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Note on Axiomatic Set Theory I.

The Independence of Zermelo’s “Aussonderungsaxiom’
from Other Axioms of Set Theory

By Toshio NISHIMURA

In this paper axioms of set theory mean Goédel’s axioms of set theory
in [2], which are modified so that the axiom C2 postulates directly the
existence of all elements of a given set and C3 the existence of power
set.

In what follows we prove that Zermelo’s “Aussonderungsaxiom” is
independent of other axioms of set theory. A fortiori, the independence
of Godel’s axiom C4 (Fraenkel’s “axiom of substitution”), is proved since
the axiom of substitution implies the “Aussonderungsaxiom”.

The proof is carried out by constructing an inner model A for the
axioms A, B,C1,C2,C3,D and E under the axioms A, B, C1, C2 and
C 4, which does not satisfy the “ Aussonderungsaxiom”. The idea appears
already in [1]. However the proof in [1] is not formal.

In 8§81, we give the axioms of set theory.

In 8§82, we construct an inner model A under the axioms A, B, C1,
C2 and C4. Here we notice that the axioms do not imply the existence
of power set of any set.

In §3, we prove some preliminary results with respect to the model
A,

In §4, we prove that the model A satisfies the axioms A, B, C1, 2,
3, D and E.

In §5, we prove that the model A does not satisfy the “Aus-
sonderungsaxiom .

§1. The axiom system of set theory

In what follows we apply Godel’s notations in [2] in most cases.
For logical notations we use following symbols, v (or), - (and), ~ (not),
™ (implies), = (equivalence), = (identity), (3X) (there is an X), (X)
(for all X) and (3! X) (there is exactly one X). The system has three
primitive notions: class, denoted by €I8; set, denoted by M ; and the
diadic relation € between class and class, class and set, set and class, or
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set and set. Variables for classes are denoted by capital Latin letters
A, B, X, Y etc. and those for sets by small Latin letters a, b, x, ¥ etc.
The axioms fall into five groups A, B, C, D, E.

Group A.

1. (x)CI3 (x)

2. X)Y(V[XeY.D.WX)]

3. XYV)[(w)weX.=.ucY).D.X=Y]

4. (A (w)[ucz.=: u=x.v.u=y]
Group B.

1. 3A4)(x) () [KxypeA.=.xey]
AB)EC)(u)[ucC.=: uc A.ucB]
(A @B)(u)[ue B.=.~mec A)]
(A) 3B) (x) [x € B.=.(3y) Kyx> € 4)]
(A) @3B) (%) (») [{xy>eB.=.x€ A]
(A) 3B) (%) (») [{yx> e B.=.{yx>€ A]
(A) 3B) (%) (y) (2) [Xxyz> € B.=.{yzx> € A]
(4) 3B) (x) (») (2) [Kxyz> € B.=.<{xzy> € A]
where <{xy> and <{xyz> mean the ordered pair of x and y and the ordered
triple of x, y and z (cf. [2], p. 4, 1.12 and 1. 14).

S S L U

Group C.

1. (3a)[~Cm(a).(x) (x€a.D.(Fy) (yea.xy))]

2. @) @)[uey.=.v)(uecv.vex)]

3. W@AYwWlecy.=.(w)(weu.DO.wex)]

4. (x)(A)[In(4).D.Fy) (w) (€ y.=.(Fv) (ve x.<uv) € A))]
where the notions aCb, Em(a) and Un(A) mean “a is a proper subset
of b”, “a is empty” and “A is unique” respectively (cf. [2], p. 4, 1.2,

1.22 and p. 5, 1.3).
Zermelo’s “Aussonderungsaxiom” is postulated as follows :

4, A QA (w)[ucy.=: ucx.uc A]

Axiom D.
(A) [~Cm(4).>.(3u) (w € A.Cy(u, A))]

where the notion €x(x, A) means “# and A are exclusive” (cf. [2], p. 4,
(1. 23).
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Axiom E.
(34) [Un(A) . (x) (~Gm(x) . >.3y) (yex . {yx>€ A))]

§2. The model A

In this section we construct the model A under the axioms A, B,
C1, 2 and 4.

