

Title	On t-designs
Author(s)	Ray-Chaudhuri, Dijen K.; Wilson, Richard M.
Citation	Osaka Journal of Mathematics. 1975, 12(3), p. 737-744
Version Type	VoR
URL	https://doi.org/10.18910/7296
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Ray-Chaudhuri, D.K. and Wilson, R.M.
 Osaka J. Math.
 12 (1975), 737-744

ON t -DESIGNS

DIJEN K. RAY-CHAUDHURI* AND RICHARD M. WILSON**

(Received January 14, 1975)

Introduction and preliminaries

An *incidence structure* is a triple $S=(X, \mathcal{A}, \mathcal{I})$ where X and \mathcal{A} are disjoint sets and $\mathcal{I} \subseteq X \times \mathcal{A}$. Elements $x \in X$ are called *points* and elements $A \in \mathcal{A}$ are called *blocks* of S . A point x and a block A are *incident* iff $(x, A) \in \mathcal{I}$. For any block A , (A) will denote the set of points incident with A .

Let v, k, t and λ be integers with $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. An $S_\lambda(t, k, v)$ (*a t -design* on v points with block size k and index λ) is an incidence structure $D=(X, \mathcal{A}, \mathcal{I})$ such that

- (i) $|X|=v$,
- (ii) $|(A)|=k$ for every $A \in \mathcal{A}$,
- (iii) for every t -subset T of X , there are exactly λ blocks $A \in \mathcal{A}$ with $T \subseteq (A)$.

It is well known that every $S_\lambda(t, k, v)$ has exactly $b=\lambda \binom{v}{t} / \binom{k}{t}$ blocks and more generally, for any i -subset I of points ($0 \leq i \leq t$), the number of blocks A of the design with $I \subseteq (A)$ is

$$b_i = \lambda \frac{\binom{v-i}{t-i}}{\binom{k-i}{t-i}},$$

independent of the subset I [2].

Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher's Inequality $b \geq v$ for 2-designs and Petrenjuk's Inequality $b \geq \binom{v}{2}$ for 4-designs. The t -designs satisfying the inequality with equality may be considered as generalizations of the symmetric 2-designs ($b=v$) and have the property that there are exactly $\frac{1}{2} t$ possible values for the size of the intersection of two distinct blocks, these values being computable from the parameters.

* This research was supported in part by ONR N00014-67-A-0232-0016 (OSURF 3430A2).

** This research was supported in part by N.S.F. Grant GP-28943 (OSURF Project No. 3228-A1).

An $S_\lambda(t, k, v)$, say $D=(X, \mathcal{A}, \mathcal{I})$, is *simple* when the mapping $A \mapsto (A)$ from \mathcal{A} into $\mathcal{P}_k(X)$ (the class of all k -element subsets of X) is injective; and D is *trivial* when the mapping $A \mapsto (A)$ is (surjective and) m -to-one for some integer m , i.e. each k -subset “occurs as a block” exactly m times. In this latter case, evidently $\lambda = m \binom{v-t}{k-t}$.

The well known Fisher's Inequality (see [2]) asserts that the number b of blocks of an $S_\lambda(2, k, v)$ is at least v , under the assumption $v \geq k+1$. A. Ja. Petrenjuk [4] proved in 1968 that $b \geq \binom{v}{2}$ for any $S_\lambda(4, k, v)$ with $v \geq k+2$ and conjectured that $b \geq \binom{v}{s}$ in any $S_\lambda(2s, k, v)$ with $v \geq k+s$. This conjecture is established in the following section.

