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Numerical Simulation of Ductile Crack Initiation in Metallic
Material Using Interface Element Based on Lennard-Jones Type

Potential Function

Jianxun ZHANG* Hidekazu MURAKAWA *#

Abstract

The fracture behavior of a cracked body is characterized by the property of the plastic zone in
small scale yielding conditions and process zone in large scale yielding conditions. Based on the
Lennard-Jones type potential function, an interface crack model (ICM) was proposed for the

analysis of fracture behavior of ductile materials in this report.
interface elements was defined as a critical parameter for crack initiation.

The local J-integral along the
The new crack surface

will form when the applied J-integral far from the crack tip equals the critical local J-integral. A
center-cracked specimen with a/W=0.5 is numerically analyzed making use of the ICM. The
effects of the parameters in the ICM on the relationship of the local J-integral and the far

J-integral were numerically investigated.

KEY WORDS:

1. Introduction

It is well known from the Linear Elastic Fracture
Mechanics (LEFM) that the stresses at the crack tip are
infinite. The LEFM was originally developed to deal
with the fracture phenomena of metallic materials with
high strength and brittle materials like ceramics, glasses

and rocks for which the plastic deformation is negligible.

However, plastic deformation is generally observed in
metallic materials even when the failure is a typical
brittle fracture. The plastic deformation occurs in the
region where the stresses exceed the yielding strength of
the material. In order to deal with plastic deformation
near the crack tip, the concept of LEFM is slightly
modified for small scale yielding problems. When the
materials are ductile, as most of the structural steels, the
size of the plastic zone exceeds the limits of LEFM. For
this kind of problem, the Elastic-Plastic Fracture
Mechanics (EPFM) with J-integral and CTOD concept
were developed'™.

In the LEFM, the energy dissipation due to the crack
propagation occurs in an infinitesimal zone at the crack
tip, where the stress field is assumed to be infinite. On
the other hand, in real materials, the energy is dissipated
in a process zone ahead of the crack tip during the
process of crack growth. The size of the process zone is
finite and the stress field in this zone is limited by the
plastic deformation. The nonlinear fracture mechanics

(Fracture Mechanics) (Interface Element) (J-integral)

uses a semi-empirical approach in large scale yielding.
Asymptotic analyses of steady state crack growth based
on continuum mechanics have shown that crack growth
changes the stress and deformation in the near-tip
field*”.

Recently, considerable attention is drawn to the
microscopic fracture process. For the elastic-plastic
materials, experimental investigations have shown that
the fracture process is restricted very near to the crack
tip. Based on the Dugdale model for crack tip
plasticity, the cohesive zone model was popularly used
to model the ductile fracture, postulating that the traction
acting on the separating surface in the so-called fracture
process zone represents the effect of atomic or molecular
attractions”.,

Based on the fact that surface energy must be
supplied for the formation of a new surface, a new
model to describe the fracture phenomena was recently
proposed”. In this model, the mechanism of energy
dissipation is embedded in the interface element using a
surface energy function. A Lennard-Jones type potential
function is employed as the surface energy function.
Such interface elements are arranged along the crack
propagation path within the specimen modeled using
conventional finite elements. This method has been
applied to peeling tests of bonded plates, push-out tests
of fibers in a matrix, dynamic crack propagation and
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Numerical Simulation of Ductile Crack Initiation in Metallic Material

ductile tearing of steel plate. Though it is simple, it is a
very versatile method to simulate the initiation and the
propagation of various types of cracks.

In this report, the mechanical behavior of the plastic
zone in small scale yielding and that of process zone in
larger scale yielding are closely examined. Based on
the computed results of J-integral and CTOD, an
interface crack model (ICM) is proposed to predict the
initial fracture toughness of metallic materials under the
conditions ranging from small scale yielding to large
scale yielding.

