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The purpose of this note is to generalize the theorem that the Alexander

polynomial of a slice knot is of the form f(ί) f(t~l) for an integral polynomial
f(t) with I /(I) |=1 (see [3]). We will show the following:

Theorem. Let L be a slice link with μ components in the strong sense, then
there exists an integral polynomial F(tly •• ,tμ)with \F(l, ••••, 1)1=1 and the Alexan-
der polynomial A(tly •••, tμ) of L is of the form

Conversely for a given integral polynomial F(tly •••, ίμ) with \F(l, •••, 1)|=1,
there exists a slice link with μ components in the strong sense whose Alexander

polynomial is F(tly •••, t^ Fζtϊ1, •••, ^μ1)-

To prove the above Theorem, we will consider two theorems. In §2

the necessary condition of the Alexander polynomials will be considered for

not only slice links in the strong sense, but also cobordant links. We will
prove the following:

Theorem 1. For cobordant links Liy ί=l, 2, with μ components, there exist

two integral polynomials Ff(tly •••, £μ), /=!, 2, with |JP( (1, •••, 1)1 =1 such that

A(*ι, -, ̂ Wi, -, ffό-^iίfr1, •-, tϊ1)
=A2(ΐl9 .-, tJ Ffa, -, tμ} F2(K\ -, tf) ,

where A{ is the Alexander polynomial of the link L{.

Since a slice link L with μ components in the strong sense is cobordant to
the trivial link with μ components, the following corollary will be obtained.

Corollary. The Alexander polynomial A(tly * ,ίμ) of a slice link L with
μ components in the strong sense necessarily satisfies A(tl9 •••, tμ)=F(tly •••, tμ.)

* The notation " = " means equal up to ±ίι"ιί2

w2 •••ίftV for suitable integers n\t •••, wμ.
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χF(tT\ •••, Zμ1) for an integral polynomial F(tl9 •••, tμ) with |F(1, •••, 1)|=1.

In §3, it will be shown that the condition in the Cor. to Theorem 1 is

sufficient; i.e., the following theorem will be proved:

Theorem 2. For a given integral polynomial F(tly •••, tμ) with \F(\, •••, 1) |

= 1, there exists a slice link L with μ components in the strong sense whose Alex-

ander polynomial is F(tl9 •••, £μ) F(£rΛ

In §4, some examples will be considered.

A. Kawauchi [5] has obtained some of the results of this paper. Our work
is independent of his; on the other hand, it was useful to us in that it showed

the re-definition of the Alexander polynomials and the numerical invariant β.

By Fox's definition [1], slice links in the strong sense have 0- Alexander polynomi-

als for μ>2.
Throughout the paper, spaces are considered in the piecewise-linear cate-

gory, and the Alexander polynomials are non-zero.

1. Preliminaries and definitions

A link is the disjoint union of peicewise-linearly embedded, oriented 1-

spheres in the oriented 3 -sphere S3. Two links Lλ and L2 with μ components
are cobordant, if there exist mutually disjoint, locally flat, piecewise-linearly

embedded proper annuli Fly ,Fμ in S3χ [0, 1] spanning S 3xO and S3X 1 such

that (JP i

1U-UFμ)n(S 3xO)=L 1xO and (FXU - UFμ) Γ\(S3X l)=(-L2)χ 1,
where — L2 is ^2 with orientation reversed. A link that is cobordant to the

trivial link is called a slice link in the strong sense ([!]). For cobordant links Li9

i= 1, 2, with μ components the Alexander polynomials A{(tl9 •••, tμ) of Lt should
be chosen to be the Alexander polynomials associated with the meridian bases

of H1(S3—Li] Z) consistent through the cobordism annuli Fly •••, Fμ..