This condition shows the nonexistence of certain t -designs. For example, Petrenjuk's Inequality shows that $S_5(4, 22, 79)$ do not exist even though the b_i 's ($0 \leq i \leq 4$) are integral. We might note that a hypothetical $S_2(4, k, 2 + \frac{1}{2}(k-1)(k-2))$ would satisfy $b = \binom{v}{2}$ (and the b_i 's are integral when $k \equiv 1 \pmod{4}$), but no such designs exist by the corollary of Theorem 5 below. The inequality $b \geq \binom{v}{3}$ rules out the entire family of 6-designs with

$$\begin{aligned} v &= 120m, \\ k &= 60m, \\ \lambda &= (20m-1)(15m-1)(12m-1), \end{aligned}$$

(for which the b_i 's are integral).

By a *tight* t -design (t even, say $t=2s$) we mean an $S_\lambda(t, k, v)$ with $v \geq k+s$ and $b = \binom{v}{s}$. As examples, we have the trivial designs $S_\lambda(2s, k, k+s)$ where $\lambda = \binom{k-s}{k-2s}$. An example of a tight 4-design is the well known $S_1(4, 7, 23)$ where $b = 253 = \binom{23}{2}$. N. Ito [3] has recently shown, using Theorem 5 below, that the only nontrivial tight 4-designs are the $S_1(4, 7, 23)$ and its complement, an $S_{52}(4, 16, 23)$. Tight t -designs with $t \geq 4$ seem to be very rare.

Our proof of Petrenjuk's conjecture uses only elementary linear algebra and the observation that the number of blocks of an $S_\lambda(t, k, v)$ which are incident with some i points and not incident with some other j points is constant (i.e., depends only on i, j , and the parameters; not the particular sets of points) whenever $i+j \leq t$.

Proposition 1. *Let $(X, \mathcal{A}, \mathcal{I})$ be an $S_\lambda(t, k, v)$. Let i and j be nonnegative integers with $i+j \leq t$. Then for any subsets $I, J \subseteq X$ with $|I|=i$, $|J|=j$,*

$I \cap J = \emptyset$, the number of blocks $A \in \mathcal{A}$ such that $I \subseteq (A)$ and $J \cap (A) = \emptyset$ is exactly

$$b_i^j = \lambda \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}.$$

Proof. By inclusion-exclusion,

$$b_i^j = \sum_{r=0}^j (-1)^r \binom{j}{r} b_{i+r}.$$

In view of the above expression for b_i , we have $b_i^j = \lambda c$ where

$$c = \sum_{r=0}^j (-1)^r \binom{j}{r} \binom{v-i-r}{t-i-r} \binom{k-i-r}{t-i-r}^{-1}.$$

But in the case of the trivial design $(X, \mathcal{P}_k(X), \in)$, $\lambda = \binom{v-t}{k-t}$ and $b_i^j = \binom{v-i-j}{k-i}$, from which we deduce the simpler expression $c = \binom{v-i-j}{k-i} \binom{v-t}{k-t}^{-1}$.

As a corollary, the complement $(X, \mathcal{A}, (X \times \mathcal{A}) - \mathcal{J})$ of an $S_\lambda(t, k, v)$ is an $S_{\lambda^*}(t, v-k, v)$ with

$$\lambda^* = b_0^t = \lambda \binom{v-t}{k} \binom{v-t}{k-t}^{-1}$$

(unless $v < k+t$, in which case the original $S_\lambda(t, k, v)$ is evidently trivial).

2. Generalizations of Fisher's inequality

For any set Y , we denote by $V(Y)$ the free vector space over the rationals generated by Y , i.e. $V(Y)$ consists of all formal sums $\alpha = \sum_{y \in Y} a_y y$ with rational coefficients a_y and formal addition and scalar multiplication. The “unit vectors” $y, y \in Y$, by definition provide a basis for $V(Y)$.

Theorem 1. *The existence of an $S_\lambda(t, k, v)$ with t even, say $t=2s$, and $v \geq k+s$ implies*

$$b \geq \binom{v}{s},$$

where b is the number of blocks of the design. In fact, the number of distinct subsets (A) is itself at least $\binom{v}{s}$.

