<table>
<thead>
<tr>
<th>Title</th>
<th>Separable extensions and Frobenius extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sugano, Kozo</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 7(2) P.291-P.299</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1970</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/7331</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/7331</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
As in our previous paper [2] we say that a ring Λ with 1 is a separable extension of a subring Γ which contains the same 1 if the map $\pi: \Lambda \otimes_\Gamma \Lambda \to \Lambda$ such that $\pi(x \otimes y) = xy$ splits as two sided Λ-module. There has been a problem whether a separable extension is a Frobenius extension. Recently, K. Nakane has given an affirmative answer to this problem in [8] under the condition that Λ is centrally projective over Γ in the sense of K. Hirata [4] and $m_\Gamma \neq \Gamma$ holds for every maximal ideal m of a central subring R of Γ such that $\Lambda = R \otimes_R \Omega$ with Ω finitely generated projective over R. He also proved that if Λ is Γ-centrally projective and separable over Γ, Λ is a quasi-Frobenius extension of Γ. In this paper we shall show that the last condition can be omitted (Theorem 2).

Next we consider the opposite situation, that is, $\Lambda \otimes_\Gamma \Lambda$ is Λ-centrally projective and Γ is a Γ-Γ-direct summand of Λ. In this case we can also see that Λ is a Frobenius extension of Γ if we assume the finitely generated projectivity of Λ_Γ or Γ_Λ (Theorem 4).

1. Separable extensions

Throughout this paper we assume that all rings have the identity elements and all subrings contain the same 1 as the over ring. Furthermore whenever we say that M is a Γ-Γ-module or a two sided Γ-module for a ring Γ, we assume that M is unitary and associative, that is, $(xm)y = x(my)$ for all $x, y \in \Gamma$ and $m \in M$.

Let Γ be a ring and M a Γ-Γ-module. Then, according to K. Hirata [4] we say that M is centrally projective over Γ, if M is isomorphic to a direct summand of a finite direct sum of the copies of Γ as two sided Γ-module. The next lemma is due to K. Hirata. But since we need it in this paper so often, we shall state here.

Lemma 1 (Prop. 5.2 [4]). If a two sided Γ-module M is centrally projective over Γ, M^Γ is finitely generated projective over C and $M \cong \Gamma \otimes_C M^\Gamma$ by the map: $x \otimes m \mapsto xm$ and $\text{Hom}(\Gamma M_\Gamma, \Gamma M) \cong \text{Hom}(C M^\Gamma, C M^\Gamma)$, where $M^\Gamma = \{m \in M | xm = mx \text{ for every } x \in \Gamma\}$ and C is the center of Γ.
The next theorem is an immediate consequence of Lemma 1. But it attracts our interests to itself.

Theorem 1. Let M be an arbitrary centrally projective Γ-Γ-module. Then, $\Omega=\text{Hom}(rM, rM)$ is an H-separable extension of $\Gamma/\alpha\Gamma$, where α is the annihilator ideal of M^Γ in C.

Proof. Since M is isomorphic to a direct summand of $\Gamma\oplus\cdots\oplus\Gamma$ as Γ-Γ-module, $\text{Hom}(rM, rM)$ is also a direct summand of a finite direct sum of the copies of $\text{Hom}(r\Gamma, rM)$, which is isomorphic to M as Γ-Γ-module. Hence, Ω is centrally projective over Γ, as M is so. Then, $\Omega=\Omega^\Gamma\otimes C\Gamma$, where $\Omega^\Gamma=\text{Hom}(r\Gamma, rM)^\Gamma\approx\text{Hom}(C^M, C^M)$. But $\text{Hom}(C^M, C^M)$ is central separable over $C/\alpha\Gamma$, since M^Γ is C-finitely generated projective. Thus Ω is H-separable over $C/\alpha\otimes C\Gamma$, as $\Omega=\Omega^\Gamma\otimes C\alpha\otimes C\Gamma$.

