|

) <

The University of Osaka
Institutional Knowledge Archive

Title The real K-groups of SO(n) for n=2 mod 4

Author(s) [Minami, Haruo

Osaka Journal of Mathematics. 1989, 26(2), p.

Citation 999-318

Version Type|VoR

URL https://doi.org/10.18910/7329

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Minami, H.
Osaka J. Math.
26 (1989), 299-318

THE REAL K-GROUPS OF SO(n) FOR n=2 MOD 4
Dedicated to Professer Shoro Araki on his sixtieth birthday

Harvo MINAMI

(Received May 6, 1988)

In [9], [10] we studied the algebra KO*(SO(n)) for n=0, 1, 3 mod 4 using
an idea of [7]. We first showed that a map from P"~' X Spin(z) to SO(#) intro-
duced in [7] to compute K*(SO(n)) also induces a monomorphism in KO-theory

I: KO*(SO(n)) — KO*(P*~*x Spin (1)) .

As in [7] using this embedding enabled us to compute KO*(SO(n)) from KO*
(P*~*x Spin(n)) whose structure can be obtained from the results of [1], [6], [12],
[11].

The purpose of this note is to consider the remaining case, that is, KO*
(SO (n)) for n=2 mod 4. However, in the present case, the analogous homomor-
phism 7 is not a monomorphism. This must come from the fact that the simple
spin representations of Spin(z) are neither real nor quaternionic representations.

To determine the kernel and image of I so we make use of our results on the
algebra structure of KO*(SO (n)) for n=1 mod 4.

1. KO*(Pr-'x Spin(n))

Throughout this note we regard KO and K as Zg-graded cohomology
functors using the Bott periodicity. Let »€KO™(+) and »,&KO™(+) be
generators of KO*(+) satisfying the relations 27,=5i=1», =0, 7i=4 and
wEK%(+) denote the Bott class satisfying the relation w*=1 (4 =point).

Let ¢ and 7 denote the complexification and realification homomorphisms.
According to [3] we then have a useful exact sequence

X 3
(1.1 -+—> KO'(X) - KO Y(X) 5 K (X)—> KO*{(X)—--
which connects KO with K where X is multiplication by 5, and & is given by
8 (ux)=r(x) for x& K?* 9(X).
We also assume that
n—2
2

n=2mod4 and a=
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throughout this note.

To determine KO*(P*~ X Spin(n)) we first deal with KO*(P*"') where P**
is the real projective (n—1)-space. For the additive structure of KO*(P') need-
ed below we refer to [6]. Referring also to [4] for the structure of K*(P*"') and
using (1.1) we can find elements »,€ KO P*"!) and p;& KO~ 7(P*"?) such that

(1.2) c(»)=pv and c(p;) = p¥%

and we can readily show that KO*(P*™') is generated by y=v'—1, p, and p, as
follows. Here v denotes the generator v,_; of K~}(P*"?) as in [9], Proposition 2.1
and ¢’ the canonical non-trivial real line bundle over P*~2,

Proposition 1.3. %%P"") = Za+1+7y,

KO (P*™) = Zyem, v,
K0P = Zprt v,

KO 3P = Z-p,

%-‘(P”_l) =LZypn ",
‘Eé-S(Pn—l) — I’E{)—G(Puﬂ) —0,
KO- (P = Z-7,

with the relations

Y=2v,=an=>0=0=nn=0n5=2""97,
m V= 2", 9D = 2 9 V3= 27, .

Let A* and A~ be the even and odd half-spin representations of Spin (7).
According to [8], §13 these are neither real nor quaternionic and can be viewed
as continuous homomorphisms

A*, A™: Spin(n) - GL(2°, C)

These maps give rise to the elements of K~!(Spin(n)), denoted by B(A*) and
B(A7) as usual, in a canonical manner.

Since each of A* and A~ is complex conjugate to the other, so that B(A™)=
B(A*)*, by [11], Proposition 4.6 we have an element A € KO(Spin(#n)) such that

c(n) = B(A*) B(AT).

Here # is the operation on K*(X) induced by the assignment which sends a
complex vector bundle to its complex conjugate bundle.
Set

N =r(p'B(AY)) in KO™%7Y(Spin(n))

where 7 is reduced mod 4. Note that using (1.1) when X==Spin(n) gives
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r(wB(A7)) = (=D'N

because p*=—py and cr=1+4*.

Let p: SO(n)CGL(n, R) be the evident inclusion and let us denote by the
same letter p the composite of this with the covering map z: Spin (n)—>SO(n).
Then we obtain the elements

B(\p) (1=<i<m) in KO '(Spin(n))

in a similar way where Ap denotes the i-th exterior power of p. Using these
elements, by [13], Theorem 5.6 we have

Proposition 1.4. KO*(Spin(n)) is generated by N, Ny, Ny, Ay and B(A\*p)
(1=k=a—1) as a KO*(+)-algebra and there hold the relations

M= =g M =0, 9 My = 2N,

N =i if i+j=0mod 4,
=(—1Ypn i i+j= 1mod4,
=0 if i4+j=2mod 4,

=(—1y2n  if i4j=3mod4,
BOPY = m(BO (M) +(R) BMp)) -

The last relation in the above proposition is due to [5], §6 and the others
can be found in [11]. In proving the relations %, is assumed to be chosen so
that 7(u®)=n, and also hereafter is done so. To complete the last relation we
must give the explicit form of B(A*(A*p)). But we only show how this can be
described in terms of the given generators. It is clear that this can be expressed
as a polynomial in B(A'p), «++, B(A"p) and B(A**p)=B(A*"*"!p) for 2=<I<a+2.
Hence it suffices to check 7,8(A°p) and 5,8(A**'p). We have

n(BAp)+BMN?p)+-) =7%ir and 7B8A*'p)=0

which are proved in the last section.