Proof. Let $D = (X, \mathcal{A}, \mathcal{J})$ be an $S_\lambda(t, k, v)$ and put $V_s = V(\mathcal{P}_s(X))$, where $\mathcal{P}_s(X)$ is the class of all s -element subsets of X . For each block A of D , define a vector $\hat{A} \in V_s$ as the “sum” of all s -subsets of (A) , i.e.

$$\hat{A} = \sum(S: S \in \mathcal{P}_s(X), S \subseteq (A))$$

We claim that the set of vectors $\{\hat{A}: A \in \mathcal{A}\}$ spans V_s . Since V_s has dimension $\binom{v}{s}$, the theorem follows immediately.

Let $S_0 \in \mathcal{P}_s(X)$. To show S_0 belongs to the span of $\{\hat{A}: A \in \mathcal{A}\}$, we introduce the vectors

$$E_i = \sum(S: S \in \mathcal{P}_s(X), |S \cap S_0| = s-i)$$

(so $E_0 = S_0$) and

$$F_r = \sum(\hat{A}: A \in \mathcal{A}, |(A) \cap S_0| = s-r)$$

for $i=0, 1, \dots, s$. Now for $S_1 \in \mathcal{P}_s(X)$ with $|S_1 \cap S_0| = s-i$, the coefficient of S_1 in the sum F_r is the number of blocks A such that $S_1 \subseteq (A)$ and $|(A) \cap S_0| = s-r$; and this number is $\binom{i}{r} b_{s-r+i}^r$ with the notation of Proposition 1. Thus

$$F_r = \sum_{i=r}^s \binom{i}{r} b_{s-r+i}^r E_i \quad (r = 0, 1, \dots, s).$$

The above system of linear equations is triangular and the diagonal coefficients b_s^r ($r=0, 1, \dots, s$) are all nonzero under our hypothesis $v \geq k+s$. Thus we can solve for the E_i 's (in particular, for $E_0 = S_0$) as linear combinations of the F_r 's. Since the F_r 's are by definition in the span of $\{\hat{A}: A \in \mathcal{A}\}$, we have $S_0 \in \text{span} \{\hat{A}: A \in \mathcal{A}\}$ for every $S_0 \in \mathcal{P}_s(X)$, and our claim is verified.

Corollary. *The existence of an $S_\lambda(t, k, v)$ with t odd, say $t=2s+1$ and $(v-1) \geq k+s$ implies the inequality*

$$b = \frac{\lambda \binom{v}{2s+1}}{\binom{k}{2s+1}} \geq \frac{\lambda \binom{v-1}{2s}}{\binom{k-1}{2s}} + \binom{v-1}{s} \geq 2 \binom{v-1}{s}.$$

Proof. Let $D=(X, \mathcal{A}, \mathcal{J})$ be an $S_\lambda(t, k, v)$ and $x \in X$. Let \mathcal{A}' be the class of blocks incident with x and \mathcal{A}'' be the class of blocks not incident with x . Observe that both $D'=(X', \mathcal{A}', \mathcal{J} \cap (X' \times \mathcal{A}'))$ and $D''=(X', \mathcal{A}'', \mathcal{J} \cap (X' \times \mathcal{A}''))$, where $X'=X-\{x\}$, are $2s$ -designs and apply Theorem 1.

The above inequality also rules out infinitely many parameters for which b_i 's are integers, $i=0, 1, \dots, t$.

Theorem 2. *Let $D=(X, \mathcal{A}, \mathcal{J})$ be an $S_\lambda(t, k, v)$ where $t=2s$ and $v \geq k+s$. If there exists a partition $\mathcal{A}=\mathcal{A}_1 \cup \mathcal{A}_2 \cup \dots \cup \mathcal{A}_r$ such that each substructure $(X, \mathcal{A}_i, \mathcal{J} \cap (X \times \mathcal{A}_i))$ is an $S_{\lambda_i}(s, k, v)$ for some positive integers λ_i , then*

$$b = |\mathcal{A}| \geq \binom{v}{s} + r - 1.$$

Proof. With the notation of Theorem 1, the vectors $\{\hat{A}: A \in \mathcal{A}\}$ span V . But observe that

$$\sum \{\hat{A}: A \in \mathcal{A}_i\} = \lambda_i \sum (S: S \in \mathcal{P}_s(X)) = \lambda_i \hat{X}, \text{ say.}$$

