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Abstract
We consider the Kronecker algebra A = [X, Y]/(X2, Y2), where  is a complete discrete

valuation ring. Since A ⊗ κ is a special biserial algebra, where κ is the residue field of ,
one can compute a complete list of indecomposable A ⊗ κ-modules. For each indecomposable
A ⊗ κ-module, we obtain a special kind of A-lattices called “Heller lattices”. In this paper, we
determine the non-periodic component of a variant of the stable Auslander–Reiten quiver for
the category of A-lattices that contains “Heller lattices”.
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Introduction

Auslander–Reiten theory has become an indispensable tool since we may prove many
important combinatorial and homological properties with the help of the theory, and it gives
us invariants of various additive categories arising in representation theory, for example
see [6], [2], [13] and [30]. A combinatorial skeleton of the additive category of indecom-
posable objects is the Auslander–Reiten quiver, which encapsulates much information on
indecomposable objects and irreducible morphisms. Therefore, to determine the shape of
Auslander–Reiten quivers is one of classical problems in representation theory of algebras.

There exist strong restrictions on stable Auslander–Reiten quivers for important classes of
finite dimensional algebras. In [27], Webb studied the stable Auslander–Reiten components
of group algebras. Let G be a finite group and k an algebraically closed field with character-
istic p such that p divides the order of G. Then, the tree class of any stable component of the
group algebra kG is one of infinite Dynkin diagrams A∞, B∞,C∞,D∞ or A∞∞, or else it is An,
or one of Euclidean diagrams. Moreover, Erdmann showed that the tree class of any stable
component of a wild block of kG is A∞ [10]. For another example, Riedtmann and Todorov
showed that the tree class of any stable component of a finite dimensional self-injective al-
gebra of finite representation type is one of finite Dynkin diagrams [21, 26]. However, if the
base ring is not a field but a regular local ring, then the shape of (stable) Auslander–Reiten
components for algebras are mostly unknown.

We use the following notation, see [16] for details. Let  be a complete discrete valuation
ring, κ its residue field,  its fraction field. An -algebra A is called an -order if A is
finitely generated projective as an -module. An -order A is symmetric if Hom(A,) is
isomorphic to A as (A, A)-bimodules. A finitely generated right A-module M is called an
A-lattice if it is finitely generated projective as an -module1. We denote by mod-A the
category consisting of finitely generated right A-modules and by latt-A the full subcategory
of mod-A consisting of A-lattices.

Let A be a symmetric -order and M a non-projective indecomposable A-lattice. Almost
split sequences for latt-A had been studied by Auslander and Reiten. According to [5], there
exists an almost split sequence ending at M if and only if M satisfies the following condition
(�):

M ⊗  is projective as an A ⊗ -module.(�)

An almost split sequence ending at M is unique up to isomorphism of short exact sequences
if it exists. Therefore, we adopt the definition of the stable Auslander–Reiten quiver for
latt-A as a valued quiver whose vertices are the isoclasses of non-projective indecompos-
able A-lattices satisfying (�) in which there are valued arrows whenever there exists an irre-
ducible morphism (Definition 1.11). Unfortunately, it is too difficult to determine the stable
Auslander–Reiten quiver for latt-A completely. Hence, we focus on a special kind of A-
lattices called Heller lattices, which are A-lattices defined as the direct summands of the
first syzygies of indecomposable A ⊗ κ-modules viewed as A-modules. Note that Heller

1In this paper, we consider A = [X,Y]/(X2,Y2), which is a finitely generated Cohen–Macaulay -algebra
with Kr-dim(A) = Kr-dim(). Thus, it follows from [30, (1.8)] that a finitely generated A-module M is a Cohen–
Macaulay A-module if and only if it is a Cohen–Macaulay -module. Since  is regular, “A-lattices” coincide
with “maximal Cohen–Macaulay A-modules”, see [30, (1.5.1)].
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lattices satisfy the condition (�). In this paper, we call a stable component containing inde-
composable Heller lattices a Heller component of A, and we denote by A the union of
Heller components of A. Some known results for determining A are found in [18] and
[1]. In [18], Kawata considered group algebras over  of characteristic zero with some as-
sumption on ramification, and Ariki, Kase and the author considered truncated polynomial
rings over  [1]. By the definition of the Heller lattice, if a complete list of isoclasses of
indecomposable modules over A ⊗ κ is given, then we can determine A. Since non-
projective-injective indecomposable modules over a Brauer graph algebra (aka a symmetric
special biserial algebra [23]) are classified by using string paths and band paths (see [29], [8]
or Subsection 1.3.), it is natural to consider the case when A ⊗ κ is a Brauer graph algebra.

In this paper, we determine non-periodic components contained in A of A =

[X, Y]/(X2, Y2). Note that A ⊗ κ is a Brauer graph algebra associated with one loop
and one vertex with multiplicity 1. The main result is the following:

Theorem. Let  be a complete discrete valuation ring, and A = [X, Y]/(X2, Y2). As-
sume that the residue field of  is algebraically closed. For a string path w, let Mw be the
indecomposable A ⊗ κ-module given by w and ZMw

the first syzygy of Mw in latt-A. Then,
the following statements hold.

(1) If w has even length, then ZMw
is indecomposable.

(2) The Heller component A contains a unique non-periodic component np.
(3) An indecomposable Heller lattice Z lies on np if and only if Z = ZMw

for some w
with even length.

(4) ZMw
appears on the boundary of the component np.

(5) The component np is isomorphic to ZA∞.

We note that the “Kronecker algebra” over a ring R usually means the generalized trian-
gular matrix R-algebra (

R 0
R2 R

)
.

However, in this paper, we call the R-algebra R[X, Y]/(X2, Y2) the “Kronecker algebra” fol-
lowing Erdmann, see [10, Chapter I, Example 4.3]. These two algebras are not isomorphic
each other, but there is a functorial relation, which is explained in [12, Section 5], [6, X.2]
and [24, Chapter XIX, 1.13 Remark].

This paper consists of five sections. In Section 1, we define almost split sequences and
the stable Auslander–Reiten quiver for latt-A, and recall some results from [3], [1], [20] and
[31]. In Section 2, we give a complete list of Heller lattices of A = [X, Y]/(X2, Y2), and
explain their properties including the indecomposability, the periodicity/aperiodicity and the
appearance of non-periodic Heller lattices on the boundary of np. Moreover, we show
that if the tree class of np is not A∞, then the possibilities of the tree class are Ẽ6, Ẽ7, Ẽ8,
F̃41 or F̃42. In Section 3, we define an additive function on np and we show that the tree
class of np is neither F̃41 nor F̃42. In Section 4, we prove the main result by computing
the ranks of vertices of the component in ZẼ6, ZẼ7 or ZẼ8 to exclude the cases. In the last
section, we improve [1, Theorem 1.27] as follows.
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Theorem. Let A be a symmetric -order, where  is a complete discrete valuation ring,
and let  be a component of the stable Auslander–Reiten quiver for latt-A. Assume that 
has infinitely many vertices. Then, the following statements hold.

(1) Suppose that  is τ-periodic. Then, one of the following statements holds:
(i) If  has no loops, then  is of the form ZT/G, where T is a directed tree whose

underlying graph is one of infinite Dynkin diagrams.
(ii) If  has loops, then  \ {loops} = ZA∞/〈τ〉. Moreover, the loops appear on the

boundary of .
(2) Suppose that  is τ-non-periodic. Then,  has no loops. Moreover, if either

(i)  does not contain Heller lattices or
(ii) A ⊗ κ has finite representation type,

then the tree class of  is one of infinite Dynkin diagrams or Euclidean diagrams.

Note that there may exist loops in Auslander–Reiten quivers by [28].

1. Preliminaries

1. Preliminaries
Throughout this paper, we use the following conventions.

(a)  denotes a complete discrete valuation ring, κ is the residue field and  is the quotient
field. We assume that the residue field κ is algebraically closed.

(b) “Modules” mean right modules.
(c) Given an -order A, we write latt-A for the category of A-lattices. Given a pair of A-

lattices M and N, we denote by HomA(M,N) the -module of all A-homomorphisms
from M to N.

(d) Tensor products are taken over .
(e) For an -order A, we denote by latt(�)-A the full subcategory of latt-A consisting of

A-lattices M such that M ⊗ is projective as an A ⊗-module.
(f) The symbol δi, j means the Kronecker delta.
(g) The identity matrix of size n is denoted by In.

1.1. Almost split sequences.
1.1. Almost split sequences. In order to introduce the stable Auslander–Reiten quivers

for latt(�)-A, we recall irreducible, minimal, and almost split morphisms. Main references
for details are [3] and [1]. Let A be an abelian category with enough projectives and C an
additive full subcategory closed under extensions and direct summands. Let f : L → M
be a morphism in C . The morphism f is called left minimal if every h ∈ EndC (M) with
h f = f is an isomorphism, and is called left almost split if it is not a section and every
h ∈ HomC (L,W) which is not a section factors through f . Dually, a morphism g : M → N
in C is called right minimal if every h ∈ EndC (M) with gh = g is an isomorphism, and is
called right almost split if it is not a retraction and every h ∈ HomC (W,N) which is not a
retraction factors through g. A morphism f is said to be left minimal almost split in C if f
is both left minimal and left almost split. Similarly, a right minimal almost split morphism
in C is defined.

Proposition 1.1 ([3, Proposition 4.4]). Let L, M and N be objects of C . The following
statements are equivalent for a short exact sequence

0 −→ L
g−−−−−−→ M

f−−−−−−→ N −→ 0.



Components of Stable AR Quivers 463

(1) f is right almost split in C , and g is left almost split in C .
(2) f is minimal right almost split in C .
(3) f is right almost split and EndC L is local.
(4) g is minimal left almost split in C .
(5) g is left almost split in C and EndC N is local.

Definition 1.2. Let L, M and N be objects of latt(�)-A. A short exact sequence in latt(�)-A

0 −→ L −→ M
p−−−−−−→ N −→ 0

is called an almost split sequence ending at N if the following two conditions are satisfied:
(i) The morphism p is right almost split in latt(�)-A.

(ii) The A-lattice L is indecomposable.

Let E : 0 → L → E → M → 0 be an almost split sequence in latt(�)-A. Then, it follows
from Proposition 1.1 that any almost split sequence ending at M is isomorphic to E as short
exact sequences. Similarly, any almost split sequence starting from L is isomorphic to E as
short exact sequences. We denote by E (M) the almost split sequence ending at M. Here, we
set τ(M) = L and τ−1(L) = (M), and we call both τ and τ−1 AR translations.

Definition 1.3. Let M and N be objects in latt(�)-A. A morphism f ∈ HomA(M,N) is said
to be an irreducible morphism, provided that

(i) the morphism f is neither a section nor a retraction,
(ii) if f = f2 ◦ f1 in latt(�)-A, then either f1 is a section or f2 is a retraction.

It is well-known that almost split sequences are characterized by irreducible morphisms.
The arguments in [6, V.5, Proposition 5.9] work without change in our setting. Note in
particular that [6, V.5, Theorem 5.3] also holds in our setting.

Lemma 1.4 ([6, V.5, Proposition 5.9]). Let M be an A-lattice in latt(�)-A. Then, a short
exact sequence in latt(�)-A

0 −→ L
f−−−−−−→ E

g−−−−−−→ M −→ 0

is isomorphic to E (M) if and only if the morphisms f and g are irreducible.

