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Abstract
In this note we use Blanchfield forms to study knots that can be turned into an unknot using a
single 7, move.

1. Overview

Let K ¢ S3 be a knot and k € Z \ {0}. In this paper by a k—twisting move we mean a
move depicted in Fig. 1, that is, a full right k—twist on two strands of K going in the opposite
direction (in [16] this move is called a f,;—move). We will call a knot k—simple, if it can
be unknotted by a single k—untwisting move. A knot is algebraically k—simple, if a single
k—untwisting move turns it into a knot with Alexander polynomial 1.
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Fig.1. A k—twisting move for k = 2. Note that the strands in the picture go
in different directions.

Our first result gives an obstruction to the untwisting move in terms of the algebraic
unknotting number [7, 15, 20].

Theorem 1.1. Suppose K is an algebraically k—simple knot. If k is odd, then K can be
turned into a knot with Alexander polynomial 1 using at most two crossing changes. If k is
even, then at most three crossing changes are enough to turn K into a knot with Alexander
polynomial 1.

Our second result restricts the homology of the double branched cover of an algebraically
k—simple knot.

Theorem 1.2. Suppose K is an algebraically k—simple knot. Denote by Z(K) the double
branched cover of K. Then H1(X(K); Z) is cyclic.

2010 Mathematics Subject Classification. 57M25.
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Both Theorem 1.1 and Theorem 1.2 follow from the following result, which is the main
technical result of this paper.

Theorem 1.3. Suppose K is an algebraically k—simple knot. Then there exists a polyno-
mial a(t) € Z[t,t™"] satisfying a(1) = 0, a(t™") = a(?), such that the matrix

a(t) 1
1 —k
represents the Blanchfield pairing for K.

Theorem 1.3 can be regarded as a generalization of [16, Theorem 3.2(b)].

It is possible to generalize the techniques used in this paper to study knots that are un-
twisted with several f; moves, possibly with varying the twisting coefficients k. This gen-
eralization is straightforward, we omit it make the paper shorter and more concise.

Proof of Theorem 1.3 is given in Section 3. Proof of Theorem 1.1 is given in Section 4.
Section 5 contains the proof of a stronger version of Theorem 1.2.

2. Blanchfield pairing

Let K c S3 be a knot and let My denote its zero-framed surgery. Denote by Mg the
universal abelian cover of Mg. The chain complex C*(A7I x Z) admits the action of the deck
transform and thus it has a structure of a A—module, where A = Z[¢,¢"!]. The homology of
this complex, regarded as a A—module, is denoted by H.(Mg; A). The module H;(Mg; A) is
called the Alexander module of the knot K.

Remark 2.1. Usually the Alexander module is defined using knot complements instead
of zero—framed surgeries, but the two definitions are equivalent; see e.g. [10].

The ring A has a naturally defined convolution ¢ + ¢~'. The Blanchfield pairing defined
in [1] for K is a sesquilinear symmetric pairing H;(Mg; A) X H{(Mg; A) — Q/A, where O
is the field of fractions for A. We refer to [10, 13] for a precise and detailed construction of
the Blanchfield pairing and [5, 6] for generalizations.

DeriniTION 2.2. We say that an n X n matrix A with entries in A represents the Blanchfield
pairing if Hy(Mg;A) = A"/AA" as a A—module, under this identification the Blanchfield
pairing has form (a, b) — @ A~'b and moreover A(1) is diagonalizable over Z.

It is known, see [14], that every Blanchfield pairing can be represented by a finite matrix.
The minimal size of a matrix representing the Blanchfield pairing of a knot is denoted by
n(K). It is equal to the algebraic unknotting number u,(K); see [2, 4].

The invariant n(K) can also be generalized for other coefficient rings. In this paper we
restrict to rings that are subrings of C. If R is such a ring, we denote by nz(K) the minimal
size of a matrix over R[f, 1] representing the Blanchfield pairing over R|[z, t~']. We have that
ng(K) < ng/(K) if R’ is a subring of R. Often ng(K) is easier to compute than n(K) = nz(K),
for example the value of ng can be calculated from the Tristram—Levine signature [3]. One
motivation of this paper is to give a geometric interpretation of ng(K) for some rings R.
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Fig.2. The 1/k surgery on the circle in the top picture induces k full left
twists of the two strands passing through the circle.

Fig.3. Changing a 1/k surgery on a circle to a surgery on a two-component
link with framings 0 and —k.