For our calculation we need a result of [2] further. Let ¢,=(0, -+, 1, -++, 0)
with 1 in the i-th position and let us consider e,, -+, e, as multiplicative genera-
tors of the Clifford algebra C, satisfying the relations ei=—1, ¢;e;+e;¢,=0
(¢=%j). Let S*™* be the unit sphere in R"CC,. Then we set

S+ = Sn-ln {(xp °t%y xn); xngO} )
S_=8""'n {(xl’ ) xa); x, =0} ,
S*=2—8,nS..

We view S*~! as the orbit space of e, for Spin (n)CC, acting on R" through =
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and Spin(n—1) as the isotropy subgroup at ¢,. Thus Spin(z)/Spin(r—1)=S5""!
and so we have the principal Spin(zn— 1)-bundle

¢: Spin(n) - S*7*.

Let G={41} be the multiplicative subgroup of Spin(r—1) and let us view as
SO (n)=Spin(n)/G and SO(n—1)=Spin(n—1)/G. Analogously we then have
the principal SO(n—1)-bundle

¢: SO(n) — S*1.
We parametrize S, and S_ by use of polar coordinates as follows.
(x,2) = cos t-e,+sin t-x and (x,¢) = —cos t-e,+sin t-x
for x&€S*! and 0=<t=<=/2. Define maps
ju: 84X Spin(n—1) > $7(S,),
J2: S_%xSpin(n—1) - ¢7Y(S.)

by
Ji(x, ¢, 8) = (—cos t[2--sin t[2-xe,) g,
Jo(%, t, e, xg) = (cos t[2+xe,—sin t[2) g .

Then it is clear that these maps become Spin(z—1)-bundle isomorphisms.
Since j, and j, are compatible with the action of G these maps induces also
SO(n—1)-bundle isomorphisms

Jit S X SO(m—1) — ¢74(S,),
Jo: S_XSO(m—1) — ¢7Y(S.).
Therefore we get

Lemma 1.5 ([2], Proposition 13.2). Let G(!)=Spin(l) or SO(I) for I=
n—1, n. Then the principal G(n—1)-bundle ¢: G(n)—>S""* is isomorphic to the
bundle obtained from the two product bundles

SixGmn—1)—S;, S_.XG(n—1)— S_
by the identification
(x,8) & (x, e, 28) or (x,7(8)) & (%, 7 (e 8))
for x&8*7%, g Spin(n—1) according as G(I)=Spin(l) or SO(I).
Denote the map which gives the identification in the above lemma by

d: 82X G(n—1) > S*2x G(n—1).
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Namely d is given by

d(x,8) = (¥, e,%g) or d(x,7(g)) = (v, 7 (e, %2))
for x&S*%, g&Spin(n—1) according as G(/)=Spin(l) or SO(!). We consider
the Mayer-Vietoris exact sequence of (G(n), ¢~(S;), ¢7%(S-)) in KO(or K)-
theory. Then by using Lemma 1.5 we obtain the following exact sequence
3
(1.6) = KX X 8" 2 X G(n—1)) > h* (X x G(n)) &
h*(X x G(n—1))DI*(X X G(n—1)) 1—l: X XS* X G(n—1)) >
for =KO, K. Here

@ = ((1x9)* (1Xi)*), = (1xp)*—(1xpd)*
where i: G(n—1)CG(n) is the inclusion above and p: S*?X G(n—1)—>G(n—1)
the obvious projection. Note that there holds the relation
S(x(1xip)*(y)) = 8(x)y

for xeh*(X X S""2X G(n—1)), yEh*(X X G(n)).

Let us denote by p also the composite pi and by A the simple spin-repre-
sentation of Spin(n—1) which is real or quaternionic according as n=2 or 6
mod 8 ([8], §13). From [11], Theorem 5.6 (also see [9], Prop. 2.4 and [10],
Prop. 3.5) again it follows that

KO*(Spin(n—1)) = Axoxty(B(N'p), -+, BA*"'p)), &)

as a KO*(+)-module. Here #&=@B(A) or %,_, as in [10] according as n=2 or
6 mod 8 so that

¢(k) = pc(B(A))

where we denote by ¢ two kinds of the complexification homomorphisms KO(X)
—K(X) and KH(X)—K(X).

