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Abstract

We present some topological and arithmetical aspects of a class of Rauzy fractals R, related
to the polynomials of the form P, ;(x) = x> —ax? —bx—1, where a and b are integers satisfying
—a+ 1 < b < -2. This class has the property that O lies on the boundary of R,;. We
construct explicit finite automata that recognize the boundaries of these fractals. This allows to
establish the number of neighbors of R, in the tiling it generates. Furthermore, we prove that
if 2a + 3b + 4 < 0 then R, is not homeomorphic to a topological disk. We also show that the
boundary of the set R3_; is generated by two infinite iterated function systems.

1. Introduction

Our aim is to study a class of Rauzy fractals related to algebraic integers 8 which do not
satisfy a certain property called Property (F). This study involves fractal tilings, automata,
S—numeration, and infinite iterated function systems (IIFS).

The Rauzy fractal was introduced by G. Rauzy in 1982 [27] and it is the set

+00
£= {Z G, €€ 40,1}, Ll Cisn = 0, Vi 2 0},
i=0

where a is one of the complex roots of the polynomial x* — x

There are several ways to construct the Rauzy fractal, one of them is by using substitu-
tions. Let A = {1,2,...,d}, d > 2, be a finite alphabet. A word is a finite string of elements in
A. The set of all finite words over A is denoted by .A*, and the empty word is denoted by ¢.
A substitution o is an application from the alphabet .A onto the set .A*\{e} of nonempty finite
words on A, and it extends to a morphism of .A* by concatenation, i.e., o(ww’) = o(w)o(w’).
The substitution o can be naturally extended to the set of infinite words .A". The initial aim
of Rauzy was to establish a geometric representation to the symbolic dynamical system as-
sociated with the substitution o given by 0(0) = 01, (1) = 02, 0(2) = 0. Since then, this
set and its generalizations have been studied by many mathematicians, due to the strong con-
nections with other fields of mathematics, for instance, tilings [26, 1, 4], numeration systems
[22, 23, 26], Markov partitions for toral automorphisms [21, 26, 17], geometric representa-
tion of symbolic dynamical systems [10, 4, 5, 6, 21, 32, 14, 31], simultaneous diophantine
approximations [3, 11, 15], and the theory of quasicrystals [2].

The Rauzy fractal has remarkable properties (see [27]): it is a compact and connected
subset of C, its interior is simply connected, and it induces a periodic tiling of the complex

2_x-1.
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plane. Moreover, it is divided into three self-similar copies of itself which correspond to an
exchange of domains.
Another way to obtain the Rauzy fractal is via S—representation. Given a real number
B > 1, a B-representation (or S-expansion) of a number x € R* is an infinite sequence (x;);<,
where k € Z, x; > 0 such that x = Zf?oo x;i8'. The digits x; can be computed using the
greedy algorithm as follows (see [24, 12] for details): denote by |x] and {x} the integer
and fractional parts of the number x. There exists k € Z such that g& < x < g1, Let
Xp = [x/ﬂkJ and g = {x/,Bk}. Then, for i < k, put x; = |Bqg;+1] and q; = {Bg;+1}. We obtain
x=xf o+ IFhk<0(x < 1) weput xo = x; = -+ = x4 = 0. If a -
representation ends up with infinitely many zeros, it is said to be finite and the ending zeros
can be omitted. Then, the sequence will be denoted by (x;),<i<x Or X - -- x,. The digits x;
belong to the set B = {0, - - - , B}, if B is an integer, and to the set B = {0, - - - , | 5]}, otherwise.
In particular, when g is a Pisot number, i.e., an algebraic integer greater then 1 such

that all its Galois conjugates have modulus less than 1, we obtain classes of Rauzy fractals
associated to these Pisot numbers. Cubic Pisot units were classified by Akiyama in [1] as
being exactly the set of dominant roots of the polynomial P,;(x) = x>
satisfying one of the following conditions

a)l <b<aandd(l,B) = .abl;

b)b=-1,a>2andd(1,B) = .(a— 1)(a— 1)01;

¢)b=a+1andd(1,B) = .(a+ 1)00al;

d)-a+1<b<-2andd(1,B)=.(a—1)a+b—-1)(a+ D),
where (a + b)* is the periodic expansion (a + b)(a + b)(a + b) ..., and d(1, ) is the Rényi
B-representation of 1 (see [28] for the definition).

—ax* —bx -1,

Let Fin(f5) be the set of nonnegative real numbers that have a finite S-representation. We
say that a Pisot number $ has the Finiteness Property (or Property (F) ) if Z[S] N [0, +oo[C
Fin(B). Therefore, the Pisot numbers in the sets a), b) and ¢) have the Property (F), while
the Pisot numbers in d) have not. Many works were done for the classes a) and b) (see
[35, 29, 22, 20, 7, 19]).

In this paper we will study the properties of the Rauzy fractals associated to the class of
Pisot numbers which do not satisfy the Property (F), that is, the case where —a+1 < b < -2.
As we shall see, this class shares common features with the others previously studied. For
instance, these fractals sets are compact and they tile the plane. In fact, this class of fractals
can be obtained via S—substitution defined by o(1) = 147D2, ¢(2) = 1@=D3  5(3) =
1@*+D3 (see [8]). This substitution belongs to the class of the so-called Pisot substitutions
and some topological properties for fractal sets arising from Pisot substitutions are well
known (see [9, 10]). On the other hand, zero is not an inner point for the fractals of this
class, contrary to the fractals associated with Pisot numbers that satisfy Property (F). In
this work, we obtain explicit finite state automata that generate the boundary of R, ;. These
automata lead to several results: we obtain a formula for the number of the neighbors of R,
in the periodic tiling and we prove that if 2a + 3b + 4 < 0, then R, is not homeomorphic
to a topological disk. We study in more details the boundary of the set R _,, in particular
we prove that the boundary of R3 _, is generated by two infinite iterated function systems.
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Notice that the set R3 _ is related to a Special Pisot number, i.e., a Pisot number g such that
B/(B — 1) is also a Pisot number (see [18, 33]).

This paper is organized in this way. In Section 2 we briefly describe the f—numeration
background necessary to define the Rauzy fractal sets that we are considering. In Section 3
we give some properties of the boundary of R, ;. In Section 4 we construct the automata
that recognize the boundaries of the sets R, ;. Finally, in Section 5, we use an automaton
to obtain two infinite iterated function system for the boundary of R3_,, and we show a
geometric method in order to parametrize the boundary of R3_,. In Section 6 (Annex) we
show algebraically that R3 _; has exactly six neighbors.