3. Proof of Theorem 1.3
The main ingredient in the proof of Theorem 1.3 is the following.

Theorem 3.1 (see [4, Theorem 2.6]). Suppose Wk is a topological four—-manifold such
that OWyx = Mg, mi(Wg) = Z and the inclusion induced map H\(Mg;Z) — H,(Wg;7Z) is
an isomorphism. Then Hy,(Wg; A) is free of rank bo(Wg). Moreover if A is matrix over A
representing the twisted intersection form on Hy(Wk; A) in some basis of Hy(Wk; A), then
A also represents the Blanchfield pairing on Mk (in the sense of Definition 2.2).

In the light of Theorem 3.1, the proof of Theorem 1.3 consists of constructing an appro-
priate manifold Wx and applying Theorem 3.1. The construction begins with noticing that
the twisting move can be realized by a surgery. Namely we have the following well-known
fact.

Proposition 3.2. A k—twisting move can be realized by a —1/k surgery on a knot. That
is, if K, arises from K| by a k—twisting move, then there is a simple closed circle C disjoint
from Ky, such that C bounds a smooth disk intersecting K, at two points with opposite signs
and such that the —1/k surgery on C transforms K, into K,; see Fig.2

Remark 3.3. The move described in Fig. 2 is a special case of the Rolfsen twist, see [12,
Figure 5.27]. It can be seen on [21, Figure 3.12] that the surgery with a positive coefficient
(i.e. the 1/k surgery if kK > 0) gives rise to a left k—twist and the surgery with a negative
coefficient (i.e. the —1/k surgery with k > 0) gives rise to a right k—twist.

The surgery in Fig. 2 can be changed into a surgery with integer coefficients as in Fig. 3
by a ‘slam-dunk’ operation, see [12, Section 5.3].
Suppose J is a knot with Alexander polynomial 1 and K is a knot resulting from J by
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applying a full left k—twist (so J is obtained from K by a full right k—twist). Let M be the
zero-surgery on J and Mg the zero—surgery on K. By [11, Theorem 117B] M, is a boundary
of a topological four-manifold that is a homotopy D3 x S!. Denote this four—-manifold by
W;.

A full left k—twist on J can be realized as a surgery on a two-component link with fram-
ings 0 and —k as in Fig. 3. Let ¢¢ and ¢; denote the components of this link. The curve ¢
has framing 0, ¢; has framing k. Both ¢( and ¢; are curves disjoint from J, so we can and
will assume that they are separated from a small neighborhood of J in S*. Performing a 0—
surgery on J does not affect these curves, therefore ¢y and ¢; can also be viewed as curves on
M. Now performing surgery on cq and ¢; with coefficients 0 and —k, respectively, produces
Mkg.

The trace of the surgery on ¢y and ¢ yields a cobordism between M; and Mg. Call this
cobordism W,k. Define now

Wx =W; U Wk
so that 9Wg = Mg. We have the following fact.

Lemma 3.4. We have ni(Wg) = Z, HH(Wk;Z) = 7Z and the inclusion of Mg to Wx
induces an isomorphism on the first homology. Moreover Hy(Wx:;Z) = Z? and there are
generators of Hy(Wk; Z) that are represented by immersed spheres.

Proof. The homology groups of W are calculated using the Mayer-Vietoris sequence.
The manifold Wk is obtained from W; by adding two-handles along null-homologous curves
¢o and ¢;. This shows that H;(Wk;Z) = Z and H,(Wg;Z) = Z7.

To compute 71 we observe that (W) = Z. Hence ¢y, ¢ being null-homologous are also
null-homotopic. Van Kampen theorem implies that 7;(Wx) = Z.

To show that the generators of Hy(Wg;Z) can be chosen to be spherical we again use
the fact that ¢y and ¢; are null-homotopic in W,. This implies that ¢y and ¢; bound disks
Dy and D; in W;. The disk D; can be chosen to be the obvious disk on M, but Dy is in
general only an immersed disk and it cannot lie on M, (because in general ¢ is not null-
homotopic on M;). We can form spheres £, and X; by adding to Dy and D, the cores of the
two-handles that are attached. It is clear that the homology classes [Z(] and [X;] generate
H,(Wg;Z). Moreover, by construction, X; is a smoothly embedded sphere and X, can be
chosen to intersect X; precisely at one point.

Finally, in order to prove that the inclusion induced map H,(Mx;Z) — H(Wk;Z) is an
isomorphism, invert the cobordism W/,g, that is, present W,k as Mg X [0, 1] with two two—
handles attached. The attaching curves of these handles are homologically trivial (but not
necessarily homotopy trivial, m;(Mk) can be complicated), hence the boundary inclusion
induces an isomorphism H{(Mg;Z) = H{(W,;Z). Clearly Hy(W,;g;Z) = H|(Wg; Z). ]

Lemma 3.4 gives us two spheres Xy, %, C Wk, which are the generators of H,(Wk;Z).
Choose a basepoint xo = Xy N X;. This choice allows us to consider £y and X; as elements
of m(Wk, xo).

