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Abstract
In this note we use Blanchfield forms to study knots that can be turned into an unknot using a

single t2k move.

1. Overview

1. Overview
Let K ⊂ S 3 be a knot and k ∈ Z \ {0}. In this paper by a k–twisting move we mean a

move depicted in Fig. 1, that is, a full right k–twist on two strands of K going in the opposite
direction (in [16] this move is called a t2k–move). We will call a knot k–simple, if it can
be unknotted by a single k–untwisting move. A knot is algebraically k–simple, if a single
k–untwisting move turns it into a knot with Alexander polynomial 1.

Fig.1. A k–twisting move for k = 2. Note that the strands in the picture go
in different directions.

Our first result gives an obstruction to the untwisting move in terms of the algebraic
unknotting number [7, 15, 20].

Theorem 1.1. Suppose K is an algebraically k–simple knot. If k is odd, then K can be
turned into a knot with Alexander polynomial 1 using at most two crossing changes. If k is
even, then at most three crossing changes are enough to turn K into a knot with Alexander
polynomial 1.

Our second result restricts the homology of the double branched cover of an algebraically
k–simple knot.

Theorem 1.2. Suppose K is an algebraically k–simple knot. Denote by Σ(K) the double
branched cover of K. Then H1(Σ(K);Z) is cyclic.
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Both Theorem 1.1 and Theorem 1.2 follow from the following result, which is the main
technical result of this paper.

Theorem 1.3. Suppose K is an algebraically k–simple knot. Then there exists a polyno-
mial α(t) ∈ Z[t, t−1] satisfying α(1) = 0, α(t−1) = α(t), such that the matrix(

α(t) 1
1 −k

)

represents the Blanchfield pairing for K.

Theorem 1.3 can be regarded as a generalization of [16, Theorem 3.2(b)].
It is possible to generalize the techniques used in this paper to study knots that are un-

twisted with several t2k moves, possibly with varying the twisting coefficients k. This gen-
eralization is straightforward, we omit it make the paper shorter and more concise.

Proof of Theorem 1.3 is given in Section 3. Proof of Theorem 1.1 is given in Section 4.
Section 5 contains the proof of a stronger version of Theorem 1.2.

2. Blanchfield pairing

2. Blanchfield pairing
Let K ⊂ S 3 be a knot and let MK denote its zero-framed surgery. Denote by M̃K the

universal abelian cover of MK . The chain complex C∗(M̃K ;Z) admits the action of the deck
transform and thus it has a structure of a Λ–module, where Λ = Z[t, t−1]. The homology of
this complex, regarded as a Λ–module, is denoted by H∗(MK ;Λ). The module H1(MK ;Λ) is
called the Alexander module of the knot K.

Remark 2.1. Usually the Alexander module is defined using knot complements instead
of zero–framed surgeries, but the two definitions are equivalent; see e.g. [10].

The ring Λ has a naturally defined convolution t �→ t−1. The Blanchfield pairing defined
in [1] for K is a sesquilinear symmetric pairing H1(MK ;Λ) × H1(MK ;Λ) → Q/Λ, where Q
is the field of fractions for Λ. We refer to [10, 13] for a precise and detailed construction of
the Blanchfield pairing and [5, 6] for generalizations.

Definition 2.2. We say that an n×n matrix A with entries in Λ represents the Blanchfield
pairing if H1(MK ;Λ) � Λn/AΛn as a Λ–module, under this identification the Blanchfield
pairing has form (a, b) �→ aT A−1b and moreover A(1) is diagonalizable over Z.

It is known, see [14], that every Blanchfield pairing can be represented by a finite matrix.
The minimal size of a matrix representing the Blanchfield pairing of a knot is denoted by
n(K). It is equal to the algebraic unknotting number ua(K); see [2, 4].