We now consider behavior of 8, @ and 4 in (1.6) when X=point, G(I)=
Spin (!) (I=n—1, n) and ~=KO. Clearly

P(B(NMp)) = (B(Wp)+B(Ap), B p)+B(Tp)) (1=i=a—1)
and since 1¥(A*)=c(A) it is easy to see that
¢(7\‘J) = 2’.67 ?ﬁ'?, mE or 0

according as j=0, 1, 2 or 3 mod 4.
We have a commutative diagram with § as in (1.6) when A=K
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)
K**(S*"2x Spin(n—1)) = K* *(Spin(n))
q* 1 S T o*
Kz—n(Sn—Z) — Ks—a(Su—l)
where the lower & is an isomorphism and ¢ denotes the evident projection.
Choose a generator t € KO*"(S* ?)==Z so that
utoc(t) =BG ek (S Y=Z

which is a generator of K*~2*(S*~"), where §: S*'->GL(2°, C) is a map defined
by 8(¢p(g))=A%(g) A~(g)™! for g&Spin(n). Then the commutativity of the
diagram above yields

S(c(t)x 1) = p*(B(AH)—B(A7)) .
Hence we have
c8(tXE) = p’B(AY) B(A7)
because of i*(B(A*))=B(A). So we may take
A =208(tXk) sothat @A) =0.
By observing (pd)*(8(A)) we can check that (pd)*(%) takes the form of
(pd)*(®) = 1 x&+xx1 for xEI’(\O/l‘”(S"‘Z) =Zyn t.

Then (%, )=xx1. Hence if x=0, there is an element y& KO*(Spin(n)) such
that @(y)=(%, ), that is, ¢*(y)=~#. Using this we have A=5§(t X 1)y and so ap-
plying ¢ to both sides of this we get p3B(A™) B(A™)=p """ Y(B(A*)—B(A7)) c(y).
This implies that ¢(y)=p*B(A*) or u**B(A~), because K*(Spin(n)) is the
exterior algebra over K*(+) generated by B(\'p), -:+, B(A*"'p), B(A*Y), B(A").
By exactness of (1.1) when X=Spin(#n) we hence have A,4;=0. This is a con-
tradiction because A,4373=0 by Proposition 1.4. Therefore x==0, that is, x=m,
and so we have

(pd)*(®) = 1 XR+9 tXx1.
Consequently we have
P&, 0)=1x&, YP(0,7)= —1Xe4+ntxl.
Since z*: Eé"(P"'z)eI?O’"(S”“z) is a zero map it is clear that
P(BNp), 0) = —(0, B'p)) = B(Vp) (1=i=a—1).
Finally we consider 8(¢x1). As shown above ¢§(¢X1)=p *"{(B(A*)—
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B(A7)) which means ¢(8(¢X 1)—x_,_;)=0 since a is even. Using the exactness

of (1.1) when X==Spin(n) we have an element x& KO*(Spin(n)) such that n,x=

3(¢x1)—n_,.,. Hence nix=8(ntx1)=8 (%, £)=0. So by observing the

structure of KO*(Spin(n)) we see that x must be zero. This implies
S(tXx1)=n_4 ;.

From these facts we obtain

Lemma 1.7.
KO*(P*~" x Spin(n)) = (KO*(P"™) @ xor+»KO*(Spin ()))/J
where J is the ideal generated by
P1@N—TQNz 5, P QN,—TQN
PN —P;QN;, P QN;—T,QN, .

Proof. Consider (1.6) when X=P*"!, G(I)=Spin(l) (I=n—1, n) and h=
KO. Since KO*(Spin(rn—1)) is KO*(4)-free as mentioned above, we have a
canonical isomorphism

KO*(X x Spin (n—1)) & KO*(X)® gorc+,KO*(Spin (n—1))

for any finite CW-complex X. Applying this fact to (1.6) in the present case we
can easily get the lemma from the above results on ¢, 4 and 8. Now the re-
lations can be shown as follows. For example,

Py XN = 7(c(P, X 1) (1 X B(AY))
=r(pv X B(A"))
= r(p’v X u’B(AY))
= r(c(®x1) (1xX w*B(AY))
= DyX N, .
The others are analogous.
2. The module structure of KO*(SO(n))
Let £’ be the canonical non-trivial real line bundle over SO(%) and set
E=¢—1 in KO(SO(n)).
Define maps
3, &:8S0(n)— GL(2%C)

by 8(z(g))=A(g)"'A*(g), €(=(g))=A*(g)* for g=Spin(n). Then we have the
elements B(€), B(8) of K~}(SO(n)). So we set
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& =r(w'B(€)), & =r(x'B(8)) in KO HSO(m))
where i is of course reduced mod 4. Clearly there hold the relations
i = 26042, MO = 20,4,
For the standard representation p of SO(n) as in §1 we also have the ele-
ments
B(Mp) (1=<j=<n) in KO™(SO(n)).

Let G= {41} act on Spin(n) as a subgroup of Spin(n) and let R**? be the
R**¢ with a G-action such that —1 reverses the first p coordinates and fixes the
last g. Let S?? and B?? be the unit sphere and ball in R?*? and 3#"¢9=B?"?/S?¢
with the collapsed S?*? as base point.

