

Title	On t-designs
Author(s)	Ray-Chaudhuri, Dijen K.; Wilson, Richard M.
Citation	Osaka Journal of Mathematics. 12(3) P.737-P.744
Issue Date	1975
Text Version	publisher
URL	https://doi.org/10.18910/7296
DOI	10.18910/7296
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Ray-Chaudhuri, D.K. and Wilson, R.M. Osaka J. Math. 12 (1975), 737-744

ON t-DESIGNS

DIJEN K. RAY-CHAUDHURI* AND RICHARD M. WILSON**

(Received January 14, 1975)

Introduction and preliminaries

An *incidence structure* is a triple $S = (X, \mathcal{A}, \mathcal{G})$ where X and \mathcal{A} are disjoint sets and $\mathcal{G} \subseteq X \times \mathcal{A}$. Elements $x \in X$ are called *points* and elements $A \in \mathcal{A}$ are called *blocks* of S. A point x and a block A are *incident* iff $(x, A) \in \mathcal{G}$. For any block A, (A) will denote the set of points incident with A.

Let v, k, t and λ be integers with $v \ge k \ge t \ge 0$ and $\lambda \ge 1$. An $S_{\lambda}(t, k, v)$ (a t-design on v points with block size k and index λ) is an incidence structure $D=(X, \mathcal{A}, \mathcal{J})$ such that

- (i) |X| = v,
- (ii) |(A)| = k for every $A \in \mathcal{A}$,
- (iii) for every *t*-subset T of X, there are exactly λ blocks $A \in \mathcal{A}$ with $T \subseteq (A)$.

It is well known that every $S_{\lambda}(t, k, v)$ has exactly $b = \lambda \begin{pmatrix} v \\ t \end{pmatrix} / \binom{k}{t}$ blocks and more generally, for any *i*-subset *I* of points $(0 \le i \le t)$, the number of blocks *A* of the design with $I \subseteq (A)$ is

$$b_i = \lambda rac{inom{v-i}{t-i}}{inom{k-i}{t-i}},$$

independent of the subset I [2].

Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher's Inequality $b \ge v$ for 2-designs and Petrenjuk's Inequality $b \ge \binom{v}{2}$ for 4-designs. The *t*-designs satisfying the inequality with equality may be considered as generalizations of the symmetric 2-designs (b=v) and have the property that there are exactly $\frac{1}{2}t$ possible values for the size of the intersection of two distinct blocks, these values being computable from the parameters.

^{*} This research was supported in part by ONR NOOO14-67-A-0232-0016 (OSURF 3430A2).

^{**} This research was supported in part by N.S.F. Grant GP-28943 (OSURF Project No. 3228-A1).

An $S_{\lambda}(t, k, v)$, say $D = (X, \mathcal{A}, \mathcal{G})$, is *simple* when the mapping $A \mapsto (A)$ from \mathcal{A} into $\mathcal{P}_{k}(X)$ (the class of all k-element subsets of X) is injective; and D is *trivial* when the mapping $A \mapsto (A)$ is (surjective and) *m*-to-one for some integer m, i.e. each k-subset "occurs as a block" exactly m times. In this latter case, evidently $\lambda = m \binom{v-t}{k-t}$.

The well known Fisher's Inequality (see [2]) asserts that the number b of blocks of an $S_{\lambda}(2, k, v)$ is at least v, under the assumption $v \ge k+1$. A. Ja. Petrenjuk [4] proved in 1968 that $b \ge {v \choose 2}$ for any $S_{\lambda}(4, k, v)$ with $v \ge k+2$ and conjectured that $b \ge {v \choose s}$ in any $S_{\lambda}(2s, k, v)$ with $v \ge k+s$. This conjecture is established in the following section.

