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Abstract
We present some topological and arithmetical aspects of a class of Rauzy fractals a,b related

to the polynomials of the form Pa,b(x) = x3 −ax2 −bx−1, where a and b are integers satisfying
−a + 1 ≤ b ≤ −2. This class has the property that 0 lies on the boundary of a,b. We
construct explicit finite automata that recognize the boundaries of these fractals. This allows to
establish the number of neighbors of a,b in the tiling it generates. Furthermore, we prove that
if 2a + 3b + 4 ≤ 0 then a,b is not homeomorphic to a topological disk. We also show that the
boundary of the set 3,−2 is generated by two infinite iterated function systems.

1. Introduction

1. Introduction
Our aim is to study a class of Rauzy fractals related to algebraic integers β which do not

satisfy a certain property called Property (F). This study involves fractal tilings, automata,
β−numeration, and infinite iterated function systems (IIFS).

The Rauzy fractal was introduced by G. Rauzy in 1982 [27] and it is the set

 =

⎧⎪⎪⎨⎪⎪⎩
+∞∑
i=0

�iα
i, �i ∈ {0, 1}, �i�i+1�i+2 = 0, ∀i ≥ 0

⎫⎪⎪⎬⎪⎪⎭,

where α is one of the complex roots of the polynomial x3 − x2 − x − 1.
There are several ways to construct the Rauzy fractal, one of them is by using substitu-

tions. Let  = {1, 2, ..., d}, d ≥ 2, be a finite alphabet. A word is a finite string of elements in
. The set of all finite words over  is denoted by ∗, and the empty word is denoted by ε.
A substitutionσ is an application from the alphabet  onto the set ∗\{ε} of nonempty finite
words on , and it extends to a morphism of ∗ by concatenation, i.e., σ(ww′) = σ(w)σ(w′).
The substitution σ can be naturally extended to the set of infinite words N. The initial aim
of Rauzy was to establish a geometric representation to the symbolic dynamical system as-
sociated with the substitution σ given by σ(0) = 01, σ(1) = 02, σ(2) = 0. Since then, this
set and its generalizations have been studied by many mathematicians, due to the strong con-
nections with other fields of mathematics, for instance, tilings [26, 1, 4], numeration systems
[22, 23, 26], Markov partitions for toral automorphisms [21, 26, 17], geometric representa-
tion of symbolic dynamical systems [10, 4, 5, 6, 21, 32, 14, 31], simultaneous diophantine
approximations [3, 11, 15], and the theory of quasicrystals [2].

The Rauzy fractal has remarkable properties (see [27]): it is a compact and connected
subset of C, its interior is simply connected, and it induces a periodic tiling of the complex
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plane. Moreover, it is divided into three self-similar copies of itself which correspond to an
exchange of domains.

Another way to obtain the Rauzy fractal is via β−representation. Given a real number
β > 1, a β-representation (or β-expansion) of a number x ∈ R+ is an infinite sequence (xi)i≤k,
where k ∈ Z, xi ≥ 0 such that x =

∑k
i=−∞ xiβ

i. The digits xi can be computed using the
greedy algorithm as follows (see [24, 12] for details): denote by �x	 and {x} the integer
and fractional parts of the number x. There exists k ∈ Z such that βk ≤ x < βk+1. Let
xk =

⌊
x/βk

⌋
and qk =

{
x/βk

}
. Then, for i < k, put xi = �βqi+1	 and qi = {βqi+1}. We obtain

x = xkβ
k + xk−1β

k−1 + · · · . If k < 0 (x < 1) we put x0 = x1 = · · · = xk+1 = 0. If a β-
representation ends up with infinitely many zeros, it is said to be finite and the ending zeros
can be omitted. Then, the sequence will be denoted by (xi)n≤i≤k or xk · · · xn. The digits xi

belong to the set B = {0, · · · , β}, if β is an integer, and to the set B = {0, · · · , �β	}, otherwise.
In particular, when β is a Pisot number, i.e., an algebraic integer greater then 1 such

that all its Galois conjugates have modulus less than 1, we obtain classes of Rauzy fractals
associated to these Pisot numbers. Cubic Pisot units were classified by Akiyama in [1] as
being exactly the set of dominant roots of the polynomial Pa,b(x) = x3 − ax2 − bx − 1,
satisfying one of the following conditions

a) 1 ≤ b ≤ a and d(1, β) = .ab1;
b) b = −1, a ≥ 2 and d(1, β) = .(a − 1)(a − 1)01;
c) b = a + 1 and d(1, β) = .(a + 1)00a1;
d) −a + 1 ≤ b ≤ −2 and d(1, β) = .(a − 1)(a + b − 1)(a + b)∞,

where (a + b)∞ is the periodic expansion (a + b)(a + b)(a + b) . . . , and d(1, β) is the Rényi
β-representation of 1 (see [28] for the definition).

Let Fin(β) be the set of nonnegative real numbers that have a finite β-representation. We
say that a Pisot number β has the Finiteness Property (or Property (F) ) if Z[β] ∩ [0,+∞[⊂
Fin(β). Therefore, the Pisot numbers in the sets a), b) and c) have the Property (F), while
the Pisot numbers in d) have not. Many works were done for the classes a) and b) (see
[35, 29, 22, 20, 7, 19]).

In this paper we will study the properties of the Rauzy fractals associated to the class of
Pisot numbers which do not satisfy the Property (F), that is, the case where −a+1 ≤ b ≤ −2.
As we shall see, this class shares common features with the others previously studied. For
instance, these fractals sets are compact and they tile the plane. In fact, this class of fractals
can be obtained via β−substitution defined by σ(1) = 1(a−1)2, σ(2) = 1(a+b−1)3, σ(3) =
1(a+b)3 (see [8]). This substitution belongs to the class of the so-called Pisot substitutions
and some topological properties for fractal sets arising from Pisot substitutions are well
known (see [9, 10]). On the other hand, zero is not an inner point for the fractals of this
class, contrary to the fractals associated with Pisot numbers that satisfy Property (F). In
this work, we obtain explicit finite state automata that generate the boundary of a,b. These
automata lead to several results: we obtain a formula for the number of the neighbors of a,b

in the periodic tiling and we prove that if 2a + 3b + 4 ≤ 0, then a,b is not homeomorphic
to a topological disk. We study in more details the boundary of the set 3,−2, in particular
we prove that the boundary of 3,−2 is generated by two infinite iterated function systems.
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Notice that the set 3,−2 is related to a Special Pisot number, i.e., a Pisot number β such that
β/(β − 1) is also a Pisot number (see [18, 33]).

This paper is organized in this way. In Section 2 we briefly describe the β−numeration
background necessary to define the Rauzy fractal sets that we are considering. In Section 3
we give some properties of the boundary of a,b. In Section 4 we construct the automata
that recognize the boundaries of the sets a,b. Finally, in Section 5, we use an automaton
to obtain two infinite iterated function system for the boundary of 3,−2, and we show a
geometric method in order to parametrize the boundary of 3,−2. In Section 6 (Annex) we
show algebraically that 3,−2 has exactly six neighbors.

2. Numeration system and Rauzy fractal

2. Numeration system and Rauzy fractal
In the sequel, we will suppose that β is a cubic Pisot unit which does not satisfy the

Property (F) and we will denote by α and λ its Galois conjugates. Let Pa,b(x) = x3 − ax2 −
bx−1 be the minimal polynomial of β. Next, we will consider a generalization of numeration
system induced by the β-expansion which only can be applied on integer numbers.