By [7] we have a homeomorphism

S™%X ;Spin(n) — P*~! X Spin(n)
which is induced by the assignment

(%, 8) P (m (x), xe, £)

for xS™% g Spin(n) where z: S™°—P*"! denotes the canonical projection.
Using this, from the exact sequence of (B™°X Spin(n), S™°X Spin(#n)) in the
equivariant KO( or K)-theory associated with G we have an exact sequence

@2.1) - k¥(SO(n)) z B*(P*~' x Spin(n)) S (3" A Spin (n).)

i h*(SO(n)) —---
for ~=KO or K. Here there holds the relation

3(xI(y)) = o(x)y
for x€h*(P*"! X Spin(n)), yh*(SO(n)).
In the case when A=KO we have
(2:2) I(&) = vx1,
I(B(Np) = IXB(Np)+(2_ Dmyx1 (1Sisn),
I(8)) = 1(3;) =0,
I(8)=2(1xnN—p,;X1),
1(8;) = 2(1 X ng—P3X 1),
I(&) = (Y+2) XN,
I(&) = (y+2)xr,—27,x 1,
1(&) = (Y+2) XAy,
I1(&) = (Y+2)Xn3—27;X 1.
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The first equality is clear, the second one can be verified in the same way as
in [10] and the others follows from [9], Lemma 3.3, iii), iv) immediately.
We consider the image of

J: KOX(=° A Spin(n),) — KO*(SO(n)) .

Let w} E@G(Ess ), 73 EKG(EZ‘ %) be the Bott elements mentioned in [9] such
that j*(w;)=2%"Y(1—R""), j¥(r)=2"'(1—R“*®C) where j denotes the in-
clusions of 2’”’ in % and 3%° Put n=8k}2 or 8k+6. Clearly then _any

element of KOE(Z” ® ASpin(n),) can be written in the form wjx where x& KOﬁ
(Z#°ASpin(n),) (t=1 or 3). Moreover if we put ¢(x)=77 y for y& K*(SO(n)),
then we obtain

(a) J(wix) = 2772 Er(yc(§)) -
According to [9], Theorem 3.5
(b) K*(SO(m)= A grcr(c(B(N'p)), =+, c(B(A*7"p)), B(€), B(8))
®(Z- 1D Ze-c(2))
with the relations
c(§)* = —2c(£), B(E)®c(£) = 0.
If we set 8(1 X A\)=w} x, then we have
c(wix) =1 7 wdc(E+1) (B(8)—B(€))

by using [9], Lemma 3.4, iv), because of c(\)=u’B(A*) B(A~). Hence using
the relation ¢(£)®B(€)=0 gives

(¢) 2071 g8y = JO(1X)
=0.
Since B(A*)*=B(A") and v*=—v by definition of », we have B(8)*=—0B(3)

by [9], Lemma 3.3, iii). So, from exactness of (1.1) when X=.SO() it follows
that

@ 268, = 1 (1*e(6)-26(3))
= 8(p**c(§) (B(8)—RB(8)*))
= 8c(r(u¥+c(£) B(3)))
=0

for =0, 1.

Calculate the right-hand side of (a) making use of (b), (c) and (d). Then we
see that J(wix) can be written as
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J(wix) = 2° EP,4-2°7" 9, EP,+-2°71 8, P,

where P; is a polynomial in B(A'p), -++, B(A*"'p) with integers as coefficients for
1=1,2,3. Soapply I to both sides of such an expression of J(wix) and estimate
this by using (2.2). Since IJ=0 it then follows from Lemma 1.7 that the first
two terms of J(wix) are zero. Thus we have

(2.3) Im J is generated by elements of the form 2°7' £§, P where P is a polyno-
mial in B(\'p), -+, B(A°"p) with integers as coefficients, and 5, Im J=0.

We now obseve the exact sequence
)
(2.4) :-+—> KO*(S"?x SO (n—1)) = KO*(SO(n)) kid
KO*(SO(n—1))®KO*(SO(n—1)) iﬁ KO*(S*2x SO(n—1)) —---
which follows from (1.6).

Denote by £ also the restriction 7*(£) to SO(rn—1) and by p the com-
posite pi as before. By [9] and [10] we then have

(2.5) As a KO*(+)-module, KO*(SO(n—1)) is generated by the elements in the
form P, P, kP and vP where r denotes 3(,-,) or k,_, of KO*"*(SO(n—1)) and
v denotes v,_, or v,_, of KO (SO (n—1)) as in [9], [10] according as n=2 or 6
mod 8 and P denotes a polynomial in B(A\'p), ---, B(\*"*p). Also there hold the
relations

=0 =Er = 9u =20 =0, v =9}EL(NA),
i = Ev, pjv = 2°710y,2°72 9, E =0

where 0=, or 2 according as n=2 or 6 mod 8.

Let tr: h*(Spin(n—1))—h*(SO(n— 1)) be the transfer where ~=KO or K.
Then observation of the definitions of # and « ([9], [10]) gives

tr(g) =«
because of #7(B(A))=/B(€) and
tr(l)y=§¢+2.
Therefore we have from the formula on # given in §1
(2.6) Yr(#,0) = 1 Xk, Y (0, ¥) = —1X -+ tXE.