This condition shows the nonexistence of certain *t*-designs. For example, Petrenjuk's Inequality shows that $S_{\mathfrak{s}}(4, 22, 79)$ do not exist even though the b_i 's $(0 \le i \le 4)$ are integral. We might note that a hypothetical $S_2\left(4, k, 2+\frac{1}{2}(k-1)(k-2)\right)$ would satisfy $b=\begin{pmatrix} v\\2 \end{pmatrix}$ (and the b_i 's are integral when $k \equiv 1 \pmod{4}$), but no such designs exist by the corollary of Theorem 5 below. The inequality $b \ge \begin{pmatrix} v\\3 \end{pmatrix}$ rules out the entire family of 6-designs with

$$v = 120m$$
,
 $k = 60m$,
 $\lambda = (20m-1)(15m-1)(12m-1)$,

(for which the b_i 's are integral).

By a tight t-desigh (t even, say t=2s) we mean an $S_{\lambda}(t, k, v)$ with $v \ge k+s$ and $b = {v \choose s}$. As examples, we have the trivial designs $S_{\lambda}(2s, k, k+s)$ where $\lambda = {k-s \choose k-2s}$. An example of a tight 4-design is the well known $S_1(4, 7, 23)$ where $b=253={23 \choose 2}$. N. Ito [3] has recently shown, using Theorem 5 below, that the only nontrivial tight 4-designs are the $S_1(4, 7, 23)$ and its complement, an $S_{55}(4, 16, 23)$. Tight t-designs with $t \ge 4$ seem to be very rare.

Our proof of Petrenjuk's conjecture uses only elementary linear algebra and the observation that the number of blocks of an $S_{\lambda}(t, k, v)$ which are incident with some *i* points and not incident some other *j* points is constant (i.e., depends only on *i*, *j*, and the parameters; not the particular sets of points) whenever $i+j \leq t$.

Proposition 1. Let $(X, \mathcal{A}, \mathcal{G})$ be an $S_{\lambda}(t, k, v)$. Let *i* and *j* be nonnegative integers with $i+j \leq t$. Then for any subsets $I, J \subseteq X$ with |I|=i, |J|=j,

 $I \cap J = \phi$, the number of blocks $A \in \mathcal{A}$ such that $I \subseteq (A)$ and $J \cap (A) = \phi$ is exactly

$$b_i^j = \lambda \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}.$$

Proof. By inclusion-exclusion,

$$b_i^j = \sum_{r=0}^j (-1)^r \binom{j}{r} b_{i+r}.$$

In view of the above expression for b_i , we have $b_i^j = \lambda c$ where

$$c = \sum_{r=0}^{j} (-1)^{r} {j \choose r} {v-i-r \choose t-i-r} {k-i-r \choose t-i-r}^{-1}$$

But in the case of the trivial design $(X, \mathcal{L}_k(X), \in)$, $\lambda = \begin{pmatrix} v-t \\ k-t \end{pmatrix}$ and $b_i^j = \begin{pmatrix} v-i-j \\ k-i \end{pmatrix}$, from which we deduce the simpler expression $c = \begin{pmatrix} v-i-j \\ k-i \end{pmatrix} \begin{pmatrix} v-t \\ k-t \end{pmatrix}^{-1}$.

As a corollary, the *complement* $(X, \mathcal{A}, (X \times \mathcal{A}) - \mathcal{G})$ of an $S_{\lambda}(t, k, v)$ is an $S_{\lambda*}(t, v-k, v)$ with

$$\lambda^* = b_0^t = \lambda {v-t \choose k} {v-t \choose k-t}^{-1}$$

(unless v < k+t, in which case the original $S_{\lambda}(t, k, v)$ is evidently trivial).

2. Generalizations of Fisher's inequality

For any set Y, we denote by V(Y) the free vector space over the rationals generated by Y, i.e. V(Y) consists of all formal sums $\alpha = \sum_{y \in Y} a_y y$ with rational coefficients a_y and formal addition and scalar multiplication. The "unit vectors" $y, y \in Y$, by definition provide a basis for V(Y).

Theorem 1. The existence of an $S_{\lambda}(t, k, v)$ with t even, say t=2s, and $v \ge k+s$ implies

$$b \ge \left(\begin{array}{c} v \\ s \end{array} \right),$$

where b is the number of blocks of the design. In fact, the number of distinct subsets (A) is itself at least $\begin{pmatrix} v \\ s \end{pmatrix}$.