1. PRELIMINARY DEFINITIONS

We develop the theory of ordinal numbers under the axioms A, B,
C1, 2 and 4. (It is well known that is possible.) Ordinal numbers are
denoted by small Greek letters «, B3, v etc. When « and B8 are ordinal
numbers, e 3 and &® are the product and power in arithmetic of ordinal
numbers. The existence of these functions are easily ensured. o is the
smallest infinite ordinal number.

We can define the function j such that the following conditions are
satisfied :

(1) ]'%113>< @@ X @@ ,

where 1, 2, and 3 are 0+ {0}, 1+ {I} and 2+ {2} respectively, and Ax B
is the direct product of A and B (cf. [2], p. 14, 4. 1).

@) 3. D ((uaB) Sy . D . j* pa3) < j* {vvd))

where S is the relation given in [2], p. 36, 9.2, in which 9 is replaced
by 3. And A‘x is the function given in [2] p. 16, 4. 65.

(3) W(j) is an ordinal number, where 28(j) is the set of all values
of 7 (cf. [2] p. 15, 4.44).

Then it is clear that the function j is a set.

Then in the similar way as in [2] p. 36, 9.24 we can easily give
the functions (to be a set) k,, k2, and k, which satisfy the following:
if u, v<'4, then

k' F<paB> = p, k'j<paB>=a and k'j{uaB> =28,
kia=0vk'a=1vEk‘a =2,
j‘<ko‘a’ kl‘a) kz‘a> =,
and if 0< <3 then
ki 7' paf> < j<paB>  i=1, 2.

The existence of such functions are easily ensured.

2. First we define the function ‘/’ by transfinite induction simul-
taneously, which is defined over wv.
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ko‘a:.l-)-f‘a: {f‘k1‘ay f‘kz‘a}
kfa=2.D.fa=8S(fk'a)
ka=0.aw.D: ffa=20
ka=0.a=z0.D: ffa=ow

where {a, b} is the non-ordered pair of ¢ and b, and &(a) the sum of
all elements of a.
Now we give the model A. The universal class of the model A is

W(f) which is a set denoted by vy, ie.
uo=BW(f).
Mr(@) means that @ is a set of the model A and is given by the formula
M(a).=.acwo,.

€18,(A) means that A is a class of the model A and is given by the
formula
Cl3\(A).=.Av,.

€, means the €-relation in the model A and is defined by the formula
Ae,B.=: Ae B.M4(A).CI38,(B).

Then operations and notions can be relativized for the model A in
the similar way as in [2], p. 41 and p. 42. The relativization of an
operation A is denoted by A, and that of a notion B by B,.

§3. Preliminary results
In this section we prove some lemmas with respect to the model A.

1. Following lemmas are concerning arithmetic of ordinal numbers.

1.1. Lemma. Let n be an ordinal number such that o <1 and n such
that n<o. Then
(n+1)=n"+n+1
(n+1P = +9"+n+1.
And in case that € Ky, neyp=7 and in case that =& {m where £€ K
and m<ow, nep=£imn<nel.

1.2. Lemma. Let @ and B be ordinal numbers such that o, B< o%*
and n(=may ({a, B}))=w. If n=Ei1 and p< 3, then
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JpaBy < ' <2EE) L 3en i 3en i p.
If nis a limit number and <3, then
J"<M“/8>§%Efglj‘<3ff>4'—4©n44©?75r#,
where 8£t<rnn JC2EE> is the limit of values j°<28&> for &(< ).

1.3. Lemma. Let o and B be ordinal numbers such that o, B< o
and n(=max ({aB}))=w. Then

J<peB> < (n+1)°.

Proof. In case that 5=o0, j*<uaB><003iu<(oi1P If n=£i1,
then by Lemma 1.1 and Lemma 1.2

L paBy < <286 1 3on 3oyt u <+ ne3<(n+1).
If  is a limit ordinal number, then by Lemma 1.1 and Lemma 1.2

7 <pa3> qu%im (JK2EED) + 3o+ 3o ip= %igl (E+1))

+ned=ry'+ned < (9+1).
1.4. Lemma. Let « and B be ordinal numbers such that o, 8< o™,
n=0,12, ---. Then j'{paB>< o™,

Proof. In case that #=0, we have Lemma in the same way in [27]
p. 37, 9.26. Let p(=Max ({a, B})) = © and 7 be of the form

ONtolt oV, " Sy == =Y.
Then n+1<w"e(/+1) and so
(7117 < (@M@l 4 D)e(whe(l 1)o@ e 11)

< myl-i—1©m-yl+1© ot — w-yﬁ'-llr-yl-’uivlél

However o" >v,. Hence v,+14v,+1+v,4+1<w” Therefore (y+i1)°’<o*”
and so we obtain Lemma by Lemma 1.3, q.e.d.