2. Crack Tip Plasticity and Process Zone

It is very fundamental but difficult to give a proper
description of plastic zone size and shape in small scale
yielding. Although the finite element method and
experimental method can be used to verify the plastic
zone size more effectively, the classic models of plastic
zone can give a very good profile about the plastic zone.
Based on the fact that the most typical brittle fracture of
metallic materials are accompanied by some plastic
deformation, the size of the plastic zone and the stress
distribution near crack tip can be determined. There are
two theories to estimate the plastic region size in the
vicinity of crack tip, namely, Irwin’s plastic zone and
Dugdale’s plastic zone as shown in Fig.1.

Irwin’s analysis of plastic zone size attempts to
account for the fact that the stress above the yield stress
0y cannot be cut off in a simple manner. For the analysis
to be straightforward there are several restrictions: the
plastic zone shape is considered to be circular, only the
section along the x-axis is analyzed, and the material is
considered to be elastic-perfectly plastic. The plastic

Plane stress

/

Irwin's

1‘0 t,

Dugdale's

Plane strain

Crack Tip

Fig.1 The profile of plastic zone size in different models of
small scale yielding
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size is determined by Eq.(1).
1 EJ 6))

r, =—
y 2
7500

where, r, is the plastic zone size in x-direction, E the
Young’s module and J the J-integral.

Dugdale analysis assumes that all plastic
deformation concentrates in a strip ahead of the crack,
i.e. the strip yield model. Dugdale continued with the
argument that a stress singularity does not exist at the
notional crack tip, since the stress does not go higher
than the yield stress if the material is elastic-perfectly

plastic.  According to the Dugdale’s analysis, the
plastic zone size is,
n EJ
=T @)
Oy

The Dugdale’s plastic zone is somewhat larger than the
diameter of the plastic zone proposed by Irwin.

The size of the plastic zone discussed above is
derived for the plane stress state with a selected plastic
zone shape. According to the classical yielding criteria,
the plastic zone shapes under the small yielding
condition are given by the following equations.

r@@)= (% + %sin2 0+ %cos@)ry plane stress  (3)

r©) = [%sinz 6 +%(1- w)*(1+cos6)y, Plane strain - (4)

It can be seen from Fig.1 that the shape of the
plastic zone changes significantly with the stress state.
In the x axial (0=0), the size of plastic zone along the
x-axis is 1.0r, in the plane stress state and 0.11ry in the
plane strain state. In general, the stress state in real
structures is located between the plane stress and the
plane strain, and the plastic zone shape and size change
between plane stress and plane strain state, i.e. 1.0-0.11r,

Process Zone

Fig.2 The process zone with large damage in large scale
yielding condition



along the crack plane.

In large scale yielding condition, the plastic zone is
as larger as the macro crack size and considerable
damage occurs near the crack tip. Experimental
investigations have shown that the fracture process is
restricted very near to the crack tip. The so-called
process zone shown in Fig.2 was proposed to describe
the feature in this damage region. In elastic-plastic
fracture mechanics, it is generally assumed that a
process zone will be formed and grow around the crack
tip with the increase of the external loads acting on a
cracked body. The classical fracture theory based on
conventional continuum mechanics does not consider
the behavior of the microscopic fracture nor its effect on
the crack extension. Simply it is assumed that stress
fields out of the process zone can control the fracture
process.  Recently, much attention is drawn to
modeling the so-called process zone both in metallic
materials and in nonmetallic materials.

»le.
V|‘ Lt

Fig.3 The interface crack model (ICM) with interface

element in distance L

dimensionless forceory/2y

0 0.5 1 1.5 2

Displacement 8/,

Fig4 The separation force between crack surfaces in

Interface Crack Model
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3. Interface Crack Model (ICM)

In order to simulate the crack initiation of the
metallic materials, an interface crack model is
introduced and illustrated in Fig.3. A zip-fastener strip
joining the two elastic-plastic solids represents the crack
formation. In general, the traction across the strip is
taken to be a function of the accumulation of
micro-cracking and void growth. The interface
elements introduced in the model consist of two surfaces
and have no thickness when the load is not acting.
When the load is applied, the two surfaces separate from
each other.