Proposition 1.5 ([1, Proposition 1.15]). Let A be a symmetric -order, M an indecom-
posable A-lattice in latt(�)-A, and let p : P → M be the projective cover of M and ΩA(M)
the first syzygy of M, which lies in latt(�)-A. Given an endomorphism ϕ : M → M, we obtain
the pullback diagram along p and ϕ:

0 ΩA(M) E M 0

0 ΩA(M) P M 0

�� �� �� ��

�� ��
p

�� ��
��

ϕ

��

Then, the following statements are equivalent.

(1) The upper short exact sequence is isomorphic to E (M).
(2) The following three conditions hold.
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(i) The morphism ϕ does not factor through p.
(ii) ΩA(M) is an indecomposable A-lattice.

(iii) For all f ∈ rad EndA(M), the morphism ϕ ◦ f factors through p.

In particular, we have an isomorphism τ(M) 	 ΩA(M).

1.2. Stable Auslander–Reiten quivers.
1.2. Stable Auslander–Reiten quivers. In this subsection, we introduce the stable

Auslander–Reiten quiver for latt(�)-A. We follow the notation of [31].
Given a quiver Q, we denote by Q0 and Q1 the set of vertices and arrows, respectively.

A pair (Q, v) of a quiver Q and a map v : Q1 → Z≥0 × Z≥0 is called a valued quiver,
and the values of the map v are called valuations. For an arrow x → y of Q, we write
v(x→ y) = (dxy, d′xy), and if there is no arrow from x to y, we understand that dxy = d′xy = 0.
If v(x → y) = (1, 1) for all arrows x → y of Q, then v is said to be trivial. For each vertex
x ∈ Q0, we set

x+ = {y ∈ Q0 | x→ y ∈ Q1}, x− = {y ∈ Q0 | y→ x ∈ Q1}.
A quiver Q is locally finite if x+ ∪ x− is a finite set for any x ∈ Q0. A stable translation
quiver is a pair (Q, τ) of a locally finite quiver Q without multiple arrows and a quiver
automorphism τ satisfying x− = (τx)+. Let  be a full subquiver of a stable translation
quiver (Q, τ). Then,  is a (connected) component if the following three conditions are
satisfied.

(i)  is stable under the quiver automorphism τ.
(ii)  is a disjoint union of connected components of the underlying undirected graph.

(iii) There is no proper subquiver of  that satisfies (i) and (ii).
In particular, (Q, τ) is connected if Q satisfies the above three conditions.

Remark 1.6. In standard textbooks, loops are not allowed when we define a stable trans-
lation quiver, for example [7]. However, we note that the definition of a stable translation
quiver in [31] admits loops, and we adopt this definition.

A valued stable translation quiver is a triple (Q, v, τ) such that
(i) (Q, v) is a valued quiver,

(ii) (Q, τ) is a stable translation quiver,
(iii) v(τy→ x) = (d′xy, dxy) for each arrow x→ y.

A group G ⊂ Aut((Q, v, τ)) is said to be admissible if each G-orbit intersects x+ ∪ {x} in
at most one vertex and {x} ∪ x− in at most one vertex, for any x ∈ Q0. For an admissible
group G, we may form the valued stable translation quiver (Q/G, vG, τG) such that Q/G is
the G-orbit quiver with the induced map vG and translation τG.

Given a valued quiver (Δ, v), one can construct the valued stable translation quiver
(ZΔ, ṽ, τ) as follows [20].

• (ZΔ)0 = Δ0 × Z.
• Draw arrows (n, x)→ (n, y) and (n − 1, y)→ (n, x) whenever an arrow x→ y exists

in Δ.
• The valuations of ṽ are defined by

ṽ((n, x)→ (n, y)) = (dxy, d′xy), ṽ((n − 1, y)→ (n, x)) = (d′xy, dxy).
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• The translation τ is defined by τ((n, x)) = (n − 1, x).
We will write it simply ZΔwhen no confusion can arise. The valued stable translation quiver
ZΔ has no loops whenever Δ has no loops.

Let (Q, v, τ) be a connected valued stable translation quiver. A vertex x of Q is called
periodic if x = τk x for some k > 0. If there is a periodic vertex in Q, then all vertices of Q
are periodic. In this case, (Q, v, τ) is called periodic [14]. (Q, v, τ) is said to be smooth if v is
trivial and �x+ = 2 for all x ∈ Q0.

Definition 1.7. Let (Q, v, τ) be a valued stable translation quiver. A subadditive function
on (Q, v, τ) is a function � from Q0 to the set of non-negative integers Z≥0 such that it satisfies

�(x) + �(τx) ≥
∑
y∈x−

dyx�(y)

for all x ∈ Q0. A subadditive function � is called additive if the equality holds for all x ∈ Q0.

Theorem 1.8 ([31, p.653, 669]). Let (Q, v, τ) be a non-periodic connected valued stable
translation quiver which admits a non-zero subadditive function � : Q0 → Z≥0. Then, one
of the following holds:

(i) (Q, v, τ) is smooth and d is both additive and bounded.
(ii) (Q, v, τ) is of the form ZΔ for some valued quiver Δ.

Moreover, if Q has a cyclic path, then (Q, v, τ) is smooth and � is additive.

The following theorems are useful to describe stable translation quivers. The former is
showed by Riedtmann [20] and the latter is showed by Happel, Preiser and Ringel [14].

Theorem 1.9 (Riedtmann). Let (Q, τ) be a stable translation quiver without loops and 

a connected component of (Q, τ). Then, there exist a directed tree T and an admissible group
G ⊆ Aut(ZT ) such that  	 ZT/G as stable translation quivers. Moreover, the underlying
undirected tree T of T is uniquely determined by , and the admissible group G is unique
up to conjugation in Aut(ZT ).

In Theorem 1.9, the underlying undirected tree T is called the tree class of . If �(τx) =
�(x) and there are no loops in Q, then a subadditive function � on (Q, v, τ) from Definition
1.7 restricts a function on the tree class T that satisfies

2�(x) ≥
∑

y→x in T

dyx�(y) +
∑

x→y in T

d′xy�(y),

and it gives a positive semidefinite Cartan matrix.

Theorem 1.10 (Happel, Preiser, Ringel). Let (Δ, v) be a connected valued quiver without
loops and multiple arrows. If Δ admits a non-zero function f : Δ0 → Q≥0 that satisfies

2 f (x) ≥
∑
y∈x−

dyx f (y) +
∑
y∈x+

d′xy f (y) for x ∈ Δ0,

then the following statements hold.

(1) The underlying undirected graph Δ is either a finite or infinite Dynkin diagram or a
Euclidean diagram.
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(2) If the inequality is strict for some x ∈ Δ0, then Δ is either a finite Dynkin diagram or
A∞.

(3) If the equality holds for all x ∈ Δ0, then Δ is either an infinite Dynkin diagram or a
Euclidean diagram.

(4) If f is unbounded, then Δ is A∞.

Definition 1.11. (a) The stable Auslander–Reiten quiver for latt(�)-A is the valued quiver
defined as follows:
• The set of vertices is a complete set of isoclasses of non-projective indecomposable

A-lattices in latt(�)-A.
• We draw a valued arrow M

(a,b)−−−→ N whenever there exist irreducible morphisms
M → N, where the valuation (a, b) means:

(i) For a minimal right almost split morphism f : E → N, M appears a times in
E as direct summands.

(ii) For a minimal left almost split morphism g : M → E, N appears b times in
E as direct summands.

The stable Auslander–Reiten quiver for latt(�)-A, which we called the stable Auslander–
Reiten quiver for latt-A in the introduction, is denoted by Γs(A).

(b) The union of components of Γs(A) containing indecomposable Heller lattices is said to
be the Heller component of A, and denoted by A.

By the definition, we note that a component  of Γs(A) does not have multiple arrows,
and τM exists for each vertex M of  by the existence of almost split sequences 0→ τM →
E → M → 0. Thus, the equation M− = (τM)+ holds and (, τ) is a valued stable translation
quiver. However, if A is maximal or Morita equivalent to a Bass order, then the Auslander–
Reiten quiver of A has a loop [28]. Therefore, it is necessary to argue whether loops exist in
the stable Auslander–Reiten quiver of A.

First, we recall Miyata’s theorem [19, Theorem 1].

Theorem 1.12 (Miyata). Let R be a commutative noetherian ring and Λ an R-algebra
which is of finite type as an R-module. Let E : 0 → L → E → M → 0 be a short exact
sequence in mod-Λ. If E 	 L ⊕ M as Λ-modules, then E splits.

Lemma 1.13. Let A be a symmetric -order,  a component of Γs(A). If a vertex M ∈ 0

has a loop, then M 	 τM and the valuation of the loop is (1, 1).

Proof. Let M be a vertex of . Suppose that M � τM. Then, E (M) is of the form

0 −→ τM −→ M⊕l1 ⊕ τM⊕l2 ⊕ E −→ M −→ 0,

where l1, l2 ≥ 1. Thus, we have

(l1 − 1)dimκ(M ⊗ κ) + (l2 − 1)dimκ(τM ⊗ κ) + dimκ(E ⊗ κ) = 0,

and hence l1 = l2 = 1 and E = 0. In this case, the short exact sequence E (M) splits by
Theorem 1.12, a contradiction.

Suppose that M 	 τM. Then, E (M) is of the form

0 −→ M −→ M⊕l ⊕ E −→ M −→ 0,
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where l ≥ 1. Thus, we have

(l − 2)dimκ(M ⊗ κ) + dimκ(E ⊗ κ) = 0,

and hence l ≤ 2. If l = 2, then E = 0. In this case, the short exact sequence E (M) splits by
Theorem 1.12, a contradiction. Thus, l = 1. �

1.3. Indecomposable modules over a special biserial algebra.
1.3. Indecomposable modules over a special biserial algebra. Throughout this subsec-

tion, Λ is a basic finite dimensional algebra over an algebraically closed field k. Then, there
exist a quiver Q and an admissible ideal  in the path algebra kQ such thatΛ is isomorphic to
the bound quiver algebra kQ/. Moreover, there is a k-linear equivalence between mod-Λ
and rep(Q,), where rep(Q,) is the category of finite dimensional k-linear representations
of kQ/, see [2, Chapters II and III]. We identify these two categories.

Definition 1.14. An algebra Λ 	 kQ/ is called special biserial if the following two
conditions are satisfied.

(i) For each vertex x of Q, �x+ ≤ 2 and �x− ≤ 2.
(ii) For each arrow α of Q, there exist at most one arrow β such that αβ �  and at most

one arrow γ such that γα � .

Brauer graph algebras are symmetric special biserial algebras. The converse is also true
by Schroll [23]. Wald and Waschbüsch showed that special biserial algebras are of tame rep-
resentation type by classifying indecomposable modules over a special biserial algebra into
“string modules” and “band modules” [29]. Moreover, we can construct all indecomposable
modules over a special biserial algebra by using a combinatorial method. In this subsection,
we recall the construction of indecomposable modules over a special biserial algebra, see
[10], [15] for details.

1.15. Strings and bands. Let Q be a quiver. For an arrow α ∈ Q1, we denote by s(α)
and t(α) the source of α and the target of α, respectively. Set Q∗1 = {α∗ | α ∈ Q1}. We
understand that the symbol α∗ is the formal inverse arrow of α, that is, α∗ is an arrow such
that s(α∗) = t(α), t(α∗) = s(α) and α∗∗ = α. For a path w = c1c2 · · · cn in Q, we define
s(w) = s(c1), t(w) = t(cn) and w∗ = c∗nc∗n−1 · · · c∗1. If w is the path with the length 0 at a vertex
a, then we understand that w is the trivial path εa with s(εa) = t(εa) = a and ε∗a = εa. A walk
with length n is a sequence w = c1c2 · · · cn such that each ci ∈ Q1 ∪Q∗1 and t(ci) = s(ci+1) for
i = 1, 2, . . . , n − 1, and w is called reduced if w is either a trivial path or a walk with positive
length such that ci+1 � c∗i for all i = 1, 2, . . . , n − 1. Given a walk w, the source s(w) and the
target t(w) are also defined. For two walks w1 = c11 · · · c1n and w2 = c21 · · · c2m, the product
w1w2 is defined by

w1w2 := c11 · · · c1nc21 · · · c2m

when t(w1) = s(w2). If w is a walk with s(w) = t(w), then one has also arbitrary powers w j of
w. Assume that w = c1c2 · · · cn is a reduced walk with positive length. The walk w is called
a reduced cycle if s(w) = t(w) and cn � c∗1. We say that a non-trivial path p is contained in
w if p or p∗ is a subwalk of w.