Lemma 3.5. The group m,(Wg, xo) is freely generated as a A = Z|ni(Wkg, xo)|-module
by classes of Xy and 2. In particular m(Wg, xo) = A,
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Proof. The space Wk is obtained from W; by attaching two two-handles along null-
homotopic curves ¢y and c;. We have that 7;(W;) = Z and m,(W,) = 0 by definition. The
statement follows from [18, Proposition 3.30]. O

We will use Lemma 3.5 in connection with the following well-known result.

Lemma 3.6. We have an isomorphism of A-modules m(Wk, xg) = HZ(WK,YO) =
Hy(Wi;Z) = Hy(Wk; M.

Proof. The first isomorphism in the lemma is the isomorphism of higher homotopy groups
under the covering map. The second is the Hurewicz isomorphism because Wk is simply
connected. The third isomorphism is the definition of the twisted homology groups. O

In particular, Lemma 3.5 together with Lemma 3.6 gives a simple and independent argu-
ment that Hy(Wk; A) is a free A—module, compare [4, Lemma 2.7].

Corollary 3.7. The (classes of the) lifts of o and X1 to Wk generate Hy(Wg; A) as a
A-module.

Recall that A(7) is a matrix over A representing the intersection form on Hy(Wg; A). The
following result together with Theorem 3.1 gives the proof of Theorem 1.3 from the intro-
duction.

Theorem 3.8. The matrix A(t) has form

a(t) 1
1 k)

where a(t) € A is such that (1) = 0 and a(t™") = a(?).

Proof. By Corollary 3.7 the entries of A(¢) are twisted intersection indices of X, and X;.
For example, the bottom-right entry of A(¢) is equal to the twisted intersection index of X,
and X}, where X} is a small perturbation of X intersecting X, in finitely many points.

To compute the twisted intersection index of £; and X/, choose a basing for X, 2/1, that
is a path y from xq to X; and a path y’ from xo to X}. Let x, x" be the end points of y and y".

For any intersection point y € X; and X} we choose a smooth path p, from x to y on X;
and a path p from x” to y on X/; see Fig. 4.

Let 6, be the loop yp,(p;)~'(y¥")"!. Define m, € Z to be the homology class of 6, in
H{(Wk;Z) = Z. Finally, let €, be the sign of the intersection point y assigned in the usual
way, that is, if 7,2 @ T, X| = T, Wk agrees with the orientation, we set €, = +1, otherwise
we set g, = —1.

Given these definitions, the twisted intersection index of ¥; and X is equal to

(3.9) > g ezinr).

yeX] OE’I

In general this sum might depend on the choice of p, and p;. However if any smooth closed
curve on X; and on X} is homologically trivial in W (in the language of [2, Section 3.2]
this means that ¥, and X are homologically invisible in W), the definition does not depend
on paths p, and pj. In the present situation X; and X| are immersed (and even embedded)
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Fig.4. Notation in proof of Theorem 3.8. In the four-dimensional situation
the intersection of £ and X’ at y is transverse.

spheres, so they are homologically invisible, in particular (3.9) is a well-defined Laurent
polynomial.

As ¥y and X are embedded spheres, we claim more, namely that m, does not depend
on y. In fact, suppose z is another intersection point of ¥; and X|. Consider the curve
0= (p’y)‘1 p;,oz‘l py in Wg. As X is a perturbation of Xy, the path (p’y)‘1 p. can be pushed by
a homotopy (in W) to a path p on X; having the same endpoints. Then ﬁpz" py 1s a loop
homotopically equivalent to ¢, but this is a loop on a smoothly embedded sphere X;. Hence
it is contractible in Wx. This shows that m, = m..

We conclude that the twisted intersection index of X; and X} is equal to the standard
intersection number of X; and X| (which is equal to the self-intersection of Xy, that is —k)
multiplied by #v. We can choose a basing for ¥ in such a way that m, = 0.

An analogous, but simpler argument shows that £, - ¥; = +1. Indeed by construction
>y N X; consists of a single point. It follows that the twisted intersection between X, and X
is =1 for some m. We choose a basing for X in such a way that m = 0. We can also choose
an orientation of Xy in such a way that the sign is positive.

It remains to discuss the properties of a(¢), that is, the top-left entry of A(#). First we
notice that as the twisted intersection pairing is sesquilinear, the matrix A(¢) is hermitian and
so a(t™') = a(f). Moreover, it follows from the construction of A(¢) sketched above that
A(t = 1) is a matrix of classical intersection indices between X, and X;. Therefore a(1) is
the self-intersection of Xy. This is the same number as the framing of the curve cy. This
concludes the proof that a(1) = 0. m]

Remark 3.10. There is an alternative calculation of the matrix A using Rolfsen’s argu-
ment [19]. However one still has to make some effort proving that A represents not only the
Alexander module, but also the Blanchfield pairing.