Let (Tn)n≥0 be the recurrent sequence defined by T0 = 1, T1 = a, T2 = a2 + b, Tn+3 =

aTn+2 + bTn+1 + Tn, satisfying the condition −a + 1 ≤ b ≤ −2 for all n ≥ 0.

Proposition 2.1. Every nonnegative integer n can be uniquely expressed as n =
∑N

i=0 �iTi,
where �i ∈ {0, . . . , a − 1} and � j� j−1 · · · � j−k ≤lex (a − 1)(a + b − 1)(a + b) · · · (a + b), for all
j ≥ k ≥ 0, where “≤lex” is the lexicographical order.

For the proof we need the following lemma.

Lemma 2.2. The sequence (Tn)n≥4 satisfies

Tn = (a − 1)Tn−1 + (a + b − 1)Tn−2 + (a + b)Tn−3 + · · · + (a + b)T1 + (a + b + 1)T0,

for all n ≥ 4.

Proof. The proof is by recurrence on n. It is not difficult to verify that the relation is
valid for n = 4, 5, 6. Let n ≥ 7 and suppose that the relation holds for all k < n. Since
Tn = aTn−1 + bTn−2 + Tn−3, then Tn = aTn−1 + bTn−2 + Q, where

Q = (a − 1)Tn−4 + (a + b − 1)Tn−5 + (a + b)Tn−6 + · · · + (a + b)T1 + (a + b + 1)T0.
Then,

aTn−1 + bTn−2 + (a − 1)Tn−4 + (a + b − 1)Tn−5 = (a − 1)Tn−1 + (a + b − 1)Tn−2

+ (a + b)Tn−3 + (a + b)Tn−4

+ (a + b)Tn−5.

In fact,
aTn−1 + bTn−2 + (a − 1)Tn−4 + (a + b − 1)Tn−5

= (a − 1)Tn−1 + (a + b)Tn−2 + bTn−3 + aTn−4 + (a + b − 1)Tn−5

= (a − 1)Tn−1 + (a + b − 1)Tn−2 + (a + b)Tn−3 + (a + b)Tn−4 + (a + b)Tn−5. �

Proof of Proposition 2.1. Let N ≥ 0 and (� j)0≤ j≤N be obtained by using the greedy
algorithm. Since −a + 1 ≤ b ≤ −2, then (Tn)n≥0 is an increasing sequence of natural
integers. Hence, by the definition of the greedy algorithm, we can prove that
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∑ j
i=0 �iTi < T j+1,

for all 0 ≤ j ≤ N (see [24]). Thus,

� j� j−1 · · · � j−k <lex (a − 1)(a + b − 1)(a + b) · · · (a + b)(a + b + 1), ∀ j ≥ k ≥ 0.

Therefore, we obtain that � j · · · � j−k ≤lex (a − 1)(a + b − 1)(a + b) · · · (a + b). �

Let  = {(�i)i≥k, k ∈ Z, ∀n ≥ k, �n · · · �n−k ≤lex (a − 1)(a + b − 1)(a + b) · · · (a + b)}. Then,
the Rauzy fractal is the set

 := a,b =

⎧⎪⎪⎨⎪⎪⎩
+∞∑
i=2

�iθi, (�n)n∈Z ∈ 
⎫⎪⎪⎬⎪⎪⎭

where θi = α
i, if α ∈ C \ R or θi = (αi, λi), if α ∈ R. Observe that  ⊂ C or  ⊂ R2. Notice

also that  is a compact set.

Example 2.3. 1. If a = 3 and b = −2, we can show that P3,−2(x) = x3 − 3x2 + 2x − 1 has
one real root β > 1 and two complex conjugates roots α, α wich satisfy |α|, |α| < 1. In this
case α ≈ 0.33764 + 0.56228i. The Rauzy fractal (Figure 1) is

3,−2 = {∑+∞i=2 �iα
i, ∀ j ≥ n ≥ 2, � j� j−1 · · · �n ≤lex 201 · · · 1}.

2. If a = 6 and b = −5, then P6,−5(x) = x3 − 6x2 + 5x − 1 has three real roots: β ≈
5.048917340, α ≈ 0.3079785280 and λ ≈ 0.6431041320. The Rauzy fractal (Figure 2) in
this case is

6,−5 = {(∑+∞i=2 �iα
i,
∑+∞

i=2 �iλ
i), ∀ j ≥ n ≥ 2, � j� j−1 · · · �n ≤lex 501 · · · 1}.

Fig.1. The set 3,−2. Fig.2. The set 6,−5.

Remark 2.4. There are several ways to construct Rauzy fractals, one of them is via substi-
tutions, as mentioned in the Introduction. Our class of Rauzy fractals is obtained by the sub-
stitution over a three-letter alphabet  = {1, 2, 3} given by σ(1) = 1(a−1)2, σ(2) = 1(a+b−1)3,
σ(3) = 1(a+b)3, provided that −a+1 ≤ b ≤ −2. There is a personal website (see [16]), where
one can draw online Rauzy fractals associated with any substitution, in particular to that one
of our case. For more details on how to construct Rauzy fractals using substitutions, the
reader is referred to [31].
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3. Boundary of 

3. Boundary of 
In Sections 3 and 4, we will suppose that α ∈ C \ R, but all the results that we will state

remain valid for the case when α ∈ R. In this section we show some properties concerning
the boundary of the Rauzy fractals. We will denote the interior of the set  by int(). We
have the following theorem (see Fig. 3 and 4).

Theorem 3.1. The Rauzy fractal  = a,b induces a periodic tiling of the complex plane
by the group G = Z + Zα, that is, C =

⋃
u∈G(+u) and int(+u) ∩ (+v)� ∅ implies that

u = v.

Proof. The proof can be deduced from the work of Rauzy [27] or from the work of
Canterini and Siegel [10], where the authors explicitly deal with Pisot substitutions. �

Remark 3.2. We take the summation beginning from 2 in the definition of the Rauzy
fractal to have the tiling group Z + Zα. If we begin at 0, then the group is Zα−2 + Zα−1.

Proposition 3.3. The boundary ∂ of  satisfies the property:
∂ =

⋃
u∈H ∩ (+u), where H is a finite subset of G = Z + Zα whose cardinality is

even and greater then or equal to 6. Moreover, {±(1 + (b + 1)α),±α,±(1 + bα)} ⊂ H.

For the proof we need the following result (see Fig. 7).

Lemma 3.4. Let ψ : {0, 1, · · · , a − 1}N → C defined by ψ(�0�1 · · · ) = ∑∞
i=0 �iα

i. Let
w1 = ψ((0000(b + 2)(a + b)(a − 2))∞),
w2 = ψ(01b(a − 1)(000(b + 2)(a + b)(a − 2))∞),
w3 = ψ(1(b + 1)(a + b)(a − 2)(000(b + 2)(a + b)(a − 2))∞),
z1 = ψ(1b(a − 1)), z2 = ψ(000(b + 2)(a + b + 1)(a + b)∞).

Then w1 = w2 = w3, z1 = z2, and hence w1 ∈  ∩ ( + α) ∩ ( + 1 + (b + 1)α), and also
z1 ∈  ∩ ( + 1 + bα).

Proof. Let us show that w1 = w2. We have,

w1 =
1

1−α6 ((b + 2)α4 + (a + b)α5 + (a − 2)α6)
and

w2 = α + bα2 + (a − 1)α3 + 1
1−α6 ((b + 2)α7 + (a + b)α8 + (a − 2)α9).