The invariant n(K) can also be generalized for other coefficient rings. In this paper we
restrict to rings that are subrings of C. If R is such a ring, we denote by nR(K) the minimal
size of a matrix over R[t, t−1] representing the Blanchfield pairing over R[t, t−1]. We have that
nR(K) ≤ nR′(K) if R′ is a subring of R. Often nR(K) is easier to compute than n(K) = nZ(K),
for example the value of nR can be calculated from the Tristram–Levine signature [3]. One
motivation of this paper is to give a geometric interpretation of nR(K) for some rings R.
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Fig. 2. The 1/k surgery on the circle in the top picture induces k full left
twists of the two strands passing through the circle.

Fig.3. Changing a 1/k surgery on a circle to a surgery on a two-component
link with framings 0 and −k.

3. Proof of Theorem 1.3

3. Proof of Theorem 1.3
The main ingredient in the proof of Theorem 1.3 is the following.

Theorem 3.1 (see [4, Theorem 2.6]). Suppose WK is a topological four–manifold such
that ∂WK = MK, π1(WK) = Z and the inclusion induced map H1(MK ;Z) → H1(WK ;Z) is
an isomorphism. Then H2(WK ;Λ) is free of rank b2(WK). Moreover if A is matrix over Λ
representing the twisted intersection form on H2(WK;Λ) in some basis of H2(WK ;Λ), then
A also represents the Blanchfield pairing on MK (in the sense of Definition 2.2).

In the light of Theorem 3.1, the proof of Theorem 1.3 consists of constructing an appro-
priate manifold WK and applying Theorem 3.1. The construction begins with noticing that
the twisting move can be realized by a surgery. Namely we have the following well-known
fact.

Proposition 3.2. A k–twisting move can be realized by a −1/k surgery on a knot. That
is, if K2 arises from K1 by a k–twisting move, then there is a simple closed circle C disjoint
from K1, such that C bounds a smooth disk intersecting K2 at two points with opposite signs
and such that the −1/k surgery on C transforms K1 into K2; see Fig. 2

Remark 3.3. The move described in Fig. 2 is a special case of the Rolfsen twist, see [12,
Figure 5.27]. It can be seen on [21, Figure 3.12] that the surgery with a positive coefficient
(i.e. the 1/k surgery if k > 0) gives rise to a left k–twist and the surgery with a negative
coefficient (i.e. the −1/k surgery with k > 0) gives rise to a right k–twist.

The surgery in Fig. 2 can be changed into a surgery with integer coefficients as in Fig. 3
by a ‘slam-dunk’ operation, see [12, Section 5.3].

Suppose J is a knot with Alexander polynomial 1 and K is a knot resulting from J by
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applying a full left k–twist (so J is obtained from K by a full right k–twist). Let MJ be the
zero-surgery on J and MK the zero–surgery on K. By [11, Theorem 117B] MJ is a boundary
of a topological four–manifold that is a homotopy D3 × S 1. Denote this four–manifold by
WJ .

A full left k–twist on J can be realized as a surgery on a two-component link with fram-
ings 0 and −k as in Fig. 3. Let c0 and c1 denote the components of this link. The curve c0

has framing 0, c1 has framing k. Both c0 and c1 are curves disjoint from J, so we can and
will assume that they are separated from a small neighborhood of J in S 3. Performing a 0–
surgery on J does not affect these curves, therefore c0 and c1 can also be viewed as curves on
MJ . Now performing surgery on c0 and c1 with coefficients 0 and −k, respectively, produces
MK .

The trace of the surgery on c0 and c1 yields a cobordism between MJ and MK . Call this
cobordism WJK . Define now

WK = WJ ∪WJK

so that ∂WK = MK . We have the following fact.

Lemma 3.4. We have π1(WK) � Z, H1(WK ;Z) � Z and the inclusion of MK to WK

induces an isomorphism on the first homology. Moreover H2(WK;Z) � Z2 and there are
generators of H2(WK ;Z) that are represented by immersed spheres.

Proof. The homology groups of WK are calculated using the Mayer-Vietoris sequence.
The manifold WK is obtained from WJ by adding two-handles along null-homologous curves
c0 and c1. This shows that H1(WK;Z) � Z and H2(WK ;Z) � Z2.