2. Following lemmas are derived from the definition of the function
f and lemmas in 1 in this section.

2.1. Lemma. o T f“o.

Proof. We prove by induction. 0=f‘0€ f“w. We prove that n{1
€ f“w under the assumption 7€ f“w. niIl=n+ {n} =S({n, {n}}). When
n=f‘m, {n} =fj'{Amm>. Hence {n, {n}}=sr"j<Imj‘<{Imm>>. Therefore
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S({n, {n}})=r 7 <25 <Imj*<Imm}>>, 0>, where j ‘{25 {Imj‘<Imm>>, 0> < o
by Lemma 1.4, q.e.d.

2.2. Lemma. Comd(f“a) for every ordinal number o such that
alw’ That is (u)(uef“a.>.ul f a).

Proof. It is sufficient to prove that f‘aCf“a for every ordinal
number « such that < w®. Let « be the smallest ordinal number
such that ffadl f“a.

When k‘a=0 and a< o, ffa=0f“a. When a=o, f'ad=0 f“w
by Lemma 2. 1.

In case that kf‘a=1, f‘a={f‘k‘a, f'k‘a}. However f'k‘a, f'k‘a
€ f“a from ke, ko<« Hence f‘al f“a.

Let k‘a=2. Then f‘a=&(f‘k‘a). As k‘a<a, fh'alf“k‘aby
the assumption of the induction. Therefore ve f'k‘a.>.(3y) (v=F 7.
vy<k'‘a). Hence v=f‘9 f“yf“k‘a by the assumption of the induc-
tion. Hence fFk‘a=6(f'k‘a)fk‘alf“x.

2.3. Lemma. Comp(v,), t.e. (u) (u€v,. D . ul0v,).

Proof. If u€w,, we have an ordinal number « such that a< e®
and #=f‘«@, From Lemma 2.2

u=fal f“ally,, q.e.d.
2.4. Lemma. {a, b} €v,.=: acv,.bcv,.

Proof. {a, b} €v,.>: acv,.bcv, is followed from Lemma 2.3.
Now let a€v, and b€wv, ie. a=f‘a, b=f‘8 and «, B< »”. Then
{a, b} =f‘j*{1aB> cv,, since j*{IaB>< «” from Lemma 1.4, q.e.d.

2.5. Lemma. <{ab>€v,.=: a€v,.b€v,.
This follows from Lemma 2. 4.

2.6. Lemma. 22 v,.
This follows from Lemma 2.5.

2.7. DeriNITION. The function od is defined by the following pos-
tulate. <{yx>€od.=: {xy>Ef.(2)[2€y. D . ~{xz>€ f].0dvi.

2.8. Lemma. [f x€y and x, y€v,, then od‘x<_od"y.

Proof. Let a=od‘x B=od'y. From Lemma 2.2 f‘ae ‘B f“B.
Hence a<7g, qed.

2.9. Lemma. If x¢<v,, then ~(x€ x).
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Proof. If x€x, then od‘x< od‘x by Lemma 2.8, q.e.d.

2.10. Lemma. [f MM,(x) and WM,(y), then {xy},={xy} and {xy>\=
<xy>. If GI8,(A) and CI38,(B), then Gm,(A)=Cm(A4), Un,(4)=Un(A)
and Gy, (A, B)=C¢ (A, B).

3. We can obtain the following lemmas from discussions in §5.

3.1. Lemma. f‘a is the form 0, {f‘a,, -, f‘a}, f€o or f o+
{f‘al‘ "'>f‘an}'

3.2. Lemma. If f‘a=f“w and f‘B<Lf‘a, then f‘Bef w or
f‘B:f“w- Iff‘a:f“w+{f‘a1y ttty f‘an}; tmdf‘Bgf‘“y then f‘BEf“GJ,
f'B=f“o or f'Bis of the form f o+ {f‘a,, -, f'a,}.