Then,
w1 − w2 = 0⇐⇒ (b + 2) (α4−α7)

1−α6 + (a + b) (α5−α8)
1−α6 + (a − 2) (α6−α9)

1−α6 − α − bα2 − (a − 1)α3 = 0
⇐⇒ α4(b + 2) (1−α3)

1−α6 + α
5(a + b) (1−α3)

1−α6 + α
6(a − 2) (1−α3)

1−α6

− α − bα2 − (a − 1)α3 = 0

Multiplying the last equation by 1 + α3 we obtain
α4(b + 2) + α5(a + b) + α6(a − 2) − α(1 + α3) − bα2(1 + α3) − α3(a − 1)(1 + α3) = 0.

Now, working out the left side of the above equation and using the fact that α3 = aα2+bα+1
we obtain that w1 = w2.

The other cases can be done in the same way. �
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Proof of Proposition 3.3. Notice that the set of G−translates intersecting  is finite since
G is a lattice and  is compact. Hence the set H is finite and its cardinality is even because,
if u ∈ H, then −u ∈ H. Let us prove that {±(1 + (b + 1)α,±α,±(1 + bα)} ⊂ H. By Lemma
3.4, we have seen that w1 ∈ ∩ (+α)∩ (+1+ (b+1)α). Therefore −α and −1− (b+1)α
belong to H. We have also seen that z2 ∈  ∩ ( + 1 + bα). Therefore, −1 − bα belongs to
H. �

Remark 3.5. We have seen in Lemma 3.4 that a point, for instance w1, belongs to  ∩
( + α). This means that w1 has two ways to be represented. Actually, in that case, w1

could be expressed in three different ways. Points like w1 are said to have at least two
α-representations. These points will be characterized in the next section.

Fig.3. Tiling the plane by 4,−3. Fig.4. 3,−2 and its 6 neighbors.

4. Construction of the automaton 

4. Construction of the automaton 
In this section we prove that there exists an explicit and finite automaton that recognizes

the points with two representations. These points belong to the boundary of . Let us begin
with the following result.

Proposition 4.1. Let x =
∑∞

i=l aiα
i and y =

∑∞
i=l biα

i, where l ∈ Z and (ai)i≥l, (bi)i≥l

belong to . Then x = y if, and only if, the set J(x, y) = {x(k) − y(k), k ≥ l} is finite, where

x(k) = α−k+2
k∑

i=l

aiα
i and y(k) = α−k+2 ∑k

i=l biα
i, ∀k ≥ l.

Moreover,
⋃

(x,y) J(x, y) ⊃ Ea,b = {0,±α2,±(α + bα2),±(α + (b + 1)α2),±(1 + bα + (a −
1)α2),±(1 + (b + 1)α + (a + b)α2),±(1 + (b + 1)α + (a + b + 1)α2)}.

Before proving the proposition, we will construct the automaton.

4.1. Algorithmic construction of the complex numbers that have two representa-
tions.

4.1. Algorithmic construction of the complex numbers that have two representa-
tions. Let p and q be two states. The set of edges is the set of (p, (c, d), q) ∈ Ea,b×{0, 1, ..., a−
1}2 × Ea,b satisfying q = p

α
+ (c − d)α2. The set of initial states is {0}.

Let us explain how this automaton acts. Let x =
∑+∞

i=l aiα
i and y =

∑+∞
i=l biα

i, where
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a = (ai)i≥l and b = (bi)i≥l belong to . Suppose that x = y and for all k ≥ l we set
S k = S k(a, b) = x(k) − y(k). We have,

S k+1 =
S k

α
+ (ak+1 − bk+1)α2.(1)

Let t be the smallest integer such that at � bt. Hence S i(a, b) = 0 for all i ∈ {l, ..., t − 1}.
Suppose that at > bt. Then, S t = (at−bt)α2 = α2. From (1) we deduce that S t+1 = α+(at+1−
bt+1)α2 which should belong to Ea,b. Hence S t+1 = α+bα2 if (at+1, bt+1) = (s1+b, s1), where
0 ≤ s1 ≤ a− 1, or S t+1 = α+ (b+ 1)α2, if (at+1, bt+1) = (t1 + b+ 1, t1), where 0 ≤ t1 ≤ a− 1.
Continuing with this process, we obtain an infinite path (S i, (ai, bi), S i+1)i≥l beginning in the
initial state of the finite state automaton (see Fig. 5). This path will be denoted by (ai, bi)i≥l.

Fig.5. Automaton .

Proof of Proposition 4.1. The direct implication is easy to see. Let us prove the converse.
Let x =

∑∞
i=l aiα

i and y =
∑∞

i=l biα
i. Suppose that x = y, then α−k+2x = α−k+2y. Let us prove

that the set {x(k) − y(k), k ≥ 0} is finite. Since x(k) − y(k) = α−k+2(
∑k

i=0 aiα
i − ∑k

i=0 biα
i) =

α−k+2(
∑+∞

i=k+1 biα
i − ∑+∞

i=k+1 aiα
i) =

∑+∞
j=3(bk+ j−2 − ak+ j−2)α j, then |x(k) − y(k)| ≤ C, where

C > 0 is a constant.
Let S k = x(k) − y(k). Then S k is an algebraic integer whose conjugates are S̃ k and S k,

where S̃ k =
∑k

i=0(ai − bi)βi−k+2 and S k =
∑k

i=0(ai − bi)αi−k+2.
We have |S k| = |S k| ≤ C, and

|S̃ k| =
∣∣∣∑k

i=l(ai − bi)βi−k+2
∣∣∣ = |(a0 − b0)β−k+2 + · · · + (ak − bk)β2| ≤ C β2

1−(1/β) ,
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where C = 2 ·max{|ai|, ai ∈ {0, 1, . . . , a − 1}} = 2(a − 1). Then, there exists M > 0 such that
S k and all its conjugates are bounded by M, independently of k. Thus {S k, k ≥ 0} is finite.

�

As a consequence of this proposition, we have the following result.

Theorem 4.2. Let (ai)i≥l and (bi)i≥l two distinct elements of , then
∑∞

i=l aiα
i =

∑∞
i=l biα

i

if and only if the sequence ((ai, bi))i≥l is recognizable by the automaton .

Remark 4.3. The use of finite state automata to recognize points with two expansions is
well known (see [34], [12], [22]). The difficulty is to find the states of these automata. And
that is what we are going to do in the sequel.

Let us remind that Ea,b = {0,±α2,±(α+bα2),±(α+ (b+1)α2),±(1+bα+ (a−1)α2),±(1+
(b+ 1)α+ (a+ b)α2),±(1+ (b+ 1)α+ (a+ b+ 1)α2)}. To prove that

⋃
(x,y) J(x, y) ⊃ Ea,b we

need the following result.

Proposition 4.4. Let Fa,b = {S k = nk + pkα + qkα
2, k ≥ 0, nk, pk, qk ∈ Z where S k is a

state of the automaton }. Let t = max{|nk|, k ≥ 0}. If t = 1, then Fa,b = Ea,b.

For proving Proposition 4.4, we need the next lemma.

Lemma 4.5. For all k ≥ l, |S̃ k| =
∣∣∣∑k

i=l(ai − bi)βi−k+2
∣∣∣ < β3.

