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Abstract
In this paper we give an upper bound for the slopes yielding an incompressible torus by surgery
on a hyperbolic knot in the 3-sphere in terms of its genus.

1. Introduction

One way to get closed 3-manifolds from a knot in S is the so-called Dehn surgery, which
consists of removing a regular neighborhood N'(K) of the knot K and fill it with a solid torus
glued differently.

The different ways of doing surgery on a knot K are parametrized by slopes, that is,
isotopy classes of essential closed simple curves in N (K), which can be identified with
Q U {1/0} ([25]). Given a slope r on N '(K), we use K(r) to denote the result of r-Dehn
surgery on K, that is, the 3-manifold obtained by gluing a solid torus J to the exterior of K,
E(K) = S* —intA'(K), in such a way that a meridian of J is identified with a curve of slope
r.

It is known that any closed and orientable 3-manifold can be obtained by means of Dehn
surgery in a link in §3 ([33]) and ([18]).

By Thurston [32], a knot K in § 3 is either hyperbolic (ie. its complement admits a
complete Riemannian metric of constant sectional curvature —1), satellite (i.e. its exterior
contains an incompressible and not d-parallel 2-torus), or it is a torus knot (i.e. its exterior
is Seifert fibered). By Thurston [32], if K is hyperbolic then K(r) will be hyperbolic for all
but finitely many slopes r. The slopes that produce non-hyperbolic manifolds, whereas K is
hyperbolic, are called exceptional slopes. According to Perelman [22, 23, 24] and Thurston
[32], if a closed orientable 3-manifold is non-hyperbolic then it is either reducible (i.e. it
contains an essential 2-sphere), toroidal (i.e. it contains an incompressible 2-torus), or it is
Seifert fibered.

Many works in low dimensional topology are focused on exceptional slopes; see [6, 7, 8,
9]. In particular, if K is a hyperbolic knot, then K(r) contains an incompressible torus for
only finitely many slopes r ([10] or [32]). Such slopes r and the corresponding surgeries are
said to be roroidal. Gordon and Luecke [11] proved that any toroidal slope r = p/q is either
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integral or half-integral, that is, either |g| = 1 or 2. On the other hand, Eudave-Muiioz [2]
constructed an infinite family of hyperbolic knots K (I, m, n, p) having half-integral toroidal
surgeries. Surprisingly, Gordon and Luecke proved that if K admits a half-integral toroidal
surgery, then K is one of Eudave-Muioz knots K(I, m, n, p) [12].

Teragaito obtained several results concerning integral toroidal surgeries. He showed that
every integer is a toroidal surgery slope for some hyperbolic knot [26]. He also showed that
any two integral toroidal slopes r and s for a hyperbolic knot satisfy |r — s| < 4 unless K
is the figure eight knot [28]. Furthermore, Gordon and Wu have determined all hyperbolic
knots which have integral toroidal slopes r, s, with |r — s| = 4.

The hitting number of a toroidal surgery K(r), denoted by ¢, is the minimal intersection
number between a core of the attached solid torus and all incompressible tori in K(r). For
half-integral surgery, it is known that always ¢+ = 2. For integral surgery many examples
have been constructed such that r = 4; see [3], [5], [29], [30]. It is also known that there
are infinitely many knots with ¢ > 6; indeed in [21], Osoinach gave an infinite family of
hyperbolic knots, with a toroidal surgery, for which there is no upper bound for the hitting
number 7. A precise determination of the hitting number 7 for these examples is given in [31]

Let g(K) denote the genus of the knot K. In 2003 Teragaito proposed the following
conjecture in [27].

Conjecture 1. If a hyperbolic knot K in S* has a toroidal slope r, then |r| < 4g(K).

It follows from the work of Ichihara [15] that |r| < 3 - 27/4g(K). Teragaito proved that
his conjecture is true for genus one knots and alternating knots. On the other hand, S. Lee
[17] proved that this conjecture is also true for genus two knots. For the case when K is
hyperbolic and K(r) contains a Klein bottle, which in many cases is toroidal, Ichihara and
Teragaito [16] proved that |r| < 4g(K).

The goal of this paper is to give upper bounds for toroidal slopes close to the conjectured
by Teragaito, we prove the following

Theorem 1. If a hyperbolic knot K in S* has a toroidal slope r, then |r| < 4g(K) — % ifr
is half-integral, \r| < 4g(K) if r is integral and t > 6, |r| < 6g(K) — 3 if r is integral and t = 4
and |r| < 4¢9(K) + 8 if r is integral and t = 2.

Exampres. The pretzel knot K(-2,3,7) has genus five and its set of toroidal slopes is
{16,37/2,20}. For r = 37/2, we may note that the upper bound is reached in this case.

If K is the figure eight knot, its genus is one and its set of toroidal-slopes is {—4,0, 4}.
But —4 and 4 are also the slopes yielding Klein bottles, and the complement of K contains a
once-punctured Klein bottle.

To prove Theorem 1 we proceed as follows. By [11] we know that the toroidal slope r is
integral or half-integral. In section 2 we prove the Theorem when the slope is half-integral;
in this case we know all the knots with a toroidal surgery, and furthermore the genus and
toroidal slopes of such knots can be calculated, so this gives a way to verify the given bound.
In section 3 we develop the case when the toroidal slope is integral, this is done by means
of graphs of intersection.
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2. Half-integral slope.

Let K be a hyperbolic knot with a half-integral toroidal slope r. By [12], K is an Eudave-
Muiioz knot K(I,m,n, p), a family of knots parametrized by four integers [, m, n, p (where
at least one of p and n is zero). Excluding the cases when [ = 0,1, m = 0, ([,m) =
{(2,1),(-2,-1)}, (m,n) = {(1,0),(-1,1)} and (I,m,p) = (2,2, 1), the knots result to be
hyperbolic with only one half-integral toroidal slope. By [4], this slope is given by

12m — 1)(1 = Im) + n(2lm — 1)> — 1/2, for K(I,m, n, 0) knots
r =
12m — 1)(1 = Im) + pQIm — 1 - 1)> = 1/2, for K(I,m, 0, p) knots

The mirror image of the knot K(I, m, n,0) is the knot K(—I, —m, 1 — n,0), and the mirror
image of K(I,m,0, p) is the knot K(—I,1 —m,0,1 — p) [4]. So, in what follows there is no
loss of generality in assuming that / > 0.