Proof. Let $D=(X,\mathcal{A},\mathcal{J})$ be an $S_{\lambda}(t, k, v)$ and put $V_s=V(\mathcal{D}_s(X))$, where $\mathcal{D}_s(X)$ is the class of all s-element subsets of X. For each block A of D, define a vector $\hat{A} \in V_s$ as the "sum" of all s-subsets of (A), i.e.

D.K. RAY-CHAUDHURI AND R.M. WILSON

$$\hat{A} = \sum (S: S \in \mathcal{P}_s(X), S \subseteq (A))$$

We claim that the set of vectors $\{\hat{A}: A \in \mathcal{A}\}$ spans V_s . Since V_s has dimension $\begin{pmatrix} v \\ s \end{pmatrix}$, the theorem follows immediately.

Let $S_0 \in \mathcal{P}_s(X)$. To show S_0 belongs to the span of $\{\hat{A}: A \in \mathcal{A}\}$, we introduce the vectors

$$E_i = \sum (S: S \in \mathcal{P}_s(X), |S \cap S_0| = s - i)$$

(so $E_0 = S_0$) and

$$F_i = \sum (\hat{A}: A \in \mathcal{A}, |(A) \cap S_0| = s - i)$$

for $i=0, 1, \dots, s$. Now for $S_1 \in \mathcal{P}_s(X)$ with $|S_1 \cap S_0| = s-i$, the coefficient of S_1 in the sum F_r is the number of blocks A such that $S_1 \subseteq (A)$ and $|(A) \cap S_0| = s-r$; and this number is $\binom{i}{r} b_{s-r+i}^r$ with the notation of Proposition 1. Thus

$$F_r = \sum_{i=r}^{s} \binom{i}{r} b_{s-r+i}^r E_i \qquad (r=0, 1, \cdots, s).$$

The above system of linear equations is triangular and the diagonal coefficients b_s^r (r=0, 1, ..., s) are all nonzero under our hypothesis $v \ge k+s$. Thus we can solve for the E_i 's (in particular, for $E_0 = S_0$) as linear combinations of the F_r 's. Since the F_r 's are by definition in the span of $\{\hat{A}: A \in \mathcal{A}\}$, we have $S_0 \in \text{span}$ $\{\hat{A}: A \in \mathcal{A}\}$ for every $S_0 \in \mathcal{P}_s(X)$, and our claim is verified.

Corollary. The existence of an $S_{\lambda}(t, k, v)$ with t odd, say t = 2s+1 and $(v-1) \ge k+s$ implies the inequality

$$b = \frac{\lambda \binom{v}{2s+1}}{\binom{k}{2s+1}} \ge \frac{\lambda \binom{v-1}{2s}}{\binom{k-1}{2s}} + \binom{v-1}{s} \ge 2\binom{v-1}{s}.$$

Proof. Let $D=(X, \mathcal{A}, \mathcal{G})$ be an $S_{\lambda}(t, k, v)$ and $x \in X$. Let \mathcal{A}' be the class of blocks incident with x and \mathcal{A}'' be the class of blocks not incident with x. Observe that both $D'=(X', \mathcal{A}', \mathcal{G} \cap (X' \times \mathcal{A}'))$ and $D''=(X', \mathcal{A}'', \mathcal{G} \cap (X' \times \mathcal{A}''))$, where $X'=X-\{x\}$, are 2s-designs and apply Theorem 1.

The above inequality also rules out infinitely many parameters for which b_i 's are integers, i=0, 1, ..., t.

Theorem 2. Let $D = (X, \mathcal{A}, \mathcal{G})$ be an $S_{\lambda}(t, k, v)$ where t=2s and $v \ge k+s$. If there exists a partition $\mathcal{A} = \mathcal{A}_1 \cup \mathcal{A}_2 \cup \cdots \cup \mathcal{A}_r$ such that each substructure $(X, \mathcal{A}_i, \mathcal{G} \cap (X \times \mathcal{A}_i))$ is an $S_{\lambda_i}(s, k, v)$ for some positive integers λ_i , then

ON *t*-Designs

$$b = |\mathcal{A}| \ge {v \choose s} + r - 1$$
.