The distance between the surfaces is denoted by 6.
The mechanical characteristics of the interface element
are defined through a potential function ¢(8). The
Lennard-Jones type potential energy function is
employed in this report, i.e.

m&=w%¥la“—%liwﬂ )
ry+0 ry+0
where, the parameters y m and r, are the material
constants. In particular, 2y is the surface energy per
unit area.

By taking the derivative of ¢(3), the relation
between the traction o and the separation & at the
interface which is gradually opening is derived as shown

by Eq.(6).
4 ¥ m+! Ui +
0(8) =~ | (e ym oy ©)
ry | r,+6 r,+0
The traction reaches its maximum when the
separation becomes §,, given by Eq.(7).

2m+1.~

O o[y 1) )

7, m+1

0.8

04 |

0.2

Material constant 8¢/ro

0 5 10 15

Material constant n

Fig.5 The critical value of displacement at maximum
traction in Interface Crack Model
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Figure 4 shows the bonding force per unit area of
the surface. The parameter m controls the shape of the
bonding stress-separation curve. After the maximum
value is reached, the bonding stress decreases rapidly
with the increase of 6 . Figure 5 shows the effect of
parameter m on the J,/ry. It is shown that the 8,/
decreases with the increase of parameter m.

4. The definition of the local J-integral

In the interface crack model, the interface elements
are located near the crack tip. Considering the
interface crack model as shown in Fig.3, a local
J-integral along the border between the interface
elements and the ordinary elements can be obtained
from the definition of J-integral as shown by Eq.(8).

J = Iy -T, 2 ) ®)
ax

where, W is the strain energy density, 7T; is the traction
along the line integral contour I, and u; is the
displacement. Since the J-integral is path independent
the closed contour along the lower and upper sides of
the interface elements can be taken. Considering that
the displacement 8 is very small compared with
interface crack model size, only stress normal to the
X-axis acts on the contour. Thus,

dv
JLO =—fr0sp&dx (9)

Where, oy, is the stress along the interface element
border. Taking J.o counterclockwise along I means
proceeding along the lower side of the interface
elements from a to a+L in the x+ direction and back
along the upper side from a+L to a in the x- direction.
Thus,

W2y

0 I il
0 0.5 1 1.5 2 25
&/ )
Fig.6 The theoretical J-integral along the interface

elements border in interface crack model (ICM)
with the effect of constant m
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v dv
+L +
JLO =(fZ Oy adx _fZ+L Gspa_x

dx”)
(10)

Noticing that v=35, ¢(6,) =fasp dé
following equation can be derived.

¥ T
J, . =2vi1- 0 2m_2 0 m
o y{ G2 ]}

Specially, Jo would equal 2y when the crack tip
opening displacement Jr becomes large enough
compared to the parameter r, as shown in Fig.6. It is
shown that the larger the constant m is the faster the J;o
gets to 2y . It is the critical situation for crack initiation
when Jpp equals 2y. From Eq.(7) and (11), the
relationship between the J;oc or 2y and o, rp, m can be
described as shown by Eq.(12).

Om rO

)

el mn
m+l\m m+1\ m
(2m+1) _(mw+1) }
It can be seen from the equation that the critical
Jroc is proportional to the o, ry and f(m). Figure 7
shows the effect of the parameter m on function f(m).

The function f(m) can be approximated by a linear
function with sufficient precision, i.e.

s, and ¢(0)=2y, the

(11)

Jioc =2y (12)

where:

(13)

f(m)=2m

£(m)=0.4901m-0.2202 (14)

According to Eq.(14), f(m) becomes 1.0 when m

equals 2.01. Consequently, Jyoc=2y=0,ro  The
8
f(m) = 0.4903m - 0.2243
6
=
Q
5 4
S
2

0 5 10 15
Material constant m

Fig.7 The function f(m) with constant m for determining the
critical local J-integral



parameters O, ry and m can be considered as the
material constants which are related to the critical
situation through Eq.(12).