A path w is called a zero path if w belongs to . A zero path with minimal length is
called a zero relation of Λ. Let p and q be non-zero paths from a vertex a to a vertex b. If
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λp+μq ∈  for some λ � 0 and μ � 0, then the pair (p, q) is called a binomial relation of Λ.

Definition 1.16. A reduced walk w is said to be a string path of Λ if each path contained
in w is neither a zero relation nor a maximal subpath of a binomial relation of Λ.

Definition 1.17. A non-trivial reduced cycle is said to be a band path of Λ if each of its
powers is a string path and it is not a power of a string path with less length.

1.18. String modules. For each string path w of Λ, the string module M(w) is defined as
follows. If w = εa, then M(w) is the simple Λ-module corresponding to a. For a non-trivial
w = c1c2 · · · cn, M(w) is the k-linear representation (M(w)a, M(w)α) given by the following.
For 1 ≤ i ≤ n + 1, we set k(i) = k. Given a vertex a of Q, we define M(w)a =

⊕
i∈a

k(i),
where

a = {i | s(ci) = a} ∪ {n + 1 | t(cn) = a}.
For 1 ≤ i ≤ n, we define the k-linear map fci by

fci :
{

k(i) −→ k(i + 1), x �−→ x if ci ∈ Q1,

k(i + 1) −→ k(i), x �−→ x if ci ∈ Q∗1.

Given an arrow α of Q, we define M(w)α as the direct sum of the k-linear maps fci such that
ci = α or c∗i = α.

1.19. Band modules. Let w = c1c2 · · · cn be a band path of Λ and V a finite dimensional
indecomposable left k[x, x−1]-module. We construct the band module N(w,V) correspond-
ing to w and V as follows. For 1 ≤ i ≤ n, we set V(i) = V . For 1 ≤ i ≤ n, let f ′ci

be the
k-linear map defined by

f ′ci
:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
V(i) −→ V(i + 1), v �−→ v if 1 ≤ i ≤ n − 1 and ci ∈ Q1,

V(i + 1) −→ V(i), v �−→ v if 1 ≤ i ≤ n − 1 and ci ∈ Q∗1,
V(n) −→ V(1), v �−→ xv if i = n and cn ∈ Q1,

V(1) −→ V(n), v �−→ x−1v if i = n and cn ∈ Q∗1.

For a vertex a of Q, we define N(w,V)a =
⊕

i∈ ′
a

V(i), where


′
a = {i | s(ci) = a}.

For an arrow α of Q, we define N(w,V)α as the direct sum of the k-linear maps f ′ci
such that

ci = α or c∗i = α.

Theorem 1.20 ([29, (2.3) Proposition]). Let Λ be a special biserial algebra. Then, the
disjoint union of string modules, band modules and all projective-injective modules corre-
sponding to the binomial relations forms a complete set of isoclasses of finite dimensional
indecomposable Λ-modules.

Remark 1.21. (1) Let w1 and w2 be string paths of Λ. Then, the string modules M(w1)
and M(w2) are isomorphic each other if and only if w2 = w1 or w2 = w

∗
1.

(2) Let w = c1 · · · cn be a band path. A rotation of w is a walk of the form ci+1 · · · cnc1 · · ·
ci. Given two band paths w1 and w2, the band modules N(w1,V) and N(w2,V) are
isomorphic each other if and only if w2 is a rotation of w1 or a rotation of w∗1.
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(3) A finite dimensional left k[x, x−1]-module is a finite dimensional k-vector space
together with a k-linear automorphism f . If the module is indecomposable, then f
is similar to a Jordan block

J(λ,m) :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 · · · · · · 0
0 λ · · · · · · 0
...

. . .
...

0 · · · · · · λ 1
0 · · · · · · 0 λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for some λ ∈ k× and the size m ∈ Z>0.

2. The Kronecker algebra and almost split sequences

2. The Kronecker algebra and almost split sequences
The main aim of this section is to present a complete list of isoclasses of indecomposable

Heller lattices over the Kronecker algebra A = [X, Y]/(X2, Y2), and compute almost split
sequences ending at non-periodic indecomposable Heller lattices. From this section to the
end of this paper, we set A = [X, Y]/(X2, Y2). For a positive integer k, we denote by
{el}l=1,2,...,k the canonical -basis of ⊕k. Then an -basis of the direct sums of k copies of
A is given by {el, Xel, Yel, XYel}l=1,2,...,k. Since A ⊗ κ is the Brauer graph algebra associated
with one loop and one vertex with multiplicity one, the algebra A ⊗ κ is a special biserial
algebra, which is given by the quiver with one vertex and two loops β1, β2 bound by the
relations β2

1 = β
2
2 = 0 and β1β2 − β2β1 = 0, where β1 = X ⊗ 1, β2 = Y ⊗ 1 ∈ A ⊗ κ.

2.1. Indecomposable modules and Heller lattices.
2.1. Indecomposable modules and Heller lattices. In this subsection, we give a com-

plete list of isoclasses of Heller lattices over A, and explain some properties of non-periodic
Heller lattices.

For simplicity, we visualize an A ⊗ κ-module as follows:
• vertices represent basis vectors of the underlying κ-vector spaces,
• arrows of the form −→ represent the action of X, and� represent the action of Y .
• If there is no arrow (resp. dotted arrow) starting at a vertex, then X (resp. Y) annihi-

lates the corresponding basis element.
For example, the unique indecomposable projective module A ⊗ κ is described as

A ⊗ κ = κ1 ⊕ κX ⊕ κY ⊕ κXY = 1

X

Y

XY
Y ������

X ���������
Y

������

X

���������

.

By using the construction of indecomposable modules which is explained in Subsection
1.3, we obtain all finite dimensional indecomposable modules over A ⊗ κ.

(i) The string module M(m) := M((β∗1β2)m) (m ∈ Z≥0) is given by the formula:

M(m) =

⎛⎜⎜⎜⎜⎜⎝ m⊕
i=1

κui

⎞⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎝

m⊕
j=0

κv j

⎞⎟⎟⎟⎟⎟⎟⎠ =
u1

v0

vm−1um−1

......

um

v1

vm

......

������
����������

�������

������

�����������

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xui = vi−1 1 ≤ i ≤ m,
Yui = vi 1 ≤ i ≤ m,
Xvi = Yvi = 0 0 ≤ i ≤ m.



470 K. Miyamoto

(ii) The string module M(−m) := M((β1β
∗
2)m) (m ∈ Z≥0) is given by the formula:

M(−m)=

⎛⎜⎜⎜⎜⎜⎜⎝
m+1⊕
i=1

κui

⎞⎟⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎝

m⊕
j=1

κv j

⎞⎟⎟⎟⎟⎟⎟⎠=
u1

vm−1

um

...

u2 v2

um+1

vm

v1

...

������

������

�������
��

��

��

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xui = vi 1 ≤ i ≤ m,
Xum+1 = 0,
Yui = vi−1 2 ≤ i ≤ m + 1,
Xvi = Yvi = 0 1 ≤ i ≤ m.

(iii) The string module M(0)n := M((β1β
∗
2)n−1β1) (n ∈ Z≥1) is given by the formula:

M(0)n=

⎛⎜⎜⎜⎜⎜⎝ n⊕
i=1

κui

⎞⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎝

n⊕
j=1

κv j

⎞⎟⎟⎟⎟⎟⎟⎠=
u1

vn−1un−1

...

u2 v2

un vn

v1

...

��

��

�������
��

��

������

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xui = vi 1 ≤ i ≤ n,
Yu1 = 0,
Yui = vi−1 2 ≤ i ≤ n,
Xvi = Yvi = 0 1 ≤ i ≤ n.

(iv) The string module M(∞)n := M(β2(β∗1β2)n−1) (n ∈ Z≥1) is given by the formula:

M(∞)n =

⎛⎜⎜⎜⎜⎜⎝ n⊕
i=1

κui

⎞⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎝

n⊕
j=1

κv j

⎞⎟⎟⎟⎟⎟⎟⎠=
u1

u2

v1

vn−1un−1

......

un

v2

vn

......

�������

�������

����������

�������

������

�����������

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xu1 = 0,
Xui = vi−1 2 ≤ i ≤ n,
Yui = vi 1 ≤ i ≤ n,
Xvi = Yvi = 0 1 ≤ i ≤ n.

(v) Let V be a finite dimensional indecomposable left κ[x, x−1]-module. Assume that V is
represented by x �→ J(λ, n) with respect to a basis of V for some λ ∈ κ× and n ∈ Z≥1.
The band module M(λ)n := N(β∗2β1,V) is given by the formula:

M(λ)n =

⎛⎜⎜⎜⎜⎜⎝ n⊕
i=1

κui

⎞⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎝

n⊕
j=1

κv j

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Xui = vi 1 ≤ i ≤ n,
Yu1 = λv1,

Yui = λvi + vi−1 2 ≤ i ≤ n,
Xvi = Yvi = 0 1 ≤ i ≤ n.

Throughout this paper, we adopt the κ-basis of an indecomposable A⊗κ-module described
above.

Lemma 2.1. The set of the A ⊗ κ-modules

{M(m) | m ∈ Z} � {M(λ)n | λ ∈ P1(κ), n ∈ Z≥1} � {A ⊗ κ},
where P1(κ) is the projective line of κ, forms a complete set of isoclasses of finite dimensional
indecomposable modules over A ⊗ κ.

Proof. The statement follows from Theorem 1.20. �

Remark 2.2. Almost split sequences for mod-κ[X, Y]/(X2, Y2) are known to be as fol-
lows:
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0 −→ M(−1) −→ (A ⊗ κ) ⊕ M(0)⊕2 −→ M(1) −→ 0
0 −→ M(m − 1) −→ M(m) ⊕ M(m) −→ M(m + 1) −→ 0 if m � 0
0 −→ M(λ)n −→ M(λ)n−1 ⊕ M(λ)n+1 −→ M(λ)n −→ 0 n ≥ 1, λ ∈ P1(κ)

Here, if n = 1, then we understand that M(λ)0 = 0.

2.3. Heller lattices. Let M be a non-projective indecomposable A ⊗ κ-module given in
Lemma 2.1. We view M as an A-module. Then, the projective cover of M as an A-module
is given by πM : A⊕�{ui} → M, ei �→ ui. For m ∈ Z, n ∈ Z≥1 and λ ∈ P1(κ), we define the
Heller A-lattices Zn and Zλ

m to be the A-lattices

Zm := Ker(πM(m)), Zλ
n := Ker(πM(λ)n).

