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Introduction and preliminaries

An incidence structure is a triple S=(X, A, J) where X and 1 are disjoint
sets and IS XX A. Elements x& X are called points and elements A< ] are
called blocks of S. A point x and a block A4 are incident iff (x, A)=9. For any
block 4, (A4) will denote the set of points incident with A4.

Let v, k, t and A be integers with v>k>¢>0 and A>1. An S,(¢, &, v)
(@ t-design on v points with block size k and index \) is an incidence structure

D=(X, A, J) such that

(i) 1X|=o,

(i1) |(A4)|=k for every A=,

(iii) for every t-subset T' of X, there are exactly A blocks A=A with
T c(A).

t
and more generally, for any z-subset I of points (0<¢<¢), the number of blocks
A of the design with I £(A4) is

It is well known that every S\(¢, &, v) has exactly b:)u( th > / (k> blocks

S
||
~, N,
\/

independent of the subset I [2].

Abstract: We present the generalization (conjectured by A. Ja. Petrenjuk) of Fisher’s
Inequality b>v for 2—designs and Petrenjuk’s Inequality bZ(g) for 4-designs. The t-designs
satisfying the inequality with equality may be considered as generalizations of the symmetric

2-designs (b=v) and have the property that there are exactly % t possible values for the size

of the intersection of two distinct blocks, these values being computable from the parameters.
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An S,(t, &, v), say D=(X, A, J), is simple when the mapping A+ (4) from
A into P(X) (the class of all k-element subsets of X) is injective; and D is
trivial when the mapping A (4) is (surjective and) m-to-one for some integer
m, i.e. each k-subset ‘“‘occurs as a block” exactly m times. In this latter case,

evidently 7\.=m<z:;)

The well known Fisher’s Inequality (see [2]) asserts that the number & of
blocks of an S\(2, k, v) is at least v, under the assumption v>k-+1. A. Ja.

Petrenjuk [4] proved in 1968 that b2(72) ) for any S)(4, &, v) with v>k-+2 and

conjectured that 5>( Y ) in any Sy(2s, k, v) with v>k--s. This conjecture is
J s y J

established in the following section.

This condition shows the nonexistence of certain #-designs. For
example, Petrenjuk’s Inequality shows that Sy4, 22, 79) do not exist even
though the 4;’s (0<{<4) are integral. We might note that a hypothetical
S, (4, k, 2—}—%(k—1)(k——2)) would satisfy b=< g) (and the b;s are integral
when k=1 (mod 4)), but no such designs exist by the corollary of Theorem 5
below. The inequality bz( g) rules out the entire family of 6-designs with

v = 120m,
k= 60m,
A = (20m—1)(15m—1)(12m—1),

(for which the b,’s are integral).
By a tight t-desigh (¢t even, say t=2s) we mean an S\(¢, k, v) with v>k-+s

and b=(?>. As examples, we have the trivial designs S)(2s, k, k-+s) where

7\.=<I,::';s). An example of a tight 4-design is the well known S,(4, 7, 23)

where b=253=<§3>. N. Ito [3] has recently shown, using Theorem 5 below,

that the only nontrivial tight 4-desighns are the S,(4, 7, 23) and its complement,
an S;,(4, 16, 23). Tight z-designs with >4 seem to be very rare.

Our proof of Petrenjuk’s conjecture uses only elementary linear algebra and
-the observation that the nunber of blocks of an S,(¢, k, v) which are incident
with some 7 points and not incident some other j points is constant (i.e., depends
only on 7, , and the parameters; not the particular sets of points) whenever
i+ <t

Proposition 1. Let (X, A, J) be an S\(¢, k,v). Let i and j be nonnegative
integers with i+j<t. Then for any subsets I, J< X with |I|=zi, |]J|=j,
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INJ=¢, the number of blocks A= A such that 1 (A) and J N\ (A)=¢ is exactly

bl = 7\_&’_ .
v—t
(=)
Proof. By inclusion-exclusion,
b= 33 (~1y(7 Youer -
r=0 r
In view of the above expression for b;, we have b]=X\c¢ where
2 i \(v—i—r\(k—i—r\"!
-2ev()CE0)GED)
¢ Z%( ) r INt—i—r/\t—i—r

But in the case of the trivial design (X, Py(X), €), 7\=<z:§> and b]= (v;i—,—] ),

from which we deduce the simpler expression c=<v;i?j ) (Z:D_ .
As a corollary, the complement (X, A, (XX A)—9) of an Sy(¢, k, v) is an

Sy«(t, v—k, v) with
A b — 7\(v——t) v—t)“
° k <k—t

(unless v <k+-¢, in which case the original S,(¢, &, v) is evidently trivial).

2. Generalizations of Fisher’s inequality

For any set Y, we denote by V(Y) the free vector space over the rationals
generated by Y, i.e. V(Y) consists of all formal sums a=3,.ya,y with
rational coeflicients a, and formal addition and scalar multiplication. The ‘““unit
vectors” y, y€ Y, by definition provide a basis for V(Y).