5. Results and Discussion

The center-cracked specimen shown in Fig.8 is
analyzed numerically. In the computation, the ratio of

crack length a to specimen width W is assumed to be 0.5.

Due to the symmetry, only the upper-right of the
specimen is meshed as shown in Fig.9 using 1100
element and 2450 nodes. The mesh is refined in the
region near the crack tip. The interface elements are
arranged along the crack extension path with length L
from the crack tip. The minimum size of the elements
including interface elements near the crack tip is about
1/1000 of the ligament length. The J-integral far from
the crack tip is estimated as the average value of
J-integrals for five different paths.

5.1 Small scale yielding condition

c
Fig.8 The center-cracked specimen with a/W=0.5,
W=50mm, L.=120mm
Aunfhunfhundhsndhandhnnd

aams

Fig.9 The finite element mesh near crack tip with the
minimum size 1/1000 of ligament.
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In the linear elastic fracture mechanics, the fracture
is controlled by a so-called stress intensity factor K.
According to the Griffith energy balance approach, the
relationship between K and energy release rate, G, or
J-integral can be determined. When the applied stress
intensity factor K or the J-integral J reaches the critical
value K¢ or Jc, fracture occurs. In case of ICM, the
resistance or the toughness of the material is embedded
in the interface element as the surface energy 2y. As
shown in Fig.6, the local J-integral increases when the
crack is opening but never exceeds 2y. Thus, the crack
starts to grow when the applied or the far J-integral
becomes equal to 2y. Figure 10 shows the relationship
between dimensionless &/6,, and ry/L when the J-integral
far from the crack tip equals 2y or the local J-integral
along the border of interface elements. As mentioned
before, the parameter L means the length in which the
interface elements are arranged. The maximum stress
in the interface element is assumed to be 588MPa,
which is taken as the same value as the yielding stress of
the material considered. It can be seen also from
Fig.10 that the value /8, increase with the decrease of
ro/L and the effect of L on the J-integral is not so large
when the L is relatively small. It can be seen from
Fig.10 that the value 6/8, changes with the parameter
1o/L. In this computation, the cracked body is in the
elastic condition. Then the maximum stress in the
interface element is limited to the yield stress of the
material. Thus, the interface elements are expected to
behave as the yield zone. The parameter L, which is the
length of the interface element can be regarded as the
plastic zone in small scale yielding condition. Though
the value of the parameter L can be determined from the

3
<
€25}
g
Q
5 2
s
&
2 15t
[72]
g
g 17
7]
:
5 95 ©,=588 MPa, n=4.0 J=2y
0 N
0 0.2 0.4 0.6 0.8

Dimensionless distance ry/L

Fig.10 The dimensionless crack tip displacement with

distance parameter ry/L in deferent L..
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size of the yield zone, the value of ry can be chosen
arbitrarily dependent on the critical condition. To
select the unique value of 1j, the condition that, 8= &, is
introduced. Under this condition, the unique
combination of L and ry can be determined from the
point corresponding to 8/8,=1 in Fig.10.

The effect of yield stress on the §/8,, is illustrated in
Fig.11. It can be seen that the 8/, increases with the
decrease of yield stress. It means that the larger the
maximum stress of interface element, the smaller the &
when the far J-integral equals to the value 2y for given
ro/L.  Figure 12 shows the effect of constant m on the
8/8,.  The critical opening displacement 6 for the given
value of ry/L decreases with the increase of the exponent
m.