2. Numeration system and Rauzy fractal

In the sequel, we will suppose that § is a cubic Pisot unit which does not satisfy the
Property (F) and we will denote by @ and A its Galois conjugates. Let P, ,(x) = x° — ax? —
bx—1 be the minimal polynomial of 5. Next, we will consider a generalization of numeration

system induced by the S-expansion which only can be applied on integer numbers.

Let (T,),s0 be the recurrent sequence defined by Tp = 1, Ty = a, T» = a*> + b, T3 =
aTpio + bT,4q + T, satisfying the condition —a+ 1 < b < -2 foralln > 0.

Proposition 2.1. Every nonnegative integer n can be uniquely expressed as n = ZZO e
where {; € {0,...,a—1}and €;tj_y -+ iy <jex (a—1)a+b—1)a+b)---(a+Db), forall
j =k >0, where “<;,,” is the lexicographical order.

For the proof we need the following lemma.

Lemma 2.2. The sequence (T,),4 satisfies
T,=(a-DT,.1+@+b-DT,r+@+b)T, 3+ ---+(@+b)T+(a+b+ 1T,
foralln > 4.

Proof. The proof is by recurrence on n. It is not difficult to verify that the relation is
valid for n = 4,5,6. Let n > 7 and suppose that the relation holds for all £ < n. Since
T,=al, 1 +bT, >+ T, 3,thenT, =al,_; +bT, »+ Q, where

O=@@-DT, 4+@+b-1DT, 5+(@+b)T,_¢+---+(@+b)T,+(a+b+ 1)T.
Then,

al,-1 +bT,r+(a—- DTy +(@+b- )T, s=(@—-DT,-1 +(a+b- 1T,
+(a+b)T,5+@+b)T,_4
+(a+b)T,_s.

In fact,
al,—1 + bT,_» + (Cl - l)Tn_4 +(a+b-1)T,_5
=(a-DT,1+@+b)T,»,+bT, 5+al, 4+ @+b-1)T,_5
=(a-DT,.1+(a+b-1DT, r+(@+b)T, 35+ @+b)T,_4+ (a+b)T,_s. m]

Proof of Proposition 2.1. Let N > 0 and ({;)o<;j<y be obtained by using the greedy
algorithm. Since —a + 1 < b < -2, then (7,),>0 is an increasing sequence of natural
integers. Hence, by the definition of the greedy algorithm, we can prove that
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Z{:Q GiT; < Ty,

forall 0 < j < N (see [24]). Thus,

Cilio1- ik <tex (@a—D(a+b—1)a+b)---(a+b)a+b+1),Vj>k>0.

Therefore, we obtain that £;-- - €;_ <jex (a = D)@+ b—1)a+Db)---(a+D). ]

Let £ = {(£)isk, k € Z,Nn = k, ;- - - €yt <pox (@ — D)@+ b — 1)@+ b)---(a+ b)}. Then,
the Rauzy fractal is the set

+00
R =Ry = {Z b, (Lanez € E}

i=2

where 6; = o/, if @ € C\ R or 6; = (!, 1)), if @ € R. Observe that R ¢ C or R ¢ R?. Notice
also that R is a compact set.

ExampLE 2.3. 1. If a = 3 and b = -2, we can show that P3 _»(x) = x> —3x%> +2x—1has
one real root 8 > 1 and two complex conjugates roots a, @ wich satisfy |al, |@| < 1. In this
case @ =~ 0.33764 + 0.56228i. The Rauzy fractal (Figure 1) is

Rs0={2i56a' \Vj>n>2,€€i Ly <jex 201 --- 1}

2. Ifa = 6 and b = -5, then Ps_s5(x) = x* — 6x% + 5x — 1 has three real roots: S =
5.048917340, @ ~ 0.3079785280 and A ~ 0.6431041320. The Rauzy fractal (Figure 2) in
this case is

R(,’_5 = {(Z:—:o; f,'a’i,Z;:; fl/ll),V] >n>2, fjgj—l cooly <pex 501 -+ - 1}

Fig.1. The set R ;. Fig.2. The set R¢_s.

Remark 2.4. There are several ways to construct Rauzy fractals, one of them is via substi-
tutions, as mentioned in the Introduction. Our class of Rauzy fractals is obtained by the sub-
stitution over a three-letter alphabet A = {1, 2,3} given by o(1) = 147D2, o(2) = 10@+>-D3
o(3) = 1993 provided that —a+ 1 < b < —2. There is a personal website (see [16]), where
one can draw online Rauzy fractals associated with any substitution, in particular to that one
of our case. For more details on how to construct Rauzy fractals using substitutions, the
reader is referred to [31].
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3. Boundary of R

In Sections 3 and 4, we will suppose that @ € C \ R, but all the results that we will state
remain valid for the case when a € R. In this section we show some properties concerning
the boundary of the Rauzy fractals. We will denote the interior of the set R by int(R). We
have the following theorem (see Fig. 3 and 4).

Theorem 3.1. The Rauzy fractal R = R, induces a periodic tiling of the complex plane
by the group G = Z + Za, that is, C = | J,cq(R+u) and int(R+u) N (R+v)# O implies that
u=nu.

Proof. The proof can be deduced from the work of Rauzy [27] or from the work of
Canterini and Siegel [10], where the authors explicitly deal with Pisot substitutions. |

Remark 3.2. We take the summation beginning from 2 in the definition of the Rauzy
fractal to have the tiling group Z + Za. If we begin at 0, then the group is Za =2 + Za™".

Proposition 3.3. The boundary OR of R satisfies the property:
OR = UueaR N (R+u), where H is a finite subset of G = Z + Za whose cardinality is
even and greater then or equal to 6. Moreover, {+=(1 + (b + 1)a), +a, (1 + ba)} C H.

For the proof we need the following result (see Fig. 7).

Lemma 3.4. Let ¢ : {0,1,--- ,a — 1} — C defined by y(Lyt;---) = 2 tia'. Let
wy = Y((0000(b + 2)(a + b)(a — 2))®),
wy = Y(01b(a — 1)(000(b + 2)(a + b)(a — 2))™),
w3 = Y(1(b + 1)(a + b)(a —2)(000(b + 2)(a + b)(a — 2))*),
z1 = ¥(1b(a — 1)), zo = w(000(b + 2)(a + b + 1)(a + b)™).
Then wy = wy = w3, 21 = 22, and hencew; e RN(R+a)N(R + 1 + (b + 1)a), and also
Z1ERNMR+ 1+ ba).