Lemma 2. A two sided Γ-module M is centrally projective over Γ if and only if there exist $f_j\in\text{Hom}(\Gamma M, \Gamma M)$ and $m_j\in M^\Gamma$, $j=1, 2, \ldots, n$, such that $m=\Sigma f_j(m)m_j$ for every $m\in M$.

Proof. M is centrally projective over Γ if and only if there exist Γ-Γ-homomorphisms f of M to $\Gamma\oplus\cdots\oplus\Gamma$, the direct sum of n copies of Γ for some n, and g of $\Gamma\oplus\cdots\oplus\Gamma$ to M such that $gf=1_M$. Assume that such f and g exist, and let $f_j=\pi_j f$, where π_j is the jth projection of $\Gamma\oplus\cdots\oplus\Gamma$ to Γ, and g_j the restriction of g to the jth direct summand Γ of $\Gamma\oplus\cdots\oplus\Gamma$. Then, g_j is given by the multiplication of some m_j in M^Γ, since g_j is in $\text{Hom}(r\Gamma, r\Gamma M)$, which is isomorphic to M^Γ. Then $\Sigma f_j(m)m_j=\Sigma g_j f_j(m)=gf(m)=1_M(m)=m$. Conversely, assume that there exist such $f_j\in\text{Hom}(\Gamma M, \Gamma M)$ and $m_j\in M^\Gamma$. Then, if we define f and g as follows:

$$f(m) = (f_1(m), f_2(m), \ldots, f_n(m)),$$

$$g((x_1, x_2, \ldots, x_n)) = \Sigma x_j m_j$$

then f is a Γ-Γ-map of M to $\Gamma\oplus\cdots\oplus\Gamma$ and g is a Γ-Γ-map of $\Gamma\oplus\cdots\oplus\Gamma$ to M such that $gf=1_M$. Hence M is centrally projective over Γ.

Let R be a commutative ring, Γ an R-algebra and A a finitely generated projective R-module. Denote $M=\Gamma\otimes_R A$. Then M is a centrally projective Γ-Γ-module. Let $f_j\in\text{Hom}(rA, r\Gamma R)$ and $a_j\in A$ be such that $a=\Sigma f_j(a_j)a_j$ for every $a\in A$. Then, clearly $f_j=1_\Gamma\otimes f_j$ and $1\otimes a_j$ satisfy the condition of Lemma 2. Let m be an arbitrary in M^Γ. Then for any $x\in \Gamma$ and every j, $xf_j(m)=f_j(xm)=f_j(mx)=f_j(m)x$, and we see that $f_j(m)\in C$, the center of Γ. Thus we see that $M^\Gamma=C\otimes_R A$. By this remark, we get.

Lemma 3. Let R be a commutative ring. Then if A is a finitely generated projective R-module and Γ is an R-algebra with its center C, $\Gamma\otimes_R A$ is centrally projective over Γ and $(\Gamma\otimes_R A)^\Gamma=C\otimes_R A$.
Proposition 1. Let Λ be a ring and Γ a subring of Λ. Then Λ is an H-separable extension of Γ if and only if $1 \otimes 1 \in \Delta(\Lambda \otimes \Gamma, \Lambda)^\Lambda$ in $\Lambda \otimes \Gamma \Lambda$ where $\Delta = V_\Lambda(\Gamma)$, the commutor subring of Γ in Λ.

Proof. Λ is H-separable over Γ if and only if $\Lambda \otimes \Gamma \Lambda$ is centrally projective over Λ. This is the case if and only if there exist $\varphi_j \in \text{Hom}(\Lambda \Lambda \otimes \Gamma, \Lambda \Lambda)$ and $\delta_j \in (\Lambda \otimes \Gamma, \Lambda)^\Lambda$ such that $\Sigma \varphi_j(1 \otimes 1)\delta_j = 1 \otimes 1$, since $1 \otimes 1$ generates $\Lambda \otimes \Gamma \Lambda$ as a two-sided Λ-module. On the other hand, since $\text{Hom}(\Lambda \Lambda \otimes \Gamma, \Lambda \Lambda)$ is isomorphic to Δ by the map: $\varphi \mapsto \varphi(1 \otimes 1)$, each Λ-Λ-map φ of $\Lambda \otimes \Gamma \Lambda$ to Λ is given by the multiplication of some $d \in \Delta$. Hence the above φ_j and δ_j exist if and only if there exist $d_j \in \Delta$ and $\delta_j \in (\Lambda \otimes \Gamma, \Lambda)^\Lambda$ such that $1 \otimes 1 = \Sigma d_j \delta_j$, i.e., $1 \otimes 1 \in \Delta(\Lambda \otimes \Gamma, \Lambda)^\Lambda$.