Proof. With the notation of Theorem 1, the vectors $\{\hat{A}: A \in \mathcal{A}\}$ span V. But observe that

$$\sum \{\hat{A}: A \in \mathcal{A}_i\} = \lambda_i \sum (S: S \in \mathcal{P}_s(X)) = \lambda_i \hat{X}, \text{ say.}$$

So if we choose one block A_i from each \mathcal{A}_i , then $\{\hat{A}: A \in \mathcal{A} - \{A_1, \dots, A_r\}\} \cup \{\hat{X}\}$ spans V. The stated inequality follows.

3. Tight t-designs

Recall that a tight t-design (t=2s) is an $S_{\lambda}(t, k, v)$ with $v \ge k+s$ and

$$b = \lambda \begin{pmatrix} v \\ t \end{pmatrix} / \begin{pmatrix} k \\ t \end{pmatrix} = \begin{pmatrix} v \\ s \end{pmatrix}.$$

In view of Theorem 1, tight designs are simple. In this section we extend the well known result that two distinct blocks of a symmetric design (tight 2-design) have exactly λ common incident points (see Theorem 4 below).

Theorem 3. Let X be a v-set and A a class of k-subsets of X such that for distinct A, $B \in A$,

$$|A \cap B| \in \{\mu_1, \mu_2, \cdots, \mu_s\}$$

where $k > \mu_1 > \mu_2 > \cdots > \mu_s \ge 0$. Then

$$|\mathcal{A}| \leq \left(\frac{v}{s}\right).$$

Proof. Let $V = V(\mathcal{A})$. For each $S \in \mathcal{P}_s(X)$, define a vector

$$\overline{S} = \sum (A: A \in \mathcal{A}, A \supseteq S)$$
.

We claim that the vectors $\{\overline{S}: S \in \mathcal{P}_s(X)\}$ span V. Since V has dimension $|\mathcal{A}|$, the theorem will follow.

Write $\mu_0 = k$. Let $A_0 \in \mathcal{A}$ be given. Define

$$H_i = \sum (B: B \in \mathcal{A}, |B \cap A_0| = \mu_i)$$

for i=0, 1, ..., s (note $H_0=A_0$). For r=0, 1, ..., s, we see that

$$G_r = \sum (\bar{S} : S \in \mathcal{P}_s(X), |S \cap A_0| = r) = \sum_{i=0}^{\infty} {\binom{\mu_i}{r}} {\binom{k-\mu_i}{s-r}} H_i,$$

by comparing the coefficient of each $A \in \mathcal{A}$ on both sides of the equation. We now show that the coefficient matrix of this system of s+1 linear equations is

nonsingular, so that we can solve for the H_i 's in terms of the G'rs. In particular, we then have $H_0 = A_0 \in \text{span} \{G_0, G_1, \dots, G_r\} \subseteq \text{span} \{\overline{S} : S \in \mathcal{P}_s(X)\}$.

So consider the s+1 row vectors

$$v_r = \left(\binom{\mu_0}{r} \binom{k-\mu_0}{s-r}, \ \binom{\mu_1}{r} \binom{k-\mu_1}{s-r}, \ \cdots, \binom{\mu_s}{r} \binom{k-\mu_s}{s-r} \right),$$

 $r=0, 1, \dots, s$. Suppose $c_0v_0+c_1v_1+\dots+c_sv_s=0$. This means that the polynomial

$$p(x) = \sum_{r=0}^{s} c_r \binom{x}{r} \binom{k-x}{s-r}$$

of degree $\leq s$ has s+1 distinct roots $\mu_0, \mu_1, \dots, \mu_s$ and hence is the zero polynomial. Now $p(0) = c_0 \binom{k}{s}$, so $c_0 = 0$; then $p(1) = c_1 \binom{k-1}{s-1}$, so $c_1 = 0$; and, inductively, $c_0 = c_1 = \dots = c_s = 0$. That is, v_0, \dots, v_s are linearly independent. This completes the proof.