Let Lc53 be a link with μ components and B19 " ,B^ be mutually disjoint

2-cells in S3 such that for each j, BjΓ\L=dBjf}L consists of two arcs. The

resulting link L'=(L— U QB.Γ\L)\J (Jcl(dB.—L) with the induced orientation
v ;=ι y=ι ;

from L— U dBjΓiL is called the (oriented) link obtained from L by the hyperbolic

transformations along the bands Bly ,Bv. If the number of the components of

L' is μ — z>, then the link U is said to be obtained from L by the fusion* along Bly ,

B,.

Let a link L consist of sublinks Lλ and L2 that are separated by a 2-sρhere in
S3. Then the link L is denoted by L^L2. Let Ov=Oo.. oO be the trivial

link with v components. v

* This terminology is the same as in [6], but more general than that of F. Hosokawa [4].
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2. Proof of Theorem 1

Theorem 1. For cobordant links Lh ι=l, 2, with μ components, there exist

two integral polynomials Fi(tι9 ytμ)9 i=l9 2 , with \Fj(l9 9l)\=l such that

=A2(tl9 -, t

, w the Alexander polynomial of the link L{.

To prove Theorem 1, it is enough to consider the following lemmas.

Lemma 1. Let Lλ and L2 be cobordant links with μ components. Then there

exist integers vl9 z^2>0 and a link L with μ components such that for each ί, /=!, 2,

L is obtained from the (μ-\-v ̂ -component link L toOV ί by the fusion along certain

bands B(*\ •••, Bv? joining each component of Ov» with the link L{.

This lemma is generally known. (See [2], [4] and [6].)

Lemma 2. If a μ-component link L is obtained from the (μ+v)-component

link LoOv by the fusion along bands B19 , Bμ joining each component of Ov with L,

then there exists a polynomial F(tl9 •••, tμ) such that A(tl9 •••, tμ) = (tl9 •••, ίμ)χ

^(ίi, — , tμ) F(tT\ — , ̂ Γ1), 1^(1, — , 1)1=1, wAβrβ ^4 «nJ ^ «r^ ίAβ Alexander

polynomials of L and L, respectively.

Proof of Theorem 1. It is straightforward from Lemmas 1 and 2.

Proof of Lemma 2. We will consider a case in which μ=2, ι>=3 to avoid

unnecessary complexity, but as we will see later, the calculation method will

not depend on the numbers μ and P.

Consider the plane projection of L as in Fig. 1. The link group G(L) can

be then presented as follows:

generators; xl9 •• 9xnχ

yi, ~>yny,
relators r^ = XiWpPxTliW^p (ί = 1, •••,#,— !)

where w* is an element in the set {xi9 y. 9 i=l9 •• 9nx9j=l9 •••, w^}, and 6^=

+ l o r -1.
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L
Fig. 1

Let α be the Alexander matrix of L, then α is equivalent to the following

matrix with entries in Z[x, y], where {#, y] is the meridian base of G(L)/G(L)'.

r?>r i -«
••• xnχ y1 •••

= α ,
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Let us use this presentation of G(L) to consider a presentation of G(L)/G(L)".

Let #', y, z', ai9 bj and ck be the generators corresponding to the trivial link

and the attaching bands as in Fig. 1.

We will study how the upper paths of L are divided by the attaching bands

in the projection of L

(!)N ' i i

*'.

Fig. 2

:: α, (or b.)

<*i (or bj

L

/-!.

Fig. 3
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The upper path x{ is divided into xil9 •••,#;,-, by the attaching bands (see

Fig. 2). The relators obtained from these parts are as follows:

Here, 6* is +1 or —1, and a* is one of a*, b*y c*. Thus, we get ix generators

instead of one generator of G(L) and ix—l defining relators (I).
Assume that the attaching bands attach at the upper paths X{Λ, xiz and y.

of L (see, for example, Fig. 3), so that the resulting upper paths of L are denoted

by Xi^ and #f ι2, xi2l and xiz2y and yμ and yj2.

More generators and relators related to Ox U O2 U O3 and the attaching bands

have to be considered (see, for example, Fig. 4).