In Figures 12, 13 of [4], an explicit presentation of the knots K(/,m, n, p) as closed braids
is given. However, Yi Ni observed that there is a discrepancy in the parameters in Figure 13
of [4]. Correct presentations of the knots are given in Figure 2 of [20]. In Fig. 1 we give a
presentation of the knots in the case / > 0, n < 0, p < 0 (which is Figure 2 of [20]), and in
Fig. 2 we give a presentation of the knots in the case / > 0, n > 0, p > 0.

Fig.1

It follows from this presentation that K(/,m, n, p) is the closure of a positive or negative
braid, hence it is fibered, and the genus can be computed by the formula (C — N + 1)/2,
where C is the crossing number in the positive or negative braid and N is the index [4].

The value of N is given by

2lm -1, if{>0,m>0and p =0.
—2lm+ 1, ifI>0,m<0and p=0.
2Im—-1-1, ifl>0,m>0andn=0.
2lm+1+1, ifl>0,m<0andn =0.
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p=0,m>0,n>0 p=0m<0,n>0 n=0m>0,p>0
Fig.2

The explicit value of C is given in the following table (“>" means > 0, and the analogous
for <, <, >).

l|{m|n|p Crossing number C

>|>|1<|0 2Pm? = Pm = 3im + 21 — n(2lm — 1)(2lm — 2)

>|> >0 2Pm? + Pm = 3Im =21+ 2+ (n— DQRIm — 1)(2lIm - 2)
>|<|[<]0 2Pm? — Pm — Im — n2Im)(2Im — 1)

> <[>0 2Pm? + Pm — Im + (n — 1)(2Im)(2Im — 1)

> >]0]< 2Pm* — Pm = 3lm+1— pQim — 1 — 1)2Im — [ - 2)
>|>|0|>|2Pm?=3Pm-=3m+P+20+2+(p-DQIm-1-1DQRIm—-1-2)
> <0< 2Pm? = Pm—Im+1- pQim —1 - 1)2Im — 1)

> <|0]> 2Pm? =3Pm—Im+ P+ (p—1DQRIm—-1-1)Q2Im-1)

Computing the genus g of K(/, m, n, p) by the formula (C — N + 1)/2 we have,

Il {m|n|p Genus g

>|>|1<|0 1/2[2Pm?* = Pm = 5lm + 21 + 2 — n(2lm — 1)(2im - 2)]

>|> >0 1/2[2%m?* + Pm = 5lm =21 + 4 + (n — DQ2Im — 1)(2Im - 2)]
>|<[<]0 1/2[2Pm? = Pm + Im — n(2Im)(2Im — 1)]

>|<|>0 1/2[28m* + Pm + Im + (n — DQ2Im)(2Im — 1)]
>[>]0]< 1/2[2Pm? = Pm = 5lm + 21 + 2 — pQ2Im — | — 1)2Im — [ - 2)]
>|>|0|> %[212m2—3lzm—51m+l2+3l+4+(p— DR2Im—-1-1RIm—1-2)]
>| <0< 1/2[28m? - Pm + Im — pQlm —1-1)2lm - )]
>|<|0|> 12028m* = 3Pm+Im+ 2 =1+ (p — DQRIm — 1 - 1)2Im - )]

We will see that 4g — |r| > 3/2 for each case.
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Case 1. I,m>0,n<0and p =0.

Note thatif [, m > 0 and n < 0 then |r| = —r.

Therefore 4g — |r| = Im(I2m — 1) — 8) + 31 + n(—4>m?* + 8Im — 3) + 7/2.

Suposse n = 0, then 4g—|r| = Im(I(2m—1)—-8)+3[+7/2. Since (m,n) # (1,0) and [ # =1,
thenl,m > 2. If | = m = 2, then 4g—|r| = Im(I2m—1)—8)+31+7/2 = 21(31-8)+31+7/2 =
3/2. When!>3andm >2,4g—|r| = im(I2m —1)=8) + 31+ 7/2 > Im+31+7/2 > 37/2.
Whenm >3 and [ > 2,4g —|r| = Im(I2m — 1) = 8) + 31+ 7/2 > 2Im + 31 + 7/2 > 43/2.

Now we can assume that n < —1 and [ > 2. Then 4g — |r| = Im(I2m — 1) — 8) +
31+ n(—4Pm?* + 8lm —3)+7/2 > Im(IQ2m — 1) — 8) + 31 + 4Pm?> — 8lm + 3 + 7/2 =
6Pm? — Pm — 16Im + 31+ 13/2 = Im(I(6m — 1) — 16) + 31+ 13/2. If m = 1, then [ > 3 (since
(I,m) £ (2,1)), then 4g — |r| > Im(I(6m — 1) — 16) + 31 + 13/2 > —1 + 31 + 13/2 > 25/2. If
m > 2, then 4g — |r| > Im(I(6m — 1) — 16) + 31+ 13/2 > 121 + 31 + 13/2 > 43/2.

In both cases, 4g — |r| > 3/2.

Case 2. [,m,n>0and p = 0.

Here |r| = r. Also, we have 4g—|r| = 22m* +Pm—8Im—31+15/2+(n—1)(4m> —8Im+3).
Note that Im > 3 since [ # +1 and ([, m) # (2, 1).

If n = 1, then 4g —|r| = 2Pm? + Pm—8Im—31+15/2 = 2(Im - 2)*> + l(im—3)—1/2 > 3/2.

Now suposse thatn > 2 and [ > 2. Then 4g — |r| = 2Pm? + Pm —8lm =31+ 15/2 + (n -
D@Pm? — 8lm + 3) > 2Pm? + Pm — 8Im — 31 + 15/2 + 4PPm?* — 8Im + 3 = 6I°m* + Pm —
16Im =31+ 21/2 = 2Pm? +4(Im = 2)> + I[(im = 3) - 11/2 > 18 + 4 — 11/2 = 33/2.

In both cases, 4g — |r| > 3/2.

Case3.[>0,m<0,n<0and p =0.

Here |r| = —r. Also we have, 4g — |r| = 2°m? — Pm + 4lm — | — n(4>m* — 1) — 1/2. Note
that Im < -2 since [ > 2 and m < —1.

Suposse n = 0, then 4g —|r| = 2PPm*> = Pm+4lm—1-1/2 = 2(Im+ 1> +I(-=lm—1)-5/2 >
2+2-5/2=3/2.