Theorem 4. Let $D=(X, \mathcal{A}, \mathcal{G})$ be an $S_{\lambda}(t, k, v)$ with t=2s and $v \ge k+s$. Then there are at least s distinct elements in the set

$$\{|(A) \cap (B)| : A \in \mathcal{A}, B \in \mathcal{A}, A \neq B\},\$$

and there are exactly s distinct elements if and only if D is a tight t-design.

Proof. In view of Theorems 1 and 3, it remains only to show that for any tight t-design, there exist s integers $\mu_1, \mu_2, \dots, \mu_s$ with $0 \le \mu_i < k$ so that $|(A) \cap (B)| \in {\mu_1, \dots, \mu_s}$ for distinct blocks A and B. Let $D = (X, \mathcal{A}, \mathcal{G})$ be a tight $S_{\lambda}(t, k, v)$. With the notation of Theorem 1, the $b = \begin{pmatrix} v \\ s \end{pmatrix}$ vectors $\{\hat{A}: A \in \mathcal{A}\}$ must, since they span V_s , be a basis for V_s .

Fix $A_0 \in \mathcal{A}$ and for $B \in \mathcal{A}$, write $\mu_B = |(B) \cap (A_0)|$. For $i=0, 1, \dots, s$, define vectors

$$M_{i} = \sum (S: S \in \mathcal{P}_{s}(X), |S \cap (A_{0})| = i),$$

$$N_{i} = \sum \left(\binom{\mu_{B}}{i} \hat{B}: B \in \mathcal{A} \right).$$

Now given $S \in \mathcal{P}_s(X)$ with $|S \cap (A_0)| = i$, the coefficient of S in the sum N_r is

$$\sum \left(\begin{pmatrix} \mu_B \\ r \end{pmatrix} : B \in \mathcal{A}, S \subseteq (B) \right),$$

i.e., the number of ordered pairs (B, R) in $\mathcal{A} \times \mathcal{P}_r(X)$ such that $S \subseteq (B)$ and $R \subseteq (A_0) \cap (B)$. For any *r*-subset $R \subseteq (A_0)$ with $|R \cap S| = j$, the number of blocks *B* such that (B, R) satisfies the above conditions is b_{s+r-j} . Thus the coefficient of *S* in N_r is

ON *t*-Designs

$$c_r^i = \sum_{j=0}^i \binom{i}{j} \binom{k-i}{r-j} b_{s+r-j}; \text{ and so}$$
$$N_r = \sum_{i=0}^s c_r^i M_i \qquad (r = 0, 1, \dots, s).$$

The s+1 vectors $N_r - c_r^s M_s$ are contained in the span of M_0, M_1, \dots, M_{s-1} ; hence there exist rationals a_0, a_1, \dots, a_s , not all zero, such that

$$\begin{split} \sum_{r=0}^{s} a_r (N_r - c_r^s M_s) &= 0 , \quad \text{or} \\ \sum_{r=0}^{s} a_r \sum_{B \in \mathcal{A}} \left(\binom{\mu_B}{r} \hat{B} - c_r^s \hat{A}_0 \right) &= 0. \end{split}$$

Now $\{\hat{A}: A \in \mathcal{A}\}\$ is a basis for V_s , so for $B \neq A_0$, the coefficient

$$\sum_{r=0}^{s} a_r \binom{\mu_B}{r}$$

of \hat{B} must be 0. That is, for any $B \neq A_0$, the intersection number μ_B is a root of the polynomial

$$f(x) = \sum_{r=0}^{s} a_r \left(\begin{array}{c} x \\ r \end{array} \right)$$

of degree at most s. Finally, note that the coefficients c_r^t are (and hence f(x) can be chosen to be) independent of the block A_0 : all intersection numbers are roots of f(x).