Proof. Let us show that w; = w,. We have,

wi = Ta (b + 20" + @+ b)a® + (a - 2)a)

b

and

wy = @ +ba? + (a— Da® + (b +2)a’ + (a+b)a® + (a—2)a).

Then,
(a*-a)

wi—wy = 0= b+ 4 (@+5) @D 1 (a-2)@) _ g~ pa® — (a-1a® =0

= o*(b+ 212 + o*(a + h)U=2 + o - 2)4=2)
—a-ba?-(a-1a*=0

Multiplying the last equation by 1 + o we obtain

Ab+2)+@+b)+a®a-2)—a(l +®) - ba*(1 +?)—a’(a- 1)1 +a’) =0.
Now, working out the left side of the above equation and using the fact that a® = aa?+ba+1
we obtain that w; = w,.

The other cases can be done in the same way. |
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Proof of Proposition 3.3. Notice that the set of G—translates intersecting R is finite since
G is alattice and R is compact. Hence the set H is finite and its cardinality is even because,
if u € H, then —u € H. Let us prove that {+(1 + (b + 1)a, za, (1 + ba)} C H. By Lemma
3.4, we have seen that w; € RN(R+a)N(R+1+(b+ 1)a). Therefore —a and —1 —(b+ 1)«
belong to H. We have also seen that z; € R N (R + 1 + ba). Therefore, —1 — ba belongs to
H. |

REmMARK 3.5. We have seen in Lemma 3.4 that a point, for instance w;, belongs to R N
(R + @). This means that w; has two ways to be represented. Actually, in that case, w,
could be expressed in three different ways. Points like w; are said to have at least two
a-representations. These points will be characterized in the next section.

Fig.3. Tiling the plane by R4 3. Fig.4. R3_; and its 6 neighbors.

4. Construction of the automaton ¢

In this section we prove that there exists an explicit and finite automaton that recognizes
the points with two representations. These points belong to the boundary of R. Let us begin
with the following result.

Proposition 4.1. Let x = Y2, a;a’ and y = Y., bia’, where | € Z and (a;)is1, (b)isi
belong to L. Then x = y if, and only if, the set J(x,y) = {x(k) — y(k), k > [} is finite, where
k

x(k) = a2 gl and y(k) = a2 B b, k2 1
i=l
Moreover, |, J(x,y) D Eqp = {0, 2%, 2(a + ba?), =(a + (b + 1)a?), £(1 + ba + (a -
Da?), (1 + (b + Da + (a + b)a?), =(1 + (b + Da + (a + b + 1)a?)}.

Before proving the proposition, we will construct the automaton.

4.1. Algorithmic construction of the complex numbers that have two representa-
tions. Let p and ¢ be two states. The set of edges is the set of (p, (¢, d), q) € E,»*x{0, 1, ...,a—
112 X E,, satisfying g = £ + (¢ — d)a?. The set of initial states is {0}.

Let us explain how this automaton acts. Let x = >[5 a;' and y = Y15 bie!, where
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a = (a;)is; and b = (b;);»; belong to L. Suppose that x = y and for all k > [ we set
S = Si(a,b) = x(k) — y(k). We have,

S
(1) Skl = ;" + (@1 — bpsr ).

Let ¢ be the smallest integer such that a, # b,. Hence S;(a,b) = Oforalli € {/,....,t — 1}.
Suppose that a; > b,. Then, §, = (a;—b,)a* = . From (1) we deduce that S, = a+ (a1 —
b;+1)a? which should belong to E,». Hence S,y = a+ba? if (a1, biy1) = (51+Db, 51), where
0<s;<a-l,orS, =a+(B+Da?if (a1, b)) =@ +b+1,1), where 0 < #; < a— 1.
Continuing with this process, we obtain an infinite path (S;, (a;, b;), S i+1)i>; beginning in the
initial state of the finite state automaton (see Fig. 5). This path will be denoted by (a;, b;);>;.

(E+b+1, £)

o +b+1)a? ]

(f-b-2, £)

1+ba+(a-1)a?

Fig.5. Automaton G.

Proof of Proposition 4.1. The direct implication is easy to see. Let us prove the converse.
Let x = Y2, a;a' and y = 32, bie’. Suppose that x = y, then @ **2x = a7**2y. Let us prove
that the set {x(k) — y(k), k > 0} is finite. Since x(k) — y(k) = a (X, aja’ — 5 bia) =
a TS, b — i, aidd) = 253 (breja = aryj2)a’, then [x(k) — y(k)| < C, where
C > 01is a constant.

Let S, = x(k) — y(k). Then S is an algebraic integer whose conjugates are Sy and Sy,
where S = XX (a; = b)) and S = TX (a; — by 2.

We have S| =[S < C, and

—_ . 2
ISdl = |Zh (@i = b2 = I(ag = bo)B™ 2 + -+ + (@ — bo)B* < Crtip,
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where C = 2 - max{|a;|,a; € {0,1,...,a — 1}} = 2(a — 1). Then, there exists M > 0 such that
S« and all its conjugates are bounded by M, independently of k. Thus {S;, k > 0} is finite.
O

As a consequence of this proposition, we have the following result.

Theorem 4.2. Let (a;)i»; and (b;);z; two distinct elements of L, then ¥, a;a' = Y22, b/
if and only if the sequence ((a;, b;));s; is recognizable by the automaton G.

REmARK 4.3. The use of finite state automata to recognize points with two expansions is
well known (see [34], [12], [22]). The difficulty is to find the states of these automata. And
that is what we are going to do in the sequel.

Let us remind that E,,j, = {0, +a?, (@ +ba?), +(a+(b+1)a?), +(1 +ba+(a—1)a?), (1 +
(b+ Da+ (a+b)a®), (1 + (b + Da + (a+ b+ 1)a?)}. To prove that Uy J(x,y) D Eqp we
need the following result.

Proposition 4.4. Let F,, = {S; = mx + pra + qkaz,k > 0, ng, pr, g € Z where Sy is a
state of the automaton G}. Let t = max{|ni|,k > O}. Ift = 1, then F,) = Egp.

For proving Proposition 4.4, we need the next lemma.
Lemma 4.5. Forall k > 1, S| = | Sk (a; — b)B~*?| < 2.