(Ill)

fi-^Λ

*Ό
Fig. 4

As a result, one presentation of G(L)\G(L)tr is as follows*:

generators; xihyjm, (ί = 1, •• ,/1l,/12, — ,ί2l,ί22, — ,n,,

/= 1, -JlJ2, ny)

* In addition to the relators stated below, the generators of G(L)f/ should be added as the
relators of G(Z)/G(Z)/7. But these relators become 0 by Fox's free calculus on each generator
of G(L)/G(L)X/. Hence we need not think of these relators for our purpose and omit.
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relators; r( = wk#w*#ιokϊι*Wιll or ̂ ftf*^!*^/!', caused

from the presentation of G(L), where 20** e {xih yjm} and n=nx or ny, 1=1, 2,
-••, nx+ny.

From (I), xif = Ax^A'1 (ι = 1, —,«„;= 1, —,ny)

where A and B are some words of {αf1, ό*1, c*1} .

From (III), 5, = s1 - ί.,*'*.-1 - *Γ1 β...«'-1

S2 = si - ίiXίί.71 - ίί-V"1

o c// c// Λ/P//— i P^-IA /i /-io3 = ίi — J/^jy $/, ••• ίi ^w^

where ίt, if, ίt

7/ are some of αf1, iί1 and cfl .

From (IV), ΛI = Wι ••• wnx
fa~^w~l — wΓ1^]

ιv'ΓlxT22

R'2 =

- a;7/

where «;t, wf and 2rt" are some of {xf^yfm, aΐ1, bί1, cf1} .

Since a*, b*, and ^^ are the elements of £?(£)', these generators are com-
mutative mutually, so that their indices are changed only after the attaching
bands crossing under the upper paths of O1oO2oO3oL;

(V)
— Ύn'-l

where α^, ^^> and T* are some of Λ?rt and yjίy since ^ίV and j^ have the form in

(i)
For the same reason, S19 S2 and S3 are equivalent to the following:
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where ifβ>ι"ι> •••>//>!, ne>j\> >jm>l9 na>kl> >kΛ>l, and so on.
Since the sets (I) and (V) are the defining relations, # ί7(/Φl), y.M

Λ, (ί'Φl), ίyO'Φl) and ^(ΛΦl) vanish. Let us use xi9 yj9 «, i and c instead of

* iι Jyi* βι> *ι and ^ι> respectively.
After α,, 6y and ck vanishing, let us use these notations as words having the

following forms:

ck = γlιi .

Then, the presentation of G(L)/G(£)" is the following:

generators; ,̂ •••, Λ?^, x^, --, Λ?f 2l, Λ?ί22, — , Λ?,,, ,

relators; rf = A^w^A^-

where A* and W* are some words of {of l, b^l,c% *} , and w;^ is some of

and (Λ O=(*» *+!) or (Λ« J) or (ny> l)

ty,, a*, b*, c*y x',y'y

R2 = W2(Xi,yjί a*, b*, c*, x',y'y

Ri =
R3 =

where W^, W2 and W^3 are the words of {xi9 y.9 a*, b*, c*, x'y y'9 z'} .
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eAΛ r**1'1" ... rfet'Λ r/ *'1" . r/x ) Kι/x V ) (V ^v
~~εk»

/N I CΛ ff * * * CΛ ff I I W // * ' * & ' / /
x 3m Jl ' ^ ί/ II

Before considering the Alexander matrix of G(L)\Gφ)h', we will introduce
several properties of the free calculus.

Proposition 1.

—— = 0 (w = x',y'y z\ L = 1, •••, nx+ny) .
dw

Proof. If w appeares in r(y then w is contained in the words A* or W * that
have the special forms; for example, let us consider the form of A*,

Since #, b and c are mapped to 1 by the abelianized map, aiy bj and ck are also

mapped to 1. Let us consider the case that α; —wy which appears in aiy then

g = a,-.! ••• ofi-y+^l+wα,..^! ••• ctioaϊ1 — α7 .̂-ι(— w"1))

= 0.