Theorem 1. The existence of an S\(t,k,v) with t even, say t=2s, and
o> k-+s implies
b>("? ),
>(°

where b is the number of blocks of the design. In fact, the number of distinct subsets
(A) is itself at least ( °).
Proof. Let D=(X, A, J) be an S\(¢, k, v) and put V,=V(P,(X)), where

P,(X) is the class of all s-element subsets of X. For each block 4 of D, define
a vector A€V, as the “‘sum” of all s-subsets of (4), i.e.
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A =3(S: Se 2(X), S<(4))

We claim that the set of vectors {A: A= A} spans V,. Since V, has dimension
( 7; ), the theorem follows immediately.
Let S, P,(X). To show S, belongs to the span of {A: A€ A}, we intro-

duce the vectors

E; =3(S: S€eP(X), ISNS,| = s—i)
(so E,=S,) and

Fi=3(A: Ae J, |(A)NS,| = s—i)
for i=0, 1, -, 5. Now for S,eP(X) with |S,NS,|=s—1i, the coeflicient of
S, in the sum F, is the number of blocks 4 such that S,=(4) and [(4A)NS,|=
s—r; and this number is ( : )bQ_,H with the notation of Proposition 1. Thus

Fr=g<:)b:—r+¢E; (r:O’ 1,"',8).

The above system of linear equations is triangular and the diagonal coefficients
b; (r=0, 1, «--, s) are all nonzero under our hypothesis v>k-+s. Thus we can
solve for the E;s (in particular, for E,=S,) as linear combinations of the F,’s.
Since the F,’s are by definition in the span of {A: A€}, we have S,&span
{A: A J} for every S,€ P(X), and our claim is verified.

Corollary. The existence of an S\(t, k, v) with t odd, say t=2s+1 and
(v—1)>k+s implies the inequality

X(Zsﬁ—l) 7‘(751) o—1\ fv—1
b= (.F )2 ) )27
2s+1 2s
Proof. Let D=(X, A, J) be an S\(¢, k, v) and xX. Let A’ be the class
of blocks incident with x and A" be the class of blocks not incident with x.
Observe that both D'=(X’, A', IN(X'x A')) and D""=(X", A", IN (X' x A")),
where X’=X— {x}, are 2s—designs and apply Theorem 1.

The above inequality also rules out infinitely many parameters for which 4,’s
are integers, =0, 1, -+, t.

Theorem 2. Let D=(X, A, J9) be an S\(t, k, v) where t=2s and v>k—s.
If there exists a partition A=A, UA, U~ UA, such that each substructure
(X, i, IN(X X Ay)) s an S\ (s, k, v) for some positive integers \;, then
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b=1A1=(° )4r—1.
s
Proof. With the notation of Theorem 1, the vectors {A: A€ i} span V.
But observe that
SVA: A A} = A 3(S: S€ P(X)) = X, say.
So if we choose one block A; from each i, then {A: A= A—{4,, -+, 4,}} U
{X} spans V. The stated inequality follows.

3. Tight t-designs
Recall that a tight t-design (t=2s) is an S\(¢, k, v) with v>k-}s and

s=a(DIG) =(5)-

In view of Theorem 1, tight designs are simple. In this section we extend
the well known result that two distinct blocks of a symmetric design (tight
2-design) have exactly A common incident points (see Theorem 4 below).

Theorem 3. Let X be a v-set and A a class of k-subsets of X such that for
distinct A, B€ A,

|ANB| E {1y pas - ps}
where k> p, > p, >+ > p,>0. Then
la1<(?).
s
Proof. Let V=V(A). For each Se Py(X), define a vector
S=3V(4: Ac A, A2S).

We claim that the vectors {S: SEP,(X)} span V. Since V has dimension |/,
the theorem will follow.
Write w,—=k. Let A, be given. Define

H; = 3\(B: BE, |BN4,| = w)

for =0, 1, -+, s (note H,=A4,). For r=0, 1, -+, 5, we see that

G, = 2@ se2,X), Isn4l=n =g (*)(*=#)m,

=0\ 7 §—r

by comparing the coefficient of each 4 &4 on both sides of the equation. We
now show that the coefficient matrix of this system of s+1 linear equations is
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nonsingular, so that we can solve for the H,’s in terms of the G’,s. In particular,
we then have H)=4,Espan {G,, G,, -, G,} Cspan {S: S€ P(X)}.
So consider the s+1 row vectors

w= () A - ()

r=0, 1, ---,s. Suppose ¢v,+¢,v,+ - +¢cv,=0. This means that the polyno-

mial
o= el ))

s—7r
of degree <s has s+1 distinct roots w,, p,, ***, p, and hence is the zero poly-
nomial. Now p(0) =co( ,: ), so ¢,=0; then p(1)=cl(]:: i), so ¢,=0; and, in-
ductively, c,=c¢,=++=¢,=0. That is, v,, ::-, v, are linearly independent. This
completes the proof.