Proof. Suppose, without loss of generality, that Sk = Z;‘:l(a,' — bp)B~*2 > 0. Then,
§k € Z[B] N R*. Since B is a Pisot number, §k = ZiL:_oo c;8!, where (c;)i<z, is ultimately
periodic (see [30]). Then, 5, a;f% = ¥%  b,gi~+2 + $'L_ ¢;8". Now, let us suppose that
there exists i > 3 such that ¢; > 0. Then Y'¥, a,87%*> > g°. Absurd, because 0a, - - - a; <jex

10---O.HenceL§2and§k<ﬂ3. m|

Proof of Proposition 4.4. Let Sy = m + pra + gra? and t = max{|m|,k > 0}. Let us
suppose that # = 1. Then there exists and integer k such that S; = 1+ pa+ga?. Then, by (1),
Sii1 = é+p+qa/2. Hence, S .1 = (p—b)+(g—a)a+(d+1)a?, whered € A = {—a+1, ...,a—1}.
Sincet=1,thenp e{b—-1,b,b + 1}.

Now we have to analyze all the possible values for p. Let us recall that 5* = g + b3 + 1.

Cask 1. p = b. Inthis case, Si41 = (g—a)a+(d+1)a” and Sy = (g—a) +(d+ Da +ea?,
ec A.Then, g € {a—1,a,a+1}. We have §; = 1 + b3 + gf>. By Lemma 4.5, we must have
that §; < 83, hence g = a — 1 because, otherwise, Sp>1+ bB + gB* = 5. Hence we have
the state Sy = 1 + ba + (a — 1)a’.

Case 2. p = b—1. Wehave: Sy, = -1 + (g — a)a + (d + 1)a®. Since =Sy, =
l-(g—a)a—(d+1)a’ € F,», we obtain as before thata —qg € {b—1,b,b + 1}. Let us show
that these cases do not occur.

21.g=a-b+1.Inthiscase,S; =1+ (b-1)B+@-b+1)F = -+ (1 -b)B> >
B —pB+3B%>p Hence S, > B>
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22.g=a-b.Wehave S, = 1+(b-1)B+(a-b)p*> = -p-b5> > -p+2p8* > p°.

23.g=a-b—-1.Inthiscase, Sy =1+ (b-1)B+@-b-1)p> = -B+(-1-b)5> >
B — B+ %> 3. So we do not have the case when p = b — 1.

Case3.p=b+1.Wehave Sjyy =1+ (g—a)+(d+1)a*and Syso =(g—a—b) + (d +
1 —a)a + (e + 1)a*. Then, ¢ = a + b + r, where || < 1. Hence,
Se=1+pB+gB>=1+b+1)B+(a+b+r)ps,
with [r| < 1. We have to analyze all the possible cases for g.

3.1.g=a+b. Inthiscase, Sy = 1 +(b+ 1)B+(a+b)3> = B +B+bB> < B +B-2p% < 5°.
So we have the state Sy = 1 + (b + Da + (a + b)a?.
32.g=a+b+ 1. We have:
Si=1+0b+1D)B+@+b+ DB =R +B+ b+ 1)F <p +B-p*<p.
Then we obtain the state Sy = 1 + (b + D + (a + b + 1)a?.

33. g=a+b—1. Inthiscase, Sy = 1+ (b + 1)B+ (a+ b — 1)8% Hence Sy, =
1+(b-1)a+(d+1)a? d e A, which does not exist by Case 2. So, this case does not occur.

Let us now consider S; = n + pa + ga? and suppose that n = 0. Then, S; = pa + ga* and
A1 = p+qga+ da?. Then, p € {-1,0,1)}. Let us analyze all the possible cases, as we have
done before.

Case 4. If p = 0 then S; = ga’. So we obtain the states S = 0, if g = 0, and S} = +a?,
ifg==1.

Case 5. If p = 1, then Sy = @+ ga® and Si.1 = 1 + g + da?. Hence, Sjn =
(g —b)+(d—a)a+ (e+ 1)a®. Thus, g € {b—1,b,b + 1}. Let us analyze the possible cases.

5.1. g = b — 1. This case does not occur, as seen in CASE 2.
5.2. g = b. In this case we have the state S; = « + ba’.
5.3. g = b + 1. In this case we have the state S; = a + (b + 1)a?. ]

The next proposition tells us that the automaton could have other states depending on
certain conditions.

Proposition 4.6. Let t be the integer defined in Proposition 4.4 and suppose that 1 <t <

%. Ifa+b>3then Sy =t+ (t+th)a + (ta+th + t)a? is a state of the automaton G.

Proof. This proof highly depends on the properties of the associated S—expansion and it
must be divided into several cases. Let us remind that d(1,8) = (a — 1)(a + b — 1)(a + b)™.
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Case 1. t > 2. Suppose that S; = ¢+ pa + ga*. Then, by (1), Sis1 = (p —th) + (¢ —
ta)a + (f + t)a?, where |f] < a — 1. Setting p — tb = s, where s € {—t,...,t}, thus Sy =
t+(g—ta)a+(f+1)a’. Then, S,y = (g—ta—sb)+(f +1t—sa)a+(g+s)a’, where |g| < a—1.
Setting ¢ = ta + sb + I, for [ = —t,...,t we obtain that S; = ¢ + (tb + s)a + (ta + sb + Da’.
Let us show that s = f whenever a + b > 3.

We have S; =t + (tb + 5)B + (fa + sb + D)B%. Since  + tbB + ta® = 13>, we obtain that
Se=18+(shb+DB*+s8 =0+ (- 1)+ (sb+ B>+ sB.
Set X = (t — 1)B* + (sb + I)3* + sp. Using the fact that

B =(a-Dp+@+b-1)+@+b) Y /8,
i=1
we obtain

X/B=@t-1)B+(sb+DB+s
=[(t-Da-1D)+sb+B+[(t—1)a+b—-1)+s]+R,
where R = (t — 1)(a + b) ¥.°, 1/8 > 0.

By Lemma 4.5 we must have Sy < B. So, we need to show that X/8 > 0. Let us do the
first two cases. For all cases, the reader is referred to [25].
Let us suppose that s < 7.

Casg 1.1. —t < 5 < 0. In this case,
XB=[t-D@-1)+sb+1p+[t—1D(@a+b—-1)+s]+R
>[l+@—1)a-D]B+[(t—1)a+b—-1)+s]+R,since sb >0
>[(t-Da-1)—-t]B+[t—=Da+b-1)—t]+R

since [ > —tand s > —t.