So if we choose one block A_i from each \mathcal{A}_i , then $\{\hat{A}: A \in \mathcal{A} - \{A_1, \dots, A_r\}\} \cup \{\hat{X}\}$ spans V . The stated inequality follows.

3. Tight t -designs

Recall that a *tight t -design* ($t=2s$) is an $S_\lambda(t, k, v)$ with $v \geq k+s$ and

$$b = \lambda \binom{v}{t} / \binom{k}{t} = \binom{v}{s}.$$

In view of Theorem 1, tight designs are simple. In this section we extend the well known result that two distinct blocks of a symmetric design (tight 2-design) have exactly λ common incident points (see Theorem 4 below).

Theorem 3. *Let X be a v -set and \mathcal{A} a class of k -subsets of X such that for distinct $A, B \in \mathcal{A}$,*

$$|A \cap B| \in \{\mu_1, \mu_2, \dots, \mu_s\}$$

where $k > \mu_1 > \mu_2 > \dots > \mu_s \geq 0$. Then

$$|\mathcal{A}| \leq \binom{v}{s}.$$

Proof. Let $V = V(\mathcal{A})$. For each $S \in \mathcal{P}_s(X)$, define a vector

$$\bar{S} = \sum (A: A \in \mathcal{A}, A \supseteq S).$$

We claim that the vectors $\{\bar{S}: S \in \mathcal{P}_s(X)\}$ span V . Since V has dimension $|\mathcal{A}|$, the theorem will follow.

Write $\mu_0 = k$. Let $A_0 \in \mathcal{A}$ be given. Define

$$H_i = \sum (B: B \in \mathcal{A}, |B \cap A_0| = \mu_i)$$

for $i = 0, 1, \dots, s$ (note $H_0 = A_0$). For $r = 0, 1, \dots, s$, we see that

$$G_r = \sum (\bar{S}: S \in \mathcal{P}_s(X), |S \cap A_0| = r) = \sum_{i=0}^r \binom{\mu_i}{r} \binom{k - \mu_i}{s - r} H_i,$$

by comparing the coefficient of each $A \in \mathcal{A}$ on both sides of the equation. We now show that the coefficient matrix of this system of $s+1$ linear equations is

nonsingular, so that we can solve for the H_i 's in terms of the G 's. In particular, we then have $H_0 = A_0 \in \text{span } \{G_0, G_1, \dots, G_r\} \subseteq \text{span } \{\bar{S} : S \in \mathcal{P}_s(X)\}$.

So consider the $s+1$ row vectors

$$v_r = \left(\binom{\mu_0}{r} \binom{k-\mu_0}{s-r}, \binom{\mu_1}{r} \binom{k-\mu_1}{s-r}, \dots, \binom{\mu_s}{r} \binom{k-\mu_s}{s-r} \right),$$

$r=0, 1, \dots, s$. Suppose $c_0v_0 + c_1v_1 + \dots + c_sv_s = 0$. This means that the polynomial

$$p(x) = \sum_{r=0}^s c_r \binom{x}{r} \binom{k-x}{s-r}$$

of degree $\leq s$ has $s+1$ distinct roots $\mu_0, \mu_1, \dots, \mu_s$ and hence is the zero polynomial. Now $p(0) = c_0 \binom{k}{s}$, so $c_0 = 0$; then $p(1) = c_1 \binom{k-1}{s-1}$, so $c_1 = 0$; and, inductively, $c_0 = c_1 = \dots = c_s = 0$. That is, v_0, \dots, v_s are linearly independent. This completes the proof.