To compute π1 we observe that π1(WJ) � Z. Hence c0, c1 being null-homologous are also
null-homotopic. Van Kampen theorem implies that π1(WK) � Z.

To show that the generators of H2(WK ;Z) can be chosen to be spherical we again use
the fact that c0 and c1 are null-homotopic in WJ . This implies that c0 and c1 bound disks
D0 and D1 in WJ . The disk D1 can be chosen to be the obvious disk on MJ , but D0 is in
general only an immersed disk and it cannot lie on MJ (because in general c0 is not null-
homotopic on MJ). We can form spheres Σ0 and Σ1 by adding to D0 and D1 the cores of the
two-handles that are attached. It is clear that the homology classes [Σ0] and [Σ1] generate
H2(WK ;Z). Moreover, by construction, Σ1 is a smoothly embedded sphere and Σ0 can be
chosen to intersect Σ1 precisely at one point.

Finally, in order to prove that the inclusion induced map H1(MK ;Z) → H1(WK ;Z) is an
isomorphism, invert the cobordism WJK , that is, present WJK as MK × [0, 1] with two two–
handles attached. The attaching curves of these handles are homologically trivial (but not
necessarily homotopy trivial, π1(MK) can be complicated), hence the boundary inclusion
induces an isomorphism H1(MK ;Z) � H1(WJK ;Z). Clearly H1(WJK ;Z) � H1(WK ;Z). �

Lemma 3.4 gives us two spheres Σ0,Σ1 ⊂ WK , which are the generators of H2(WK ;Z).
Choose a basepoint x0 = Σ0 ∩ Σ1. This choice allows us to consider Σ0 and Σ1 as elements
of π2(WK , x0).

Lemma 3.5. The group π2(WK , x0) is freely generated as a Λ = Z[π1(WK , x0)]–module
by classes of Σ0 and Σ1. In particular π2(WK , x0) � Λ2.
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Proof. The space WK is obtained from WJ by attaching two two–handles along null-
homotopic curves c0 and c1. We have that π1(WJ) = Z and π2(WJ) = 0 by definition. The
statement follows from [18, Proposition 3.30]. �

We will use Lemma 3.5 in connection with the following well-known result.

Lemma 3.6. We have an isomorphism of Λ–modules π2(WK , x0) � π2(W̃K , x̃0) �
H2(W̃K ;Z) � H2(WK ;Λ).

Proof. The first isomorphism in the lemma is the isomorphism of higher homotopy groups
under the covering map. The second is the Hurewicz isomorphism because W̃K is simply
connected. The third isomorphism is the definition of the twisted homology groups. �

In particular, Lemma 3.5 together with Lemma 3.6 gives a simple and independent argu-
ment that H2(WK ;Λ) is a free Λ–module, compare [4, Lemma 2.7].

Corollary 3.7. The (classes of the) lifts of Σ0 and Σ1 to W̃K generate H2(WK ;Λ) as a
Λ–module.

Recall that A(t) is a matrix over Λ representing the intersection form on H2(WK ;Λ). The
following result together with Theorem 3.1 gives the proof of Theorem 1.3 from the intro-
duction.

Theorem 3.8. The matrix A(t) has form(
α(t) 1

1 −k

)
,

where α(t) ∈ Λ is such that α(1) = 0 and α(t−1) = α(t).

Proof. By Corollary 3.7 the entries of A(t) are twisted intersection indices of Σ0 and Σ1.
For example, the bottom-right entry of A(t) is equal to the twisted intersection index of Σ1

and Σ′1, where Σ′1 is a small perturbation of Σ1 intersecting Σ1 in finitely many points.
To compute the twisted intersection index of Σ1 and Σ′1, choose a basing for Σ1, Σ′1, that

is a path γ from x0 to Σ1 and a path γ′ from x0 to Σ′1. Let x, x′ be the end points of γ and γ′.
For any intersection point y ∈ Σ1 and Σ′1 we choose a smooth path ρy from x to y on Σ1

and a path ρ′y from x′ to y on Σ′1; see Fig. 4.
Let θy be the loop γρy(ρ′y)−1(γ′)−1. Define my ∈ Z to be the homology class of θy in

H1(WK ;Z) � Z. Finally, let εy be the sign of the intersection point y assigned in the usual
way, that is, if TyΣ1 ⊕ TyΣ′1 = TyWK agrees with the orientation, we set εy = +1, otherwise
we set εy = −1.

