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SELBERG’S TRACE FORMULA AND SPECTRUM
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In this paper we study the spectrum associated with discontinuous groups
operating on the upper half plane.

I.M. Gelfand conjectured that if two discontinuous groups with compact
fundamental domains have the same spectrum, then they are conjugate. We

 have no proof for his conjecture, however we can show that the numbers of
conjugate classes with same eigenvalues coincide each other for such groups (§4).
In §5, we shall give a formulation and a proof of an announced result” of I. M.
Gelfand which is a weaker version of his conjecture.

Our second object is to give the asymptotic formula for the discrete spectrum
associated with the modular group (§6). Our result can be described by Weyl
type formula. In the case the fundamental domain is compact, I.M. Gelfand
and I. Pyatetzki-Shapiro announced the asymptotic formula of the spectrum
(connected with representations of class 1) for general semi-simple Lie groups.
The definitions and summary of the known results are give in §1 and §2.

The author expresses his hearty thanks to Professors H. Yoshizawa and A.
Orihara for their kind advices. A summary of our results was announced earlier
in Proc. Japan Acad. 42 (1966), 327-329.

1. Recapituration

1.1. General situations
Let G be a semi-simple Lie group and T be its discrete subgroup. We
denote by O the space of functions f(g) which satisfy

flvg)=fg for vET, geC.

and
[ 1) Pdg<oo,

where F is a fundamental domain in G of transformations g—vg, vET.
9 is a Hilbert space with the scalar product

Sotf>=| f@n@d.

1) Added in proof: After the preparation of this work, a proof wad publised in, I.M.
Gelfand, M.I. Graev, 1. Pyatezkki-Shapiro, Theory of representations and automorphic func-
tions (in the Series ‘Generalized Functions’, Vol. 6, in Russian), Moscow (1966).
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The representation {T',, } is unitary and the problem is to decompose this
representation into irreducible ones. The first general result is

Theorem ([2]). If the factor space T'\G is compact, the representation
{T,, O} can be decomposed into countable discrete direct sum of irreducible re-
presentations of G, where the multiplicity of each irreducible representation is finite.

Irreducible representations of G can be parametrized by indeces p. Sup-
pose that the decomposition mentioned above is written as follows.

(1) (T, 0} = S {Tgw, ©°%} .

The main tool of studying the decomposition is the trace formula. We follow
here the argument of [2]. For ¢(g)e LG, dg), the operator

T, = SG¢(g) T, dg

is defined and bounded in . We have

Tof(g) = SFK(gu &:)f(g2)dg. »
K(g,, g) = Ygrgv(grlwz) .

Let 7z,(g) be the trace of the irreducible repsrentation {7¢”, 9} and we will put

He) = | _pl)mde)ds .

With suitable condition on ¢(g), the above calculation is justified and T, is a
trace operator. Calculating the trace of T, in two ways, we have

She) = | (2 oeve)ds

From now on let us consider not all of irreducible representation of G, but
only representations of class 1 of G. A class 1 representation is defined as an
irreducible representation of G which has in its representation space a U-invariant
vector unique up to constant factor, where U is a maximal compact subgroup of
G. If we take as ¢(g) a two sided U-invariant function, then A(p)=0 unless
{(T§, D} is of class 1. If {T§, 9} is of class 1, then

he) = | _ple) onle)ds

where w,(g) is the zonal spherical function corresponding to this representation.

Class 1 representations can be parametrized by the set of continuous para-
meters. When the factor space I'\G is compact, I. M. Gelfand and I. Pyatetzki-
Shapiro anounced the asymptotic formula for the parameters of class 1
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representations which are contained in the decomposition (1) (see [3]). §4.1 and
§6 are concerned with this type of problem for G=SL(2, R).

1.2 Some facts about G=SL(2, R)
From now on we shall be concerned with G=SL(2, R). Here we describe
the class 1 representations of G=SL(2, R).

i) Principal series.
These representations are realized in the function spaces on the real line.
Operators of representations are determined by formulas

TP f(x) = f(gzig)lﬁx+8lz”"l for g— (% 5,

where 7 is a non-negative real number. Scalar product is defined as follows:

(fof)=|"_ref@a.

ii) Supplementary series

Operators of representations are given by the formulas as above, but in
this case 7 is pure imaginary and 0<{Im r<%. The scalar product is defined
by

(o £ = | [ )@ sl 2427 dy i,

Now let g, ke G=SL(2, R) be matrices g= (? 3) and h=<3 § )
The mapping

h ej:z:?: T = Xx-+1y

induces the identification of G/U with the upper half plane H. Then the image

of gh by the above mapping is aTj:Z. So we define the action of G on H by
c
the formula, i

_ar+b _fa b
gr = crrd for g= (C d) )
The measure dr=dxdy[y’ on H is induced by the Haar measure of G. T\G is
compact (or, of finite measure) if and only if T'\H is compact (or, of finite
measure).

g= (? db> and —g:(ZZ :2) have the same effect as transformations of
H. Considered as a transformation group of H, G is reduced to G,=G/{+-e},

10
where e=(0 1).
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We denote with 9, the space of functions f(+) which satisfy

Svr) = f(7) for yeT, reH

and
Sle(-r)lzd-r<<>o,

where D is a fundamental domain in H of T'. , is a Hilbert space with the
scalar product

Sotfo={ fOF@r.