Now, let a ring Λ be left finitely generated projective over a subring Γ of it. Then there exist $f_j \in \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)$ and $z_j \in \Lambda$, $j = 1, 2, \ldots, n$, such that $x = \Sigma f_j(x)z_j$ for every $x \in \Lambda$. On the other hand, we have Λ-Λ-isomorphisms

$$\Lambda \otimes \Gamma \Lambda \rightarrow \text{Hom}(\Gamma \Lambda, \Lambda \Lambda \otimes \Gamma \Lambda) \rightarrow \text{Hom}(\text{Hom}(\Gamma \Lambda, \Lambda \Lambda \otimes \Gamma \Lambda), \Lambda \Lambda \otimes \Gamma \Lambda)$$

such that the composition σ of them is given by $\sigma(x \otimes y)(f) = x f(y)$ for every $f \in \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)$. Then we have a commutative diagram of Λ-Λ-maps

$$\Lambda \otimes \Gamma \Gamma \rightarrow \text{Hom}(\Gamma \Lambda, \Lambda \Lambda \otimes \Gamma \Lambda) \rightarrow \text{Hom}(\text{Hom}(\Gamma \Lambda, \Lambda \Lambda \otimes \Gamma \Lambda), \Lambda \Lambda \otimes \Gamma \Lambda)$$

with $\Psi(\psi) = \Sigma \varphi f_j(x)z_j$, $\pi(x \otimes y) = xy$, for $\varphi \in \text{Hom}(\Gamma \Lambda, \Lambda \Lambda \otimes \Gamma \Lambda)$ and $x, y \in \Lambda$, because $\Psi \sigma(x \otimes y) = \Sigma \sigma(x \otimes y)(f_j)z_j = x \Sigma f_j(y)z_j = xy = \pi(x \otimes y)$.

From this fact, we obtain

Proposition 2. Let a ring Λ be left finitely generated projective over a subring Γ, and f_j and z_j be as above. Then, Λ is a separable extension of Γ if and only if there exists a Λ-Γ-homomorphism h of $\text{Hom}(\Gamma \Lambda, \Gamma \Gamma)$ to Λ such that $\Sigma h(f_j)z_j = 1$.

Proof. Λ is separable over Γ if and only if there exists $x_i \otimes y_i$ in $(\Lambda \otimes \Gamma, \Lambda)^\Lambda$ such that $\pi(x_i \otimes y_i) = 1$. But σ is an isomorphism and induces a one to one correspondence between $(\Lambda \otimes \Gamma, \Lambda)^\Lambda$ and $\text{Hom}(\Lambda \Lambda \otimes \Gamma, \Lambda \Lambda \otimes \Gamma, \Lambda \Lambda \otimes \Gamma)$. Hence there exists $x_i \otimes y_i \in (\Lambda \otimes \Gamma, \Lambda)^\Lambda$ with $\pi(x_i \otimes y_i) = 1$ if and only if there exists an $h \in \text{Hom}(\Lambda \Lambda \otimes \Gamma, \Lambda \Lambda \otimes \Gamma, \Lambda \Lambda \otimes \Gamma)$ with $\Psi(h) = 1$, i.e., $\Sigma h(f_j)z_j = 1$.