Proof. Suppose, without loss of generality, that S̃ k =
∑k

i=l(ai − bi)βi−k+2 > 0. Then,
S̃ k ∈ Z[β] ∩ R+. Since β is a Pisot number, S̃ k =

∑L
i=−∞ ciβ

i, where (ci)i≤L is ultimately
periodic (see [30]). Then,

∑k
i=l aiβ

i−k+2 =
∑k

i=l biβ
i−k+2 +

∑L
−∞ ciβ

i. Now, let us suppose that
there exists i ≥ 3 such that ci > 0. Then

∑k
i=l aiβ

i−k+2 ≥ β3. Absurd, because 0a2 · · · al <lex

10 · · · 0. Hence L ≤ 2 and S̃ k < β
3. �

Proof of Proposition 4.4. Let S k = nk + pkα + qkα
2 and t = max{|nk|, k ≥ 0}. Let us

suppose that t = 1. Then there exists and integer k such that S k = 1+ pα+qα2. Then, by (1),
S k+1 =

1
α
+p+qα2. Hence, S k+1 = (p−b)+(q−a)α+(d+1)α2, where d ∈ Λ = {−a+1, ..., a−1}.

Since t = 1, then p ∈ {b − 1, b, b + 1}.
Now we have to analyze all the possible values for p. Let us recall that β3 = aβ2 + bβ + 1.

Case 1. p = b. In this case, S k+1 = (q−a)α+ (d+1)α2 and S k+2 = (q−a)+ (d+1)α+eα2,
e ∈ Λ. Then, q ∈ {a− 1, a, a+ 1}. We have S̃ k = 1+ bβ+ qβ2. By Lemma 4.5, we must have
that S̃ k < β3, hence q = a − 1 because, otherwise, S̃ k ≥ 1 + bβ + qβ2 = β3. Hence we have
the state S k = 1 + bα + (a − 1)α2.

Case 2. p = b − 1. We have: S k+1 = −1 + (q − a)α + (d + 1)α2. Since −S k+1 =

1− (q− a)α− (d + 1)α2 ∈ Fa,b, we obtain as before that a− q ∈ {b− 1, b, b+ 1}. Let us show
that these cases do not occur.

2.1. q = a − b + 1. In this case, S̃ k = 1 + (b − 1)β + (a − b + 1)β2 = β3 − β + (1 − b)β2 ≥
β3 − β + 3β2 > β3. Hence S̃ k > β

3.
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2.2. q = a− b. We have S̃ k = 1+ (b− 1)β+ (a− b)β2 = β3 − β− bβ2 ≥ β3 − β+ 2β2 > β3.

2.3. q = a − b − 1. In this case, S̃ k = 1 + (b − 1)β + (a − b − 1)β2 = β3 − β + (−1 − b)β2 ≥
β3 − β + β2 > β3. So we do not have the case when p = b − 1.

Case 3. p = b + 1. We have S k+1 = 1 + (q − a) + (d + 1)α2 and S k+2 = (q − a − b) + (d +
1 − a)α + (e + 1)α2. Then, q = a + b + r, where |r| ≤ 1. Hence,

S̃ k = 1 + pβ + qβ2 = 1 + (b + 1)β + (a + b + r)β2,
with |r| ≤ 1. We have to analyze all the possible cases for q.

3.1. q = a+b. In this case, S̃ k = 1+ (b+1)β+ (a+b)β2 = β3+β+bβ2 ≤ β3+β−2β2 < β3.
So we have the state S k = 1 + (b + 1)α + (a + b)α2.

3.2. q = a + b + 1. We have:

S̃ k = 1 + (b + 1)β + (a + b + 1)β2 = β3 + β + (b + 1)β2 ≤ β3 + β − β2 < β3.

Then we obtain the state S k = 1 + (b + 1)α + (a + b + 1)α2.

3.3. q = a + b − 1. In this case, S̃ k = 1 + (b + 1)β + (a + b − 1)β2. Hence S k+1 =

1+ (b− 1)α+ (d+ 1)α2, d ∈ Λ, which does not exist by Case 2. So, this case does not occur.

Let us now consider S k = n + pα + qα2 and suppose that n = 0. Then, S k = pα + qα2 and
Ak+1 = p + qα + dα2. Then, p ∈ {−1, 0, 1}. Let us analyze all the possible cases, as we have
done before.

Case 4. If p = 0 then S k = qα2. So we obtain the states S k = 0, if q = 0, and S k = ±α2,
if q = ±1.

Case 5. If p = 1, then S k = α + qα2 and S k+1 = 1 + qα + dα2. Hence, S k+2 =

(q − b) + (d − a)α + (e + 1)α2. Thus, q ∈ {b − 1, b, b + 1}. Let us analyze the possible cases.

5.1. q = b − 1. This case does not occur, as seen in Case 2.

5.2. q = b. In this case we have the state S k = α + bα2.

5.3. q = b + 1. In this case we have the state S k = α + (b + 1)α2. �

The next proposition tells us that the automaton could have other states depending on
certain conditions.

Proposition 4.6. Let t be the integer defined in Proposition 4.4 and suppose that 1 < t ≤
a−1

a+b+1 . If a + b ≥ 3 then S k = t + (t + tb)α + (ta + tb + t)α2 is a state of the automaton .

Proof. This proof highly depends on the properties of the associated β−expansion and it
must be divided into several cases. Let us remind that d(1, β) = (a − 1)(a + b − 1)(a + b)∞.
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Case 1. t ≥ 2. Suppose that S k = t + pα + qα2. Then, by (1), S k+1 = (p − tb) + (q −
ta)α + ( f + t)α2, where | f | ≤ a − 1. Setting p − tb = s, where s ∈ {−t, . . . , t}, thus S k+1 =

t+ (q− ta)α+ ( f + t)α2. Then, S k+2 = (q− ta− sb)+ ( f + t− sa)α+ (g+ s)α2, where |g| ≤ a−1.
Setting q = ta + sb + l, for l = −t, . . . , t we obtain that S k = t + (tb + s)α + (ta + sb + l)α2.
Let us show that s = t whenever a + b ≥ 3.

We have S̃ k = t + (tb + s)β + (ta + sb + l)β2. Since t + tbβ + taβ2 = tβ3, we obtain that
S̃ k = tβ3 + (sb + l)β2 + sβ = β3 + (t − 1)β3 + (sb + l)β2 + sβ.

Set X = (t − 1)β3 + (sb + l)β2 + sβ. Using the fact that

β2 = (a − 1)β + (a + b − 1) + (a + b)
∞∑

i=1

1/βi,

we obtain

X/β = (t − 1)β2 + (sb + l)β + s

= [(t − 1)(a − 1) + sb + l]β + [(t − 1)(a + b − 1) + s] + R,

where R = (t − 1)(a + b)
∑∞

i=1 1/βi > 0.

By Lemma 4.5 we must have S̃ k < β3. So, we need to show that X/β ≥ 0. Let us do the
first two cases. For all cases, the reader is referred to [25].
Let us suppose that s < t.

Case 1.1. −t ≤ s ≤ 0. In this case,

X/β = [(t − 1)(a − 1) + sb + l]β + [(t − 1)(a + b − 1) + s] + R

≥ [l + (t − 1)(a − 1)]β + [(t − 1)(a + b − 1) + s] + R, since sb ≥ 0

≥ [(t − 1)(a − 1) − t]β + [(t − 1)(a + b − 1) − t] + R

since l ≥ −t and s ≥ −t.

Case 1.1.1. a + b − 1 ≥ 2. Since t ≥ 2, a ≥ 3 and R > 0 we obtain that X/β ≥ 0 and then
X ≥ 0. So S̃ k = β

3 + X > β3, which is an absurd.

After analyzing all the possibles cases we conclude that s = t and l = t.

