bf}
ieZ

for all j € Z, under the condition tha® v( )=o for all i € Z.
From the assumption thak v{( 1) = ®(v;) = co and Rubin’s theorem (See
Corollary 3.5 of [4]), it is easy to see that

Bj C Bj ﬁIj C Bj+1
and

Bj [ Bjﬁ[j C Bj_]_.
By induction and the assumption, we see that

BjEB,'
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forall i eZ.

To prove Theorem 5.1, we need some more notations.

Let {Y;(m)};cz. m>0 be independent exponential random variables such that
E[Y;(m)] = v(m, j)~* for all m > 0.

Now, we construct a sequende;(/)};>1 using Y} ={Y}'(m)}n>0 ={Y;(2m)}n>0
and Y;’ :{Yj‘.[(m)}mzo ={Y;_1(2m + 1)},,>o for all j > 0.

We put
G! = {Z Yj(Zm)} ,
m=0 n>0
G = {Z Y;_1(2m + 1)}
m=0 n>0
and

— 1
G;= ij U Gj-.
We note that

P

m=0

n !
> Yi@m)=) v a2m + 1)1 =0
m=0

forall n > 0,1 >0.
Let g;(n) be then -th smallest number iG; . Then for eack N, we put

u if gi(n) € G4,
S;j(n) = _ .
d if gj(l’l) S G;

Using this construction, we can obtain far> 0, 0 <m < n,

v(2m, j)
v@n—2m+1 j—1)+v(2m, j)

P[Sj(n + 1) =u ‘ Am,n] =

where A, ={w e Q|#1<I1<n|S;()=u}=m}.

In a similar way, we can construct a sequeddg(/)};>1 using {Y;(1)};>o,jcz for
every j < 0. We putY ={Y;(2n)},>0 and Y{ ={Y; 1(2m)},>0 if j = 0. We
put Yi ={Y;(2m + 1)},,>0 and Yj‘.’ ={Y;_1(2m)}n>0 if j < 0. From construction of
?j ={S;(n)}n>1, we remark that{?j}jeN are independent.

Given {Y;(I)}i>0,jcz, We define a RRWX starting from 0 using only informa-
tions of {Y;(!)};>0,jez in the following way.
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1. For the caseXo = 0, if Y¥(0) < Y(0), then we putX; = 1, ¢(1,0) = 1 and
#(1, j) =0 for everyj #0, and if Y4(0) > Y¢(0), then we putX; = -1, ¢(1, -1) =1
and ¢(1,i) =0 for everyi # —1. o

2. Assume that we have constructed ,[W] up to timen, and assume that, #F

Let m(n, j) = [¢(n, j)/2], where for a real number x[ ] denotes the largest integer
which does not exceed . [/ yu() < SnU%IYyd(1), then we putx,.i = j+

m=0
1, ¢(n+1, j) = ¢(n, j)+1 ande(n+1, i) = ¢(n, i) for everyi # j, and if S5 yu(1) >
s =1 Y¢(l), then we putX,.1 = j — 1, ¢(n +1,j — 1) = ¢(n, j — 1) + 1 and

m=0

o(n+1,i) =¢(n,i) for everyi # j — 1.

Proof of Theorem 5.1. From (5.3), we will only show th{a? is transient is
a tail event under the condition (5.1). We fixed N and putF; =Fi+1,i]. Set

F=o{¥i(m)lm >0, |j| >i}.

We assume thafF’ contains all P-negligible sets.
From (5.1), we obtain

P[X, ¢ F; for somen >m| X, =j]=1
forallm>0andj € (—i +1,i).
— . —_— .
On the other hand, from [1] Lemma 4.2 we see tbigt) € 7' and D_;.1(]) € F'

for every! € N. Thus we obtain

H; = {X,, € F; only finitely often}
= {|Ur1(l)] = oo, for somel € N} U {|D_;(l)| = co, for somel € N} € F'.

But using (5.1) again, we have
- . .

H; C {X is transien}.
It is clear that

- . .

{X is transien} C H;.
This means that

- ) )

{X is transien} ¢ F'

for all i € N. Then we have

{X is transien} € 7. O
ieN
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