Let Λ be a separable extension of Γ such that Λ is centrally projective over Γ. Then, there exist $f_j \in \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)$ and $d_j \in \Delta$ as Lemma 2 and
$h \in \text{Hom}_r(\Lambda \Lambda_r, \Lambda_r)$ with $\sum h(f_j)d_j = 1$ by Proposition 2. Then we see that $h(\text{Hom}_r(\Lambda \Lambda_r, \Lambda_r)) \subseteq \Delta$. In fact, let f be an arbitrary in Hom $(\Lambda \Lambda_r, \Lambda_r)$ and r in Γ. Since $(r \circ f)(x) = f(xr) = f(x)r = (fr)(x)$ for every $x \in \Lambda$, $r \circ f = fr$. Then, $rh(f) = h(r \circ f) = h(fr) = h(f)r$ for any $r \in \Gamma$, since h is a Λ-Γ-map. Therefore $h(f) \in \Delta$. Thus h induces a left Δ-map of $\text{Hom}_r(\Lambda \Lambda_r, \Lambda_r)$ to Δ, if we restrict h to Hom $(\Lambda \Lambda_r, \Lambda_r)$. Clearly, $\sum h(f_j)d_j = \sum h(f_j)d_j = 1$. On the other hand, $\Lambda = \Gamma \otimes C \Delta$ by Lemma 1, where C is the center of Γ. Then, since

$$\text{Hom}_r(\Lambda \otimes \Delta, \Lambda_r) \approx \text{Hom}_r(\Lambda \otimes C \Delta, \Lambda_r) \approx \text{Hom}_r(\Lambda \otimes C, \Lambda)$$

as Δ-Δ-map, we have a Δ-Δ-isomorphism ν of $\text{Hom}_r(\Lambda \otimes C, \Lambda)$ to $\text{Hom}_r(\nu \Lambda \otimes \Gamma)$ such that $\nu(f)(rd) = rf(d)$ for $r \in \Gamma$ and $d \in \Delta$. Let $\tilde{f}_j = \nu^{-1}(f_j)$ for every j. Then, $\sum \tilde{f}_j(d)d_j = d$ for any $d \in \Delta$. Let $h' = h \nu$. Then h' is a left Δ-map of $\text{Hom}_r(\Lambda \otimes C, \Lambda)$ to Δ, and $\sum h'(f_j)d_j = \sum h(f_j)d_j = 1$. This implies that Δ is a separable C-algebra by virtue of Proposition 2.

From this remark we obtain

Theorem 2. Let Λ be a separable extension of Γ such that Λ is centrally projective over Γ. Then we have

1) Δ is a separable C-algebra where C is the center of Γ, and Λ is a Frobenius extension of Γ.

2) Λ is a centrally projective H-separable extension of Γ' and Γ' is a separable extension of Γ, where $\Gamma' = V_\Lambda(V_\Lambda(\Gamma))$.

Proof. 1) Δ is a separable C-algebra by the above remark. Hence, Δ is a Frobenius C-algebra by Theorem 4.2 [1]. Then, since $\Lambda = \Gamma \otimes \Delta$, Λ is a Frobenius extension of Γ (see Theorem 3 [9]). 2) Let C' be the center of Δ. Then, since $V_\Lambda(C') \approx \Gamma' \otimes C', V_\Lambda(C') = \Gamma' \Delta \supset \Delta = \Lambda$, and $\Lambda = V_\Lambda(C')$. Then we see that C' is the center of Λ. Then $\Lambda = \Gamma' \otimes C', \Lambda$ is centrally projective and H-separable over Γ'. Next, since $\Lambda = \Gamma' \otimes C', \Gamma'$ is a Γ'-Γ'-direct summand, consequently, a Γ-Γ'-direct summand of Λ, which is centrally projective over Γ. Thus Γ' is centrally projective over Γ, and $\Gamma' = V_\Gamma(\Gamma) \otimes C$ by Lemma 1. But $V_\Gamma(\Gamma) = \Gamma' \cap V_\Lambda(\Gamma) = V_\Lambda(\Delta) \cap \Delta = C'$, which is a separable C-algebra as Δ is a separable C-algebra. Hence Γ' is a separable extension of Γ.