The Laplace-Beltrami operator
0* | o
s AL
Y 6x2+8y2
considered in 9, is self-adjoint. By the well-known principle, the decomposi-
tion of {T,, } into class 1 representations is equivalent to the spectral de-

composition of A in ,. A has non-negative spectrum and we denote the
discrete part of the spectrum with Ap. Spectrum A of A and the parameter r

of the corresponding representation are connected by the equation x:l+r2.

%
1.3. A conjecture of I. M. Gelfand

In [1] I. M. Gelfand conjuectured that, when I"'\H and I',\H are compact
and Ap,=Ar,, then T', and T', would be conjugate in G,. He announced the
following weaker result. A continuous deformation of T" that does not change
Ar is trivial.  We shall discuss some aspect of this problem in §4.2 and §5.

2. Selberg’s trace formula

The trace formula for class 1 representations of G=SL(2, R) can be trans-
formed further and written as (2) when I'\H is compact (A. Selberg [8]. A
detailed proof of (2) is given in [4]). A. Selberg states an analogous formula
also in the case when I'\H is not compact. This formula are called Selberg’s
trace formula. Since we need those results in our discussion, we shall write
them explicitly in this section.

Let T'\H be compact. If k(r) satisfies conditions (H) that is,

(H1) h)=h(—7),
(H.2) hk(r) is regular analytic in a strip | Imr| <%+E, £<0,
(H.3) A(r)=0(14|7|*)~*"° in this strip,

then
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D oo Y =Ty
2h=(1/4)+rZEAph(r) = A( )S_ ré ¢ h(r)dr

27 w e7+te ™
1 &, 7871 1 o eqtr—zur(k/mﬁ)_’_ €_¢r+21tr(k/'"ﬂ)
( 2 ) +7 B=1 k=1 . k7z’ S-m eﬂr+e—nr h(r) dr
mg S1N —
B
125 5 N g (klog N{PL),

=1 i=1 N{Pw}klz—N{Pa,} ~k/2
where A(D):S dr and
D
gu) = .%r Sle‘"’“h(r)dr .

We count both values of 7 that give the same A (and if A= i , ¥=0 with double

multiplicity). mg (8=1, -+, 5) are orders of R, the representatives of primitive
elliptic classes in T" (considered in G,). N{P,} (a=1, 2, ---) are the squares of
larger eigenvalues (norms) of P,, the representatives of primitive hyperbolic
classes in T" (considered in G,). Both sides of (2) converge absolutely.

We introduce some additional notations. It is konwn that N{P,} (a=1,
2, +++) do not accumulate to a finite value. We denote with a,, a,, :+- the
smallest, next, --- values of N{P,}, a=1, 2, :-. Obviously 1<a,<a, --- 1 oo .
Put &;=log a; and let n, be the number of representatives of primitive hyper-
bolic classes whose norms are equal to a;. We put

E(r) . Zs} mi—:l 1 ezr—zgr(k/mB)_I_e—nr+2¢r(k/m5)
B A gy sin 8 e te™
B mg

Then the Selberg’s trace formula can be written as follows.

D oo Y __ =
Z)\:(l/4)+rZEAF h(r) = A( ) S- 76 ¢ h(r)dr

’ 27[' oo e’ﬂ"_‘_e-—ﬂr
(2) e e
+5 S_wE(r)h(r)dH—Z Sim s e ()

When T has a non-compact fundamental domain in H with a parabolic
cusp, A. Selberg state the following trace formula which differs from (2) (or (2"))
in that on the right-hand side there are the new term

%{ gl%(%wr)h(r)dr—% S:{:’(Hir)h(r)dr

) —2log 2. g(O)—I—%(l—qb(—;—))h(O) .
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¢(s) is the meromorphic functions which appears in the functional equation of
Eilsenstein series. A(r) is a function which satisfies the condition (H). Both
sides of the formula converge absolutely.

ReMARK. A. Selberg sketched out the theory in [8]. The author has
learned the proof of the formula (3) (Lectures delivered by A. Selberg, Institute
for Advanced Study, 1954-1955) from Professor M. Kuga. The description of
the proof has some omissions concerning the analytic natures of Eisenstein
series. But for the case of the modular group, which we shall consider in §6,
the details of the proof of (3) can be made rigorous, since Eisenstein series is
well-known in this case (see for example [6], [7]).”