Casel.1.1.a+b—-12>2.Sincet >2,a >3 and R > 0 we obtain that X/ > 0 and then
X >0.S0S; =8 +X > B which is an absurd.

After analyzing all the possibles cases we conclude that s = fand [ = 1.

Case2. 1 <m <t LetS; = m+ pa+ ga?, withm < t, then Sy = (p — mb) + (q —
ma)e + (d + m)a®. Hence, Sy = s + (¢ — ma)a + (d + m)a® and Sy,» = (g — ma — sb) +
(d+m—sa)a+(g+s)a? |s|<t gl <t || <t So,Si=m+ (mb+ s)a+ (ma+ sb+a’.

REmARK. Since fa + tb + t € L, then it must satisfy the condition: 0 < ta +th+t<a -1,
a-—1

thatis, t < ——.
a+b+1

Therefore, Sy = t + (t + th)a + (ta + tb + t)a? is a state of the automaton G. ]
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Corollary 4.7. The automaton has at least 2(6 + 3(K — 1)) nonempty states, where K =
a-1
a+b+1
tla+ b+ 1)a?)}, where 1 <t < K.

. The set of the states contains E,j; U (102, £(t + t(b + 1)a?), £t + t(b + Da +

The connection between the states of the automaton ¢ and the neighbors of the Rauzy
fractal R is contained in the proof of the next corollary.

Corollary 4.8. R has at least 6 + 2(K — 1) neighbors of the form u + R, where tu €
{za, (1 + ba), =1+ (b + D) U{x(t+t(b+ a}and 2 <t < K.

Proof. Let S, k > 0 be a state of the automaton G. Assume that S, = @?. Then,
a* + Z tia' = Z la,
i=3 i=3
where (£;);>3, ({));>3 € L. Hence,

(o] (89
@+ Z tia"™" = Z ta' .
; —

i=3 i=
This implies that R N (R + ) # 0. Therefore, « is a neighbor of R. The other neighbors
are obtained in the same way. o

From Corollary 4.8 we have the following theorem.

Theorem 4.9. If2a + 3b + 4 < 0 then R is not homeomorphic to a topological disk.

-1 -1
Proof. If 2a + 3b +4 < 0 then 3 < ———— that is, K = | ————| > 3. Thus R has
a+b+1 a+b+1
at least 6 + 2(K — 1) > 10 neighbors. So R cannot be homeomorphic to a topological disk
(see [13]). m]

ExampLE 4.10. Rg _7 has at least 10 neighbors (see Fig. 6).

Fig.6. Rg _7 and its neighbors.
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5. Parametrization of the Boundary of R; _,

In this section we will use the Automaton G built in the previous section with @ = 3 and
b = =2 to generate the boundary of R = Rj3_,. By Corollary 4.8, R3_, has at least 6
neighbors. Actually, we will show that R;_, has exactly 6 neighbors (see the Annex). We
will also prove that the boundary of R is generated by two infinite countable sets of IFS.

Let u € {+a, =(1 — @), =(1 — 2@)} and denote by R, = R N (R + u) the 6 curves which
constitute the boundary of R. The next proposition shows that each neighbor of R can be
expressed by means of the other ones.

Proposition 5.1. The following relations are valid:
L. Ri—e = Uy L1 + &f Ry, where iy € {0, 1,2}, for all k > 0.
2. Ry =aRi2, U U,‘f’zl(fk+1ak+2 + &R _yy), where £,y €1{0,1,2), forall k > 1.

Proof. 1. Letz€ Ri_,. Thenz=1-a+ Y5 tial = Dy flfai. So, by the Automaton G,
we have the associated paths in the automaton beginning in the initial state:

Py =(1,0)(-1,0)(¢2 + 1, 6,)(1,0) - - -
or

Py = (1,0)(=1,0)(2,0)(1,0)(1,0) - - - (1,0)(€34k, £341)(1,0) - - - .

k—times

Case 1.1. z=1—-a+ (& + Da? + @@ + a*w = 6% + o*w', where w,w € C. Hence,
ZJa—ba=1-2a+2a%+w=a’w € Ri_s.

On the other hand, if z € R|_y, then z = 1 — 2a + 2a® + @’w, where w € C. Thus,
z+ 6o =a+67+2 +dftw=1+@-20)+ L -3+ +a*tw=1-a =
(br+ Da? + @2 +d*w e Ry, if & > 1.

Case 1.2.

k+2

z=l-a+2+a’+ -+« k
—_—————

k k S+k

+l >+ M+ Oy = O+ a Wy
k—times

where wy, w;{ € C, forall k > 0. Hence, z/&**? =a ¥ 2 —a* 1 + 20 F+a ™ +... 4+ 1 +

b + @ + Awy = ba + @ w}c. Thus, by induction, we can show that

z
o2 U3 € Ri-2q.

Therefore, Ri_o = s Ge10 + @*R 2.

2.Ifze R, thenz=a+Y,, 6l =3, f;ai. Thus, Py = (0,0)(1,0)(-2,0)(2,0)--- or
P> =(0,0)(1,0)(—1,0) - - - are paths in the automaton beginning in the initial state.
3

Case2.l. z=a—-2a>+2a° +a*w, = cx4w'2. Hence, z/a = 1 -2+ 20 +’wy = @ w'2 €

Rl—Za-
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Case2.2. Thenz = a — a? + ws = a/3w'3. Hence, z/a = | — @ + &*ws = afzw/3 € Ri_g.
(We are back in Case 1.1).

Therefore, Ry = @R 1-20 U aR -y = @R 120 Ui b1 + 1R g, O

For all z € C, let us consider the iterated function system consisting of:

foz) = 3a* — @’ + a’z,

fiz) = —a? + 2a° + a?z,

£(2) = —a® + 4a* — & + 2’z,

f3(2) = &* +3a° — a® + o'z,

fi(2) = 2* +3a® — o’ + 'z,

fu(2) = 2a* + (Z’}:f a*ti)y + 39" — o3 4+ "z, forall n > 5;
and

go(z) = —a® + 3a* — & + o'z,

g1(z) = a* +2a° — a® + oz,

g2(z) = 2a* +2a8 — a’ + &z,

gn(2) = 20 + (27 &) + 20" — 0" + "z, forall n 2 3.

Fig. 8 illustrates the behavior of this system. The next theorem shows that R_,, is the
infinite union of the images of itself by the applications defined above.