We now show that

27) (0, 0) = 1xv, (0, v) = 1ot tx(E+1) (I=0,1).
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The first equality is clear. To prove the-second one we define maps
m: S*?xSO(n—1)— SO(n—1),
m’: S* !X Spin(n—1) — Spin(n—1),
my: P*"?Xx Spin(n—1) — SO(n—1),
my: S*"2xX P*?x Spin(n—1) - P*"?x Spin(n—1)
my: S 2y PP > pr-?
mé: Su—ZXSn-Z - Sn—z ,
my: Spin(n—1) X Spin(n—1) — Spin(n—1)
by
m(x’ ”(g)) = m (e, xg), m'(x:g) =6 xg, mo(”(x):g) = 7 (e, %),
my (%, (), 8) = (ma(x, 7 (), %6, 8) s (%, () = 7 (xe, yer x)
mi(%,y) = xe,ye ¥, my(8,8') =g8'8
for x, ye S*7%, g, g’€Spin(n—1). Here by = we denote the obvious projection.
Moreover we define embeddings

i: S*7? — Spin(n—1), ¢: P**— SO(n—1)

by i(x)=xe,, ¢(z(x))=mn(xe,).
According to [9] and [10], m, yields a monomorphism

I: KO*(SO(n—1)) - KO*(P*"*x Spin(n—1))

and by [9], (4.17) and [10], (4.20) we have
Iv) = 1x9k+vx1
where ¥ denotes 5,_, or p,_, of KO™*(P*"?) as in [9] or [10] according as n=2
or 6 mod 8. From this equality it follows readily that
n*(v) =& and F)=7.

Let

§: KO-"(P*?) = KOg"(S*~"%) — KO "(Z**9)
be the coboundary homomorphism appeared in the exact sequence of (B"""’,

S§»-19),  Furthermore we then see that §(¥) is a generator of I’(\(’)};'"(E”“M)zZz
and the forgetful homomorphism KOg*(2*~"°)—KO'"*(S*"') becomes an is-
omorphism. From these facts we obtain

(a) z*(®) = i t, sothat i¥(nk)=xit.

Since m¥(B(A))=2B(A)x 14+1xB(A) in KO or KH-theory, we have
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(b) m¥(mi) = 1 X% .
By (a), (b) we get
my*¥(nit) = 1xqpit.
So, using (a) again gives
(IXz)*m¥@®) = 1xnit.
This and (a) imply
mf(P) = 1 xXd+txx for some x=KO}(P*?).

Since degree ¥=—n and degree t=2—n, we can infer from the structure of
KO™%(P*~?) that

x=0 or xly
where o denotes also the restriction ¢*(y) to P*~%.  'Therefore
m¥(®) = 1xv+txiyly (1=0,1),
so that
(<) m¥(x1) = 1xox149itxilyxl (I=0,1).
On the other hand, the argument parallel to that about (pd)* in §1 yields
m'*(®) = I X&+n tX1.
Hence
mE(1XRE) = 1X1XR+n txX1x1.
From this and (c) it follows that
m¥I(v) = IxX1xXp R+qitx(ly+1)x1+1xox1 (I=0,1)
and so
(1 xXmy)*m*(v) = (1 Xme)*(1 xv+9i tx(IE+1) (=0,1).

Since KO*(SO(n—1)) is KO*(+)-free, we see from the injectivity of I that
(1 X mg)* is a monomorphism. Therefore

m*@) = 1 xv+yl tx(IE+1) (=0,1),

which is the required result because m=pd. This completes the proof of (2.7).
Further, clearly we have

p(&)=(§8),
P(B(\'p)) = B(Mp)+B(N'p), B(Mp)+B(N ) (1=i=mn).
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Using (2.5), (2.6), (2.7) and these formulas, we obtain easily the following result
concerning v and @ of (2.4)

(2.8) As KO*(+)-modules, Coker +r is generated by elements of the form tx P,
tXEP, t X kP, t XuP, t X, P, t Xq,kP, t XquP, t X0 kP, t X 9, P, t X, EP, t X n, kP
and t X n,uP, and Im @ by elements of the form (P, P), 2(xP, kP), 7,(vP, vP), %}
(¢P, xP) and n(«P, «P). Here P denotes a polynomial as in (2.5).

Now we add some generators for KO*(SO(n)) to the ones given at beginn-
ing of this section. Since A=2§(z X &), we have

tr(\) = 8(tx«) in KO**%SO(n)),

for which we write ¢r A simply.
By (2.7) and exactness of (2.4) there is an element »,& KO~*"(SO(n)) such
that

o) = 771(Us v).
But we need to choose such an element so that
(2.9) I(y)) = Py X 1=1XNg1y

where a+1 is reduced mod 4. The equality @(v,)=n,(v, v) follows from (2.9).
Because 1*(9,,,)=1n, 7, 1*(N,41)=%1% and I(v)=1X 5,4+ x 1 where i denotes the
inclusions P*"2C P*"!, Spin(n—1)C Spin(n). We construct such an element
actually. Let 8 be as in (2.1) and set n==8k+2s where s=1 or 3. Then by [9],
Lemma 3.4 we have §(1 X u**'B(A*))=7i 7§ p**' ¢(£+1) and so

S(1XNgyy) = i 7(78 ™) (E+1).
Also, we have §(p**' v X 1)=78 7§ u**' ¢(£+2) and hence we get
8(Far X 1) = wi r(ri p**)

by using the facts that I?(SE‘(E”"):Z «7(rs p**) and 7{*=—(R"Q®C) ;. From
this and the fromula of (2.1) we have r(r7 p**') £=0 since ¥9,,,=0 and so we
have

8(Pary X I—1XNgsy) = 0.