Case 2. 1 < m < t. Let S k = m + pα + qα2, with m < t, then S k+1 = (p − mb) + (q −
ma)α + (d + m)α2. Hence, S k+1 = s + (q − ma)α + (d + m)α2 and S k+2 = (q − ma − sb) +
(d + m − sa)α + (g + s)α2, |s| ≤ t, |q| ≤ t, |l| ≤ t. So, S k = m + (mb + s)α + (ma + sb + l)α2.

Remark. Since ta + tb + t ∈ , then it must satisfy the condition: 0 ≤ ta + tb + t ≤ a − 1,

that is, t ≤ a − 1
a + b + 1

.

Therefore, S k = t + (t + tb)α + (ta + tb + t)α2 is a state of the automaton . �
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Corollary 4.7. The automaton has at least 2(6 + 3(K − 1)) nonempty states, where K =[
a − 1

a + b + 1

]
. The set of the states contains Ea,b ∪ {±tα2,±(t + t(b + 1)α2),±(t + t(b + 1)α +

t(a + b + 1)α2)}, where 1 ≤ t ≤ K.

The connection between the states of the automaton  and the neighbors of the Rauzy
fractal  is contained in the proof of the next corollary.

Corollary 4.8.  has at least 6 + 2(K − 1) neighbors of the form u + , where ±u ∈
{±α,±(1 + bα),±(1 + (b + 1)α)} ∪ {±(t + t(b + 1)α} and 2 ≤ t ≤ K.

Proof. Let S k, k ≥ 0 be a state of the automaton . Assume that S 0 = α
2. Then,

α2 +

∞∑
i=3

�iα
i =

∞∑
i=3

�′iα
i,

where (�i)i≥3, (�′i )i≥3 ∈ . Hence,

α +

∞∑
i=3

�iα
i−1 =

∞∑
i=3

�′iα
i−1.

This implies that  ∩ ( + α) � ∅. Therefore, α is a neighbor of . The other neighbors
are obtained in the same way. �

From Corollary 4.8 we have the following theorem.

Theorem 4.9. If 2a + 3b + 4 ≤ 0 then  is not homeomorphic to a topological disk.

Proof. If 2a + 3b + 4 ≤ 0 then 3 ≤ a − 1
a + b + 1

, that is, K =
[

a − 1
a + b + 1

]
≥ 3. Thus  has

at least 6 + 2(K − 1) ≥ 10 neighbors. So  cannot be homeomorphic to a topological disk
(see [13]). �

Example 4.10. 8,−7 has at least 10 neighbors (see Fig. 6).

Fig.6. 8,−7 and its neighbors.
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5. Parametrization of the Boundary of 3,−2

5. Parametrization of the Boundary of 3,−2
In this section we will use the Automaton  built in the previous section with a = 3 and

b = −2 to generate the boundary of  = 3,−2. By Corollary 4.8, 3,−2 has at least 6
neighbors. Actually, we will show that 3,−2 has exactly 6 neighbors (see the Annex). We
will also prove that the boundary of  is generated by two infinite countable sets of IFS.

Let u ∈ {±α,±(1 − α),±(1 − 2α)} and denote by u =  ∩ ( + u) the 6 curves which
constitute the boundary of . The next proposition shows that each neighbor of  can be
expressed by means of the other ones.

Proposition 5.1. The following relations are valid:
1. 1−α =

⋃∞
k=1 �k+1α

k+1 + αk1−2α, where �k+1 ∈ {0, 1, 2}, for all k ≥ 0.
2. α = α1−2α

⋃⋃∞
k=1(�k+1α

k+2 + αk+11−2α), where �k+1 ∈ {0, 1, 2}, for all k ≥ 1.

Proof. 1. Let z ∈ 1−α. Then z = 1 − α +∑+∞
i=2 �iα

i =
∑∞

i=2 �
′
iα

i. So, by the Automaton ,
we have the associated paths in the automaton beginning in the initial state:

P1 = (1, 0)(−1, 0)(�2 + 1, �2)(1, 0) · · ·
or

P2 = (1, 0)(−1, 0)(2, 0) (1, 0)(1, 0) · · · (1, 0)︸������������������︷︷������������������︸
k−times

(�3+k, �3+k)(1, 0) · · · .

Case 1.1. z = 1 − α + (�2 + 1)α2 + α3 + α4w = �2α
2 + α4w

′
, where w, w

′ ∈ C. Hence,
z/α − �2α = 1 − 2α + 2α2 + α3w = α3w

′ ∈ 1−2α.

On the other hand, if z ∈ 1−2α then z = 1 − 2α + 2α2 + α3w, where w ∈ C. Thus,
αz + �2α

2 = α + �2α
2 + 2α3 + α4w = 1 + (α − 2α) + (�2 − 3)α2 + α3 + α4w = 1 − α =

(�2 + 1)α2 + α3 + α4w ∈ 1−2α, if �2 ≥ 1.

Case 1.2.

z = 1 − α + 2α2 + α3 + · · · + αk+2︸������������︷︷������������︸
k−times

+�3+kα
3+k + α4+k + α5+kwk = �3+kα

3+k + α5+kw
′
k,

where wk, w
′
k ∈ C, for all k ≥ 0. Hence, z/αk+2 = α−k−2 − α−k−1 + 2α−k + α−k+1 + · · · + 1 +

�3+kα + α
2 + α3wk = �3+kα + α

3w
′
k. Thus, by induction, we can show that

z
αk+2 − �k+3α ∈ 1−2α.

Therefore, 1−α =
⋃∞

k=1 �k+1α
k+1 + αk1−2α.

2. If z ∈ α then z = α +
∑

i=2 �iα
i =

∑
i=2 �

′
iα

i. Thus, P1 = (0, 0)(1, 0)(−2, 0)(2, 0) · · · or
P2 = (0, 0)(1, 0)(−1, 0) · · · are paths in the automaton beginning in the initial state.

Case 2.1. z = α− 2α2 + 2α3 +α4w2 = α
4w

′
2. Hence, z/α = 1− 2α+ 2α2 +α3w2 = α

3w
′
2 ∈

1−2α.
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Case 2.2. Then z = α − α2 + α3w3 = α
3w

′
3. Hence, z/α = 1 − α + α2w3 = α

2w
′
3 ∈ 1−α.

(We are back in Case 1.1).

Therefore, α = α1−2α ∪ α1−α = α1−2α
⋃⋃∞

k=1 �k+1α
k+2 + αk+11−2α. �

For all z ∈ C, let us consider the iterated function system consisting of:

f0(z) = 3α4 − α5 + α3z,

f1(z) = −α2 + 2α3 + α2z,

f2(z) = −α3 + 4α4 − α5 + α3z,

f3(z) = α4 + 3α5 − α6 + α4z,

f4(z) = 2α4 + 3α6 − α7 + α5z,

fn(z) = 2α4 + (
∑n−4

j=1 α
4+ j) + 3αn+2 − αn+3 + αn+1z, for all n ≥ 5;

and

g0(z) = −α3 + 3α4 − α5 + α3z,

g1(z) = α4 + 2α5 − α6 + α4z,

g2(z) = 2α4 + 2α6 − α7 + α5z,

gn(z) = 2α4 + (
∑n−2

j=1 α
4+ j) + 2αn+4 − αn+5 + αn+3z, for all n ≥ 3.

Fig. 8 illustrates the behavior of this system. The next theorem shows that 1−2α is the
infinite union of the images of itself by the applications defined above.