Theorem 5.2. R, = U2 fi(R1-24) U UpZg 9x(R1-20).
Proof. Let us recall that & = 3a? — 2a + 1. Since R{_2, = RN R + 1 — 2a, we have,
foRi1220) = fo(R)N foy(R +1 =2a) = Ba* -’ + *R)N (@’ +o* — @® + ’R) =
(22 +PR)N(@ +a* -+ R) = (1 -20+2* +PR)NQRA +a* +@*R) € Ri_1g,
fiR1220) = iR)N AR +1 =20a) = (—a? +2a° + ®*R) N (a’R) = (1 = 2a + 207 +
@ +a®R)N (&*R) C Ri_2as
HRi20) = L(R)N HR +1=2a) = (-’ +4a* = + ’R)N 2a* — &’ + ’R) =
(1-2a0+2°+* +*R)N(1 =2a+2a*+a> +*R) € Ri_ra,
fiRI220) = FR)N AHLR +1=2a) = (a* +3a° —a®) N a* +@® —a® + a*R) =
(—?+27 +a* - +*R)NA 20 +2* +@ +a*R) =1 -2a+2> +> +a* +
ARIN(I-2a+22°+® +a° +a*R) € Ri_2a,
4(R1-22) = Ja Nfa(R+1-2a) = 2a’"+3a¢”—a' +« NZa"+a’+a’—a'+a =
(R1-20) R)Nfu(R+1-20) = 2a*+3a°—a’+@R)NQ2a* +a’ +a°—a’ +a’R)
(@R)N(@ =22+ R)cRN(R +1-2a)=Ri_r,
fiR120) = LR N fuR +1=2a) = 2a* + (T2} ) + 227 — o + ™' R) N
(204 + (Zij'l;il a4+j) + a,n+l + an+2 _ an+3 + a,nJrlR) - ((Y’HIR) N (anJrl _ za,nJrZ + an+lR) c
RNMR+1-2a)=Ri_s, Vn>5.
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Thus,
Ureo fi(R1-20) € Ri-2q-

On the other hand, let z € R_5,. Using the automaton G we have the following paths
beginning in the initial state:

1. Py = (0, 1)(0,=2)(1, 1)(1,0)(1,0)---. Then, z = &> + a* + & + a®wy = 1 =20 + 22° +
a® + aw,, where wg, w, € C. Hence, f;'(z) = 1 = 2a + 207 + a’wy = a’w, € R_2,, that
is,z € fi(R1-24)-

2. P =(0,1)(0,-2)(0,2)(0,1)(2,0)---. Then, z = 20 +@Pwy = 1—2a+2a2+a3+a5w6,
where wi,w, € C. Hence, f{'(z) = 1 — 2a + 20? + @*w; = a’w| € Ry, thatis, z €
Si(R1220).

3. P, = (0, 1)(0,-2)(0,2)(0,0)(2, 1)(1,0) - - -. Then, z = 2a* + @ +a®w, = 1 =2 +2a% +
a* + a®w,. Thus, f;'(z) = 1 = 2a + 2a? + @’wy = @’w, € Ry_n, thatis, z € fH(R1-2).

4. Py = (0, 1)(0,-2)(0,2)(0,0)(2,0)(1,0)(1,0)---. Then, z = 2a* + @ + a® + ¢'w; =
1 - 2a + 2% + a7w/3. Hence, f3_1(z) =1-2a+2e* +w; = a3w/3 € Ri_2q, that is,
Z € f3(R1-2q)-

5. P4 = (0,1)(0,-2)(0,2)(0,0)(2,0)(1,0)(1, 1)(1,0) - - -. Then, z = 2a* +a° +a° +a’wy =
1 —2a+20? + a® + @’w,. Hence, f;'(z) = 1 = 2a + 202 + a’wy = a’w, € Ry_a,, that is,
7 € fa(R1-20).

6. Ps = (0,1)(0,-2)(0,2)(0,0)(2,0)(1,0)(1,0)--- (1,0)(1, 1)(1,0) - - -. In this case, z =
k—times ,
20+ + a0 + -+ + O r o TR wy = 1 =20+ 202 + 0t + a/7+kw2+k. Hence,
f2‘+1k(z) =1-2a+2a%+wyy = a3w'2+k € Ri_pq, forall k > 2, thatis, z € fo.x(R-24) for
all k > 2.

In the same manner, we can do these calculations for the functions g;,i > 0.

Therefore Rz, = Up—g filR1-20) U Ujeo k(R 1-20). o

We have shown that R 2, = Upen fu(R1-20) U Unernt 9n(R1-24). Now, let z € Ry_2q.

Then, z = fao(ZO) =Yg 0Wg 0 Olﬁa,l(zn) =lim, WayoWa 0 - Owan(zn), where Yo, = fai
or Yy = ga;» ai €N, 7, € R1_p, and z is fixed. Thus,

Rl—Za = U wao o wal -0 lﬂa,,(Z)-
g sy

Hence, using the Proposition 5.1 and the Theorem 5.2, we obtain the boundary of R3_,
(see Fig. 11).
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Parametrization of R|_,,. The next lemma shows points of the fractal R that can be
expressed in three different ways, i.e., points with three a—representations. Consequently
these points lie in the intersection of three neighbors of the fractal (see Remark 3.5). These
points are shown in Figure 7.

Lemma 5.3. The following properties are satisfied.

3 4 5
LRy MRy = a+ 5%
-
4 5 6
a t+a +a
2 Ri-aNR12e = "56
3 4 5
+a”+
3. R12a NR_4 = alw—éa
-
4 5 6
4. R_gNR_jg=—-1+a+ %.
P+at+ad

5 Rova NRot20 = =1+ 20+ 5

4 5 6
6. Rot2a N Ry = =1 + 20 + S5

Proof. 1. If w € RyNR_o thenw = a+Y;15 L' = 1—a+3[S €', where (£)iz2, (€)ix2 €
L. Hence, using the automaton G, we obtain that

w=1-a+ 2(12 + a,3 + Zioil(a,GHl + a6i+2 + a,6i+3) — Q’2 + Z?Z](aéi_l + a6i + a,6i+1)

P +at+ad
1—a®

2. Ifx e Ri_,NR -5, then x = 1—(1/+Z;:§ f,-a/i = 1—2&4—2;:; f;.ai, where ({;);>2, (f;)izg €
L. Using the Automaton we obtain that