This and using (2.1) give rise to the required element.
Define 7€ KO™}(SO(n)) and v;€ KO**(SO(n)) as

T=8(tXv) and w»g= —8(tx(¢+1)).

Here let § be as in (2.4). 'Then using the formula after (1.6) we have
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S(Xi*¥(P)) = —(E+1) vy P, S(tXE*P))=Ev P,
S(txwi*(P)) = (tr\) P, 8(txvi*(P)) =P
where P is a ploynomial as in (2.3). Moreover as stated above
o (v;) = m(v, v)
and by definition we have
gp(e,) = 2(") ’C)’ 7]%("1 l‘)y 774(") ’C) or 0

according as t=—a, 1—a, 2—a or 3—a mod 4. From (2.8) and these equalities
we obtain immediately

(2.10) As a KO*(+)-module, KO*(SO(n)) is generated by elements of the form P,
(tr\) P, 7P, v,P, v;P,E_,P, & _,P and &,_, P where P denotes a polynomial in E,
B(A'p), =+, BA*"'p) and the indices of & are reduced mod. 4.

In (2.10) we find that & _, can be expressed by the other generators.

To show this we need some results. Define a map m: P*~' X S*"'—=S""! by
m(r (x), Pp(g))=o(e, xg) for x&S*"!, g&Spin(n—1). Then from construction of
B(3) and v it follows that

m*(B(3)) = c(v+1)x BE)—vx 1.
This implies that
c(m*3(t)) = c((v+1)X8(t)—V_,-1 X 1)
because ¢8(2)=p*"'8(5) and so using (1.1) we have
m*8(t) = (Y+1) X 8(t)—v_ooy X 1+ my(x X () +y X 1)

for some x€ KO 7(P"), ye KO*4(P*). Since 1(5(tx 1))=(1 X $p)*m*8(2),
¢*8(2)=n_,-, by the result just before Proposition 1.7, n,A_,_,=0 and ¢*(y)=0
for the reason of dimension, we obtain

I (tX1)) = (Y+1)XNogoy—v_e X1,
so that
(2.11) I(v) =v_,  X1—=1XN_,;

because of yp_,_,=0 where also a+1 is reduced mod 4.
By [9], Therofem 3.5

2°c() =0, sothat 2**'E=2%E=0.

On the other hand ¢*(§)=v and ¢*(z, §)=»,v are the generators of I?é"(P”“)g
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Zy+1and ﬁ“‘(P”'l)gZza respectively where ¢ is an embedding of P*~!in SO(n).
Hence we get
(2.12) The orders of & and 3, are 2°* and 2° respectively.
From (2.2), (2.9) and (2.11) it follows that
(8,4 20,11) = I8, nvess) = O

because of 9w,13 = 20441, PNer3=2Nz4;. S0, by (2.3)

81+ 20,4 =297V ES P, 84wy = 2°VES P’
for some ploynomials P, P’ as in (2.3). 'This and (2.12) mean that
(2.13) 27V ES = — 2%, = —2° v,
Again by (2.2), (2.9) and (2.11) we have

I1(&,4+(E+2)v,)=0 or I(&+(E+2)v,)=0

according as n=2 or 6 mod 8, because yp,=vp,=0.
In any case, by (2.3) and (2.13) we therefore see that & _, can be described
by &, v, v;. Thus, by (2.10) we obtain

Lemma 2.14. As a KO*(4-)-module, KO*(SO(n)) is generated by elements
in the form P, (tr \) P, =P, v\P, v;P, €_,P and &,_,P where P is a polynomial as
in (2.10) and the indices of € are reduced mod 4.

Further we provide a lemma. Because of v;=—8(¢ X (£+1)), (2.13) yields
2071 ES = —3 (¢ X271 0E),

that is, 271 £§,Im & where § is as in (2.4) and @ as in (2.5). Clearly Coker
4r=Im & and this isomorphism sends —#x 2°7! 9E7*(P) to 2°~* £8, P where P is a
polynomial as in (2.3). From (2.3), (2.8) and (2.13) we therefore have

Lemma 2.15. As a KO*(+)-module
Im J = Az(B(N\p), -+, BT p)) {27 Evai}

and zIm J=0 for z=E&, n, and n, where the index of v is reduced mod 4.

3. The algebra structure of KO*(SO(n))

For our aim we need the formulas for /(¢ A) and I(7) similar to those of
(2.2). We begin with calculating I(tr A). Since c¢(A\)=p’B(A*) B(A™) and
7*(B(€)—B(8))=B(A*)+B(A™) by construction of B(€) and B(3), it follows
that c(A)=p3B(A*) z*(B(€)— B (8)), so that we have c(tr M)=p3B(8) B(€) because
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tr(B(A*))=p(€) and B(€)’>=0. From this and [9], Lemma 3.2, iii), iv) we get
c(tr M)—((7+2) X A—D3X ) = 0.
So, by (1.1) and Lemma 1.7 we can write
(a) I(tr ) = (v+2) XA —D3X Ng+7¢  and
a = 1Xx,+9 X%+, X034y X 2,

for some x; & KO*(Spin(n)).
Let S*20=8°N {(xy, -+, x,); x,=x,=0} and P"*=S""2°/G. Define a

map
m: S*"*xX P*73x Spin(n—1) = S*2x SO (n—1)
by m(x, z(y), 8)=/(e, yxye,, z(e, yg)) for x& S*"%, ye §*%°, g Spin(n—1). Then

the following diagram with & as in (1.6) is commutative.