15

Dimensionless displacement/8m
—

05 : ‘ : :
20 40 60 8 100 120

Yielding Stress (x10MPa)

Fig.11 The influences of yielding stress on the dimensionless
crack tip displacement.
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1 2 3 4 5 6 7 8
Exponent m

Fig.12 The influences of the constant m on the dimensionless
crack tip displacement.
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5.2 Large scale yielding condition

In the elastic-plastic condition, it is also assumed
that the maximum stress in the interface element does
not exceed the yield stress of the material. Figure 13
shows the relation between the far J-integral and the
applied load for different combination of rpand L. It is
seen from Fig.13 that the interface element itself has
almost no influence on the far J-load curve in
elastic-plastic conditions. When the length of the
interface element L is very large, the influence of the
interface element can not be ignored. Figures 14 and 15
show the relation between the far J-integral and crack tip
displacement for different values L and m. Also, the
J-integral estimated by the interface crack model and the

250
——10=0.04 L=0.24
200 —8—10=0.10 L=0.24
—a—10=0.20 L=0.48
{45\ ~——a——10=0.05 L=0.12
= 150 |
)
B
2 100 t+
A=
-
50 |
0 , ,
0 20 40 60

Applied Load (x10 MPa)

Fig.13 The effect of parameter L on the J-load line in
elastic-plastic condition with m=4.0 and o;=488Mpa.

20
—e—1-=0.08
—&—1=0.12
15 | | ——1=0.25
— —0—1=0.37
E —&— Dugdale
2
= 10 |
1)
[3)
E
5| 1,=0.01
n=4.0
0;=588 MPa
0
0 0.005 0.01 0.015 0.02 0.025

Crack Tip Displacement 8 (mm)

Fig.14 The J-integral far from crack tip with crack tip
displacement at deferent distance parameter L.



classical Dugdale Model are compared in Figs.14 and 15.

In general, the relationship between the J-integral and
the crack tip displacement can be approximated as a
linear function, i.e.

J= Md o, (15)

The value M varies between 1.15 and 2.95. In

case of the Dugdale Model, the M equals 1.0. The
parameter L influences the relationship between the
J-Integral and the crack tip displacement when L is
larger than 0.12. The slope of the curve decreases with
the increase of L. The parameter m expresses the
separation property of the crack. The larger the value

15
L=0.25
1,=0.01
10 } 0,=588 MPa
E
2
=
® .
£ ——n=2 |
SN —B—n=4
—&—n=8
—O—Dugdale
0 i

0 0.005 0.01 0015 0.02 0.025
Crack Tip Displacement 6 (mm)

Fig.15 The influence of constant m on the J-integral far from
crack tip with crack tip displacement.

20
0,=588 MPa
15 | o/L=0.42 [
«—
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s 10}
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5 | —#—L-048EL
| —&—1=048 EP
| —@—L=0.12EL
o —O0—L1=0.12 EP

0 0.005 0.01 0.015 0.02
Crack Tip Displacement (mm)

Fig.16 Comparison of J-integral far from crack tip in small
scale yielding and large scale yielding condition.
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m, the easier the crack separates. It can be seen from
Fig.15 that the larger the value m is, the smaller the
J-integral. Figure 16 shows two cases of elastic and
elastic-plastic situation with interface element. It can
be seen from Fig.16 that the two lines become close to
each other when the far J-integral is less than a certain
value. In elastic case or small scale yielding case, the
local J is almost the same with far J-integral. But in
case of large scale yielding, the local J-integral is
different from the far J-integral because of the large
damage near the crack tip. Therefore, making use of
this model we can build the relation between the local
J-integral and far J-integral.

5.3 The profile and future work on the Interface
crack model

The ductile fracture of metallic materials can be
described as a progressive process, which involves the
nucleation, growth and coalescence of voids or
micro-cracks. At the vicinity of a pre-existing
macro-crack, a large damage evolution occurs due to the
high stress and strain concentrations. It has been
shown from experiments that the damaged zome is
confined very near to the macro-crack tip. The fracture
toughness, the crack resistance and the tearing modulus
of the ductile materials may be strongly affected by the
presence of such localized damages near the crack tip.
In small scale yielding conditions, the plastic zone size
around the crack tip is proportional to the stress intensity
factor, K. In large scale yielding conditions, the
process zone size around the crack tip would be
proportional to the J-integral. Therefore, the initiation
and the growth of the ductile crack is controlled by the
state of the plastic zone in the case of small scale
yielding and the process zone in case of large scale
yielding conditions.