Now, we can see that Nakane's theorem in [8] can be obtained under a weaker condition concerning separability.

Corollary 1. Let Γ and Ω be R-algebras with Ω finitely generated projective over R and C the center of Γ. Suppose $mC = C$ holds for every maximal ideal m of R. Then, $\Lambda = \Gamma \otimes R \Omega$ is a separable extension of Γ if and only if Ω is a separable R-algebra.
Proof. The 'if' part is clear by Prop. 2.7 [2]. Suppose \(\Lambda \) is separable over \(\Gamma \). Then, \(\mathcal{C} \otimes_R \Omega \) is separable over \(\mathcal{C} \) by Lemma 3 and Theorem 2. Then, \(\Omega \) is separable over \(R \) by Nakane's results (see Theorem [8]).

2. Strong Frobenius and symmetric extensions

In case \(\Lambda \) is an algebra over a commutative ring \(R \), \(\Lambda \) is called a symmetric \(R \)-algebra if \(\Lambda \) is \(\Lambda \)-\(\Lambda \)-isomorphic to \(\text{Hom}(\mathcal{R} \Lambda, \mathcal{R} \Gamma) \). In case of ring extension it is impossible to introduce such a notion. But we can consider the case where \(\Lambda | \Gamma \) has the next condition;

\[
\Lambda \Lambda \cong \Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \quad \text{and} \quad r \Lambda \text{ is finitely generated projective.}
\]

In this case we shall call that \(\Lambda \) is a strong Frobenius extension of \(\Gamma \). This condition is equivalent to

\[
\Lambda \Lambda \cong \Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \quad \text{and} \quad r \Lambda \text{ is finitely generated projective.}
\]

The above equivalence can be deduced if we take the dual modules again. In case \(\Lambda \) is an \(R \)-algebra, \(\Lambda \) is a strong Frobenius \(R \)-algebra if and only if \(\Lambda \) is a symmetric \(R \)-algebra. Moreover, if \(\Lambda \) is centrally projective over \(\Gamma \), the condition (s.F.1) (resp. (s.F.r)) implies

\[
\Lambda \Lambda \cong \Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \quad \text{and} \quad r \Lambda \text{ is finitely generated projective.}
\]

The above equivalence can be deduced if we take the dual modules again. In case \(\Lambda \) is an \(R \)-algebra, \(\Lambda \) is a strong Frobenius \(R \)-algebra if and only if \(\Lambda \) is a symmetric \(R \)-algebra. Moreover, if \(\Lambda \) is centrally projective over \(\Gamma \), the condition (s.F.1) (resp. (s.F.r)) implies

\[
\Lambda \Lambda \cong \Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \quad \text{and} \quad r \Lambda \text{ is finitely generated projective.}
\]

Most parts of the next Lemma is well known (see Theorem 3 [9] and Theorem 35 [7] for example).

Lemma 4. If \(\Omega \) is a symmetric (resp. Frobenius or quasi-Frobenius) algebra over a commutative ring \(R \), then \(\Lambda = \Gamma \otimes_R \Omega \) is a symmetric (resp. Frobenius or quasi-Frobenius) extension of \(\Gamma \) for any \(R \)-algebra \(\Gamma \).

Proof. We shall prove in the case of symmetric algebra. Suppose \(\Omega \) is \(\Omega \)-\(\Omega \)-isomorphic to \(\text{Hom}(r \Omega, r R) \). Then

\[
\text{Hom}(r \Omega, r \Gamma)_{r \Omega} \cong \text{Hom}(r \Omega, r \Gamma)_{r \Omega} \cong \text{Hom}(r \Omega, r R, r \Gamma)_{r \Omega}
\]

since \(\Omega \) is \(R \)-finitely generated projective. Hence, we see \(\Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \cong \Lambda \text{Hom}(r \Lambda, r \Gamma)_{r \Lambda} \) is finitely generated projective. Thus \(\Lambda \) is a symmetric extension of \(\Gamma \). By the same method we can prove in the case of Frobenius algebra.