In the case that w appears in a{ in more than one place, it is easy to get the same
result by using a similar calculation as above.

O Λ

So, it is not difficult to get - ̂ — 0, since A* consists of only {af1}, {bj1}
dw

and {ct1}.

Proposition 2.

9rf 8rt ,
— L = — L (ίί; = xit y . .
dw dw ^ t j j

ι*iι,hj,*ι—ί> h— 1, j— 1)

Proof. In the case that w appears in some of A* and W*, there is no change
in this part, by the same reasoning introduced in the previous proposition, since
the words A* and W* in r( are mapped to 1 by abelianization

_ t

dw dw dw dw
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dwl

dw dw

The following is similarly obtained:

Proposition 3.

-tr = -ϊr (w* χij > χi& χi2i> χi#> 3> y/z) =dw dw

dxi2l dxi2

dr'j dr.

Proposition 4.

1 = ψl (ιo = xi (ίΦiΊl, ί̂ ),̂ ,, *',/, ̂ ),
9ec;

)̂ P P) P/
UJ\? U±\ ? / / i -i o\ / / / \^ = -̂  («; = «?,- (Φt2l, ί22) .̂, #',/, ̂  ),
dec; ow

dw dw l 3

f^T) r)7?^ ί^T?^ ^)7?

Op ft P/ ί5 P/ ί5 POK3 __ OK3 j OK3 __ OK3 j

Proof. The differences between R1 and jRί are in the last letters and the
da'1

center parts. Since ^ a =0 and an* is mapped to 1 by abelianization, we have

OXi1l
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By using a similar calculation, the other equations are also obtained.

Proposition 5.

_j = 0 (ι = 1, 2, 3,10 = xiy v., *', /, #').
σα;

Proof. This is easily derived considering the forms of ai9 bj and ck.

Now consider the Alexander matrix of L. By Propositions 1, 4 and 5, this
matrix is equivalent to the following matrix:

rί

4
rf

j.

γf

'nx+ny

R1

Rί

p/
^2

p
^3

p/
^V3

5,

Ss

«ι "*.,JΊ - %, *i,i tfί.2 *

_., A

0 1

(

A Pn,P-lP( P

Pi />„, ΛPί-lP
ίl ?.χ2 2

ft ?ίlZ

1

Γl

0

2ι •*

w* (
)

2l

2\

1 71 X

2 2

• r

r!

22 y

)

r

3/
2

11

p
22 3

I

yi ^j2

TO* 0
) 1J 1

ί,2

^

3

3 3

x1 z1 y

0

*

0

a c b

*

*

*

where P -where Λ- P -2~ / Otf-2 Έ>
2 — ̂  , *Z=

By Proposition 3, each entry of (x{l-th row-\-Xi 2-th row) is equal to the

ΛJtl-th row, and (^2ι-th row+ x^-th row) and (y^-th row+j;.2-th row) are equal
to the #ί2-th row and the j^-th row of the Alexander matrix of L, so that this

matrix is equivalent to the following:
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r{

Yf
rnx+ny

Rί
R2

R'2
R3

R'3

•S,
s.
S3

Ml ^fjl ^1*2! 3̂ ;1

α

p i p/ -i

1 ~P - \ ~pt 1

• P i p/ i

I P3+P3'-1
p I p/ 1

0

Y "V Ύ7ίj2 i22 .Jj2

0 0 0

ό i
1 0
0 1

0 0
1
0

ό ό ό

P/ 1 p p
1 1-Γ*<22 Γ j2

ϊί.1 P2 Jyί

ί-. 'i rw Pi
P^ 1

ίil i$ 3 •*•

^ ^ y

0

*

a c b

*

*

*

By Proposition 4, this matrix is equivalent to the following:

(substitute Ri—R{ to RΊ for ί=l, 2, 3)

α

0-0

A

v». <y» /ι»