Now we can assume that n < —1, then 4g —|r| > 2Pm?> = Pm+4lm -1+ 4Pm*> —1-1/2 =
6L2m?>—Pm+4Ilm—1-3/2 = 4Pm?>+2(Im+1)*+1(-Im—1)-7/2 > 16+2+2-7/2 = 33/2 > 3/2.

In both cases, 4g — |r| > 3/2.
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Case4. [>0,m<0,n>0and p =0.

Since n > 1, then r > I(Ilm — 1)(2m + 1) + 1/2 > 0, so |r| = r. Therefore 4g — |r| =
2Pm? + Pm+4lm +1-1/2 + (n — ))(4Pm? - 1).

Suposse n = 1, then m < -2 (since (m,n) # (—1,1)) and 4g — |r| = 2Pm? + Pm + 4lm +
[-1/2>@I-4H2H+1-1/2>19/2.

Now, if 71 > 2, then 4g — |r| > 22m2 + Pm + 4lm + 1 — 1/2 + 42m? — 1 = Im(I(6m + 1) +
4)+1-3/2>25/2.

In both cases, 4g — |r| > 3/2.
CaseS5. [>0,m>0,n=0and p <O0.

Here |r| = —r, then 4g — |r| = 22m?® — Pm — 8Im + 31+ 7/2 — pQ2Im — [ — 1)(2lm — [ - 3).
Note that [,m > 2 since [ # 1 and (m,n) # (1,0).

Suposse p = 0, then 4g — |r| = 2°m? — Pm — 8lm + 31+ 7/2. If m = 2, then 4g — |r| =
(B1-2)21-3)=5/2>4-5/2 =3/2. It m > 3, then 4g —|r| = Im(I2m—1)—8) +3[+7/2 >
12+6+7/2=43/2.

Now we can assume that p < —1. Then 4g — |r| = 2°m?> — Pm — 8Im + 31+ 7/2 —
pQim — 1 - D)Q2Im — 1 = 3) > 2Pm* — Pm — 8lm + 31 + 7/2 + 4I’m?* — 21°m — 6lm —
2Pm + P +31-2lm+1+3 = Im(l(6bm — 5) — 16) + > + 71 + 13/2. If m = 2, then
dg —|rl = 2071 = 16) + > + 71+ 13/2 = 151> = 251 + 13/2 = 5I(3] = 5) + 13/2 > 33/2. If
m >3, then 4g — |r| > Im(I(6m —5) = 16) + P + 71+ 13/2 > 60 + 4 + 14 + 13/2 > 3/2.

In both cases, 4g — |r| > 3/2.
Case6.1>0,m>0,n=0and p > 0.

In this case || = r, then 4g — |r| = 22m®> = 3Pm —8lm + > + 51+ 15/2 + (p — DQIm — | -
1)(2Im — I - 3). Note also that [,m > 2 since [ # 1 and (m,n) # (1,0).

Suposse p = 1. Since (I, m, p) # (2,2,1),thenl >3 orm > 3. If m = 2, then [ > 3 and
4g—|rl = (31-2)(1-3)+3/2 = 3/2. If | = 2, then m > 3 and 4g—|r| = 4m(2m—T)+14+15/2 >
2+15/2 > 3/2. Now, if [ > 3 and m > 3, then 4g — |r| = Im(I2m —3) = 8) + > + 51+ 15/2 >
9+9+15+15/2>3/2.

Now if p > 2, then 4g—|r| > 2PPm*=3Pm—8Im+ 1 +51+15/2+Im—1-1)2lm—1-3) =
6Pm?—7Pm—16lm+22+91+21/2. If m = 2, then 4g—|r| > (31-2)(41-5)+1/2 > 12+1/2 >
3/2. It m > 3, then 4g —|r| > Im(I(6m—T7) = 16) + 21> +91+21/2 > 36 + 8+ 18 +21/2 > 3/2.

In both cases, 4g — |r| > 3/2.
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Case7.1>0,m<0,n=0and p <O0.
Here |r| = —rand 4g — |r| = 2Pm? = Pm +4lm — 1 - 1/2 — pQ2Im — [ = 1)2Im — [ + 1).

Suposse that p = 0, then 4g—|r| = 2Pm?> —Pm+4lm—1-1/2 = I(m(I2m-1)+4)-1)—1/2.
Ifl=2andm = —1,thendg —|r| =3/2. If | >2andm < —2then(2m—-1)+4 < -6
implies that I[(m(I2m — 1) +4) — 1) > 22,s04g — |r]| > 43/2. If [ > 3 and m < —1 then
I2m — 1) + 4 < -5 implies that [(m(I2m — 1) +4) — 1) > 12, s0 4g — |r| = 23/2.

Now if p < —1,since [ > 2 and m < —1, then 4g —|r| > 6°m? —=5Pm+4lm—1+1*-3/2 =
6(Im+1/3)2+ (1 —-1/2)?=5Pm—-29/12 >26/3 +9/4 +20-29/12 > 3/2.

In both cases, 4g — |r| = 3/2.

Case8.[>0,m<0,n=0and p > 0.
Here |r| = rand 4g—|r| = 2Pm? =3Pm+4lm+ > -31-1/2+(p— 1) 2Im—1-1)2Im—1+1).

First suposse that p = 1, then 4g — |r| = 2Pm*> = 3Pm +4lm + 1> =31 —1/2 = 2(Im + 1)* -
3Pm+(1-3/22-1/2-9/4-2>2+12+1/4-1/2-9/4-2=19/2 > 3/2.

Now assume that p > 2, then 4g—|r| > 2°m? =3Pm+4im+1?-31-1/2+2Im—1-1)2lm—
[+1) = 6Pm?> =7Pm+4Ilm+21> =31-3/2 = 4Pm> = TPm+2(Im+1)> + 2I-1)(I-1)-9/2 >
16 +28+2+3-9/2>3/2.

In all cases, 4g — |r| = 3/2.

3. Integral slope.

Let r be an integral slope and T an incompressible torus in K(r) that intersects the attached
solid torus J in a disjoint union of meridional disks vy, vy, ..., numbered successively
along J. We assume that T is chosen so that 7 is minimal among all incompressible tori in
K(r). We also assume that r is not the longitudinal slope, then T must be separating in K(r)
and hence ¢ is even.