Remark. If we use Lemma 1.1 [11], we can prove that if \(\Lambda_i \) are \(R \)-algebras
and left quasi-Frobenius extensions of R-subalgebras Γ_i respectively, and if
the natural map: $\Gamma_1 \otimes_R \Gamma_2 \to \Lambda_1 \otimes_R \Lambda_2$ is a monomorphism, then $\Lambda_1 \otimes_R \Lambda_2$ is
also a left quasi-Frobenius extension of $\Gamma_1 \otimes_R \Gamma_2$.

The most parts of the next theorem are immediate consequences of Lemma 2
and Theorem 35 [5].

Theorem 3. Let a ring Λ be centrally projective over a subring Γ. Then,
Λ is a symmetric (resp. Frobenius or left (or right) quasi-Frobenius) extension of
Γ if and only if $\Delta = V_\Lambda(\Gamma)$ is a symmetric (resp. Frobenius or quasi-Frobenius)
algebra over C, the center of Γ.

Proof. Since $\Lambda = \Gamma \otimes_C \Delta$, the 'if' parts have been proved in Lemma 4.
Suppose Λ is a symmetric extension of Γ, and let h be a Λ-Λ-isomorphism
\[h: \Lambda \text{Hom}(r\Lambda, r\Gamma) \rightarrow \Lambda \Lambda r\Gamma. \]
Then, h induces a Δ-Δ-map \bar{h} of $\text{Hom}(r\Lambda, r\Gamma)$ to Δ as is shown in the
previous section. Clearly \bar{h} is a monomorphism since h is so. Let d be an
arbitrary in Δ. Then there exists an f in $\text{Hom}(r\Lambda, r\Gamma)$ with $h(f) = d$. Then
$r \circ f = r^2$ for every $r \in \Gamma$, since h is a Λ-Γ-map and d is in Δ. Hence f is in
\[\text{Hom}(r\Lambda, r\Gamma), \]
and \bar{h} is an epimorphism. Thus we see that $\text{Hom}(r\Lambda, r\Gamma)$ is
Δ-Δ-isomorphic to Δ. On the other hand, as is shown before $\text{Hom}(r\Lambda, r\Gamma)$
is Δ-Δ-isomorphic to $\text{Hom}(\Delta, \Delta)$. Thus we see that $\text{Hom}(\Delta, \Delta)$ is
Δ-Δ-isomorphic to Δ, and Δ is a symmetric C-algebra. The same method
as above proves in the case of Frobenius extension. Next, suppose that Λ is a
left quasi-Frobenius extension of Γ. Then, by Satz 2 [5] there exist Λ-Γ-
maps φ_k of $\text{Hom}(r\Lambda, r\Gamma)$ to Λ and Γ-Γ-maps α_k of Λ to Γ with $\Sigma \varphi_k(\alpha_k) = 1$.
But each map φ_k induces a left Δ-map φ_k' of $\text{Hom}(r\Lambda, r\Gamma)$ to Δ, and there
exists a left Δ-isomorphism ν of $\text{Hom}(\Delta, \Delta)$ to $\text{Hom}(r\Lambda, r\Gamma)$. Let $\varphi_k'
= \varphi_k \nu$ and $\alpha_k = \nu^{-1}(\alpha_k)$. Then $\Sigma \varphi_k(\alpha_k) = \Sigma \varphi_k(\nu^{-1}(\alpha_k)) = \Sigma \varphi_k(\alpha_k) = 1$. Therefore,$\Delta$ is a quasi-Frobenius C-algebra. (See Theorem 35 [5] and the
Bemerkung under it).

3. Application of Morita's results

In sections 1 and 2 we considered the case where Λ is centrally projective
over Γ, but in this section we shall consider the case where $\Delta \otimes_R \Lambda$ is cen-
trally projective over Λ, i.e., Λ is an H-separable extension of Γ. To do this we
shall apply the results of Morita [7].