We denote by B(m) and B(λ)n the following -basis of Heller lattices Zm and Zλ
n , respec-

tively: For m > 0,

Zm = εe1 ⊕ εXe1 ⊕ (Ye1 − Xe2) ⊕ XYe1

⊕ εe2 ⊕ εXe2 ⊕ (Ye2 − Xe3) ⊕ XYe2

⊕ · · ·
⊕ εem−1 ⊕ εXem−1 ⊕ (Yem−1 − Xem) ⊕ XYem−1

⊕ εem ⊕ εXem ⊕ εYem ⊕ XYem,

Z0 = εe1 ⊕ Xe1 ⊕ Ye1 ⊕ XYe1,

Z−m = εe1 ⊕ εXe1 ⊕ Ye1 ⊕ XYe1

⊕ εe2 ⊕ εXe2 ⊕ (Ye2 − Xe1) ⊕ XYe2

⊕ · · ·
⊕ εem ⊕ εXem ⊕ (Yem − Xem−1) ⊕ XYem

⊕ εem+1 ⊕ Xem+1 ⊕ (Yem+1 − Xem) ⊕ XYem+1.

For n > 1,

Zλ
n = εe1 ⊕ εXe1 ⊕ (Ye1 − λXe1) ⊕ XYe1

⊕ εe2 ⊕ εXe2 ⊕ (Ye2 − λXe2 − Xe1) ⊕ XYe2

⊕ · · ·
⊕ εen ⊕ εXen ⊕ (Yen − λXen − Xen−1) ⊕ XYen

Z∞n = εe1 ⊕ Xe1 ⊕ (Ye1 − Xe2) ⊕ XYe1

⊕ εe2 ⊕ εXe2 ⊕ (Ye2 − Xe3) ⊕ XYe2

⊕ · · ·
⊕ εen−1 ⊕ εXen−1 ⊕ (Yen−1 − Xen) ⊕ XYen−1

⊕ εen ⊕ εXen ⊕ εYen ⊕ XYen,

and

Zλ
1 = εe1 ⊕ εXe1 ⊕ (Ye1 − λXe1) ⊕ XYe1,

Z∞1 = εe1 ⊕ Xe1 ⊕ εYe1 ⊕ XYe1.
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From now on, we explain some properties of the Heller lattices. The main claim of this
subsection is the following proposition.

Proposition 2.4. For m ∈ Z, n ∈ Z≥1 and λ ∈ P1(κ), let Zm, Zλ
n be A-lattices as above.

Then the following statements hold.

(1) There are isomorphisms

Zm ⊗ κ 	 M(m − 1) ⊕ M(m), Zλ
n ⊗ κ 	 M(λ)n ⊕ M(−λ)n,

where we set −∞ = ∞.
(2) The Heller lattice Zm is indecomposable.

The proof of (1) in Proposition 2.4 is straightforward. It follows from the statement (1)
that the number of indecomposable direct summands of the Heller lattices described in 2.3
is at most two. Furthermore, the statement (1) also implies that the Heller lattices Zn and Zm

are not isomorphic whenever m � n. We use the next lemma to prove the statement (2) in
Proposition 2.4.

Lemma 2.5. Let Z be a Heller lattice over A. Then, the rank of Z as an -module is
divisible by four.

Proof. Let Z be a Heller A-lattice. Then, Z ⊗ is projective as an A ⊗-module. On the
other hand, the unique projective indecomposable A⊗-module is A⊗, whose dimension
is four. This gives the desired conclusion. �

2.6. Proof of (2) in Proposition 2.4. For an integer m, we obtained an isomorphism
Zm ⊗ κ 	 M(m) ⊕ M(m − 1) by Proposition 2.4 (1). Assume that Zm is decomposable. We
write Zm = Z1 ⊕ Z2 with Zi � 0 (i = 1, 2). By the Krull–Schmidt–Azumaya theorem, we
would obtain two isomorphisms Z1 ⊗ κ 	 M(m) and Z2 ⊗ κ 	 M(m − 1). On the other
hand, the dimension of M(m) as a κ-vector space is odd, a contradiction with Lemma 2.5.
Therefore, Zm is an indecomposable A-lattice, and we have completed the proof of (2) in
Proposition 2.4.

2.2. The non-periodic Heller component.
2.2. The non-periodic Heller component. In this subsection, we show that the Heller

component of A = [X, Y]/(X2, Y2) contains a unique non-periodic component. We denote
by np the union of non-periodic components of A. The aim of this subsection is to
show the following proposition.

Proposition 2.7. The following statements hold.

(1) For any integer m, there exists an isomorphism τ(Zm) 	 Zm−1. Thus, we obtain the
following τ-orbit:

· · · Z−2 Z−1 Z0 Z1 Z2
τ��� � � � τ��� � � τ��� � �τ��� � �τ��� � � τ��� � � · · ·

In particular, np � ∅.
(2) For any n ∈ Z≥1 and λ ∈ P1(κ), there is an isomorphism τZλ

n 	 Z−λn , where we under-
stand −∞ = ∞. In particular, np consists of the unique component containing
Z0.

(3) For any m ∈ Z, the Heller lattice Zm appears on the boundary in np.
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First, we prove that the indecomposable Heller lattice Zm is not periodic in A. In order
to do this, we introduce another -basis of Zm for each m ≤ 0 as follows;

Zm = εe1 ⊕ (Xe1 − Ye2) ⊕ Ye1 ⊕ XYe1

⊕ εe2 ⊕ (Xe2 − Ye3) ⊕ εYe2 ⊕ XYe2

⊕ · · ·
⊕ εe|m| ⊕ (Xe|m| − Ye|m|+1) ⊕ εYe|m| ⊕ XYe|m|
⊕ εe|m|+1 ⊕ Xe|m|+1 ⊕ εYe|m|+1 ⊕ XYe|m|+1.

We denote by B(m) this -basis of Zm.

2.8. Proof of (1) in Proposition 2.7. We compute τZm in the following five cases.

(a) m = 1, (b) m > 1, (c) m = 0, (d) m = −1, (e) m < −1.

Suppose (a). Since the projective cover of Z1 is given by

π1 : A ⊕ A −→ Z1, e1 �−→ εe1, e2 �−→ XYe1,

we have

τZ1 = (−XYe1 + εe2) ⊕ Xe2 ⊕ Ye2 ⊕ XYe2 	 Z0.

Suppose (b). Since the projective cover of Zm is given by

πm : A⊕2m−1 −→ Zm

ei �−→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εek if i = 2k − 1, k = 1, 2, 3, . . . ,m − 1,
Yek−1 − Xek if i = 2k − 2, k = 1, 2, 3, . . . ,m,
−εen if i = 2m − 1,

we have

τZm =

m−2⊕
k=1

(
(Ye2k−1 − Xe2k+1 − εe2k) ⊕ (XYe2k−1 − εXe2k)

⊕ (−Xe2k+2 − Ye2k) ⊕ (−XYe2k)
)

⊕ (Ye2m−3 + Xe2m−1 − εe2m−2) ⊕ (XYe2m−3 − εXe2m−2)

⊕ (XYe2m−1 − εYe2m−2) ⊕ (−XYe2m−2).

We change the above -basis of τZm by using the invertible matrix P = (Pi, j) ∈ M4m()
defined by Pi, j := (−1)iδi, jI4. Then, the representing matrices of the actions of X and Y on
τZm with respect to the new ordered -basis coincide with those on Zm−1. It follows that
τZm 	 Zm−1.

Suppose (c). Since the projective cover of Z0 is given by

π0 : A ⊕ A ⊕ A −→ Z0, e1 �−→ εe1, e2 �−→ Xe1, e3 �−→ Ye1,

we have an isomorphism

τZ0 = (−Ye1 + εe3) ⊕ (−XYe1 + εXe3) ⊕ Ye3 ⊕ XYe3

⊕ (−Xe1 + εe2) ⊕ Xe2 ⊕ (Ye2 − Xe3) ⊕ XYe2
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	 Z−1.

Next, we consider the case (d) and (e). The projective cover of Zm (m ≤ −1) is given by

πm : A⊕2|m|+3 −→ Zm

ei �−→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εek if i = 2k − 1, k = 1, 2, . . . , |m| + 1,
Ye1 if i = 2,
Yek − Xek−1 if i = 2k, k = 1, 2, . . . , |m| − 1,
Xe|m|+1 if i = 2|m| + 2,
Ye|m|+1 − Xe|m| if i = 2|m| + 3.

Thus, an -basis of τZm is given as follows. If m = −1, then

τZ−1 = (εe2 − Ye1) ⊕ (Xe2 + Ye5) ⊕ Ye2 ⊕ XYe2

⊕ (Ye3 − Xe1 − εe5) ⊕ (−Ye4 + Xe5)

⊕ (XYe1 + εYe5) ⊕ XYe5

⊕ (Xe3 − εe4) ⊕ Xe4 ⊕ (XYe3 + εYe4) ⊕ XYe4,

and if m < −1, then

τZm = (Ye1 − εe2) ⊕ (Ye4 + Xe2) ⊕ Ye2 ⊕ XYe2

⊕
|m|−2⊕
k=1

(
(Ye2k+1 − Xe2k−1 − εe2k+2) ⊕ (Ye2k+4 + Xe2k+2)

⊕ (XYe2k−1 + εYe2k+2) ⊕ XYe2k+2

)
⊕ (Ye2|m|+1 − Xe2|m|−1 − εe2|m|+3) ⊕ (−Ye2|m|+2 − Xe2|m|+3)

⊕ (XYe2|m|−1 + εYe2|m|+3) ⊕ XYe2|m|+3

⊕ (Xe2|m|+1 − εe2|m|+2) ⊕ Xe2|m|+2

⊕ (XYe2|m|+1 − εYe2|m|+2) ⊕ XYe2|m|+2.

We now consider the case (d). Let P̃ be the 12 × 12 matrix defined by

P̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
I4 0 0
0 P 0
0 0 P

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
where P = diag(−1, 1,−1, 1). If we change the above -basis of τZ−1 by using P̃, then the
representing matrices of the actions of X and Y on τZ−1 coincide with those on Z−2 with
respect to the -basis B(−2). Thus, we have τZ−1 	 Z−2.

In the case (e), we introduce a new ordered -basis of τZm by using the invertible matrix
P = (Pi, j) ∈ M4(m+1)() defined by

Pi, j :=
{

(−1)i+1δi, jdiag(−1, 1, 1, 1) if (i, j) � (m + 1,m + 1),
(−1)mdiag(−1, 1,−1, 1) if (i, j) = (m + 1,m + 1).

Then, the representing matrices of the actions of X and Y on τZm with respect to the new
ordered -basis coincide with those on Zm−1 with respect to the -basis B(m − 1).
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2.9. Proof of (2) in Proposition 2.7. We show that all indecomposable direct summands
of the Heller lattice Zλ

n belong to a periodic component of A. To simplify the notation,
we use the following symbols. If n > 1, then⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4
...

...
...

...

bn−1,1 bn−1,2 bn−1,3 bn−1,4

bn,1 bn,2 bn,3 bn,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εe1 Xe1 (Ye1 − Xe2) XYe1

εe2 εXe2 (Ye2 − Xe3) XYe2
...

...
...

...

εen−1 εXen−1 (Yen−1 − Xen) XYen−1

εen εXen εYen XYen

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If n = 1, then

(b1,1, b1,2, b1,3, b1,4) := (εe1, Xe1, εYe1, XYe1).

The actions X and Y on Z∞n are given by the following. If n > 1, then

Xbi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εb1,2 if i = j = 1,
bi,2 if i � 1, j = 1,
bi,4 if i � n, j = 3,
εbn,4 if i = n, j = 3,
0 otherwise,

Ybi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εbi,3 + bi+1,2 if i � n, j = 1,
bn,3 if i = n, j = 1,
b1,4 if i = 1, j = 2,
εbi,4 if i � 1, j = 2,
−bi+1,4 if i � n, j = 3,
0 otherwise.