Let S be a minimal genus g(K), Seifert surface for K. By shrinking S suitably, we may
assume that S is properly embedded in E(K) = S3 — intN'(K). We cap off S with a disk
u to obtain a closed surface S. Let T = T N E(K). We isotope T so that S N T consists of
circles and arcs that are essential in both S and 7.

The intersection S N T defines two labeled graphs Gg on S and Gy on T as follows. The
graph G has only one (fat) vertex u, while the graph Gr has ¢ (fat) vertices vy, v, . .., v;. For
each graph Gs and G, the edges are the arc components of S N 7. Foreach x = 1,2,...,¢,
there are r points in du N dv,, which are endpoints of some edges in Gs (Gr). We label
these r points by x in Gg. Then labels 1,2, ..., appear in order around the vertex of Gg
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repeatedly r times. We number consecutively each of these r blocks of labels according to
the orientation of du, starting at some block (see Fig. 3). For each edge endpoint in Gy, we
will make use of another label which is the number of the block that it belongs. Each edge
of Gs has some labels x and y at its endpoints, and this edge connects v, and v, in G with
labels i and j, where i and j are the labels of the blocks to which the edge endpoints belongs
in Gg. Here x and y have opposite parities by the parity rule [1] and then x # y. Note that
the number of the edges in Gg (or Gr) is |r|t/2.

Fig.3

Let B, W be the two sides of 7 in K(r), also let B = BN E(K)and W = wn E(K). For
each face f of Gy, we color f black or white according to whether a collar of df lies in B or
w.

An edge of Gy is called x-edge if it has label x at one endpoint, and it is called an (x, y)-
edge if it has label y at the other endpoint. Note that the number of x-edges in Gy is || for
eachx=1,2,...,¢

If the subgraph of G¢ consisting of all x-edges contains disk faces, we call them x-faces.
We frequently regard an x-face as a configuration in G . If an x-face is a disk face of G, then
all the edges in the boundary of the x-face have the same label pair {x, y}, where |x —y| = 1.
The cycle of the edges of such an x-face is called a Scharlemann cycle. A Scharlemann
cycle with only two edges is called an S-cycle. A cycle of Gg inmediatly surrounding a
Scharlemann cycle is called an extended Scharlemann cycle.

Lemma 1. If|r| > 4g(K), K(r) does not contain a Klein bottle.

Proof. This follows from [16], Corollary 1.3. m]

Lemma 2. If|r| > 2g(K) — 1, K(r) is irreducible.
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Proof. Lemma 2.3 of [17] or Theorem 1.3 of [19]. m|

Lemma 3. Gg cannot contain an extended Scharlemann cycle if t > 4.

Proof. This is Theorem 3.2 of [11]. m]

Lemma 4. No two edges are parallel in both graphs Gs and Gr.
Proof. Lemma 2.1 of [10]. O

Lemma 5. If |r| > 4g(K) and t > 4, then Gg cannot contain two S -cycles on disjoint
label pairs.

Proof. Lemma 2.6 of [17]. O

Lemma 6. There are at most four labels of Scharlemann cycles in Gg.

Proof. This is Lemma 2.3(4) of [14]. ]

Lemma 7. The edges of a Scharlemann cycle of Gs cannot lie in a disk in T.

Proof. This is Lemma 3.1 of [11]. m]

Let x be a label of Gs. Define I', be the subgraph of G consisting of all x-edges and F,
be the number of disk faces of I',. Thus I', has exactly |r| edges.

Lemma 8. If |r| > 49(K) — 1, then 'y contains a disk face of length at most 3 for any
label x.

Proof. Assume that I', has no disk face of lenght at most 3. Then 4F . < 2|r]. By an Euler
characteristic count in § we have
lzﬁzfxz 1 —2g(K) +|r]
Thus |r| < 4g(K) — 2, a contradiction. O

3.1.t > 6. Suposse |r| > 4g(K). By Lemma 1, K(r) does not contain a Klein bottle. We
mainly follow the argument in [[11], Section 5]. Let C.(i) be the configuration in Gg as
illustrated in Fig. 4.

Let S denote the set of labels of Scharlemann cycles of lenght at most 3 in Gy, and let
Lo={1,2,...,t}\S. Recall that I', contains a disk face of lenght at most three for any label
x by Lemma 8.

Lemma 9. Gy contains a configuration C.(i) for just one label i.

Proof. Let x be a label in L. Then I', contains a bigon or a trigon face f by Lemma 8.
Since there is no extended Scharlemann cycle, I', has a disk face as shown in Figure 5.1 of
[11] (see Lemma 5.1 of [11]), and hence has a configuration C. (7). The uniqueness of such
a configuration follows from [[11], Lemma 5.4]. O

Lemma 10. S| < 4 and |Ly| < 4.
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Fig.4
Proof. The first part follows from Lemma 6, and the second is Theorem 5.8 of [11]. O

Corollary 1. 7 < 8.
Proof. By Lemma 10, ¢t = |S| + |£g| < 8. m]

Proposition 1. ¢ = 6 is impossible.

Proof. By Lemma 9, we may assume that Gg contain an S-cycle with label pair {1, 2},
and £y c {3,4,5,6}. By the argument of [[11], page 626], we see that Ly, = {3,6} and
S ={1,2,4,5}. Hence Gg contains 12- and 45-Scharlemann cycles of lenght 2 or 3. This is
impossible by [[11], Theorem 3.9]. m|

Proposition 2. 1 = 8 is impossible.

Proof. If t = 8, then |S| = |£o| = 4. By Lemma 9, G contains an S -cycle p with label
pair {i,i + 1} for some i, and Ly = {i —2,i — 1,i + 2,i + 3} by [[11], Lemma 5.3(2)]. Since
|S| > 2, there is another (j, j + 1)-Scharlemann cycle o of length at most 3 with j # i, and
with j,j+1¢ Ly. Hence j, j+ 1 ¢ {i —2,i—1,i,i+ 1,i+ 2,i + 3}. The rest of the proof is
the same as those of [[11], pages 625-626]. O

3.2.t = 4. Suposse that |r] > 6g(K) — 2. By Lemmas 5 and 6, we can take a label x of
Gy which is not a label of any S-cycle. Every disk face of I', has at least 3 sides, since
otherwise Gg would contain an extended Scharlemann cycle. An Euler characteristic count
for I, gives Fy > 1 — 2g(K) + |r|. Also 2|r| > 3F,, then |r| < 6g(K) — 3, a contradiction.