The polynomials f(x) described in the proof of Theorem 4 have been found explicitly by P. Delsarte [1]. As an example, we consider the case t=4. The equations of Theorem 4 are

$$N_{0} = b_{2}M_{0} + b_{2}M_{1} + b_{2}M_{2},$$

$$N_{1} = kb_{3}M_{0} + (b_{2} + (k-1)b_{3})M_{1} + (2b_{2} + (k-2)b_{3})M_{2},$$

$$N_{2} = {\binom{2}{k}}b_{4}M_{0} + \left(\binom{k-1}{2}b_{4} + (k-1)b_{3}\right)M_{1} + \left(\binom{k-2}{2}b_{4} + 2(k-2)b_{3} + b_{2}\right)M_{2}.$$

Using the relation $b_2 = \binom{k}{2}$ in a tight 4-design, one verifies that

$$(b_2-b_3)N_2-(k-1)(b_3-b_4)N_1+(2b_3(b_3-b_4)-b_4(b_2-b_3))N_0$$

is a scalar multiple of $M_2 = \hat{A}_0$. For a block $B \neq A_0$, the coefficient of \hat{B} in the above expression must be zero, i.e.,

$$\mu_B(\mu_B-1) - \frac{2(k-1)(b_3-b_4)}{(b_2-b_3)} \mu_B + \frac{4b_3(b_3-b_4)}{(b_2-b_3)} - 2b_4 = 0.$$

Rewriting the coefficients in terms of v, k, and λ , we have

Theorem 5. The two "intersection numbers" μ_1 , μ_2 of a tight 4-design $S_{\lambda}(4, k, v)$ are the roots of the polynomial

$$f(x) = x^{2} - \left(\frac{2(k-1)(k-2)}{(v-3)} + 1\right)x + \lambda\left(2 + \frac{4}{k-3}\right).$$

Application of Theorem 5 yields the well known fact that any two distinct blocks of an $S_1(4, 7, 23)$ meet in 1 or 3 points.

Since f(x) has integral roots, it must have integral coefficients, and we have the

Corollary. The existence of a tight 4-desigh $S_{\lambda}(4, k, v)$ implies v-3 divides 2(k-1)(k-2), and k-3 divides 4λ .

In [1], Delsarte observes that Theorems 4 and 5 are similar to Lloyd's Theorem on perfect codes. Indeed, Delsarte develops a theory of designs and codes (emphasizing a "formal duality") in the context of association schemes. Contained therein are results analogous to the above for orthogonal arrays of strength t, the analogue of Theorem 1 being Rao's bound.

We conclude with the following remarks.

Let $D=(X, \mathcal{A}, \mathcal{S})$ be a tight $S_{\lambda}(t, k, v)$ with t=2s and $v \ge k+s$. Let J(s, v)denote the association scheme whose points are the s-element subsets of X(see [1]). Let N be a (0-1)-matrix whose rows are indexed by elements of $\mathcal{P}_s(X)$ and columus are indexed by the blocks of D. At the row corresponding to S and column corresponding to a block A, the entry of N is 1 iff $S \subseteq (A)$. The matrix NN^T belongs to the Bose-Mesner algebra of the scheme J(s, v). The matrix NN^T is obviously rationally congruent to the identity matrix. Using the properties of the algebra of J(s, v), it is possible to compute the Hasse-Minkowski invariant of NN^T and obtain some more necessary conditions for the existence of tight 2s-designs. (See also [5].)

THE OHIO STATE UNIVERSITY

References

- P. Delsarte: An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Repts. Suppl. 1973, No. 10, Centrex Publ. Co., Eindhoven, Netherlands, 1973.
- [2] P. Dembowski: Finite Geometries, Springer-Verlag, Berlin, 1968.
- [3] N. Ito: On tight 4-designs, Osaka J. Math. 12 (1975), 493-522.
- [4] A. Ja. Petrenjuk: On Fisher's inequality for tactical configurations (Russian), Mat. Zametki 4 (1968), 417–425.
- [5] A. Ja. Petrenjuk: Tactical configurations and Chowla-Ryser conditions (Russian), Kombinatornyi Anal. Vyp. 1 (1971), 42-46.