Lemma 5. Let Λ be an H-separable extension of Γ, $\Delta = V_\Lambda(\Gamma)$ and
$\Omega = \text{Hom}(\Lambda, \Lambda)$. Then, we have

1) $\text{Hom}(\Omega \Lambda, \Lambda \Lambda) = V_\Lambda(\Delta)$, thus if $V_\Lambda(V_\Lambda(\Gamma)) = \Gamma$, Λ has the double
centralizer property,
2) If $V_\Lambda(V_\Lambda(\Gamma))=\Gamma$, then Γ is Γ-finitely generated projective.

Proof. Let Λ' be an H-separable extension of Γ with $V_\Lambda(V_\Lambda(\Gamma))=\Gamma$. Consider the ring isomorphism $\psi: \Lambda \otimes \Delta \rightarrow \Omega$ such that $\psi(x \otimes d)(y) = xyd$, where C is the center of Λ. Then we have

$$\psi \circ \Hom(\Lambda, \Lambda) \cong \Hom(\Lambda, \Lambda) \otimes \Delta$$

Hence, we see

$$\Hom(\Lambda, \Lambda) \cong \Hom(\Lambda, \Lambda) \otimes \Delta$$

Then by Lemma 5 and the above isomorphism, we have

$$\Gamma \cong \Hom(\Lambda, \Lambda) \otimes \Delta$$

Thus Λ is a strong Frobenius extension of Γ. For the rest of the proof, see Theorem 6.1 [7].

Theorem 4. Let Λ be an H-separable extension of Γ with $V_\Lambda(V_\Lambda(\Gamma))=\Gamma$ and Ω, Δ, and C be as in Lemma 5. Then, if Δ is a symmetric (resp. Frobenius or quasi-Frobenius) C-algebra, the following conditions are equivalent:

1) Λ is left Γ-finitely generated projective.
2) Λ is right Γ-finitely generated projective.
3) Λ is a strong Frobenius (resp. Frobenius or quasi-Frobenius) extension of Γ.

Proof. Suppose Δ is a symmetric C-algebra. Then Ω is a symmetric extension of Λ, since $\Omega \cong \Lambda \otimes C \Delta$ and Δ is C-symmetric. Hence we have

$$\psi \circ \Hom(\Lambda, \Lambda) \otimes \Delta \cong \psi \circ \Omega \otimes \Delta$$

Then by Lemma 5 and the above isomorphism, we have

$$\Gamma \cong \Hom(\Lambda, \Lambda) \otimes \Delta$$

Thus Λ is a strong Frobenius extension of Γ. For the rest of the proof, see Theorem 6.1 [7].

Corollary 2. Let Λ be an H-separable extension of Γ such that Γ is a Γ-Γ-direct summand of Λ. Then the following conditions are equivalent.

1) Λ is left Γ-finitely generated projective.
2) Λ is right Γ-finitely generated projective.
3) Λ is a strong Frobenius extension of Γ.

Proof. Since Γ is a Γ-Γ-direct summand of Λ, $V_\Lambda(V_\Lambda(\Gamma))=\Gamma$ by Prop. 1.2 [10] and Δ is C-separable by Prop. 4.7 [4]. Thus Δ is C-symmetric by Theorem 4.2 [1], and we can apply Theorem 4.

The converse of Theorem 4 holds for H-separable extension as follows.
Theorem 5. Let \(\Lambda \) be an \(H \)-separable extension of \(\Gamma \). Then if \(\Lambda \) is a strong Frobenius (resp. Frobenius or left or right quasi-Frobenius) extension of \(\Gamma \), \(\Delta \) is a symmetric (resp. Frobenius or quasi-Frobenius) \(C \)-algebra, where \(\Delta = V_\Lambda(\Gamma) \) and \(C \) is the center of \(\Lambda \).