3.3.t = 2. Suposse that |[r| > 4¢g(K) + 1. Since t = 2, Gr has exactly two vertices, then
has at most four edge classes as shown in Fig. 5.

We label each edge e of G by the label of its class on G and we denote this label by
L(e).

Note that when # = 2, all disk faces of Gg are Scharlemann cycles.
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Fig.5

Let f be a disk face of Gy and suposse that y1, y» are two distinct edge classes in Gy. We
say that f is a (y1,x2)-face if the edges of f belong to y; U y». When f is a (v, x2)-face,
f is said to be y;-good (i = 1,2) if no two consecutive edges of f belong to class y;. If f is
xi-good for some i = 1,2, then f is said to be (y1, y2)-good. We denote by |f| the number of
edges of f.

Lemma 11. For any two edge class labels x1, x>, Gs cannot have (x1, x2)-good faces on
both sides of T.

Proof. This is Lemma 4.2 of [17]. ]

In what follows, let H; ;1 be the part of J between consecutive components i and i + 1 of
oT.

Lemma 12. If a disk face of Gs have at most 3 edges, the edges are contained in an
essential annulus on T.

Proof. Let o be a disk face of Gy, then o is a Scharlemann cycle.

If |o| = 2, the result is a direct consequence of Lemma 7.

If |o| = 3. Let a, b, c be the edges of o and suppose L(a) # L(b) # L(c) (otherwise we
would have finished). Extending the edges a, b, ¢ to the corners of o in T U H| », they look
like Figure 6. According to such a figure, to complete the cycle o we need to connect the
ends of the arcs a,b,c in H;,. We have two options: (i) to connect an end of a with an
end of ¢, an end of b with an end of a and an end of ¢ with an end of b; or (ii) to connect
an end of a with an end of b, an end of b with an end of ¢ and an end of ¢ with an end of
a. However, it is not difficult to see that is not possible to realize such connections in Hj
without obtaining autointersections. m|

Note that by Lemma 12, the disk faces of G of length at most three are good faces.

Lemma 13. Gg does not contain two bigons of the same color on distinct edge class
pairs.

Proof. Otherwise, K(r) would contain a Klein bottle. See the proof of Lemma 5.2 [13].
|

Lemma 14. If a bigon and a trigon of Gs have the same color, then they have disjoint
pairs of edge class labels.
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Fig.6
Proof. This is Lemma 4.5 of [17]. ]

Lemma 15. (1) Iftwo trigons of Gs of the same color have different pairs of class labels,
then the pairs are disjoint.
(2) Suppose that two trigons of Gg of the same color have the same pair of edge class
labels, say, {x1,x2}. If one has an edge in class y| and two edges in class x», then
the other also has one edge in class x| and two edges in class y».
(3) If two trigons of Gs have opposite colors, then they cannot have the same pair of
edge class labels.

Proof. This is Lemma 4.6 of [17] m]
Recall that u is the unique vertex of Gg. Let a, b be some two intersection points of du
and Jv, (x = 1,2). Then both points have label x in Gg. Since r is an integral slope, the

points a and b are consecutive on dv, of G if and only if there is exactly one edge endpoint
in Gg between the points. See Fig. 7, where x = 1.

7 \ 7 IOV
‘}2 ‘\) ovy '\) Ovg ‘\] \
\ \ \ 1,
\ al, \ b\ au

SN,
\ \\ \\ \\ ‘\
OE(K)

Fig.7

We orient dv; counterclockwise around vy, dv, clockwise around v, and du counterclock-
wise around #. We may assume that the three curves dv;, dv, and du proceed in the same
direction along the knot K when they proceed along their orientations.

Let y € {a,B,y,0}. For two edges e, e’ in class y, we write e < ¢’ if the point e N dv;
precedes the point ¢’ N dv; with respect to the orientation of dv;. Note that e < ¢’ if and only
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if the point e N dv, precedes the point ¢’ N Jv, with respect to the orientation of dv,. We say
that e is the first edge in the class y if e < ¢’ for any other edge ¢’ in class y. Similarly, the
last edge is defined.

Lemma 16. Let ay, as be two edge endpoints of Gs such that there is exactly one endpoint
betweeen them as in Fig. 8. Let e; be the edge of Gy incident to a; (i = 1,2). Let y; = L(e;)
and assume x| # x». Then on Gr, ey is the last edge in class x|, while e, is the first edge in
class y». Also, ay, a appear consecutively and in order on a vertex of Gr.

ay az

€l

Fig.8
Proof. This is Lemma 4.7 of [17]. O

Lemma 17. Any two bigons of Gs cannot be adjacent.

Proof. Lemma 4.8 of [17]. O

Lemma 18. If a bigon and a trigon of Gg are adjacent, then Gg contains only one bigon.

Proof. It follows from the first part of the proof of Lemma 4.9 of [17]. m|
Recall that the graph G have |r| edges. Let F be the number of disk faces on Gg.

An Euler characteristic calculus gives 1 — || + F > 2 — 2g, then

(H F>|rl-29(K)+1

Lemma 19. If |r| > 6g(K) — 2, then Gs cannot have a bigon and a trigon which are
adjacent.

Proof. Suposse there is a bigon adjacent to a trigon in Gg. By Lemma 18, Gg contains
only one bigon. Applying (1), 2|r| > 3(F - 1)+2 =3F -1 > 3(rl+ 1 -2g9(K)) -1 =
3|r|—6g(K)+2, hence |r| < 6g(K)—2. Also |r| > 6g(K)—2 by assumption, then |r| = 6g(K)—-2.

Let F”, F* be the number of black and white disk faces of Gy, respectively. Suposse that
the unique bigon on Gy is black. Then |r| > 3(F’ — 1) + 2 = 3F” — 1, s0 F? < (|r] + 1)/3.
Hence (|r|+1)/3+F" > FP+F* = F > |r|+1-2¢(K), wich yields F¥ > (2|r|+2)/3-2g(K) =
2g(K) —2/3 and hence, F” > 2g. Also |r| > 3F", then |r| > 3F" > 6g(K), contradicting that
|r| = 6g(K) — 2. O
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Lemma 20. Let [ be a disk face of Gg with |f| > 4. Then the following hold.

e f cannot be surrounded by bigons.
o [f|f|is odd, then f is adjacent to at most |f| — 2 bigons.