Theorem 5.2. 1−2α =
⋃∞

k=0 fk(1−2α)
⋃⋃∞

k=0 gk(1−2α).

Proof. Let us recall that α3 = 3α2 − 2α + 1. Since 1−2α =  ∩ + 1 − 2α, we have,

f0(1−2α) = f0() ∩ f0( + 1 − 2α) = (3α4 − α5 + α3) ∩ (α3 + α4 − α5 + α3) =
(−α2+2α3+α3)∩(α3+α4−α5+α3) = (1−2α+2α2+α3)∩(2α3+α4+α3) ⊂ 1−2α,

f1(1−2α) = f1() ∩ f1( + 1 − 2α) = (−α2 + 2α3 + α2) ∩ (α2) = (1 − 2α + 2α2 +

α3 + α2) ∩ (α2) ⊂ 1−2α,

f2(1−2α) = f2() ∩ f2( + 1 − 2α) = (−α3 + 4α4 − α5 + α3) ∩ (2α4 − α5 + α3) =
(1 − 2α + 2α2 + α4 + α3) ∩ (1 − 2α + 2α2 + α3 + α3) ⊂ 1−2α,

f3(1−2α) = f3() ∩ f3( + 1 − 2α) = (α4 + 3α5 − α6) ∩ (2α4 + α5 − α6 + α4) =
(−α2 + 2α3 + α4 − α5 + α4) ∩ (1 − 2α + 2α2 + α5 + α4) = (1 − 2α + 2α2 + α3 + α4 +

α4) ∩ (1 − 2α + 2α2 + α3 + α5 + α4) ⊂ 1−2α,

f4(1−2α) = f4()∩ f4(+1−2α) = (2α4+3α6−α7+α5)∩(2α4+α5+α6−α7+α5) =
(α5) ∩ (α5 − 2α6 + α5) ⊂  ∩ ( + 1 − 2α) = 1−2α,

fn(1−2α) = fn() ∩ fn( + 1 − 2α) = (2α4 + (
∑n−4

j=1 α
4+ j) + 2αn+2 − αn+3 + αn+1) ∩

(2α4 + (
∑n−4

j=1 α
4+ j) + αn+1 + αn+2 − αn+3 + αn+1) = (αn+1) ∩ (αn+1 − 2αn+2 + αn+1) ⊂

 ∩ ( + 1 − 2α) = 1−2α, ∀n ≥ 5.
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Thus, ⋃∞
k=0 fk(1−2α) ⊂ 1−2α.

On the other hand, let z ∈ 1−2α. Using the automaton  we have the following paths
beginning in the initial state:

1. P0 = (0, 1)(0,−2)(1, 1)(1, 0)(1, 0) · · · . Then, z = α3 + α4 + α5 + α6w0 = 1− 2α+ 2α2 +

α3 + α6w
′
0, where w0, w

′
0 ∈ C. Hence, f −1

0 (z) = 1 − 2α + 2α2 + α3w0 = α
3w

′
0 ∈ 1−2α, that

is, z ∈ f1(1−2α).

2. P1 = (0, 1)(0,−2)(0, 2)(0, 1)(2, 0) · · · . Then, z = 2α4+α5w0 = 1−2α+2α2+α3+α5w
′
0,

where w1, w
′
1 ∈ C. Hence, f −1

1 (z) = 1 − 2α + 2α2 + α3w1 = α3w
′
1 ∈ 1−2α, that is, z ∈

f1(1−2α).

3. P2 = (0, 1)(0,−2)(0, 2)(0, 0)(2, 1)(1, 0) · · · . Then, z = 2α4+α5+α6w2 = 1−2α+2α2+

α4 + α6w
′
2. Thus, f −1

2 (z) = 1 − 2α + 2α2 + α3w2 = α
3w

′
2 ∈ 1−2α, that is, z ∈ f2(1−2α).

4. P3 = (0, 1)(0,−2)(0, 2)(0, 0)(2, 0)(1, 0)(1, 0) · · · . Then, z = 2α4 + α5 + α6 + α7w3 =

1 − 2α + 2α2 + α7w
′
3. Hence, f −1

3 (z) = 1 − 2α + 2α2 + α3w3 = α3w
′
3 ∈ 1−2α, that is,

z ∈ f3(1−2α).

5. P4 = (0, 1)(0,−2)(0, 2)(0, 0)(2, 0)(1, 0)(1, 1)(1, 0) · · · . Then, z = 2α4+α5+α6+α7w4 =

1 − 2α + 2α2 + α6 + α7w
′
4. Hence, f −1

4 (z) = 1 − 2α + 2α2 + α3w4 = α
3w

′
4 ∈ 1−2α, that is,

z ∈ f4(1−2α).

6. P5 = (0, 1)(0,−2)(0, 2)(0, 0)(2, 0) (1, 0)(1, 0) · · · (1, 0)︸������������������︷︷������������������︸
k−times

(1, 1)(1, 0) · · · . In this case, z =

2α4 +α5 +α6 + · · ·+α4+k +α5+k +α6+k +α7+kw2+k = 1−2α+2α2 +α5+k +α7+kw
′
2+k. Hence,

f −1
2+k(z) = 1− 2α+ 2α2 + α3w2+k = α

3w
′
2+k ∈ 1−2α, for all k ≥ 2, that is, z ∈ f2+k(1−2α) for

all k ≥ 2.

In the same manner, we can do these calculations for the functions gi, i ≥ 0.

Therefore 1−2α =
⋃∞

k=0 fk(1−2α)
⋃⋃∞

k=0 gk(1−2α). �

We have shown that 1−2α =
⋃

n∈N fn(1−2α)
⋃⋃

n∈N gn(1−2α). Now, let z ∈ 1−2α.
Then, z = fa0 (z0) = ψa0 ◦ψa1 ◦ · · · ◦ψan(zn) = limn→+∞ ψa0 ◦ψa1 ◦ · · · ◦ψan(zn), where ψai = fai

or ψai = gai , ai ∈ N, zn ∈ 1−2α and z is fixed. Thus,

1−2α =
⋃

a0,··· ,an

ψa0 ◦ ψa1 ◦ · · · ◦ ψan(z).

Hence, using the Proposition 5.1 and the Theorem 5.2, we obtain the boundary of 3,−2

(see Fig. 11).
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Parametrization of 1−2α. The next lemma shows points of the fractal  that can be
expressed in three different ways, i.e., points with three α−representations. Consequently
these points lie in the intersection of three neighbors of the fractal (see Remark 3.5). These
points are shown in Figure 7.

Lemma 5.3. The following properties are satisfied.

1. α ∩1−α = α + α3+α4+α5

1−α6

2. 1−α ∩1−2α =
α4+α5+α6

1−α6 .

3. 1−2α ∩−α = α3+α4+α5

1−α6 .

4. −α ∩−1+α = −1 + α + α4+α5+α6

1−α6 .

5. −1+α ∩−1+2α = −1 + 2α + α3+α4+α5

1−α6 .

6. −1+2α ∩α = −1 + 2α + α4+α5+α6

1−α6 .

Proof. 1. If w ∈ α∩1−α then w = α+
∑+∞

i=2 �iα
i = 1−α+∑+∞i=2 �

′
iα

i, where (�i)i≥2, (�
′
i)i≥2 ∈

. Hence, using the automaton , we obtain that

w = 1 − α + 2α2 + α3 +
∑∞

i=1(α6i+1 + α6i+2 + α6i+3) = α2 +
∑∞

i=1(α6i−1 + α6i + α6i+1)

= α +
∑∞

i=1(α6i−3 + α6i−2 + α6i−1) = α + α3+α4+α5

1−α6 .