§4. In this section we prove that the model A satisfies the axiom
groups A, B, D, E and C1, C2 and C3.
Group A,
1,. (@) [ (x) D ECI8, (x)] is obtained from Lemma 2. 3.
2 () () [CI8,(x) . Cl8\(p) . x €x3: D.Wy(x)]
3. (A)(B)[C18,(A).C18,(B).>: (u) (M(u) D(ue,A=uec,B)]: D:.
A=B7 is obtained from the facts that ATwv, and B v,

which are derived from €18,(A) and €18, (B).

4,. () () [D(x) . My(p) - D (F2) (M(2) - () (My() - D:u €20
=.(u=xvu=y)))]
Proof. When x=f‘a and y=f‘B, f‘j'{laB) satisfies the formula,
q.e.d.
Group B,
1. (3A4)[CI18, (4).(x) () (Mr(x) - Mu(p) - D: (Kxyr €A .=
xe)]
Proof. E-v, satisfies the formula, where E is the class by the axiom
B1’ q.e.d.
2,. (A)(B)[€13,(A).CI18,(B).>.(3C) (BI3,(C) . (w)(Wr() . >
(ueC.=:ue,A.uc,B)))]

Proof. A-B satisfies B 2,.

3. (A)[618,(A) > (3AB) (CI3,(B) . () (Wr(w). D: (u\B.=.
~(u€rA)))]
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Proof. Consider v,—A as B, where v,— A is the complement of A
with respect to »v,. Then v,— A satisfies B3,, q.e.d.

4. (A)[C18,(4).>.(3B) (CI8,(B) . (x) (Mr(x) - D. (x€xB. =
()W) - <y2Dr €2 AN))]

Proof. This is equivalent to

(A) [€18,(4) . >.(3B) (CI8,(B) . (x) (My(x) . D . (x€ B.
(Fy) (M(y) - <32> € A)))]

Consider D(A-v?) as B. Then A-0}v?.D(A-v))v,. Therefore
€18, (D(A-v%)). Moreover

rED(A-]).

I

-(3y) Kyx> € A0}

-(Fy) Kyx>e A.{yx>€))

- (Fy) (WG (y) - <yx>€ A). q.e.d.

5. (A) [CI8,(A).D>.(3B) (CI8,(B) - (%) (3) (W(x) . My(3) - D«
Kyxor€xB.=.x€,A))]

Proof. This is equivalent to

(A) [C13,(4) . . (3B) (CI3,(B) - (x) (y) (Mr(xx) « Men(y) - D+
(Kyx>r€\B.=.x€,4)))]

Consider v, x A as B. Since ATwv, and »*Tv,, v,Xx AT v, and so
€18, (v, x A). <{yx>ewv,xA is equivalent to y€wv,.x€ A Therefore if
M,(x) and MV,(y), then {yx>€wv,x A is equivalent to x € A4, q.e.d.

6. (A)[CI8,(A4).>.(3B) (C13,(B) . (x) (») (Wx(x) - P(3) . D«

Kxyh€rB.=.{yx>, €,4)))]

Proof. Take A7 (cf.[2], p. 15, 4.4) as B. AT v, and so €I8,(A™).

Then it is clear that A~ satisfies B6,. q.e.d.

. (A)[DN3,(A4).D>.(3B) (CI3,(B) . (x) () (2) (M(x)

Ma() - Dy(2) . D (Kxyad, €, B.=.<{yzx>, €, A))) 1.

Proof. Take Gov,(A) (cf. [2], p. 15, 4.41) as B. Cob,(A)v, and
so I3, (€ob,(A)). Then Cob,(A) satisfies B 7,, q.e.d.