3. Some auxiliary estimates

This section contains some estimates connected with Selberg’s trace formula.
We use them in the following section. We assume that T'\H is compact or
T is the modular group.

Let n be a non-negative integer and ¢ be a positive number. Function
hy, (r)=7""e"" satisfies the condition (H). We put

1 (= _.
Eni(r) = o g_me "“h,,,,(r)dr .
By the formula
(4) Sw A2 o2 8%y oy — (_I)V_; ‘_‘ii: (t—llze—yzl“) ,
e i
we have
g”,t(u) — P(t—l/Z’ uz) oWt

where P(x, ) is a polynomial (of degree N).

Lemma 1. (i) Series

Sult) = 20 B sy (ke e
i=1 =1 qQ
converges.
(1) 1}2} ; E k/z—_k/zgn,t(kgi) =0

Proof. By (4) u*"e *%* is the Fourier transform of a function satisfying
(H), so (i) follows from the absolute convergence of Selberg’s trace formula.

w w e
PR ’; m | &n,e(kE;)|

-l
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<constant X 3 t'"”zz n; Z

kE. V" e~ ket
mngN i=1 T "’/z( )

<constant X ( > #™e ) S,,(Zt)<oo .
ming N

S,(2t) decreases when ¢ | 0. So (ii) is established.
Now we put

L - &; —Che 2]
S@G, t) = Enizzk/TJ_._a_e Che p2/at

—a,
for j=1, 2, .-
Lemma 2.

: e .2/4¢ . — Ej
I‘I_I;{)lel S, t) = ""m.-—w
J J

Proof. Let ¢,, ¢, be positive and ¢,+c,=1.

. E; -2 :2/4 75 "y
S(]) t) = niﬁj——l_ﬂ e i t+R (]’ t)+R (]’ t) ’
7
where

— - —k2e ;2[4t
R'(j, t) = n, g——-—_aj_me j

and

oo

” — 5.‘ — k2e .2/4t
RGO = 3,10 3 g e
They are estimated as follows.

R'(j, t) < nje—u:lejZ/u 2 8_,' e—czkzgjz/“
=2 ajk/2__aj—k/2

< et S (1e,) ;

RI/ . f ~clej+1/4t n. —c2k25.2/4t
RS ,_,2” = ak/Z a; € i

N

e~ 31/ S (t]c,) .
So we have
R'(j, )+R"(j, t) < (e7*12% J-g=17352/%) S, (tc,) .
Now choose ¢, such that 4¢c,<<1 and ¢,&%,,>¢&3. Then
hm e MR (j, )+R'(j, )} = 0.
So the lemma is established.

Lemma 3. The moments of E(r) satisfy a sufficient condition for the unique-
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ness of Hamburgar moment problem (see, for instance, [10]).
Proof. E(r) is the sum of terms of type

ec/r+e—c/r

el 0<c'<e.
e e

Lemma 3 follows from the following estimates.

o Iy —clr
e’ e
My, = S e r**dr
oo Fe

oo

<4 S O P dy

0
= constant X (¢'—¢)™**"*(2n)! .

.1
lim —m,,/** < oo ,
nyo0 g

4. Selberg’s trace formula and spectrum

4.1. The asymptotic formula for the spectrum. We assume T\H is
compact. Let a(\) be the number of those elements of Ay which are smaller
than A. The asymptotic formula of I. M. Gelfand and I. Pyatetzki-Shapiro
for this case is

Lemma 4.
}\im a(\)n = A(D)/4Ax .

Proof. The first term of the right-hand side of Selberg’s trace formula
(2') is modified as follows. '

A(D) Sm reﬂr—e—ﬂh(r)dr

27 Vo= €7

:M-ZSwrh(r)dr—Az(D)-4Sm " h(rydr.

272, 0 T 0 e1tr+ e——)tr

Putting h(r)=e"*/**">* in (2"), we have

2 Swe‘”‘d(x(x) = 4@.2 Smre“(l/““’z”dr
0 2z 0

+ S‘” {_A(D).4. e —|—E(1’)} e~ D g

o 2 eﬂr+e—1r

e S 3 (k).

= a,-"/z—a,-_klz
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By Lemma 1. (ii) and the fact that

4 (D) e ™

E
2” ﬂr_l_ —1tf+ (r)

is integrable in [0, o), we have
lim ¢ Swe“"da()») — A(D)f4 .
t>0 0

So if we apply Hardy-Littlewood-Karamata theorem (see for instance [12]), the
lemma follows.