If n = 1, then

Xb1, j =

{
εb1, j+1 if j = 1, 3,
0 otherwise,

Yb1, j =

{
b1, j+2 if j = 1, 2,
0 otherwise.

The statement can be shown by using similar arguments to those in the proof of (1) in
Proposition 2.7. First, we prove the λ = ∞ case. The projective cover of Z∞n in latt-A is
given by

πn,∞ : A⊕2n −→ Z∞n

ei �−→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
b1,1 if i = 1,
b1,2 if i = 2,
bk,3 if i = 2k + 1, k = 1, 2, . . . , n − 1,
bk,1 if i = 2k, k = 2, 3, . . . , n.

Then, we have isomorphisms

Ker(π1,∞) =(−Xe1 + εe2) ⊕ Xe2 ⊕ (−XYe1 + εYe2) ⊕ XYe2

	 Z∞1 ,
Ker(π2,∞) =(−Xe1 + εe2) ⊕ Xe2 ⊕ (−Xe3 + Ye2) ⊕ XYe2

⊕(−Ye1 + Xe4 + εe3) ⊕ (−XYe1 + εXe3) ⊕ (XYe4 + εYe3)⊕XYe3

	 Z∞2 .

Suppose that n ≥ 3. Then, an -basis of the kernel of πn,∞ is given by

Ker(πn,∞) = (Xe1 − εe2) ⊕ Xe2 ⊕ (Ye2 − Xe3) ⊕ XYe2

⊕ (Ye1 − Xe4 − εe3) ⊕ (XYe1 − εXe3) ⊕ (Ye3 + Xe5) ⊕ XYe3
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⊕
n−2⊕
k=2

(
(Ye2k − Xe2(k+1) − εe2k+1) ⊕ (XYe2k − εXe2k+1)

⊕ (Ye2k+1 + Xe2k+3) ⊕ XYe2k+1

)
⊕ (Ye2(n−1) − Xe2n − εe2n−1) ⊕ (XYe2(n−1) − εXe2n−1)

⊕ (XYe2n + εYe2n−1) ⊕ XYe2n−1.

Let P = (Pi, j) ∈ Mat(, 4(n + 1), 4(n + 1)) be the invertible matrix defined by

Pi, j :=
{

diag(−1, 1, 1, 1) if (i, j) = (1, 1),
δi, j(−1)idiag(−1,−1, 1, 1) otherwise.

By changing the -basis of τZ∞n by P, we have an isomorphism Z∞n 	 Ker(πn,∞).
Next, we prove the λ � ∞ case. The projective cover of Zλ

n is given by

πn,λ : A⊕2n −→ Zλ
n

ei �−→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
εek if i = 2k − 1, k = 1, 2, . . . n,
Ye1 − λXe1 if i = 2,
Yek − λXek − Xek−1 if i = 2k, k = 2, 3, . . . , n,

and hence an -basis of the kernel of πn,λ is given by

(εe2 − Ye1 + λXe1) ⊕ (εXe2 − XYe1) ⊕ (Ye2 + λXe2) ⊕ XYe2

⊕ (εe4 − Ye3 + λXe3 + Xe1) ⊕ (εXe4 − XYe3) ⊕ (Ye4 + λXe4 + Xe2) ⊕ XYe4

⊕ · · ·
⊕ (εe2n − Ye2n−1 + λXe2n−1 + Xe2n−3) ⊕ (εXe2n − XYe2n−1)

⊕ (Ye2n + λXe2n + Xe2n−2) ⊕ XYe2n.

Let P be the invertible matrix P = (Pi, j) ∈ Mat(, 4(n + 1), 4(n + 1)) defined by Pi, j :=
δi, j(−1)i+1I4. By similar arguments as before, we obtain an isomorphism Z−λn 	 Ker(πn,λ).
This finishes the proof.

2.10. The statements (1) and (2) in Proposition 2.7 imply that np consists of the unique
component containing Z0, and it contains the Heller lattice Zn for all n ∈ Z. In this paper, we
call np the non-periodic Heller component of A.

Finally, we prove that non-periodic Heller lattices appear on the boundary in np. In
other words, for each Heller lattice Zn, the middle term of E (Zn) is indecomposable as
an object of the projectively stable category latt-A := latt-A/proj-A, where proj-A is the
full subcategory of latt-A consisting of finitely generated projective A-modules. Since the
Auslander–Reiten translation τ induces an automorphism of np, it is sufficient to consider
the case of n = 1. Let 2 := {el, Xel, Yel, XYel}l=1,2 be the -basis of A ⊕ A. We fix the -
bases 2 and B(1). Recall that the projective cover of Z1 is given by

π1 : A ⊕ A −→ Z1, e1 �−→ εe, e2 �−→ XYe.

Then, the representing matrix of π1 is
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 ε 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
Let ψ ∈ HomA(Z1, A ⊕ A), and we write

ψ(εe) =
2∑

i=1

(ai1ei + ai2Xei + ai3Yei + ai4XYei),

ψ(XYe) =
2∑

i=1

(bi1ei + bi2Xei + bi3Yei + bi4XYei).

Since εψ(XYe) = XYψ(εe), the representing matrix of ψ is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εb14 0 0 0
a12 εb14 0 0
a13 0 εb14 0
a14 a13 a12 b14

εb24 0 0 0
a22 εb24 0 0
a23 0 εb24 0
a24 a23 a22 b24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus, the set of endomorphisms of Z1 factorizing through π1 is⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
εα 0 0 0
β εα 0 0
γ 0 εα 0
εδ εγ εβ εα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
α, β, γ, δ ∈ 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ .
On the other hand, the radical of the endomorphism ring of Z1 is given by

radEndA(Z1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
εa 0 0 0
b εa 0 0
c 0 εa 0
d εc εb εa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
a, b, c, d ∈ 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ .
Therefore, we may take an endomorphism ϕ which satisfies conditions (i) and (iii) in Propo-
sition 1.5 as

ϕ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
and we consider the pullback diagram along π1 and ϕ:

0 Z0 A ⊕ A Z1

Z1

0

E1Z0 00

�� ��
π1

��

ϕ

��
��

�� �� �� ��

��
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By Proposition 1.5, the upper short exact sequence is isomorphic to E (Z1). Then, an -basis
of E1 is given by

E1 ={( f1, f2, x) ∈ A ⊕ A ⊕ Z1| π1( f1, f2) = ϕ(x)}
= (e2 + εe3) ⊕ Xe2 ⊕ Ye2 ⊕ XYe2

⊕ (XYe1 + ε
2e3) ⊕ (εXe3) ⊕ (εYe3) ⊕ (XYe3).

2.11. Proof of (3) in Proposition 2.7. Since τZn = Zn−1 and τ is an autofunctor on the
stable module category latt-A, it is enough to show that the A-lattice E1 has exactly one
non-projective indecomposable direct summand. We have isomorphisms

E1 	 (e2 + εe3) ⊕ (Xe2 + εXe3) ⊕ (Ye2 + εYe3) ⊕ (XYe2 + εXYe3)

⊕ (ε2e3) ⊕ (εXe3) ⊕ (εYe3) ⊕ (XYe3)

	 A ⊕ ε2e3 ⊕ εXe3 ⊕ εYe3 ⊕ XYe3.

Let E1 = ε2e3 ⊕ εXe3 ⊕ εYe3 ⊕ XYe3. Then, E1 is not isomorphic to A. Since
E1⊗ 	 A⊗, E1 is an indecomposable A-lattice, and we complete the proof of our claim.

2.3. The middle term of AR sequences ending at non-periodic Heller lattices.
2.3. The middle term of AR sequences ending at non-periodic Heller lattices. In this

subsection, we show the following proposition.

Proposition 2.12. Let E (Zm) : 0 → Zm−1 → Em → Zm → 0 be the almost split sequence
ending at Zm. Then, the following statements hold.

(1) For m ∈ Z, Em is an indecomposable object in latt-A.
(2) For m ≤ 0, we have an isomorphism Em ⊗ κ 	 M(m − 1)⊕4 in latt-A.
(3) For m ≤ 0, Em is a non-projective indecomposable A-lattice.

Let X be an A-lattice and π : P → X the projective cover. Let Q ⊗ κ → X ⊗ κ be the
projective cover. Then rank Q ≤ rank P. On the other hand, it lifts to Q → X and it is
an epimorphism by Nakayama’s lemma. Thus, we have rank Q = rank P and P ⊗ κ is the
projective cover of X ⊗ κ. Therefore, we have τ(X) ⊗ κ 	 Ω(X ⊗ κ) as objects in the stable
module category mod-A ⊗ κ, where Ω is the syzygy functor.

Lemma 2.13. For all n ∈ Z, there is an isomorphism

Ω(M(n)) 	 M(n − 1) in mod-A ⊗ κ.
Proof. Since A⊗κ is symmetric, the functorΩ : mod-A⊗κ → mod-A⊗κ is an autofunctor.

LetΩ−1 be the quasi-inverse ofΩ. Note that Remark 2.2 implies that there are isomorphisms

Ω2(M(l)) 	 M(l − 2) in mod-A ⊗ κ
for any l since A ⊗ κ is symmetric.

First, we show that Ω(M(n)) 	 M(n − 1) in mod-A ⊗ κ for n ≤ 0 by induction on n. It is
clear for n = 0. Assume that the statement holds for n ≤ k ≤ 0. The induction hypothesis
Ω(M(n)) 	 Ω(n − 1) implies

Ω(M(n − 1)) 	 Ω2(M(n)) 	 M(n − 2) in mod-A ⊗ κ,
and the statement is true for n − 1.
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Now, we show that Ω−1(M(n)) 	 M(n+ 1) in mod-A⊗ κ for n ≥ 0 by induction on n. It is
easy to check that Ω(M(1)) 	 M(0). Thus, the statement is true for n = 0. Assume that the
statement holds for 1 ≤ k ≤ n. The induction hypothesis Ω−1(M(n)) 	 M(n + 1) implies

Ω−1(M(n + 1)) 	 Ω−2(M(n)) 	 M(n + 2) in mod-A ⊗ κ,
and the statement is true for n + 1. �

2.14. Proof of Proposition 2.12. (1) It is a direct consequence from the statement (3) in
Proposition 2.7.

We show the statements (2) and (3) by induction. Since an -basis of E1 is given by

E1 = ε2e1 ⊕ εXe1 ⊕ εYe1 ⊕ XYe1,

the projective cover of E1 is

πE1 : A⊕4 → E1, e1 �→ ε2e1, e2 �→ εXe1, e3 �→ εYe1, e4 �→ XYe1,

and an -basis of τE1 is given by

τE1 = (Xe1 − εe2) ⊕ Xe2 ⊕ (Ye2 − εe4) ⊕ XYe2

⊕ (Ye1 − εe3) ⊕ (Xe3 − εe4) ⊕ Ye3 ⊕ XYe3

⊕ (XYe1 − ε2e4) ⊕ Xe4 ⊕ Ye4 ⊕ XYe4.

Applying the functor − ⊗ κ to τE1, we have an isomorphism

τE1 ⊗ κ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ye1 − εe3 XYe1 − ε2e4

Xe1 − εe2

��
����

��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ye2 − εe4 XYe2

Xe2

�������

��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊕

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ye3 XYe3

Xe3 − εe4

������

��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊕
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Ye4 XYe4

Xe4

		����

��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
	 M(−1)⊕4.

On the other hand, the dimension of E0 ⊗ κ as κ-vector space is 12 since the sequence

0 −→ Z−1 ⊗ κ −→ E0 ⊗ κ −→ Z0 ⊗ κ −→ 0

is exact. It implies that E0 has no projective direct summands. Thus, E0 is an indecompos-
able A-lattice such that it is isomorphic to τE1.