Given these definitions, the twisted intersection index of Σ1 and Σ′1 is equal to

(3.9)
∑
y∈Σ1∩Σ′1

εytmy ∈ Z[t, t−1].

In general this sum might depend on the choice of ρy and ρ′y. However if any smooth closed
curve on Σ1 and on Σ′1 is homologically trivial in WK (in the language of [2, Section 3.2]
this means that Σ1 and Σ′1 are homologically invisible in WK), the definition does not depend
on paths ρy and ρ′y. In the present situation Σ1 and Σ′1 are immersed (and even embedded)
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Fig.4. Notation in proof of Theorem 3.8. In the four-dimensional situation
the intersection of Σ and Σ′ at y is transverse.

spheres, so they are homologically invisible, in particular (3.9) is a well-defined Laurent
polynomial.

As Σ1 and Σ′1 are embedded spheres, we claim more, namely that my does not depend
on y. In fact, suppose z is another intersection point of Σ1 and Σ′1. Consider the curve
δ = (ρ′y)−1ρ′zρ−1

z ρy in WK . As Σ′1 is a perturbation of Σ1, the path (ρ′y)−1ρ′z can be pushed by
a homotopy (in WK) to a path ρ̃ on Σ1 having the same endpoints. Then ρ̃ρ−1

z ρy is a loop
homotopically equivalent to δ, but this is a loop on a smoothly embedded sphere Σ1. Hence
it is contractible in WK . This shows that my = mz.

We conclude that the twisted intersection index of Σ1 and Σ′1 is equal to the standard
intersection number of Σ1 and Σ′1 (which is equal to the self-intersection of Σ1, that is −k)
multiplied by tmy . We can choose a basing for Σ′1 in such a way that my = 0.

An analogous, but simpler argument shows that Σ0 · Σ1 = ±1. Indeed by construction
Σ0 ∩ Σ1 consists of a single point. It follows that the twisted intersection between Σ0 and Σ1

is ±tm for some m. We choose a basing for Σ0 in such a way that m = 0. We can also choose
an orientation of Σ0 in such a way that the sign is positive.

It remains to discuss the properties of α(t), that is, the top-left entry of A(t). First we
notice that as the twisted intersection pairing is sesquilinear, the matrix A(t) is hermitian and
so α(t−1) = α(t). Moreover, it follows from the construction of A(t) sketched above that
A(t = 1) is a matrix of classical intersection indices between Σ0 and Σ1. Therefore α(1) is
the self-intersection of Σ0. This is the same number as the framing of the curve c0. This
concludes the proof that α(1) = 0. �

Remark 3.10. There is an alternative calculation of the matrix A using Rolfsen’s argu-
ment [19]. However one still has to make some effort proving that A represents not only the
Alexander module, but also the Blanchfield pairing.

4. Proof of Theorem 1.1

4. Proof of Theorem 1.1
We begin with proving Theorem 1.1. The following corollary deals with the first part of

this theorem.
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Corollary 4.1. Suppose K is an algebraically k–simple and k is odd. Then there are at
most two crossing changes that turn K into a knot with Alexander polynomial 1.

Proof. We have A(1) =
(

0 1
1 −k

)
. As k is odd, this matrix is diagonalizable over Z. By [2,

Theorem 1.1] we infer that the algebraic unknotting number of K is at most 2. �

If k is even, then A(1) is not diagonalizable over Z, because it is an even symmetric form.
However the block sum A(1) ⊕ (1) is diagonalizable. The block matrix A(t) ⊕ (1) is a 3 × 3
matrix over Λ representing the Blanchfield pairing, so the algebraic unknotting number of
K is bounded from above by 3. This shows the second part of Theorem 1.1.