*i2 '22 J^>2

*

- 1 0 0

0 1 Π1 U

O Π 1U 1

0

3/ z' y'

0

0 0 0

O n nu u

O n nu u

a c b
\

*

*

.*

*>
R2

~ R3

s

S3

α

*

*' y z1

0

M2

0

a c b
\

*

*

M,

s,

where M^— 0=1, 2, 3, ro=α, i, c) and M2= 0=1,2, 3, w=x',y',z').
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To complete the proof of the special case, it suffices to show that if

det M!=F(X, y), then det M2=F(x~\y~1) and |F(1,1)|=1, since the first non-

zero polynomial of the above matrix is a product of the first non-zero polynomial
r)z>

of (α), det Ml and det M2. Therefore, consider ̂  (ι= 1, 2, 3, w=x'y /, *') and
dw

dS— ± (*=1, 2, 3, w=a)bίc).
aw

Since the words of α/s, Zr's and ck's are the conjugates of ay b and c, we

obtain the following:

Proposition 6.

dR, Q(W1(xi9'yJ9 1, 1, 1, *',/, *f).*f^Wτl(xi9 -, 0*7/1_

9«; dw

QR2

_
9w dw '

where w=x', yr or zf.

Let us consider the words Wl=Wt(xiy yjy 1, 1, 1, #', y'y z') (c= 1, 2, 3).

Since the relators /?t(j=l, 2, 3) are obtained from the edges of the attaching

bands, the length of Wl are related to the indices nay nb and nc. The indices of

##, b* and ί:̂  are changed when the attaching bands pass under the edges of

Oi U O2 U O3 U L, at the same time the length of Wt increases by just one letter.

Assume that

W2 = vl v2 — vm (fe?#, v*, u* = Λί,yJ, ̂ /ε,/ε, #'ε, 6 = ±1)

3̂ = ^1^2 •••«/,

where n=na— 1, m=nc— 1 l=nb—l.

Since ΛWβ, in& and cΛe are obtained by the paths of the attaching bands, it
follows that

ana = w~l ••• w^ a W! ••• wn

bnb — ujl ••• z/Γ^ i Wi ••• «/

Similarly,
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Proposition 7.

Mi = _w-ι

MΓ'+

Proof. These are deduced from the forms of St.

To calculate
QR
— L~ (L=\, 2, 3, w=xf9 y, .s7)' we check where Λ:', y' and ̂

appear. When the attaching bands cross under O1 U O2 U O3, then Λ;7, jx or %'

appears in Wt.
Let us consider α%* in *SΊ. There are two cases (see, Fig. 5).

',,+4 *'«..(£,,=-]
Fig. 5

Case (I). If au crosses over O1 from left to right, then £,-,,= 1 and ai#=x'ai

So there exists ft^-i in jRj (1^^—l</z), such that ^^-i^^7"1.
Case (II). If a^ crosses over Ol from right to left, then £,•*= — 1 and

/-I
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*'~XX So there exists wu in Rλ (\<i*<ri), such that wiit=xf.
Then, for a^ in Sly there exists index i*— 1 or i*y and a letter ar^-i or wίφ

in R19 such that «;|.φ_1=^/"1 or zυi4ί=x'. Corresponding to this letter,

Qyf I- +»! - w^( 1 )+ -. (6ί# = -1)

By the same reasoning, corresponding to the letters bk^ and c^ in *SΊ, we

obtain the equations

and

9R

respectively.

Using these equations, we can prove Proposition 8.

Proposition 8.