4.2. The partial determination of T" from Ap. We will consider two
discrete subgroups I'" and T'” such that T'"\H and T'"\H are compact. The
symbols and quantities connected with T''(I"”) are denoted with A’, D, a,’, n;’
etc. (A" etc.) Now we can prove the following statement.

If AM'=A", then T and T (considered as transformation groups of H) are
wsomorphic and a;'=a;", n;'=n;" (i=1, 2, ---).

Proof. By lemma 4, A(D")=A(D"). Then by Selberg’s trace formula (2'),
we have

1 oo oo g/
S EOR @25, g~,,,,2—,—,,,—2g..,<ke)
(5)
1 ” g,” ”
— " O mdr2 50 5 5 R

Now let ¢ tend to 0. By lemma 1 (ii) we get the equations
Sm E'()rdr = S“’ E'()#mdr  for n=0,1,

So from Lemma 3, we have

(6) E'(r) =E"(r).
Putting #=0 in (5), we have
(7) S'(1,t) = S"(1,¢).
This implies that
(8) eI — P GY(1 ) [ef P S (1, 1) .

The right-hand side of (8) has non-zero limit if we let # tend to 0 (by Lemma 2).
So we have £,"=¢€,". Using (7) and Lemma 2 again, we have n,’=n,". Then (7)
is reduced to
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S'(2, 1) = 8"(2, ¥)

and we can repeat the same procedure.

Returning to (6), by a simple argument concerning the order of each terms of
E(r) when r—oo, we have s'=¢' and {m/, .-, m'y}={m/’, ---,m"}. Using
the formula

A(D) = 2 (2g—2+ 33 (1—1/my)}

(g is the genus of the Rieman surface corresponding to T'), we have g'=g".
Summing up, I'" and I'” are isomorphic.

5. Discussion of a result of I. M. Gelfand

Our result in §4.2 can be applied to formulate and prove a result of I. M.
Gelfand announced in [1]. We reproduce here some result of A. Selberg (see

oD

DEerINITION. Let G be a locally compact group. A family of its discrete
subgroups T'® (0<<¢<?,) with elements A% such that I'®\G is compact (or,
of finite measure) is called a (comtinuous) deformation of T'=T", if elements
A®eT™® depend continuously on ¢ and 4 — A® gives isomorphism between
' and T'®: A deformation is called trivial if there exist 7”& G depending
continuously on ¢ such that A®=T®APT®,

Lemma 5 (A. Selberg). Let G be SL(n, R). A continuous deformation of
T (with T\G compact or of finite measure) which preserves the traces of all element
of T is a trivial deformation.

Now we will prove

Result of Gelfand. Let G=SL(2, R) and T be a discrete subgroup of G
with T\G compact. A deformation of T' which does not change Ay (i.e., Apcp=
Ar, 0<2K8y) is trivial.

Proof. The order of an elliptic element is preserved under any deformation.
So absolute value of its trace is preserved. By continuity its trace does not
change sign.

Consider a subset of positive numbers consisting of norms of all hyperbolic
elements of T“” and denote this set with A®. A®P=A4 by §4.2. Let P®<
T'® be a hyperbolic element. By discretness of 4> and by continuity, N{P®}
remainss invariant during the deformation. Therefore the absolute value of the
trace of P® is preserved and it does not change sign by continuity. So the
hypothesis of Lemma 5 is satisfied.
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6. Asymptotic formula for the modular group

For the modular group, ¢(s) in (3) can be written as
T(s—1/2) £(2s—1)
P(S) L‘(Zs) ’

where £(s) is the Riemann Zeta function (see for instance [6]). Using the func-
tional equation of (s), we have

_ s D(—=s+1)§(—25+2)
=TT @)

Let a(\) be the number of elements of the discrete part of the spectrum Ar
smaller than .

b(s) ==

(9)

Asymptotic formula for the modular group
%\im a(\)/x = A(D)/4r .
Proof. We will show

(10) lim # S“e-ﬂa(x) — A(D)}4x.

t>o0

To prove this it is sufficient to show that for A(r)=e=“/**"* (3) is of order of
o (t') when #—0. The main terms we have to consider are (by the expression

(9) for ¢(s))
[ —?(1—}—21'1’)(3‘“’“’2”(1'1‘

and
. ) p— (/472 . 1
S_N—P—(o-—}—zr)e QATTDE dy <o' => 1) .

It is known for large |7,

%(1+2ir) = O (log*|7|)

(see for instance [11], p. 44 (3.6.6.)) and

%(o-+z'r) = O (log |7]) uniformly in 0<<o <2

(see for instance [5], p. 317).
On the other hand, if A(r) is a continouus function satisfying A(r)=0 (|r|®)
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(a<1) for large |r|, then we have

g:A(r) e M tdy — o (1Y) for t—0.
So (10) is proved.

Osaka UNIVERSITY
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