2
15
’
Appliedd
>~ 4
< 1t z
3

Interface J
05

&/ ro

Fig.17 The relationship between J-integral far from crack tip
and local J-integral defined by ICM.
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The Interface Crack Mode] proposed in this report
can be used to simulate the crack opening property and
to estimate the fracture parameter in critical conditions.
Figure 17 shows the relationship between the applied
J-integral far from the crack tip and local J-integral
defined by ICM. It can be seen that the local J-integral
and applied J-integral does not increase in the same
manner. After the intersection point where the applied
J-integral becomes equal to the local J-integral, the local
J-integral will keep the same value and the crack start to
grow. Therefore, the crack initiation and propagation
can be modeled by the ICM. The behavior of the crack
depends on the local J-integral which is characterized by
the constants involved in the ICM, namely o, m, ry and
L. The important work about the ICM in the future is
to demonstrate its capability to analyze the crack
propagation problem and to clarify the relation between
the parameters o, m, ry, L involved in the ICM and the
measurable material properties.

6. Conclusion v

Based on the Lennard-Jones type potential function,
an interface crack model (ICM) is proposed in this
report. In the ICM, one kind of interface element is
introduced near the crack tip to simulate the ductile
fracture for Mode I crack in plane strain condition.
The main conclusions drawn from the present study are
as follows.

1) The ductile fracture of metallic materials can be
simulated making use of the interface crack
model. The local J-integral is defined along the
interface crack model contour as a initiating
J-integral. The new crack surface will be
formed when the applied J-integral far from the
crack tip equals to the critical local J-integral.

2) There are several parameters included in the IC
model, namely 2y, m, ry and L. The parameter
2y refers to the energy release rate for the new
surface formation. The parameter m mainly
controls the shape of the potential function. The

72

parameter ry and L are the size parameters, with
which the process zone can be characterized.
Possibly, they may be related to the inclusion size
and its distribution in the metallic materials.

3) In small scale yielding conditions, the size

1

2)

3)

4)

5)

6)

7

8)

9

10)

parameter L can be related to the length of the
plastic zone near crack tip. In large scale
yielding conditions, it can be related to the length
of the process zone.

Reference

Williams M.L., On the stress distribution at the base of a
stationary crack. Journal of Applied Mechanics, 1957,
24, 109-114.

Rice J.R. and Rosengren G.F., Plain strain deformation
near crack tip in a power law hardening material.
Journal of Mechanics and Physics of Solids, 1968,
16,1-12.

A.Carpinteri (Ed.) Nonlinear Crack Models for
Nonmetallic Materials, Kluwer Academic Publishers,
(1999)

Tvergaard V., and Hutchinson J.W., The relation between
crack growth resistance and fracture process parameters
in elastic-plastic solids, Journal of Mechanics and Physics
of Solids, 1992, 40, 1377-1398.

Yuan H., Lin G, and Cornec A., Verification of a
cohesive zone model for ductile fracture. Journal of
Engineering Materials and Technology, 1996, 118,
192-200.

Zhang Ch., Gross D., A cohesive plastic/damage-zone
model for ductile crack analysis, Nuclear Engineering and
Design, 1995, 158, 319-331.

H.Murakawa, and Z.Q.Wu, Computer Simulation Method
for Crack Growth Using Interface Element Employing
Lennard-Jones Type potential Function, Materials Science
Research International, Vol.15(3), (1999), 195-201.
Yoshimura-Shinobu, Yagawa-GGGenki, Pyo-Chang-Ryul,
Simplified stable crack growth analyses of welded CT
specimens - comparison study of GE/EPRI, reference
stress and R6 methods. International Journal of Pressure
Vessel and Piping, 1995, 63(3), 293-302.

Hutchinson J.W., Singular behaviour at the end of a
tensile crack in a hardening material. Journal of
Mechanics and Physics of Solids, 1968, 16, 13-31
Leevers P.S. and Radon J.C., Inherent biaxiality in
various fracture specimen geometries. International
Journal of Fracture, 1982, 19,311-325.