KO*(S"-2x SO(n—1)) s KO*(SO(n))
m* | m* |
KO* (8™ P*~3 Spin (n—1)) - KO*(P*~3x Spin (n))

Also, obviously m*=(jx 1)*I where j denotes the inclusion of P*73 in P*~%
Apply (jx 1)* to both sides of the first equality of (a). Then considering the
order of ¢y we have

(b) m¥(tr X) = (Y+2) XN+, X %49, X %,

where 7 denotes j¥(7). On the other hand by discussion similar to that about
(pd)* in §1 we get

(c) m¥*(tx1) =txX(y+1)x14x

for some x& (1 X2y X 1) KO*(S*"? X P*~*X Spin(n)). Moreover, by [9], Lemma
4.14, iii) and [10], Lemma 4,.18, iii) we have I(x)=(y-+2)x#% From this and
(¢) we have m*(tX k)=t X (y+2)x & Since tr A=38(¢X k) and A=358(¢ X&), it
therefore follows from the commutativity of the above diagram and (b) that

mXx Y Xx,=0.
Hence we may put
a = Py X X3+D3 X %, ,
so that we have
3.1 I(tr \) = (Y+2) X A=, X Mg+

and there hold the relations nja=ya=a?=0.
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Since I(v)=1Xn&+pX 1 and ¢(p)=2°"" p**' () we get c(v)=2°"" u*** ¢(£).
Also, by (2.11) and [9], Lemma 3.3, iii) we have ¢(v;)=—pu°*3 8(8). Using these
facts we obtain

c(I(r)—=2°1yXn) = 0.
Analogously from this equality we can show that
3.2) I(t) = (Y + 1) Xy A+27" oy X Mg +1, B
and there hold the relations 5}@=v8=£*=0.
We are now ready to obtain

Theorem 3.3. As a KO*(4)-module

KO*(SO(%)) = Nkor+) (ﬁ (XIP)) ) IB(K“-IP), oy Eps vy, va)
QR UZ 1D Zya+1 EDZyvDZ-tr \)
in which the following relations hold:

£ = 26, B0VpF = n (B0 +(}) B0P) (1Sksa—1),
mé = 0, M Vaetz = 245:‘; M Vat1 = 271 7€, 1 & = 26i+2 ’

NV = Wity MT=0, E=pi=(tr\)f=1"=0,

EE; =§tr7&=8,~tr7\,=8,~7= v,-tr7\,= v;T =8082='rtr7\. = 0,
vvy=nE+D) T, Er = tr N, Evay = E vy =Y tr N,

EoVars = EyVayy = 21 N

for i=0, 2, j=1, 3 if the indices of & and v are reduced mod 4 and Q, is left out.

Proof. From Lemma 2.15 we see that I induces a monomorphism
KOX(SO(m)/(2° £v,4,) — KO¥(P*~1x Spin(n) .

Let R denote the right-hand side of the equality stated in the theorem. Then a
computation, using (2.2), (2.9), (2.11), (3.1), (3.2), Lemmas 1.7 and 2.14, shows
that as a KO*(+)-module

KO*(SOm))/(2° £v,11) = RI(2° £v,1)

in which there hold the above relations reduced mod (2°&v,,,). So, if it is
shown that in KO*(SO(n)) these relations hold, then the theorem follows im-
mediately.

We now consider the relations. The first relation is clear. The second one
and the relations »}=0 are due to [5], §6.

m & =m7(n' B(3))
=X8(p'*'B(E) =0 since X8=0 in(l.1).
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By definition %} v,=8¢(v;)=0. So, by exactness of (1.1) there is an element
x& K*(SO(n)) such that

v = r(x).

Then rI(x)=2°"0yx 1 by Proposition 1.3 where  is as in (2.5). Observing
Im I, we get I(x)=2°"*¢(fy)x 1. Since I in complex case is injective, we have
x = 2°"%¢(0§)

and so
7 v = 21 0E.

By arguing as above we get also another relation », v;=2°"2 0y, £.

& = 1(c(ny) w'B(E)) = r(2u'*2 B(E)) = 26,42 -

vy =1’ c(v;)) = rc(vysy) = 20y, since c(v;) = —p* B(3).

7T = 8(tXnv)=0 by (2.5).

& =r(c(&) pf B(8))
— (—1)'28(u%* B(6) B(8)) since B(E)* = B(E)—c(E+2) B ()
= (—1)"* 8c(Ey-gv;) =0  since 8¢ =0in (1.1).

78 = §(tXvi*(7r)) =0 since *(r)=0.

(r )y =tr(z*(trA)A) =2trA* =10 since A =0.

Similarly the others can be shown, so we omit the proof of them. Thus the
theorem follows.