Now, we assume that the statements (2) and (3) are true for m + 1 ≤ 0. By the induction
hypothesis (3), τEm+1 is defined. Then, the statements (1) and (3) in Proposition 2.7 imply
that there is an isomorphism Em 	 τEm+1 in latt-A. By applying − ⊗ κ to the both sides, we
have the following isomorphisms

Em ⊗ κ 	 τ(Em+1) ⊗ κ 	 Ω(Em+1 ⊗ κ) 	 Ω(M(m)⊕4) 	 M(m − 1)⊕4

in mod-A ⊗ κ from Lemma 2.13 and the induction hypothesis (2). By comparing the non-
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projective direct summands of Em ⊗ κ and M(m − 1)⊕4, we have an isomorphism

Em ⊗ κ 	 M(m − 1)⊕4 ⊕ P in mod-A ⊗ κ,
where P is a projective A ⊗ κ-module.

On the other hand, since Em is the middle term of E (Zm), we have rank(Em) = −8m+ 12,
which equals to dimκ(M(m− 1)⊕4). Therefore, P = 0, and the statements (2) and (3) are true
for m.

Corollary 2.15. Fix an integer m. Let Em be the middle term of E (Zm). Then, there is an
isomorphism

Em ⊗ κ 	 M(m − 1)⊕4

as objects in mod-A ⊗ κ.
Proof. By Proposition 2.12, we may assume that m is positive. We show that Em ⊗ κ 	

M(m − 1)⊕4 in mod-A ⊗ κ by induction. If m = 1, then we have isomorphisms in mod-A ⊗ κ
M(0)⊕4 	 Ω−1(M(−1)⊕4) 	 Ω−1(E0 ⊗ κ) 	 E1 ⊗ κ,

where Ω−1 is the quasi-inverse of the autofunctor Ω. Suppose that Em ⊗ κ 	 M(m − 1)⊕4 in
mod-A ⊗ κ. Then, we have

M(m)⊕4 	 Ω−1(M(m − 1)⊕4) 	 Ω−1(Em ⊗ κ) 	 Em+1 ⊗ κ in mod-A ⊗ κ,
which gives the desired conclusion. �

2.4. Excluding the possibility B∞, C∞ and D∞.
2.4. Excluding the possibility B∞, C∞ and D∞. From now on, we denote by En the

unique non-projective indecomposable direct summand of En. Let Fn be the middle term of
E (En). The aim of this subsection is to show the following proposition.

Proposition 2.16. For any n ∈ Z, the non-projective indecomposable direct summands
of Fn are Zn−1 and an indecomposable A-lattice Fn. Moreover, for all m, neither Zm nor Em

are isomorphic to Fn.

It is enough to show the assertion for the case F1. By the proof of (3) in Proposition 2.7,
we have

E1 = ε2e ⊕ εXe ⊕ εYe ⊕ XYe.

Since dimκ(E1 ⊗ κ) = 4 = dimκ(M(0)⊕4), we have an isomorphism E1 ⊗ κ 	 M(0)⊕4 by
Corollary 2.15.

We construct E (E1). Let 4 := {el, Xel, Yel, XYel}l=1,...,4 be the -basis of A⊕4. We fix
these -bases. Since the projective cover of E1 is given by

πE1 : A⊕4 −→ E1, e1 �−→ ε2e, e2 �−→ εXe, e3 �−→ εYe, e4 �−→ XYe,

the representing matrix of πE1 is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ε 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 ε 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 ε2 0 0 ε 0 0 ε 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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On the other hand, the radical of EndA(E1) is given by

rad EndA(E1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
εa 0 0 0
b εa 0 0
c 0 εa 0
d c b εa

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
a, b, c, d ∈ 

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ .
By similar arguments to 2.10 in the subsection 2.3, we obtain:

Lemma 2.17. Any endomorphism of E1 which factors through p is reprsented by⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ε2a 0 0 0
ε2b ε2a 0 0
ε2c 0 ε2a 0
ε2d ε2c ε2b ε2a

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for some a, b, c, d ∈ .

Proof. The proof is straightforward. �

Let ϕ : E1 → E1 be the endomorphism defined by ϕ(ε2e) = εXYe. Note that ϕ(εXe) =
ϕ(εYe) = ϕ(XYe) = 0. We consider the pullback diagram along πE1 and ϕ:

(2.1)

0 E0 A⊕4 E1

E1

0

F1E0 00

�� ��
πE1

��

ϕ

��
��

�� �� �� ��

��

Lemma 2.18. The following statements hold.

(1) ϕ does not factor through πE1 .
(2) For each f ∈ radEndA(E1), ϕ ◦ f factors through πE1 .

Proof. (1) If ϕ factors through πE1 , then it contradicts with Lemma 2.17.
(2) Let f ∈ radEndA(E1). Assume that f (ε2e) = εa(ε2e) + b(εXe) + c(εYe) + d(XYe) for

some a, b, c, d ∈ . Since ε2 f (XYe) = XY f (ε2e) = ε3aXYe, we have f (XYe) = εaXYe, and
hence ϕ ◦ f (ε2e) = ε2a(XYe). Define ψ : E1 → A⊕4 by ψ(ε2e) = aXYe1. Then, it is easy to
check ϕ ◦ f = πE1 ◦ ψ. �

By Proposition 1.5, the upper short exact sequence in (2.1) is the almost split sequence
ending at E1.

2.19. Proof of Proposition 2.16. The A-lattice F1 is a direct sum of F1 and F′1, where

F1 =(Xe1 − εe2) ⊕ Xe2 ⊕ (XYe1 − εYe2) ⊕ XYe2

⊕ (Ye1 − εe3) ⊕ (Xe3 − Ye2) ⊕ Ye3 ⊕ XYe3

⊕ (Xe3 + ε
2e) ⊕ εXe ⊕ εYe ⊕ XYe,

F′1 =(εe4 + ε
2e) ⊕ (Xe4 + εXe) ⊕ (Ye4 + εYe) ⊕ (XYe4 + εXYe).

Obviously, the A-lattice F′1 is isomorphic to the Heller lattice Z0. We show that the A-lattice
F1 is indecomposable. The actions of X and Y on F1 with respect to the above basis are
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given by the following matrices:

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
−ε 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 −ε 0 0 −1 0 0

0 0 0 0
−ε 0 0 00 0 0 0 0 0
0 0 1 0

0 0 0 0
ε 0 0 00 0 0 0 0 0
0 0 ε 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0 0 0
0 1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 00 −ε 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0

0 0 0 0
0 0 0 00 0 ε 0 0 0
0 ε 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let M = (xi, j) ∈ EndA(F1) be an idempotent. By the equalities MX = XM and MY = Y M,
the idempotent M is of the form M = (M1 M2), where M1 and M2 are

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1,1 0 0 0 −εx3,7 0
x2,1 x1,1 0 0 −εx4,7 −εx3,7

x3,1 x3,2 x1,1 0 x3,5 x3,6

x4,1 x4,2 x2,1 x1,1 x4,5 x4,6

−εx3,2 0 0 0 x1,1 − εx3,6 0
x6,1 −εx3,2 0 0 x6,5 x1,1 − εx3,6

−εx8,2 0 ε2x3,2 0 x7,5 εx3,2

x8,1 x8,2 x8,3 −εx3,2 x8,5 x8,6

x9,1 0 0 0 x9,5 0
x10,1 −x9,1 0 0 −x12,7 −x9,5

x11,1 0 εx9,1 0 x11,5 x9,1

x12,1 −x11,1 εx10,1 −εx9,1 x12,5 x12,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 εx3,11 0 0 0
0 0 x2,9 −εx3,11 0 0

x3,7 0 x3,9 −x8,12 x3,11 0
x4,7 −εx3,7 x4,9 x4,10 x4,11 −x3,11

0 0 −εx8,12 0 0 0
0 0 x6,9 εx8,12 0 0

x1,1 − εx3,6 0 εx8,10 0 εx8,12 0
x8,7 x1,1 − εx3,6 x8,9 x8,10 x8,11 x8,12

0 0 x9,9 0 0 0
0 0 x10,9 x9,9 0 0
−x9,5 0 x11,9 0 x9,9 0
x12,7 −εx9,5 x12,9 x11,9 x12,11 x9,9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2,9 + εx3,7 − εx4,11 = 0,
εx3,1 − εx4,2 + x6,1 = 0,
εx3,9 + εx4,10 + x6,9 = 0,
x6,9 + x9,9 = x1,1 − εx3,6 + εx8,11,

x6,1 − x8,3 + x9,1 = 0,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x6,5 + εx8,7 + x9,5 = 0,
x7,5 − x8,3 + εx8,6 = 0,
x9,5 + x10,9 − x12,11 = 0,
−x10,1 + x11,5 + x12,6 = 0.

Note that, it follows that we have x6,9 ∈ ε and x9,9 = x1,1 − ε f for some f ∈ . Since M is
an idempotent, the following equality holds:

(2.2) x1,1(1 − x1,1) = εx3,11x9,1 + ε
2x3,2x3,7.

Assume that x1,1 ≡ 0 mod ε. By the assumption, the element x9,9 belongs to ε. By
comparing the (9, 1)-entries and (3, 2)-entries of M and M2, respectively, we have

(2.3) x9,1 = x1,1x9,1 + x9,1x9,9 − εx3,2x9,5 ∈ ε,

(2.4) x3,2 = x1,1x3,2 + x1,1x3,2 − εx3,2x3,6 + x9,1x8,12.

It follows from (2.3) and (2.4) that the equality

(2.5) x3,2(1 − 2x1,1 + εx3,6 + εx9,5(1 − x1,1 − x9,9)−1x8,12) = 0

holds. Thus, the elements x3,2 and x9,1 are zero, and hence x1,1 = 0. Let M be M mod ε.
As M2 = M, it suffices to show that M is the zero matrix to conclude that M itself is the zero
matrix. Let ei (1 ≤ i ≤ 12) be standard row vectors. Then, the span of e1, e5, e9 is stable by
M and the representing matrix is nilpotent. Thus, eiM = 0 holds for i = 1, 5, 9. From the
equalities

e2M = x2,1e1 + x2,9e9, e6M = x6,1e1 − x6,9e9, and e7M = x7,5e5,

we also obtain eiM = 0 for i = 2, 6, 7. Then a similar argument shows eiM = 0 for i = 10, 11,
and then for i = 3, 12, and finally for i = 4, 8.

Assume that x1,1 ≡ 1 mod ε. Recall that I12 is the identity matrix of size 12. Then,
I12 − M is an idempotent whose (1, 1)-entry is zero modulo ε, and M = I12 follows.

On the other hand, the induced sequence
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0 −→ E0 ⊗ κ −→ F1 ⊗ κ −→ E1 ⊗ κ −→ 0

splits by [17, Proposition 4.5]. Thus, there is an isomorphism

F1 ⊗ κ 	 M(0)⊕4 ⊕ M(−1)⊕4.

By Proposition 2.4, we have F1 ⊗ κ 	 M(0)⊕3 ⊕ M(−1)⊕3 as F′1 	 Z0. It follows from
Proposition 2.4 and Corollary 2.15 that F1 is neither isomorphic to Zm nor Em for all m.

3. The shape of the non-periodic Heller component

3. The shape of the non-periodic Heller component
We continue using the symbols of the previous section. In this section, we describe the

shape of the non-periodic Heller component np. Since the component np has no loops
by Lemma 1.13, one can apply Theorem 1.9 to np. Thus, there exist a directed tree T and
an admissible group G such that np 	 ZT/G. We determine the directed tree T and the
admissible group G in the rest of the paper. The final result is given in Section 4. The aim
of this section is to give the candidates for T and to show G is trivial.