Proof. Lemma 4.10 of [17]. ]

Lemma 21. Gg cannot contain a bigon, a trigon and a tetragon of the same color.

Proof. Lemma 4.11 of [17]. O

DeriniTion. We say that two disk faces in Gg are of the same type if they have the same
color, the same length, the same set of class edges labels and the same number of edges in
each edge class. This is an equivalence relation in the set of disk faces of Gg, and we call as
a type of n-faces an equivalence class of a disk face with n sides.

Note that by Lemmas 12 and 13, there are at most two types of bigons in Gy (one for
each color). Also, by Lemma 15, there are at most four types of trigons in G (two for each
color).

Convention on the Figures. From now on, the same number and shape of big dots on
the edges in the graph G will indicate that the edges are the same.

DermniTion. Two disk faces of the same type in Gy, are consecutive with respect to one
corner if the corresponding labels of one of their corners are consecutive in Gr.

Remark. Note that if two disk faces are consecutive with respect to one corner and if in
addition the corresponding edges that form the corners are parallel edges in Gr, then the
faces are consecutive with respect to the other corners at the ends of the edges.

DEeriniTION. A finite set of disk faces in Gy, {0}, is consecutive if the faces are of the
same type and we can enumerate them as {o j}’j?’zl for some m > 1, in such a way that for
all 1 < j <m, o;and o, are consecutive faces with respect to one corner (and then with
respect to all their corners by the remark above).

Fig.9 shows an example of a consecutive set of faces o1,07,...,0, in Gg. The blue
labels are the labels that they have in Gy and which are supossed to be consecutive.

We denote by F; the set of faces with 7 sides in G and by |F}| its cardinality. In the same
way, we denote by F}’ and F f’ be the set of white and black disk faces with i sides in Gy,
respectively.

Lemma 22. The set of bigons of the same color in Gg, is consecutive.

Proof. Fix a color, say white. By Lemma 13, the bigons in FJ have the same two edge
classes, say {x1,x2}, then they are all of the same type. In fact, the edges of the bigons in
FY lie in an annulus A on T. Let a and bl be the first and last edge, respectively of class yi,
i = 1,2 for bigons in F7. Suppose we have an edge ¢ on a white face o such that al <c< bll

or a‘; <c< blz. Note that when going along the edges of o on TUH 12 they cannot get out
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Fig.9

of A and also they cannot give more than one lap around A because if not o would not close.
Then o is a bigon inside A with edge classes {y1, y2}. Therefore the edges of the bigons in
F7 of the same class, are consecutive on G7 and hence the set of white bigons is consecutive
in Gg. O

Lemma 23. The bigons of the same color are adjacent to at most two faces in Gg, each
one having the same number of edges belonging to bigons.

Proof. Fix a color, say black. By Lemma 22, F é’ is a consecutive set in Gg. Then we can
enumerate its elements according to the order they appear on the vertex u of Gs. Suppose
that in such an order, the bigons are b,,, m € {1, 2, ...n} and have labels i+ (m—1), j+(m—1),
respectively on its corners on G for some fixed 7, j € {1,2,...,|r[}. Start with the first bigon,
it its adjacent to at most two faces, f1, f> (not necessarily different). By following the labels
of the blocks in du from i to i + 1, we note that the second bigon must be adjacent to the face
/> on one side and adjacent to the face f; on the other side (if we follow the labels from j to
Jj + 1), so they appear in Gy as in Fig. 10.

The third bigon has labels i + 2, j + 2 on its corners, then it must be adjacent to the face
/> by one side (if we follow the labels from j + 1 to j + 2), and adjacent to the face f; on
the other side (if we follow the labels from i + 1 to i + 2), as in Fig. 11. Continuing with this
process, we get that all bigons are adjacent to the same two faces, and in fact f; and f, have
the same number of edges belonging to bigons. |

We have similar properties for the trigons.

Lemma 24. The set of trigons of the same type is consecutive in Gg.
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Fig.11

Proof. Let C be the set of trigons of the same type in Gg. Without loss of generality,
suppose that the trigons in C are white and have one edge of class y; and two edges of
class y». By the remark above, we just need to prove that the trigons of the same type are
consecutive with respect to the corner which contain the edge of class y; on each trigon. By
Lemma 12, the edges of the trigons of the same type lie in an essential annulus A on T. Let
a’ and b’ be the first and last edge of class y for trigons in C, respectively. Suppose we have
an edge c on a white face o such that a/ < ¢ < b. Note that when going along the edges of
conTUH 12 they cannot get out of A and also they cannot take more than one lap around A
because if not o would not close (see Fig. 12). Then o is a trigon inside A with edge classes
{x1,x2}. Therefore the edges of the trigons must be consecutive on Gy and then the set of
trigons is consecutive in Gy . O

Lemma 25. The trigons of the same type are adjacent to at most three faces on Gg, each
one having the same number of edges belonging to trigons.

Proof. Let C be the set of trigons of the same type in Gg. By Lemma 24, the set C
is consecutive. Suppose that the trigons in C have one edge of class y| and two edges of
class y». We can enumerate the trigons in C according to the order that the edges of class
X1 of the trigons appear on the vertex u. Suppose that in such an order, the trigons are ¢,
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Fig.12

m € {1,2,...,n} and have edge labels in Gy, i+ (m—1),j+ (m—1),[ + (m — 1) (mod |r]),
respectively for some fixed numbers i, j, [ € {1,2,...,|r|}. Start with the first trigon, it is
adjacent to at most three faces fi, f», f3 (not necessarily different). By following the labels
from i to i+ 1 on the vertex u, we note that the second trigon is adjacent to the face f; by one
side, adjacent to the face f; by other side and adjacent to f; on the third side (if we follow
the labels from j to j+ 1 and also from [ to [ + 1), so they appear in Gy like in Fig. 13.

Fig.13

The third trigon has edge labels i + 2, j + 2,1 + 2 in Gy. Hence it must be adjacent to f>
by one side (if we follow the labels from / + 1 to [ + 2), and adjacent to f; (if we follow the
labels from j+ 1 to j+2) and f3 (if we follow the labels from i+ 1 to i +2) on its other sides,
like in Fig. 14. Continuing with this process, we get that all trigons of the same type must
glue to the same faces and in fact, fi, f, and f3 have the same number of edges belonging to
trigons. m|

Lemma 26. If on Gg there are two adjacent trigons, they are unique with respect to their
type.