Theorem 4. Let D=(X, A, 9) be an S\(t, k, v) with t=2s and v>k+s.
Then there are at least s distinct elements in the set

{IANB)|: Ae A, B A, A+B},

and there are exactly s distinct elements if and only if D is a tight t-design.

Proof. In view of Theorems 1 and 3, it remains only to show that for

any tight ¢-design, there exist s integers w,, w,, -+, p, With 0<u; <k so that
[(A)N(B)| € {uy, ***, s} for distinct blocks 4 and B. Let D= (X, A, J)

be a tight S,(¢, k, ). With the notation of Theorem 1, the b=( ?) vectors

{A: A€ J} must, since they span V,, be a basis for V.
Fix 4, A and for Be J, write pg=|(B)N(4,)|. For i=0, 1, -5,
define vectors

M; =3)(S: SEP(X), ISN(4,)|=1),
N;= z:((‘:,B)B: Be).

Now given S€P(X) with | SN (4,)| =1, the coefficient of S in the sum
N, is

2((‘:8): Be, Sc_:(B)>,

i.e., the number of ordered pairs (B, R) in AX L,(X) such that S <(B) and
Rc(4,)N(B). For any r-subset R< (4,) with |[RNS|=j, the number of
blocks B such that (B, R) satisfies the above conditions is b,,,_;. Thus the
coeflicient of S in N, is
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¢ )
= Z( t )(k—t,)bﬂr_,.; and so
=\ N\r—j
N, = _}joc;M, (r=0,1,,5).

The s41 vectors N,—c;M, are contained in the span of M,, M,, ---, M,_,;
hence there exist rationals a,, a,, -*+, a,, not all zero, such that

;’3 a(N,—ctM)=0, or

Sa, 3 ((“B)B—c:/lo) —0.

=0 BE_j\\r

Now {A: A=} is a basis for V,, so for B+ A4,, the coefficient
3 I"B)
2ol
of B must be 0. That is, for any B=+4,, the intersection number pp is a root
of the polynomial

e

of degree at most s. Finally, note that the coefficients ¢{ are (and hence f(x) can
be chosen to be) independent of the block A4,: all intersection numbers are roots

of f(x).

The polynomials f(x) described in the proof of Theorem 4 have been found
explicitly by P. Delsarte [1]. As an example, we consider the case z=4. The
equations of Theorem 4 are

No = szo+sz1+szz ’
N, = kb,M+(b,+(k—1)b,)M,+(2b,+(k—2)b,)M, ,

N, = ( i )b4Mo+((k; 1)b4+(k—-1)b,)M,+<(k;2)b4—|—2(k—2)b,—|—b2))M2.

Using the relation b,= ( Ize > in a tight 4-design, one verifies that

(b,—b;)N,—(k—1)(b;—b,)N,+(2by(b;—b,)—b,(b,—b;))N,
is a scalar multiple of M2=Ao. For a block B=+A,, the coefficient of B in the

above expression must be zero, i.e.,

1y 2Ak—1)(b,—b,) 4b,(b;—b)) -, __
pe(ps—1) (Boeby) wet+ (ba—b2) 2b,=0.

Rewriting the coefficients in terms of v, k, and A, we have
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Theorem 5. The two ‘‘intersection mumbers” w,, p, of a tight 4-design
S\(4, k, v) are the roots of the polynomial

— o (UR=1)(k—2) 4 O
fx) == (———(0_3) +1)a+(2+: ).

Application of Theorem 5 yields the well known fact that any two distinct
blocks of an S,(4, 7, 23) meet in 1 or 3 points.

Since f(x) has integral roots, it must have integral coefficients, and we have
the

Corollary. The existence of a tight 4-desigh S\(4, k, v) implies v—3 divides
2(k—1)(k—2), and k— 3 divides 4\.

In [1], Delsarte observes that Theorems 4 and 5 are similar to Lloyd’s
Theorem on perfect codes. Indeed, Delsarte develops a theory of designs and
codes (emphasizing a ‘“formal duality”) in the context of association schemes.
Contained therein are results analogous to the above for orthogonal arrays of
strength ¢, the analogue of Theorem 1 being Rao’s bound.

We conclude with the following remarks.

Let D=(X, A, J) be a tight S)(¢, k, v) with t=2s and v>k+s. Let J(s, v)
denote the association scheme whose points are the s-element subsets of X
(see [1]). Let N be a (0—1)-matrix whose rows are indexed by elements of
P,(X) and columus are indexed by the blocks of D. At the row corresponding
to S and column corresponding to a block 4, the entry of N is 1 iff S S(4).
The matrix NN7 belongs to the Bose-Mesner algebra of the scheme J(s, v).
The matrix NN7T is obviously rationally congruent to the identity matrix.
Using the properties of the algebra of J(s, v), it is possible to compute the Hasse-
Minkowski invariant of VN7 and obtain some more necessary conditions for
the existence of tight 2s-designs. (See also [5].)
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