3.1. Non zero subadditive function on the component.
3.1. Non zero subadditive function on the component. In this subsection, we show

that the admissible group G is trivial. By Theorem 1.8, if np admits non-zero subadditive
function f : (np)0 → Z≥0, then there is an isomorphism np 	 ZΔ for some valued
quiver Δ since np is not smooth. On the other hand, Theorem 1.9 implies that the tree
class is uniquely determined by np and G is unique up to conjugation. Thus, we have
T = Δ and G is trivial if np admits a non-zero subadditive function.

Now, we introduce two functions. Let X be an indecomposable A-lattice. Define two
functions D and  by

D(X) := �{non-projective indecomposable direct summands of X ⊗ κ},

(X) := the rank of X as an -module.

Let X = X1 ⊕ · · · ⊕ Xl, where X1, . . . , Xl are indecomposable A-lattices. Then, we also define

D(X) :=
l∑

i=1

D(Xi), and (X) :=
l∑

i=1

(Xi).

We denote by add(np) the set of finite direct sums of A-lattices which belong to np.
Our goal of this subsection is to show the following proposition.

Proposition 3.1. Let D and  be the functions given as above. Then, the following
statements hold.

(1) D(Zm) = 2 and D(Em) = 4 for any m ∈ Z.
(2) D is additive on np with D = D ◦ τ. In particular, the admissible group G is trivial.
(3) Let M ∈ add(np) with D(M) = 2. Then, M is indecomposable.
(4) The values of D on add(np) are even.
(5) The function  is additive along exact sequences.

Lemma 3.2. Let  be a component of the stable Auslander–Reiten quiver for latt(�)-Λ,
where Λ is a symmetric -order, and D : 0 → Z≥0 the function defined as above. Then, the
equality D(X) = D(τX) holds.
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Proof. Let X ∈  and π : P → X the projective cover of X. Then, π ⊗ κ : P ⊗ κ → X ⊗ κ
is the projective cover by Nakayama’s lemma.

Since the functor −⊗ κ is exact on lattices, we obtain an isomorphism τX ⊗ κ 	 Ω(X ⊗ κ),
where Ω is the first syzygy over mod-Λ ⊗ κ. It implies that the number of non-projective
indecomposable direct summands of τX⊗κ equals to the number of non-projective indecom-
posable direct summands of Ω(X ⊗ κ). As Ω is an autofunctor of the stable module category,
D(X) = D(τX) follows. �

Lemma 3.3. Let Λ be a symmetric -order and D the function defined as above. If a
short exact sequence 0→ τL→ E → L→ 0 in latt(�)-Λ is the almost split sequence ending
at L, then the equality

D(L) + D(τL) = D(E)

holds whenever L is not isomorphic to any direct summand of the Heller lattices.

Proof. Let L be an indecomposable Λ-lattice such that L ⊗ is projective as an Λ ⊗-
module. Suppose that L is not isomorphic to Heller lattices. By [17, Proposition 4.5], the
induced exact sequence

0→ τL ⊗ κ → E ⊗ κ → L ⊗ κ → 0

splits, which gives the desired conclusion. �

Lemma 3.4. Let  be a component of the stable Auslander–Reiten quiver for latt(�)-Λ,
where Λ is a symmetric -order, X a vertex of . Then, D(X) is a positive integer.

Proof. Suppose that D(X) = 0. Let P → X be the projective cover of X. Then, P ⊗ κ
is the projective cover and X ⊗ κ is projective as an A ⊗ κ-module, we have τX ⊗ κ = 0, a
contradiction. �

3.5. Proof of Proposition 3.1. (1) This is a direct consequence of Propositions 2.4 and
2.12.

(2) By Lemma 3.3, it is enough to consider the case X 	 Zn for some n. Since E (Zn) is of
the form

0 −→ Zn−1 −→ En −→ Zn −→ 0,

we have 2D(Zn) = D(En) by (1). Therefore, D is additive with D = D ◦ τ.
(3) It is sufficient to show the case that M is not isomorphic to any Heller lattice. Suppose

that M = M1 ⊕ M2 for some non-zero A-lattices M1 and M2. Since M ∈ add(np), the
direct summands M1 and M2 are not projective. Thus, we have D(M1) = D(M2) = 1 by
Lemma 3.4, and the A-lattices M1 and M2 are vertices of np. Then, it follows from
Propositions 2.4, 2.12 and the proof of Lemma 3.3 that Mi ⊗ κ is isomorphic to M(ni) for
some ni ∈ Z, a contradiction with Lemma 2.5.

(4) Let U ∈ add(np). In (3), we have proved that there exists an isomorphism

U ⊗ κ 	
⊕

j∈J

M( j)⊕n j ,
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where J is a finite set of Z. This implies that the dimension of U ⊗ κ is the sum of finite odd
numbers. Therefore, D(U) is even by Lemma 2.5.

(5) Obviously, the function  is additive for short exact sequences.

3.2. Valencies of vertices in the component.
3.2. Valencies of vertices in the component. In this subsection, we observe the number

of arrows from each vertex in np. From Proposition 2.7, the Heller lattice Zn appears on
the boundary in np, and from Proposition 2.16, we have

�{arrows starting at En in np} = �{arrows ending at En in np} = 2

for all n ∈ Z. Thus, the component np admits the following valued subquiver with trivial
valuations:

Given a vertex X of np, we define a function d on np by

d(X) := �{arrows from X in np}.
In order to give candidates for the tree class T of np, we introduce a pair of integers

(q(M),H(M)) for M ∈ np as follows. If M is isomorphic to the Heller lattice Zn, then
(q(M),H(M)) = (1, n). Otherwise, we may choose n such that a composition of irreducible
morphisms f1 ◦ · · · ◦ fk : Zn → M has the minimum length, and define (q(M),H(M)) =
(k + 1, n + k). For an A-lattice M, we also define the equilateral triangle T (M) ⊂ np as
follows:

• The vertices of T (M) are M, Zn and ZH(M).
• The edge T (M)1 is a chain of irreducible morphisms from Zn to M.
• The edge T (M)2 is a chain of irreducible morphisms from M to ZH(M).
• The edge T (M)3 is a chain of the Auslander–Reiten translation from ZH(M) to Zn.

The set of vertices of np is the disjoint union of the following three sets:

np+ = {X ∈ np | H(X) > 0},
np0 = {X ∈ np | H(X) = 0},
np− = {X ∈ np | H(X) < 0}.
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From now on, we assume that np � ZA∞. Then, there exists an A-lattice X such that
(i) the A-lattice X is not isomorphic to Zm and Em for all m.

(ii) the triangle T (X) is contained in np−,
(iii) the number of outgoing arrows is two for each A-lattices on the edge T (X)1 except for

ZH(X)−q(X)+1 and X, and the number of indecomposable direct summands of EX is not
2, where EX is the middle term of E (X).

(iv) valuations of arrows in the triangle T (X) is trivial.

It follows from Proposition 3.1 that D(M) = 2q(M) for any M ∈ T (X). Using Proposition
3.1 and results from Section 2, we may assume that q(X) ≥ 3 and H(X) = −1. We set
q(X) = q.

Assume that E (X) is given by

E (X) : 0 −→ τX −→
p⊕

i=1

Wi −→ X −→ 0,

where Wp ∈ T (X). Then, the neighborhood of X in np is given as follows.

(3.1)

Here, we allow the possibility that Wi 	 Wk for some i � k instead of writing the valuation.
If D(Wi) = si, then the values of D of (3.1) are as follows:

(3.2)
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Lemma 3.6. The following statements hold:

(1) The sum of s1, s2, . . . sp−2 and sp−1 is 2(q + 1).
(2) The inequality si ≥ q is satisfied for any i.

Proof. (1) By Lemma 3.3, we have

4q =
p−1∑
i=1

D(Wi) + D(Wp) =
p−1∑
i=1

si + 2(q − 1).

It follows that (1) holds.
(2) From Proposition 3.1 (2) and (3.2), we obtain that 2si ≥ 2q. �

Lemma 3.7. Suppose that q < ∞. Then, d(X) is precisely three.

Proof. Lemma 3.6 implies that

2(q + 1) =
p−1∑
i=1

si ≥ (p − 1)q.

Thus, the inequality −2 ≤ q(3 − p) holds. Since p and q are positive, we have p = 1, 2, 3. If
p = 1, then q = −1 from Lemma 3.6 (1), a contradiction. If p = 2, then s1 = 2(q+ 1), which
contradicts with the maximality of q namely, the condition (iii). Therefore, we have p = 3.
Then, we may assume that E (X) is of the form

0 −→ τX −→ W1 ⊕W2 ⊕ Y −→ X −→ 0

with Y ∈ T (X). We show that the three non-projective indecomposable A-lattices W1, W2

and Y are pairwise non-isomorphic.
Suppose that Y 	 Wi for some i. Since Y ∈ T (X), there exist arrows in T (X) such that

their valuations are not trivial, a contradiction.
Suppose that W1 	 W2. Then, the neighborhood of X in np is the following valued

quiver:

Indeed, if we write the value W1
(a,b)−−−→ X, then clearly a = 2 by the assumption. Thus, E (X)

becomes

0 −→ τX −→ W⊕2
1 ⊕ Y −→ X −→ 0

and we have D(W1) = q+1 from Lemma 3.3. Suppose that the almost split sequence ending
at W1 is

E (W1) : 0 −→ τW1 −→ τX⊕b ⊕ U1 −→ W1 −→ 0,

where U1 is an A-lattice. If U1 = 0, then Lemma 3.3 implies that

q + 1 = D(W1) = qb,
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hence q(b − 1) = 1, which contradicts with q ≥ 3. Thus, U1 � 0 and q(b − 1) < 1. Since
b ≥ 1, we have b = 1.

From the almost split sequence E (W1), we have D(U1) = 2, and it implies that U1 is
indecomposable by Proposition 3.1. Therefore, we have q = 3 from the inequality

4 = D(U1) + D(τU1) ≥ D(τW1) = q + 1.

Note that np is the following valued stable translation quiver.

(3.3)

It follows from Propositions 2.4, 2.12 and the proof of Lemma 3.3 that there is an isomor-
phism

τW⊕2
1 ⊗ κ 	 M(−3)⊕3 ⊕ M(−2)⊕2 ⊕ M(−1)⊕3,

a contradiction. �

4. Main results

4. Main results
In this section, we continue using the symbols and the assumption of the previous section.

By Proposition 2.12, np is not smooth. From the results in Subsection 3.1, the function
D is subadditive with D = D ◦ τ on np. Therefore, there exists a directed tree T such that
np = ZT . Since D is additive with D(X) = D(τX) for all X ∈ np, it satisfies

2D(X) =
∑

Y→X in T

dYXD(Y) +
∑

X→Y in T

d′XY D(Y) X ∈ T.

Thus, the tree class T of np is one of infinite Dynkin diagrams or Euclidean diagrams
from Theorem 1.10.

Lemma 4.1. Suppose that X ∈ np is not isomorphic to Zn for all n. Then, the middle
term of E (X) has no projective modules as direct summands.

Proof. By the proof of (3) in Proposition 3.1, X ⊗ κ and τX ⊗ κ have no projective
modules as direct summands. Since X is not a Heller lattice, the induced exact sequence
E (X) ⊗ κ : 0→ τX ⊗ κ → EX ⊗ κ → X ⊗ κ → 0 splits. �
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Now, the following theorem can be proved.