Proof. Suppose \(\Lambda \) is a strong Frobenius extension of \(\Gamma \). Then there exists a \(\Lambda - (\Delta - \Gamma) \)-isomorphism \(\Lambda \Lambda_{\Delta - \Gamma} \cong \Lambda \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)_{\Delta - \Gamma} \). Then, since \(\Gamma \Lambda \) is finitely generated projective,

\[
\Lambda_{\Delta} \otimes_{\Gamma} \Lambda_{\Delta - \Delta} \cong \Lambda_{\Delta} \text{Hom}(\Gamma_{\Gamma}, \Lambda_{\Gamma}) \otimes_{\Gamma} \Lambda_{\Delta - \Delta} \cong \Lambda_{\Delta} \text{Hom}(\text{Hom}(\Gamma_{\Gamma}, \Lambda_{\Gamma}), \Lambda_{\Gamma})_{\Delta - \Delta}
\]

On the other hand, since \(\Lambda \) is \(H \)-separable over \(\Gamma \), there exist \(\Lambda - (\Delta - \Gamma) \)-(\(\Lambda - (\Delta - \Gamma) \))-isomorphisms

\[
\xi: \otimes_{\Gamma} \Lambda \to \text{Hom}(\Delta, \Lambda) \quad \xi(x \otimes y)(d) = xdy \quad \text{for} \quad x, y \in \Lambda \text{ and } d \in \Delta
\]

\[
\eta: \otimes_{\Gamma} \Delta \to \text{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}) \quad \eta(x \otimes d)(y) = xyd \quad \text{for} \quad x, y \in \Lambda \text{ and } d \in \Delta
\]

Hence we have \(\Lambda - (\Delta - \Gamma) \)-(\(\Lambda - (\Delta - \Gamma) \))-isomorphisms

\[
\text{Hom}(\Delta, \Lambda) \cong \otimes_{\Gamma} \Lambda \cong \text{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}) \cong \otimes_{\Gamma} \Delta
\]

Then, taking \(\text{Hom}(\ast, \Delta \Lambda) \), we obtain \(\Delta - \Delta \)-isomorphisms

\[
\Delta \text{Hom}(\Delta, \Lambda) \cong \Delta \otimes_{\Gamma} \Delta \cong \Delta \text{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}) \cong \Delta \otimes_{\Gamma} \Delta
\]

since \(\Delta \) is \(C \)-finitely generated projective, and

\[
\Delta \text{Hom}(\Delta \otimes \Delta, \Lambda \Delta) \cong \Delta \text{Hom}(\Delta, \text{cHom}(\Lambda \Lambda, \Lambda \Delta)) \cong \Delta \text{Hom}(\Delta, \Delta)
\]

Thus we see \(\Delta \text{Hom}(\Delta, \Delta) \cong \Delta \Delta \), which means that \(\Delta \) is a symmetric \(C \)-algebra. In case of Frobenius extension, \(\Lambda_{\Gamma} = \Delta \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)_{\Gamma} \) induces

\[
\Lambda \otimes_{\Gamma} \Lambda_{\Delta - \Delta} \cong \Lambda \text{Hom}(\text{Hom}(\Gamma \Lambda, \Gamma \Gamma)_{\Gamma}, \Lambda_{\Gamma})_{\Delta - \Delta} \cong \Lambda \text{Hom}(\Lambda_{\Gamma}, \Lambda_{\Gamma})_{\Delta - \Delta}
\]

where \(\Lambda \otimes_{\Gamma} \Lambda_{\Delta - \Delta} \) is induced by \(\Lambda \Lambda_{\Delta - \Delta} \) and \(\Gamma \Lambda \), while in case of right quasi-Frobenius extension \(\Delta \text{Hom}(\Gamma \Lambda, \Gamma \Gamma)_{\Gamma} \otimes_{\Gamma} (\Delta \otimes \Lambda) \) induces

\[
\Lambda \otimes_{\Gamma} \Lambda_{\Delta - \Delta} \cong \Lambda \text{Hom}(\text{Hom}(\Gamma \Lambda, \Gamma \Gamma)_{\Gamma}, \Lambda_{\Gamma})_{\Delta - \Delta} \otimes_{\Gamma} (\text{cHom}(\Lambda_{\Gamma}, \Lambda_{\Gamma}))_{\Delta - \Delta}
\]

Then the same argument as in the case of strong Frobenius extension proves the theorem in both cases.

Hokkaido University
References