=+ 323+ + a5 ) =+

x=1l—-a+ 221(0/6i_4 +a% 3 4% ) =1 -2a+2a% + Zfil(a&_“ + %73 4+ b%72)
4,5, 6
_ o) 6i—2 6i—1 6i\ _ ¥ ta +a
= 2@+ + ") = T
The other relations come from the fact that: R1_,, NR_, = Ro N R —a@, R_, N
Rota=RicaNRize—1+a, Roj4a N R 420 = ReNRig — 1 +a,and R_1100 N R, =

Ri_a N R0 — 1 + 20 O

Proposition 5.4. Foralli,l € N,
1. fiR1220) N fi(R122¢) # 0 if, and only if, O < |i — I| < 1. In particular, fiy(Ri-2,) N

3 4,5
Sest(Ri22a) = {i(20)} = {fir1 (o)), where 2o = S =" and yo = 5

2. gi(R1-2¢) N gi(R1-2¢) # 0 if, and only if, 0 < |i — | < 1. In particular, gr(R1-24) N

3 4 5 4 5 6
i1 (R1-20) = {9k (0)} = {gks1(20)), where 29 = =% e S

and yo =
3. fiR1220) N gi(R1-20) =0, forall i,l € N,

Proof. Let us prove the item 1.

Case0<[i-I<1.
Let us suppose that w € fi(R1-24) N fir1(R1-20)- Then there exists y, z € R -2, such that
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+a3+a“'+a5
e TeTeE
1-—ab
- +a“+a5+a5
Qg e

1-—a®
at+ a® +af

a®+a*+a® 1—at

1—a®

Fig.7. Points with three a-representations.

y=-a+a’+az€ R_yNRi_ Hence, y = {zo} and z = {yo}. Therefore, fi(Ri_2) N
Sir1(R1-24) = {fi(z0)} = {fir1(Wo)}-

In the same way, we can show that fo(R1-20)Nf1(R1-20) = {f0(z0)} = {/1(0)}, [i(R1-22)N
Sa(Ri1-20) = {f1(z0)} = {/2(yo)}, and f2(R1-24) N f3(R1-20) = {/2(z0)} = {f3(0)}-

Caseli—1 > 1.
Suppose that [ > i and that f;(R1-2,) N fi(R1-24) # 0. Then there exists y,z € R -y, such
that

i~4 -4
2) Za4+1 +3a2 — o3 4 az+1y — ZQ4+J + 302 — @3 4 o2
J=1 J=1

Since y,z € R|_z,, they can be expressed as y = 1 —2a + 20? + o’jand z = 1 — 2a +
2a? + oz, where 7,7 € C. Replacing this in the equation (2) we obtain that

1=

3) g=l+a+a®+---+a" "+ Q).

Thus,
(1,0)(1,0)(1,0)...(1,0)...
(I-i—1) times
is the associated path in the automaton beginning in the initial state that represents the point
in (3). Absurd, because there is no such a path in the automaton.
Therefore, f;(Ri-24) N fi(R1-24) = 0.

Using the same reasoning we can prove the items 2. and 3. O

Now we show a geometric way for constructing R |_,,. Fig.9 illustrates this procedure.
Let zp and yo be two end points of R_p, as in Proposition 5.4. Let us consider the sequence
of functions ¢, : [0, 1] —» C,n > 1, where:
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Fig.g. RI—ZQ'

©1([0, 1]) is the polygonal line consisting of segments of the form [ fi(yo), fi+1(yo)], for
k € N, and the segments [gx(20), gr+1(z0)], for k € N. Let us remark that, by Proposition 5.4,
they could be joint in a continuous way (see Fig. 9).

¢2([0, 1) s the polygonal line consisting of all of the segments [f; o fi(x), fi o fir1(X)],
[fi © gj(x), fi © gjs1(x)], where x € {z0,y0}, and i,j € N (see Fig.9). Notice that, to
pass from ¢; ([0, 1]) to ¢»([0, 1]) we subdivide each interval [fi(yo), fr+1(yo)] (respectively
[9x(z0), 9x+1(z0)]), k € N, in infinitely many intervals in the following way:

If Kk = 0, we join the intervals in this order: [fy o fo(yo), fo © fiwo)]s [fo © fi(yo), fo ©
S2yo)l, - -+, [fo © fie1i(Wo)s fo © fi(wo)l, [fo © gi(z0)s fo © gr-1(z0)), - - 5 [ fo © g1(20), fo © go(z0)]-

If £k = 1, we join the intervals in this order: [f1 o fi(yo), fi © fo(yo)], [fi © fo(yo), f1 ©
B L Lo fic1(o), fi 0 ko)l Lfi © gk(20), f1 © gi1(z0)], - - -, [f1 © 91(20), f1 © go(zo)],

and so on.

Once ¢,([0, 1]) has been constructed, ,([0, 1]) = U[fioyj o---oy; (%), fioy, o---0
Vj.. (0], where x € {z0,yo}, and y; = fj or¢; = g;, for i, j € N (see Figure 10 for clarity).
We have the following result.

Proposition 5.5. Let (¢,).>0 be the sequence of functions where ¢, : [0,1] — C are
defined as above. Then (¢,([0, 11)),>0 converges to a compact set in the Hausdorff distance.

Proof. The Haudorff distance between two sets X and Y is defined by

dy(X,Y) = inf|x — inf|x — y| 7.
H(X,Y) maX{rileegi ;relylx yl,nyneagc }nglx yl}

Take y € ¢,4+1([0, 1]),n € N. Then, y = 4, 0 Yy, © -+ 0 Y, (2), where z € {z9,yo}, and
Vo, = fa, OT Yqa, = ga,, a; € N. Thus,

inf |x-— y| < |'~/’uo © Ql’al ©---0 %H(Z) - l//ao © 'ﬁal C---0 wu,,ﬂ(z)l < Cle",
x€@,([0,1])
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where C = max{|z| : z € R1-2,}. Hence,

max inf |x—-y| <Cla|".
y€@u+1([0,1]) x€p,([0,11)

We can infer the same estimate for max inf  |x — y|. Therefore,
x€p,([0,1]) ye@,1([0,1])

dr(a(10, 11), @541 ([0, 1)) < lal"C.

Since |a| < 1, then (¢,([0, 1])),s0 converges to a compact set K. It is not difficult to see
that £ = Ri_p,. O

Notice that with this method we can parametrize the whole boundary of R _,, once each
neighbor is expressed by means of the other ones.