Theorem. Let  be a complete discrete valuation ring, A = [X, Y]/(X2, Y2) and Γs(A)
the stable Auslander–Reiten quiver for latt(�)-A. Assume that the residue field κ is alge-
braically closed. Then, the following statements hold.

(1) Let M be an indecomposable A⊗ κ-module. Then the Heller lattice of M lies on a non-
periodic component of Γs(A) if and only if M is given by a string path of even length.

(2) Γs(A) contains a unique connected non-periodic Heller component np.
(3) The component np is isomorphic to ZA∞.
(4) Every non-periodic indecomposable Heller lattice appears on the boundary of the com-

ponent np.

Proof. The statements (1), (2) and (4) had been proved in Proposition 2.7. We only need
to show the statement (3). Assume that T � A∞. It implies from Propositions 2.7 and 2.16
that T is one of Ẽ6, Ẽ7, Ẽ8, F̃41 or F̃42. On the other hand, Lemma 3.7 implies that T is
neither F̃41 nor F̃42.

First, we suppose that np = ZẼ6. Then, np has the following subquiver with bounds
Un and Vn:

(4.1)

Z−1 Z0 Z1Z−2

E−1 E0 E1

F0 F1F−1 F2

W0 W1 W2

W ′0 W ′1 W ′2

U1 U2

V1 V2

· · · · · ·
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By writing the ranks as -modules of vertices in (4.1), we obtain:

(4.2)

8 4 412

20 12 4

24 1236 γ

x x′ x′′

y y′ y′′

α α′

β β′

· · · · · ·
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Thus, we have the following system of linear equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
β + β′ = y′ · · · · · · · · · (1)
α + α′ = x′ · · · · · · · · · (2)
x + y = 40 · · · · · · · · · (3)
x′ + y′ = 24 · · · · · · · · · (4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x + x′ = 24 + α · · · · · · · · · (5)
y + y′ = 24 + β · · · · · · · · · (6)
x′ + x′′ = 12 + α′ · · · · · · · · · (7)
y′ + y′′ = 12 + β′ · · · · · · · · · (8)

From the equations (1), (2), (5) and (6), we have x = 24 − α′ and y = 24 − β′. Using
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these equations and (3), we have α′ + β′ = 8. On the other hand, the equations (4),(7), (8)
and α′ + β′ = 8 imply x′′ + y′′ = 8. Thus, we have γ = 0, a contradiction. Therefore,
np � ZẼ6.

Next we suppose that np = ZẼ7. Then, np has the following subquiver with upper
bounds Un:
(4.3)

F−2 F−1 F0 F1

G−2 G−1 G0 G1 G2W ′−1 W ′0 W ′1 W ′2

W−1 W0 W1 W2

V0 V1 V2

U1 U2

· · · · · ·
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By writing the ranks as -modules of vertices in (4.3), we obtain:
(4.4)

48 36 24 12

72 56 40 24 12y y′ y′′ y′′′

x x′ x′′ x′′′

α α′ α′′

γ γ′

· · · · · ·
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where these unknown letters are the ranks of the corresponding vertices. Thus, we have the
following system of linear equations by Proposition 3.1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + y = 80 · · · · · · · · · (1)
x′ + y′ = 60 · · · · · · · · · (2)
x′′ + y′′ = 40 · · · · · · · · · (3)
x′′′ + y′′′ = 24 · · · · · · · · · (4)
x + x′ = 56 + α · · · · · · · · · (5)
x′ + x′′ = 40 + α′ · · · · · · · · · (6)
x′′ + x′′′ = 24 + α′′ · · · · · · · · · (7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y + y′ = 56 · · · · · · · · · (8)
y′ + y′′ = 40 · · · · · · · · · (9)
y′′ + y′′′ = 24 · · · · · · · · · (10)
x′ + γ = α + α′ · · · · · · · · · (11)
x′′ + γ′ = α′ + α′′ · · · · · · · · · (12)
γ + γ′ = α′ · · · · · · · · · (13)

From the equations (1), (2), (5) and (8), we have α = 28. Similarly, the equations (2), (3), (6)
and (9) yield α′ = 20. By adding both sides of the equations (11) and (12), we obtain the
equation

x′ + x′′ + γ + γ′ = α + 2α′ + α′′.

From (6) and (13), the left hand side of the above equation is 40 + 2α′. Then, from (3), (4),
(7), (10), we have
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60 = (x′′ + x′′′) + (y′′ + y′′′) = 64,

a contradiction.
Finally, we assume that np = ZẼ8. Then, np has the following subquiver with

upper bounds Vn with H(K5) = 5:
(4.5)

W1 W2 W3

V2 V3 V4 V5U′2 U′3 U′4

U3 U4 U5

K4 K5

· · · · · ·
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By writing the ranks as -modules of vertices in (4.5), we obtain
(4.6)

32 32 40

48 44 48 60y y′ y′′

x x′ x′′

α β

· · · · · ·
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such that these unknown values satisfy the following system of linear equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x + y = 60 · · · · · · · · · (1)
x′ + y′ = 60 · · · · · · · · · (2)
x′′ + y′′ = 68 · · · · · · · · · (3)
x + x′ = 44 + α · · · · · · · · · (4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x′ + x′′ = 48 + β · · · · · · · · · (5)
y + y′ = 44 · · · · · · · · · (6)
y′ + y′′ = 48 · · · · · · · · · (7)
α + β = x′ · · · · · · · · · (8)

From (1), (2), (4) and (6), we obtain

120 = x + x′ + y + y′ = 88 + α,

and hence, α = 32. Similarly, using equations (2), (3), (5) and (7), we have β = 32. The
equation (8) implies that x′ = 64, which contradicts with the equation (2). Thus, the above
system of linear equations has no solutions, and we conclude that np � ZẼ8. Therefore,
we have np = ZA∞. �

5. Remarks on the shape of stable AR components

5. Remarks on the shape of stable AR components
In this section, we describe the shape of a component of the stable Auslander–Reiten

quiver for a symmetric -order A. By Lemma 1.13, non-periodic stable Auslander–Reiten
components of A have no loops. Thus, we can apply the Riedtmann structure theorem
(Theorem 1.9) to such stable components. Our goal is to show Propositions 5.1 and 5.4. In
this section, the middle term of the almost split sequence ending at X is denoted by EX .
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5.1. The case of periodic components.
5.1. The case of periodic components. Let A be a symmetric -order and  a periodic

component of the stable Auslander–Reiten quiver of A. Assume that the stable Auslander–
Reiten quiver Γs(A) has infinitely many vertices. In this subsection, we discuss the shape of
.

Proposition 5.1 ([1, Theorem 1.27]). Let A be a symmetric -order and  a periodic
component of Γs(A). Assume that Γs(A) has infinitely many vertices. Then, one of the fol-
lowing statements holds.

(1) If  has loops, then  \ {loops} = ZA∞/〈τ〉. Moreover, the loop appears on the boundary
of .

(2) If  has no loops, then  is of the form ZT/G, where T is a directed tree whose under-
lying graph is one of infinite Dynkin diagrams and G is an admissible group.

Proof. For each vertex X ∈ , we may choose nX ≥ 1 such that τnX (X) 	 X. Define a Q≥0

valued function f on  by

f (X) =
1

nX

nX−1∑
i=0

rank τi(X).

Then, we have f (X) = f (τX) for any X. By the definition of the Auslander–Reiten quiver
of A, ̃ :=  \ {loops} is a valued stable translation quiver. By applying Theorem 1.9 to ̃,
there are a directed tree T and an admissible group G such that ̃ = ZT/G. For X ∈ T , it is
easily seen that ∑

Y→X

dYXrank Y ≤ rank X + rank τ(X),

which implies that f satisfies

(5.1) 2 f (X) ≥
∑

Y→X in T

dYX f (Y) +
∑

X→Y in T

d′XY f (Y),

for any X ∈ T . Suppose that  has no loops. Then, Theorem 1.10 implies the statement (2).
Now, suppose that  has loops. Then, the inequality of (5.1) is strict for some X. Since 

has infinitely many vertices [1, Proposition 1.26], the underlying tree T is A∞ by Theorem
1.10. Therefore, ̃ = ZA∞/〈τ〉 from Lemma 1.13. We may assume without loss of generality
that T is a chain of irreducible morphisms

X1 → X2 → · · · → Xr → · · · .
Assume that Xr has a loop for some r.

From now on, we prove that loops appear on the boundary of , that is, r = 1. To obtain
a contradiction, suppose that r > 1. Then the almost split sequence starting at Xr is

0 −→ Xr −→ X⊕l
r ⊕ Xr+1 ⊕ Xr−1 −→ Xr −→ 0

where l ≥ 1. Since the subadditive function f satisfies f (Xt) ≥ 1 for all t ≥ 1, we have

f (Xr) ≥ (2 − l) f (Xr) ≥ f (Xr+1) + f (Xr−1) ≥ f (Xr+1) + 1.

We show that f (Xm) ≥ f (Xm+1)+ 1 for m ≥ r. Suppose that f (Xm−1) ≥ f (Xm)+ 1 holds. The
same argument as above shows 2 f (Xm) ≥ f (Xm−1) + f (Xm+1), and the induction hypothesis
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implies f (Xm−1)+ f (Xm+1) ≥ f (Xm)+ f (Xm+1)+ 1. Hence f (Xm) ≥ f (Xm+1)+ 1. Thus, there
exists a positive integer t such that f (Xt) < 0, a contradiction. Hence, r = 1. �

Corollary 5.2. Let A be a symmetric -order, and let  be a periodic component of
Γs(A) with infinitely many vertices. If there exists a vertex X of  such that the number of
non-projective direct summands of EX is one, then  has no loops.

Corollary 5.3. Let A be a symmetric -order, and let  be a periodic component of Γs(A)
with infinitely many vertices. If there exists a vertex X of  such that

(i) The number of non-projective indecomposable direct summands of EX is 1. We denote
by Y the unique non-projective direct summand.

(ii) The number of non-projective indecomposable direct summands of EY is 2.

Then,  is a tube.

Proof. Since Γs(A) has infinitely many vertices, so is  by [1, Proposition 1.26]. By the
assumption (i) and Corollary 5.2,  has no loops. Thus, the tree class T of  is one of infinite
Dynkin diagrams. By the assumption (i), T � A∞∞. By the assumption (ii), T � B∞, C∞, D∞.
Therefore, T is A∞. �

5.2. The case of non-periodic components.
5.2. The case of non-periodic components. Let  be a component of Γs(A). Recall the

function D : 0 → Z≥0 defined by

D(X) := �{non-projective indecomposable direct summands of X ⊗ κ}.
Proposition 5.4. Let A be a symmetric -order, and let  be a non-periodic component

of the stable Auslander–Reiten quiver of A. Assume either

(i)  does not contain Heller lattices or
(ii) A ⊗ κ has finite representation type.

Then, the tree class of  is one of infinite Dynkin diagrams or Euclidean diagrams.

Proof. Since  has no loops, there exist a directed tree T and an admissible group G such
that  	 ZT/G by Theorem 1.9. Suppose that  does not contain Heller lattices. In this
case, the function D is additive with D(X) = D(τX), for all X ∈  by Lemmas 3.2 and 3.3.
Then, for all X ∈ T , we have

2D(X) =
∑

Y→X in T

dYXD(Y) +
∑

X→Y in T

d′XY D(Y).

Therefore, it follows from Theorem 1.10 that T is one of infinite Dynkin diagrams or Eu-
clidean diagrams.

Suppose that A⊗κ has finite representation type. Since the number of isoclasses of Heller
lattices is finite, there exists an integer nX such that both τnX X and τnX+1X are not Heller
lattices for any vertex X ∈ . Thus, D is an additive function with D = D ◦ τ on . �
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