2. If x ∈ 1−α∩1−2α then x = 1−α+∑+∞i=2 �iα
i = 1−2α+

∑+∞
i=2 �

′
iα

i, where (�i)i≥2, (�
′
i)i≥2 ∈

. Using the Automaton we obtain that

x = 1 − α +∑∞
i=1(α6i−4 + α6i−3 + α6i−2) = 1 − 2α + 2α2 +

∑∞
i=1(α6i−4 + α6i−3 + α6i−2)

=
∑∞

i=1(α6i−2 + α6i−1 + α6i) = α4+α5+α6

1−α6 .

The other relations come from the fact that: 1−2α ∩ −α = α ∩ 1−α − α, −α ∩
−1+α = 1−α ∩1−2α − 1+ α, −1+α ∩−1+2α = α ∩1−α − 1+ α, and −1+2α ∩α =

1−α ∩1−2α − 1 + 2α. �

Proposition 5.4. For all i, l ∈ N,
1. fi(1−2α) ∩ fl(1−2α) � ∅ if, and only if, 0 ≤ |i − l| ≤ 1. In particular, fk(1−2α) ∩

fk+1(1−2α) = { fk(z0)} = { fk+1(y0)}, where z0 =
α3+α4+α5

1+α6 and y0 =
α4+α5+α6

1−α6 ;

2. gi(1−2α) ∩ gl(1−2α) � ∅ if, and only if, 0 ≤ |i − l| ≤ 1. In particular, gk(1−2α) ∩
gk+1(1−2α) = {gk(y0)} = {gk+1(z0)}, where z0 =

α3+α4+α5

1+α6 and y0 =
α4+α5+α6

1−α6 ;

3. fi(1−2α) ∩ gl(1−2α) = ∅, for all i, l ∈ N.

Proof. Let us prove the item 1.

Case 0 ≤ |i − l| ≤ 1.
Let us suppose that w ∈ fk(1−2α)∩ fk+1(1−2α). Then there exists y, z ∈ 1−2α such that
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Fig.7. Points with three α-representations.

y = −α + α2 + αz ∈ −α ∩ 1−2α. Hence, y = {z0} and z = {y0}. Therefore, fk(1−2α) ∩
fk+1(1−2α) = { fk(z0)} = { fk+1(y0)}.

In the same way, we can show that f0(1−2α)∩ f1(1−2α) = { f0(z0)} = { f1(y0)}, f1(1−2α)∩
f2(1−2α) = { f1(z0)} = { f2(y0)}, and f2(1−2α) ∩ f3(1−2α) = { f2(z0)} = { f3(y0)}.

Case |i − l| > 1.
Suppose that l > i and that fi(1−2α)∩ fl(1−2α) � ∅. Then there exists y, z ∈ 1−2α such

that

(2)
i−4∑
j=1

α4+ j + 3αi+2 − αi+3 + αi+1y =

l−4∑
j=1

α4+ j + 3αl+2 − αl+3 + αl+1z.

Since y, z ∈ 1−2α, they can be expressed as y = 1 − 2α + 2α2 + α3ȳ and z = 1 − 2α +
2α2 + α3z̄, where ȳ, z̄ ∈ C. Replacing this in the equation (2) we obtain that

(3) ȳ = 1 + α + α2 + · · · + αl−i−1 + αl−i(z̄).

Thus,
(1, 0)(1, 0)(1, 0) . . . (1, 0)︸�������������������������︷︷�������������������������︸

(l−i−1) times

. . .

is the associated path in the automaton beginning in the initial state that represents the point
in (3). Absurd, because there is no such a path in the automaton.

Therefore, fi(1−2α) ∩ fl(1−2α) = ∅.

Using the same reasoning we can prove the items 2. and 3. �

Now we show a geometric way for constructing 1−2α. Fig. 9 illustrates this procedure.
Let z0 and y0 be two end points of 1−2α as in Proposition 5.4. Let us consider the sequence
of functions ϕn : [0, 1]→ C, n ≥ 1, where:
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Fig.8. 1−2α.

ϕ1([0, 1]) is the polygonal line consisting of segments of the form [ fk(y0), fk+1(y0)], for
k ∈ N, and the segments [gk(z0), gk+1(z0)], for k ∈ N. Let us remark that, by Proposition 5.4,
they could be joint in a continuous way (see Fig. 9).

ϕ2([0, 1]) is the polygonal line consisting of all of the segments [ fi ◦ f j(x), fi ◦ f j+1(x)],
[ fi ◦ g j(x), fi ◦ g j+1(x)], where x ∈ {z0, y0}, and i, j ∈ N (see Fig. 9). Notice that, to
pass from ϕ1([0, 1]) to ϕ2([0, 1]) we subdivide each interval [ fk(y0), fk+1(y0)] (respectively
[gk(z0), gk+1(z0)]), k ∈ N, in infinitely many intervals in the following way:

If k = 0, we join the intervals in this order: [ f0 ◦ f0(y0), f0 ◦ f1(y0)], [ f0 ◦ f1(y0), f0 ◦
f2(y0)], · · · , [ f0 ◦ fk−1(y0), f0 ◦ fk(y0)], [ f0 ◦ gk(z0), f0 ◦ gk−1(z0)], · · · , [ f0 ◦ g1(z0), f0 ◦ g0(z0)].

If k = 1, we join the intervals in this order: [ f1 ◦ f1(y0), f1 ◦ f2(y0)], [ f1 ◦ f2(y0), f1 ◦
f3(y0)], · · · , [ f1 ◦ fk−1(y0), f1 ◦ fk(y0)], [ f1 ◦ gk(z0), f1 ◦ gk−1(z0)], · · · , [ f1 ◦ g1(z0), f1 ◦ g0(z0)],
and so on.

Once ϕn([0, 1]) has been constructed, ϕn([0, 1]) =
⋃

[ fi ◦ψ j1 ◦ · · · ◦ψ jn(x), fi ◦ψ ji+1 ◦ · · · ◦
ψ jn+1 (x)], where x ∈ {z0, y0}, and ψ j = f j or ψ j = g j, for i, j ∈ N (see Figure 10 for clarity).
We have the following result.

Proposition 5.5. Let (ϕn)n≥0 be the sequence of functions where ϕn : [0, 1] → C are
defined as above. Then (ϕn([0, 1]))n≥0 converges to a compact set in the Hausdorff distance.

Proof. The Haudorff distance between two sets X and Y is defined by

dH(X, Y) = max
{

max
x∈X

inf
y∈Y|x − y|,max

y∈Y
inf
x∈X|x − y|

}
.

Take y ∈ ϕn+1([0, 1]), n ∈ N. Then, y = ψa0 ◦ ψa1 ◦ · · · ◦ ψan+1 (z), where z ∈ {z0, y0}, and
ψai = fai or ψai = gai , ai ∈ N. Thus,

inf
x∈ϕn([0,1])

|x − y| ≤ |ψa0 ◦ ψa1 ◦ · · · ◦ ψan(z) − ψa0 ◦ ψa1 ◦ · · · ◦ ψan+1 (z)| ≤ C|α|n,
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where C = max{|z| : z ∈ 1−2α}. Hence,

max
y∈ϕn+1([0,1])

inf
x∈ϕn([0,1])

|x − y| ≤ C|α|n.

We can infer the same estimate for max
x∈ϕn([0,1])

inf
y∈ϕn+1([0,1])

|x − y|. Therefore,

dH(ϕn([0, 1]), ϕn+1([0, 1])) ≤ |α|nĊ.