We have the following consequence of Theorem 1.3.

Theorem 4.2. Suppose K can be algebraically k–simple. Let Rk = Z[ 1
k ]. Then nRk (K) =

1.

Proof. By Theorem 1.3 we know that the Blanchfield pairing over Z can be represented by
a matrix of form

(
α(t) 1

1 −k

)
. The same matrix represents the Blanchfield pairing over Rk, but

over Rk this matrix is congruent to a matrix
(
α̃(t) 0

0 1

)
for α̃(t) ∈ Rk[t, t−1]. By [17, Proposition

1.7.1] (see also [4, Proposition 3.1]) the matrix (α̃(t)) also represents the Blanchfield pairing
over Rk[t, t−1]. �

The following corollary is well known, see [16].

Corollary 4.3. If K is algebraically k–simple, then its Alexander polynomial is equal to
ΔK(t) = 1 + kα(t), where α(t) ∈ Z[t, t−1].

Proof. This follows from Theorem 4.1 because if A(t) represents the Blanchfield pairing
of a knot K, then ΔK(t) = det A(t) up to multiplication by a unit in Λ. �

5. Linking forms

5. Linking forms
An abstract linking pairing is a pair (H, l), where H is a finite abelian group of an odd

order and l is a bilinear symmetric pairing l : H × H → Q/Z, As a model example, if
Y is a closed three–manifold with b1(Y) = 0, there is defined a linking pairing l(Y) on
H = H1(Y;Z). If Y = Σ(K) is the double branched cover of a knot K, we denote this pairing
by l(K). It is known that the linking pairing l(K) is represented by V + VT , where V is the
Seifert matrix for K. The meaning of ‘represented’ is explained in the following definition.

Definition 5.1. Let P be an n × n matrix with integer coefficients and such that det P is
odd. The linking form represented by P is the pair (H(P), l(P)), where H(P) = Zn/PZn and
l(P) is the bilinear form defined by

Zn/PZn × Zn/PZn → Q/Z
(a, b) �→ aT P−1b mod 1.

We have the following relation between the Blanchfield form for K and the linking form
l(K).
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Proposition 5.2 (see [4, Lemma 3.3]). If A is a matrix overΛ representing the Blanchfield
pairing, then l(A(−1)) = 2l(K).

Here 2l(K) means the linking pairing with the same underlying group as l(K), but the
linking form is multiplied by 2; compare [4, Section 3].

We can use this result to obtain the following corollary.

Corollary 5.3. Suppose K is algebraically k–simple. Then the linking form 2l(K) is
isometric to the linking form represented by

(5.4) B =
(
d 1
1 −k

)
,

where d = α(−1) ∈ Z is such that −(dk + 1) is the (signed) determinant of K.

As in [4, Section 5.2] we can use Corollary 5.3 to obstruct untwisting number 2.
From Corollary 5.3 we immediately recover Theorem 1.2 from the introduction.

Proposition 5.5. If K is algebraically k–simple and Σ(K) is the double branched cover,
then H1(Σ(K);Z) is cyclic.

Remark 5.6. It follows that Wendt’s criterion for the unknotting number [22] coming
from the double branched covers, does not distinguish between knots that have unknotting
number 1 and knots that are algebraically k–simple for some k.

Proof of Proposition 5.5. By Corollary 5.3 we infer that H1(Σ(K);Z) � Z2/BZ2, where
B is as in (5.4). Subtract from the first column of B the second column multiplied by d to
obtain the matrix

(
0 1

1+dk −k

)
. Then add to the second row the first one multiplied by k. We

obtain the matrix

B′ =
(

0 1
1 + dk 0

)
.

Row and column operations on matrices do not affect the cokernel, hence Z2/B′Z2 �
Z2/BZ2. Evidently we have Z2/B′Z � Z/|dk + 1|Z. �
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