8y (A)[CI8,(A4).D>.(3B) (CI8,(B) . (%) (») (2) (My(x) . M\()

Mi(z) . D.({xyz> €, B.=. {xzyo, GAA)))]
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Proof. Take €ob,(A) (cf. [2], p. 15, 4.411) as B. €ov,(A)Tv, and

so €18, (Cob),(A4)). Then Cov,(A) satisfies B 8,, q.e.d.
Group C,.
L. (3a)[M(a) . ~Cmy(a). (x) (P(x) . x €xa: D (y) (D(y) .
y€ra.x Gyl

Proof. This is equivelent to
@A) [T(a) . ~Em(a) - ()M (x) . x€a: D.(Fy) (M(y).y€a. 2 y)].
Take o as a.f‘wo=o and so M,(w). Then o satisfies C1,, q.ed.
2 @) [IE) D (Fy) (M(y) - () (W) . Diue,y.=.
F) WM @).uev.v€,x))].

Proof. Consider &(x) as y. Then M, (x). D .M(S(x)). For « such

that M, (»)
ue,Sx).=.ucBx).=.Jy)(uey.ycx).
When uey, yex€v,. D.y€v,. Therefore
u€,\&(x).=.(3y) (M(y).u€y.ycx)
-=.(Fy) (My(y)-u€,\y.y€,%), q.e.d.

3 M [IGE)-D.(Fy) (M(9) - @) (M) . D (wey.=.u )]

We easily obtain C3, from Lemma 3.1 and 3.2 in §3.

Axiom D,. (A)[E18,(A). ~Cm,(A): . (Fu) (M, ). uc, A.Cp,(u.A)]

Proof. Since €13,(A) and ~Em(A4), AT v, and (3y)(y€ ATv,). Hence
we consider that with the smallest order of such y. Let it be ». Then
M, (u) as ue AZw,. Now if x€u-A, then od‘x< od‘u. This contradicts

the definition of %, q.ed.
Axiom E,. (3A4)[CI8,(4).(x) (M(x). ~Cm,(x).>D: (Fy) (M\().
yEx . {yx>, €, A))]

Proof. We define the relation As by the formula: {yx>€ As.=
yex.(2)[od'z<od'y..~z€Ex]:Rel(As). AsTv?. Then As satisfies
axiom E,, q.e.d.

§5. In this section we prove that the model A does not satisfy the
axiom C4, (Zermelo’s ‘ Aussonderungsaxiom’). This is implied by C4;}
(Fraenkel’s axiom of substitution). Therefore, of course, the model A
does not satisfy the axiom C4,.
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1. Some Lemmas.

1.1. Lemma. &(0)=o.

1.2. Lemma. If o f‘q, then o "S(f Q).

Proof. If o f‘@, then &(f‘a)=8(f‘a—w)+6(0) =S(f‘a—w)
+w>w® by Lemma 1.1, q.e.d.

1.3. Lemma. (u)[M,(z). D: () ((<o.i=u)volu)], where a=>b
means that sets a and b are equivalent (cf. [2], p. 30, 8.13).

Proof. Let u=f‘a. We prove by transfinite induction on «. If
a=0, then it is clear. If k‘a@=0 and @< w, then it is clear. In case
that k‘a=0 and ¢ =w, then f‘a=w0Dw. In case that kfa=1, fa=
{f‘kfa, f'k‘a} and so f‘a=2. However

In case that k‘a=2, f‘\a=&(f‘k‘a) and k‘a<a. Now (x)(x€f‘k‘a.

2 - My(x)).
First if 0T fk‘a, then o f‘a. Second let ~ofk‘a@. Then

(@i) (<o i=fk'a).
If (x) (x€fh‘a D ~oZx), then (x) (F)) (x€fha.D>.j=1) and

so (Ej) ((<w.j=f‘a).
If 3x)(xefk‘a.0lx), then o TS(fk“a)=Ff“a, q.ed.

1.4. Lemma. The o— {0} does not belong to the model A.
Proof. From Lemma 1.4, if M,(0— {0}), then
@) <o.i=o—{0})ve Jo—{0}.

However (0)((<w.D.~(@F=w—{0})) and ~(@Tw—{0}). Therefore
~ My (o — {0}), g.ed.

2. Theorem. The axiom C4, does not hold.
Proof. We have the formula
@& . D (x€0—{0} . =.x€0.~x=0)].

Therefore, if the axiom C4] holds, then IM,(o— {o}) and this contradicts
Lemma 1.4, q.e.d.

(Received August 31, 1960)
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