Theorem 4. *Let $D = (X, \mathcal{A}, \mathcal{I})$ be an $S_\lambda(t, k, v)$ with $t=2s$ and $v \geq k+s$. Then there are at least s distinct elements in the set*

$$\{ |(A) \cap (B)| : A \in \mathcal{A}, B \in \mathcal{A}, A \neq B \},$$

and there are exactly s distinct elements if and only if D is a tight t -design.

Proof. In view of Theorems 1 and 3, it remains only to show that for any tight t -design, there exist s integers $\mu_1, \mu_2, \dots, \mu_s$ with $0 \leq \mu_i < k$ so that $|(A) \cap (B)| \in \{\mu_1, \dots, \mu_s\}$ for distinct blocks A and B . Let $D = (X, \mathcal{A}, \mathcal{I})$ be a tight $S_\lambda(t, k, v)$. With the notation of Theorem 1, the $b = \binom{v}{s}$ vectors $\{\hat{A} : A \in \mathcal{A}\}$ must, since they span V_s , be a basis for V_s .

Fix $A_0 \in \mathcal{A}$ and for $B \in \mathcal{A}$, write $\mu_B = |(B) \cap (A_0)|$. For $i=0, 1, \dots, s$, define vectors

$$M_i = \sum (S : S \in \mathcal{P}_s(X), |S \cap (A_0)| = i),$$

$$N_i = \sum \left(\binom{\mu_B}{i} \hat{B} : B \in \mathcal{A} \right).$$

Now given $S \in \mathcal{P}_s(X)$ with $|S \cap (A_0)| = i$, the coefficient of S in the sum N_i is

$$\sum \left(\binom{\mu_B}{r} : B \in \mathcal{A}, S \subseteq (B) \right),$$

i.e., the number of ordered pairs (B, R) in $\mathcal{A} \times \mathcal{P}_r(X)$ such that $S \subseteq (B)$ and $R \subseteq (A_0) \cap (B)$. For any r -subset $R \subseteq (A_0)$ with $|R \cap S| = j$, the number of blocks B such that (B, R) satisfies the above conditions is b_{s+r-j} . Thus the coefficient of S in N_i is

$$c_r^t = \sum_{j=0}^t \binom{i}{j} \binom{k-i}{r-j} b_{s+r-j}; \text{ and so}$$

$$N_r = \sum_{i=0}^s c_r^t M_i \quad (r = 0, 1, \dots, s).$$

The $s+1$ vectors $N_r - c_r^t M_s$ are contained in the span of M_0, M_1, \dots, M_{s-1} ; hence there exist rationals a_0, a_1, \dots, a_s , not all zero, such that

$$\sum_{r=0}^s a_r (N_r - c_r^t M_s) = 0, \quad \text{or}$$

$$\sum_{r=0}^s a_r \sum_{B \in \mathcal{A}} \binom{\mu_B}{r} \hat{B} - c_r^t \hat{A}_0 = 0.$$

Now $\{\hat{A}: A \in \mathcal{A}\}$ is a basis for V_s , so for $B \neq A_0$, the coefficient

$$\sum_{r=0}^s a_r \binom{\mu_B}{r}$$

of \hat{B} must be 0. That is, for any $B \neq A_0$, the intersection number μ_B is a root of the polynomial

$$f(x) = \sum_{r=0}^s a_r \binom{x}{r}$$

of degree at most s . Finally, note that the coefficients c_r^t are (and hence $f(x)$ can be chosen to be) independent of the block A_0 : all intersection numbers are roots of $f(x)$.