Proof. Suppose that we have two adjacent trigons ¢; and ¢; on Gg (say ¢; black and
¢, white). Without loss of generality, we can assume that ¢ is a {y, y2}-good face and ¢,
is a {y2, y3}-good face. By Lemma 25, ¢, is adjacent to all white trigons of type {y2, v3},
and in the same way c; is adjacent to all black trigons of type {x1,x2}. Since ¢; and ¢
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Fig. 14

are adjacent then there are at most two black trigons of type {y1, x>} and two white trigons
of type {x2,x3}. Suppose c; is adjacent to two white trigons of type {x2,x3} (otherwise
we would have finished). It means that ¢; have two edges of class y» and one of class y;.
Applying Lemma 16 on the corners of ¢; containing the edge of class y;, we can see that
this is the only edge of its class. This implies that there are no more black trigons of type

i, xal
Let a, b, ¢, d be the rest of edges of the trigons according to Fig. 15.

Fig.15

Applying Lemma 16, we see that c¢ is the first edge on its class, while b is the last edge
on its class. For the edges a, b, c, d we have the following classes options. The superscripts
f and [ indicate that the edge is the first or the last of its class, respectively.

(1) L£(a) = x2: L(B) = x4; £(0) = x: L(d) = x3
(2) L(a) = x2; L) = x5; L(c) = )(§ s L£(d) = x2
(3) L(a) = x3; LDb) = ¥} L(c) = X{ s £(d) = x3
4 L(a)=x3; LD) = ¥} L(c) = X§ s £(d) = x2
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(5) L(a) = x3; £(b) = xh: £(c) = x4; £(d) = x3

Applying Lemma 16 on the first case, we have that d is the last edge of the class y3, which
contradicts the fact that b is such an edge.

On the second case, since the edges of the class y, are consecutive, we can label them
with i, j, like in Fig. 16. However such configuration implies that b and ¢ are the same,
which is not possible since we are assuming that they lie in different faces.

Fig.16

Applying Lemma 16 on the third case, we have that the edges of class y» in the black
trigon are the first and the last edges of its class, contradicting that b and ¢ are such edges.

Applying Lemma 16 on the fourth case, we see that one of the edges of class y» is the last
edge of this class, contradicting that b is such an edge.

Finally, applying Lemma 16 on the last case, we see that a and d are the first and last edge
of class ys, respectively, contradicting that ¢ and b are such edges. m|

Note that Lemmas 15 and 26 imply that on Gg there are at most two pairs of adjacent
trigons and in such case the trigons are unique.

Denote by n the number of faces to which the bigons (of both colors) in G are adjacent
and denote by m the number of faces to which the trigons (of both colors) in Gy are adjacent.
By Lemmas 23 and 25, n < 4 and m < 12, respectively.

We use Lemmas from 11 to 26 to separate the proof of the theorem on eleven cases. In
Fig. 17 we see the tree of cases and the bound obtained for |r| on each case.

1. Without bigons or trigons.

By counting the edges on Gg we have that 2|r| > 2|F5| + 3|F3| + 4(F — |F»| — |F3]) =
4F = 2|F5| — |F5]. By (1), 2|r] = 4(r| — 29(K) + 1) — 2|F»| — |F3|. Since |F»| = |F3| = 0, then
|r] < 4g(K) — 2, which finishes this case.

II. Without trigons.
Since any two bigons cannot be adjacent by Lemma 17 and Gg does not have any trigon,
then the faces to which the bigons are adjacent have at least four sides. On the other hand, a
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disk face o in Gy is adjacent to at most |o"| — 1 bigons by Lemma 20. By counting the edges
on Gy and applying (1), we have

2|r]

[\

2|Fo| + 3|F3| + 4(F — |F2| — |[F3| —n) + 2|F2| + n
—|F5|+4F —3n

>4(r] —29(K)+ 1) — 12
Then, |r| < 49(K) + 4.

II1. Without adjacent trigons and without bigons.

Since any two trigons are not adjacent and there is no bigons, the faces to which the
trigons are adjacent have at least four sides. By counting the number of edges on Gg and
applying (1), we have
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2|r| 2 3|F3| + 4(F — |F3| — m) + 3|F3]
=2|F3| +4F —4m
> 2|F3| +4(r —29(K) + 1) — 48
Then
() |F3] < 49(K) + 22 — ||
Also we have
2lrl = 3|F3| + 4(F — |F3])
= 4F — |F|
> 4(Irl = 29(K) + 1) — |F3]
Then
A3) |[F3] > =8¢g(K) + 4 + 2|r]

Comparing (2) and (3) gives |r| < 4¢g(K) + 6.

IV. Without bigons, with a couple of adjacent trigons.

By Lemma 26, if on Gy there is a couple of adjacent trigons, they are unique with respect
to its type. Then Gg have this two trigons and other trigons of at most two types. Denote by
F the set of trigons that are not adjacent to any other trigon. Then |F3| = |F7| + 2.

Let m’ be the number of faces to which the trigons on F7 are adjacent. By Lemmas 25
and 20, m" < 6 and such faces have at least four sides. By counting the number of edges on
Gy and applying (1), we have

2|r| = 3|F3| + 4(F — |F3| —m") + 3|F5]
=2|F3|+4F —4m’' — 6
> 2|F3| + 4()r] — 2g(K) + 1) — 30
Then,
4) |F3] < 4g(K) + 13 —|r]
Comparing (3) and (4) we get |r] < 4¢9(K) + 3.
V. Without bigons, with two couples of adjacent trigons.

By Lemma 26, Gs have only four trigons, i.e. |F3| = 4. By counting the number of edges
on Gg and applying (1), we get

2| = 3|F5| + 4(F — |F3])
=4F —4
>4(r| - 29(K)+ 1) -4
Then, |r| < 4g(K).
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VI. One type of bigons, without bigons adjacent to trigons and with a couple of adjacent
trigons.

By Lemma 14, Gy has at most three types of trigons. Since we do not have any bigon
adjacent to any trigon, the faces to which the bigons are adjacent are at most two (Lemma
23) and have at least four sides.