4. Proof of Theorem 1.1

We begin with proving Theorem 1.1. The following corollary deals with the first part of
this theorem.
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Corollary 4.1. Suppose K is an algebraically k—simple and k is odd. Then there are at
most two crossing changes that turn K into a knot with Alexander polynomial 1.

Proof. We have A(1) = ((1’ —11<> As k is odd, this matrix is diagonalizable over Z. By [2,
Theorem 1.1] we infer that the algebraic unknotting number of K is at most 2. m|

If k is even, then A(1) is not diagonalizable over Z, because it is an even symmetric form.
However the block sum A(1) @ (1) is diagonalizable. The block matrix A(¢) ® (1)isa 3 x 3
matrix over A representing the Blanchfield pairing, so the algebraic unknotting number of
K is bounded from above by 3. This shows the second part of Theorem 1.1.

We have the following consequence of Theorem 1.3.

Theorem 4.2. Suppose K can be algebraically k—simple. Let R = Z[%]. Then ng,(K) =
1.

Proof. By Theorem 1.3 we know that the Blanchfield pairing over Z can be represented by
a matrix of form (“?) _]k ) The same matrix represents the Blanchfield pairing over Ry, but

over Ry this matrix is congruent to a matrix (a(()’) (1)) for a(f) € Ri[t,t7']. By [17, Proposition
1.7.1] (see also [4, Proposition 3.1]) the matrix (a(r)) also represents the Blanchfield pairing

over Ri[t,17']. o

The following corollary is well known, see [16].

Corollary 4.3. If K is algebraically k—simple, then its Alexander polynomial is equal to
Ak(t) = 1 + ka(t), where () € Z[t,17"].

Proof. This follows from Theorem 4.1 because if A(¢) represents the Blanchfield pairing
of a knot K, then Ag(f) = det A(¢) up to multiplication by a unit in A. m]

5. Linking forms

An abstract linking pairing is a pair (H,[), where H is a finite abelian group of an odd
order and / is a bilinear symmetric pairing /: H X H — Q/Z, As a model example, if
Y is a closed three—manifold with b,(Y) = 0, there is defined a linking pairing /(Y) on
H=H|(Y;Z). If Y = 2(K) is the double branched cover of a knot K, we denote this pairing
by I(K). It is known that the linking pairing I(K) is represented by V + V7, where V is the
Seifert matrix for K. The meaning of ‘represented’ is explained in the following definition.

DermniTioN 5.1. Let P be an n X n matrix with integer coefficients and such that det P is
odd. The linking form represented by P is the pair (H(P), [(P)), where H(P) = Z"/PZ" and
[(P) is the bilinear form defined by

7"|PZ" x 7" |PZ" — Q/Z
(a,b) » a’ P~'b mod 1.

We have the following relation between the Blanchfield form for K and the linking form
I(K).
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Proposition 5.2 (see [4, Lemma 3.3]). If A is a matrix over A representing the Blanchfield
pairing, then [(A(-1)) = 2I(K).

Here 2/(K) means the linking pairing with the same underlying group as /(K), but the
linking form is multiplied by 2; compare [4, Section 3].
We can use this result to obtain the following corollary.

Corollary 5.3. Suppose K is algebraically k—simple. Then the linking form 2I(K) is
isometric to the linking form represented by

d 1
5.4 B= ( | - k) ,
where d = a(—1) € Z is such that —(dk + 1) is the (signed) determinant of K.

As in [4, Section 5.2] we can use Corollary 5.3 to obstruct untwisting number 2.
From Corollary 5.3 we immediately recover Theorem 1.2 from the introduction.

Proposition 5.5. If K is algebraically k—simple and X(K) is the double branched cover,
then H\(2(K); Z) is cyclic.

Remark 5.6. It follows that Wendt’s criterion for the unknotting number [22] coming
from the double branched covers, does not distinguish between knots that have unknotting
number 1 and knots that are algebraically k—simple for some k.

Proof of Proposition 5.5. By Corollary 5.3 we infer that H,(X(K); Z) = 7?/BZ?, where
B is as in (5.4). Subtract from the first column of B the second column multiplied by d to
obtain the matrix ( oL ) Then add to the second row the first one multiplied by k. We

obtain the matrix
, 0 1
B = (1 + dk 0)'

Row and column operations on matrices do not affect the cokernel, hence Z?/B’Z?
7?/BZ?. Evidently we have Z?/B'Z = Z,/|dk + 1|Z.

[
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