The polynomials $f(x)$ described in the proof of Theorem 4 have been found explicitly by P. Delsarte [1]. As an example, we consider the case $t=4$. The equations of Theorem 4 are

$$N_0 = b_2 M_0 + b_3 M_1 + b_4 M_2,$$

$$N_1 = kb_3 M_0 + (b_2 + (k-1)b_3) M_1 + (2b_2 + (k-2)b_3) M_2,$$

$$N_2 = \binom{2}{k} b_4 M_0 + \left(\binom{k-1}{2} b_4 + (k-1)b_3 \right) M_1 + \left(\binom{k-2}{2} b_4 + 2(k-2)b_3 + b_2 \right) M_2.$$

Using the relation $b_2 = \binom{k}{2}$ in a tight 4-design, one verifies that

$$(b_2 - b_3) N_2 - (k-1)(b_3 - b_4) N_1 + (2b_3(b_3 - b_4) - b_4(b_2 - b_3)) N_0$$

is a scalar multiple of $M_2 = \hat{A}_0$. For a block $B \neq A_0$, the coefficient of \hat{B} in the above expression must be zero, i.e.,

$$\mu_B(\mu_B - 1) - \frac{2(k-1)(b_3 - b_4)}{(b_2 - b_3)} \mu_B + \frac{4b_3(b_3 - b_4)}{(b_2 - b_3)} - 2b_4 = 0.$$

Rewriting the coefficients in terms of v, k , and λ , we have

Theorem 5. *The two “intersection numbers” μ_1, μ_2 of a tight 4-design $S_\lambda(4, k, v)$ are the roots of the polynomial*

$$f(x) = x^2 - \left(\frac{2(k-1)(k-2)}{(v-3)} + 1 \right)x + \lambda \left(2 + \frac{4}{k-3} \right).$$

Application of Theorem 5 yields the well known fact that any two distinct blocks of an $S_1(4, 7, 23)$ meet in 1 or 3 points.

Since $f(x)$ has integral roots, it must have integral coefficients, and we have the

Corollary. *The existence of a tight 4-design $S_\lambda(4, k, v)$ implies $v-3$ divides $2(k-1)(k-2)$, and $k-3$ divides 4λ .*

In [1], Delsarte observes that Theorems 4 and 5 are similar to Lloyd’s Theorem on perfect codes. Indeed, Delsarte develops a theory of designs and codes (emphasizing a “formal duality”) in the context of association schemes. Contained therein are results analogous to the above for orthogonal arrays of strength t , the analogue of Theorem 1 being Rao’s bound.

We conclude with the following remarks.

Let $D = (X, \mathcal{A}, \mathcal{I})$ be a tight $S_\lambda(t, k, v)$ with $t=2s$ and $v \geq k+s$. Let $J(s, v)$ denote the association scheme whose points are the s -element subsets of X (see [1]). Let N be a $(0-1)$ -matrix whose rows are indexed by elements of $\mathcal{P}_s(X)$ and columns are indexed by the blocks of D . At the row corresponding to S and column corresponding to a block A , the entry of N is 1 iff $S \subseteq (A)$. The matrix NN^T belongs to the Bose-Mesner algebra of the scheme $J(s, v)$. The matrix NN^T is obviously rationally congruent to the identity matrix. Using the properties of the algebra of $J(s, v)$, it is possible to compute the Hasse-Minkowski invariant of NN^T and obtain some more necessary conditions for the existence of tight $2s$ -designs. (See also [5].)

THE OHIO STATE UNIVERSITY

References

- [1] P. Delsarte: An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Repts. Suppl. 1973, No. 10, Centrex Publ. Co., Eindhoven, Netherlands, 1973.
- [2] P. Dembowski: Finite Geometries, Springer-Verlag, Berlin, 1968.
- [3] N. Ito: *On tight 4-designs*, Osaka J. Math. **12** (1975), 493–522.
- [4] A. Ja. Petrenjuk: *On Fisher’s inequality for tactical configurations* (Russian), Mat. Zametki **4** (1968), 417–425.
- [5] A. Ja. Petrenjuk: *Tactical configurations and Chowla-Ryser conditions* (Russian), Kombinatornyi Anal. Vyp. **1** (1971), 42–46.