3Ri = Wl... Wn-(\-χ) (e Wl... w ,\ \-s Wl... to )
ox
OD

0*1 = _(!-*) (£,««;, - «,,«_,+ .- +Si'fOl - »,"_!>

8y

Proof. For example, consider the form of Rλ. Except for the letter x' in the
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center of Rl9 all letters osf appear in Wλ corresponding to the parts of the attaching

bands crossing over Oj. Then, it is not difficult to get the desired equation of
dR,

. And all yf (or z') appear in Wλ corresponding to the parts of the attaching

bands crossing over O3(O2).
r\ ςi fl C ft^l

Using Propositions 7 and 8, let -—-—fΛx, y), —-—(1—x~1)f2(x ί y)y ~^ =
da db oc

DP IV Λ)\ ίί:s l V ^ J ^ K / J Λ,
db

=(!->-')*,(*, y), =h2(X, y) and s=(l-
όb oc

- ,̂̂ , dc-

-1)/*3(#, y). Then,

8 W

8R2

ay - ay ~
where^ means fi(x~l, y'1) and so on.

We have

and

ί /.

fh

/ f
~~J 1

-ft -(!-*)*,

Thus, F^j) = det M^-ίl-Λ;-1) (l-

and det MI = (1-*) (l-^

h3

It is immediate that

, 1, 1)1 = 1 .
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For general cases of μ and v, it is sufficient only to check the matrices M±
and M2 as in the previous step. These matrices are related to the trivial link
Ol U ••• U Ov and the attaching bands.

Instead of a, b, c, #',y, z', Rt, S, (<=1, 2, 3), we need generators at, x( (ί=
1, 2, •••, v) and relators Rt, Sl (t=l, 2, •••, v). Since the situation is just the same
as in the previous case,

M1

and

85,

8*;,

Let =/.,(*,-,*μ)

85,
8β.

then

8*;
-i _ f
~- —jΓii

So, det Mί = fn

det M2 = -(!-<

J v

(*)

* Here, xΊ denotes a suitable letter in -£#1, •••, Xμ^
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= (-l)Met' Ml = (-I)vde7 M,.

Thus, there exists a polynomial ί1 ,̂ •••, ΛV) such that

detM2 =

and
This completes the proof of Lemma 2.

REMARK. In the proof of Lemma 2, we can also find that the integer
β(L) is the invariant of PL cobordant links [5]. To see this, let Li9 ί=l, 2, be
PL cobordant links. L1 is cobordant to a link Z/ί, where each component of L'2
is obtained from a component of L2 by tying a knot in a small 3 -cell. We have
β(L^)=β(L2), since det M^O and det Λf 2φO in the proof of Lemma 2 imply
that /3(L) is the cobordism invariant. β(L'2)=β(L2) easily follows from a direct
use of Fox's free calculus. Hence β(Ll)=β(L2).

3. Proof of Theorem 2

Theorem 2. .For a given polynomial Ffa , , tμ) with \F(l, , 1 ) | = 1 , zAer?

#mfc a slice link L with μ components in the strong sense whose Alexander polynomial

isF(tl9 9tμ) F(tϊl

9 .9tϊ
l).

To avoid unnecessary complexity, let us consider the case that μ=3, but
the construction of a slice link L with μ components in the strong sense are com-
pletely done by the same way.

Theorem 2'. For a given polynomial F(x, y, z) with |F(1, 1, 1) | =1, there
exists a slice link L with 3 components in the strong sense whose Alexander poly-
nomial is F(x, y, z) F(x~l, y~l, z'1).

Proof. Since | F(19 1, 1) | = 1, we can assume that F(x9 y, z) will be splitted
into the form

F(x9 y, z) = l-ίl-^Λ^, y9 *)-(l-y)f2(x, y, Z)

In order to construct a slice link L, it's enough to get the informations of
attaching bands. So we need relators Λt and S, (ι"=l, 2, 3). Since the relators
S{ can be automatically obtained from Rir let us consider Rit Therefore, we
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have to consider a part of the Alexander matrix M2={ — - ), (w=x'> y' ', #').
\dw /

To consider the matrix M2y let us deform the polynomial F(x, y, z) as follows;

F(χ,y, *)
-(l-j)/2(*, y, z)} {l_(l-,)/8(*,y, *)}

2(*, J>, *)-(l-y) (l-*)/2(*, J, *)/s(*,:)>, *)