Since |α| < 1, then (ϕn([0, 1]))n≥0 converges to a compact set . It is not difficult to see
that  = 1−2α. �

Notice that with this method we can parametrize the whole boundary of 3,−2, once each
neighbor is expressed by means of the other ones.

Concluding Remarks. The methods used in [7] maybe can be applied, with some natural
modifications to comprise our case of infinite iterated function systems, to obtain further
topological properties of the boundary of 3,−2, or more generally, of the boundaries of
a,b, such as its Hausdorff dimension and the disk-like property.

Fig.9. Approximating 1−2α by ϕ1([0, 1]) and ϕ2([0, 1]).

6. Annex

6. Annex
In this section we will give an explicit proof that  = 3,−2 has no more than 6 neighbors.
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Fig.10. Zoom of the interval [ f0(y0), f1(y0)] in ϕ2([0, 1]).

Fig.11. Boundary of 3,−2.

Proposition 6.1. The Rauzy fractal  = 3,−2 has exactly 6 neighbors of the form +u,
where u ∈ {±α,±1 − 2α,±1 − α}, i.e.,

∀u ∈ Z + Zα\{0},  ∩ + u � ∅ ⇐⇒ u ∈ {±α,±1 − 2α,±1 − α}.
Proof. Let us suppose that ∩ (+ p+ qα) � ∅, where p, q ∈ Z. Then there exists z ∈ 

such that

z =
∑=∞

i=2 �iα
i = p + qα +

∑=∞
i=2 �

′
iα

i, where (�i)i≥2, (�′i )i≥2 ∈ .

On the other hand, we can rearrange the terms as:∑+∞
i=2(�i − �′i )αi =

∑+∞
i=0 γ4iα

4i+2,

where γ4i = (�2+4i − �′2+4i) + · · · + (�5+4i − �′5+4i)α
3.

Hence,

|p + qα|2 ≤
(

k|α|2
1 − |α|4

)2

,
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where k = max{∑3
i=0 |�i − �′i ||α|i, �i, �

′
i ∈ {0, 1, 2}}. We can show that

(
k|α|2

1−|α|4
)2 ≤ 2.4256.

Now, let us set α = c + di, where c ≈ 0, 3376, and d ≈ 0, 5622. Hence, |p + qα|2 = (p +
qc)2 + q2d2. Therefore, |q| ≤ 2, because if |q| ≥ 3 we would have q2d2 ≥ 2.8446 > 2.4256.
Then, we have to analyze the cases where q ∈ {0,±1,±2}:

Case 1. If q = −2 then p = 1. Indeed, |p+qα|2 = (p−2c)2+4d2 ≤ 2.4256 =⇒ (p−2c)2 ≤
2.4256 − 1.2642 = 1.1613. In this case, the only possibility is p = 1. Then we have the
neighbor  + 1 − 2α.

Case 2. If q = −1 then p ∈ {0, 1}. Indeed, |p+qα|2 = (p−c)2+d2 ≤ 2.4256 =⇒ (p−c)2 ≤
2.4256− 0.3160 = 2.1096. In this case, the possible values for p are {0, 1} and then we have
the neighbors  − α,  + 1 − α, and  + 2 − 2α.

Case 3. If q = 0 then p ∈ {−1, 0, 1}. Indeed, |p + qα|2 = p2 ≤ 2.4256 and the possible
values for p are {0, 1} and then we have the neighbors  − α,  + 1 − α, and  + 2 − 2α.

Case 4. If q = 1 then p ∈ {−1, 0, 1}. Indeed, |p + qα|2 = (p + c)2 + d2 ≤ 2.4256 =⇒
(p + c)2 ≤ 2.4256 − 0.3160 = 2.1096. In this case, the possible values for p are {−1, 0, 1}
and then we have the neighbors  − 1 and  + 1.

Case 5. If q = 2 then p ∈ {−1, 0, 1}. Indeed, |p + qα|2 = (p + 2c)2 + 4d2 ≤ 2.4256 =⇒
(p + 2c)2 ≤ 2.4256 − 1.2542 = 1.1613, and the possible values for p are {−1, 0, 1} and then
we have the neighbors  − 1 + 2α, + 2, and  + 1 + 2α.

Thus, we have found the neighbors: ±α, ± (1−α), ± (1− 2α), ± 1, ± (1+α),
 + 2,  + 1 + 2α. Let us see how to exclude the last six neighbors.

Case 1. Suppose that  ∩  + 1 + 2α � ∅. Then, 1 + 2α =
∑+∞

i=2(�i − �′i )αi, where
(�i)i≥2, (�′i )i≥2 ∈ . Hence,

(4) |1 + 2α + (�′2 − �2)α2| = |
+∞∑
i=3

(�i − �′i )αi| < |α| · 2.4256 ≤ 1.59.

Let us recall that |α| ≈ 0.6558. On the other hand we have,

(5) |1+2α+(�′2−�2)α2| ∈ {|1+2α|, |1+2α+α2|, |1+2α−α2|, |1+2α+2α2|, |1+2α−2α2|} ≈ Γ1,

where Γ1 = {2.0177, 2.1054, 2.0198, 2.2725, 2.1114}. By (4) and (5) we have a contradic-
tion.

Case 2. Suppose that ∩+ 2 � ∅. Then, 2 =
∑+∞

i=2(�i − �′i )αi, where (�i)i≥2, (�′i )i≥2 ∈ .
Hence,



Rauzy Fractals without the Finiteness Property 597

(6) |2 + (�′2 − �2)α2| = |
+∞∑
i=3

(�i − �′i )αi| < |α| · 2.4256 ≤ 1.59.

On the other hand,

(7) |2 + (�′2 − �2)α2| ∈ {2, |2 + α2|, |2 − α2|, |2 + 2α2|, |2 − 2α2|} ≈ Γ2,

where Γ2 = {1.8375, 2.2346, 1.7671, 2.5213}. By (6) and (7) we have a contradiction.

Case 3. Suppose that ∩+ 1 � ∅. Then, 1 =
∑+∞

i=2(�i − �′i )αi, where (�i)i≥2, (�′i )i≥2 ∈ .
Hence,

(8) |1 + (�′2 − �2)α2| = |
+∞∑
i=3

(�i − �′i )αi| < |α| · 2.4256 ≤ 1.59.

On the other hand,

(9) |1 + (�′2 − �2)α2| ∈ {1, |1 + α2|, |1 − α2|, |1 + 2α2|, |1 − 2α2|} ≈ Γ3,

where Γ3 = {1, 0.8835, 1.2606, 0.9651, 1.5964}. By (8) and (9) we have a contradiction.

Case 4. Suppose that  ∩  + 1 + α � ∅. Then, 1 + α =
∑+∞

i=2(�i − �′i )αi, where
(�i)i≥2, (�′i )i≥2 ∈ . Hence,

(10) |1 + α + (�′2 − �2)α2| = |
+∞∑
i=3

(�i − �′i )αi| < |α| · 2.4256 ≤ 1.59.

On the other hand,

(11) |1+α+ (�′2 − �2)α2| ∈ {|1+ α|, |1+α+α2|, |1+α−α2|, |1α+ 2α2|, |1+α− 2α2|} ≈ Γ4,

where Γ4 = {1.4510, 1.4753, 1.5505, 1.6179, 1.7530}. By (10) and (11) we have a contradic-
tion. Therefore, 3,−2 has only 6 neighbors. �
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