Finally we show how we can get the explicit description of 7,8(\*(A*p))
appeared in the second relation of Theorem 3.3. Analogously to the case of
KO*(Spin(n)), also in the present case it suffices to check 7,8(A°p) and R
(A**'p). We now prove the following

(3.4) mB(AFp) =0 in KO¥SO(n)) or KO*(Spin(n))
and 7 (B(\'p)+BN2p)+ ) =mpr+nitrn in KO*(SO(n)) or
— in  KO*(Spin(n))

according as p is viewed as a representation of SO(n) or Spin(n).
As shown in [10] we have
B(Ap) = 20— B(Np)—-—B(Np) in KO¥SO(n+1)),
B(A*1p) =201 67— B(N'p)—-—B(Np) in KOX(Spin(n-+1).

Here 0 is as in (2.5), k=«,,, or B(E,4,) and #=#,,, or B(A,4,) as in [10] ac-
cording as #=2 or 6 mod 8 and p denotes also the (n+1)-dimensional stan-
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dard representations of SO(n-+1) and Spin(n+1). So it follows that in either
case

n(BA ) +BAp)++B(Np) =0.

By restricting this to SO(n) or Spin(n) according as we consider p as a repre-
sentation of SO (n-+1) or Spin(n-+1) we get readily

mB(A**p)=0.

By Proposition 1.4 7} A=A*=@(r(A*))? and so from the square formula of
[5] it follows that

7t A = pBAH(r(AY))) .

Considering the character of A* on a maximal torus of Spin () ([8], §13, Prop.
9.4) we see that

NP (&%) = (VA ) 25 (A Sp AT Spf-o-0)
for some integer s. Hence we have
BN = m(BOP)+B(p) ) in KO*(Spin(n)).

To show the remaining case we recall the equality A*@cA™=c(A*p+A*"%p
+-+) from [8]. This gives c((B(\*p)+B(Y* ?p)+++)—2° Xg)=0. Therefore
we may put

B\'p)+B(Y*Fp)+ -+ = 2" Mt m(P+AQ)+ni(P +2Q")

where P, P', O and Q' are polynomials in B(A'p), -:-, B(A*'p) as in (2.3).
Since, by [10], B(\’p)+B(A*"'p)++:-=2°0% in KO*(Spin(n—1)), comparing
this equality with the restriction of the above to Spin(n—1) yields P=P’'=0
and so the previous result implies Q=1. Hence

@  BRAP+BMA )+ =2"Netm A+7IAQ" in KO*(Sbin(n)) :
Also we have

c((BAp)+B(A2p)++)—21&—7) =0 in KO*(SO(n)).
So we can set
(b) B\ p)+BMA?p) 4 = 20" &gt 7+m &

for some x& KO*(SO(n)). Apply z* to both sides of (b) and compare this
with (a), then we have

z¥(x) = m A0’
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On the other hand, applying I to both sides of (b) again and using (a) yield
I(n, %+, tr x4 (E+1) 7Q")=n, B where B is as in (3.2). Since }8=0 and
Ker I=(%}(£+1) 7) by Theorem 3.4, it follows that I(3}(x+2#r A))=0, so that we
can set

n(@+ir v +E+1)7R) =0

for some polynomial R in B(A'p), -+, B(A*"'p) as above. By observing the
relations of Theorem 3.4 we therefore see that x+#r A+(£+1) 7R is described
in terms of &, &, », and v;and so », AQ'+2A+», AR in terms of ,;(7=0, 1, 2, 3)
because of z*(x)=n, NQ’, z*(tr A)=2\, n*(1)=mn, N, 7*(E)=2N¢, 7*(E;)=2A,,
7*(w)=—Ng+; and z*(v5)=—n_,_;. Hence, from the relations of Proposition
1.4 we infer that Q' and R are divisible by 5, This implies %} x=x%tr A.
Thus by (b) we have

m(BAp)+BMATp)+ ) =mrH7itrn in KOXSO(n).

References

[11 J.F. Adams: Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[21 M.F. Atiyah, R. Bott and A. Shapiro: Clifford modules, Topology 3 (1964), 3—

38.
[31 M.F. Atiyah: K-theory and reality, Quart. J. Math. Oxford 17 (1966), 367-386.
[4] ————: K-theory, Benjamin Inc. 1967.
[5] M.C. Crabb: Z,-homotopy theory, London Math. Soc. Lecture Note Series 44
(1980).

[61 M. Fujii: K,-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149.
[77 R.P. Held und U. Suter: Die bestimmung der unitidren K-theorie von SO(n) mit
hilfe der Atiyah-Hirzebruch-spectralrethe, Math. Z. 122 (1971), 33-52.
[81 D. Husemoller: Fibre bundles, McGraw Hill Book Co. 1966.
[91 H. Minami: On the K-theory of SO(n), Osaka J. Math. 21 (1984), 789-808.
[10] ————: The real K-groups of SO(n) for n=3, 4 and 5 mod 8, Osaka J. Math.
25 (1988), 185-211.
[11] R.M. Seymour: The Real K-theory of Lie groups and homogeneous spaces, Quart.
J. Math. Oxford 24 (1973), 7-30.
[12] H. Toda: Order of the identity class of a suspension space, Ann. of Math. 78
(1963), 300-325.

Department of Mathematics
Naruto University of Education
Takashima, Naruto-shi 772
Japan