ι(*,y, *)

It's easy to check that this form is the determinant of the following matrix Λf

-(!-«)/, -(I-

Let us take the matrix M as M2; i.e.,

l-(l-*)/

3^

9*'

-̂2 = -O-jOΛ, — = i-(i-v)/2, ^ = -(i-v)/2,a*' ay a*7

9j^3_ __ /I c Λ f ^?3— _Π_^f ^R 3 _ 1 /I ~\/-
7Γ~7 — V 1 *)J3> ~ t — \L *)J3> 7ΓT — V ^//3
ΘΛ/ 9j 9^r

Instead of the relator Λ, is a word of a?, #', j>, y, sr, «', α4, it and ct it's enough

to construct Λ, as a word of #, tf,y,y', z, z', an^ bnb and cnc.

Since Kl =

we will make the words w^ •••«;„, wί •••«;» and zvΊ' zuΊ'.
For example let us assume that

Then, 1̂ zϋM contains Λ;', /, #' in r places, respectively.

Let us put these 3r letters as the following manner

Decide Wi w* to satisfy the equation

Qfa
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Depending on <Xι>Q or aι<Q,cXι letters among w^ w* are x or aΓ1, and βλ letters
among Wi w* are y or y'1. If ^X) and 7!>0, there must be OΊ+l letters z
among w^ -w^. Then,

. x±ly±l

Let us repeat this step 3r— 1 times more. After these steps, the word w1 wn

can be obtained. By the same way, w[ w'm and it/ί* •••&)" can also be obtained.
By using these words, the following relators will be read

wn

Since the indices of <2, b and £ are changed when the attaching bands cross
under the overpasses of the link, the relators above give us the informations
about the attaching bands;

a2 = wϊl aλ wl b2 — w{~1 bλ w{ c2 = w"~l cλ w"

ana = Wnl ana_λ wn bnb = w^

To construct a link L, put the trivial link with 6 components, representing
the generators #, #', j, y', z and z' ', and contact two components representing x
and x/ by a attaching band which goes over according as relators aιy and so on.
Since the attaching bands can freely go over the other parts of attaching bands,
it is possible to combine two components to represent the relators <zt, bt and ct.

This completes the proof.

Note that there may be many different links satisfying conditions for the
given polynomial.

4. Some examples

EXAMPLE 1. Let F(x, y)=x—xy+y. Then, this polynomial can be defor-
med into

FF(x, y) = l-y+x-iy = 1 -(I-*) (-x^y) .

This is the determinant of a matrix M2

0 1
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9*'

QR2

θy'

So there are three x' but no yf among letters of R^ Since ' ' " — *^=
dxf

£,= — 1, w1=x~1, wt=yt w3=x', and since ^°4 " f

 w*'=l, n=4 and w4=
, OX

— x ly,

Then, we get

i = χ~1yχ'y-1 χ'χ-* yχ'~1y-1χ χ-ϊ'1 ,

and = Wιlalwl =

Similarly, R2=y\byjι\

By using these relators, it's possible to construct a link L with 2 components.

Fig. 9

EXAMPLE 2*. Let F(#, y, %)=— x+yz+xyz. Then

- )̂ (l-y) (l

In example 2, a? means w l.
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Then,

—(1 —z)yz

Let us construct R!

Y. NAKAGAWA

f !-(!-*) (1-jfc) -(!-*) (1-jfc) -(!-*) (1-;

-(!-*)

5?' ... *'... T/ / -/
^**

— 1, zϋ ̂ —2 and zv2—& and szs — -=—y%, Wz=yy W4=zdz' -' ' ~Λ ~~ ~ 3*'
and w*=z'. Since zzfyzz' * ^6> *' ̂  '= 1, w6=y, zu7=y and w8=y/. By the similaray
way, we can get

and na= 21

a, = ya3y <*!!=

aB = yaΊy a15= x

YAMAGUCHI WOMEN'S UNIVERSITY
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