ConcrupiNg REmaRrks. The methods used in [7] maybe can be applied, with some natural
modifications to comprise our case of infinite iterated function systems, to obtain further
topological properties of the boundary of Rz _,, or more generally, of the boundaries of
R, such as its Hausdorff dimension and the disk-like property.

%0 filo) iz}

Solwo) -
.%(_Zn}
fslw)
gslzo0) gal0) falw)
falwo) o)
z:” \9 filwa) ai(zo)
folw) o

sh(:n}

falwo)

fa(vo)

Fig.9. Approximating R -2, by ([0, 1]) and ¢, ([0, 1]).

6. Annex

In this section we will give an explicit proof that R = R3 _, has no more than 6 neighbors.
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foo fa(yo)
== fy0 fol0)

foo fa(yo)

foo fs(’-‘n)
2 / 240\ fyo fiw)
foo gn(zn P — {1(?}0)
fo(Jn) foo folyo)

Fig.10. Zoom of the interval [ fy(yo), f1(yo)] in @2([0, 1]).

Fig.11. Boundary of R3 _;.

Proposition 6.1. The Rauzy fractal R = Ri_, has exactly 6 neighbors of the form R +u,
where u € {xa, +1 — 2a,+1 — a}, i.e.,

VueZ+Za\{0, RNR+u+0 < uci{+a,+l —2a,+1 —a}.

Proof. Let us suppose that R N (R + p + qa) # 0, where p, g € Z. Then there exists z € R
such that

2= tia' = p+qa + Yy fl’ai, where (£;)i»2, (£)i=2 € L.
On the other hand, we can rearrange the terms as:
(f - g )G.’ = Zl ()741 4l+23

where yu; = (Cagai = U, 4) + -+ + (Csi — U5, ).

Hence,
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. 2
where k = max{Y2, |£; - £llaf’, £;, €] € {0,1,2}}. We can show that ( KaP ) <2.4256.

1—|al*

Now, let us set @ = ¢ + di, where ¢ ~ 0,3376, and d ~ 0,5622. Hence, |p + qczl2 =(p+
qc)? + g*d?. Therefore, |g| < 2, because if |g| > 3 we would have g*d®> > 2.8446 > 2.4256.
Then, we have to analyze the cases where g € {0, 1, +2}:

Case 1. If g = -2 then p = 1. Indeed, [p+qaf* = (p—2c)* +4d* < 2.4256 = (p—2c)*> <
2.4256 — 1.2642 = 1.1613. In this case, the only possibility is p = 1. Then we have the
neighbor R + 1 - 2a.

Case2. If g = —1 then p € {0, 1}. Indeed, |p+qgal* = (p—c)*+d*> < 2.4256 = (p—c)’> <
2.4256 - 0.3160 = 2.1096. In this case, the possible values for p are {0, 1} and then we have
the neighbors R —a, R+ 1 —a,and R + 2 - 2a.

Case 3. If ¢ = O then p € {—1,0,1}. Indeed, |p + ga|> = p* < 2.4256 and the possible
values for p are {0, 1} and then we have the neighbors R —a, R + 1 —a, and R + 2 — 2a.

Case 4. If ¢ = 1 then p € {—1,0,1}. Indeed, |p + gal> = (p + ¢)> + d*> < 2.4256 =
(p + ¢)? < 2.4256 —0.3160 = 2.1096. In this case, the possible values for p are {—1,0, 1}
and then we have the neighbors R — 1 and R + 1.

Case 5. If g = 2 then p € {~1,0, 1}. Indeed, |p + gal> = (p + 2¢)* + 4d°> < 2.4256 =
(p + 2¢)* < 2.4256 — 1.2542 = 1.1613, and the possible values for p are {—1,0, 1} and then
we have the neighbors R — 1 + 2a,R +2,and R + 1 + 2a.

Thus, we have found the neighbors: R +a, R+ (1 —a), R+(1 -2a), R+ 1, R = (1 +a),
R +2,R+ 1+ 2a. Let us see how to exclude the last six neighbors.

Case 1. Suppose that R N R + 1 + 2a # 0. Then, 1 +2a = Y156 — €)', where
(£)iz2, (£))iz2 € L. Hence,

+00
4) 11+ 2a + (& — £)a? = | Z(& — £)a] < |a] - 2.4256 < 1.59.
i=3

Let us recall that |a| ~ 0.6558. On the other hand we have,

(5) [1+2a+(8y—t2)a?| € {[1+2al, [1+2a+a?|, |1 +2a—a?], |1 +2a+2a7], || +2a—2a°} =~ T},
where I'} = {2.0177,2.1054,2.0198,2.2725,2.1114}. By (4) and (5) we have a contradic-

tion.

Cask 2. Suppose that RN R +2 # (. Then, 2 = Z;;";(& - t’lf)a/", where (£;);>2, ({))i»2 € L.
Hence,
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+00
(6) 12+ (€6, - £)a?| = | Z(é’,- - )a'] < |al - 2.4256 < 1.59.
i=3
On the other hand,
(N 2+ (65 - &) € 2,12+ @71, 12 = @, 12 + 22°), 12 = 27|} » Ty,

where [, = {1.8375,2.2346,1.7671,2.5213}. By (6) and (7) we have a contradiction.

Case 3. Suppose that RN R + 1 # 0. Then, 1 = Y[ 5(¢; — fg)a", where (£})is2, (€))i=2 € L.
Hence,

+00
(8) 11+ (65— )| = | Z(a» - )a'] < |al - 2.4256 < 1.59.
=3
On the other hand,
) 1+ (65— €2)a?| € {1,]1 + [, |1 = &, |1 + 27,1 — 20°|} ~ T3,

where '3 = {1,0.8835, 1.2606,0.9651, 1.5964}. By (8) and (9) we have a contradiction.

Case 4. Suppose that RN R + 1 +a # 0. Then, 1 +a = Y5 - [l{)a,i’ where
(£)is2, (£)i=2 € L. Hence,

+00
(10) 11 +a+ (&) - 6)a? = | Z({’,- — )| < a] - 2.4256 < 1.59.
i=3

On the other hand,

(1) [1+a+ (- 6)a* €[l +al, |l +a+a?|, |l +a—a?],[la+ 207, |1 + a—2a%|} = Ty,

where I'y = {1.4510, 1.4753,1.5505, 1.6179, 1.7530}. By (10) and (11) we have a contradic-
tion. Therefore, R3_, has only 6 neighbors. O
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