On the other hand, we have a couple of adjacent trigons, then by Lemma 26, such trigons
are the unique of its type. Since Gs has at most three types of trigons, then it has at most
one type of trigons not adjacent to any trigon. Then we have n < 2 and m < 3. By counting
the number of edges on G and applying (1), we have

2|r| = 2|Fa| + 3|F3| + 4(F — |Fa| = |[F3l —n—m) + 2|F5| + n + 3|F3| - 6
=2|F3|+4F -3n—-4m -6
> 2|F5| +4(r —2g(K) + 1) — 24

Then
) |F3] < 4g9(K) + 10 — |r]|
Also
2|rl = 2|F5| + 3|F53| + 4(F — |F5| — |F5| — n) + 2|F5| +n
=4F - 3n — |F3|
> 4(rl = 2g9(K) + 1) = 6 — |F3]
Then
(©6) |F3| 2 ~8g(K) = 2 + 211}

Comparing (5) and (6) we get |r] < 4¢9(K) + 4.

VII. Two types of bigons, one couple of adjacent trigons and without bigons adjacent to
trigons.

Since any two bigons cannot be adjacent by Lemma 17, and we are assuming that any
bigon is not adjacent to any trigon, then the faces to which the bigons are adjacent have at
least four sides. On the other hand Gg has two types of bigons, then by Lemma 14 there are
at most two types of trigons. We have also a couple of adjacent trigons, then by Lemma 26,
they are the unique of its type and then |F3| = 2. By counting the number of edges on Gy
and applying (1), we have

2| = 2|F5| + 3|F5| + 4(F — |Fo| — |F3| —n) + 2|F| +n
= —|F3|+4F — 3n
>4(r| - 29(K)+ 1) - 14
Then

[r| <4¢9(K) + 5.
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VIII. One type of bigons, without bigons adjacent to trigons and without trigons adjacent
between them.

By Lemma 14, G has at most three types of trigons. We are assuming that any bigon is
not adjacent to any trigon, then the faces to which the bigons are adjacent have at least four
sides.

Then n < 2 and m < 9. By counting the number of edges on Gg and applying (1), we
have

2|r| = 2|F5| + 3|F5| + 4(F — |Fa| — |F3| —n—m) + 2|F>| + n + 3|F3|
=2|F3|+4F —3n—4m
> 2|F3| + 4()r] — 2g(K) + 1) — 42

Then
@) |F3] < 49(K) + 19 — |r|
Also
2r| = 2|F3| + 3|F3| + 4(F — |Fo| — |F3| — n) + 2|F,| +n
=4F - 3n — |F3|
> 4(rl = 29(K) + 1) — 6 — |F3]
Then
®) [F3 2 ~8g(K) =2+ 2Ir

Comparing (7) and (8) we get that |r] < 4¢(K) + 7.

IX. Two types of bigons, without bigons adjacent to trigons and without trigons adjacent
between them.
By Lemma 14, on Gy there are at most two types of trigons. Then we have that n < 4 and
m < 6.
Since any bigon is not adjacent to any bigon or trigon, the faces to which the bigons are
adjacent have at least four sides. The same happens to the trigons since they are not adjacent
to any trigon. We also apply Lemma 20 to obtain

2r| = 2|F5| + 3|F5| + 4(F — |Fa| — |F3l — n—m) + 2|F>| + n + 3|F5|
=2|F3|+4F —3n—4m
>2|F5| +4(r —2g(K) + 1) - 12 -24
Then
) 2|F5| < 8g(K) + 32 - 2|r|
Also
2r| > 2|F5| + 3|F5| + 4(F — |Fo| — |F3| —n) + 2|F>| +n
=4F — 3n — |F;|
>4(r| —29(K) + 1) — 12 — |F3|



572 M. Eupave-MuRNoz AND A. GUZMAN-TRISTAN

Then
(10) |F3| > —8g(K) — 8 + 2|r]
Comparing (9) and (10) we get |r| < 4g(K) + 8.

X. With a bigon adjacent to a trigon and a couple of adjacent trigons.

By Lemma 18, there is only one bigon on Gg, i.e. |F| = 1. Also by Lemma 24, the trigon
adjacent to the only bigon is the only one on its class, let #; be such a trigon. We will see
that |F5| < 3.

Let #, and 3 be two adjacent trigons on Gg. By Lemma 26, t, and #3 are the unique with
respect to its type. By Lemma 14, G has at most three types of trigons.

If 11, 1, and 13 were all different, they would be the only trigons on Gg and then |F3| = 3.

Now suppose that two of {1, 1», 13} were equal, say #; = t3. Let b be the only bigon on Gg.
Suppose that b is black and it has class edges {y1, x2}. Then ¢, is a {y», y3}-white trigon and
t is a {y3, y4}-black trigon (b and t, are adjacent on an edge of class y», while #; and ¢, are
adjacent on an edge of class y3). Applying repeatedly Lemma 16, we get a subgraph on Gy
like Fig. 18.

Fig.18

If Gs had another type of trigons different than those already mentioned, it must be of
type {x1,xa}-white trigon. But there is only one edge of class y; on Gg, then there could be
only one of such trigons. It follows that |F3| < 3.

Therefore

2r| = 2|F>| + 3|F3| + 4(F — |F2| = |F3))
=4F — |F3| = 2|F5| 2 4(r] = 29(K) + 1) =2 = 3 = 4|r] - 8¢g(K) — 1
Then

|rl < 4g9(K).

XI. With a bigon adjacent to a trigon and without trigons adjacent between them.

Let b and #; be a bigon and a trigon adjacent on Gy, respectively. By Lemmas 18 and
24, b is the only bigon on Gy and ¢ is the only trigon of its type. By Lemma 14, Gg has at
most three types of trigons. Then there is at most two types of trigons such that they are not
adjacent to any trigon or bigon. Therefore m < 6. By counting the number of edges in Gy
and applying (1) we have
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2|r| = 2|F>| + 3|F3| + 4(F — |Fa| — |F3| —m) + 3|F3| -3
=2|F5|+4F —4m -5
> 2|F5| +4(|r| — 29(K) + 1) — 29

Then
(11) |[F3| <49(K)+ 12 —|r]|
Also
2r| = 2|F>| + 3|F3| + 4(F — |F2| = |F3))
=4F = 2|F,| - |F3|
2 4(rl = 29(K) + 1) = 2 — |F3]
Then
(12) |F3] = —8¢g(K) + 2 + 2|r]

Comparing (11) and (12) we get that |r| < 49(K) + 3.
This concludes the proof. O
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